WO2022134938A1 - 一种双目传感器视觉测量探头以及双目传感器 - Google Patents
一种双目传感器视觉测量探头以及双目传感器 Download PDFInfo
- Publication number
- WO2022134938A1 WO2022134938A1 PCT/CN2021/130853 CN2021130853W WO2022134938A1 WO 2022134938 A1 WO2022134938 A1 WO 2022134938A1 CN 2021130853 W CN2021130853 W CN 2021130853W WO 2022134938 A1 WO2022134938 A1 WO 2022134938A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- laser
- infrared industrial
- laser projection
- infrared
- binocular vision
- Prior art date
Links
- 238000005259 measurement Methods 0.000 title claims abstract description 51
- 239000000523 sample Substances 0.000 title claims abstract description 37
- 230000000007 visual effect Effects 0.000 title abstract description 5
- 230000003287 optical effect Effects 0.000 claims abstract description 18
- 238000012545 processing Methods 0.000 claims description 9
- 238000003860 storage Methods 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000009434 installation Methods 0.000 description 4
- 230000037237 body shape Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000003331 infrared imaging Methods 0.000 description 3
- 230000003796 beauty Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000013500 data storage Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000001459 lithography Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000010146 3D printing Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000002316 cosmetic surgery Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
- G01B11/2433—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures for measuring outlines by shadow casting
Definitions
- the invention relates to the technical field of non-contact human body measurement, in particular to a binocular sensor visual measurement probe and a binocular sensor.
- anthropometry is an important means to establish a digital 3D model of the human body.
- consumers have higher and higher requirements for the comfort, beauty and personalization of clothing.
- clothing manufacturers mainly carry out batch manufacturing according to the existing clothing model standards.
- China has a large population, and the body shapes of different regions and different ages are quite different.
- the limited clothing model standards cannot cover a variety of body shapes, which not only affects the beauty and comfort of clothing to a certain extent; Flexible stretching during work and sports is inconvenient.
- Binocular stereo vision is an important form of machine vision, which is based on the principle of parallax and obtains three-dimensional geometric information of objects from multiple images.
- the binocular stereo vision system generally obtains two digital images of the object to be measured at the same time from two cameras from different angles, or obtains two digital images of the object to be measured from different angles by a single camera at different times, and restores the object based on the principle of parallax
- the three-dimensional geometric information of the object can be reconstructed to reconstruct the three-dimensional contour and position of the object.
- the binocular stereo vision system has broad application prospects in the field of machine vision.
- Existing binocular sensors are mainly used in the measurement of workpiece integrity and surface flatness. Due to factors such as the model of the industrial camera, the baseline size between two industrial cameras, the angle of the optical axis of the industrial camera, etc. The measurement accuracy of the binocular sensor is affected. Therefore, the existing binocular sensor is not suitable for the mapping of three-dimensional data of the human body.
- the present invention aims to solve at least one of the technical problems existing in the prior art or related technologies.
- the object of the present invention is to provide a binocular vision measurement probe.
- Another object of the present invention is to provide a binocular sensor.
- the technical solution of the first aspect of the present invention provides a binocular vision measurement probe, comprising: a connecting plate; Laser projection area; two near-infrared industrial cameras are arranged on the connecting board and are located on both sides of the laser projection device; wherein, the near-infrared industrial camera and the laser projection device are all facing the same side, and the space between the two near-infrared industrial cameras is
- the length of the baseline is a first preset value
- the optical axis of each near-infrared industrial camera and the baseline are at a first preset angle
- the value of the first preset angle ranges from 80° to 88°, so that the two near-infrared The field of view of the industrial camera and the laser projection area coincide in the working distance.
- the laser projection device can emit laser light outward to form a laser projection area, and objects or human bodies in the laser projection area can be projected by the laser projection device
- the emitted laser is irradiated, and further, two near-infrared industrial cameras are arranged on the connection board, and are arranged on both sides of the laser projection device.
- the near-infrared industrial cameras are used to collect three-dimensional data information of the human body.
- the near-infrared industrial cameras The laser projection devices are all facing the same side
- the length of the baseline between the two near-infrared industrial cameras is a first preset value
- the optical axis of each near-infrared industrial camera and the baseline are at a first preset angle
- the first preset The value range of the angle is 80° ⁇ 88°, so that the field of view and laser projection area of the two near-infrared industrial cameras overlap in the working distance.
- the laser The human body or object in the projection area is irradiated by the laser to form a light spot.
- the near-infrared industrial camera can collect the light spot information irradiated on the human body, and then After data processing is performed on the light spot information, the three-dimensional data information of the human body is obtained.
- each near-infrared industrial camera forms a first preset angle with the baseline, and the length of the baseline between the two near-infrared industrial cameras is determined according to the working distance and the size of the human body, so as to improve the binocular vision.
- the accuracy of the visual measurement probe in collecting three-dimensional data information of the human body is determined according to the working distance and the size of the human body, so as to improve the binocular vision.
- the first preset value is 202mm
- the angle between the optical axes of the two near-infrared industrial cameras and the baseline is both 84.3°
- the working distance is 880mm.
- the target surface of the near-infrared industrial camera is 1/2 inch; the lens focal length of the near-infrared industrial camera is 8mm.
- the near-infrared industrial camera uses a camera with a 1/2" target surface, specifically Hikvision's MV-CA013-20GN industrial camera, which is a near-infrared enhanced Gigabit Ethernet industrial camera with infrared imaging performance. Better than the megapixel Basler black and white camera, and the cost is relatively low.
- the target surface of the industrial camera lens must be larger than the camera target surface.
- Computar's 8mm The focal length lens has a target size of 2/3", which can cover cameras with a target size of 1/2".
- Computar is a famous Japanese lens brand, and its lens quality is widely recognized in the industry.
- the 8mm focal length lens is very suitable for long working distances.
- the first preset value is 202mm
- the angle between the optical axis of the two near-infrared industrial cameras and the baseline is 84.3°
- the working distance is 880mm, so that the binocular vision measurement probe is at a distance of 880mm.
- a coincident field of view of 680mm ⁇ 544mm is formed.
- the optical axis of the laser projection device is perpendicular to the baseline.
- the laser projection device specifically includes: a laser, the laser is used for emitting laser light, and the laser is a point light source whose divergence angle is the second preset angle; The scattered light emitted by the laser is collimated into parallel light; the focal length lens is located on the side of the aspherical condenser lens away from the laser; wherein the laser, the aspherical condenser lens, and the focal length lens are coaxial, and the laser light emitted by the laser passes through the lens in turn.
- the laser projection area is formed after passing through the aspherical condenser lens and the focal length lens.
- the laser projection device includes a laser, an aspherical condensing lens, and a focal length lens.
- the laser emits scattered laser light
- the aspherical condensing lens collimates the scattered laser light into parallel light, and the parallel light passes through the focal length lens.
- forming a laser projection area so that the laser irradiates the human body at a working distance of 880mm, so that the near-infrared industrial camera can obtain the three-dimensional data of the human body.
- the laser is a vertical cavity surface emitting laser
- the focal length of the focal length lens is 8mm
- the focal length of the aspherical condenser lens is 18.1mm
- the second preset angle is 25°.
- VCSEL Vertical-Cavity Surface-Emitting Laser
- It has been more than 40 years since the birth of the laser, but it has not been used on a large scale for many years. It was not widely used until the iPhone X used the 850nm wavelength laser for face recognition of mobile phones. Lasers with a wavelength of 850 nm have characteristics such as high reliability, stable wavelength, and stable energy conversion efficiency.
- the PC-SI3535YHV-F252525 model laser homogenized divergent light source of Shanghai Huiqing Electronic Technology Co., Ltd. is selected as the projection light source.
- the projection module In order to make full use of the camera's field of view, the size of the speckle projection area under the same working distance should be able to cover the camera's range. field of view taken.
- the projection module also uses a Computar 8mm focal length lens.
- the invention selects the AC4505-B aspherical condenser lens of Shenzhen Lubang Technology Co., Ltd., which adopts high-quality B270 glass as the substrate material, and has high surface flatness and good optical performance.
- the working wavelength of the lens is 700nm-1100nm, and the focal length is 18.1mm.
- the assumed laser point light source is collimated by the lens and becomes a parallel beam with a spot diameter greater than 8 mm.
- the actual target surface size of the camera is 6.144mm ⁇ 4.915mm, and the diameter of the circumscribed circle of the target surface is 7.868mm. Therefore, when the VSECL light source, lithography mask, and projection lens are guaranteed to be coaxial during mechanical installation , the collimated light source can completely cover the effective projection area.
- the technical solution of the second aspect of the present invention provides a binocular sensor, comprising: the binocular vision measurement probe in the technical solution of the first aspect; an image acquisition card electrically connected to the near-infrared industrial camera in the binocular vision measurement probe; Among them, the image acquisition card is electrically connected to the PC end, and the three-dimensional data information collected by the near-infrared industrial camera is transmitted to the PC end for processing and storage; the base is hinged with the connection board of the binocular vision measurement probe.
- the binocular sensor proposed according to the technical solution of the second aspect of the present invention includes a binocular vision measurement probe, an image acquisition card, and a base.
- the image acquisition card is electrically connected to the near-infrared industrial camera in the binocular vision measurement probe and is connected to a PC terminal.
- the electrical connection enables the three-dimensional data information of the human body obtained by the near-infrared industrial camera to be transmitted to the PC through the image capture card, and data processing and data storage are performed on the PC.
- the base is hinged with the connecting plate, so that the connecting plate can rotate around the base.
- the orientation of the binocular vision measuring probe can be adjusted to facilitate the installation and arrangement of the binocular sensor.
- the image capture card includes an image memory, a display search unit, a camera interface, and a PC bus interface.
- the camera interface is used for electrical connection with the near-infrared industrial camera
- the PC bus interface is used for electrical connection with the PC terminal.
- the image acquisition card includes an image memory, a display search unit, a camera interface, and a PC bus interface.
- the camera interface is used for electrical connection with a near-infrared industrial camera, so that the near-infrared industrial camera can collect image data in real time or on time, and the camera can collect image data in real time or on time.
- the image is stored in one or three channels of the image memory, and then the data is transmitted to the PC side for processing through the PC bus interface.
- FIG. 1 shows a schematic structural diagram of a binocular vision measurement probe according to an embodiment of the present invention
- FIG. 2 shows a schematic view of the field of view of a near-infrared industrial camera in a binocular vision measurement probe according to an embodiment of the present invention
- FIG. 3 shows a schematic structural diagram of a laser and an aspherical condenser lens according to an embodiment of the present invention
- FIG. 4 shows a schematic diagram of the electrical connection between the binocular sensor and the PC terminal according to an embodiment of the present invention.
- connection board 2 near-infrared industrial cameras, 3 laser projection devices, 31 lasers, 32 aspheric condenser lenses, 4 image capture cards, 5 PC terminals, 6 bases.
- an embodiment of the present invention proposes a binocular vision measurement probe, which defines:
- the binocular vision measurement probe includes: a connecting plate 1, a laser projection device 3, and two near-infrared industrial cameras 2.
- the laser projection device 3 is arranged on the connecting plate 1, and the laser projection device 3 can emit laser light to form a laser projection area.
- the object or human body in the laser projection area can be irradiated by the laser emitted by the laser projection device 3
- two near-infrared industrial cameras 2 are arranged on the connecting board 1, and are located on both sides of the laser projection device 3, the near-infrared industrial camera 2 It is used to collect three-dimensional data information of the human body.
- the near-infrared industrial camera 2 and the laser projection device 3 are all facing the same side, and the baseline length between the two near-infrared industrial cameras 2 is the first preset value.
- the human body or object in the laser projection area is irradiated by the laser to form a light spot, because the field of view and the laser projection area of the two near-infrared industrial cameras 2 are The working distance overlaps, so that the near-infrared industrial camera 2 can collect the light spot information irradiated on the human body, and then perform data processing on the light spot information to obtain the three-dimensional data information of the human body.
- each near-infrared industrial camera 2 forms a first preset angle with the baseline, and the length of the baseline between the two near-infrared industrial cameras 2 is determined according to the working distance and the size of the human body, thereby improving The accuracy of the binocular vision measurement probe in collecting three-dimensional data information of the human body.
- the near-infrared industrial camera 2 uses a camera with a 1/2-inch target surface, the lens focal length of the near-infrared industrial camera 2 is 8 mm, and the first preset value is 202 mm, that is, the length of the baseline L1 is 202 mm. , the angle ⁇ between the optical axis and the baseline of the two near-infrared industrial cameras 2 is 84.3°, and the working distance L2 is 880mm, so that the binocular vision measurement probe forms a 680mm ⁇ 544mm distance at the working distance of 880mm. Coincident fields of view.
- the infrared speckle is invisible to the human eye during measurement, and the speckle quality is not affected by the surface color of the object to be measured.
- the present invention adopts infrared laser speckle projection. Factors such as camera target surface size, resolution, frame rate, and infrared imaging effects need to be comprehensively considered when selecting a camera.
- the megapixel industrial camera can fully meet the needs of human measurement in terms of measurement accuracy and data volume, and under normal indoor ambient light, the image acquisition time is generally milliseconds, and speckle projection measurement can be obtained with only a single shot.
- the common million-level resolution industrial camera target surface size can basically be divided into 1/3" and 1/2". In order to cover a larger measurement scene at the same working distance, this system uses 1/2" The camera on the target surface.
- the measurement accuracy of the two is in the same order of magnitude, and the measurement is performed in a small scene. The accuracy can reach more than 0.05mm.
- this system selects Hikvision's MV-CA013-20GN industrial camera, which is a near-infrared enhanced Gigabit Ethernet industrial camera, and its infrared imaging performance is better than the megapixel Basler Black and white camera, and the cost is relatively low.
- the target surface of the industrial camera lens In order to maximize the use of camera target surface imaging during measurement, the target surface of the industrial camera lens must be larger than the camera target surface.
- 8mm and 6mm are given priority.
- Focal length lens. 8mm focal length industrial lens is widely used in industrial precision measurement, the measurement error caused by lens distortion can be better suppressed after distortion correction, while 6mm focal length lens is rarely used in precision measurement.
- Computar's 8mm focal length lens has a target surface size of 2/3", which can cover cameras with a target surface size of 1/2".
- Computar is a famous Japanese lens brand, and its lens quality is widely recognized in the industry. Focal length lenses are ideal for longer working distances.
- the laser projection device 3 includes a laser 31, an aspherical condensing lens 32, and a focal length lens.
- the condensing lens 32 and the focal length lens are coaxial, the laser 31 is used for emitting laser light, and the laser 31 is a point light source whose divergence angle is the second preset angle.
- the laser is collimated as parallel light. After the parallel light passes through the focal length lens, a laser projection area is formed, so that the laser is irradiated on the human body at a working distance of 880mm, so that the near-infrared industrial camera 2 can obtain the three-dimensional data of the human body.
- VCSELs Vertical-Cavity Surface-Emitting Lasers
- the laser 31 has a history of more than 40 years since its birth.
- the laser 31 with a wavelength of 850 nm has characteristics such as high reliability, stable wavelength, and stable energy conversion efficiency. in 3D measurement technology.
- the present invention selects the PC-SI3535YHV-F2525 model laser 31 homogenized divergent light source of Shanghai Huiqing Electronic Technology Co., Ltd. as the projection light source.
- the size of the speckle projection area under the same working distance should be able to cover the area of the camera. Field of view that can be photographed.
- the projection module also uses a Computar 8mm focal length lens.
- the present invention selects the AC4505-B aspherical condenser lens 32 of Shenzhen Lubang Technology Co., Ltd., which uses high-quality B270 glass as the substrate material, which has high surface flatness and good optical properties. performance.
- the working wavelength of the lens is 700nm-1100nm
- the focal length is 18.1mm
- the scattering angle ⁇ of the vertical cavity surface emitting laser 31 is 25°
- the optical axis of the laser projection device 3 and the baseline vertical laser 31 point light source is collimated by the lens and then becomes It is a parallel beam with a spot diameter R greater than 8mm.
- the actual target surface size of the camera is 6.144mm ⁇ 4.915mm
- the diameter of the circumscribed circle of the target surface is 7.868mm. Therefore, when the VSECL light source, lithography mask, and projection lens are guaranteed to be coaxial during mechanical installation , the collimated light source can completely cover the effective projection area.
- an embodiment of the present invention proposes a binocular sensor, which defines:
- the binocular sensor includes: a binocular vision measurement probe, an image acquisition card 4, a base 6, the image acquisition card 4 and the binocular
- the near-infrared industrial camera 2 in the visual measurement probe is electrically connected and electrically connected with the PC terminal 5, so that the three-dimensional data information of the human body obtained by the near-infrared industrial camera 2 is transmitted to the PC terminal 5 through the image acquisition card 4, and the data is carried out on the PC terminal 5.
- the base 6 is hinged with the connecting plate 1, so that the connecting plate 1 can rotate around the base 6, so that the orientation of the binocular vision measurement probe can be adjusted to facilitate the installation and arrangement of the binocular sensor.
- the image acquisition card 4 includes an image memory, a display search unit, a camera interface, and a PC bus interface, and the camera interface is used for electrical connection with the near-infrared industrial camera 2, so that the near-infrared industrial camera 2 collects image data in real time or on time, and the camera is passed through the camera. After the interface (A/D) conversion, the image is stored in one or three channels of the image memory, and then the data is transmitted to the PC terminal 5 for processing through the PC bus interface.
- A/D interface
- the automatic measurement of three-dimensional data of the human body can be realized, and the measurement accuracy is high, the cost is low, and a better three-dimensional data measurement effect can be obtained by occupying a small site area.
- the terms “first”, “second” and “third” are only used for the purpose of description, and cannot be construed as indicating or implying relative importance; the term “multiple” refers to two or two above, unless otherwise expressly defined.
- the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense. For example, “connected” can be a fixed connection, a detachable connection, or an integral connection; “connected” can be It is directly connected or indirectly connected through an intermediary. For those of ordinary skill in the art, the specific meanings of the above terms in the present invention can be understood according to specific situations.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
一种双目传感器视觉测量探头以及双目传感器,双目视觉测量探头,包括:连接板(1);激光投影装置(3),设于连接板(1)上,激光投影装置(3)用于向外发射激光,并形成激光投影区域;两个近红外工业相机(2),设于连接板(1)上并分别位于激光投影装置(3)的两侧;其中,近红外工业相机(2)、激光投影装置(3)均朝向同一侧,两个近红外工业相机(2)之间的基线长度为第一预设值,每个近红外工业相机(2)的光轴与基线之间呈第一预设角度,第一预设角度取值范围均为80°~88°,使得两个近红外工业相机(2)的视场、激光投影区域在工作距离上重合。可以满足人体三维数据的精确测量。
Description
本发明涉及非接触式人体测量技术领域,具体而言,涉及一种双目传感器视觉测量探头以及双目传感器。
目前,人体测量是建立人体数字化三维模型的重要手段,智能化服装生产、医学整形、3D打印等领域均对以光学测量技术为主的非接触式人体测量有着广泛的需求。在服装生产领域,随着人们物质水平的提高,消费者对着装的舒适性、美观性、个性化水平要求越来越高。具体地,在批量制衣领域中,服装制作厂商主要还是按照现有的服装型号标准进行批量化制作。而中国人口众多,不同地域、不同年龄的人体型差异较大,有限的服装型号标准无法覆盖多样化的体型,这不仅在一定程度上影响着着装的美观性和舒适性;并且可能会对人在工作和运动中的灵活舒展带来不便。随着智能制造技术的到来,制衣行业也在由传统的加工模式向数字化、智能化生产模式转变,建立符合本国人体体型分布情况的人体数据库则尤为重要。双目立体视觉是机器视觉的一种重要形式,它是基于视差原理并由多幅图像获取物体三维几何信息的方法。双目立体视觉系统一般由双摄像机从不同角度同时获得被测物的两幅数字图像,或由单摄像机在不同时刻从不同角度获得被测物的两幅数字图像,并基于视差原理恢复出物体的三维几何信息,重建物体三维轮廓及位置。双目立体视觉系统在机器视觉领域有着广泛的应用前景。现有的双目传感器主要应用于广泛地应用于工件的完整性、表面平整度的测量,由于工业相机的型号、两个工业相机之间的基线尺寸、工业相机光轴的角度等因素均会影响双目传感器的测量精度,因此,现有的双目传感器并不适用于人体三维数据的测绘。
发明内容
本发明旨在至少解决现有技术或相关技术中存在的技术问题之一。
有鉴于此,本发明的目的在于提供一种双目视觉测量探头。
本发明的另一个目的在于提供一种双目传感器。
为了实现上述目的,本发明的第一方面技术方案提供了一种双目视觉测量探头,包括:连接板;激光投影装置,设于连接板上,激光投影装置用于向外发射激光,并形成激光投影区域;两个近红外工业相机,设于连接板上并分别位于激光投影装置的两侧;其中,近红外工业相机、激光投影装置均朝向同一侧,两个近红外工业相机之间的基线长度为第一预设值,每个近红外工业相机的光轴与基线之间呈第一预设角度,第一预设角度取值范围均为80°~88°,使得两个近红外工业相机的视场、激光投影区域在工作距离上重合。
根据本发明提出的双目视觉测量探头,通过在连接板上设置激光投影装置,激光投影装置可以向外发射激光,并形成激光投影区域,处于激光投影区域内的物体或人体可以被激光投影装置发射的激光照射,进一步地,在连接板上设置两个近红外工业相机,并设置在激光投影装置的两侧,近红外工业相机用于采集人体三维数据信息,具体地,近红外工业相机、激光投影装置均朝向同一侧,两个近红外工业相机之间的基线长度为第一预设值,每个近红外工业相机的光轴与基线之间呈第一预设角度,第一预设角度取值范围均为80°~88°,使得两个近红外工业相机的视场、激光投影区域在工作距离上重合,人体与双目视觉测量探头之间的距离为工作距离时,处于激光投影区域内的人体或物体被激光照射形成光斑,由于两个近红外工业相机的视场、激光投影区域在工作距离上重合,使得近红外工业相机可以采集到照射到人体上的光斑信息,再对光斑信息进行数据处理后从而获取人体的三维数据信息。
需要说明的是,每个近红外工业相机的光轴与基线之间呈第一预设角度、两个近红外工业相机之间的基线的长度均根据工作距离与人体尺寸确定,从而提高双目视觉测量探头在采集人体三维数据信息的准确性。
在上述技术方案中,第一预设值为202mm,两个近红外工业相机的 光轴与基线之间的夹角均为84.3°,工作距离为880mm。近红外工业相机的靶面为1/2英寸;近红外工业相机的镜头焦距为8mm。
在该技术方案中,近红外工业相机用1/2"靶面的相机,具体为海康的MV-CA013-20GN工业相机,该相机为近红外增强型千兆以太网工业相机,红外成像性能优于百万像素的Basler黑白相机,并且成本相对较低。为了在测量时最大化利用相机靶面成像,所配工业相机镜头的靶面必须大于相机靶面。选用8mm焦距镜头,Computar的8mm焦距镜头靶面大小为2/3",可以覆盖1/2"靶面大小的相机。Computar是日本著名的镜头品牌,镜头品质被业内广泛认可,其8mm焦距镜头非常适合于较长的工作距离。第一预设值为202mm,两个近红外工业相机的光轴与基线之间的夹角均为84.3°,工作距离为880mm,使得双目视觉测量探头在工作距离为880mm的距离上,形成680mm×544mm的重合视场。
在上述技术方案中,激光投影装置的光轴与基线垂直。
在上述技术方案中,激光投影装置具体包括:激光器,激光器用于发射激光,且激光器为发散角为第二预设角度的点光源;非球面聚光透镜,设于激光器的一侧,用于将激光器发射的散射光准直为平行光;焦距镜头,设于非球面聚光透镜远离激光器的一侧;其中,激光器、非球面聚光透镜、焦距镜头同轴,激光器发射出的激光依次穿过非球面聚光透镜、焦距镜头后形成激光投影区域。
在该技术方案中,激光投影装置包括激光器、非球面聚光透镜、焦距镜头,通过激光器发射散射激光,并通过非球面聚光透镜将散射激光准直为平行光,平行光再经过焦距镜头后,形成激光投影区域,使得激光在880mm的工作距离上照射到被人体上,从而使近红外工业相机可以获取人体的三维数据。
在上述技术方案中,激光器为垂直腔面发射激光器,焦距镜头的焦距为8mm,非球面聚光透镜的焦距为18.1mm,第二预设角度为25°。
在该技术方案中,垂直腔面发射激光器(Vertical-Cavity Surface- Emitting Lasers,VCSEL)是一种低成本的用于运动跟踪和数据传输的光源。激光器诞生至今已经有40多年的历史,但多年来一直没有得到规模使用,直到iPhone X将850nm波长的激光器用于手机的人脸识别之后才得到广泛应用。850nm波长的激光器具有可靠性高、波长稳定、能量转换效率稳定等特定,近几年来作为投影或调制光源被广泛应用于结构光、飞行时间法等三维测量技术中。本发明选用上海汇卿电子科技有限公司的PC-SI3535YHV-F2525型号激光器匀化发散光源作为投影光源,为了充分利用相机拍摄视场,同样的工作距离下散斑投影区域大小应能够覆盖相机所能拍摄的视场。同时为了避免产生无效的投影区域,投影模块也使用Computar 8mm焦距镜头。本发明选用深圳市麓邦技术有限公司的AC4505-B非球面聚光透镜,其采用高品质的B270玻璃作为基片材料,具有很高的表面平整度和良好的光学性能。该透镜工作波长为700nm-1100nm,焦距为18.1mm。所假定的激光器点光源经过该透镜准直后变为光斑直径大于8mm的平行光束。相机的实际靶面大小为6.144mm×4.915mm,该靶面的外接圆直径为7.868mm,因此,当VSECL光源、光刻掩膜版、投影镜头三者在机械安装中保证同轴的情况下,该准直光源可以完全覆盖有效投影区域。
本发明的第二方面技术方案提出了一种双目传感器,包括:第一方面技术方案中的双目视觉测量探头;图像采集卡,与双目视觉测量探头中的近红外工业相机电连接;其中,图像采集卡与PC端电连接,将近红外工业相机采集到的三维数据信息传递到PC端中处理和存储;基座,与双目视觉测量探头的连接板铰接。
根据本发明的第二方面技术方案提出的双目传感器,包括双目视觉测量探头、图像采集卡、基座,图像采集卡与双目视觉测量探头中的近红外工业相机电连接并且与PC端电连接,使得近红外工业相机获取的人体三维数据信息通过图像采集卡传递到PC端,并在PC端进行数据处理和数据存储,基座与连接板铰接,使连接板可以绕基座转动,从而可以调整双 目视觉测量探头的朝向,以便于双目传感器的安装和布置。
在上述技术方案中,图像采集卡包括图像存储器、显示查找单元、摄像头接口、PC总线接口,摄像头接口用于与近红外工业相机电连接,PC总线接口用于与PC端电连接。
在该技术方案中,图像采集卡包括图像存储器、显示查找单元、摄像头接口、PC总线接口,摄像头接口用于与近红外工业相机电连接,使得近红外工业相机实时或准时采集图像数据,经摄像头接口(A/D)变换后将图像存放在图像存储器的一个或三个通道中,再通过PC总线接口将数据传递到PC端处理。
本发明的附加方面和优点将在下面的描述部分中变得明显,或通过本发明的实践了解到。
图1示出了根据本发明的一个实施例的双目视觉测量探头的结构示意图;
图2示出了根据本发明的一个实施例的双目视觉测量探头中近红外工业相机的视场示意图;
图3示出了根据本发明的一个实施例的激光器、非球面聚光透镜的结构示意图;
图4示出了根据本发明的一个实施例的双目传感器与PC端电连接的示意图。
其中,图1至图4中的附图标记与部件名称之间的对应关系为:
1连接板、2近红外工业相机、3激光投影装置、31激光器、32非球面聚光透镜、4图像采集卡、5 PC端、6基座。
为了可以更清楚地理解本发明的上述目的、特征和优点,下面结合附 图和具体实施方式对本发明进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是,本发明还可以采用其他不同于在此描述的其他方式来实施,因此,本发明的保护范围并不受下面公开的具体实施例的限制。
下面参照图1至图4描述根据本发明的一些实施例。
实施例1:
如图1和图2所示,本发明的一个实施例提出了双目视觉测量探头,限定了:
双目视觉测量探头包括:连接板1、激光投影装置3、两个近红外工业相机2,激光投影装置3设置再连接板1上,激光投影装置3可以向外发射激光,并形成激光投影区域,处于激光投影区域内的物体或人体可以被激光投影装置3发射的激光照射,两个近红外工业相机2设置在连接板1上,并位于激光投影装置3的两侧,近红外工业相机2用于采集人体三维数据信息,具体地,近红外工业相机2、激光投影装置3均朝向同一侧,两个近红外工业相机2之间的基线长度为第一预设值,每个近红外工业相机2的光轴与基线之间呈第一预设角度,第一预设角度取值范围均为80°~88°,使得两个近红外工业相机2的视场、激光投影区域在工作距离上重合,人体与双目视觉测量探头之间的距离为工作距离时,处于激光投影区域内的人体或物体被激光照射形成光斑,由于两个近红外工业相机2的视场、激光投影区域在工作距离上重合,使得近红外工业相机2可以采集到照射到人体上的光斑信息,再对光斑信息进行数据处理后从而获取人体的三维数据信息。
需要说明的是,每个近红外工业相机2的光轴与基线之间呈第一预设角度、两个近红外工业相机2之间的基线的长度均根据工作距离与人体尺寸确定,从而提高双目视觉测量探头在采集人体三维数据信息的准确性。
进一步地,如图2所示,近红外工业相机2用1/2英寸靶面的相机, 近红外工业相机2的镜头焦距为8mm,第一预设值为202mm,即基线L1的长度为202mm,两个近红外工业相机2的光轴与基线之间的夹角α均为84.3°,工作距离L2为880mm,使得双目视觉测量探头在工作距离为880mm的距离上,形成680mm×544mm的重合视场。
具体地,为了降低测量系统对环境光的要求,并且使人可以在睁眼的自然状态下完成测量,在测量时由于红外散斑具有人眼不可见、散斑质量不受被测对象表面颜色干扰等优势,本发明采用红外激光散斑投影。在相机选型时需要综合考虑相机靶面尺寸、分辨率、帧率、红外成像效果等因素。百万级像素工业相机在测量精度和数据量方面完全可以满足人体测量的需求,并且在室内正常环境光下,图像的采集时间一般为毫秒级,散斑投影测量仅需单次拍摄即可获得高质量的稠密点云,因此该系统对帧率大小基本上没有要求。常见的百万级分辨率工业相机靶面尺寸基本上可以分为1/3"和1/2"两种,为了在同样的工作距离能够覆盖更大的测量场景,本系统选用1/2"靶面的相机。通过对比德国的Basler和国产的海康威视百万级分辨率工业相机,同样的结构配置和测量场景下,二者的测量精度在同一个量级,在小场景下测量精度均可达到0.05mm以上。综合以上分析,本系统选择海康的MV-CA013-20GN工业相机,该相机为近红外增强型千兆以太网工业相机,红外成像性能优于百万像素的Basler黑白相机,并且成本相对较低。为了在测量时最大化利用相机靶面成像,所配工业相机镜头的靶面必须大于相机靶面。基于大靶面短焦距的设计理念,优先考虑8mm和6mm焦距的镜头。8mm焦距工业镜头在工业精密测量中被广泛应用,镜头畸变所导致的测量误差在进行畸变矫正后可以得到较好的抑制效果,而6mm焦距镜头则在精密测量中很少使用。因此,选用8mm焦距镜头,Computar的8mm焦距镜头靶面大小为2/3",可以覆盖1/2"靶面大小的相机。Computar是日本著名的镜头品牌,镜头品质被业内广泛认可,其8mm焦距镜头非常适合于较长的工作距离。
进一步地,如图3所示,激光投影装置3包括激光器31、非球面聚 光透镜32、焦距镜头,焦距镜头设于非球面聚光透镜32远离激光器31的一侧,且激光器31、非球面聚光透镜32、焦距镜头同轴,激光器31用于发射激光,且激光器31为发散角为第二预设角度的点光源,通过激光器31发射散射激光,并通过非球面聚光透镜32将散射激光准直为平行光,平行光再经过焦距镜头后,形成激光投影区域,使得激光在880mm的工作距离上照射到被人体上,从而使近红外工业相机2可以获取人体的三维数据。
具体地,垂直腔面发射激光器(Vertical-Cavity Surface-Emitting Lasers,VCSEL)是一种低成本的用于运动跟踪和数据传输的光源。激光器31诞生至今已经有40多年的历史,850nm波长的激光器31具有可靠性高、波长稳定、能量转换效率稳定等特定,近几年来作为投影或调制光源被广泛应用于结构光、飞行时间法等三维测量技术中。本发明选用上海汇卿电子科技有限公司的PC-SI3535YHV-F2525型号激光器31匀化发散光源作为投影光源,为了充分利用相机拍摄视场,同样的工作距离下散斑投影区域大小应能够覆盖相机所能拍摄的视场。同时为了避免产生无效的投影区域,投影模块也使用Computar 8mm焦距镜头。
如图3所示,本发明选用深圳市麓邦技术有限公司的AC4505-B非球面聚光透镜32,其采用高品质的B270玻璃作为基片材料,具有很高的表面平整度和良好的光学性能。该透镜工作波长为700nm-1100nm,焦距为18.1mm,垂直腔面发射激光器31的散射角度β为25°,并且激光投影装置3的光轴与基线垂直激光器31点光源经过该透镜准直后变为光斑直径R大于8mm的平行光束。相机的实际靶面大小为6.144mm×4.915mm,该靶面的外接圆直径为7.868mm,因此,当VSECL光源、光刻掩膜版、投影镜头三者在机械安装中保证同轴的情况下,该准直光源可以完全覆盖有效投影区域。
实施例2:
如图4所示,本发明的一个实施例提出了一种双目传感器,限定了: 双目传感器包括:双目视觉测量探头、图像采集卡4、基座6,图像采集卡4与双目视觉测量探头中的近红外工业相机2电连接并且与PC端5电连接,使得近红外工业相机2获取的人体三维数据信息通过图像采集卡4传递到PC端5,并在PC端5进行数据处理和数据存储,基座6与连接板1铰接,使连接板1可以绕基座6转动,从而可以调整双目视觉测量探头的朝向,以便于双目传感器的安装和布置。
进一步地,图像采集卡4包括图像存储器、显示查找单元、摄像头接口、PC总线接口,摄像头接口用于与近红外工业相机2电连接,使得近红外工业相机2实时或准时采集图像数据,经摄像头接口(A/D)变换后将图像存放在图像存储器的一个或三个通道中,再通过PC总线接口将数据传递到PC端5处理。
根据本发明提出的双目视觉测量探头以及双目传感器,可以实现对人体三维数据的自动测量,且测量精度高,成本低,占用较小的场地面积既可以获得较好的三维数据测量效果。
在本发明中,术语“第一”、“第二”、“第三”仅用于描述的目的,而不能理解为指示或暗示相对重要性;术语“多个”则指两个或两个以上,除非另有明确的限定。术语“安装”、“相连”、“连接”、“固定”等术语均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;“相连”可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
本发明的描述中,需要理解的是,术语“上”、“下”、“左”、“右”、“前”、“后”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或单元必须具有特定的方向、以特定的方位构造和操作,因此,不能理解为对本发明的限制。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具 体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (10)
- 一种双目视觉测量探头,其特征在于,包括:连接板;激光投影装置,设于所述连接板上,所述激光投影装置用于向外发射激光,并形成激光投影区域;两个近红外工业相机,设于所述连接板上并分别位于所述激光投影装置的两侧;其中,所述近红外工业相机、所述激光投影装置均朝向同一侧,两个所述近红外工业相机之间的基线长度为第一预设值,每个所述近红外工业相机的光轴与所述基线之间呈第一预设角度,所述第一预设角度取值范围均为80°~88°,使得两个所述近红外工业相机的视场、所述激光投影区域在工作距离上重合。
- 根据权利要求1所述的双目视觉测量探头,其特征在于,所述激光投影装置的光轴与所述基线垂直。
- 根据权利要求1或2所述的双目视觉测量探头,其特征在于,所述激光投影装置具体包括:激光器,所述激光器用于发射激光,且所述激光器为发散角为第二预设角度的点光源;非球面聚光透镜,设于所述激光器的一侧,用于将所述激光器发射的散射光准直为平行光;焦距镜头,设于所述非球面聚光透镜远离所述激光器的一侧;其中,所述激光器、所述非球面聚光透镜、所述焦距镜头同轴,所述激光器发射出的激光依次穿过所述非球面聚光透镜、所述焦距镜头后形成激光投影区域。
- 根据权利要求3所述的双目视觉测量探头,其特征在于,所述激光器为垂直腔面发射激光器。
- 根据权利要求3所述的双目视觉测量探头,其特征在于,所述焦距镜头的焦距为8mm,所述非球面聚光透镜的焦距为 18.1mm,所述第二预设角度为25°。
- 根据权利要求1所述的双目视觉测量探头,其特征在于,所述第一预设值为202mm,两个所述近红外工业相机的光轴与所述基线之间的夹角均为84.3°,所述工作距离为880mm。
- 根据权利要求6所述的双目视觉测量探头,其特征在于,所述近红外工业相机的靶面为1/2英寸;所述近红外工业相机的镜头焦距为8mm。
- 一种双目传感器,其特征在于,包括:如权利要求1至6中任一项所述的双目视觉测量探头;图像采集卡,与所述双目视觉测量探头中的近红外工业相机电连接;其中,图像采集卡与PC端电连接,将所述近红外工业相机采集到的三维数据信息传递到所述PC端中处理和存储。
- 根据权利要求8所述的双目传感器,其特征在于,所述图像采集卡包括图像存储器、显示查找单元、摄像头接口、PC总线接口,所述摄像头接口用于与所述近红外工业相机电连接,所述PC总线接口用于与所述PC端电连接。
- 根据权利要求8所述的双目传感器,其特征在于,还包括:基座,与所述双目视觉测量探头的连接板铰接。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011542092.8A CN112729155A (zh) | 2020-12-24 | 2020-12-24 | 一种双目传感器视觉测量探头以及双目传感器 |
CN202011542092.8 | 2020-12-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022134938A1 true WO2022134938A1 (zh) | 2022-06-30 |
Family
ID=75604741
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/130853 WO2022134938A1 (zh) | 2020-12-24 | 2021-11-16 | 一种双目传感器视觉测量探头以及双目传感器 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112729155A (zh) |
WO (1) | WO2022134938A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117579798A (zh) * | 2024-01-15 | 2024-02-20 | 深圳市橙子数字科技有限公司 | 一种投影设备标定方法、装置和电子设备 |
CN117970737A (zh) * | 2024-04-01 | 2024-05-03 | 广州芯特智能装备有限公司 | 一种基于双视觉相机的目标焦距点获取方法、系统及存储介质 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112729155A (zh) * | 2020-12-24 | 2021-04-30 | 上海智能制造功能平台有限公司 | 一种双目传感器视觉测量探头以及双目传感器 |
CN114152202A (zh) * | 2021-11-26 | 2022-03-08 | 东风设备制造有限公司 | 一种光学检测沉割槽的装置和沉割槽光学检测系统 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102589526A (zh) * | 2011-12-23 | 2012-07-18 | 北京控制工程研究所 | 一种单基线非合作目标双目测量系统 |
CN105758383A (zh) * | 2015-12-30 | 2016-07-13 | 中国科学院长春光学精密机械与物理研究所 | 一种双目视觉测量系统精度分析方法 |
US10346995B1 (en) * | 2016-08-22 | 2019-07-09 | AI Incorporated | Remote distance estimation system and method |
CN209147932U (zh) * | 2018-11-19 | 2019-07-23 | 清华大学深圳研究生院 | 一种激光成像测距系统 |
CN111904074A (zh) * | 2020-08-20 | 2020-11-10 | 上海交通大学 | 一种基于红外激光散斑投影的人体数字化测量装置 |
CN112729155A (zh) * | 2020-12-24 | 2021-04-30 | 上海智能制造功能平台有限公司 | 一种双目传感器视觉测量探头以及双目传感器 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102062588B (zh) * | 2009-11-11 | 2012-07-04 | 中国科学院沈阳自动化研究所 | 一种计算机双目视觉义齿扫描装置及其三维重建方法 |
CN102012217B (zh) * | 2010-10-19 | 2012-07-04 | 南京大学 | 一种基于双目视觉的大形貌物体三维几何外形测量方法 |
JP6425990B2 (ja) * | 2014-12-18 | 2018-11-21 | 東日本旅客鉄道株式会社 | 道床形状計測方法 |
CN104776815B (zh) * | 2015-03-23 | 2018-04-17 | 中国科学院上海光学精密机械研究所 | 一种基于达曼光栅的彩色三维轮廓测量装置与方法 |
CN106840041A (zh) * | 2017-04-07 | 2017-06-13 | 吉林大学 | 基于双目主动视觉的汽车形貌扫描仪 |
CN108536142B (zh) * | 2018-03-18 | 2020-06-12 | 上海交通大学 | 基于数字光栅投影的工业机器人防撞预警系统及方法 |
CN109506562A (zh) * | 2018-10-29 | 2019-03-22 | 北京卫星制造厂有限公司 | 一种用于太阳翼展开锁定深度检测的双目视觉测量装置 |
CN109903376B (zh) * | 2019-02-28 | 2022-08-09 | 四川川大智胜软件股份有限公司 | 一种人脸几何信息辅助的三维人脸建模方法及系统 |
-
2020
- 2020-12-24 CN CN202011542092.8A patent/CN112729155A/zh active Pending
-
2021
- 2021-11-16 WO PCT/CN2021/130853 patent/WO2022134938A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102589526A (zh) * | 2011-12-23 | 2012-07-18 | 北京控制工程研究所 | 一种单基线非合作目标双目测量系统 |
CN105758383A (zh) * | 2015-12-30 | 2016-07-13 | 中国科学院长春光学精密机械与物理研究所 | 一种双目视觉测量系统精度分析方法 |
US10346995B1 (en) * | 2016-08-22 | 2019-07-09 | AI Incorporated | Remote distance estimation system and method |
CN209147932U (zh) * | 2018-11-19 | 2019-07-23 | 清华大学深圳研究生院 | 一种激光成像测距系统 |
CN111904074A (zh) * | 2020-08-20 | 2020-11-10 | 上海交通大学 | 一种基于红外激光散斑投影的人体数字化测量装置 |
CN112729155A (zh) * | 2020-12-24 | 2021-04-30 | 上海智能制造功能平台有限公司 | 一种双目传感器视觉测量探头以及双目传感器 |
Non-Patent Citations (1)
Title |
---|
YANG HONGTAO, ET AL.: "Precision analysis of binocular stereo vision measurement system", CHUANGANQI-YU-WEI-XITONG = TRANSDUCER AND MICROSYSTEM TECHNOLOGY, DIANZI GONGYEBU, DONGBEI CHUANGANQI JISHU YANJIUSUO, CN, vol. 39, no. 10, 24 September 2020 (2020-09-24), CN , XP055945399, ISSN: 1000-9787, DOI: 10.13873/J.1000-9787(2020)10-0058-04 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117579798A (zh) * | 2024-01-15 | 2024-02-20 | 深圳市橙子数字科技有限公司 | 一种投影设备标定方法、装置和电子设备 |
CN117579798B (zh) * | 2024-01-15 | 2024-04-19 | 深圳市橙子数字科技有限公司 | 一种投影设备标定方法、装置和电子设备 |
CN117970737A (zh) * | 2024-04-01 | 2024-05-03 | 广州芯特智能装备有限公司 | 一种基于双视觉相机的目标焦距点获取方法、系统及存储介质 |
CN117970737B (zh) * | 2024-04-01 | 2024-06-04 | 广州芯特智能装备有限公司 | 一种基于双视觉相机的目标焦距点获取方法、系统及存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN112729155A (zh) | 2021-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022134938A1 (zh) | 一种双目传感器视觉测量探头以及双目传感器 | |
US11867978B2 (en) | Method and device for determining parameters for spectacle fitting | |
US10560679B2 (en) | Deformation detection and automatic calibration for a depth imaging system | |
CN106773489B (zh) | 一种光学投影装置及深度相机 | |
US8294082B2 (en) | Probe with a virtual marker | |
CN109661687A (zh) | 固定距离虚拟和增强现实系统及方法 | |
US10715711B2 (en) | Adaptive three-dimensional imaging system and methods and uses thereof | |
WO2018028152A1 (zh) | 一种图像采集设备、虚拟现实设备 | |
JP7079381B2 (ja) | 眼鏡フレームの内輪郭を光学測定するデバイス及び方法 | |
CN104930988B (zh) | 一种光纤阵列端面倾斜角测量仪及测量方法 | |
WO2022017447A1 (zh) | 图像显示控制方法、图像显示控制装置及头戴式显示设备 | |
CN105354825A (zh) | 自动识别读写场景中读物位置的智能装置及其应用 | |
CN114004880B (zh) | 双目相机的点云和强反光目标实时定位方法 | |
CN110068912A (zh) | 电子装置 | |
Chen et al. | Field-of-view-enlarged single-camera 3-D shape reconstruction | |
CN108803067A (zh) | 一种光学深度相机及其信号光源处理方法 | |
JP2006220603A (ja) | 撮像装置 | |
CN111862170A (zh) | 光学式运动捕捉系统及方法 | |
CN108924407B (zh) | 一种深度成像方法及系统 | |
CN208282790U (zh) | 目标物体的3d轮廓测量装置 | |
JP2005352835A (ja) | 画像入出力装置 | |
CN213091888U (zh) | 深度测量系统及电子设备 | |
CN105455308A (zh) | 一种脚型三维数据测量系统 | |
CN107404643B (zh) | 一种三维摄像系统及其摄像方法 | |
CN213690092U (zh) | 低镜头高度的光学投影器以及深度相机模组 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21908938 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23.11.2023) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21908938 Country of ref document: EP Kind code of ref document: A1 |