WO2022134967A1 - 一种基于腹腔镜手术机器人的远程手术系统及控制方法 - Google Patents

一种基于腹腔镜手术机器人的远程手术系统及控制方法 Download PDF

Info

Publication number
WO2022134967A1
WO2022134967A1 PCT/CN2021/131420 CN2021131420W WO2022134967A1 WO 2022134967 A1 WO2022134967 A1 WO 2022134967A1 CN 2021131420 W CN2021131420 W CN 2021131420W WO 2022134967 A1 WO2022134967 A1 WO 2022134967A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication system
video
surgical
robotic arm
laparoscopic
Prior art date
Application number
PCT/CN2021/131420
Other languages
English (en)
French (fr)
Inventor
战梦雪
庞海峰
Original Assignee
哈尔滨思哲睿智能医疗设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 哈尔滨思哲睿智能医疗设备有限公司 filed Critical 哈尔滨思哲睿智能医疗设备有限公司
Priority to EP21908966.1A priority Critical patent/EP4268756A1/en
Publication of WO2022134967A1 publication Critical patent/WO2022134967A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/35Surgical robots for telesurgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/361Image-producing devices, e.g. surgical cameras
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/302Surgical robots specifically adapted for manipulations within body cavities, e.g. within abdominal or thoracic cavities
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/373Surgical systems with images on a monitor during operation using light, e.g. by using optical scanners
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/183Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source
    • H04N7/185Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source from a mobile camera, e.g. for remote control

Definitions

  • the invention relates to the technical field of surgical robots, in particular to a remote surgical system and a control method based on a laparoscopic surgical robot.
  • Laparoscopic surgical robots can partially replace boring, repetitive, and tiring operations. Using the image stability of the robot system and fine instruments, it can complete difficult operations in traditional laparoscopic surgery, such as small duct anastomosis. The cooperation between doctors and robots can improve the quality of surgery to a certain extent.
  • the problem solved by the present invention is how to provide universal high-quality medical services.
  • the present invention provides a remote surgery system based on a laparoscopic surgical robot, including a laparoscopic surgical robot system and a remote communication system.
  • the laparoscopic surgical robot system includes a surgical robotic arm on the patient side and a control on the doctor side a console, the surgical robotic arm and the console are adapted to be communicatively connected through the remote communication system; the surgical robotic arm is configured to receive the control instructions sent by the console through the remote communication system, and parse the The control command is used to determine the terminal posture of the surgical robotic arm, and send its own state information through the remote communication system; the console is used to generate the control command and send it through the remote communication system , and receive the status information sent by the surgical robotic arm through the remote communication system.
  • the remote surgery system based on the laparoscopic surgery robot of the present invention realizes the remote surgery by the doctor on the patient through the remote communication system, when the patient end and the doctor end are not in the same physical space, the surgery can be performed, and the utilization of high-quality medical resources is realized.
  • Popularization since the control command only uses the algorithm to calculate the data in the surgical robotic arm, it reduces the delay of the equipment itself occupied by the console and the surgical robotic arm to calculate the data separately, thus ensuring the real-time operation of the surgical operation.
  • the laparoscopic surgical robot-based remote surgery system further includes a 3D intracavity video processing system and a 3D display at the doctor's end, where the 3D intracavity video processing system includes a laparoscopic lens, an intracavity image acquisition unit and a video.
  • the 3D intracavity video processing system includes a laparoscopic lens, an intracavity image acquisition unit and a video.
  • the laparoscopic lens is installed on the surgical robotic arm, and the laparoscopic lens is used to collect the lesion information of the patient;
  • the intracavity image acquisition unit is used to receive the lesion information collected by the laparoscopic lens , and send the lesion information to the video encoding and decoding system;
  • the video encoding and decoding system is used to encode and decode the lesion information, and send it to the 3D display through the remote communication system.
  • the remote surgery system based on the laparoscopic surgical robot of the present invention realizes the visualization of the surgical process through the 3D intracavity video processing system, so that the doctor can adjust the surgical situation in time, and the safety of the laparoscopic surgery is effectively improved.
  • the video encoding and decoding system includes a video capture card, a video sending device, and a video receiving device; the video capture card is connected to the intracavity image capture unit, and the video capture card is used to receive the intracavity image capture unit.
  • the lesion information sent by the image acquisition unit, and the lesion information is sent to the video transmission device; the video transmission device is used to encode the lesion information and send it to the video receiver through the remote communication system device; the video receiving device is configured to receive the lesion information sent by the video sending device, decode the lesion information and send it to the 3D display, so as to display the lesion information on the 3D display.
  • the remote surgery system based on the laparoscopic surgical robot realizes the encoding and decoding of the 3D laparoscopic image including the lesion information through the video encoding and decoding system, and realizes the visualization of the operation process, so that the doctor can adjust the operation situation in time, effectively improving the safety of laparoscopic surgery.
  • the remote communication system includes a video transmission communication system, a video reception communication system, and a network base station; the video transmission communication system is connected to the video transmission device, and the video transmission communication system is used to receive the video transmission.
  • the lesion information sent by the device, and the lesion information is sent to the video receiving communication system through the network base station; the network base station communicates with the video sending communication system and the video receiving communication system is connected, so The network base station is configured to receive the lesion information sent by the video transmission communication system, and send the lesion information to the video reception communication system; the video reception communication system is connected to the 3D display, and the video
  • the receiving communication system is used for receiving the lesion information sent by the network base station, and sending the lesion information to the 3D display; the video transmitting communication system and the video receiving communication system are adapted to pass a first A dedicated line transmits the lesion information.
  • the remote surgery system based on the laparoscopic surgical robot of the present invention realizes the transmission of 3D laparoscopic images including lesion information through the remote communication system, and realizes the visualization of the surgical process, so that the doctor can adjust the surgical situation in time, which effectively improves the abdominal cavity.
  • the video transmission communication system and the video reception communication system transmit the lesion information through the first dedicated line, they do not interfere with other data transmissions, reducing the interference between each other and preventing network instability The associated damage caused by the time, to ensure the reliability of data transmission.
  • the video sending device is adapted to use a UDP protocol when sending the lesion information to the video receiving device.
  • the remote surgery system based on the laparoscopic surgical robot according to the present invention realizes that the lesion information is sent from the video sending device to the video receiving device through the UDP protocol, so as to ensure high real-time data transmission and provide doctors with a better surgical experience. In order for the doctor to adjust the operation situation in time, the safety of the laparoscopic operation is effectively improved.
  • the video sending device is adapted to use a low-distortion encoding algorithm when encoding the lesion information.
  • the remote surgery system based on the laparoscopic surgical robot of the present invention encodes the lesion information through a low-distortion coding algorithm, and when the network state is affected, the compression rate of the 3D image and video can be adjusted according to the network state, so as to ensure a high continuous 3D image. It can improve the safety of laparoscopic surgery effectively, so that doctors can adjust the operation situation in time.
  • the remote communication system further includes a robotic arm communication system and a console communication system, the robotic arm communication system is connected to the surgical robotic arm, the console communication system is connected to the console, and the The manipulator communication system is communicatively connected to the console communication system; the manipulator communication system and the console communication system are adapted to transmit the control command and the state information through a second dedicated line.
  • the remote surgery system based on the laparoscopic surgical robot realizes the data communication between the surgical robot arm and the console communication system through the mechanical arm communication system and the console communication system, so as to realize the remote surgery of the doctor on the patient.
  • the operation can be performed, which realizes the popularization of high-quality medical resources; at the same time, because the communication system of the robotic arm and the communication system of the console transmit control instructions and status information through the second dedicated line, and other
  • the data transmission does not interfere with each other, reduces the interference between each other, prevents the collateral damage caused by the unstable network, and ensures the reliability of data transmission.
  • the surgical robotic arm determines the end pose based on a kinematic algorithm.
  • the remote surgery system based on the laparoscopic surgical robot determines the position and posture of the end of the surgical robotic arm through a kinematic algorithm, so as to realize the remote surgery on the patient by the doctor, when the patient end and the doctor end are not in the same physical space. Surgery has achieved the popularization of high-quality medical resources.
  • the surgical robotic arm includes a surgical robotic arm body and a surgical instrument device for performing surgery on a patient, and the surgical instrument device is mounted on the surgical robotic arm body.
  • the remote surgery system based on the laparoscopic surgical robot according to the present invention realizes the remote surgery of the patient by the doctor by setting the surgical instrument device installed on the body of the surgical mechanical arm.
  • the ability to perform surgery has realized the popularization of high-quality medical resources.
  • the present invention also provides a control method based on a laparoscopic surgical robot, comprising: a console generates a control command and sends it to a surgical robotic arm through a remote communication system; the surgical robotic arm parses the control command to determine the surgical robot The end pose of the arm; the surgical robotic arm sends the state information of the surgical robotic arm to the console.
  • the control method based on the laparoscopic surgical robot has the same advantages as the above-mentioned remote surgical system based on the laparoscopic surgical robot compared to the prior art, which will not be repeated here.
  • FIG. 1 is a block diagram 1 of a remote surgery system based on a laparoscopic surgical robot according to an embodiment of the present invention
  • FIG. 2 is a second block diagram of a remote surgery system based on a laparoscopic surgical robot according to an embodiment of the present invention.
  • an embodiment of the present invention provides a remote surgery system based on a laparoscopic surgical robot, including a laparoscopic surgical robot system and a remote communication system.
  • the laparoscopic surgical robot system includes a surgical robotic arm on the patient side and a A console at the doctor's end, the surgical robotic arm and the console are adapted to be connected in communication through the remote communication system; the surgical robotic arm is used to receive the control instructions sent by the console through the remote communication system, and parse the control instructions to determine the terminal posture of the surgical robotic arm, and send its own state information through the remote communication system; the console is used to generate the control instructions and send the The communication system sends and receives the status information sent by the surgical robotic arm through the remote communication system.
  • the remote surgery system based on the laparoscopic surgical robot includes a laparoscopic surgical robot system and a remote communication system, wherein the laparoscopic surgical robot system includes a surgical robotic arm and a console, and the surgical robotic arm is located at the patient side , used to perform surgery on patients, the console is located at the doctor's end, and the doctor controls the surgical robotic arm and surgical instruments through the main operator on the console to perform laparoscopic minimally invasive surgery for the patient.
  • the data between the surgical robotic arm and the console needs to be transmitted through the remote communication system, and the data transmission includes control instructions and status information.
  • the control command is generated when the main operator is selected, and the control command is sent to the surgical manipulator through the remote communication system, and the surgical manipulator performs kinematics algorithm analysis and calculation to determine the end pose.
  • the main operator and the joints of the end pose It is a one-to-one matching, that is, the end pose refers to the position and posture state of the end point of the surgical instrument; among them, the state information refers to the state of the surgical robotic arm.
  • the processing of the control command adopts the single-end data mode. If the data calculation is performed on the console and the surgical robotic arm at the same time, due to the time delay in the data transmission, it will cause the data such as the terminal pose determined by the console to be transmitted to the surgical robotic arm. The time delay of the equipment itself will affect the synchronization of the operation. Therefore, the single-end data mode is used for analytical calculation only on one side of the surgical manipulator, that is, the algorithm is only used for data calculation on the surgical manipulator, without the participation of the console, reducing the need for The delay of the equipment itself occupied by the console and the surgical robotic arm to calculate the data separately, thus ensuring the real-time operation of the surgical operation.
  • the remote operation of the doctor on the patient is realized through the remote communication system.
  • the operation can be performed, and the popularization of high-quality medical resources is realized;
  • the arm uses the algorithm to calculate the data, which reduces the delay of the equipment itself occupied by the console and the surgical robotic arm to calculate the data separately, thus ensuring the real-time performance of the surgical operation.
  • the laparoscopic surgical robot-based remote surgery system further includes a 3D intracavity video processing system and a 3D display at the doctor's end, where the 3D intracavity video processing system includes a laparoscopic lens, an intracavity image acquisition unit and a video.
  • the 3D intracavity video processing system includes a laparoscopic lens, an intracavity image acquisition unit and a video.
  • the laparoscopic lens is installed on the surgical robotic arm, and the laparoscopic lens is used to collect the lesion information of the patient;
  • the intracavity image acquisition unit is used to receive the lesion information collected by the laparoscopic lens , and send the lesion information to the video encoding and decoding system;
  • the video encoding and decoding system is used to encode and decode the lesion information, and send it to the 3D display through the remote communication system.
  • the remote surgery system based on the laparoscopic surgical robot further includes a 3D intracavity video processing system and a 3D display located at the doctor's end, and the 3D intracavity video processing system is used for the doctor to perform
  • the remote surgery provides a field of vision and can clearly detect the details of the patient's intra-abdominal lesions.
  • the 3D intracavity video processing system includes a laparoscopic lens, an intracavity image acquisition unit and a video encoding and decoding system.
  • the laparoscopic lens is installed on the surgical robotic arm, and It is sent into the patient's abdomen through the minimally invasive surgical hole to obtain the patient's lesion information.
  • the other end of the laparoscopic lens is connected to the intracavity image acquisition unit via a cable, and the intracavity image acquisition unit is connected to the video codec system via a DVI cable.
  • the video sending device of the decoding system encodes the lesion information, and sends it to the video receiving device through the remote communication system to decode and restore, and then send it to the 3D display, so that the intracavity image, that is, the lesion information, can be displayed on the doctor's end, so that the doctor can adjust the operation situation in time.
  • the visualization of the operation process is realized by the 3D intracavity video processing system, so that the doctor can adjust the operation situation in time, which effectively improves the safety of the laparoscopic operation.
  • the video encoding and decoding system includes a video capture card, a video sending device, and a video receiving device; the video capture card is connected to the intracavity image capture unit, and the video capture card is used to receive the intracavity image capture unit.
  • the lesion information sent by the image acquisition unit, and the lesion information is sent to the video transmission device; the video transmission device is used to encode the lesion information and send it to the video receiver through the remote communication system device; the video receiving device is configured to receive the lesion information sent by the video sending device, decode the lesion information and send it to the 3D display, so as to display the lesion information on the 3D display.
  • the video codec system includes a video capture card, a video sending device, and a video receiving device, wherein the intracavity image capture unit is connected to the video capture card via a DVI cable, and the video captures
  • the card is connected to the video sending device via a dedicated connection line
  • the video sending device encodes the 3D laparoscopic image containing the lesion information through encoding technology
  • the video encoding and decoding system implements encoding and decoding of 3D laparoscopic images including lesion information, realizing the visualization of the operation process, so that the doctor can adjust the operation situation in time, which effectively improves the safety of laparoscopic operation.
  • the remote communication system includes a video transmission communication system, a video reception communication system, and a network base station; the video transmission communication system is connected to the video transmission device, and the video transmission communication system is used to receive the video transmission.
  • the lesion information sent by the device, and the lesion information is sent to the video receiving communication system through the network base station; the network base station is communicatively connected with the video sending communication system and the video receiving communication system, so The network base station is configured to receive the lesion information sent by the video transmission communication system, and send the lesion information to the video reception communication system; the video reception communication system is connected to the 3D display, and the video The receiving communication system is used for receiving the lesion information sent by the network base station, and sending the lesion information to the 3D display; the video transmitting communication system and the video receiving communication system are adapted to pass a first A dedicated line transmits the lesion information.
  • the remote communication system includes a video transmission communication system, a video reception communication system, and a network base station, wherein the video transmission device is connected to the video transmission communication system through a network cable, and the video transmission communication system is connected to the video transmission communication system.
  • the video receiving and communication system is connected through the network base station to realize data communication.
  • the video receiving and communication system is connected to the video receiving device through the network cable, and the video receiving device is connected to the doctor's 3D display through the DVI cable, so as to display the intracavity image on the 3D display.
  • the video transmission communication system and the video reception communication system transmit the lesion information through the first dedicated line, and do not interfere with other data transmissions, reduce the interference between each other, and prevent the collateral damage caused by the unstable network. Ensure the reliability of data transmission.
  • the transmission of 3D laparoscopic images including lesion information is realized through the remote communication system, and the visualization of the operation process is realized, so that the doctor can adjust the operation situation in time, and the safety of the laparoscopic operation is effectively improved;
  • the focus information is transmitted between the sending communication system and the video receiving communication system through the first dedicated line, without interfering with other data transmissions, reducing mutual interference, preventing collateral damage caused by network instability, and ensuring data transmission. reliability.
  • the video sending device is adapted to use a UDP protocol when sending the lesion information to the video receiving device.
  • the video sending device when the video sending device sends the lesion information to the video receiving device, it is suitable to use the UDP protocol, which ensures high real-time data transmission and gives the doctor a better surgical experience, so that the doctor can timely perform the surgery.
  • the situation is adjusted to effectively improve the safety of laparoscopic surgery.
  • the UDP protocol is used to transmit the lesion information from the video sending device to the video receiving device, so as to ensure high real-time data transmission, and provide the doctor with a better surgical experience, so that the doctor can adjust the surgical situation in time. Effectively improve the safety of laparoscopic surgery.
  • the video sending device is adapted to use a low-distortion encoding algorithm when encoding the lesion information.
  • the video sending device is suitable for using a low-distortion encoding algorithm when encoding the lesion information.
  • the laparoscopic image of the patient is a 1080P high-definition 3D image
  • the image mainly reflects the lesion in the patient's cavity.
  • the transmission must ensure high clarity and continuity, so that doctors can obtain accurate patient conditions and perform surgery. Therefore, a high-definition 1080P video capture card is used for local capture, and a low-distortion encoding algorithm is performed on the video sending device.
  • the compression rate of 3D images and videos can be adjusted according to the network status to ensure high continuity of 3D images.
  • the lesion information is encoded by a low-distortion encoding algorithm.
  • the compression rate of the 3D image and video can be adjusted according to the network state, so as to ensure the high continuity of the 3D image, so that the doctor can timely perform the operation. The adjustment effectively improves the safety of laparoscopic surgery.
  • the remote communication system further includes a robotic arm communication system and a console communication system, the robotic arm communication system is connected to the surgical robotic arm, the console communication system is connected to the console, and the The manipulator communication system is communicatively connected to the console communication system; the manipulator communication system and the console communication system are adapted to transmit the control command and the state information through a second dedicated line.
  • the remote surgery system based on the laparoscopic surgical robot further includes a robotic arm communication system and a console communication system.
  • the robotic arm communication system is connected to the surgical robotic arm, and the console communication system It is connected with the console, and the communication system of the manipulator is connected with the communication system of the console.
  • the data communication between the surgical robotic arm and the console communication system is realized through the robotic arm communication system and the console communication system, so that the doctor can perform remote surgery on the patient. When the patient end and the doctor end are not in the same physical space, the operation can be performed. Realize the popularization of high-quality medical resources.
  • the communication system of the manipulator and the communication system of the console transmit control commands and status information through the second dedicated line, and do not interfere with other data transmission, reduce the interference between each other, and prevent the network from being unstable. Collateral damage to ensure the reliability of data transmission.
  • the dedicated network transmission channel refers to two point-to-point fixed IPs, which transmit data one-to-one to reduce the amount of data between each other. interference, prevent the collateral damage caused by network instability, and ensure the reliability of data transmission.
  • the data communication between the surgical robotic arm and the console communication system is realized through the robotic arm communication system and the console communication system, so that the doctor can perform remote surgery on the patient.
  • the communication system of the robotic arm and the communication system of the console transmits control commands and status information through the second dedicated line, it does not interfere with other data transmissions, reducing the Minimize the interference between each other, prevent the consequential damage caused by the unstable network, and ensure the reliability of data transmission.
  • the surgical robotic arm determines the end pose based on a kinematic algorithm.
  • the surgical robotic arm determines the position and posture of the end based on the kinematics algorithm, so that the doctor can perform remote surgery on the patient.
  • the surgery can be performed, and high-quality medical treatment can be realized. Availability of resources.
  • the kinematics algorithm is used to determine the position and posture of the end of the surgical robotic arm, so that the doctor can perform remote surgery on the patient.
  • the operation can be performed, thereby realizing the utilization of high-quality medical resources. universal.
  • the surgical robotic arm includes a surgical robotic arm body and a surgical instrument device for performing surgery on a patient, the surgical instrument device being mounted on the surgical robotic arm body.
  • the remote surgery system based on the laparoscopic surgical robot further includes a surgical manipulator body and a surgical instrument device.
  • the surgical instrument device is installed on the surgical manipulator body and is used to communicate with the surgical The body of the manipulator moves together, and adjusts its state according to the end pose determined by the control command.
  • the doctor can perform remote surgery on the patient.
  • the surgery can be performed, and high-quality medical resources are realized. popularity.
  • Another embodiment of the present invention provides a control method based on a laparoscopic surgical robot, comprising: a console generating a control command and sending it to a surgical robotic arm through a remote communication system; The terminal posture of the surgical robotic arm; the surgical robotic arm sends the state information of the surgical robotic arm to the console.
  • the patient is in Suzhou and the doctor is in Beijing.
  • the surgical scenes are arranged at both ends, and the patient-side robotic arm system (including surgical robotic arms and surgical instruments), laparoscopic lenses, and video capture.
  • the card, video sending device, robotic arm communication system and video sending communication system are respectively connected and powered on, while the doctor side connects and powers on the console, video receiving communication system, video receiving device, 3D display and console communication system respectively.
  • the patient end robotic arm system performs self-check of each module of the system and resets the robotic arm.
  • the robot arm system After the robot arm system is reset, the robot arm system, doctor console, video sending device and video receiving device input the configured IP address and port number respectively to perform UDP data transmission and video transmission. At this time, the doctor can view it through the 3D display.
  • the doctor console When the remote patient condition is reached, and the doctor console is remotely connected to the robotic arm system, it is ready for surgery. Assist the doctor to drill holes according to the position of the lesion, perform the active positioning of the robotic arm, and install the laparoscope and corresponding surgical instruments. After the surgical instruments are installed, the doctor can control the main operator of the doctor's console to remotely control the surgical instruments of the robotic arm system.
  • the operation performed by the doctor through the main operator will generate the corresponding control command, which will be sent to the surgical robotic arm through the remote communication system, and the control command will be parsed on the surgical robotic arm side to determine the end position.
  • the position and posture of the surgical robotic arm and the surgical instrument device can be adjusted, so that the position and posture of the end of the robotic arm and the instrument can completely match the operating posture of the master hand, and the master-slave follow-up motion can be realized to complete the operation on the patient.
  • the arms perform data calculation at the same time, and there is a time delay in data transmission, which will cause the time delay of the equipment itself when the data such as the terminal pose determined by the console is transmitted to the surgical robotic arm, which will affect the synchronization of the operation.
  • the single-end data mode of analytical calculation on the arm side can effectively ensure the synchronization of remote surgery; when the operation is completed, the doctor needs to put the main operator back to the original position to restore the machine to the initial standby state.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Robotics (AREA)
  • Pathology (AREA)
  • Gynecology & Obstetrics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Endoscopes (AREA)
  • Manipulator (AREA)

Abstract

一种基于腹腔镜手术机器人的远程手术系统及控制方法,涉及手术机器人技术领域。基于腹腔镜手术机器人的远程手术系统包括腹腔镜手术机器人系统和远程通讯系统,腹腔镜手术机器人系统包括位于患者端的手术机械臂以及位于医生端的控制台,手术机械臂和控制台适于通过远程通讯系统通信连接。通过远程通讯系统实现医生对患者的远程手术,当患者端和医生端不在同一个物理空间下时能够进行手术,实现了优质医疗资源的普及;由于控制指令只在手术机械臂利用算法进行数据计算,减少了控制台与手术机械臂分别计算数据所占用的设备自身时延,因而保证了手术操作的实时性。

Description

一种基于腹腔镜手术机器人的远程手术系统及控制方法 技术领域
本发明涉及手术机器人技术领域,具体而言,涉及一种基于腹腔镜手术机器人的远程手术系统及控制方法。
背景技术
随着腹腔镜技术和手术机器人的发展,腹腔镜手术机器人应用范围不断扩大。腹腔镜手术机器人可部分取代枯燥、重复、劳累的操作,利用机器人系统图像的稳定性和精细的器械,可完成小管道吻合等传统腹腔镜手术时难度较大的操作。医生与机器人的配合能在一定程度上提高手术质量。目前基于腹腔镜机器人的微创手术,患者与医生均在同一现场是实施手术的先决条件,而该条件限制了许多偏远地区及特殊情况下由于交通不便的患者,使其无法得到最佳的治疗机会,因此如何提供普及的优质医疗服务,成为了目前医疗升级的重点。
发明内容
本发明解决的问题是如何提供普及的优质医疗服务。
为解决上述问题,本发明提供一种基于腹腔镜手术机器人的远程手术系统,包括腹腔镜手术机器人系统和远程通讯系统,所述腹腔镜手术机器人系统包括位于患者端的手术机械臂以及位于医生端的控制台,所述手术机械臂和所述控制台适于通过所述远程通讯系统通信连接;所述手术机械臂,用于通过所述远程通讯系统接收所述控制台发送的控制指令,并解析所述控制指令以确定所述手术机械臂的末端位姿,以及将自身的状态信息通过所述远程通讯系统发送;所述控制台,用于生成所述控制指令,并通过所述远程通讯系统发送,以及通过所述远程通讯系统接收所述手术机械臂发送的所述状态信息。
本发明所述的基于腹腔镜手术机器人的远程手术系统,通过远程通讯系统实现医生对患者的远程手术,当患者端和医生端不在同一个物理空间下时能够进行手术,实现了优质医疗资源的普及;由于控制指令只在手术机械臂 利用算法进行数据计算,减少了控制台与手术机械臂分别计算数据所占用的设备自身时延,因而保证了手术操作的实时性。
可选地,所述基于腹腔镜手术机器人的远程手术系统还包括3D腔内视频处理系统和位于医生端的3D显示器,所述3D腔内视频处理系统包括腹腔镜镜头、腔内图像采集单元和视频编解码系统;所述腹腔镜镜头安装在所述手术机械臂上,所述腹腔镜镜头用于采集患者的病灶信息;所述腔内图像采集单元用于接收所述腹腔镜镜头采集的病灶信息,并将所述病灶信息发送至所述视频编解码系统;所述视频编解码系统用于将所述病灶信息编解码,并通过所述远程通讯系统发送至所述3D显示器。
本发明所述的基于腹腔镜手术机器人的远程手术系统,通过3D腔内视频处理系统实现手术过程的可视化,以便医生及时对手术情况进行调整,有效提高了腹腔镜手术的安全性。
可选地,所述视频编解码系统包括视频采集卡、视频发送设备及视频接收设备;所述视频采集卡与所述腔内图像采集单元连接,所述视频采集卡用于接收所述腔内图像采集单元发送的所述病灶信息,并将所述病灶信息发送至所述视频发送设备;所述视频发送设备用于将所述病灶信息编码并通过所述远程通讯系统发送至所述视频接收设备;所述视频接收设备用于接收所述视频发送设备发送的所述病灶信息,并将所述病灶信息解码后发送至所述3D显示器,以在所述3D显示器上显示所述病灶信息。
本发明所述的基于腹腔镜手术机器人的远程手术系统,通过视频编解码系统实现包含病灶信息的3D腹腔镜图像的编解码,实现手术过程的可视化,以便医生及时对手术情况进行调整,有效提高了腹腔镜手术的安全性。
可选地,所述远程通讯系统包括视频发送通讯系统、视频接收通讯系统及网络基站;所述视频发送通讯系统与所述视频发送设备连接,所述视频发送通讯系统用于接收所述视频发送设备发送的所述病灶信息,并将所述病灶信息通过所述网络基站发送至所述视频接收通讯系统;所述网络基站与所述视频发送通讯系统通信及所述视频接收通讯系统连接,所述网络基站用于接收所述视频发送通讯系统发送的所述病灶信息,并将所述病灶信息发送至所述视频接收通讯系统;所述视频接收通讯系统与所述3D显示器连接,所述 视频接收通讯系统用于接收所述网络基站发送的所述病灶信息,并将所述病灶信息发送至所述3D显示器;所述视频发送通讯系统与所述视频接收通讯系统之间适于通过第一专用线路传输所述病灶信息。
本发明所述的基于腹腔镜手术机器人的远程手术系统,通过远程通讯系统实现包含病灶信息的3D腹腔镜图像的传输,实现手术过程的可视化,以便医生及时对手术情况进行调整,有效提高了腹腔镜手术的安全性;同时由于视频发送通讯系统与视频接收通讯系统之间通过第一专用线路传输病灶信息,与其它数据传输之间互不干扰,减小彼此之间的干扰,防止网络不稳定时造成的连带伤害,保证数据传输的可靠性。
可选地,所述视频发送设备将所述病灶信息发送至所述视频接收设备时适于采用UDP协议。
本发明所述的基于腹腔镜手术机器人的远程手术系统,通过UDP协议实现将病灶信息由视频发送设备发送至视频接收设备,保证数据传输较高的实时性,给予医生以较好的手术体验,以便医生及时对手术情况进行调整,有效提高了腹腔镜手术的安全性。
可选地,所述视频发送设备编码所述病灶信息时适于采用低失真编码算法。
本发明所述的基于腹腔镜手术机器人的远程手术系统,通过低失真编码算法编码病灶信息,在网络状态受到影响时,可根据网络状态调整3D图像视频的压缩率,保证3D图像较高的连续性,以便医生及时对手术情况进行调整,有效提高了腹腔镜手术的安全性。
可选地,所述远程通讯系统还包括机械臂通讯系统和控制台通讯系统,所述机械臂通讯系统与所述手术机械臂连接,所述控制台通讯系统与所述控制台连接,所述机械臂通讯系统与所述控制台通讯系统通信连接;所述机械臂通讯系统与所述控制台通讯系统之间适于通过第二专用线路传输所述控制指令及所述状态信息。
本发明所述的基于腹腔镜手术机器人的远程手术系统,通过机械臂通讯系统和控制台通讯系统实现手术机械臂与控制台通讯系统之间的数据通信,实现医生对患者的远程手术,当患者端和医生端不在同一个物理空间下时能 够进行手术,实现了优质医疗资源的普及;同时由于机械臂通讯系统与控制台通讯系统之间通过第二专用线路传输控制指令及状态信息,与其它数据传输之间互不干扰,减小彼此之间的干扰,防止网络不稳定时造成的连带伤害,保证数据传输的可靠性。
可选地,所述手术机械臂基于运动学算法确定所述末端位姿。
本发明所述的基于腹腔镜手术机器人的远程手术系统,通过运动学算法确定手术机械臂的末端位姿,实现医生对患者的远程手术,当患者端和医生端不在同一个物理空间下时能够进行手术,实现了优质医疗资源的普及。
可选地,所述手术机械臂包括手术机械臂本体以及用于对患者进行手术的手术器械装置,所述手术器械装置安装在所述手术机械臂本体上。
本发明所述的基于腹腔镜手术机器人的远程手术系统,通过设置安装在手术机械臂本体上的手术器械装置,实现医生对患者的远程手术,当患者端和医生端不在同一个物理空间下时能够进行手术,实现了优质医疗资源的普及。
本发明还提供一种基于腹腔镜手术机器人的控制方法,包括:控制台生成控制指令,并通过远程通讯系统发送至手术机械臂;所述手术机械臂解析所述控制指令以确定所述手术机械臂的末端位姿;所述手术机械臂将所述手术机械臂的状态信息发送至所述控制台。
所述基于腹腔镜手术机器人的控制方法与上述基于腹腔镜手术机器人的远程手术系统相对于现有技术所具有的优势相同,在此不再赘述。
附图说明
图1为本发明实施例的基于腹腔镜手术机器人的远程手术系统框图一;
图2为本发明实施例的基于腹腔镜手术机器人的远程手术系统框图二。
具体实施方式
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
如图1所示,本发明实施例提供一种基于腹腔镜手术机器人的远程手术 系统,包括腹腔镜手术机器人系统和远程通讯系统,所述腹腔镜手术机器人系统包括位于患者端的手术机械臂以及位于医生端的控制台,所述手术机械臂和所述控制台适于通过所述远程通讯系统通信连接;所述手术机械臂,用于通过所述远程通讯系统接收所述控制台发送的控制指令,并解析所述控制指令以确定所述手术机械臂的末端位姿,以及将自身的状态信息通过所述远程通讯系统发送;所述控制台,用于生成所述控制指令,并通过所述远程通讯系统发送,以及通过所述远程通讯系统接收所述手术机械臂发送的所述状态信息。
具体地,在本实施例中,基于腹腔镜手术机器人的远程手术系统包括腹腔镜手术机器人系统和远程通讯系统,其中,腹腔镜手术机器人系统包括手术机械臂以及控制台,手术机械臂位于患者端,用于对患者进行手术,控制台位于医生端,医生通过控制台上的主操作手控制手术机械臂及手术器械为患者做腹腔镜微创手术。
当患者端和医生端不在同一个物理空间下时,手术机械臂与控制台之间的数据需要通过远程通讯系统传输,数据传输包括控制指令和状态信息,其中,控制指令指医生在操作控制台的主操作手时生成的控制指令,控制指令通过远程通讯系统发送至手术机械臂,由手术机械臂进行运动学算法解析计算,确定末端位姿,其中,主操作手与末端位姿的各关节是一一对应匹配的,即末端位姿指的是手术器械末端点的位置和姿态状态;其中,状态信息指的是手术机械臂的状态,通过将手术机械臂的状态反馈给控制台,在医生端以信号灯的方式告知医生患者端手术机械臂的状态,以便医生及时对手术情况进行调整。
其中,控制指令的处理采用单端数据模式,如果在控制台和手术机械臂同时进行数据计算,由于数据传输存在时间延迟,会导致控制台确定的末端位姿等数据传输到手术机械臂时存在设备自身时间延迟,会影响到手术进行的同步性,因而采用仅在手术机械臂一侧进行解析计算的单端数据模式,即只在手术机械臂利用算法进行数据计算,无需控制台参与,减少了控制台与手术机械臂分别计算数据所占用的设备自身时延,因而保证了手术操作的实时性。
在本实施例中,通过远程通讯系统实现医生对患者的远程手术,当患者端和医生端不在同一个物理空间下时能够进行手术,实现了优质医疗资源的普及;由于控制指令只在手术机械臂利用算法进行数据计算,减少了控制台与手术机械臂分别计算数据所占用的设备自身时延,因而保证了手术操作的实时性。
可选地,所述基于腹腔镜手术机器人的远程手术系统还包括3D腔内视频处理系统和位于医生端的3D显示器,所述3D腔内视频处理系统包括腹腔镜镜头、腔内图像采集单元和视频编解码系统;所述腹腔镜镜头安装在所述手术机械臂上,所述腹腔镜镜头用于采集患者的病灶信息;所述腔内图像采集单元用于接收所述腹腔镜镜头采集的病灶信息,并将所述病灶信息发送至所述视频编解码系统;所述视频编解码系统用于将所述病灶信息编解码,并通过所述远程通讯系统发送至所述3D显示器。
具体地,在本实施例中,结合图2所示,基于腹腔镜手术机器人的远程手术系统还包括3D腔内视频处理系统和位于医生端的3D显示器,3D腔内视频处理系统用于为医生进行远程手术提供视野,能够清晰检测到患者腹腔内病灶详情,3D腔内视频处理系统包括腹腔镜镜头、腔内图像采集单元和视频编解码系统,其中,腹腔镜镜头安装在手术机械臂上,并经微创手术孔送进患者腹部,获取患者病灶信息,腹腔镜镜头另一端经由线缆连接到腔内图像采集单元,腔内图像采集单元经由DVI线缆连接到视频编解码系统,通过视频编解码系统的视频发送设备将病灶信息编码,并通过远程通讯系统发送至视频接收设备解码还原后发送至3D显示器,从而在医生端显示腔内影像即病灶信息,以便医生及时对手术情况进行调整。
在本实施例中,通过3D腔内视频处理系统实现手术过程的可视化,以便医生及时对手术情况进行调整,有效提高了腹腔镜手术的安全性。
可选地,所述视频编解码系统包括视频采集卡、视频发送设备及视频接收设备;所述视频采集卡与所述腔内图像采集单元连接,所述视频采集卡用于接收所述腔内图像采集单元发送的所述病灶信息,并将所述病灶信息发送至所述视频发送设备;所述视频发送设备用于将所述病灶信息编码并通过所述远程通讯系统发送至所述视频接收设备;所述视频接收设备用于接收所述 视频发送设备发送的所述病灶信息,并将所述病灶信息解码后发送至所述3D显示器,以在所述3D显示器上显示所述病灶信息。
具体地,在本实施例中,结合图2所示,视频编解码系统包括视频采集卡、视频发送设备及视频接收设备,其中,腔内图像采集单元经由DVI线缆连接视频采集卡,视频采集卡经由专用连接线连接视频发送设备,视频发送设备通过编码技术将包含病灶信息的3D腹腔镜图像进行编码,并通过UDP协议将3D腹腔镜图像数据发送至视频接收设备解码,以在3D显示器上显示病灶信息。
在本实施例中,通过视频编解码系统实现包含病灶信息的3D腹腔镜图像的编解码,实现手术过程的可视化,以便医生及时对手术情况进行调整,有效提高了腹腔镜手术的安全性。
可选地,所述远程通讯系统包括视频发送通讯系统、视频接收通讯系统及网络基站;所述视频发送通讯系统与所述视频发送设备连接,所述视频发送通讯系统用于接收所述视频发送设备发送的所述病灶信息,并将所述病灶信息通过所述网络基站发送至所述视频接收通讯系统;所述网络基站与所述视频发送通讯系统及所述视频接收通讯系统通信连接,所述网络基站用于接收所述视频发送通讯系统发送的所述病灶信息,并将所述病灶信息发送至所述视频接收通讯系统;所述视频接收通讯系统与所述3D显示器连接,所述视频接收通讯系统用于接收所述网络基站发送的所述病灶信息,并将所述病灶信息发送至所述3D显示器;所述视频发送通讯系统与所述视频接收通讯系统之间适于通过第一专用线路传输所述病灶信息。
具体地,在本实施例中,结合图2所示,远程通讯系统包括视频发送通讯系统、视频接收通讯系统及网络基站,其中,视频发送设备通过网线连接视频发送通讯系统,视频发送通讯系统与视频接收通讯系统经由网络基站连通从而实现数据通信,视频接收通讯系统通过网线连接视频接收设备,视频接收设备经由DVI连接线连接医生端3D显示器,从而在3D显示器显示腔内影像。
其中,视频发送通讯系统与视频接收通讯系统之间通过第一专用线路传输病灶信息,与其它数据传输之间互不干扰,减小彼此之间的干扰,防止网 络不稳定时造成的连带伤害,保证数据传输的可靠性。
在本实施例中,通过远程通讯系统实现包含病灶信息的3D腹腔镜图像的传输,实现手术过程的可视化,以便医生及时对手术情况进行调整,有效提高了腹腔镜手术的安全性;同时由于视频发送通讯系统与视频接收通讯系统之间通过第一专用线路传输病灶信息,与其它数据传输之间互不干扰,减小彼此之间的干扰,防止网络不稳定时造成的连带伤害,保证数据传输的可靠性。
可选地,所述视频发送设备将所述病灶信息发送至所述视频接收设备时适于采用UDP协议。
具体地,在本实施例中,视频发送设备将病灶信息发送至视频接收设备时适于采用UDP协议,保证数据传输较高的实时性,给予医生以较好的手术体验,以便医生及时对手术情况进行调整,有效提高了腹腔镜手术的安全性。
在本实施例中,通过UDP协议实现将病灶信息由视频发送设备发送至视频接收设备,保证数据传输较高的实时性,给予医生以较好的手术体验,以便医生及时对手术情况进行调整,有效提高了腹腔镜手术的安全性。
可选地,所述视频发送设备编码所述病灶信息时适于采用低失真编码算法。
具体地,在本实施例中,视频发送设备编码病灶信息时适于采用低失真编码算法,由于患者端腹腔镜图像为1080P高清3D图像,该图像主要反映患者腔内病灶情况,因此图像的远程传输要保证较高的清晰度和连续性,医生才能获取准确的患者情况施以手术。因此采用高清1080P的视频采集卡进行本地采集,在视频发送设备进行低失真编码算法,在网络状态受到影响时,可根据网络状态调整3D图像视频的压缩率,保证3D图像较高的连续性。
在本实施例中,通过低失真编码算法编码病灶信息,在网络状态受到影响时,可根据网络状态调整3D图像视频的压缩率,保证3D图像较高的连续性,以便医生及时对手术情况进行调整,有效提高了腹腔镜手术的安全性。
可选地,所述远程通讯系统还包括机械臂通讯系统和控制台通讯系统,所述机械臂通讯系统与所述手术机械臂连接,所述控制台通讯系统与所述控制台连接,所述机械臂通讯系统与所述控制台通讯系统通信连接;所述机械 臂通讯系统与所述控制台通讯系统之间适于通过第二专用线路传输所述控制指令及所述状态信息。
具体地,在本实施例中,结合图2所示,基于腹腔镜手术机器人的远程手术系统还包括机械臂通讯系统和控制台通讯系统,机械臂通讯系统与手术机械臂连接,控制台通讯系统与控制台连接,机械臂通讯系统与控制台通讯系统通信连接。通过机械臂通讯系统和控制台通讯系统实现手术机械臂与控制台通讯系统之间的数据通信,实现医生对患者的远程手术,当患者端和医生端不在同一个物理空间下时能够进行手术,实现了优质医疗资源的普及。
其中,机械臂通讯系统与控制台通讯系统之间通过第二专用线路传输控制指令及状态信息,与其它数据传输之间互不干扰,减小彼此之间的干扰,防止网络不稳定时造成的连带伤害,保证数据传输的可靠性。
其中,为了保证远程手术的安全性,将控制指令和3D腔内图像分别采用各自专用的网络传输通道,专用网络传输通道指两个点对点的固定IP,一一对应传输数据,减小彼此之间的干扰,防止网络不稳定时造成的连带伤害,保证数据传输的可靠性。
在本实施例中,通过机械臂通讯系统和控制台通讯系统实现手术机械臂与控制台通讯系统之间的数据通信,实现医生对患者的远程手术,当患者端和医生端不在同一个物理空间下时能够进行手术,实现了优质医疗资源的普及;同时由于机械臂通讯系统与控制台通讯系统之间通过第二专用线路传输控制指令及状态信息,与其它数据传输之间互不干扰,减小彼此之间的干扰,防止网络不稳定时造成的连带伤害,保证数据传输的可靠性。
可选地,所述手术机械臂基于运动学算法确定所述末端位姿。
具体地,在本实施例中,手术机械臂基于运动学算法确定末端位姿,实现医生对患者的远程手术,当患者端和医生端不在同一个物理空间下时能够进行手术,实现了优质医疗资源的普及。
在本实施例中,通过运动学算法确定手术机械臂的末端位姿,实现医生对患者的远程手术,当患者端和医生端不在同一个物理空间下时能够进行手术,实现了优质医疗资源的普及。
可选地,所述手术机械臂包括手术机械臂本体以及用于对患者进行手术 的手术器械装置,所述手术器械装置安装在所述手术机械臂本体上。
具体地,在本实施例中,结合图2所示,基于腹腔镜手术机器人的远程手术系统还包括手术机械臂本体以及手术器械装置,手术器械装置安装在手术机械臂本体上,用于与手术机械臂本体共同移动,并根据控制指令确定的末端位姿调整自身状态。
在本实施例中,通过设置安装在手术机械臂本体上的手术器械装置,实现医生对患者的远程手术,当患者端和医生端不在同一个物理空间下时能够进行手术,实现了优质医疗资源的普及。
本发明另一实施例提供一种基于腹腔镜手术机器人的控制方法,包括:控制台生成控制指令,并通过远程通讯系统发送至手术机械臂;所述手术机械臂解析所述控制指令以确定所述手术机械臂的末端位姿;所述手术机械臂将所述手术机械臂的状态信息发送至所述控制台。
以一次远程手术过程进行举例:
例如进行北京到苏州的远程手术,患者端在苏州,医生端在北京,先分别布置两端手术场景,将患者端的机械臂系统(包括手术机械臂和手术器械装置)、腹腔镜镜头、视频采集卡、视频发送设备、机械臂通讯系统和视频发送通讯系统分别连接并上电,同时医生端将控制台、视频接收通讯系统、视频接收设备、3D显示器和控制台通讯系统分别连接并上电。当北京医生端和苏州患者端两端设备均上电正常运行后,患者端机械臂系统进行系统各个模块自检及机械臂复位。机械臂系统复位完毕后,机械臂系统、医生控制台、视频发送设备和视频接收设备分别输入配置好的IP地址和端口号,进行UDP数据传输和视频传输,此时医生端可以通过3D显示器看到远端患者情况,且医生控制台与机械臂系统远程连接完毕,准备进行手术。辅助医生根据病灶位置打孔,进行机械臂主动摆位,并安装上腹腔镜及相应手术器械,手术器械安装完毕后,医生可控制医生控制台的主操作手进行远程控制机械臂系统的手术器械对患者实施手术,在手术过程中,医生通过主操作手进行的操作会生成对应的控制指令,通过远程通讯系统发送至手术机械臂,在手术机械臂一侧对控制指令进行解析以确定末端位姿,从而调整手术机械臂和手术器械装置的位置和姿态,实现机械臂器械末端位姿完全匹配主手操作位 姿,实现主从跟随运动以完成对患者的手术,由于在控制台和手术机械臂同时进行数据计算,数据传输存在时间延迟,会导致控制台确定的末端位姿等数据传输到手术机械臂时存在设备自身时间延迟,会影响到手术进行的同步性,因而采用仅在手术机械臂一侧进行解析计算的单端数据模式,有效保证远程手术的同步性;当手术完成时,医生需将主操作手放回复位位置,使机器恢复初始待机状态。
虽然本公开披露如上,但本公开的保护范围并非仅限于此。本领域技术人员在不脱离本公开的精神和范围的前提下,可进行各种变更与修改,这些变更与修改均将落入本发明的保护范围。

Claims (10)

  1. 一种基于腹腔镜手术机器人的远程手术系统,其中,包括腹腔镜手术机器人系统和远程通讯系统,所述腹腔镜手术机器人系统包括位于患者端的手术机械臂以及位于医生端的控制台,所述手术机械臂和所述控制台适于通过所述远程通讯系统通信连接;
    所述手术机械臂,用于通过所述远程通讯系统接收所述控制台发送的控制指令,并解析所述控制指令以确定所述手术机械臂的末端位姿,以及将自身的状态信息通过所述远程通讯系统发送;
    所述控制台,用于生成所述控制指令,并通过所述远程通讯系统发送,以及通过所述远程通讯系统接收所述手术机械臂发送的所述状态信息。
  2. 根据权利要求1所述的基于腹腔镜手术机器人的远程手术系统,其中,还包括3D腔内视频处理系统和位于医生端的3D显示器,所述3D腔内视频处理系统包括腹腔镜镜头、腔内图像采集单元和视频编解码系统;
    所述腹腔镜镜头安装在所述手术机械臂上,所述腹腔镜镜头用于采集患者的病灶信息;
    所述腔内图像采集单元用于接收所述腹腔镜镜头采集的病灶信息,并将所述病灶信息发送至所述视频编解码系统;
    所述视频编解码系统用于将所述病灶信息编解码,并通过所述远程通讯系统发送至所述3D显示器。
  3. 根据权利要求2所述的基于腹腔镜手术机器人的远程手术系统,其中,所述视频编解码系统包括视频采集卡、视频发送设备及视频接收设备;
    所述视频采集卡与所述腔内图像采集单元连接,所述视频采集卡用于接收所述腔内图像采集单元发送的所述病灶信息,并将所述病灶信息发送至所述视频发送设备;
    所述视频发送设备用于将所述病灶信息编码并通过所述远程通讯系统发送至所述视频接收设备;
    所述视频接收设备用于接收所述视频发送设备发送的所述病灶信息,并将所述病灶信息解码后发送至所述3D显示器,以在所述3D显示器上显示所述病灶信息。
  4. 根据权利要求3所述的基于腹腔镜手术机器人的远程手术系统,其中,所述远程通讯系统包括视频发送通讯系统、视频接收通讯系统及网络基站;
    所述视频发送通讯系统与所述视频发送设备连接,所述视频发送通讯系统用于接收所述视频发送设备发送的所述病灶信息,并将所述病灶信息通过所述网络基站发送至所述视频接收通讯系统;
    所述网络基站与所述视频发送通讯系统通信及所述视频接收通讯系统连接,所述网络基站用于接收所述视频发送通讯系统发送的所述病灶信息,并将所述病灶信息发送至所述视频接收通讯系统;
    所述视频接收通讯系统与所述3D显示器连接,所述视频接收通讯系统用于接收所述网络基站发送的所述病灶信息,并将所述病灶信息发送至所述3D显示器;
    所述视频发送通讯系统与所述视频接收通讯系统之间适于通过第一专用线路传输所述病灶信息。
  5. 根据权利要求3所述的基于腹腔镜手术机器人的远程手术系统,其中,所述视频发送设备将所述病灶信息发送至所述视频接收设备时适于采用UDP协议。
  6. 根据权利要求3所述的基于腹腔镜手术机器人的远程手术系统,其中,所述视频发送设备编码所述病灶信息时适于采用低失真编码算法。
  7. 根据权利要求4所述的基于腹腔镜手术机器人的远程手术系统,其中,所述远程通讯系统还包括机械臂通讯系统和控制台通讯系统,所述机械臂通讯系统与所述手术机械臂连接,所述控制台通讯系统与所述控制台连接,所述机械臂通讯系统与所述控制台通讯系统通信连接;
    所述机械臂通讯系统与所述控制台通讯系统之间适于通过第二专用线路传输所述控制指令及所述状态信息。
  8. 根据权利要求1所述的基于腹腔镜手术机器人的远程手术系统,其中,所述手术机械臂基于运动学算法确定所述末端位姿。
  9. 根据权利要求1至8任一项所述的基于腹腔镜手术机器人的远程手术系统,其中,所述手术机械臂包括手术机械臂本体以及用于对患者进行手术的手术器械装置,所述手术器械装置安装在所述手术机械臂本体上。
  10. 一种基于腹腔镜手术机器人的控制方法,其中,包括:
    控制台生成控制指令,并通过远程通讯系统发送至手术机械臂;
    所述手术机械臂解析所述控制指令以确定所述手术机械臂的末端位姿;
    所述手术机械臂将所述手术机械臂的状态信息发送至所述控制台。
PCT/CN2021/131420 2020-12-24 2021-11-18 一种基于腹腔镜手术机器人的远程手术系统及控制方法 WO2022134967A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21908966.1A EP4268756A1 (en) 2020-12-24 2021-11-18 Remote surgery system and control method based on laparoscopic surgery robot

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011549192.3 2020-12-24
CN202011549192.3A CN112603546A (zh) 2020-12-24 2020-12-24 一种基于腹腔镜手术机器人的远程手术系统及控制方法

Publications (1)

Publication Number Publication Date
WO2022134967A1 true WO2022134967A1 (zh) 2022-06-30

Family

ID=75244876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/131420 WO2022134967A1 (zh) 2020-12-24 2021-11-18 一种基于腹腔镜手术机器人的远程手术系统及控制方法

Country Status (3)

Country Link
EP (1) EP4268756A1 (zh)
CN (1) CN112603546A (zh)
WO (1) WO2022134967A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115592667A (zh) * 2022-10-28 2023-01-13 李汉忠(Cn) 一种低时延的手术机器人远程控制系统
CN116400671A (zh) * 2023-04-27 2023-07-07 广州鼎盛医疗技术服务有限公司 远程超声诊疗设备的主从控制时延测试方法、系统及介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114376735A (zh) * 2022-01-11 2022-04-22 苏州康多机器人有限公司 用于腔镜手术机器人的术中远程操作终端交互系统及方法
CN114533280A (zh) * 2022-02-11 2022-05-27 青岛大学附属医院 一种小型手术机器人的主手控制系统
CN114842704B (zh) * 2022-05-10 2024-03-29 上海微创医疗机器人(集团)股份有限公司 培训系统及培训方法
CN115919474B (zh) * 2023-01-09 2023-06-16 北京云力境安科技有限公司 软式内镜操控机器人系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105411681A (zh) * 2015-12-22 2016-03-23 哈尔滨工业大学 分体式微创手术机器人的手眼协调控制系统及方法
CN110039547A (zh) * 2019-05-27 2019-07-23 清华大学深圳研究生院 一种柔性机械臂遥操作的人机交互终端及方法
CN110549334A (zh) * 2019-08-15 2019-12-10 大连大华中天科技有限公司 一种四自由度机械手臂的控制方法
CN111588472A (zh) * 2020-04-13 2020-08-28 微创(上海)医疗机器人有限公司 手术机器人系统
WO2020179815A1 (ja) * 2019-03-06 2020-09-10 川崎重工業株式会社 外科手術システムの制御方法および外科手術システム
CN111839614A (zh) * 2019-09-10 2020-10-30 深圳市精锋医疗科技有限公司 手术机器人及其机械臂的控制方法、控制装置
CN111973224A (zh) * 2020-08-31 2020-11-24 武汉匠芯网络科技有限公司 一种基于云计算的远程轻量级超声机器人诊疗系统及应用

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1401669B1 (it) * 2010-04-07 2013-08-02 Sofar Spa Sistema di chirurgia robotizzata con controllo perfezionato.
JP5612971B2 (ja) * 2010-09-07 2014-10-22 オリンパス株式会社 マスタスレーブマニピュレータ
CN202146362U (zh) * 2010-12-30 2012-02-22 上海交通大学医学院附属第九人民医院 一种基于光学导航七自由度颅颌面手术辅助机械臂
KR102188100B1 (ko) * 2013-03-15 2020-12-07 삼성전자주식회사 로봇 및 그 제어방법
WO2017070269A1 (en) * 2015-10-22 2017-04-27 Covidien Lp Multi-input robot surgical system control scheme
CN106375421A (zh) * 2016-08-30 2017-02-01 上海交通大学 基于远程操控的机器人辅助智能维护系统
EP3629980A4 (en) * 2017-05-25 2021-03-10 Covidien LP ROBOTIC SURGICAL SYSTEM WITH AUTOMATED GUIDANCE
CN107714178A (zh) * 2017-10-28 2018-02-23 深圳市前海安测信息技术有限公司 手术导航定位机器人及其控制方法
CN108433814B (zh) * 2018-03-16 2019-12-24 微创(上海)医疗机器人有限公司 手术机器人系统及其手术器械
CN109129523B (zh) * 2018-08-30 2021-07-06 燕山大学 基于人机交互的移动机器人实时远程控制系统
CN109758234B (zh) * 2019-02-15 2020-07-31 哈尔滨工业大学 用于微创手术移动腹腔镜自动控制系统及其控制方法
JP2022529111A (ja) * 2019-04-15 2022-06-17 コヴィディエン リミテッド パートナーシップ ロボットカートアームのアセンブリ識別のためのシステムおよび方法
CN110559083B (zh) * 2019-09-10 2020-08-25 深圳市精锋医疗科技有限公司 手术机器人及其末端器械的控制方法、控制装置
CN110464468B (zh) * 2019-09-10 2020-08-11 深圳市精锋医疗科技有限公司 手术机器人及其末端器械的控制方法、控制装置
CN110834330B (zh) * 2019-10-25 2020-11-13 清华大学深圳国际研究生院 柔性机械臂遥操作人机交互终端及方法
CN111113432A (zh) * 2020-01-10 2020-05-08 五邑大学 医用机械臂远程控制装置
CN111203876A (zh) * 2020-01-10 2020-05-29 五邑大学 一种医用机械臂远程控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105411681A (zh) * 2015-12-22 2016-03-23 哈尔滨工业大学 分体式微创手术机器人的手眼协调控制系统及方法
WO2020179815A1 (ja) * 2019-03-06 2020-09-10 川崎重工業株式会社 外科手術システムの制御方法および外科手術システム
CN110039547A (zh) * 2019-05-27 2019-07-23 清华大学深圳研究生院 一种柔性机械臂遥操作的人机交互终端及方法
CN110549334A (zh) * 2019-08-15 2019-12-10 大连大华中天科技有限公司 一种四自由度机械手臂的控制方法
CN111839614A (zh) * 2019-09-10 2020-10-30 深圳市精锋医疗科技有限公司 手术机器人及其机械臂的控制方法、控制装置
CN111588472A (zh) * 2020-04-13 2020-08-28 微创(上海)医疗机器人有限公司 手术机器人系统
CN111973224A (zh) * 2020-08-31 2020-11-24 武汉匠芯网络科技有限公司 一种基于云计算的远程轻量级超声机器人诊疗系统及应用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115592667A (zh) * 2022-10-28 2023-01-13 李汉忠(Cn) 一种低时延的手术机器人远程控制系统
CN116400671A (zh) * 2023-04-27 2023-07-07 广州鼎盛医疗技术服务有限公司 远程超声诊疗设备的主从控制时延测试方法、系统及介质
CN116400671B (zh) * 2023-04-27 2024-04-05 广州鼎盛医疗技术服务有限公司 远程超声诊疗设备的主从控制时延测试方法、系统及介质

Also Published As

Publication number Publication date
EP4268756A1 (en) 2023-11-01
CN112603546A (zh) 2021-04-06

Similar Documents

Publication Publication Date Title
WO2022134967A1 (zh) 一种基于腹腔镜手术机器人的远程手术系统及控制方法
US10206751B2 (en) Medical robotic system with remote current controller for controlling a plurality of distally housed motors
JP4738332B2 (ja) 医療機器を制御するためのシステム
EP2666143B1 (en) Telerobotic system with a dual application screen presentation
CN110215284B (zh) 一种可视化系统和方法
CN113545856B (zh) 基于5g通讯的远程骨科手术系统
Arata et al. A remote surgery experiment between Japan-Korea using the minimally invasive surgical system
CN111513855B (zh) 心脏内科介入导管手术系统及其应用方法
CN104173020A (zh) 一种对阴道镜检查阶段实时进行远程控制的系统及方法
CN209392094U (zh) 一种增强现实的手术系统
JP2021531883A (ja) 手術室における分散型画像処理システム
JP2016101377A (ja) 内視鏡装置及び内視鏡画像伝送方法
CN107242906B (zh) 一种手术机器人远端执行机构
KR102466028B1 (ko) 실시간 및 비-실시간 트래픽을 처리하기 위한 로봇 수술 시스템 및 방법
CN114376735A (zh) 用于腔镜手术机器人的术中远程操作终端交互系统及方法
CN108123940B (zh) 基于socket的异步通信方法、存储介质及处理器
CN114533280A (zh) 一种小型手术机器人的主手控制系统
CN111200988A (zh) 用于机器人推车臂组件识别的系统和方法
CN115592667A (zh) 一种低时延的手术机器人远程控制系统
JP7347428B2 (ja) ネットワーク監視システム、ネットワーク監視方法、及びプログラム
Kim et al. Laboratory-level telesurgery with industrial robots and haptic devices communicating via the internet
CN111421537A (zh) 远程控制系统
CN110557623A (zh) 混合现实手术辅助设备、辅助方法和混合现实手术系统
CN111656739A (zh) 系统控制器、网络系统以及网络系统中的方法
WO2019236773A1 (en) Systems and methods for high-speed data transmission across an electrical isolation barrier

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21908966

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021908966

Country of ref document: EP

Effective date: 20230724