WO2022135068A1 - 基于混合自动重传请求harq的通信方法和装置 - Google Patents

基于混合自动重传请求harq的通信方法和装置 Download PDF

Info

Publication number
WO2022135068A1
WO2022135068A1 PCT/CN2021/133967 CN2021133967W WO2022135068A1 WO 2022135068 A1 WO2022135068 A1 WO 2022135068A1 CN 2021133967 W CN2021133967 W CN 2021133967W WO 2022135068 A1 WO2022135068 A1 WO 2022135068A1
Authority
WO
WIPO (PCT)
Prior art keywords
groups
retransmission
bit sequences
information
information bit
Prior art date
Application number
PCT/CN2021/133967
Other languages
English (en)
French (fr)
Inventor
李斌
顾佳琦
张华滋
童文
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022135068A1 publication Critical patent/WO2022135068A1/zh
Priority to US18/212,345 priority Critical patent/US20230336273A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0047Decoding adapted to other signal detection operation
    • H04L1/0048Decoding adapted to other signal detection operation in conjunction with detection of multiuser or interfering signals, e.g. iteration between CDMA or MIMO detector and FEC decoder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1816Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of the same, encoded, message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes

Definitions

  • the present application relates to the field of communication, and in particular, to a communication method and device based on HARQ with hybrid automatic repeat request.
  • a hybrid automatic repeat request (HARQ) method can be used for transmission.
  • HARQ hybrid automatic repeat request
  • the receiving end saves the received signal and requests the transmitting end to retransmit the signal, and the receiving end combines the retransmitted signal and the previously received signal before decoding.
  • the above-mentioned communication method based on HARQ only retransmits the signal when the decoding fails at the receiving end, cannot improve the transmission performance of the signal, and cannot fully exploit the gain of channel coding.
  • the embodiment of the present application provides a HARQ-based communication method and device.
  • part of the information bit sequence is interleaved, and the interleaved sequence is subjected to subsequent encoding and decoding operations, This interleaving process can improve code redistribution in transmission, bring better transmission performance, and thus obtain better coding gain.
  • an embodiment of the present application provides a HARQ-based communication method, including: in the first transmission, acquiring multiple information bits; dividing the multiple information bits into m groups of first information bit sequences K 1 , ... , Km; wherein, m is a positive integer; perform first encoding on m groups of first information bit sequences to obtain m groups of first encoded codewords; perform second encoding on m groups of first encoded codewords to obtain first target encoding codeword; send the first target encoded codeword to the receiving end; if the first transmission fails, in the t-th retransmission, perform interleaving processing on n groups of first information bit sequences in m groups of first information bit sequences, Obtain m groups of first bit sequences X 1 ,...,Xm; wherein, n is less than m; t is greater than or equal to 1; m groups of first bit sequences include n groups of interleaved bit sequences; for m groups of first
  • part of the information bit sequence is interleaved during the retransmission process, and the interleaved sequence is subjected to subsequent encoding and decoding operations.
  • This interleaving process can improve code redistribution during transmission. Bring better transmission performance, and then obtain better coding gain.
  • the n groups of first information bit sequences include: among the m groups of first information bit sequences, the n groups of information bit sequences corresponding to the layers whose reliability order is located at the back; wherein, the reliability order is reliability Sort from high to low.
  • the above-mentioned interleaving process can ensure the accuracy of the transmitted information during transmission, thereby bringing about better transmission performance.
  • the interleaving pattern of Xm in the t-th retransmission is different from the interleaving pattern of Xm in the t+1-th retransmission.
  • the same or different interleaving patterns can be conveniently realized by the same or different interleavers.
  • the method further includes: if the t-th retransmission fails, in the t+1-th retransmission, performing interleaving processing on s groups of first information bit sequences in m groups of first information bit sequences , obtain m groups of second bit sequences; wherein, s is less than m; m groups of second bit sequences include s groups of interleaved bit sequences; perform first encoding on m groups of second bit sequences to obtain m groups of third encoding codes word; perform second encoding on m groups of third encoded codewords to obtain a third target encoded codeword; send the third target encoded codeword to the receiving end.
  • part of the information bit sequence is subjected to interleaving processing during the retransmission process, and subsequent encoding and decoding operations are performed on the interleaved sequence.
  • This interleaving process can improve code redistribution in transmission, bring better transmission performance, and thus obtain better coding gain.
  • the first information bit sequence at the same position is interleaved.
  • the interleaving pattern in which the information bit sequence is interleaved is different from the interleaving pattern in which the first information bit sequence at the same position is interleaved in the t+1th retransmission. In this way, by using different interleaving patterns for the same position, more effective interleaving processing can be ensured, thereby better improving code redistribution in transmission.
  • the first information bit sequences in different positions are interleaved.
  • the interleaving pattern in which the information bit sequence is interleaved is the same as or different from the interleaving pattern in which the first information bit sequence at different positions is interleaved in the t+1th retransmission. In this way, by using the same or different interleaving patterns for different positions, more effective interleaving processing can be ensured, thereby better improving code redistribution in transmission.
  • an embodiment of the present application provides a HARQ-based communication method, including: a receiving end receiving first information to be decoded in a first transmission from a transmitting end; information; if the first transmission fails, the receiving end receives the second information to be decoded in the t-th retransmission from the transmitting end; according to the second information to be decoded, the second soft information is determined; the receiving end uses the interleaving pattern to use The cancellation operation and the sum operation perform decoding processing on the first soft information and the second soft information; wherein, the first information to be decoded is related to the first target encoded codeword of the transmitting end; the second information to be decoded is related to the second information of the transmitting end.
  • the target encoding codeword is related; the first target encoding codeword is obtained by encoding the m groups of first information bit sequences; the second target encoding codeword is obtained by encoding the m groups of the first bit sequences; A bit sequence is obtained by interleaving n groups of first information bits in m groups of first information bit sequences; n is less than m.
  • part of the information bit sequence is interleaved during the retransmission process, and the interleaved sequence is subjected to subsequent encoding and decoding operations. This interleaving process can improve code redistribution during transmission. Better coding gain can be obtained.
  • the n groups of first information bit sequences include: among the m groups of first information bit sequences, the n groups of information bit sequences corresponding to the layers whose reliability order is located at the back; wherein, the reliability order is reliability Sort from high to low.
  • the first information bit sequence at the same position is interleaved.
  • the interleaving pattern in which the information bit sequence is interleaved is different from the interleaving pattern in which the first information bit sequence at the same position is interleaved in the t+1th retransmission.
  • the first information bit sequences in different positions are interleaved.
  • the interleaving pattern in which the information bit sequence is interleaved is the same as or different from the interleaving pattern in which the first information bit sequence at different positions is interleaved in the t+1th retransmission.
  • an embodiment of the present application provides a HARQ-based communication apparatus, which is configured to perform the above-mentioned various aspects or the methods in any possible implementation manners of the various aspects.
  • the apparatus includes means for performing the above-mentioned various aspects or the methods in any possible implementations of the various aspects.
  • the apparatus may include modules that perform one-to-one correspondence with the methods/operations/steps/actions described in the above aspects, and the modules may be hardware circuits, software, or hardware.
  • the circuit is implemented in combination with software.
  • the device is a communication chip
  • the communication chip may include an input circuit or interface for sending information or data, and an output circuit or interface for receiving information or data.
  • the apparatus is a communication device, and the communication device may include a transmitter for sending information or data, and a receiver for receiving information or data.
  • the apparatus is configured to execute the above-mentioned various aspects or the methods in any possible implementation manners of the various aspects, the apparatus may be configured in the above-mentioned sending end or the receiving end, or the apparatus itself is the above-mentioned sending end. end or receiver.
  • an embodiment of the present application provides a HARQ-based communication device, including a processor and a memory, where the memory is used to store a computer program, and the processor is used to call and run the computer program from the memory, so that the device executes A method in any of the possible implementations of any of the above aspects.
  • processors there are one or more processors and one or more memories.
  • the memory may be integrated with the processor, or the memory may be provided separately from the processor.
  • the communication device further includes a transmitter (transmitter) and a receiver (receiver).
  • the transmitter and receiver can be set separately or integrated together, which is called a transceiver (transceiver).
  • an embodiment of the present application provides a communication system, including a device for implementing the first aspect or any method that may be implemented in the first aspect, and a device for implementing the second aspect or the second aspect. Apparatus for any possible implementation of the method.
  • the communication system may further include other devices that interact with the sending end and/or the receiving end in the solutions provided in the embodiments of the present application.
  • inventions of the present application provide a computer program product.
  • the computer program product includes: a computer program (also referred to as code, or an instruction), which, when the computer program is executed, causes the computer to execute any one of the above aspects. method in one possible implementation.
  • embodiments of the present application provide a computer-readable medium, where the computer-readable medium stores a computer program (also referred to as code, or instruction) when it runs on a computer, so that the computer executes any one of the above aspects. method in any of the possible implementations.
  • a computer program also referred to as code, or instruction
  • an embodiment of the present application provides a communication device, including: a communication interface and a logic circuit, where the logic circuit is configured to perform interleaving processing on n groups of first information bit sequences in m groups of first information bit sequences, and the communication interface uses For sending the first target coded codeword and the second target coded codeword, the communication apparatus performs the method in any one of the possible implementation manners of the first aspect.
  • an embodiment of the present application provides a communication device, comprising: a communication interface and a logic circuit, the communication interface is used for receiving the first information to be decoded and the second information to be decoded, and the logic circuit is used for using the interleaving pattern according to the interleaving pattern.
  • the cancellation operation and the sum operation perform decoding processing on the first information to be decoded and the second information to be decoded, so that the communication apparatus executes the method in any possible implementation manner of the second aspect.
  • FIG. 1 is a schematic diagram of the architecture of a communication system provided by the present application.
  • FIG. 2 is a schematic flowchart of information transmission according to an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a HARQ-based communication method provided by an embodiment of the present application.
  • Fig. 4 is a kind of coding schematic diagram provided by the embodiment of this application.
  • FIG. 5 is a schematic diagram of polar code encoding with a length of 8 provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of interleaving processing at a transmitting end according to an embodiment of the present application.
  • FIG. 16 is a HARQ-based communication apparatus 160 provided by an embodiment of the present application.
  • FIG. 17 is another HARQ-based communication apparatus 170 provided by an embodiment of the present application.
  • words such as “first” and “second” are used to distinguish the same or similar items with basically the same function and effect.
  • the first value and the second value are only used to distinguish different values, and do not limit their order.
  • the words “first”, “second” and the like do not limit the quantity and execution order, and the words “first”, “second” and the like are not necessarily different.
  • “at least one” refers to one or more, and “multiple” refers to two or more.
  • “And/or”, which describes the association relationship of the associated objects, indicates that there can be three kinds of relationships, for example, A and/or B, which can indicate: the existence of A alone, the existence of A and B at the same time, and the existence of B alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects are an “or” relationship.
  • “At least one item(s) below” or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • At least one (a) of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c may be single or multiple .
  • the embodiments of the present application may be applied to wireless communication systems.
  • the wireless communication systems mentioned in the embodiments of the present application include but are not limited to: a global system of mobile communication (GSM) system, a code division multiple access (CDMA) code division multiple access, CDMA) system, wideband code division multiple access (WCDMA) system, general packet radio service (general packet radio service, GPRS), long term evolution (long term evolution, LTE) system, advanced LTE-A (LTE advanced) system, LTE frequency division duplex (FDD) system, LTE time division duplex (TDD), universal mobile telecommunication system (UMTS) etc., 5th generation mobile networks (5G) communication system, new radio (NR) communication system and future 6th generation mobile networks (6G) communication system , Bluetooth system, WiFI system, satellite communication system, device-to-device (D2D) communication system, machine communication system, Internet of Vehicles, Internet of Things and even more advanced communication systems.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • the communication apparatuses involved in the embodiments of the present application mainly include network equipment or terminal equipment.
  • the sending end may be a network device, and the receiving end is a terminal device.
  • the sending end is a terminal device, and the receiving end is a network device.
  • the terminal device includes but is not limited to a mobile station (mobile station, MS), a mobile terminal (mobile terminal), a mobile phone (mobile phone), a mobile phone (handset), and a portable device (portable equipment).
  • the terminal device may communicate with one or more core networks via a radio access network (RAN), for example, the terminal device may be a mobile phone (or "cellular" phone), with wireless communication
  • RAN radio access network
  • the terminal device may be a mobile phone (or "cellular" phone), with wireless communication
  • the terminal device can also be a computer with wireless transceiver function, virtual reality (VR) terminal device, augmented reality (AR) terminal device, wireless terminal in industrial control (industrial control), Wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, wireless terminals in transportation safety, drones, smart Wireless terminals in a smart city, wireless terminals in a smart home, and so on.
  • VR virtual reality
  • AR augmented reality
  • Wireless terminals in self-driving wireless terminals in remote medical
  • wireless terminals in smart grid wireless terminals in transportation safety
  • drones smart Wireless terminals in a smart city, wireless terminals in a smart home, and so on.
  • Terminals may be called by different names in different networks, for example: User Equipment, Mobile Station, Subscriber Unit, Station, Cell Phone, Personal Digital Assistant, Wireless Modem, Wireless Communication Device, Handheld Device, Laptop, Cordless Phone, Wireless local loop station, etc. For the convenience of description, it is simply referred to as a terminal device in this application.
  • the network device may be a device for communicating with terminal devices, for example, may be a base station (base transceiver station, BTS) in a GSM system or CDMA, or a base station (nodeB) in a WCDMA system , NB), it can also be an evolved base station (evolutional nodeB, eNB or eNodeB) in the LTE system, a transceiver point (transmission reception point, TRP) or a next-generation node B (generation) in a new radio (new radio, NR) network.
  • BTS base transceiver station
  • NodeB base station
  • eNodeB evolved base station
  • TRP transmission reception point
  • NR new radio
  • nodeB nodeB, gNB
  • the network equipment can be satellites, relay stations, drones, access points, in-vehicle equipment, wearable equipment, and network-side equipment, base stations or future evolved public land mobile networks in 5G networks.
  • mobile network, PLMN mobile network, PLMN
  • network equipment in a network where other technologies are integrated it should be noted that when the solutions of the embodiments of the present application are applied to other systems that may appear in the future, the names of base stations and terminals may change, but this does not affect the implementation of the solutions of the embodiments of the present application.
  • the embodiments of the present application relate to a channel encoding and decoding technology for improving the reliability of information transmission and ensuring communication quality in a communication scenario, and can be applied to scenarios in which information is encoded and decoded, for example, can be applied to enhanced mobile broadband (enhanced mobile broadband) mobile broad band (eMBB) uplink control information and downlink control information are encoded and decoded, and can also be applied to other scenarios, such as channel coding applied to 5.1.3 of the communication standard TS 36.212, uplink control information , downlink control information, and the channel coding part of the Sidelink channel, which are not limited in this embodiment of the present application.
  • eMBB enhanced mobile broadband
  • uplink control information and downlink control information are encoded and decoded
  • other scenarios such as channel coding applied to 5.1.3 of the communication standard TS 36.212, uplink control information , downlink control information, and the channel coding part of the Sidelink channel, which are not limited in this embodiment of the present application.
  • the embodiments of the present application are not only applicable to wireless communication, but also to a series of application scenarios that require encoding and decoding, such as wired communication and data storage.
  • FIG. 1 is a schematic structural diagram of a communication system provided by the present application.
  • the communication system in this embodiment of the present application may include a sending end and a receiving end.
  • the sending end is a terminal device
  • the receiving end is a network device.
  • the sender is a network device
  • the receiver is a terminal device.
  • the sender can also be called the encoder.
  • the transmitting end includes an encoder, and the transmitting end can perform encoding through the encoder, and transmit the encoded sequence to the receiving end through a channel.
  • the receiving end can also be called the decoding end.
  • the receiving end includes a decoder, and the receiving end can decode the received sequence through the decoder.
  • the channel used to send information from the sender to the receiver can be called the uplink channel
  • the channel used to send information from the receiver to the sender can be called the uplink channel. for the downlink channel.
  • the transmitting end may encode the information before sending the information, and send the encoded information to the receiving end. If the decoding fails at the receiving end, retransmission may be implemented based on HARQ.
  • FIG. 1 merely illustrates an architecture diagram of a communication system in the form of an example, and is not intended to limit the architecture diagram of the communication system.
  • FIG. 2 is a schematic flowchart of an information transmission provided by an embodiment of the present application.
  • the source is sent on the channel through source coding, channel coding and modulation in sequence.
  • the sink is output through demodulation, channel decoding and source decoding in sequence.
  • source coding can be a process of source transformation or processing in order to reduce or eliminate source redundancy, and the process of converting analog signals into digital signals; channel coding can be used to combat noise and noise in the channel. Attenuation, the process of improving the anti-interference ability and error correction ability of the source by adding redundancy; modulation can be the process of processing the source and adding it to the carrier to make it suitable for channel transmission. The process of changing the high frequency carrier, or by changing the amplitude, phase or frequency of the carrier signal of the message, so that it changes with the change of the signal amplitude.
  • demodulation corresponds to modulation, and the signal can be extracted from the carrier for the process of sink processing and understanding;
  • channel decoding corresponds to channel coding, which can be the process of restoring the signal;
  • source decoding Corresponding to source coding, it can be a process of converting digital signals into analog signals.
  • the transmitting end performs source coding and channel coding on the information source (or may also be referred to as the information bit sequence, the bit sequence to be encoded, or the information to be sent) to obtain the encoded bit sequence (or Also referred to as an encoded codeword).
  • the encoded bits are modulated and transmitted on the channel to the receiver.
  • the receiving end demodulates the received encoded bit sequence to obtain the to-be-decoded bit sequence.
  • the receiving end performs channel decoding on the bit sequence to be decoded, and decodes the information source to obtain the information sink (or may also be referred to as the decoded information bit sequence, the decoded bit sequence or the decoded information).
  • a polar code or a Reed-muller (reed-muller, RM) code is a common coding method in a mobile communication system.
  • Polar code is a known channel coding scheme that can be proven to achieve channel capacity. It has the characteristics of high performance, low complexity, and flexible matching methods. It has been identified by 3GPP as a 5G control channel eMBB scenario (uplink/downlink) control channel coding scheme.
  • u is a binary vector of length n
  • F n is a Kronecker transformation matrix, which is also a generator matrix G of a polar code. in, for n matrices The Kronecker product of .
  • the code generated by this method produces a polarization phenomenon, and the Polar code can be decoded based on a serial cancellation (succesive cancellation, SC) decoding algorithm or a serial cancellation list (SC list, SCL) decoding algorithm or the like.
  • SC serial cancellation
  • SC list serial cancellation list
  • RM code is also a common channel coding technique.
  • the fast decoding algorithm of RM code can be applied to optical fiber communication system.
  • the RM code can use the same N ⁇ N code as the polar code. Matrix construction, but the criteria for selecting information bits are different. When constructing the RM code, the weight of the row of the G matrix corresponding to each bit can be calculated, and then the bits with large weights are used as information bits, and the bits with small weight are used as frozen bits. Usually set is 0.
  • HARQ can be a technology formed by combining forward error correction coding (forward error correction, FEC) and automatic repeat request (auto repeat request, ARQ).
  • the communication method based on HARQ may be, in the case that the decoding of the receiving end fails, the receiving end can transmit an uncertain (NACK) message to the transmitting end through the feedback link, and request the transmitting end to retransmit the same data, and the receiving end will receive the When the receiving end decodes correctly, the receiving end sends an acknowledgment (ACK) message to the sending end to complete the data transmission.
  • NACK uncertain
  • ACK acknowledgment
  • a possible implementation based on HARQ may be a soft combining (chase combining, CC-HARQ) scheme.
  • CC-HARQ soft combining
  • the data packets received by the receiving end in error or that cannot be decoded correctly can be stored at the receiving end, and combined with the retransmitted data received and then decoded.
  • the retransmitted data in CC-HARQ may be the same as the original transmitted data.
  • HARQ Another possible implementation manner based on HARQ may be incremental redundancy (incremental redundancy, IR-HARQ). Specifically, if the decoding cannot be performed correctly during the first transmission, more redundant bits may be sent in the retransmission process, so as to reduce the channel coding rate and thereby improve the decoding success rate. The retransmitted data in IR-HARQ may be different from the original transmitted data.
  • HARQ schemes are usually designed for additive white gaussian noise (AWGN) channels, using different transmission bits to form a coupled large code design, HARQ schemes can be used in AWGN channels. get better coding gain.
  • AWGN additive white gaussian noise
  • the change of the channel in the fading channel can lead to a large change in the amplitude of the signal. Therefore, if the transmitted signal suffers a large fading, the above-mentioned HARQ coupling large code design scheme may not be able to Fully exploit the gain of channel coding.
  • an embodiment of the present application provides a HARQ-based communication method, which can obtain multiple information bits in the first transmission; divide the information bits into m groups to obtain a first information bit sequence K 1 , . . . , Km, where m is a positive integer; perform first encoding on m groups of first information bit sequences to obtain a first encoded codeword, perform second encoding on m groups of first encoded codewords to obtain a first target encoded codeword, which is sent to the receiver.
  • the terminal sends the first target encoded codeword; if the first transmission fails, in the retransmission process, the n groups of first information bit sequences in the m groups of first information bit sequences can be interleaved to obtain m groups of first information bit sequences.
  • the sequence is interleaved, and the interleaved sequence is subjected to subsequent encoding and decoding operations. This interleaving process can improve code redistribution in transmission, and can bring better transmission performance and thus better coding gain.
  • an embodiment of the present application provides a HARQ-based communication method, which can be applied to the channel coding and channel decoding modules shown in the dashed box in FIG. 2 .
  • the information bits described in the embodiments of this application may be bits used to carry information. Information bits can be obtained from the bits to be transmitted. Wherein, the to-be-transmitted bits may include multiple information bits and multiple redundant bits (or may also be referred to as check bits).
  • the first information bit sequence described in the embodiment of the present application may be a bit sequence obtained by grouping information bits.
  • the first encoded codeword described in the embodiment of the present application may be an encoded codeword obtained by performing first encoding on the first information bit sequence.
  • the first (second or third) target encoding codeword described in the embodiments of this application may be an encoded codeword obtained by performing second encoding on the first (second or third) encoding codeword.
  • the first bit sequence or the second bit sequence described in the embodiment of the present application may be a bit sequence obtained by interleaving part of the information bit sequence in the first information bit sequence.
  • the second (or third) encoded codeword described in the embodiment of the present application may be an encoded codeword obtained by performing first encoding on the first (or second) bit sequence.
  • the soft information described in the embodiments of the present application can be understood as a log-likelihood ratio (loglikelihood ratio, LLR).
  • FIG. 3 is a schematic flowchart of a HARQ-based communication method provided by an embodiment of the present application. As shown in FIG. 3 , the method may include:
  • the transmitting end acquires a plurality of information bits in the first transmission.
  • the first transmission may represent a process in which the transmitting end encodes the information bits for the first time, and transmits the encoded bit sequence to the receiving end through the channel.
  • the sender may transmit information to the receiver for the first time based on the request of the receiver, or the sender may actively transmit information to the receiver for the first time.
  • a plurality of information bits allocated to each subcode may be acquired according to the code length, code rate, polar code/RM code structure and/or the number m of subcode groups to be allocated.
  • the manner of acquiring multiple information bits may include other contents according to actual scenarios, which is not limited in this embodiment of the present application.
  • the transmitting end divides the plurality of information bits into m groups of first information bit sequences K 1 , . . . , Km.
  • a possible implementation manner in which the transmitting end divides the plurality of information bits into m groups of first information bit sequences may be: according to the code length, code rate, m and/or polar code structure of the equivalent code to be transmitted, The plurality of information bits are divided into m groups of first information bit sequences K 1 , . . . , Km. where m is a positive integer.
  • another possible implementation manner for the transmitting end to divide the multiple information bits into m groups of the first information bit sequence may be that the grouping may be performed according to the length of the information bits.
  • the plurality of information bits may be divided into m groups of first information bit sequences K 1 , . . . , Km according to the length of the information bits.
  • the length of the information bits of K1 is less than or equal to the length of the information bits of Km.
  • grouping manner of the information bits may include other contents according to the actual scenario, which is not limited in this embodiment of the present application.
  • the transmitting end performs first encoding on m groups of first information bit sequences to obtain m groups of first encoded codewords.
  • the first code may be an outer code code.
  • FIG. 4 is a schematic diagram of encoding provided by an embodiment of the present application.
  • Encoder, U 1 G 1 can be obtained after encoding;
  • the second group of information bit sequences U 2 with a length of K 2 are input to the encoder of the first encoding,
  • U 2 G 2 can be obtained after encoding, and then the m groups of length are The first encoded codeword of N/m.
  • G 1 , G 2 , ⁇ , Gm may represent respective generator matrices corresponding to m groups of first information bit sequences. It can be understood that the method for performing the first encoding on the first information bit sequence may include other contents according to an actual scenario, which is not limited in this embodiment of the present application.
  • the transmitting end performs second encoding on m groups of first encoded codewords to obtain a first target encoded codeword.
  • the second encoding may be an inner code encoding.
  • performing the second encoding on the first encoded codeword may be understood as performing polar code encoding on the first encoded codeword to obtain the first target encoded codeword.
  • FIG. 5 is a schematic diagram of polar code encoding with a length of 8 provided by an embodiment of the present application.
  • the coded bits can be divided into fixed bits (frozen) and information bits (data) according to their respective reliability rankings.
  • U 7 , U 6 , U 5 and U 3 are the four bits with the highest reliability and are set as information bits
  • U 4 , U 2 , U 1 and U 0 are the four bits with the lowest reliability.
  • Bit bits set to fixed bits.
  • the circle plus symbol represents the exclusive OR operation. It can be understood that the method for performing the second encoding on the first encoded codeword may include other contents according to the actual scenario, which is not limited in this embodiment of the present application.
  • the transmitting end sends the first target encoded codeword to the receiving end.
  • the receiving end may receive the first information to be decoded, and determine the first soft information of the first target encoded code word according to the first information to be decoded, wherein the first information to be decoded and the first target encoded code of the transmitting end word related.
  • the transmitting end performs interleaving processing on n groups of first information bit sequences in m groups of first information bit sequences in the t-th retransmission, to obtain m groups of first bit sequences X 1 , ..., Xm.
  • n is less than m; t is greater than or equal to 1; m groups of first bit sequences include n groups of interleaved bit sequences.
  • the m groups of first bit sequences may include: n groups of first information bit sequences that have undergone interleaving processing and m-n groups of bit sequences that have not undergone interleaving processing.
  • an existing interleaving manner such as random interleaving, or an optimized interleaving pattern may be used as an interleaving manner for performing the interleaving process on the n groups of first information bit sequences.
  • the specifically adopted interleaving manner may include other contents according to an actual scenario, which is not limited in this embodiment of the present application.
  • the sender transmits data to the receiver, and the receiver fails to decode; or, the sender fails to transmit the data to the receiver, etc.
  • the t-th retransmission may refer to any retransmission after the first transmission fails.
  • interleaving processing can be performed on n groups of first information bit sequences; In the process of five retransmissions, the interleaving process is performed on the n groups of first information bit sequences. It can be understood that the steps shown in S306-S309 can be performed in the t-th retransmission.
  • the transmitting end performs first encoding on m groups of first bit sequences to obtain m groups of second encoded codewords.
  • the encoding method for performing the first encoding on the m groups of first bit sequences is the same as the encoding method for performing the first encoding on the m groups of first information bit sequences, and details are not described herein again.
  • the transmitting end performs second encoding on m groups of second encoded codewords to obtain a second target encoded codeword.
  • the encoding manner of performing the second encoding on m groups of second encoding codewords is the same as the encoding manner in performing the second encoding on m groups of first encoding codewords, and details are not described herein again.
  • the transmitting end sends the second target encoded codeword to the receiving end.
  • the receiving end may receive the second information to be decoded, and determine the second soft information of the second target encoded codeword according to the second information to be decoded, wherein the second information to be decoded and the second target encoded code of the transmitting end are determined. word related.
  • the receiving end performs decoding processing on the first soft information and the second soft information by using the cancellation operation and the sum operation according to the interleaving pattern.
  • the first information to be decoded is related to the first target encoding codeword of the transmitting end; the second information to be decoded is related to the second target encoding codeword of the transmitting end; the first target encoding codeword is for m groups
  • the first information bit sequence is obtained by encoding; the second target encoding codeword is obtained by encoding m groups of first bit sequences; the m groups of first bit sequences are obtained by encoding n groups of m groups of first information bit sequences
  • the first information bits are obtained by interleaving; n is less than m.
  • the n groups of first information bit sequences include: among the m groups of first information bit sequences, the n groups of information bit sequences corresponding to the layers whose reliability is ranked at the back;
  • the order of reliability is the order of reliability from high to low.
  • the first information bit sequence at the same position is interleaved.
  • the interleaving pattern in which the bit sequence is interleaved is different from the interleaving pattern in which the first information bit sequence at the same position is interleaved in the t+1th retransmission.
  • the information bit sequence at the same position can be understood as the same information bit sequence in different transmissions.
  • the first information bits at different positions are interleaved.
  • the interleaving pattern in which the bit sequence is interleaved is the same as or different from the interleaving pattern in which the first information bit sequence at different positions is interleaved in the t+1th retransmission.
  • the information bit sequences at different positions can be understood as different information bit sequences in different transmissions.
  • the first soft information and the second soft information may be combined and decoded. It can be understood that, if the transmitting end sends multiple encoded codewords to the receiving end in multiple transmissions, the receiving end may combine and decode multiple soft information corresponding to the multiple encoded codewords.
  • the cancellation operation and the sum operation may be a decoding method for decoding the soft information. It can be understood that, the method for decoding and processing soft information may include other contents according to actual scenarios, which are not limited in this embodiment of the present application.
  • the interleaving process may be performed on a part of the information bit sequence during the retransmission process, and subsequent encoding and decoding operations may be performed on the interleaved sequence.
  • This interleaving process can improve code redistribution in transmission, bring better transmission performance, and thus obtain better coding gain.
  • the n groups of first information bit sequences include: among the m groups of first information bit sequences, the n groups of information bit sequences corresponding to the layers whose reliability is ranked at the back; wherein, the reliability is ranked as The order of reliability from high to low.
  • n groups of information bit sequences corresponding to the layers whose reliability is ranked at the back can be selected; when the reliability is ranked from low to high reliability In the mode, n groups of information bit sequences corresponding to the layer whose reliability order is located in the front can be selected.
  • n groups of first information bit sequences corresponding to layers with lower reliability among m groups of first information bit sequences may be selected for interleaving processing.
  • the above-mentioned interleaving process can ensure the accuracy of the transmitted information during transmission, thereby bringing about better transmission performance.
  • the interleaving pattern of Xm in the t-th retransmission is different from the interleaving pattern of Xm in the t+1-th retransmission.
  • the interleaving pattern may be understood as an interleaving pattern, and the same or different interleaving patterns may be implemented by the same or different interleavers.
  • s is less than m; m groups of second bit sequences include s groups of interleaved bit sequences.
  • s may be the same as the above n, or may be different from the above n.
  • S402. Perform first encoding on m groups of second bit sequences to obtain m groups of third encoded codewords.
  • an interleaving process is performed on part of the information bit sequence, and subsequent encoding and decoding operations are performed on the interleaved sequence.
  • This interleaving process can improve code redistribution in transmission, bring better transmission performance, and thus obtain better coding gain.
  • the The interleaving pattern in which the first information bit sequence is interleaved is different from the interleaving pattern in which the first information bit sequence at the same position is interleaved in the t+1th retransmission.
  • FIG. 6 is a schematic diagram of interleaving processing at a transmitting end provided by an embodiment of the present application.
  • the information bit sequence (U 1 , U 2 , ..., Um) is transmitted for the first time. If the first transmission fails, the first retransmission can be performed; if the first retransmission If it fails, a second retransmission can be performed.
  • the interleaver I 11 can be used to perform interleaving processing on U 1 in the first retransmission, and the interleaver I 12 can be used to perform interleaving processing on U 2 in the first retransmission; the interleaver I 21 can be used for Perform interleaving processing on U 1 in the second retransmission, and the interleaver I 22 can be used for interleaving processing on U 2 in the second retransmission.
  • the information bit sequence at the same position can be understood as the same information bit sequence in different transmissions.
  • U 1 in the first transmission and I in the first retransmission 11 (U 1 ) and I 21 (U 1 ) of the second retransmission the above U 1 , I 11 (U 1 ) and I 21 (U 1 ) can be understood as information bit sequences in the same position.
  • the interleaving pattern for interleaving the first information bit sequence at the same position in the t-th retransmission is different from the interleaving pattern for interleaving the first information bit sequence at the same position in the t+1-th retransmission. Therefore, the interleaver I 11 that performs interleaving processing on U 1 in the first retransmission is different from the interleaver I 21 that performs interleaving processing on U 1 in the second retransmission, which can also be understood as The interleaver I11 is different from the interleaver I21 .
  • the same interleaving pattern can be realized by the same interleaver, or different interleaving patterns can be realized by different interleavers.
  • This interleaving process can improve code redistribution in transmission and bring better transmission performance. In order to obtain better coding gain.
  • the interleaving pattern in which the first information bit sequence is interleaved is the same as or different from the interleaving pattern in which the first information bit sequence at different positions is interleaved in the t+1th retransmission.
  • the information bit sequences at different positions can be understood as different information bit sequences in different transmissions.
  • U 1 in the first transmission and I in the first retransmission 12 (U 2 ) and U m of the second retransmission (m is not equal to 1 or 2)
  • the above U 1 , I 12 (U 2 ) and U m can be understood as information bit sequences at different positions.
  • the interleaving pattern for interleaving the first information bit sequences at different positions in the t-th retransmission is the same as or different from the interleaving pattern for interleaving the first information bit sequences at different positions in the t+1-th retransmission, It can be understood that the interleaver I 11 that performs interleaving processing on U 1 in the first retransmission and the interleaver I 22 that performs interleaving processing on U 2 in the second retransmission have the same or different interleaving patterns. It is understood that the interleaver I 11 and the interleaver I 22 are the same or different.
  • the same or different interleaving patterns can be implemented by the same or different interleavers. This interleaving process can improve code redistribution in transmission, bring better transmission performance, and then obtain better coding gain .
  • the first transmission is performed through the channel, and the receiving end receives Y 1 and Y 2 .
  • the first information bit sequence can be interleaved in advance.
  • the interleaver I 1 can be used to interleave the U 1 retransmitted for the first time, to obtain I(U 1 ).
  • the subsequent operation is the same as the first transmission process.
  • the interleaved sequence passes through the first encoder, and the encoding can obtain I(U 1 )G 1 , and U 2 passes through the second encoder, and the encoding can obtain U 2 G 2 ; then Input I(U 1 )G 1 and U 2 G 2 to 32 2*2 polar code encoders with a code rate of 1.
  • the first retransmission is performed through the channel, and the receiving end receives Y 11 and Y 2 '.
  • the corresponding LLRs can be calculated separately at the receiving end.
  • the first transmission channel can be obtained: LLR(U 1 G 1 +U 2 G 2 ) (corresponding to Y 1 ) and LLR(U 2 G 2 ) (corresponding to Y 2 );
  • the first retransmission channel can be obtained: LLR(I(U 1 )G 1 +U 2 G 2 ) (corresponding to Y 11 ) and LLR(U 2 G 2 ) (corresponding to Y 2 ′).
  • the interleaving process may be performed on U 1 corresponding to the layer with lower reliability among U 1 and U 2 , and the interleaved layer is obtained.
  • the sequence I(U 1 ) and U 2 are sorted in descending order of reliability.
  • the receiving end since the receiving end performs the decoding process, it can receive the LLR (U 1 G 1 +U 2 G 2 ) and LLR (U 2 G 2 ) of the first transmission channel, as well as the first retransmission channel.
  • LLR(I(U 1 )G 1 +U 2 G 2 ) and LLR(U 2 G 2 ) of the transmission channel which only include interleaving processing on U 1 of the first retransmission, so multiple retransmissions are not involved
  • the second retransmission can be performed, and U 1 is interleaved in the second retransmission, because the first retransmission and the second retransmission If the same bit sequence U1 is interleaved in all transmissions, it can be ensured that the interleaving pattern for U1 in the second retransmission is different from the interleaving pattern for U1 in the first retransmission.
  • the second retransmission can be performed, and U 2 is interleaved in the second retransmission. If different bit sequences are interleaved, the interleaving pattern for U2 in the second retransmission is the same as or different from the interleaving pattern for U1 in the first retransmission.
  • the first interleaving pattern is so that this merging is not performed.
  • the following similarities will not be repeated.
  • the LLRs corresponding to Y 2 and Y 2 ' during the two transmissions can be combined with soft information (or called SUM operation) to obtain LLR (U 2 G 2 ); the above LLR (U 2 G 2 ) and LLR(U 1 G 1 +U 2 G 2 ) and LLR(I(U 1 )G 1 +U 2 G 2 ) are respectively canceled to obtain LLR(U 1 G 1 ) and LLR( I(U 1 )G 1 ); input the above two soft information into the joint decoder for decoding, and U 1 can be solved.
  • soft information or called SUM operation
  • U 1 can be interfered at LLR(U 1 G 1 +U 2 G 2 ) and LLR(I(U 1 )G 1 +U 2 G 2 ) respectively
  • LLR (U 2 G 2 ) can be obtained respectively.
  • 4 LLRs (U 2 G 2 ) can be obtained, and the SUM operation is performed on the above four soft information, and the corresponding polar code (or RM code) Decoding, U 2 can be solved.
  • decoding is performed by SCL
  • the number of decoding paths is 1
  • ML indicates the baselines corresponding to different schemes, and also It can be understood as the optimal decoding method
  • interleaving can represent the abbreviation of the HARQ communication method provided in the embodiment of the present application.
  • the HARQ communication solution provided by the embodiment of the present application can bring a gain of 0.75 dB compared to CC-HARQ.
  • the above-mentioned interleaving process is performed on part of the information bit sequence during the retransmission process, and the interleaved sequence is subjected to subsequent encoding and decoding operations.
  • This interleaving process can improve code redistribution in transmission, bring better transmission performance, and thus obtain better coding gain.
  • the fourth encoder inputs an information bit sequence with a length of 31 U 4
  • the secondary input is 4 bits and the output is 4 bits.
  • the first information bit sequence can be interleaved in advance.
  • the interleaver I 1 can be used to interleave the U 1 retransmitted for the first time, to obtain I(U 1 ). Subsequent operations are the same as the first transmission process.
  • the corresponding soft information can be calculated separately at the receiving end.
  • the first transmission channel can be obtained: LLR(Y 1 ), LLR(Y 2 ), LLR(Y 3 ) and LLR(Y 4 );
  • the first retransmission channel can be obtained: LLR(Y 11 ), LLR(Y 2 '), LLR (Y 3 ') and LLR (Y 4 ').
  • the SUM operation can be performed on the LLRs corresponding to Y 2 and Y 2 ' during the two transmissions, the SUM operation on the LLRs corresponding to Y 3 and Y 3 ', and the LLR corresponding to Y 4 and Y 4 '.
  • SUM operation; this SUM can get LLR(C2 + C4 ), LLR(C3+ C4 ) and LLR( C4 ) respectively.
  • U1 can perform interference cancellation operations at LLR(Y1) and LLR(Y11) respectively, and LLR(C 2 +C 3 +C 4 ) can be obtained respectively.
  • U 1 and U 2 can be subjected to interference cancellation operations at LLR(Y 1 ) and LLR(Y 11 ) respectively, and LLR(C 3 +C 4 can be obtained respectively) ), perform a SUM operation on it to obtain LLR(C 3 +C 4 ).
  • U 1 , U 2 and U 3 can be subjected to interference cancellation operations at LLR(Y 1 ) and LLR(Y 11 ) respectively, and LLR(C 4 ) can be obtained respectively.
  • part of the information bit sequence is subjected to interleaving processing, and subsequent encoding and decoding operations are performed on the interleaved sequence.
  • This interleaving process can improve code redistribution in transmission, bring better transmission performance, and thus obtain better coding gain.
  • HARQ-based communication apparatuses provided by the embodiments of the present application for executing the above methods.
  • Those skilled in the art can understand that the methods and apparatuses may be combined and referenced with each other, and a HARQ-based communication apparatus provided by the embodiments of the present application may perform the steps performed by the transmitting end in the above-mentioned HARQ-based communication method.
  • Another HARQ-based communication apparatus may perform the steps performed by the receiving end in the above-mentioned HARQ-based communication method.
  • FIG. 16 shows a HARQ-based communication device 160 (or referred to as the device 160 ) provided by an embodiment of the present application, and the device 160 may be a transmitter or a receiver in the embodiment of the present application, It can also be a chip applied to the sending end or the receiving end.
  • the apparatus 160 includes: a processing unit 161 and a transceiver unit 162 .
  • the transceiver unit 162 is used for supporting the device 160 to perform the steps of sending or receiving information
  • the processing unit 161 is used for supporting the device 160 to perform the steps of information processing.
  • the n groups of first information bit sequences include: among the m groups of first information bit sequences, the n groups of information bit sequences corresponding to the layers whose reliability is ranked at the back; Sort from high to low.
  • the interleaving pattern of Xm in the t-th retransmission is different from the interleaving pattern of Xm in the t+1-th retransmission.
  • the processing unit 161 is further configured to: if the t-th retransmission fails, in the t+1-th retransmission, perform the processing on the s groups of first information bits in the m groups of first information bit sequences.
  • the sequence is interleaved to obtain m groups of second bit sequences; wherein, s is less than m; the m groups of second bit sequences include s groups of interleaved bit sequences; the m groups of second bit sequences are first encoded to obtain m groups of The third encoding codeword; the second encoding is performed on the m groups of third encoding codewords to obtain the third target encoding codeword; the transceiver unit 162 is further configured to send the third target encoding codeword to the receiving end.
  • the first information bit sequence at the same position is interleaved.
  • the interleaving pattern in which the bit sequence is interleaved is different from the interleaving pattern in which the first information bit sequence at the same position is interleaved in the t+1th retransmission.
  • the first information bits at different positions are interleaved.
  • the interleaving pattern in which the bit sequence is interleaved is the same as or different from the interleaving pattern in which the first information bit sequence at different positions is interleaved in the t+1th retransmission.
  • the code information is related to the first target encoding codeword of the transmitting end; the second information to be decoded is related to the second target encoding codeword of the transmitting end; the first target encoding codeword is obtained by encoding m groups of first information bit sequences
  • the first information bit sequence at the same position is interleaved.
  • the interleaving pattern in which the bit sequence is interleaved is different from the interleaving pattern in which the first information bit sequence at the same position is interleaved in the t+1th retransmission.
  • the first information bits at different positions are interleaved.
  • the interleaving pattern in which the bit sequence is interleaved is the same as or different from the interleaving pattern in which the first information bit sequence at different positions is interleaved in the t+1th retransmission.
  • An embodiment of the present application provides a HARQ-based communication device.
  • the device 160 includes one or more modules for implementing the methods in the steps included in the above-mentioned FIG. 3 to FIG. 15 , and the one or more modules can be combined with The steps of the method in the steps contained in the above-mentioned FIGS. 3-15 correspond.
  • the apparatus 160 herein is embodied in the form of functional units.
  • the term "unit” as used herein may refer to an application specific integrated circuit (ASIC), an electronic circuit, a processor for executing one or more software or firmware programs (eg, a shared processor, a dedicated processor, or a group of processors, etc.) and memory, merge logic, and/or other suitable components to support the described functions.
  • ASIC application specific integrated circuit
  • the apparatus 160 may be specifically the sending end or the receiving end in the foregoing embodiment, and the apparatus 160 may be configured to execute each of the corresponding sending end or the receiving end in the foregoing method embodiments. The processes and/or steps are not repeated here in order to avoid repetition.
  • the apparatus 160 of each of the above solutions has the function of implementing the corresponding steps performed by the transmitting end or the receiving end in the above method; the above functions may be implemented by hardware, or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the above-mentioned transceiving unit 162 may include a transmitting unit and a receiving unit, and the transmitting unit may be used to implement various steps and/or processes corresponding to the above-mentioned transmitting and receiving unit for performing the sending action, and the receiving unit may be used to implement the corresponding The various steps and/or processes for performing the receiving action.
  • the sending unit may be replaced by a transmitter, and the receiving unit may be replaced by a receiver, respectively performing the transceiving operations and related processing operations in each method embodiment.
  • the device 160 in FIG. 16 may also be a chip or a system of chips, such as a system on chip (system on chip, SoC).
  • the transceiver unit 162 may be a transceiver circuit of the chip, which is not limited herein.
  • FIG. 17 shows another HARQ-based communication apparatus 170 provided by an embodiment of the present application.
  • the apparatus 170 includes a processor 171 , a transceiver 172 and a memory 173 .
  • the processor 171, the transceiver 172 and the memory 173 communicate with each other through an internal connection path, the memory 173 is used for storing instructions, and the processor 171 is used for executing the instructions stored in the memory 173 to control the transceiver 172 to send signals and / or receive signals.
  • the processor 171 and the memory 173 may also be integrated together.
  • the apparatus 170 is configured to execute various processes and steps corresponding to the transmitting end in the above-mentioned HARQ-based communication method.
  • the processor 171 is configured to acquire multiple information bits in the first transmission; divide the multiple information bits into m groups of first information bit sequences K1, . . . , Km; where m is a positive integer; The first encoding is performed on the first information bit sequence of the group to obtain m groups of first encoded codewords; the second encoding is performed on the m groups of first encoded codewords to obtain the first target encoded codeword;
  • transceiver 172 configured to send the first target encoded codeword to the receiving end
  • the processor 171 is further configured to perform interleaving processing on n groups of first information bit sequences in the m groups of first information bit sequences in the t-th retransmission if the first transmission fails, to obtain m groups of first bit sequences X 1 ,...,Xm; wherein, n is less than m; t is greater than or equal to 1; m groups of first bit sequences include n groups of interleaved bit sequences; perform first encoding on m groups of first bit sequences to obtain m Group second encoding codewords; perform second encoding on m groups of second encoding codewords to obtain second target encoding codewords;
  • the transceiver 172 is further configured to send the second target encoded codeword to the receiving end.
  • the apparatus 170 is configured to execute various processes and steps corresponding to the receiving end of the above-mentioned HARQ-based communication method.
  • the transceiver 172 is used to receive the first information to be decoded in the first transmission from the transmitting end;
  • a processor 171 configured to determine the first soft information according to the first information to be decoded
  • the transceiver 172 is also used to receive the second information to be decoded in the t-th retransmission from the transmitting end;
  • the processor 171 is further configured to determine the second soft information according to the second information to be decoded
  • the processor 171 is further configured to perform decoding processing on the first soft information and the second soft information by using the cancellation operation and the sum operation according to the interleaving pattern; wherein, the first information to be decoded is related to the first target encoded codeword of the transmitting end
  • the second information to be decoded is related to the second target encoding code word of the transmitting end;
  • the first target encoding code word is obtained by encoding the first information bit sequence of m groups;
  • a bit sequence is obtained by coding;
  • m groups of first bit sequences are obtained by interleaving n groups of first information bits in m groups of first information bit sequences; n is less than m.
  • the apparatus 170 may specifically be the sending end or the receiving end in the foregoing embodiments, and may be configured to execute various steps and/or processes corresponding to the sending end or the receiving end in the foregoing method embodiments.
  • the memory 173 may include read only memory and random access memory and provide instructions and data to the processor. A portion of the memory may also include non-volatile random access memory.
  • the memory may also store device type information.
  • the processor 171 may be configured to execute the instructions stored in the memory, and when the processor 171 executes the instructions stored in the memory, the processor 171 is configured to execute each of the foregoing method embodiments corresponding to the sending end or the receiving end steps and/or processes.
  • the transceiver 172 may include a transmitter and a receiver, the transmitter may be used to implement various steps and/or processes corresponding to the foregoing transceiver for performing the sending action, and the receiver may be used to implement the application corresponding to the foregoing transceiver. Each step and/or process for performing the receiving action.
  • the processor of the above device may be a central processing unit (central processing unit, CPU), and the processor may also be other general-purpose processors, digital signal processors (DSPs), application-specific integrated circuits (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, and the like.
  • DSPs digital signal processors
  • ASIC application-specific integrated circuits
  • FPGA Field Programmable Gate Array
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • each step of the above-mentioned method can be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software units in the processor.
  • the software unit may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor executes the instructions in the memory, and completes the steps of the above method in combination with its hardware. To avoid repetition, detailed description is omitted here.
  • the present application also provides a communication device at the sending end, including a communication interface and a logic circuit, where the logic circuit is used for interleaving processing of n groups of first information bit sequences in m groups of first information bit sequences, and the communication interface is used for sending the first information bit sequence of m groups.
  • a communication device at the sending end, including a communication interface and a logic circuit, where the logic circuit is used for interleaving processing of n groups of first information bit sequences in m groups of first information bit sequences, and the communication interface is used for sending the first information bit sequence of m groups.
  • a target encoded codeword and a second target encoded codeword is used for sending the first information bit sequence of m groups.
  • the present application also provides a communication device at the receiving end, including a communication interface and a logic circuit, the communication interface is used to receive the first information to be decoded and the second information to be decoded, and the logic circuit is used to use the cancellation operation according to the interleaving pattern and The sum operation performs decoding processing on the first information to be decoded and the second information to be decoded.
  • the implementation of the present application also provides a communication system, which may include the transmitter shown in FIG. 16 or FIG. 17 (the device 160 or the device 170 is embodied as the transmitter), and the receiver shown in FIG. 16 or 17 end (device 160 or device 170 is embodied as a receiving end).
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of units is only a logical function division.
  • there may be other division methods for example, multiple units or components may be combined or integrated. to another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • Units described as separate components may or may not be physically separated, and components shown as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as stand-alone products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods of the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

本申请实施例提供一种基于HARQ的通信方法,涉及通信技术领域,包括:在第一次传输中,获取多个信息比特;将多个信息比特分成m组第一信息比特序列K 1,……,Km;对m组第一信息比特序列进行编码,得到第一目标编码码字;向接收端发送第一目标编码码字;若第一次传输失败,在第t次重传中,对m组第一信息比特序列中的n组第一信息比特序列进行交织处理,得到m组第一比特序列X 1,……,Xm;对m组第一比特序列进行编码,得到第二目标编码码字;向接收端发送第二目标编码码字。这样,在基于HARQ的实现方式中,在重传过程对部分信息比特序列进行交织处理,这种交织处理可以改善传输中的码重分布,进而获得较好的编码增益。

Description

基于混合自动重传请求HARQ的通信方法和装置
本申请要求于2020年12月24日提交中国专利局、申请号为202011556770.6、申请名称为“基于混合自动重传请求HARQ的通信方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种基于混合自动重传请求HARQ的通信方法和装置。
背景技术
在通信领域中,由于外界的干扰、衰落等各种原因造成数字信号在传输的过程中可能产生误码,进而影响信号的传输结果。
通常情况下,可以利用混合自动重传请求(hybrid automatic repeat request,HARQ)方法进行传输。例如,接收端在译码失败的情况下,保存接收到的信号,并请求发送端重传信号,接收端将重传的信号和先前接收到的信号进行合并后再译码。
然而,上述基于HARQ的通信方法只是在接收端译码失败的情况下重传信号,无法改善信号的传输性能,未能充分挖掘信道编码的增益。
发明内容
本申请实施例提供一种基于HARQ的通信方法和装置,在基于HARQ的实现方式中,在重传过程对部分信息比特序列进行交织处理,并将交织后的序列进行后续编码和译码操作,这种交织处理可以改善传输中的码重分布,带来更好的传输性能,进而获得较好的编码增益。
第一方面,本申请实施例提供一种基于HARQ的通信方法,包括:在第一次传输中,获取多个信息比特;将多个信息比特分成m组第一信息比特序列K 1,……,Km;其中,m为正整数;对m组第一信息比特序列进行第一编码,得到m组第一编码码字;对m组第一编码码字进行第二编码,得到第一目标编码码字;向接收端发送第一目标编码码字;若第一次传输失败,在第t次重传中,对m组第一信息比特序列中的n组第一信息比特序列进行交织处理,得到m组第一比特序列X 1,……,Xm;其中,n小于m;t大于或等于1;m组第一比特序列中包括n组交织后的比特序列;对m组第一比特序列进行第一编码,得到m组第二编码码字;对m组第二编码码字进行第二编码,得到第二目标编码码字;向接收端发送第二目标编码码字。这样,在基于HARQ的实现方式中,在重传过程对部分信息比特序列进行交织处理,并将交织后的序列进行后续编码和译码操作,这种交织处理可以改善传输中的码重分布,带来更好的传输性能,进而获得较好的编码增益。
在一种可能的实现方式中,n组第一信息比特序列包括:m组第一信息比特序列中,可靠度排序位于后面的层对应的n组信息比特序列;其中,可靠度排序为可靠度从高到低 的排序方式。这样,上述交织处理可以在传输时保证所传信息的准确性,进而带来更好的传输性能。
在一种可能的实现方式中,第t次重传中的Xm的交织图样,与第t+1次重传中的Xm的交织图样不同。这样,可以通过相同或不同的交织器便捷的实现交织图样的相同或不同。
在一种可能的实现方式中,还包括:若第t次重传失败,在第t+1次重传中,对m组第一信息比特序列中的s组第一信息比特序列进行交织处理,得到m组第二比特序列;其中,s小于m;m组第二比特序列中包括s组交织后的比特序列;对m组第二比特序列进行第一编码,得到m组第三编码码字;对m组第三编码码字进行第二编码,得到第三目标编码码字;向接收端发送第三目标编码码字。这样,在重传过程中对部分信息比特序列进行交织处理,并将交织后的序列进行后续编码和译码操作。这种交织处理可以改善传输中的码重分布,带来更好的传输性能,进而获得较好的编码增益。
在一种可能的实现方式中,在第t次重传和第t+1次重传中,对相同位置的第一信息比特序列进行交织时,第t次重传中对相同位置的第一信息比特序列进行交织处理的交织图样,与第t+1次重传中对相同位置的第一信息比特序列进行交织处理的交织图样不同。这样,通过对相同位置的采用不同的交织图样,可以保证更为有效的交织处理,进而更好的改善传输中的码重分布。
在一种可能的实现方式中,在第t次重传和第t+1次重传中,对不同位置的第一信息比特序列进行交织时,第t次重传中对不同位置的第一信息比特序列进行交织处理的交织图样,与第t+1次重传中对不同位置的第一信息比特序列进行交织处理的交织图样相同或不同。这样,通过对不同位置的采用相同或不同的交织图样,可以保证更为有效的交织处理,进而更好的改善传输中的码重分布。
第二方面,本申请实施例提供一种基于HARQ的通信方法,包括:接收端接收来自发送端的第一次传输中的第一待译码信息;根据第一待译码信息,确定第一软信息;若第一次传输失败,接收端接收来自发送端的第t次重传中的第二待译码信息;根据第二待译码信息,确定第二软信息;接收端根据交织图样,利用抵消操作以及和操作对第一软信息和第二软信息进行译码处理;其中,第一待译码信息与发送端的第一目标编码码字相关;第二待译码信息与发送端的第二目标编码码字相关;第一目标编码码字是对m组第一信息比特序列进行编码处理得到的;第二目标编码码字是对m组第一比特序列进行编码处理得到的;m组第一比特序列是对m组第一信息比特序列中的n组第一信息比特进行交织处理得到的;n小于m。这样,在基于HARQ的实现方式中,在重传过程对部分信息比特序列进行交织处理,并将交织后的序列进行后续编码和译码操作,这种交织处理可以改善传输中的码重分布,可以获得较好的编码增益。
在一种可能的实现方式中,n组第一信息比特序列包括:m组第一信息比特序列中,可靠度排序位于后面的层对应的n组信息比特序列;其中,可靠度排序为可靠度从高到低的排序方式。
在一种可能的实现方式中,在第t次重传和第t+1次重传中,对相同位置的第一信息比特序列进行交织时,第t次重传中对相同位置的第一信息比特序列进行交织处理的交织图样,与第t+1次重传中对相同位置的第一信息比特序列进行交织处理的交织图样不同。
在一种可能的实现方式中,在第t次重传和第t+1次重传中,对不同位置的第一信息 比特序列进行交织时,第t次重传中对不同位置的第一信息比特序列进行交织处理的交织图样,与第t+1次重传中对不同位置的第一信息比特序列进行交织处理的交织图样相同或不同。
第三方面,本申请实施例提供一种基于HARQ的通信装置,用于执行上述各个方面或各个方面任意可能的实现方式中的方法。具体地,该装置包括用于执行上述各个方面或各个方面任意可能的实现方式中的方法的单元。
在一种可能的实现方式中,该装置可以包括执行上述各个方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。
在一种可能的实现方式中,该装置为通信芯片,通信芯片可以包括用于发送信息或数据的输入电路或者接口,以及用于接收信息或数据的输出电路或者接口。
在一种可能的实现方式中,该装置为通信设备,通信设备可以包括用于发送信息或数据的发射机,以及用于接收信息或数据的接收机。
在一种可能的实现方式中,该装置用于执行上述各个方面或各个方面任意可能的实现方式中的方法,该装置可以配置在上述发送端或接收端中,或者该装置本身即为上述发送端或接收端。
第四方面,本申请实施例提供一种基于HARQ的通信装置,包括,处理器,存储器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该装置执行上述任一方面中任一种可能实现方式中的方法。
可选地,处理器为一个或多个,存储器为一个或多个。
可选地,存储器可以与处理器集成在一起,或者存储器与处理器分离设置。
可选地,该通信设备还包括,发射机(发射器)和接收机(接收器),发射机和接收机可以分离设置,也可以集成在一起,称为收发机(收发器)。
第五方面,本申请实施例提供一种通信系统,包括用于实现上述第一方面或第一方面的任一种可能实现的方法的装置,以及用于实现上述第二方面或第二方面的任一种可能实现的方法的装置。
在一种可能的实现方式中,该通信系统还可以包括本申请实施例所提供的方案中与发送端和/或接收端进行交互的其他设备。
第六方面,本申请实施例提供一种计算机程序产品,计算机程序产品包括:计算机程序(也可以称为代码,或指令),当计算机程序被运行时,使得计算机执行上述任一方面中任一种可能实现方式中的方法。
第七方面,本申请实施例提供一种计算机可读介质,计算机可读介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述任一方面中任一种可能实现方式中的方法。
第八方面,本申请实施例提供一种通信装置,包括:通信接口和逻辑电路,逻辑电路用于对m组第一信息比特序列中的n组第一信息比特序列进行交织处理,通信接口用于发送第一目标编码码字和第二目标编码码字,使得通信装置执行上述第一方面中任一种可能实现方式中的方法。
第九方面,本申请实施例提供一种通信装置,包括:通信接口和逻辑电路,通信接口 用于接收第一待译码信息和第二待译码信息,逻辑电路用于根据交织图样,利用抵消操作以及和操作对第一待译码信息和第二待译码信息进行译码处理,使得通信装置执行上述第二方面中任一种可能实现方式中的方法。
附图说明
图1为本申请提供的一种通信系统的架构示意图;
图2为本申请实施例提供的一种信息传输的流程示意图;
图3为本申请实施例提供的一种基于HARQ的通信方法的流程示意图;
图4为本申请实施例提供的一种编码示意图;
图5为本申请实施例提供的一种长度为8的极化码编码示意图;
图6为本申请实施例提供的一种发送端交织处理的示意图;
图7为本申请实施例提供的一种m=2的发送端编码的示意图;
图8为本申请实施例提供的一种m=2的接收端译码的示意图一;
图9为本申请实施例提供的一种m=2的接收端译码的示意图二;
图10为本申请实施例提供的一种m=2的仿真效果示意图;
图11为本申请实施例提供的一种m=4的发送端编码的示意图;
图12为本申请实施例提供的一种m=4的接收端译码的示意图一;
图13为本申请实施例提供的一种m=4的接收端译码的示意图二;
图14为本申请实施例提供的一种m=4的接收端译码的示意图三;
图15为本申请实施例提供的一种m=4的接收端译码的示意图四;
图16为本申请实施例提供的一种基于HARQ的通信装置160;
图17为本申请实施例提供的另一种基于HARQ的通信装置170。
具体实施方式
为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。例如,第一值和第二值仅仅是为了区分不同的值,并不对其先后顺序进行限定。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
需要说明的是,本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请实施例中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以 是单个,也可以是多个。
本申请实施例可以应用于无线通信系统,需要说明的是,本申请实施例提及的无线通信系统包括但不限于:全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、高级的长期演进LTE-A(LTE advanced)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)等、第五代移动通信技术(5th generation mobile networks,简称5G)通信系统、新空口(new radio,NR)通信系统以及未来的第六代移动通信技术(6th generation mobile networks,简称6G)通信系统、蓝牙系统、WiFI系统、卫星通信系统、设备对设备(device-to-device,D2D)通信系统、机器通信系统、车联网、物联网甚至更高级的通信系统等。
本申请实施例涉及的通信装置主要包括网络设备或者终端设备。本申请实施例中的发送端可以为网络设备,则接收端为终端设备。本申请实施例中的发送端为终端设备,则接收端为网络设备。
在本申请实施例中,终端设备(terminal device)包括但不限于移动台(mobile station,MS)、移动终端(mobile terminal)、移动电话(mobile telephone)、手机(handset)及便携设备(portable equipment)等,该终端设备可以经无线接入网(radio access network,RAN)与一个或多个核心网进行通信,例如,终端设备可以是移动电话(或称为“蜂窝”电话)、具有无线通信功能的计算机等,终端设备还可以是带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、无人机、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。在不同的网络中终端可以叫做不同的名称,例如:用户设备,移动台,用户单元,站台,蜂窝电话,个人数字助理,无线调制解调器,无线通信设备,手持设备,膝上型电脑,无绳电话,无线本地环路台等。为描述方便,本申请中简称为终端设备。
在本申请实施例中,网络设备可以是用于与终端设备进行通信的设备,例如,可以是GSM系统或CDMA中的基站(base transceiver station,BTS),也可以是WCDMA系统中的基站(nodeB,NB),还可以是LTE系统中的演进型基站(evolutional nodeB,eNB或eNodeB),在新空口(new radio,NR)网络中收发点(transmission reception point,TRP)或者下一代节点B(generation nodeB,gNB),或者该网络设备可以为卫星、中继站、无人机、接入点、车载设备、可穿戴设备以及5G网络中的网络侧设备、基站或未来演进的公共陆地移动网络(public land mobile network,PLMN)中的网络设备等,或者在其他多种技术融合的网络中的网络设备。需要说明的是,当本申请实施例的方案应用于未来可能出现的其他系统时,基站、终端的名称可能发生变化,但这并不影响本申请实施例方案的实施。
本申请实施例涉及通信场景下,用于提高信息传输可靠性,保证通信质量的信道编解 码技术,可以应用于对信息进行编码和译码的场景,例如可以应用于对增强型移动宽带(enhanced mobile broad band,eMBB)上行控制信息和下行控制信息进行编码和译码的场景,也可应用于其他场景,例如应用于通信标准TS 36.212的5.1.3的信道编码(channel coding)、上行控制信息、下行控制信息以及Sidelink信道的信道编码部分,本申请实施例不做限定。
本申请实施例不仅适应于无线通信,还适用于有线通信、数据存储等一系列需要编解码的应用场景,对于本申请实施例所适用的场景,本实施例此处不再赘述。
示例性的,图1为本申请提供的一种通信系统的架构示意图。如图1所示,本申请实施例中的通信系统可以包括发送端和接收端。
可选的,当发送端为终端设备时,则接收端为网络设备。当发送端为网络设备时,则接收端为终端设备。
发送端也可以称为编码端。发送端中包括编码器,发送端可以通过编码器进行编码,并将编码后的序列通过信道传输至接收端。
接收端也可以称为译码端。接收端中包括译码器,接收端可以通过译码器对接收到的序列进行译码。
如图1所示,当发送端为终端设备,接收端为网络设备时,从发送端向接收端发送信息所用的信道可以称为上行信道,从接收端向发送端发送信息所用的信道可以称为下行信道。其中,发送端在发送信息之前可以对信息进行编码,将编码后的信息发送给接收端,如果接收端译码失败,可以基于HARQ实现重传。
需要说明的是,图1只是以示例的形式示意一种通信系统的架构图,并非对通信系统的架构图的限定。
示例性的,图2为本申请实施例提供的一种信息传输的流程示意图。
如图2所示,在发送端,信源依次经过信源编码、信道编码和调制在信道上发出。在接收端,依次通过解调、信道译码和信源译码输出信宿。
其中,在发送端,信源编码可以是为了减少或消除信源冗余度而进行的信源变换或处理,将模拟信号转化为数字信号的过程;信道编码可以是为了对抗信道中的噪声和衰减,通过增加冗余等方式提高信源抗干扰能力以及纠错能力的过程;调制可以是对信源进行处理加到载波上,使其变为适合于信道传输的形式的过程,调制可以通过改变高频载波,或通过改变消息的载体信号的幅度、相位或者频率,使其随着信号幅度的变化而变化的过程。
在接收端,解调与调制相对应,可以将信号从载波中提取出用于信宿处理和理解的过程;信道译码与信道编码相对应,可以是对信号进行还原的过程;信源译码与信源编码相对应,可以是将数字信号转换为模拟信号的过程。
示例性的,在信息传输的过程中,发送端对信源(或也可以称为信息比特序列、待编码比特序列或者待发送信息)进行信源编码以及信道编码,得到编码后比特序列(或也可以称为编码码字)。编码后比特经调制后在信道上传输至接收端。接收端对接收到的编码后比特序列进行解调得到待译码比特序列。接收端对待译码比特序列进行信道译码、信源译码得到信宿(或也可以称为译码后的信息比特序列、译码后比特序列或者译码后的信息)。
目前,极化(polar)码或者雷德穆勒码(reed-muller,RM)码是移动通信系统常见的编码方式。
polar码,是已知的能够被证明达到信道容量的信道编码方案,具有高性能,较低复杂度,匹配方式灵活等特点,目前已经被3GPP确定成为5G控制信道eMBB场景(上行/下行)控制信道编码方案。
其中,Polar码的编码过程为x=u·F n。其中,u是长度为n的二进制向量,F n为克罗内克(Kronecker)变换矩阵,同时也是极化码的生成矩阵G。其中,
Figure PCTCN2021133967-appb-000001
为n个矩阵
Figure PCTCN2021133967-appb-000002
的克罗内克乘积。通过该方法生成的编码,产生极化现象,Polar码可以基于串行抵消(successive cancellation,SC)译码算法或串行抵消列表(SC list,SCL)译码算法等进行译码。
RM码,也是一种常见的信道编码技术。RM码快速的译码算法可以适用于光纤通信系统。
其中,给定参数r和m,其中r≤m,则可以存在r阶的RM码,可以表示为:(r,m),其码字长度(或称为码长)为N=2 m,最小码距为d=2 m-r,信息比特的位数为:
Figure PCTCN2021133967-appb-000003
因此,RM码也可以表示为:(N,K,d)。
RM码可以采用和polar码相同的N×N的
Figure PCTCN2021133967-appb-000004
矩阵构造,但是选择信息比特的标准不同,构造RM码时,可以计算每个比特对应的G矩阵的行的重量,然后将重量大的比特作为信息比特,重量小的比特作为冻结比特,通常设置为0。
在如图2的信息传输过程中,如果接收端译码失败,可以基于HARQ实现重传。
HARQ可以为向前纠错编码(forward error correction,FEC)和自动重传请求(auto repeat request,ARQ)相结合而形成的技术。基于HARQ的通信方法可以为,在接收端译码失败的情况下,接收端可以通过反馈链路传输不确定(NACK)消息到发送端,并要求发送端重新传输相同数据,接收端将接收到的数据合并译码,在接收端正确译码的情况下,接收端发送确认(ACK)消息到发送端,完成对数据的传输。
基于HARQ的一种可能的实现方式可以为,软合并(chase combining,CC-HARQ)方案。在CC-HARQ方案中,可以将接收端接收的错误或者无法正确译码的数据包保存在接收端,并与重传接收到的数据合并再译码。其中,CC-HARQ中重传的数据可以与原始传输的数据相同。
基于HARQ的另一种可能的实现方式可以为,增量冗余(incremental redundancy,IR-HARQ)。具体的,如果第一次传输时无法正确译码,可以在重传过程中发送更多的冗余比特,以达到降低信道编码码率,进而提高译码成功率的目的。其中,IR-HARQ中重传的数据可以与原始传输的数据不同。
然而,目前来说,大多数的HARQ方案通常是针对于加性高斯白噪声(additive white gaussian noise,AWGN)信道设计的,利用不同传输比特组成耦合大码的设计,HARQ方案在AWGN信道中能够获得较好的编码增益。但是对于衰落信道,由于衰落信道中信道的变化可以导致信号的幅度发生较大变化,因此如果其中某次传输的信号受到了较大的衰落,那么上述HARQ这种耦合大码的设计方案可能无法充分发掘信道编码的增益。
基于此,本申请实施例提供一种基于HARQ的通信方法,可以在第一次传输中获取的多个信息比特;对该信息比特分成m分组,得到第一信息比特序列K 1,……,Km,其中m为正整数;对m组第一信息比特序列进行第一编码,得到第一编码码字,对m组第 一编码码字进行第二编码得到第一目标编码码字,向接收端发送该第一目标编码码字;如果第一次传输失败,则可以在重传过程中,对该m组第一信息比特序列中的n组第一信息比特序列进行交织处理,得到m组第一比特序列X 1,……,Xm,其中n小于m,t大于或等于1,m组第一比特序列中包括n组交织后的比特序列;对m组第一比特序列进行第一编码得到m组第二编码码字,对第二编码码字进行第二编码,得到第二目标编码码字,并向接收端发送第二目标编码码字,这样,在重传过程对部分信息比特序列进行交织处理,并将交织后的序列进行后续编码和译码操作,这种交织处理可以改善传输中的码重分布,能够带来更好的传输性能,进而获得较好的编码增益。
可以理解的是,本申请实施例提供一种基于HARQ的通信方法,可以应用于图2中的虚线框所示的信道编码和信道译码模块中。
下面对本申请实施例中所描述的词汇进行说明。可以理解,该说明是为更加清楚的解释本申请实施例,并不必然构成对本申请实施例的限定。
本申请实施例描述的信息比特,可以为用于携带信息的比特。信息比特可以从待传输比特中获取。其中,该待传输比特中可以包含多个信息比特和多个冗余比特(或也可以称为校验比特)。
本申请实施例描述的第一信息比特序列,可以为对信息比特进行分组,得到的比特序列。
本申请实施例描述的第一编码码字,可以为对第一信息比特序列进行第一编码,得到的编码码字。
本申请实施例描述的第一(第二或第三)目标编码码字,可以为对第一(第二或第三)编码码字进行第二编码,得到的编码码字。
本申请实施例描述的第一比特序列或第二比特序列,可以为对第一信息比特序列中的部分信息比特序列进行交织处理,得到的比特序列。
本申请实施例描述的第二(或第三)编码码字,可以为对第一(或第二)比特序列进行第一编码,得到的编码码字。
本申请实施例描述的软信息,可以理解为对数似然比(loglikelihood ratio,LLR)。
下面以具体地实施例对本申请的技术方案以及本申请的技术方案如何解决上述技术问题进行详细说明。下面这几个具体的实施例可以独立实现,也可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。
图3为本申请实施例提供的一种基于HARQ的通信方法的流程示意图,如图3所示,该方法可以包括:
S301、发送端在第一次传输中,获取多个信息比特。
本申请实施例中,第一次传输可以表示,发送端第一次对信息比特进行编码,并将编码后的比特序列经过信道传输至接收端的过程。示例性的,发送端可以基于接收端的请求,向接收端第一次传输信息,或者发送端可以主动向接收端第一次传输信息。示例性的,可以根据等效待传输码的码长、码率、polar码/RM码结构和/或待分配的子码组数m,获取分配到各个子码上的多个信息比特。
可以理解的是,获取多个信息比特的方式可以根据实际场景包括其他内容,本申请实施例中对此不做限定。
S302、发送端将多个信息比特分成m组第一信息比特序列K 1,……,Km。
示例性的,发送端将多个信息比特分成m组第一信息比特序列的一种可能的实现方式可以为:根据等效待传输码的码长、码率、m和/或polar码结构,将多个信息比特分成m组第一信息比特序列K 1,……,Km。其中,m为正整数。
示例性的,发送端将多个信息比特分成m组第一信息比特序列的另一种可能的实现方式可以为,可以按照信息比特的长度进行分组。例如,可以按照信息比特的长度将多个信息比特分成m组第一信息比特序列K 1,……,Km。示例性的,K1的信息比特的长度小于或等于Km的信息比特的长度。
可以理解的是,信息比特的分组方式可以根据实际场景包括其他内容,本申请实施例中对此不做限定。
S303、发送端对m组第一信息比特序列进行第一编码,得到m组第一编码码字。
本申请实施例中,该第一编码可以为外码编码。示例性的,图4为本申请实施例提供的一种编码示意图。如图4所示,将m组第一信息比特序列K 1,K 2,……,Km分别进行第一编码,对第一组长度为K 1的信息比特序列U 1输入到第一编码的编码器,编码后可以得到U 1G 1;对第二组长度为K 2的信息比特序列U 2输入到第一编码的编码器,编码后可以得到U 2G 2,进而得到m组长度为N/m的第一编码码字。其中,G 1,G 2,……,Gm可以表示m组第一信息比特序列各自对应的生成矩阵。可以理解的是,对第一信息比特序列进行第一编码的方法可以根据实际场景包括其他内容,本申请实施例中对此不做限定。
S304、发送端对m组第一编码码字进行第二编码,得到第一目标编码码字。
本申请实施例中,该第二编码可以为内码编码。示例性的,如图4所示,对第一编码码字进行第二编码,可以理解为对第一编码码字进行极化码编码,得到第一目标编码码字。
示例性的,图5为本申请实施例提供的一种长度为8的极化码编码示意图。编码比特可以根据各自的可靠度排序分为固定比特(frozen)和信息比特(data)。如图5所示,U 7,U 6,U 5和U 3为可靠度靠前的四位比特,设置为信息比特,U 4,U 2,U 1和U 0为可靠度靠后的四位比特,设置为固定比特。其中,圆加符号表示异或运算。可以理解的是,对第一编码码字进行第二编码的方法可以根据实际场景包括其他内容,本申请实施例中对此不做限定。
S305、发送端向接收端发送第一目标编码码字。
适应的,接收端可以接收第一待译码信息,根据第一待译码信息确定第一目标编码码字的第一软信息,其中,第一待译码信息与发送端的第一目标编码码字相关。
S306、若第一次传输失败,发送端在第t次重传中,对m组第一信息比特序列中的n组第一信息比特序列进行交织处理,得到m组第一比特序列X 1,……,Xm。
本申请实施例中,n小于m;t大于或等于1;m组第一比特序列中包括n组交织后的比特序列。其中,该m组第一比特序列中可以包含:经过交织处理的n组第一信息比特序列以及m-n组未经过交织处理的比特序列。
示例性的,对该n组第一信息比特序列进行交织处理的交织方式可以采用现有的交织方式,例如随机交织,或者采用优化后的交织图样。可以理解的是,具体采用的交织方式可以根据实际场景包括其他内容,本申请实施例中对此不做限定。
示例性的,第一次传输失败,可以理解为发送端将数据传输到接收端,接收端译码失 败;或者,发送端未将数据传输到接收端,等。
该第t次重传,可以指第一次传输失败后的任一次重传。例如,当t=1时,可以在第1次重新传输(也可以理解为第二次传输)的过程中,对n组第一信息比特序列进行交织处理;当t=5时,可以在第5次重新传输的过程中,对n组第一信息比特序列进行交织处理,可以理解的是,在第t次重传中均可以执行S306-S309所示的步骤。
S307、发送端对m组第一比特序列进行第一编码,得到m组第二编码码字。
本申请实施例中,对m组第一比特序列进行第一编码的编码方式与对m组第一信息比特序列进行第一编码的编码方式相同,在此不再赘述。
S308、发送端对m组第二编码码字进行第二编码,得到第二目标编码码字。
本申请实施例中,对m组第二编码码字进行第二编码的编码方式与对m组第一编码码字进行第二编码的编码方式相同,在此不再赘述。
S309、发送端向接收端发送第二目标编码码字。
适应的,接收端可以接收第二待译码信息,根据第二待译码信息确定第二目标编码码字的第二软信息,其中,第二待译码信息与发送端的第二目标编码码字相关。
S310、接收端根据交织图样,利用抵消操作以及和操作对第一软信息和第二软信息进行译码处理。
本申请实施例中,第一待译码信息与发送端的第一目标编码码字相关;第二待译码信息与发送端的第二目标编码码字相关;第一目标编码码字是对m组第一信息比特序列进行编码处理得到的;第二目标编码码字是对m组第一比特序列进行编码处理得到的;m组第一比特序列是对m组第一信息比特序列中的n组第一信息比特进行交织处理得到的;n小于m。
在S310的基础上,一种可能的实现方式中,n组第一信息比特序列包括:m组第一信息比特序列中,可靠度排序位于后面的层对应的n组信息比特序列;其中,可靠度排序为可靠度从高到低的排序方式。
一种可能的实现方式中,在第t次重传和第t+1次重传中,对相同位置的第一信息比特序列进行交织时,第t次重传中对相同位置的第一信息比特序列进行交织处理的交织图样,与第t+1次重传中对相同位置的第一信息比特序列进行交织处理的交织图样不同。其中,相同位置的信息比特序列可以理解为,不同次传输中的相同的信息比特序列。
一种可能的实现方式中,在第t次重传和第t+1次重传中,对不同位置的第一信息比特序列进行交织时,第t次重传中对不同位置的第一信息比特序列进行交织处理的交织图样,与第t+1次重传中对不同位置的第一信息比特序列进行交织处理的交织图样相同或不同。其中,不同位置的信息比特序列可以理解为,不同次传输中的不同的信息比特序列。
示例性的,接收端在进行译码处理时,可以对该第一软信息和第二软信息进行合并译码。可以理解的是,若发送端在多次传输中向接收端发送多个编码码字时,接收端可以对该多个编码码字对应的多个软信息进行合并译码。
示例性的,该抵消操作以及和操作可以是对该软信息进行译码处理的译码方法。可以理解的是,对软信息译码处理的方法可以根据实际场景包括其他内容,本申请实施例中对此不做限定。
综上,本申请实施例中,可以在重传过程中对部分信息比特序列进行交织处理,并将 交织后的序列进行后续编码和译码操作。这种交织处理可以改善传输中的码重分布,带来更好的传输性能,进而获得较好的编码增益。
在图3对应的实施例的基础上,n组第一信息比特序列包括:m组第一信息比特序列中,可靠度排序位于后面的层对应的n组信息比特序列;其中,可靠度排序为可靠度从高到低的排序方式。
示例性的,当可靠度排序为可靠度从高到低的排序方式时,可以选取可靠度排序位于后面的层对应的n组信息比特序列;当可靠度排序为可靠度从低到高的排序方式时,可以选取可靠度排序位于前面的层对应的n组信息比特序列。示例性的,在进行交织处理时,可以选取m组第一信息比特序列中可靠度较低层对应的n组第一信息比特序列进行交织处理。
本申请实施例中,上述交织处理可以在传输时保证所传信息的准确性,进而带来更好的传输性能。
在图3对应的实施例的基础上,第t次重传中的Xm的交织图样,与第t+1次重传中的Xm的交织图样不同。
本申请实施例中,交织图样可以理解为交织模式,可以通过相同或不同的交织器实现交织图样的相同或不同。
在图3对应的实施例的基础上,还包括:
S401、若第t次重传失败,在第t+1次重传中,对m组第一信息比特序列中的s组第一信息比特序列进行交织处理,得到m组第二比特序列。
本申请实施例中,s小于m;m组第二比特序列中包括s组交织后的比特序列。其中,s可以与上述n相同,也可以与上述n不同。例如,若第一信息比特序列为K 1,K 2,K 3,其中U 1=K 1比特,U 2=K 2比特,且U 3=K 3比特,当第一次传输失败,在第t次重传中对U 1进行交织处理,则当第t次传输失败,在第t+1次重传中可以对U 1进行交织处理,也可以对U 2或者U 3进行交织处理。
S402、对m组第二比特序列进行第一编码,得到m组第三编码码字。
S403、对m组第三编码码字进行第二编码,得到第三目标编码码字。
S404、向接收端发送第三目标编码码字。
可以理解的是,上述若第t次重传失败,第t+1次重传的重传过程与S306-S309所示的步骤中若第一次传输失败,第t次重传的重传过程类似,在此不再赘述。
本申请实施例中,在重传过程中对部分信息比特序列进行交织处理,并将交织后的序列进行后续编码和译码操作。这种交织处理可以改善传输中的码重分布,带来更好的传输性能,进而获得较好的编码增益。
在图3对应的实施例的基础上,在第t次重传和第t+1次重传中,对相同位置的第一信息比特序列进行交织时,第t次重传中对相同位置的第一信息比特序列进行交织处理的交织图样,与第t+1次重传中对相同位置的第一信息比特序列进行交织处理的交织图样不同。
示例性的,图6为本申请实施例提供的一种发送端交织处理的示意图。如图6所示,对信息比特序列(U 1,U 2,……,Um)进行第1次传输,若第1次传输失败,则可以进行第1次重传;若第1次重传失败,则可以进行第2次重传。
其中,交织器I 11可以用于对第1次重传中的U 1进行交织处理,交织器I 12可以用于对第1重传中的U 2进行交织处理;交织器I 21可以用于对第2次重传中的U 1进行交织处理,交织器I 22可以用于对第2重传中的U 2进行交织处理。
本申请实施例中,相同位置的信息比特序列可以理解为,不同次传输中的相同的信息比特序列,例如,如图6所示,第1次传输的U 1、第1次重传的I 11(U 1)和第2次重传的I 21(U 1),上述U 1、I 11(U 1)和I 21(U 1)可以理解为相同位置的信息比特序列。
第t次重传中对相同位置的第一信息比特序列进行交织处理的交织图样,与第t+1次重传中对相同位置的第一信息比特序列进行交织处理的交织图样不同,可以理解为,第1次重传中对U 1进行交织处理的交织器I 11,与第2次重传中对U 1进行交织处理的交织器I 21,所采用的交织图样不同,也可以理解为交织器I 11与交织器I 21不同。
本申请实施例中,可以通过相同的交织器实现相同的交织图样,或者不同的交织器实现不同的交织图样,这种交织处理可以改善传输中的码重分布,带来更好的传输性能,进而获得较好的编码增益。
在图3对应的实施例的基础上,在第t次重传和第t+1次重传中,对不同位置的第一信息比特序列进行交织时,第t次重传中对不同位置的第一信息比特序列进行交织处理的交织图样,与第t+1次重传中对不同位置的第一信息比特序列进行交织处理的交织图样相同或不同。
本申请实施例中,不同位置的信息比特序列可以理解为,不同次传输中的不同的信息比特序列,例如,如图6所示,第1次传输的U 1、第1次重传的I 12(U 2)和第2次重传的U m(m不等于1或2),上述U 1、I 12(U 2)和U m可以理解为不同位置的信息比特序列。
第t次重传中对不同位置的第一信息比特序列进行交织处理的交织图样,与第t+1次重传中对不同位置的第一信息比特序列进行交织处理的交织图样相同或不同,可以理解为第1次重传中对U 1进行交织处理的交织器I 11与第2次重传中对U 2进行交织处理的交织器I 22,所采用的交织图样相同或不同,也可以理解为交织器I 11与交织器I 22相同或不同。
本申请实施例中,可以通过相同或不同的交织器实现交织图样的相同或不同,这种交织处理可以改善传输中的码重分布,带来更好的传输性能,进而获得较好的编码增益。
基于上述实施例中所描述的内容,为了更好的理解本申请各实施例,下面以待传输比特为(64,42)且分组为m=2为例,详细描述本申请实施例在发送端编码和接收端译码的过程。
示例性的,可以将42位信息比特分成2组第一信息比特序列,其中K 1=16比特,且K 2=26比特。
示例性的,图7为本申请实施例提供的一种m=2的发送端编码的示意图。如图7所示,第一个编码器输入长度为16的信息比特序列U 1,编码可以得到C 1=U 1G 1,第二个编码器输入长度为26的信息比特序列U 2,编码可以得到C 2=U 2G 2;将C 1和C 2输入32个码率为1的2*2极化码编码器,该极化码编码器每次输入为2个比特,输出为2个比特。编码结束,经过信道进行第一次传输,接收端收到Y 1和Y 2
若第一次传输失败,发送端进行第一次重传,可以对第一信息比特序列预先进行交织操作,例如交织器I 1可以用于对第1次重传的U 1进行交织处理,得到I(U 1)。后续操作 与第一次传输的过程相同,交织的序列经过第一个编码器,编码可以得到I(U 1)G 1,U 2经过第二个编码器,编码可以得到U 2G 2;接着将I(U 1)G 1和U 2G 2输入到32个码率为1的2*2极化码编码器。编码结束,经过信道进行第1次重传,接收端收到Y 11和Y 2’。
示例性的,图8为本申请实施例提供的一种m=2的接收端译码的示意图一。如图8所示,在接收端可以分别计算得出相应的LLR。第一次传输信道可以得到:LLR(U 1G 1+U 2G 2)(对应于Y 1)和LLR(U 2G 2)(对应于Y 2);第1次重传信道可以得到:LLR(I(U 1)G 1+U 2G 2)(对应于Y 11)和LLR(U 2G 2)(对应于Y 2’)。
示例性的,若信息比特序列U 1和U 2按照可靠度从高到低的排序方式,可以对U 1和U 2中的可靠度较低的层对应的U 1进行交织处理,得到交织后的序列I(U 1)和U 2
如图8所示,由于接收端进行译码处理过程中,可以接收第一次传输信道的LLR(U 1G 1+U 2G 2)和LLR(U 2G 2),以及第一次重传信道的LLR(I(U 1)G 1+U 2G 2)和LLR(U 2G 2),其中,只包含对第1次重传的U 1进行交织处理,因此不涉及多次重传中对于相同或不同位置的比特序列进行交织处理所采用的交织图样的限定。
一种可能的实现方式中,若第1次重传失败,可以进行第2次重传,并在第2次重传中对U 1进行交织处理,由于第1次重传和第2次重传都对同一个比特序列U 1进行交织处理,则可以保证在第2次重传中对U 1进行交织处理的交织图样与第1次重传中对U 1进行交织处理的交织图样不同。
一种可能的实现方式中,若第1次重传失败,可以进行第2次重传,并在第2次重传中对U 2进行交织处理,由于第1次重传和第2次重传对不同的比特序列进行交织处理,则在第2次重传中对U 2进行交织处理的交织图样与第1次重传中对U 1进行交织处理的交织图样相同或不同。
可以理解的是,下文对于信息比特序列中的可靠度,相同或不同位置进行交织处理采用的交织图样的限定,可以与上述示例类似,下文将不再赘述。
与交织图样的对应关系,第一次交织图样是所以进行这种合并而不是。下面类似不再赘述。
针对于U1的译码,可以将两次传输时Y 2和Y 2’对应的LLR进行软信息合并操作(或称为SUM操作),得到LLR(U 2G 2);将上述LLR(U 2G 2)分别和LLR(U 1G 1+U 2G 2)以及LLR(I(U 1)G 1+U 2G 2)进行抵消操作,可以分别得到LLR(U 1G 1)和LLR(I(U 1)G 1);将上述两个软信息输入联合译码器进行译码,可以解出U 1
示例性的,图9为本申请实施例提供的一种m=2的接收端译码的示意图二。如图9所示,针对于U 2的译码,可以将U 1分别在LLR(U 1G 1+U 2G 2)和LLR(I(U 1)G 1+U 2G 2)进行干扰抵消操作,分别均可以得到LLR(U 2G 2),此时可以得到4份LLR(U 2G 2),将上述四个软信息进行SUM操作,并进行相应的polar码(或者RM码)译码,可以解出U 2
示例性的,图10为本申请实施例提供的一种m=2的仿真效果示意图。如图10所示,通过SCL进行译码,L=1表示在SCL译码方法中,译码路径数目为1,L=8表示译码路径数目为8;ML表示不同方案对应的基线,也可以理解为最优的译码方法;交织可以表示本申请实施例提供的HARQ通信方法的简称。
通过仿真结果可以看出,本申请实施例提供的HARQ的通信方案相比于CC-HARQ 能带来0.75dB的增益。
可以理解的是,上述编码和译码示意图只作为一种示例,并不能作为本申请实施例的限定。
本申请实施例中,上述在重传过程中对部分信息比特序列进行交织处理,并将交织的序列进行续编码和译码操作。这种交织处理可以改善传输中的码重分布,带来更好的传输性能,进而获得较好的编码增益。
下面以待传输比特为(128,99)且分组为m=4为例,详细描述本申请实施例在发送端编码和接收端译码的过程。
示例性的,可以将99位信息比特分成4组第一信息比特序列,其中K 1=16比特,K 2=26比特,K 3=26比特,以及K 4=31比特。
示例性的,图11为本申请实施例提供的一种m=4的发送端编码的示意图。如图11所示,第一个编码器输入长度为16的信息比特序列U 1,编码可以得到C 1=U 1G 1,第二个编码器输入长度为26的信息比特序列U 2,编码可以得到C 2=U 2G 2,第三个编码器输入长度为26的信息比特序列U 3,编码可以得到C 3=U 3G 3,第四个编码器输入长度为31的信息比特序列U 4,编码可以得到C 4=U 4G 4;将C 1、C 2、C 3和C 4输入32个码率为1的4*4极化码编码器,该极化码编码器每次输入为4个比特,输出为4个比特。编码结束,经过信道进行第一次传输,接收端收到Y 1、Y 2、Y 3和Y 4
若第一次传输失败,发送端进行第一次重传,可以对第一信息比特序列预先进行交织操作,例如交织器I 1可以用于对第1次重传的U 1进行交织处理,得到I(U 1)。后续操作与第一次传输的过程相同,交织后的序列经过第一个编码器,编码可以得到C 11=I(U 1)G 1,U 2经过第二个编码器,编码可以得到C 2=U 2G 2,U3经过第三个编码器,编码可以得到C 3=U 3G 3,U 4经过第四个编码器,编码可以得到C 4=U 4G 4;接着将C 1、C 2、C 3和C 4输入到4*4极化码编码器。编码结束,经过信道进行第1次重传,接收端收到Y 11,Y 2’,Y 3’和Y 4’。
示例性的,图12为本申请实施例提供的一种m=4的接收端译码的示意图一。如图12所示,在接收端可以分别计算得出相应的软信息。第一次传输信道可以得到:LLR(Y 1),LLR(Y 2),LLR(Y 3)和LLR(Y 4);第1次重传信道可以得到:LLR(Y 11),LLR(Y 2’),LLR(Y 3’)和LLR(Y 4’)。
针对于U 1的译码,可以将两次传输时Y 2和Y2’对应的LLR进行SUM操作,Y 3和Y 3’对应的LLR进行SUM操作,以及Y 4和Y 4’对应的LLR进行SUM操作;该SUM可以分别得到LLR(C 2+C 4),LLR(C 3+C 4)和LLR(C 4)。
将SUM结果中的LLR(C 3+C 4)分别与LLR(Y 1)和LLR(Y 11)进行抵消操作,可以分别得到LLR(C 1+C 2)和LLR(C 11+C 2);将SUM结果中的LLR(C 2+C 4)与LLR(C 4)进行抵消操作,可以得到LLR(C 2);将上述LLR(C 2)分别与LLR(C 1+C 2)和LLR(C 11+C 2)进行抵消操作,可以分别得到LLR(C 1)和LLR(C 11),将上述LLR(C 1)和LLR(C 11)输入到联合译码器中进行译码,可以解出U 1
示例性的,图13为本申请实施例提供的一种m=4的接收端译码的示意图二。如图13所示,针对于U2的译码,可以将U1分别在LLR(Y1)和LLR(Y11)进行干扰抵消操作,分别均可以得到LLR(C 2+C 3+C 4),将其进行SUM操作,得到LLR(C 2+C 3+C 4), 并将上述LLR(C 2+C 3+C 4)和LLR(Y 3)和LLR(Y 3’)SUM操作的结果LLR(C3+C4)进行抵消操作,得到LLR(C 2);将LLR(Y 2)和LLR(Y 2’)SUM操作的结果LLR(C 2+C 4)和LLR(Y 4)和LLR(Y 4’)SUM操作的结果LLR(C 4)进行抵消操作,得到LLR(C 2),此时将上述两个LLR(C 2)进行SUM操作,并进行相应的polar码(或者RM码)译码,可以解出U 2
示例性的,图14为本申请实施例提供的一种m=4的接收端译码的示意图三。如图14所示,针对于U 3的译码,可以将U 1和U 2分别在LLR(Y 1)和LLR(Y 11)进行干扰抵消操作,分别均可以得到LLR(C 3+C 4),将其进行SUM操作,得到LLR(C 3+C 4)。LLR(Y 2)和LLR(Y2’)进行SUM操作,得到LLR(C 2+C 4),将U2在该LLR(C 2+C 4)进行干扰抵消操作,得到LLR(C 4),将上述LLR(C 4)与LLR(Y 4)和LLR(Y 4’)SUM操作的结果LLR(C 4)进行SUM操作,得到LLR(C 4)。将上述LLR(C 3+C 4)与LLR(Y 3)和LLR(Y 3’)SUM操作的结果LLR(C 3+C 4)进行SUM操作,得到LLR(C 3+C 4),将上述LLR(C 3+C 4)和LLR(C 4)进行抵消操作,得到LLR(C 3),对其进行相应的polar码(或者RM码)译码,可以解出U 3
示例性的,图15为本申请实施例提供的一种m=4的接收端译码的示意图四。如图15所示,针对于U 4的译码,可以将U 1、U 2和U 3分别在LLR(Y 1)和LLR(Y 11)进行干扰抵消操作,分别均可以得到LLR(C 4),将其进行SUM操作,得到LLR(C 4);LLR(Y 2)和LLR(Y2’)SUM操作的结果LLR(C 2+C 4),将U 2在该LLR(C 2+C 4)进行干扰抵消操作,得到LLR(C 4);LLR(Y 3)和LLR(Y 3’)SUM操作的结果LLR(C 3+C 4),将U 3在该LLR(C 3+C 4)进行干扰抵消操作,得到LLR(C 4),LLR(Y 4)和LLR(Y 4’)进行SUM操作,得到LLR(C 4)将上述四个LLR(C 4)进行SUM操作,并进行相应的polar码(或者RM码)译码,可以解出U 4
可以理解的是,上述编码和译码示意图只作为一种示例,并不能作为本申请实施例的限定。
本申请实施例中,上述在重传过程中对部分信息比特序列进行交织处理,并将交织后的序列进行后续编码和译码操作。这种交织处理可以改善传输中的码重分布,带来更好的传输性能,进而获得较好的编码增益。
上面结合图3-图15,对本申请实施例的方法进行了说明,下面对本申请实施例提供的执行上述方法的基于HARQ的通信装置进行描述。本领域技术人员可以理解,方法和装置可以相互结合和引用,本申请实施例提供的一种基于HARQ的通信装置可以执行上述基于HARQ的通信方法中发送端所执行的步骤。另一种基于HARQ的通信装置可以执行上述基于HARQ的通信方法中接收端所执行的步骤。
如图16所示,图16示出了本申请实施例提供的一种基于HARQ的通信装置160(或称为装置160),该装置160可以是本申请实施例中的发送端或接收端,也可以为应用于发送端或接收端的芯片。该装置160包括:处理单元161和收发单元162。其中,收发单元162用于支持装置160执行信息发送或接收的步骤,处理单元161用于支持装置160执行信息处理的步骤。
一种基于混合自动重传请求HARQ的通信装置160,包括:处理单元161,用于在第一次传输中,获取多个信息比特;处理单元161,还用于将多个信息比特分成m组第一信 息比特序列K 1,……,Km;其中,m为正整数;处理单元161,还用于对m组第一信息比特序列进行第一编码,得到m组第一编码码字;处理单元161,还用于对m组第一编码码字进行第二编码,得到第一目标编码码字;收发单元162,用于向接收端发送第一目标编码码字;处理单元161,还用于若第一次传输失败,在第t次重传中,对m组第一信息比特序列中的n组第一信息比特序列进行交织处理,得到m组第一比特序列X 1,……,Xm;其中,n小于m;t大于或等于1;m组第一比特序列中包括n组交织后的比特序列;处理单元161,还用于对m组第一比特序列进行第一编码,得到m组第二编码码字;处理单元161,还用于对m组第二编码码字进行第二编码,得到第二目标编码码字;收发单元162,还用于向接收端发送第二目标编码码字。
一种可能的实现方式中,n组第一信息比特序列包括:m组第一信息比特序列中,可靠度排序位于后面的层对应的n组信息比特序列;其中,可靠度排序为可靠度从高到低的排序方式。
一种可能的实现方式中,第t次重传中的Xm的交织图样,与第t+1次重传中的Xm的交织图样不同。
一种可能的实现方式中,处理单元161,还用于:若第t次重传失败,在第t+1次重传中,对m组第一信息比特序列中的s组第一信息比特序列进行交织处理,得到m组第二比特序列;其中,s小于m;m组第二比特序列中包括s组交织后的比特序列;对m组第二比特序列进行第一编码,得到m组第三编码码字;对m组第三编码码字进行第二编码,得到第三目标编码码字;收发单元162,还用于向接收端发送第三目标编码码字。
一种可能的实现方式中,在第t次重传和第t+1次重传中,对相同位置的第一信息比特序列进行交织时,第t次重传中对相同位置的第一信息比特序列进行交织处理的交织图样,与第t+1次重传中对相同位置的第一信息比特序列进行交织处理的交织图样不同。
一种可能的实现方式中,在第t次重传和第t+1次重传中,对不同位置的第一信息比特序列进行交织时,第t次重传中对不同位置的第一信息比特序列进行交织处理的交织图样,与第t+1次重传中对不同位置的第一信息比特序列进行交织处理的交织图样相同或不同。
一种基于混合自动重传请求HARQ的通信装置160,包括:收发单元162,用于接收来自发送端的第一次传输中的第一待译码信息;处理单元161,用于根据第一待译码信息,确定第一软信息;若第一次传输失败,收发单元162,还用于接收来自发送端的第t次重传中的第二待译码信息;处理单元161,还用于根据第二待译码信息,确定第二软信息;处理单元161,还用于根据交织图样,利用抵消操作以及和操作对第一软信息和第二软信息进行译码处理;其中,第一待译码信息与发送端的第一目标编码码字相关;第二待译码信息与发送端的第二目标编码码字相关;第一目标编码码字是对m组第一信息比特序列进行编码处理得到的;第二目标编码码字是对m组第一比特序列进行编码处理得到的;m组第一比特序列是对m组第一信息比特序列中的n组第一信息比特进行交织处理得到的;n小于m。一种可能的实现方式中,n组第一信息比特序列包括:m组第一信息比特序列中,可靠度排序位于后面的层对应的n组信息比特序列;其中,可靠度排序为可靠度从高到低的排序方式。
一种可能的实现方式中,在第t次重传和第t+1次重传中,对相同位置的第一信息比 特序列进行交织时,第t次重传中对相同位置的第一信息比特序列进行交织处理的交织图样,与第t+1次重传中对相同位置的第一信息比特序列进行交织处理的交织图样不同。
一种可能的实现方式中,在第t次重传和第t+1次重传中,对不同位置的第一信息比特序列进行交织时,第t次重传中对不同位置的第一信息比特序列进行交织处理的交织图样,与第t+1次重传中对不同位置的第一信息比特序列进行交织处理的交织图样相同或不同。
本申请实施例提供了一种基于HARQ的通信装置,该装置160包括一个或者多个模块,用于实现上述图3-图15中所包含的步骤中的方法,该一个或者多个模块可以与上述图3-图15中所包含的步骤中的方法的步骤相对应。
应理解,这里的装置160以功能单元的形式体现。这里的术语“单元”可以指应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,装置160可以具体为上述实施例中的发送端或接收端,装置160可以用于执行上述方法实施例中与发送端或接收端对应的各个流程和/或步骤,为避免重复,在此不再赘述。
上述各个方案的装置160具有实现上述方法中发送端或接收端执行的相应步骤的功能;上述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。例如,上述收发单元162可以包括发送单元和接收单元,该发送单元可以用于实现上述收发单元对应的用于执行发送动作的各个步骤和/或流程,该接收单元可以用于实现上述收发单元对应的用于执行接收动作的各个步骤和/或流程。该发送单元可以由发射器替代,该接收单元可以由接收器替代,分别执行各个方法实施例中的收发操作以及相关的处理操作。
在本申请的实施例,图16中的装置160也可以是芯片或者芯片系统,例如:片上系统(system on chip,SoC)。对应的,收发单元162可以是该芯片的收发电路,在此不做限定。
图17示出了本申请实施例提供的另一种基于HARQ的通信装置170。该装置170包括处理器171、收发器172和存储器173。其中,处理器171、收发器172和存储器173通过内部连接通路互相通信,该存储器173用于存储指令,该处理器171用于执行该存储器173存储的指令,以控制该收发器172发送信号和/或接收信号。可选的,处理器171和存储器173还可以集成在一起。
在一种可能的实现方式中,装置170用于执行上述基于HARQ的通信方法中发送端对应的各个流程和步骤。
其中,处理器171,用于在第一次传输中,获取多个信息比特;将多个信息比特分成m组第一信息比特序列K1,……,Km;其中,m为正整数;对m组第一信息比特序列进行第一编码,得到m组第一编码码字;对m组第一编码码字进行第二编码,得到第一目标编码码字;
收发器172,用于向接收端发送第一目标编码码字;
处理器171,还用于若第一次传输失败,在第t次重传中,对m组第一信息比特序列 中的n组第一信息比特序列进行交织处理,得到m组第一比特序列X 1,……,Xm;其中,n小于m;t大于或等于1;m组第一比特序列中包括n组交织后的比特序列;对m组第一比特序列进行第一编码,得到m组第二编码码字;对m组第二编码码字进行第二编码,得到第二目标编码码字;
收发器172,还用于向接收端发送第二目标编码码字。
在另一种可能的实现方式中,装置170用于执行上述基于HARQ的通信方法接收端对应的各个流程和步骤。
其中,该收发器172,用于接收来自发送端的第一次传输中的第一待译码信息;
处理器171,用于根据第一待译码信息,确定第一软信息;
若第一次传输失败,收发器172,还用于接收来自发送端的第t次重传中的第二待译码信息;
处理器171,还用于根据第二待译码信息,确定第二软信息;
处理器171,还用于根据交织图样,利用抵消操作以及和操作对第一软信息和第二软信息进行译码处理;其中,第一待译码信息与发送端的第一目标编码码字相关;第二待译码信息与发送端的第二目标编码码字相关;第一目标编码码字是对m组第一信息比特序列进行编码处理得到的;第二目标编码码字是对m组第一比特序列进行编码处理得到的;m组第一比特序列是对m组第一信息比特序列中的n组第一信息比特进行交织处理得到的;n小于m。
应理解,装置170可以具体为上述实施例中的发送端或接收端,并且可以用于执行上述方法实施例中与发送端或接收端对应的各个步骤和/或流程。可选地,该存储器173可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。例如,存储器还可以存储设备类型的信息。该处理器171可以用于执行存储器中存储的指令,并且当该处理器171执行存储器中存储的指令时,该处理器171用于执行上述与该发送端或接收端对应的方法实施例的各个步骤和/或流程。该收发器172可以包括发射器和接收器,该发射器可以用于实现上述收发器对应的用于执行发送动作的各个步骤和/或流程,该接收器可以用于实现上述收发器对应的用于执行接收动作的各个步骤和/或流程。
应理解,在本申请实施例中,上述装置的处理器可以是中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件单元组合执行完成。软件单元可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器执行存储器中的指令,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及 算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请还提供了发送端的一种通信装置,包括通信接口和逻辑电路,逻辑电路用于对m组第一信息比特序列中的n组第一信息比特序列进行交织处理,通信接口用于发送第一目标编码码字和第二目标编码码字。
本申请还提供了接收端的一种通信装置,包括通信接口和逻辑电路,通信接口用于接收第一待译码信息和第二待译码信息,逻辑电路用于根据交织图样,利用抵消操作以及和操作对第一待译码信息和第二待译码信息进行译码处理。
本申请实施还提供了一种通信系统,该通信系统可以包括上述图16或图17所示的发送端(装置160或装置170体现为发送端),以及上述图16或图17所示的接收端(装置160或装置170体现为接收端)。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (26)

  1. 一种基于混合自动重传请求HARQ的通信方法,其特征在于,所述方法包括:
    在第一次传输中,获取多个信息比特;
    将所述多个信息比特分成m组第一信息比特序列K 1,……,Km;其中,所述m为正整数;
    对所述m组第一信息比特序列进行第一编码,得到m组第一编码码字;
    对所述m组第一编码码字进行第二编码,得到第一目标编码码字;
    向接收端发送所述第一目标编码码字;
    若所述第一次传输失败,在第t次重传中,对所述m组第一信息比特序列中的n组第一信息比特序列进行交织处理,得到m组第一比特序列X 1,……,Xm;其中,所述n小于所述m;所述t大于或等于1;所述m组第一比特序列中包括n组交织后的比特序列;
    对所述m组第一比特序列进行所述第一编码,得到m组第二编码码字;
    对所述m组第二编码码字进行所述第二编码,得到第二目标编码码字;
    向所述接收端发送所述第二目标编码码字。
  2. 根据权利要求1所述的方法,其特征在于,所述n组第一信息比特序列包括:所述m组第一信息比特序列中,可靠度排序位于后面的层对应的n组信息比特序列;其中,所述可靠度排序为可靠度从高到低的排序方式。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第t次重传中的所述Xm的交织图样,与第t+1次重传中的所述Xm的交织图样不同。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述方法还包括:
    若所述第t次重传失败,在第t+1次重传中,对所述m组第一信息比特序列中的s组第一信息比特序列进行交织处理,得到m组第二比特序列;其中,所述s小于所述m;所述m组第二比特序列中包括s组交织后的比特序列;
    对所述m组第二比特序列进行所述第一编码,得到m组第三编码码字;
    对所述m组第三编码码字进行所述第二编码,得到第三目标编码码字;
    向所述接收端发送所述第三目标编码码字。
  5. 根据权利要求4所述的方法,其特征在于,在所述第t次重传和所述第t+1次重传中,对相同位置的第一信息比特序列进行交织时,所述第t次重传中对所述相同位置的第一信息比特序列进行交织处理的交织图样,与所述第t+1次重传中对所述相同位置的第一信息比特序列进行交织处理的交织图样不同。
  6. 根据权利要求4或5所述的方法,其特征在于,在所述第t次重传和所述第t+1次重传中,对不同位置的第一信息比特序列进行交织时,所述第t次重传中对所述不同位置的第一信息比特序列进行交织处理的交织图样,与所述第t+1次重传中对所述不同位置的第一信息比特序列进行交织处理的交织图样相同或不同。
  7. 一种基于混合自动重传请求HARQ的通信方法,其特征在于,所述方法包括:
    接收端接收来自发送端的第一次传输中的第一待译码信息;
    根据所述第一待译码信息,确定第一软信息;
    若所述第一次传输失败,所述接收端接收来自所述发送端的第t次重传中的第二待译码信息;
    根据所述第二待译码信息,确定第二软信息;
    所述接收端根据交织图样,利用抵消操作以及和操作对所述第一软信息和所述第二软信息进行译码处理;
    其中,所述第一待译码信息与所述发送端的第一目标编码码字相关;所述第二待译码信息与所述发送端的第二目标编码码字相关;所述第一目标编码码字是对m组第一信息比特序列进行编码处理得到的;所述第二目标编码码字是对m组第一比特序列进行编码处理得到的;所述m组第一比特序列是对所述m组第一信息比特序列中的n组第一信息比特进行交织处理得到的;所述n小于所述m。
  8. 根据权利要求7所述的方法,其特征在于,所述n组第一信息比特序列包括:所述m组第一信息比特序列中,可靠度排序位于后面的层对应的n组信息比特序列;其中,所述可靠度排序为可靠度从高到低的排序方式。
  9. 根据权利要求7所述的方法,其特征在于,在所述第t次重传和所述第t+1次重传中,对相同位置的第一信息比特序列进行交织时,所述第t次重传中对所述相同位置的第一信息比特序列进行交织处理的交织图样,与所述第t+1次重传中对所述相同位置的第一信息比特序列进行交织处理的交织图样不同。
  10. 根据权利要求7所述的方法,其特征在于,在所述第t次重传和所述第t+1次重传中,对不同位置的第一信息比特序列进行交织时,所述第t次重传中对所述不同位置的第一信息比特序列进行交织处理的交织图样,与所述第t+1次重传中对所述不同位置的第一信息比特序列进行交织处理的交织图样相同或不同。
  11. 一种基于混合自动重传请求HARQ的通信装置,其特征在于,包括:
    处理单元,用于在第一次传输中,获取多个信息比特;
    所述处理单元,还用于将所述多个信息比特分成m组第一信息比特序列K 1,……,Km;其中,所述m为正整数;
    所述处理单元,还用于对所述m组第一信息比特序列进行第一编码,得到m组第一编码码字;
    所述处理单元,还用于对所述m组第一编码码字进行第二编码,得到第一目标编码码字;
    收发单元,用于向接收端发送所述第一目标编码码字;
    若所述第一次传输失败,在第t次重传中,所述处理单元,还用于对所述m组第一信息比特序列中的n组第一信息比特序列进行交织处理,得到m组第一比特序列X 1,……,Xm;其中,所述n小于所述m;所述t大于或等于1;所述m组第一比特序列中包括n组交织后的比特序列;
    所述处理单元,还用于对所述m组第一比特序列进行所述第一编码,得到m组第二编码码字;
    所述处理单元,还用于对所述m组第二编码码字进行所述第二编码,得到第二目标编码码字;
    所述收发单元,还用于向所述接收端发送所述第二目标编码码字。
  12. 根据权利要求11所述的装置,其特征在于,所述n组第一信息比特序列包括:所述m组第一信息比特序列中,可靠度排序位于后面的层对应的n组信息比特序列;其中,所述可靠度排序为可靠度从高到低的排序方式。
  13. 根据权利要求11或12所述的装置,其特征在于,所述第t次重传中的所述Xm的交织图样,与第t+1次重传中的所述Xm的交织图样不同。
  14. 根据权利要求11-13任一项所述的装置,其特征在于,
    所述处理单元,还用于:若所述第t次重传失败,在第t+1次重传中,对所述m组第一信息比特序列中的s组第一信息比特序列进行交织处理,得到m组第二比特序列;其中,所述s小于所述m;所述m组第二比特序列中包括s组交织后的比特序列;对所述m组第二比特序列进行所述第一编码,得到m组第三编码码字;对所述m组第三编码码字进行所述第二编码,得到第三目标编码码字;
    所述收发单元,还用于向所述接收端发送所述第三目标编码码字。
  15. 根据权利要求14所述的装置,其特征在于,在所述第t次重传和所述第t+1次重传中,对相同位置的第一信息比特序列进行交织时,所述第t次重传中对所述相同位置的第一信息比特序列进行交织处理的交织图样,与所述第t+1次重传中对所述相同位置的第一信息比特序列进行交织处理的交织图样不同。
  16. 根据权利要求14或15所述的装置,其特征在于,在所述第t次重传和所述第t+1次重传中,对不同位置的第一信息比特序列进行交织时,所述第t次重传中对所述不同位置的第一信息比特序列进行交织处理的交织图样,与所述第t+1次重传中对所述不同位置的第一信息比特序列进行交织处理的交织图样相同或不同。
  17. 一种基于混合自动重传请求HARQ的通信装置,其特征在于,包括:
    收发单元,用于接收来自发送端的第一次传输中的第一待译码信息;
    处理单元,用于根据所述第一待译码信息,确定第一软信息;
    若第一次传输失败,所述收发单元,还用于接收来自所述发送端的第t次重传中的第二待译码信息;
    所述处理单元,还用于根据所述第二待译码信息,确定第二软信息;
    所述处理单元,还用于根据交织图样,利用抵消操作以及和操作对所述第一软信息和所述第二软信息进行译码处理;其中,所述第一待译码信息与所述发送端的第一目标编码码字相关;所述第二待译码信息与所述发送端的第二目标编码码字相关;所述第一目标编码码字是对m组第一信息比特序列进行编码处理得到的;所述第二目标编码码字是对m组第一比特序列进行编码处理得到的;所述m组第一比特序列是对所述m组第一信息比特序列中的n组第一信息比特进行交织处理得到的;所述n小于所述m。
  18. 根据权利要求17所述的装置,其特征在于,所述n组第一信息比特序列包括:所述m组第一信息比特序列中,可靠度排序位于后面的层对应的n组信息比特序列;其中,所述可靠度排序为可靠度从高到低的排序方式。
  19. 根据权利要求17所述的装置,其特征在于,在所述第t次重传和所述第t+1次重传中,对相同位置的第一信息比特序列进行交织时,所述第t次重传中对所述相同位置的第一信息比特序列进行交织处理的交织图样,与所述第t+1次重传中对所述相同位置的第一信息比特序列进行交织处理的交织图样不同。
  20. 根据权利要求17所述的装置,其特征在于,在所述第t次重传和所述第t+1次重传中,对不同位置的第一信息比特序列进行交织时,所述第t次重传中对所述不同位置的第一信息比特序列进行交织处理的交织图样,与所述第t+1次重传中对所述不同位置的第一信息比特序列进行交织处理的交织图样相同或不同。
  21. 一种基于混合自动重传请求HARQ的通信装置,其特征在于,包括:至少一个处理器,用于调用存储器中的程序,以执行权利要求1-6任一项所述的方法,或执行权利要求7-10任一项所述的方法。
  22. 一种基于混合自动重传请求HARQ的通信装置,其特征在于,包括:至少一个处理器和接口电路,所述接口电路用于为所述至少一个处理器提供信息输入和/或信息输出,所述至少一个处理器用于执行权利要求1-6任一项所述的方法,或执行权利要求7-10任一项所述的方法。
  23. 一种芯片,其特征在于,包括至少一个处理器和接口;
    所述接口,用于为所述至少一个处理器提供程序指令或者数据;
    所述至少一个处理器用于执行所述程序行指令,以实现如权利要求1-6任一项所述的方法,或实现如权利要求7-10任一项所述的方法。
  24. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有指令,当所述指令被执行时,使得计算机执行如权利要求1-6任一项所述的方法,或执行如权利要求7-10任一项所述的方法。
  25. 一种通信装置,其特征在于,包括:通信接口和逻辑电路,所述逻辑电路用于对m组第一信息比特序列中的n组第一信息比特序列进行交织处理,所述通信接口用于发送第一目标编码码字和第二目标编码码字,使得所述通信装置执行权利要求1至6中任一项所述的方法。
  26. 一种通信装置,其特征在于,包括:通信接口和逻辑电路,所述通信接口用于接收第一待译码信息和第二待译码信息,所述逻辑电路用于根据交织图样,利用抵消操作以及和操作对所述第一待译码信息和所述第二待译码信息进行译码处理,使得所述通信装置执行权利要求7至10中任一项所述的方法。
PCT/CN2021/133967 2020-12-24 2021-11-29 基于混合自动重传请求harq的通信方法和装置 WO2022135068A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/212,345 US20230336273A1 (en) 2020-12-24 2023-06-21 Hybrid automatic repeat request harq-based communication method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011556770.6A CN114679241A (zh) 2020-12-24 2020-12-24 基于混合自动重传请求harq的通信方法和装置
CN202011556770.6 2020-12-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/212,345 Continuation US20230336273A1 (en) 2020-12-24 2023-06-21 Hybrid automatic repeat request harq-based communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2022135068A1 true WO2022135068A1 (zh) 2022-06-30

Family

ID=82071294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/133967 WO2022135068A1 (zh) 2020-12-24 2021-11-29 基于混合自动重传请求harq的通信方法和装置

Country Status (3)

Country Link
US (1) US20230336273A1 (zh)
CN (1) CN114679241A (zh)
WO (1) WO2022135068A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117675114B (zh) * 2024-02-02 2024-06-14 北京融为科技有限公司 星地通信数据传输方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102130757A (zh) * 2010-01-19 2011-07-20 北京三星通信技术研究有限公司 交织重传装置及方法
CN109428675A (zh) * 2017-08-30 2019-03-05 华为技术有限公司 数据传输方法及装置
CN110890894A (zh) * 2018-09-07 2020-03-17 华为技术有限公司 级联编码的方法和装置
US20200313732A1 (en) * 2019-03-29 2020-10-01 Qualcomm Incorporated Encoding and resource mapping for multiplexing feedback codebooks

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3490425B2 (ja) * 2002-03-14 2004-01-26 松下電器産業株式会社 受信装置及び受信方法
KR102212425B1 (ko) * 2013-09-11 2021-02-05 삼성전자주식회사 송신 장치, 수신 장치 및 그들의 신호 처리 방법
JPWO2015083598A1 (ja) * 2013-12-06 2017-03-16 京セラ株式会社 通信方法及び通信装置
WO2015149225A1 (zh) * 2014-03-31 2015-10-08 华为技术有限公司 极化码的混合自动重传方法及装置、无线通信装置
CN108242968B (zh) * 2016-12-23 2020-01-10 华为技术有限公司 一种信道编码方法及信道编码装置
EP3682578A1 (en) * 2017-09-15 2020-07-22 Telefonaktiebolaget LM Ericsson (PUBL) Reordering of code blocks for harq retransmission in new radio

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102130757A (zh) * 2010-01-19 2011-07-20 北京三星通信技术研究有限公司 交织重传装置及方法
CN109428675A (zh) * 2017-08-30 2019-03-05 华为技术有限公司 数据传输方法及装置
CN110890894A (zh) * 2018-09-07 2020-03-17 华为技术有限公司 级联编码的方法和装置
US20200313732A1 (en) * 2019-03-29 2020-10-01 Qualcomm Incorporated Encoding and resource mapping for multiplexing feedback codebooks

Also Published As

Publication number Publication date
US20230336273A1 (en) 2023-10-19
CN114679241A (zh) 2022-06-28

Similar Documents

Publication Publication Date Title
US11838125B2 (en) Apparatus and method for encoding and decoding using polar code in wireless communication system
US10826539B2 (en) Method and system for advanced outer coding
EP3691162B1 (en) Design scheme for redundancy versions in communication system
US11031955B2 (en) Incremental redundancy and variations for polar codes
US10484137B2 (en) Polar code hybrid automatic repeat request method and apparatus
CN107005690A (zh) 极化码的速率匹配的方法、装置和无线通信设备
US11101821B2 (en) Method and device for incremental redundancy hybrid automatic repeat request (IR-HARQ) re-transmission
CN107819545A (zh) 极化码的重传方法及装置
US11050519B2 (en) Methods, apparatus, systems and procedures for hybrid automatic repeat requests (HARQs) using polar codes
WO2020177761A1 (en) Methods and apparatus for bcc puncturing patterns for data retransmission in wireless network
US12009920B2 (en) Polar code retransmission method and apparatus
US11695435B2 (en) Data transmission method, apparatus, and system
US20200244288A1 (en) Information transmission method and transmission device, and information reception method and reception device
CN112636879B (zh) 基于混合自动重传请求的码块处理的方法和装置
CN108023675A (zh) 数据传输方法及通信设备
US20230336273A1 (en) Hybrid automatic repeat request harq-based communication method and apparatus
US20230208555A1 (en) Permutated extension and shortened low density parity check codes for hybrid automatic repeat request
KR102591143B1 (ko) 통신 시스템에서 데이터의 재전송 방법 및 장치
US11876538B2 (en) Convolutional code rate matching method and wireless communication apparatus
US20240333427A1 (en) Rate matching method and apparatus
WO2023088032A1 (zh) 数据发送的方法和装置
WO2024065490A1 (en) Methods, system, and apparatus for joint error correction coding of a self-decodable payload
KR20230133618A (ko) 폴라 코드를 사용하는 통신 시스템에서의 harq 방법 및 장치
WO2018126442A1 (zh) 一种混合自动重传请求的方法和装置
WO2018008084A1 (ja) 無線通信システム、無線通信装置および無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21909067

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21909067

Country of ref document: EP

Kind code of ref document: A1