WO2022135166A1 - 确定核电厂安全壳预应力钢束张拉顺序的方法及系统 - Google Patents

确定核电厂安全壳预应力钢束张拉顺序的方法及系统 Download PDF

Info

Publication number
WO2022135166A1
WO2022135166A1 PCT/CN2021/136790 CN2021136790W WO2022135166A1 WO 2022135166 A1 WO2022135166 A1 WO 2022135166A1 CN 2021136790 W CN2021136790 W CN 2021136790W WO 2022135166 A1 WO2022135166 A1 WO 2022135166A1
Authority
WO
WIPO (PCT)
Prior art keywords
containment
tensioning
prestressed
load
sequence
Prior art date
Application number
PCT/CN2021/136790
Other languages
English (en)
French (fr)
Inventor
赵金涛
孟剑
董尘
姚迪
王黎丽
杨建华
隋春光
张超琦
李玉民
刘玉林
张春龙
刘昱
陈丹
吴茜婷
Original Assignee
中国核电工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国核电工程有限公司 filed Critical 中国核电工程有限公司
Publication of WO2022135166A1 publication Critical patent/WO2022135166A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/13Architectural design, e.g. computer-aided architectural design [CAAD] related to design of buildings, bridges, landscapes, production plants or roads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces

Definitions

  • the invention belongs to the technical field of nuclear power plants, and particularly relates to a method for determining the tension sequence of nuclear power plant containment prestressed steel bundles, and a system for determining the tension sequence of nuclear power plant containment prestressed steel bundles.
  • Prestressed reinforced concrete containment uses a prestressed system to resist internal pressure loads.
  • the nuclear power plants of different reactor types at home and abroad use different prestressing arrangements, the number of steel bundles is relatively large. Contains 221 steel beams. During prestressed construction, tensioning must be carried out in a reasonable sequence of prestressing tensioning, otherwise the containment may be damaged during construction.
  • the nuclear power plant containment at home and abroad determines the prestressed construction sequence according to the principle of batch and interval tensioning, but has not systematically analyzed the mechanical performance of the containment during tensioning.
  • the acceptance criteria and design methods during the containment tensioning period have not been clearly stipulated in relevant domestic and foreign codes. If it is necessary to adjust the tensioning sequence of some prestressed steel bundles due to the influence of other factors on the construction site, it is difficult to give a specific solution because there is no clear specification and design analysis results. Therefore, there is an urgent need for a method to determine the tension sequence of the nuclear power plant containment prestressed steel bundles.
  • the present invention is accomplished in order to at least partially solve the technical problem in the prior art that the tension sequence of the containment prestressed steel bundle cannot be determined and adjusted.
  • the present invention provides a method for determining the tension sequence of nuclear power plant containment prestressed steel bundles, comprising:
  • the finite element model of the containment is established in the preset finite element software; during the prestress tension, the steel bundle nodes in the finite element model of the containment are coupled with the surrounding concrete nodes, and the foundation adopts a spring system , which is used to simulate the tension of the containment prestressed tendons.
  • prestressed load conditions at multiple prestressed tensioning moments during the tensioning of the prestressed steel bundles of the containment include:
  • the method further includes:
  • the non-prestressed loads during the tensioning of the prestressed tendons are applied to the finite element model of the containment for analysis, and the non-prestressed loads include: self-weight, shrinkage loads and temperature loads.
  • the fiber compressive stress at the edge of the concrete section and the average compressive stress of the membrane under the limit state load combination of the normal use of the containment are extracted through the finite element model of the containment.
  • the set limit of stress includes the set limit of the fiber compressive stress at the edge of the concrete section and the set limit of the average compressive stress of the membrane.
  • both the fiber compressive stress at the edge of the concrete section of the containment and the average compressive stress of the membrane are less than the set limit of the fiber compressive stress at the edge of the concrete section and the set limit of the average compressive stress of the membrane, and the calculation result of the reinforcement is smaller than the set limit of the reinforcement design If the threshold is set, it is judged that the tension sequence of the containment prestressed steel bundle is feasible.
  • the set limit of the fiber compressive stress at the edge of the concrete section 0.7* the standard value of the compressive strength of the concrete axis;
  • the set limit of the average compressive stress of the membrane 0.4* Standard value of concrete axial compressive strength;
  • the reinforcement setting threshold the actual reinforcement value of the containment.
  • determining the final tensioning sequence according to the judgment result includes:
  • the tensioning sequence of the containment prestressed steel bundles is the tensioning sequence to be selected, and continue to judge whether the next set tensioning sequence of the containment prestressed steel bundles is feasible, until at least two tensioning sequences are determined. There are various tensioning sequences to be selected, and one of the tensioning sequences to be selected is selected as the final tensioning sequence according to the preset rules.
  • the present invention provides a system for determining the tensioning sequence of nuclear power plant containment prestressed steel bundles, including:
  • a setting unit for setting at least one tension sequence of the containment prestressed steel bundle
  • the model element is used to establish the finite element model of the containment to simulate the tension of the prestressed steel bundles of the containment;
  • the acquisition unit is used to acquire the prestressed load conditions at multiple moments during the tensioning of the prestressed steel bundles of the containment under a set tensioning sequence of the prestressed steel bundles of the containment;
  • a checking unit configured to apply the prestressed load cases at the multiple prestressed tensioning moments to the finite element model of the containment, and calculate the normal service limit state of the containment at the multiple prestressed tensioning moments Stresses under load combinations, and reinforcement under limit state load combinations for calculation of containment capacity;
  • the judgment unit is used for comparing the stress under the load combination of the normal use limit state of the containment obtained by the checking unit with the set limit value of the stress, and calculating the reinforcement under the load combination of the limit state load of the carrying capacity of the containment The result is compared with the set threshold value of reinforcement to judge whether the tensioning sequence of the prestressed steel bundle of the containment is feasible, and the final tensioning sequence is determined according to the judgment result.
  • the present invention provides a computer device, which is characterized by comprising a memory and a processor, wherein a computer program is stored in the memory, and when the processor executes the computer program stored in the memory, the processor
  • the method for determining the tensioning sequence of nuclear power plant containment prestressed steel bundles according to any one of the first aspects is performed.
  • the method, system and computer equipment for determining the tensioning sequence of the containment prestressed steel bundles in the nuclear power plant according to the invention
  • the prestressed load condition is analyzed, and the stress under the normal service limit state load combination of the containment and the reinforcement under the bearing capacity limit state load combination at multiple prestressed tension moments are checked, and the tension sequence of the prestressed tendons is formulated. Whether it is feasible to provide design basis; and by comparing the reinforcement value and stress level of the containment during the tension construction period, to judge the pros and cons of different construction schemes; to save time and cost for the confirmation of the construction scheme.
  • Fig. 1 is a flow chart of a method for determining the tension sequence of nuclear power plant containment prestressed steel bundles provided by an embodiment of the present invention
  • Fig. 2 is a flowchart of a method for determining the tension sequence of nuclear power plant containment prestressed steel bundles provided by another embodiment of the present invention
  • FIG. 3 is a structural diagram of a system for determining the tensioning sequence of nuclear power plant containment prestressed steel bundles provided by another embodiment of the present invention.
  • an embodiment of the present invention provides a method for determining a tension sequence of a nuclear power plant containment prestressed steel bundle, including steps S101 to S105.
  • Step S101 setting at least one tensioning sequence of the containment prestressed steel bundles
  • Step S102 establishing a finite element model of the containment to simulate the tension of the prestressed steel bundles of the containment;
  • Step S103 acquiring the prestressed load conditions of multiple prestressed tensioning moments during the tensioning of the prestressed steel bundles of the containment under a set tensioning sequence of the prestressed steel bundles of the containment;
  • Step S104 applying the prestressed load cases of the multiple prestressed tensioning moments to the finite element model of the containment, and calculating the normal use limit state load combination of the containment at the multiple prestressed tensioning moments and the reinforcement under the limit state load combination for calculating the bearing capacity of the containment;
  • Step S105 Compare the stress under the load combination of the normal service limit state of the containment with the set limit value of the stress, and compare the calculation result of the reinforcement under the load combination of the limit state load of the containment capacity with the reinforcement setting threshold , to judge whether the tensioning sequence of the containment prestressed steel bundles is feasible, and determine the final tensioning sequence according to the judgment result.
  • the prestressed construction sequence is generally determined according to the principles of batch and interval tensioning. A reasonable tensioning sequence is an important condition to ensure construction safety.
  • the tension sequence of the nuclear power plant containment prestressed steel bundles or change the tensioning sequence of the prestressed steel bundles during the construction process, or for the pros and cons of various construction methods of the containment prestressed steel bundle tensioning sequence
  • the construction process there may be various construction schemes, so it is necessary to set at least one tension sequence of the containment prestressed steel bundles first, and establish a finite element model for the containment; when establishing the finite element model, it is necessary to determine the site Construction conditions and inspection of the material properties of the steel bundles.
  • the material inspections include: failure load, yield load, elongation, elastic modulus and relaxation tests for prestressed steel bundles, and hardness and static anchor fixation tests for anchors and fixtures;
  • For a tension sequence of prestressed steel bundles of a containment it is necessary to determine the prestressed load conditions at multiple prestressed tensioning moments during construction, and the multiple prestressed tensioning moments include the prestressed load conditions at each critical moment.
  • the finite element model calculates the reinforcement under the load combination of the normal use limit state load of the containment and the bearing capacity limit state load combination at multiple prestressed tension moments, and compares it with the limit value or threshold value of the set specification to judge The construction results of the prestressed steel bundle tensioning sequence of the containment. Only when both conditions are met, the tensioning sequence of the containment prestressed tendons can be qualified.
  • the finite element model of the containment is established in the preset finite element software; during the prestress tension, the steel bundle nodes in the finite element model of the containment are coupled with the surrounding concrete nodes, and the foundation adopts a spring system , which is used to simulate the tension of the containment prestressed tendons.
  • finite element software adopts ANSYS software.
  • ANSYS software includes preprocessing module, analysis calculation module and postprocessing module.
  • the preprocessing module provides a powerful solid modeling and meshing tool, which can easily construct finite element models;
  • the analysis and calculation modules include structural analysis (linear analysis, nonlinear analysis and highly nonlinear analysis), fluid dynamics Analysis, electromagnetic field analysis, sound field analysis, piezoelectric analysis and multi-physics coupling analysis, can simulate the interaction of various physical media, with sensitivity analysis and optimization analysis capabilities;
  • the post-processing module can display the calculation results in color contour lines , gradient display, vector display, particle flow trace display, three-dimensional slice display, transparent and semi-transparent display (you can see the inside of the structure) and other graphical displays, and the calculation results can also be displayed or output in the form of charts and curves. It is convenient to use ANSYS software to analyze the construction results of the tension sequence of the containment prestressed steel bundles, and the calculation results are in good agreement with the actual construction situation.
  • prestressed load conditions at multiple prestressed tensioning moments during the tensioning of the prestressed steel bundles of the containment include:
  • the prestressing load cases of multiple prestressed tensioning moments during the prestressing tension of the containment are selected to include moments in all directions, and include a prestress of the moment when the tensioning of all prestressed tendons is completed. load case.
  • the method further includes:
  • the non-prestressed loads during the tensioning of the prestressed tendons are applied to the finite element model of the containment for analysis, and the non-prestressed loads include: self-weight, shrinkage loads and temperature loads.
  • the fiber compressive stress at the edge of the concrete section and the average compressive stress of the membrane under the load combination of the normal service limit state of the containment are extracted through the finite element model of the containment.
  • the prestressed load case at each moment of time is calculated in the finite element model, and the calculation results of stress and reinforcement are obtained. Compare with the set limit value of stress and the set threshold value of reinforcement respectively to confirm whether it is feasible and ensure that there will be no abnormality during the construction process.
  • the set limit of stress includes the set limit of the fiber compressive stress at the edge of the concrete section and the set limit of the average compressive stress of the membrane.
  • both the fiber compressive stress at the edge of the concrete section of the containment and the average compressive stress of the membrane are less than the set limit of the fiber compressive stress at the edge of the concrete section and the set limit of the average compressive stress of the membrane, and the calculation result of the reinforcement is smaller than the set limit of the reinforcement design If the threshold is set, it is judged that the tension sequence of the containment prestressed steel bundle is feasible.
  • the reinforcement setting threshold the actual reinforcement value of the containment.
  • the load combination is carried out on the analysis results of the obtained loads. For each tension stage, a combined result is obtained.
  • the load combination of the obtained analysis results of each load is carried out in the ANSYS post-processing module, and the coefficients of the combination of the load of the limit state of the bearing capacity are considered;
  • a calculation result under the action of each load combination is obtained, and the reinforcement calculation is performed on the internal force result calculated after the combination. Compare the reinforcement calculation results for each tension stage with the actual reinforcement values of the containment.
  • both the fiber compressive stress at the edge of the concrete section of the containment and the average compressive stress of the membrane are less than the set limit of the fiber compressive stress at the edge of the concrete section and the set limit of the average compressive stress of the membrane, and the calculated value of the reinforcement is smaller than the actual If the requirements of the rib value are met, the tensioning sequence is feasible. Otherwise, it is necessary to analyze the reasons for not meeting the requirements, adjust the tensioning sequence, and re-analyze from step 103 .
  • determining the final tensioning sequence according to the judgment result includes:
  • the tensioning sequence of the containment prestressed steel bundles is the tensioning sequence to be selected, and continue to judge whether the next set tensioning sequence of the containment prestressed steel bundles is feasible, until at least two tensioning sequences are determined. There are various tensioning sequences to be selected, and one of the tensioning sequences to be selected is selected as the final tensioning sequence according to preset rules.
  • steps 103 to 105 are re-executed to determine whether it is feasible to obtain the next set tensioning sequence of the containment prestressed steel bundles.
  • another embodiment of the present invention provides a method for determining the tension sequence of a nuclear power plant containment prestressed steel bundle, including steps S1 to S10.
  • Step S1 the prestressed steel bundle tensioning sequence proofreading begins
  • Step S2 establish a containment finite element model
  • Step S3 considering various factors, determine a tensioning sequence
  • Step S4 Divide the tension sequence into different tension stage working conditions; and substitute the different stage working conditions into the finite element model for calculation;
  • Step S5 carry out load analysis
  • Step S6 carry out the normal service limit state load combination, and extract the stress
  • Step S7 determine whether the stress is less than the stress limit value; if so, go to Step S8; if not, go to Step S3 again, and select another tensioning sequence for verification;
  • Step S8 carry out the load combination in the ultimate state of the bearing capacity, and calculate the reinforcement
  • Step S9 determine whether the reinforcement is smaller than the actual reinforcement; if so, proceed to step S10; if not, proceed to step S3 again, and select another tensioning sequence for verification;
  • Step S10 It is judged that the tension sequence of the prestressed steel bundle meets the requirements.
  • the order of calculating the reinforcement for the ultimate load combination of the bearing capacity and extracting the stress of the load combination of the normal service limit state can be changed.
  • another embodiment of the present invention provides a system for determining the tension sequence of nuclear power plant containment prestressed steel bundles, including:
  • a setting unit 1 is used to set at least one tension sequence of the containment prestressed steel bundles
  • Model element 2 is used to establish the finite element model of the containment to simulate the tension of the prestressed steel bundles of the containment;
  • the obtaining unit 3 is used to obtain the prestressed load conditions of multiple prestressed tensioning moments during the tensioning of the prestressed steel bundles of the containment under a set tensioning sequence of the prestressed steel bundles of the containment;
  • a checking unit 4 configured to apply the prestressed load cases at the multiple prestressed tensioning moments to the finite element model of the containment, and calculate the normal service limit of the containment at the multiple prestressed tensioning moments Stresses under state load combinations, and reinforcement under limit state load combinations for calculation of containment capacity;
  • the judging unit 5 is used for comparing the stress under the load combination of the normal use limit state of the containment obtained by the checking unit 4 with the set limit value of the stress, and for comparing the configuration under the load combination of the limit state load of the carrying capacity of the containment.
  • the calculation result of the reinforcement is compared with the set threshold of reinforcement to judge whether the tensioning sequence of the prestressed steel bundle of the containment is feasible, and the final tensioning sequence is determined according to the judgment result.
  • model unit 2 has for:
  • the finite element model of the containment is established in the preset finite element software; during the prestress tension, the steel bundle nodes in the finite element model of the containment are coupled with the surrounding concrete nodes, and the foundation adopts a spring system , which is used to simulate the tension of the containment prestressed tendons.
  • prestressed load conditions at multiple prestressed tensioning moments during the tensioning of the prestressed steel bundles of the containment obtained by the acquiring unit 3 include:
  • model unit 2 is also used for:
  • the non-prestressed loads during the tensioning of the prestressed tendons are applied to the finite element model of the containment, the non-prestressed loads including: self-weight, shrinkage loads and temperature loads.
  • verification unit 4 is specifically used for:
  • the fiber compressive stress at the edge of the concrete section and the average compressive stress of the membrane under the load combination of the normal service limit state of the containment are extracted through the finite element model of the containment.
  • the set limit of stress includes the set limit of the fiber compressive stress at the edge of the concrete section and the set limit of the average compressive stress of the film, and the judgment unit 5 is specifically used for:
  • both the fiber compressive stress at the edge of the concrete section of the containment and the average compressive stress of the membrane are less than the set limit of the fiber compressive stress at the edge of the concrete section and the set limit of the average compressive stress of the membrane, and the calculation result of the reinforcement is smaller than the set limit of the reinforcement design If the threshold is set, it is judged that the tension sequence of the containment prestressed steel bundle is feasible.
  • the judging unit 5 is also used for:
  • the set limit for calculating the average compressive stress of the membrane 0.4 * the standard value of the compressive strength of the concrete axis;
  • the calculated reinforcement setting threshold the actual reinforcement value of the containment.
  • the judging unit 5 is also used for:
  • the tensioning sequence of the containment prestressed steel bundles is the tensioning sequence to be selected, and continue to judge whether the next set tensioning sequence of the containment prestressed steel bundles is feasible, until at least two tensioning sequences are determined. There are various tensioning sequences to be selected, and one of the tensioning sequences to be selected is selected as the final tensioning sequence according to the preset rules.
  • an embodiment of the present invention also provides a computer device, including a memory and a processor, where a computer program is stored in the memory, and when the processor executes the computer program stored in the memory, the processor executes each of the above a possible way.
  • an embodiment of the present invention further provides a computer-readable storage medium, where computer-executable instructions are stored in the computer-readable storage medium.
  • the user equipment executes the above-mentioned various possibilities. Methods.
  • computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage medium can be any available medium that can be accessed by a general purpose or special purpose computer.
  • An exemplary storage medium is coupled to the processor, such that the processor can read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium may be located in an ASIC (Application Specific Integrated Circuit, application specific integrated circuit). Alternatively, the ASIC may be located in the user equipment.
  • the processor and storage medium may also exist in the communication device as discrete components.

Abstract

一种确定核电厂安全壳预应力钢束张拉顺序的方法及系统,方法包括:设定至少一种钢束张拉顺序(101);建立安全壳的有限元模型(102);获取已设定的一种钢束张拉顺序下,多个预应力张拉时刻的预应力荷载工况(103);将获取的预应力荷载工况施加至安全壳的有限元模型,并计算安全壳正常使用极限状态荷载组合下的应力以及安全壳承载能力极限状态荷载组合下的配筋(104),将计算结果分别与应力的设定限值、配筋设定阈值进行比较,判断钢束张拉顺序是否可行,并确定最终张拉顺序(105)。所述方法及系统为制定的钢束张拉顺序是否可行提供设计依据;并通过比较安全壳计算配筋值和应力水平,判别不同施工方案的优劣性。为施工方案的确认节约时间,节省成本。

Description

确定核电厂安全壳预应力钢束张拉顺序的方法及系统
本公开要求申请日为2020年12月22日、申请号为CN202011525985.1、名称为“确定核电厂安全壳预应力钢束张拉顺序的方法及系统”的中国专利申请的优先权。
技术领域
本发明属于核电厂技术领域,具体涉及一种确定核电厂安全壳预应力钢束张拉顺序的方法,以及一种确定核电厂安全壳预应力钢束张拉顺序的系统。
背景技术
核设施作为重要安全场所,其安全性能要求十分严格,对于核电站安全壳,事故压力荷载是其最主要的荷载之一,预应力钢筋混凝土安全壳采用预应力系统抵抗内压荷载。国内外不同堆型的核电站虽然采用的预应力布置方案不尽相同,但是钢束数量均较多,如国内某一堆型安全壳共含有541根钢束;另一堆型内层安全壳共含有221根钢束。预应力施工时,必须按照合理的预应力张拉顺序进行张拉,否则有可能导致安全壳在施工期间发生损坏。
国内外核电站安全壳均按照分批次、间隔张拉的原则确定预应力施工顺序,但是并未对张拉期间安全壳受力性能进行系统分析。国内外相关规范对安全壳张拉期间的验收准则和设计方法也未做明确规定。若由于施工现场其他因素的影响,需要调整部分预应力钢束张拉顺序,由于没有明确的规范规定和设计分析结果,很难给出具体解决方案。因此,亟需一种确定核电厂安全壳预应力钢束张拉顺序的方法。
发明内容
为了至少部分解决现有技术中存在的安全壳预应力钢束张拉顺序无法确 定及调整的技术问题而完成了本发明。
解决本发明技术问题所采用的技术方案是:
本发明提供一种确定核电厂安全壳预应力钢束张拉顺序的方法,包括:
设定至少一种安全壳预应力钢束张拉顺序;
建立安全壳的有限元模型,以模拟安全壳预应力钢束张拉情况;
获取已设定的一种安全壳预应力钢束张拉顺序下,安全壳的预应力钢束张拉期间多个预应力张拉时刻的预应力荷载工况;
将所述多个预应力张拉时刻的预应力荷载工况施加至所述安全壳的有限元模型,并计算所述多个预应力张拉时刻的安全壳正常使用极限状态荷载组合下的应力,以及,计算安全壳承载能力极限状态下荷载组合下的配筋;
将安全壳正常使用极限状态荷载组合下的应力与应力的设定限值进行比较,以及将安全壳承载能力极限状态荷载组合下的配筋的计算结果与配筋设定阈值进行比较,以判断所述安全壳预应力钢束张拉顺序是否可行,并根据判断结果确定最终张拉顺序。
进一步的,所述建立安全壳的有限元模型,以模拟安全壳预应力钢束张拉情况,包括:
根据施工图纸,在预设有限元软件中建立安全壳的有限元模型;在预应力张拉期间,将所述安全壳的有限元模型中的钢束节点与周围混凝土节点耦合,地基采用弹簧体系,以用于模拟安全壳预应力钢束张拉情况。
进一步的,所述安全壳的预应力钢束张拉期间多个预应力张拉时刻的预应力荷载工况,包括:
将竖向钢束张拉到设备闸门一侧的时刻的预应力荷载工况;和/或,
将竖向钢束张拉完成一半的时刻的预应力荷载工况;和/或,
将竖向钢束张拉全部完成的时刻的预应力荷载工况;和/或,
将筒体水平钢束张拉到设备闸门一侧的时刻的预应力荷载工况;和/或,
将筒体水平钢束张拉全部完成的时刻的预应力荷载工况;和/或,
将穹顶钢束张拉完成一半的时刻的预应力荷载工况;和/或,
将穹顶钢束张拉全部完成的时刻的预应力荷载工况。
进一步的,在计算所述多个预应力张拉时刻的安全壳的正常使用极限状态荷载组合下的应力,以及,计算安全壳承载能力极限状态荷载组合下的配筋之前,还包括:
将预应力钢束张拉期间的非预应力荷载施加到安全壳的有限元模型中进行分析,所述非预应力荷载包括:自重、收缩荷载及温度荷载。
进一步的,将所述多个预应力张拉时刻的预应力荷载工况施加至所述安全壳的有限元模型,并计算所述多个预应力张拉时刻的安全壳正常使用极限状态荷载组合下的应力,以及,计算安全壳承载能力极限状态下荷载组合下的配筋,包括:
针对多个预应力张拉时刻的每一个时刻的预应力荷载工况,通过安全壳的有限元模型提取安全壳正常使用情况极限状态荷载组合下的混凝土截面边缘纤维压应力和薄膜平均压应力,
针对多个预应力张拉时刻的每一个时刻的预应力荷载工况,通过安全壳的有限元模型中提取安全壳在承载能力极限状态的各荷载组合作用下的内力,并对内力计算结果进行配筋计算,以得到配筋计算结果。
进一步的,应力的设定限值包括混凝土截面边缘纤维压应力的设定限值和薄膜平均压应力的设定限值,所述将安全壳正常使用极限状态荷载组合下的应力与应力的设定限值进行比较,以及将安全壳承载能力极限状态荷载组合下的配筋的计算结果与配筋设定阈值进行比较,以判断所述安全壳预应力钢束张拉顺序是否可行,包括:
将得到的安全壳正常使用极限状态荷载组合下的混凝土截面边缘纤维压应力与混凝土截面边缘纤维压应力的设定限值进行比较,并将得到的安全壳正常使用极限状态荷载组合下的薄膜平均压应力与薄膜平均压应力的设定限值进行比较,将得到的安全壳承载能力极限状态荷载组合下的配筋计算结果与配筋设定阈值进行比较;
若同时满足安全壳的混凝土截面边缘纤维压应力和薄膜平均压应力分别小于混凝土截面边缘纤维压应力的设定限值及薄膜平均压应力的设定限值,以及配筋计算结果小于配筋设定阈值,则判断所述安全壳预应力钢束张拉顺 序是可行的。
进一步的,在安全壳正常使用极限状态荷载组合下,混凝土截面边缘纤维压应力的设定限值=0.7*混凝土轴心抗压强度标准值;=薄膜平均压应力的设定限值=0.4*混凝土轴心抗压强度标准值;
在安全壳承载能力极限状态荷载组合下,配筋设定阈值=安全壳的实际配筋值。
进一步的,所述根据判断结果确定最终张拉顺序,包括:
若判断结果为可行,则确定所述安全壳预应力钢束张拉顺序为最终张拉顺序,否则,继续判断下一设定的安全壳预应力钢束张拉顺序是否可行,直至确定最终张拉顺序;
或者,
若判断结果为可行,则确定所述安全壳预应力钢束张拉顺序为待选张拉顺序,并继续判断下一设定的安全壳预应力钢束张拉顺序是否可行,直至确定至少两种待选张拉顺序,并根据预设的规则再从中选择一个待选张拉顺序作为最终张拉顺序。
第二方面,本发明提供一种确定核电厂安全壳预应力钢束张拉顺序的系统,包括:
设定单元,用于设定至少一种安全壳预应力钢束张拉顺序;
模型单元,用于建立安全壳的有限元模型,以模拟安全壳预应力钢束张拉情况;
获取单元,用于获取已设定的一种安全壳预应力钢束张拉顺序下,安全壳的预应力钢束张拉期间多个时刻的预应力荷载工况;
验算单元,用于将所述多个预应力张拉时刻的预应力荷载工况施加至所述安全壳的有限元模型,并计算所述多个预应力张拉时刻的安全壳正常使用极限状态荷载组合下的应力,以及,计算安全壳承载能力极限状态荷载组合下的配筋;
判断单元,用于将所述验算单元得到的所述安全壳正常使用极限状态荷载组合下应力与应力的设定限值进行比较,以及将安全壳承载能力极限状态 荷载组合下的配筋的计算结果与配筋设定阈值进行比较,以判断所述安全壳预应力钢束张拉顺序是否可行,并根据判断结果确定最终张拉顺序。
第三方面,本发明提供一种计算机设备,其特征在于,包括存储器和处理器,所述存储器中存储有计算机程序,当所述处理器运行所述存储器存储的计算机程序时,所述处理器执行如第一方面中任一所述的确定核电厂安全壳预应力钢束张拉顺序的方法。
有益效果:
本发明所述的确定核电厂安全壳预应力钢束张拉顺序的方法、系统及计算机设备,通过预先在有限元模型中对设定的安全壳预应力钢束张拉顺序的多个时刻的预应力荷载工况进行分析,验算多个预应力张拉时刻的安全壳正常使用极限状态荷载组合下的应力及承载能力极限状态荷载组合下的配筋,为制定的预应力钢束张拉顺序是否可行提供设计依据;并通过比较张拉施工期间的安全壳计算配筋值和应力水平,判别不同的施工方案的优劣性;为施工方案确认节约时间,节省成本。
附图说明
图1本发明实施例提供的一种确定核电厂安全壳预应力钢束张拉顺序的方法的流程图;
图2本发明另一实施例提供的一种确定核电厂安全壳预应力钢束张拉顺序的方法的流程图;
图3本发明又一实施例提供的一种确定核电厂安全壳预应力钢束张拉顺序的系统的架构图。
具体实施方式
为使本领域技术人员更好地理解本发明的技术方案,下面结合附图和实施例对本发明作进一步详细描述。
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互任意组合。
其中,在本发明实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本发明实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚的表示其他含义。
如图1所示,本发明实施例提供一种确定核电厂安全壳预应力钢束张拉顺序的方法,包括步骤S101至步骤S105。
步骤S101:设定至少一种安全壳预应力钢束张拉顺序;
步骤S102:建立安全壳的有限元模型,以模拟安全壳预应力钢束张拉情况;
步骤S103:获取已设定的一种安全壳预应力钢束张拉顺序下,安全壳的预应力钢束张拉期间多个预应力张拉时刻的预应力荷载工况;
步骤S104:将所述多个预应力张拉时刻的预应力荷载工况施加至所述安全壳的有限元模型,并计算所述多个预应力张拉时刻的安全壳正常使用极限状态荷载组合下的应力,以及计算安全壳承载能力极限状态荷载组合下的配筋;
步骤S105:将安全壳正常使用极限状态荷载组合下的应力与应力的设定限值进行比较,以及将安全壳承载能力极限状态荷载组合下的配筋的计算结果与配筋设定阈值进行比较,以判断所述安全壳预应力钢束张拉顺序是否可行,并根据判断结果确定最终张拉顺序。
在核电厂安全壳预应力钢束的张拉过程中,一般按照分批次、间隔张拉的原则确定预应力施工顺序,张拉顺序合理是保证施工安全的重要条件,在安全壳的施工之前,会设计核电厂安全壳预应力钢束的张拉顺序,或者在施工过程中要改变预应力钢束的张拉顺序,或者对于多种安全壳预应力钢束张拉顺序施工方法的优劣性进行比较时,需对核电厂安全壳预应力钢束张拉顺序进行安全性能验证。
在施工过程中,可能存在多种施工方案,因此需要先设定至少一种安全 壳预应力钢束张拉顺序,并针对该安全壳建立有限元模型;在建立有限元模型时,需要确定现场施工情况和对钢束材料性能进行检验,材料检验包括:预应力钢束进行破坏负荷、屈服负荷、伸长率和弹性模量及松弛试验,锚具和夹具进行硬度和静载锚固定性实验;针对一种安全壳的预应力钢束张拉顺序,需要确定施工期间多个预应力张拉时刻的预应力荷载工况,所述多个预应力张拉时刻包括各关键时刻的预应力荷载工况,并且包含各个方向的钢束张拉的关键时刻。对于有限元模型的建立和计算,需要设定参数单位,建立单元类型,进行单元划分,设定边界约束等,根据安全壳施工的实际情况,完成对有限元模型和计算条件的设定;利用有限元模型对多个预应力张拉时刻的安全壳正常使用极限状态荷载组合下应力及承载能力极限状态荷载组合下的配筋进行计算后,与设定规范的限值或阈值进行比较,判断所述安全壳预应力钢束张拉顺序的施工结果。只有当两者都满足条件时,该安全壳预应力钢束张拉顺序才能合格。
进一步的,所述建立安全壳的有限元模型,以模拟安全壳预应力钢束张拉情况,包括:
根据施工图纸,在预设有限元软件中建立安全壳的有限元模型;在预应力张拉期间,将所述安全壳的有限元模型中的钢束节点与周围混凝土节点耦合,地基采用弹簧体系,以用于模拟安全壳预应力钢束张拉情况。
进一步的,所述有限元软件采用ANSYS软件。
ANSYS软件包括前处理模块、分析计算模块和后处理模块。前处理模块提供了一个强大的实体建模及网格划分工具,可以方便地构造有限元模型;分析计算模块包括结构分析(可进行线性分析、非线性分析和高度非线性分析)、流体动力学分析、电磁场分析、声场分析、压电分析以及多物理场的耦合分析,可模拟多种物理介质的相互作用,具有灵敏度分析及优化分析能力;后处理模块可将计算结果以彩色等值线显示、梯度显示、矢量显示、粒子流迹显示、立体切片显示、透明及半透明显示(可看到结构内部)等图形方式显示出来,也可将计算结果以图表、曲线形式显示或输出。利用ANSYS软件分析安全壳预应力钢束张拉顺序的施工结果较为方便,并且计算结果与 实际施工情况较为吻合。
进一步的,所述安全壳的预应力钢束张拉期间多个预应力张拉时刻的预应力荷载工况,包括:
将竖向钢束张拉到设备闸门一侧的时刻的预应力荷载工况;和/或,
将竖向钢束张拉完成一半的时刻的预应力荷载工况;和/或,
将竖向钢束张拉全部完成的时刻的预应力荷载工况;和/或,
将筒体水平钢束张拉到设备闸门一侧的时刻的预应力荷载工况;
将筒体水平钢束张拉全部完成的时刻的预应力荷载工况;和/或,
将穹顶钢束张拉完成一半的时刻的预应力荷载工况;和/或,
将穹顶钢束张拉全部完成的时刻的预应力荷载工况。
一般的,选择安全壳的预应力钢束张拉期间多个预应力张拉时刻的预应力荷载工况包括各个方向的时刻,并且包括全部预应力钢束张拉完成的时刻的一种预应力荷载工况。
进一步的,在所述计算所述多个预应力张拉时刻的安全壳正常使用极限状态荷载组合下的应力,以及,计算安全壳承载能力极限状态荷载组合下的配筋之前,还包括:
将预应力钢束张拉期间的非预应力荷载施加到安全壳的有限元模型中进行分析,所述非预应力荷载包括:自重、收缩荷载及温度荷载。
为了尽可能的模拟实际情况,在实际验算过程中必须考虑预应力钢束张拉期间的非预应力载荷,将得到的每种预应力荷载工况,以及预应力钢束张拉期间需要考虑的其它荷载,如自重、收缩等,施加到建立的有限元模型中并进行分析,得到安全壳在各荷载组合作用下的响应。对于永久荷载,需要考虑混凝土的徐变影响。
进一步的,所述将所述多个预应力张拉时刻的预应力荷载工况施加至所述安全壳的有限元模型,并计算所述多个预应力张拉时刻的安全壳正常使用极限状态荷载组合下的应力,以及,计算安全壳承载能力极限状态下荷载组合下的配筋,包括:
针对多个预应力张拉时刻的每一个时刻的预应力荷载工况,通过安全壳 的有限元模型提取安全壳正常使用极限状态荷载组合下的混凝土截面边缘纤维压应力和薄膜平均压应力,
针对多个预应力张拉时刻的每一个时刻的预应力荷载工况,通过安全壳的有限元模型中提取安全壳在承载能力极限状态的各荷载组合作用下的内力,并对内力计算结果进行配筋计算,以得到配筋计算结果。
通过获取已设定的一种安全壳预应力钢束张拉顺序下安全壳的预应力钢束张拉期间多个预应力张拉时刻的预应力荷载工况,针对这多个预应力张拉时刻中每一个时刻的预应力荷载工况,在有限元模型中进行计算,得到应力结果和配筋的计算结果。分别与应力的设定限值和配筋设定阈值进行比较,确认是否可行,保证在施工过程中,不会出现异常。
进一步的,应力的设定限值包括混凝土截面边缘纤维压应力的设定限值和薄膜平均压应力的设定限值,所述将安全壳正常使用极限状态荷载组合下的应力与应力的设定限值进行比较,以及将安全壳承载能力极限状态荷载组合下的配筋的计算结果与配筋设定阈值进行比较,以判断所述安全壳预应力钢束张拉顺序是否可行,包括:
将得到的安全壳正常使用极限状态荷载组合下的混凝土截面边缘纤维压应力与混凝土截面边缘纤维压应力的设定限值进行比较,并将得到的安全壳正常使用极限状态荷载组合下的薄膜平均压应力与薄膜平均压应力的的设定限值进行比较;将得到的配筋计算结果与配筋设定阈值进行比较;
若同时满足安全壳的混凝土截面边缘纤维压应力和薄膜平均压应力分别小于混凝土截面边缘纤维压应力的设定限值及薄膜平均压应力的设定限值,以及配筋计算结果小于配筋设定阈值,则判断所述安全壳预应力钢束张拉顺序是可行的。
进一步的,在安全壳正常使用极限状态荷载组合下,混凝土截面边缘纤维压应力的设定限值=0.7*混凝土轴心抗压强度标准值;薄膜平均压应力的设定限值=0.4*混凝土轴心抗压强度标准值;
在安全壳承载能力极限状态荷载组合下,配筋设定阈值=安全壳的实际配筋值。
对于安全壳正常使用极限状态荷载组合下的应力验算时,在ANSYS后处理模块中,对得到的各荷载的分析结果进行荷载组合。针对每一个张拉阶段,得到一个组合结果。
综合考虑NB/T 20303《压水堆核电厂预应力混凝土安全壳设计规范》和ASME规范第Ⅲ卷第2册《混凝土安全壳规范》的规定,将0.7f ck和0.4f ck分别作为预应力张拉期间混凝土截面边缘纤维压应力和薄膜平均压应力的限值。其中,f ck为混凝土轴心抗压强度标准值。针对每一个张拉阶段,提取荷载组合后的安全壳混凝土边缘纤维压应力和薄膜平均压应力,并与其相应的设定限值进行比较。
对于安全壳承载能力极限状态荷载组合下的配筋验算时,通过在ANSYS后处理模块中,对得到的各荷载的分析结果进行荷载组合,并且考虑承载能力极限状态荷载组合时的的系数;针对每一个张拉阶段,得到一种各荷载组合作用下的计算结果,并对组合后计算出的内力结果进行配筋计算。将每一个张拉阶段的配筋计算结果同安全壳的实际配筋值进行比较。
根据《压水堆核电厂预应力混凝土安全壳设计规范》、《混凝土结构设计规范》和《建筑抗震设计规范》规定,对内力结果进行配筋计算,计算过程与现有工程计算过程相同。
若能同时满足安全壳的混凝土截面边缘纤维压应力和薄膜平均压应力分别小于混凝土截面边缘纤维压应力的设定限值及薄膜平均压应力的设定限值,以及配筋计算值小于实际配筋值的要求,则张拉顺序是可行的。否则,需要分析不满足要求的原因,对张拉顺序进行调整,并从步骤103开始重新分析。
进一步的,所述根据判断结果确定最终张拉顺序,包括:
若判断结果为可行,则确定所述安全壳预应力钢束张拉顺序为最终张拉顺序,否则,继续判断下一设定的安全壳预应力钢束张拉顺序是否可行,直至确定最终张拉顺序;
或者,
若判断结果为可行,则确定所述安全壳预应力钢束张拉顺序为待选张拉 顺序,并继续判断下一设定的安全壳预应力钢束张拉顺序是否可行,直至确定至少两种待选张拉顺序,并根据预设的规则再从中选择一个待选张拉顺序作为最终张拉顺序。
其中,对于继续判断下一设定的张拉顺序,具体是重新执行步骤103到步骤105,以判断得到下一设定的安全壳预应力钢束张拉顺序是否可行。
当有多种预应力钢束张拉顺序时,如果需要选择最优方案,可以对所有方案进行验算,以得出最优的施工方案,所述预设的规则可以为选择与限定值差距较大的待选张拉顺序作为最终张拉顺序。
如图2所示,本发明另一实施例提供了一种确定核电厂安全壳预应力钢束张拉顺序的方法,包括步骤S1至S10。
步骤S1:预应力钢束张拉顺序校对开始;
步骤S2:建立安全壳有限元模型;
步骤S3:考虑各种因素,确定一种张拉顺序;
步骤S4:将张拉顺序分为不同的张拉阶段工况;并将不同阶段工况代入有限元模型中进行计算;
步骤S5:进行载荷分析;
步骤S6:进行正常使用极限状态荷载组合,提取应力;
步骤S7:判断应力是否小于应力限值;如是,则进行步骤S8;如否,则重新进行步骤S3,选择另一种张拉顺序进行验算;
步骤S8:进行承载能力极限状态荷载组合,计算配筋;
步骤S9:判断配筋是否小于实际配筋;如是,则进行步骤S10;如否,则从新进行步骤S3,选择另一种张拉顺序进行验算;
步骤S10:判断预应力钢束张拉顺序满足要求。
在以上实施方式中,承载能力极限状态荷载组合计算配筋和正常使用极限状态荷载组合提取应力的顺序可以更换。
如图3所示,本发明又一实施例提供一种确定核电厂安全壳预应力钢束张拉顺序的系统,包括:
设定单元1,用于设定至少一种安全壳预应力钢束张拉顺序;
模型单元2,用于建立安全壳的有限元模型,以模拟安全壳预应力钢束张拉情况;
获取单元3,用于获取已设定的一种安全壳预应力钢束张拉顺序下,安全壳的预应力钢束张拉期间多个预应力张拉时刻的预应力荷载工况;
验算单元4,用于将所述多个预应力张拉时刻的预应力荷载工况施加至所述安全壳的有限元模型,并计算所述多个预应力张拉时刻的安全壳正常使用极限状态荷载组合下的应力,以及,计算安全壳承载能力极限状态荷载组合下的配筋;
判断单元5,用于将所述验算单元4得到的所述安全壳正常使用极限状态荷载组合下的应力与应力的设定限值进行比较,以及将安全壳承载能力极限状态荷载组合下的配筋的计算结果与配筋设定阈值进行比较,以判断所述安全壳预应力钢束张拉顺序是否可行,并根据判断结果确定最终张拉顺序。
进一步的,所述模型单元2具有用于:
根据施工图纸,在预设有限元软件中建立安全壳的有限元模型;在预应力张拉期间,将所述安全壳的有限元模型中的钢束节点与周围混凝土节点耦合,地基采用弹簧体系,以用于模拟安全壳预应力钢束张拉情况。
进一步的,所述获取单元3获取的安全壳的预应力钢束张拉期间多个预应力张拉时刻的预应力荷载工况,包括:
将竖向钢束张拉到设备闸门一侧的时刻的预应力荷载工况;和/或,
将竖向钢束张拉完成一半的时刻的预应力荷载工况;和/或,
将竖向钢束张拉全部完成的时刻的预应力荷载工况;和/或,
将筒体水平钢束张拉到设备闸门一侧的时刻的预应力荷载工况;和/或,
将筒体水平钢束张拉全部完成的时刻的预应力荷载工况;和/或,
将穹顶钢束张拉完成一半的时刻的预应力荷载工况;和/或,
将穹顶钢束张拉全部完成的时刻的预应力荷载工况。
进一步的,所述模型单元2还用于:
将预应力钢束张拉期间的非预应力荷载施加到安全壳的有限元模型中,所述非预应力荷载包括:自重、收缩荷载及温度荷载。
进一步的,所述验算单元4具体用于:
针对多个预应力张拉时刻的每一个时刻的预应力荷载工况,通过安全壳的有限元模型提取安全壳正常使用极限状态荷载组合下的混凝土截面边缘纤维压应力和薄膜平均压应力,
针对多个预应力张拉时刻的每一个时刻的预应力荷载工况,通过安全壳的有限元模型中提取安全壳在承载能力极限状态的各荷载组合作用下的内力,并对内力计算结果进行配筋计算,得到配筋计算结果。
进一步的,应力的设定限值包括混凝土截面边缘纤维压应力的设定限值和薄膜平均压应力的设定限值,所述判断单元5具体用于:
将得到的安全壳正常使用极限状态荷载组合下的混凝土截面边缘纤维压应力与混凝土截面边缘纤维压应力的设定限值进行比较,并将得到的安全壳正常使用极限状态荷载组合下的薄膜平均压应力与薄膜平均压应力的设定限值进行比较;将得到的配筋计算结果与配筋设定阈值进行比较;以及,
若同时满足安全壳的混凝土截面边缘纤维压应力和薄膜平均压应力分别小于混凝土截面边缘纤维压应力的设定限值及薄膜平均压应力的设定限值,以及配筋计算结果小于配筋设定阈值,则判断所述安全壳预应力钢束张拉顺序是可行的。
进一步的,所述判断单元5还用于:
在安全壳正常使用极限状态荷载组合下,计算混凝土截面边缘纤维压应力的设定限值=0.7*混凝土轴心抗压强度标准值的;
计算薄膜平均压应力的设定限值=0.4*混凝土轴心抗压强度标准值;
在安全壳承载能力极限状态荷载组合下,计算配筋设定阈值=安全壳的实际配筋值。
进一步的,所述判断单元5还用于:
若判断结果为可行,则确定所述安全壳预应力钢束张拉顺序为最终张拉顺序,否则,继续判断下一设定的安全壳预应力钢束张拉顺序是否可行,直至确定最终张拉顺序;
或者,
若判断结果为可行,则确定所述安全壳预应力钢束张拉顺序为待选张拉顺序,并继续判断下一设定的安全壳预应力钢束张拉顺序是否可行,直至确定至少两种待选张拉顺序,并根据预设的规则再从中选择一个待选张拉顺序作为最终张拉顺序。
对于本系统实施例而言,由于其与方法实施例基本对应,所以描述的比较简单,相关之处参见前述方法实施例中的对应过程,在此不再赘述。
此外,本发明实施例还提供一种计算机设备,包括存储器和处理器,所述存储器中存储有计算机程序,当所述处理器运行所述存储器存储的计算机程序时,所述处理器执行上述各种可能的方法。
此外,本发明实施例还提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机执行指令,当用户设备的至少一个处理器执行该计算机执行指令时,用户设备执行上述各种可能的方法。
其中,计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC(Application Specific Integrated Circuit,专用集成电路)中。另外,该ASIC可以位于用户设备中。当然,处理器和存储介质也可以作为分立组件存在于通信设备中。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (10)

  1. 一种确定核电厂安全壳预应力钢束张拉顺序的方法,其特征在于,包括:
    设定至少一种安全壳预应力钢束张拉顺序;
    建立安全壳的有限元模型,以模拟安全壳预应力钢束张拉情况;
    获取已设定的一种安全壳预应力钢束张拉顺序下,安全壳的预应力钢束张拉期间多个预应力张拉时刻的预应力荷载工况;
    将所述多个预应力张拉时刻的预应力荷载工况施加至所述安全壳的有限元模型,并计算所述多个预应力张拉时刻的安全壳正常使用极限状态荷载组合下的应力,以及,计算安全壳承载能力极限状态下荷载组合下的配筋;
    将安全壳正常使用极限状态荷载组合下的应力与应力的设定限值进行比较,以及将安全壳承载能力极限状态荷载组合下的配筋的计算结果与配筋设定阈值进行比较,以判断所述安全壳预应力钢束张拉顺序是否可行,并根据判断结果确定最终张拉顺序。
  2. 根据权利要求1所述的方法,其特征在于,所述建立安全壳的有限元模型,以模拟安全壳预应力钢束张拉情况,包括:
    根据施工图纸,在预设有限元软件中建立安全壳的有限元模型;
    在预应力张拉期间,将所述安全壳的有限元模型中的钢束节点与周围混凝土节点耦合,地基采用弹簧体系,以用于模拟安全壳预应力钢束张拉情况。
  3. 根据权利要求1所述的方法,其特征在于,所述安全壳的预应力钢束张拉期间多个预应力张拉时刻的预应力荷载工况,包括:
    将竖向钢束张拉到设备闸门一侧的时刻的预应力荷载工况;和/或,
    将竖向钢束张拉完成一半的时刻的预应力荷载工况;和/或,
    将竖向钢束张拉全部完成的时刻的预应力荷载工况;和/或,
    将筒体水平钢束张拉到设备闸门一侧的时刻的预应力荷载工况;和/或,
    将筒体水平钢束张拉全部完成的时刻的预应力荷载工况;和/或,
    将穹顶钢束张拉完成一半的时刻的预应力荷载工况;和/或,
    将穹顶钢束张拉全部完成的时刻的预应力荷载工况。
  4. 根据权利要求1所述的方法,其特征在于,在所述计算所述多个预应力张拉时刻的安全壳的正常使用极限状态荷载组合下的应力,以及,计算安全壳承载能力极限状态荷载组合下的配筋之前,还包括:
    将预应力钢束张拉期间的非预应力荷载施加到安全壳的有限元模型中进行分析,所述非预应力荷载包括:自重、收缩荷载及温度荷载。
  5. 根据权利要求1所述的方法,其特征在于,所述将所述多个预应力张拉时刻的预应力荷载工况施加至所述安全壳的有限元模型,并计算所述多个预应力张拉时刻的安全壳正常使用极限状态荷载组合下的应力,以及,计算安全壳承载能力极限状态下荷载组合下的配筋,包括:
    针对多个预应力张拉时刻的每一个时刻的预应力荷载工况,通过安全壳的有限元模型提取安全壳正常使用情况极限状态荷载组合下的混凝土截面边缘纤维压应力和薄膜平均压应力,
    针对多个预应力张拉时刻的每一个时刻的预应力荷载工况,通过安全壳的有限元模型中提取安全壳在承载能力极限状态的各荷载组合作用下的内力,并对内力计算结果进行配筋计算,以得到配筋计算结果。
  6. 根据权利要求5所述的方法,其特征在于,应力的设定限值包括混凝土截面边缘纤维压应力的设定限值和薄膜平均压应力的设定限值,
    所述将安全壳正常使用极限状态荷载组合下的应力与应力的设定限值进行比较,以及将安全壳承载能力极限状态荷载组合下的配筋的计算结果与配筋设定阈值进行比较,以判断所述安全壳预应力钢束张拉顺序是否可行,包括:
    将得到的安全壳正常使用极限状态荷载组合下的混凝土截面边缘纤维压应力与混凝土截面边缘纤维压应力的设定限值进行比较,并将得到的安全壳正常使用极限状态荷载组合下的薄膜平均压应力与薄膜平均压应力的设定限值进行比较;
    将得到的安全壳承载能力极限状态荷载组合下的配筋计算结果与配筋设定阈值进行比较;
    若同时满足安全壳的混凝土截面边缘纤维压应力和薄膜平均压应力分别小于混凝土截面边缘纤维压应力的设定限值及薄膜平均压应力的设定限值,以及配筋计算结果小于配筋设定阈值,则判断所述安全壳预应力钢束张拉顺序是可行的。
  7. 根据权利要求6所述的方法,其特征在于,
    在安全壳正常使用极限状态荷载组合下,混凝土截面边缘纤维压应力的设定限值=0.7*混凝土轴心抗压强度标准值;薄膜平均压应力的设定限值=0.4*混凝土轴心抗压强度标准值;
    在安全壳承载能力极限状态荷载组合下,配筋设定阈值=安全壳的实际配筋值。
  8. 根据权利要求1所述的方法,其特征在于,所述根据判断结果确定最终张拉顺序,包括:
    若判断结果为可行,则确定所述安全壳预应力钢束张拉顺序为最终张拉顺序,否则,继续判断下一设定的安全壳预应力钢束张拉顺序是否可行,直至确定最终张拉顺序;
    或者,
    若判断结果为可行,则确定所述安全壳预应力钢束张拉顺序为待选张拉顺序,并继续判断下一设定的安全壳预应力钢束张拉顺序是否可行,直至确定至少两种待选张拉顺序,并根据预设的规则再从中选择一个待选张拉顺序作为最终张拉顺序。
  9. 一种确定核电厂安全壳预应力钢束张拉顺序的系统,其特征在于,包括:
    设定单元,用于设定至少一种安全壳预应力钢束张拉顺序;
    模型单元,用于建立安全壳的有限元模型,以模拟安全壳预应力钢束张拉情况;
    获取单元,用于获取已设定的一种安全壳预应力钢束张拉顺序下,安全壳的预应力钢束张拉期间多个预应力张拉时刻的预应力荷载工况;
    验算单元,用于将所述多个预应力张拉时刻的预应力荷载工况施加至所述安全壳的有限元模型,并计算所述多个预应力张拉时刻的安全壳正常使用极限状态荷载组合下的应力,以及,计算安全壳承载能力极限状态荷载组合下的配筋;
    判断单元,用于将所述验算单元得到的所述安全壳正常使用极限状态荷载组合下应力与应力的设定限值进行比较,以及将安全壳承载能力极限状态荷载组合下的配筋的计算结果与配筋设定阈值进行比较,以判断所述安全壳预应力钢束张拉顺序是否可行,并根据判断结果确定最终张拉顺序。
  10. 一种计算机设备,其特征在于,包括存储器和处理器,所述存储器中存储有计算机程序,当所述处理器运行所述存储器存储的计算机程序时,所述处理器执行根据权利要求1-8中任一项所述的确定核电厂安全壳预应力钢束张拉顺序的方法。
PCT/CN2021/136790 2020-12-22 2021-12-09 确定核电厂安全壳预应力钢束张拉顺序的方法及系统 WO2022135166A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011525985.1A CN112818435B (zh) 2020-12-22 2020-12-22 确定核电厂安全壳预应力钢束张拉顺序的方法及系统
CN202011525985.1 2020-12-22

Publications (1)

Publication Number Publication Date
WO2022135166A1 true WO2022135166A1 (zh) 2022-06-30

Family

ID=75853616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/136790 WO2022135166A1 (zh) 2020-12-22 2021-12-09 确定核电厂安全壳预应力钢束张拉顺序的方法及系统

Country Status (2)

Country Link
CN (1) CN112818435B (zh)
WO (1) WO2022135166A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112818435B (zh) * 2020-12-22 2024-01-30 中国核电工程有限公司 确定核电厂安全壳预应力钢束张拉顺序的方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103514307A (zh) * 2012-06-19 2014-01-15 中国核电工程有限公司 一种预应力混凝土安全壳结构极限承载力的分析方法
US20150234958A1 (en) * 2014-02-18 2015-08-20 Chicago Bridge & Iron Company Self-shielding tank
CN107025342A (zh) * 2017-03-31 2017-08-08 中建三局第建设工程有限责任公司 基于敏度分析的斜拉索一次张拉动态施工控制方法
CN109357785A (zh) * 2018-11-05 2019-02-19 苏州热工研究院有限公司 一种基于分布式传感技术的核电厂安全壳整体性能评价方法
CN112818435A (zh) * 2020-12-22 2021-05-18 中国核电工程有限公司 确定核电厂安全壳预应力钢束张拉顺序的方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103514307A (zh) * 2012-06-19 2014-01-15 中国核电工程有限公司 一种预应力混凝土安全壳结构极限承载力的分析方法
US20150234958A1 (en) * 2014-02-18 2015-08-20 Chicago Bridge & Iron Company Self-shielding tank
CN107025342A (zh) * 2017-03-31 2017-08-08 中建三局第建设工程有限责任公司 基于敏度分析的斜拉索一次张拉动态施工控制方法
CN109357785A (zh) * 2018-11-05 2019-02-19 苏州热工研究院有限公司 一种基于分布式传感技术的核电厂安全壳整体性能评价方法
CN112818435A (zh) * 2020-12-22 2021-05-18 中国核电工程有限公司 确定核电厂安全壳预应力钢束张拉顺序的方法及系统

Also Published As

Publication number Publication date
CN112818435B (zh) 2024-01-30
CN112818435A (zh) 2021-05-18

Similar Documents

Publication Publication Date Title
Wolanski Flexural behavior of reinforced and prestressed concrete beams using finite element analysis
Kim et al. Analytical approach to evaluate the inelastic behaviors of reinforced concrete structures under seismic loads
Huang et al. Evaluation of CANDU NPP containment structure subjected to aging and internal pressure increase
WO2022135166A1 (zh) 确定核电厂安全壳预应力钢束张拉顺序的方法及系统
Feng et al. Efficient numerical model for progressive collapse analysis of prestressed concrete frame structures
CN102651042A (zh) 大跨度空间结构中预应力拉杆基础设计方法
Jiménez et al. Analysis of the mock-up of a reactor containment building: Comparison with experimental results
Lin et al. Dynamic finite element model updating of prestressed concrete continuous box-girder bridge
Wu et al. Machine learning-based adaptive degradation model for RC beams
Cao et al. The combined influence of bond–slip and joint-shear in the seismic upgrading via externally-attached BFRP-bar reinforced precast sub-frames
Solahuddin Seismic performance of reinforced concrete beam-column joint: a review
KR100698732B1 (ko) 원자로 내부 구조물의 핵연료 지지용기 스너버 제작 방법
Shehada et al. Numerical Progressive Collapse Analysis of RC Framed Structures
Wang et al. Full-scale experimental and numerical investigation on the ductility, plastic redistribution, and redundancy of deteriorated concrete bridges
Andres et al. Buckling of Concrete Shells: A Simplified Numerical Simulation
Mazars et al. Behavior and assessment of massive structures: an overview of the french research programs CEOS. fr and VeRCoRs
Feng et al. Design and numerical analysis of steel frame joints with replaceable buckling-restrained links
CN110308268A (zh) 预应力混凝土框架结构预应力损失识别方法
Shabani et al. Pros and cons of various equivalent frame models for nonlinear analysis of URM buildings
Fong Second-order analysis of imperfect light-weight and composite structures
Ambrosini et al. Structural analysis of the CAREM-25 nuclear power plant subjected to the design basis accident and seismic loads
CN112100873A (zh) 水工建筑物承载力的确定方法
Cheng Random field-based reliability analysis of prestressed concrete bridges
Manos et al. A knowledge-based software for the preliminary design of seismically isolated bridges
BALOMENOS et al. Probabilistic evaluation of concrete strains for assessing prestressing loss in nuclear containment segments

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21909163

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 523440867

Country of ref document: SA

122 Ep: pct application non-entry in european phase

Ref document number: 21909163

Country of ref document: EP

Kind code of ref document: A1