WO2022134694A1 - 用于识别干扰信号的方法、装置、存储介质及处理器 - Google Patents

用于识别干扰信号的方法、装置、存储介质及处理器 Download PDF

Info

Publication number
WO2022134694A1
WO2022134694A1 PCT/CN2021/120208 CN2021120208W WO2022134694A1 WO 2022134694 A1 WO2022134694 A1 WO 2022134694A1 CN 2021120208 W CN2021120208 W CN 2021120208W WO 2022134694 A1 WO2022134694 A1 WO 2022134694A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
point
determining
reflected signal
slope
Prior art date
Application number
PCT/CN2021/120208
Other languages
English (en)
French (fr)
Inventor
范志恒
陈蔚
全永兵
魏中科
Original Assignee
佛山市顺德区美的饮水机制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 佛山市顺德区美的饮水机制造有限公司 filed Critical 佛山市顺德区美的饮水机制造有限公司
Publication of WO2022134694A1 publication Critical patent/WO2022134694A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J31/00Apparatus for making beverages
    • A47J31/44Parts or details or accessories of beverage-making apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/539Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section

Definitions

  • the present invention relates to the field of electrical appliances, in particular to a method, a device, a storage medium and a processor for identifying an interference signal.
  • the principle of the ultrasonic water dispenser is to transmit sound waves through the transducer, and the sound waves are reflected back when encountering obstacles.
  • the transducer converts the corresponding time domain curve according to the reflected sound wave energy. Due to this feature of sound waves, it can usually be used to measure the height of the cup and the height of the liquid level.
  • the object that is put into the water receiving table of the ultrasonic water dispenser is the cup from which we drink water.
  • the closed loop of the ultrasonic water dispenser is to automatically discharge water after detecting the height of the cup, and automatically stop the water when the cup is full.
  • the existing technology is usually solved by adding additional sensors to assist ultrasonic identification of the difference between interference signals (eg, human hands) and cups, such as adding additional hardware such as infrared sensors, TOF optical sensors, and pressure sensors. Therefore, the existing method for identifying interference signals has the problem of high hardware cost.
  • the purpose of the embodiments of the present invention is to provide a method, processor, device, water dispenser and storage medium for identifying interference signals, so as to solve the problem of high hardware cost in the existing methods for identifying interference signals.
  • a first aspect of the present invention provides a method for identifying interference signals, which is applied to a water dispenser including an ultrasonic detector, including:
  • determining the area of the interval includes: determining the first point and the second point in the reflected signal that are closest to the highest peak and whose amplitude is equal to the critical value; determining the vertex of the highest peak; according to the first point and the second point The distance between and the distance between the vertex and the critical value determines the area of the interval.
  • determining the interval area according to the distance between the first point and the second point and the distance between the vertex and the critical value includes: determining the distance between the first point and the second point, and determining the distance between the vertex and the critical value. The value of the product of the distances between the values to determine the bin area.
  • determining before the highest peak with the largest amplitude among the peaks of the reflected signal within the preset time region further includes: determining that the amplitude of the peak of the reflected signal within the preset time region is greater than or equal to the peak threshold.
  • the method further includes: determining a corresponding triangle area according to the first point, the second point and the vertex; determining the first angle and the second angle corresponding to the two base corners of the triangle area; determining the first angle and the The absolute value of the difference between the second angles is greater than the angle threshold; the reflected signal is identified as an interference signal.
  • the method further includes: determining a first slope of the straight line formed by the first point and the vertex and a second slope of the straight line formed by the second point and the vertex; determining the absolute value of the first slope and the second slope The difference between the absolute values of the slopes is greater than the slope threshold; the reflected signal is identified as an interfering signal.
  • a second aspect of the present invention provides a processor configured to perform any one of the above methods for identifying an interfering signal.
  • a third aspect of the present invention provides a device for identifying interference signals, comprising:
  • the processor configured as:
  • the processor is further configured to: determine a first point and a second point in the reflected signal that are closest to the highest peak and whose amplitude is equal to a critical value; determine the vertex of the highest peak; The distance between the two points and the distance between the vertex and the critical value determines the area of the interval.
  • the processor is further configured to: determine the product value of the distance between the first point and the second point and the distance between the vertex and the critical value to determine the area of the interval.
  • the processor is further configured to: determine that the amplitude of the peak of the reflected signal within the preset time region is greater than or equal to the peak threshold.
  • the processor is further configured to: determine the corresponding triangle area according to the first point, the second point and the vertex; determine the first angle and the second angle corresponding to the two base corners of the triangle area; The absolute value of the difference between the first angle and the second angle is greater than the angle threshold; the reflected signal is identified as an interference signal.
  • the processor is further configured to: determine a first slope of the straight line formed by the first point and the vertex and a second slope of the straight line formed by the second point and the vertex; determine the absolute value of the first slope The difference from the absolute value of the second slope is greater than the slope threshold; the reflected signal is identified as an interfering signal.
  • a fourth aspect of the present invention provides a water dispenser, including any one of the above-mentioned devices for identifying interference signals.
  • a fifth aspect of the present invention provides a machine-readable storage medium, where instructions are stored on the machine-readable storage medium, the instructions, when executed by a processor, cause the processor to execute any one of the above methods for identifying an interference signal.
  • the ultrasonic detector by acquiring the reflected signal received by the ultrasonic detector, determine the highest peak with the largest amplitude among the peaks of the reflected signal within the preset time area, and determine the area covering the highest peak according to the highest peak.
  • the reflected signal is identified as an interference signal, and the interference signal (for example, a human hand) and a non-interference signal (for example, a cup) can be distinguished without the help of other hardware such as sensors, while reducing hardware costs.
  • FIG. 1 schematically shows a schematic flowchart of a method for identifying an interference signal in an embodiment of the present invention
  • FIG. 2 schematically shows a schematic flowchart of a method for identifying an interference signal in another embodiment of the present invention
  • FIG. 3 schematically shows a schematic flowchart of a method for identifying an interference signal in another embodiment of the present invention
  • FIG. 4 schematically shows a structural block diagram of an apparatus for identifying an interference signal in an embodiment of the present invention.
  • FIG. 1 schematically shows a schematic flowchart of a method for identifying an interference signal in an embodiment of the present invention.
  • a method for identifying an interference signal is provided. Taking the method applied to a water dispenser including an ultrasonic detector as an example, the method may include the following steps:
  • Step S102 acquiring the reflected signal received by the ultrasonic detector.
  • the reflected signal is a sound wave signal that is reflected back by the ultrasonic wave emitted by the ultrasonic detector when it encounters an obstacle.
  • the working principle of the ultrasonic detector is to judge the attribute category of the obstacle by transmitting ultrasonic waves and receiving the sound waves reflected back by the ultrasonic waves encountering obstacles.
  • the water dispenser transmits ultrasonic signals through the probe of the ultrasonic detector.
  • the ultrasonic detector of the water dispenser receives the reflected signal reflected by the obstacle, and multiple continuous reflected signals form a time domain curve, thereby Determine whether the obstacle is a cup according to the time domain curve formed by the reflected signal.
  • Step S104 determining the highest peak with the largest amplitude among the peaks of the reflected signal within the preset time zone.
  • the preset time area is the time area representing the reflected signal of the water receiving area of the water dispenser in the time domain curve formed by the reflected signal.
  • the time domain curve can be divided into three major areas, including the probe representing the distance from the ultrasonic detector.
  • the emission area of the reflected signal in the nearer area, the receiving area of the reflected signal representing the water receiving area of the water dispenser, and the water receiving area representing the reflected signal of the water receiving area of the water dispenser, the water receiving area on the time domain curve Mainly to obtain the reference altitude, the data after the water-receiving station area is generally considered to be invalid data.
  • the water dispenser generates a time domain curve related to time (that is, the distance from the probe) and amplitude according to the received reflected signal, and determines that the reflected signal is within a preset area (that is, the receiving area) by acquiring the amplitude of the wave peak. The highest peak with the largest amplitude among the peaks.
  • step S106 the area of the interval covering the highest peak is determined according to the highest peak.
  • the interval area is the area of the interval covering the wave crest, that is, the area of the wave crest in a certain reflection interval (for example, the strong reflection interval) on the time-domain curve, for example, it can be the rectangular interval covering the wave crest on the time-domain curve. area.
  • the water dispenser determines the area of the interval covering the highest wave crest by determining the area of the highest wave crest in a certain reflection interval (eg, a strong reflection interval).
  • a certain reflection interval eg, a strong reflection interval
  • Step S108 it is determined that the area of the interval is greater than the area threshold.
  • the area threshold is a preset area threshold for the water dispenser to determine whether it is an interference signal.
  • the water dispenser can compare the area of the interval with the area threshold, so as to determine that the area of the interval with the highest peak is greater than the area threshold.
  • Step S110 identifying the reflected signal as an interference signal.
  • the interference signal is a signal that the detected object is a non-water-taking appliance in the detection area, that is, a water signal that is invalid for the ultrasonic water dispenser, such as a human hand signal.
  • the area of the highest peak of the water dispenser in the determined time domain curve within the preset time region is greater than
  • the reflected signal is identified as an interference signal (eg, a hand signal).
  • the ultrasonic detector by acquiring the reflected signal received by the ultrasonic detector, determine the highest peak with the largest amplitude among the peaks of the reflected signal within the preset time area, and determine the area covering the highest peak according to the highest peak.
  • the reflected signal is identified as an interference signal, and the interference signal (for example, a human hand) and a non-interference signal (for example, a cup) can be distinguished without the help of other hardware such as sensors, while reducing hardware costs.
  • determining the area of the interval may include: determining a first point and a second point in the reflected signal that are closest to the highest peak and whose amplitude is equal to a critical value; determining the vertex of the highest peak; The distance between and the distance between the vertex and the critical value determines the area of the interval.
  • the critical value is a preset lower limit value of the amplitude of a certain reflection interval (for example, a strong reflection interval).
  • the first point is one of the points in the time-domain curve where the amplitude closest to the highest peak is equal to the critical value, and the second point is another point in the time-domain curve where the amplitude closest to the highest peak is equal to the critical value.
  • the water dispenser determines that the amplitude closest to the highest peak is equal to the first point and the second point of the critical value, and further determines The apex of the highest peak (including the magnitude of the apex), thereby determining the area of the interval based on the distance between the first point and the second point and the distance between the magnitude of the apex and the critical value.
  • determining the area of the interval according to the distance between the first point and the second point and the distance between the vertex and the critical value may include: determining the distance between the first point and the second point, and determining the distance between the vertex and the critical value. The value of the product of the distances between the values to determine the bin area.
  • the water dispenser After determining the distance between the first point and the second point and the distance between the vertex and the critical value, that is, after determining the lengths (or length and width) of two adjacent sides of the rectangle, the water dispenser will The product value of the two distances is used as the interval area.
  • determining before the highest peak with the largest amplitude among the peaks of the reflected signal within the preset time region further includes: determining that the amplitude of the peak of the reflected signal within the preset time region is greater than or equal to a peak threshold.
  • the peak threshold is the lowest peak amplitude preset in the filtering process to indicate that the signal is valid, that is to say, the reflected signal whose peak amplitude is smaller than the peak threshold can be determined as a small useless interference signal in advance, and the signal can be pre-determined. After filtering, only the peaks whose peak amplitude is greater than or equal to the peak threshold are confirmed as valid data.
  • the water dispenser before the water dispenser officially identifies the interference signal, by comparing the peak of the reflected signal within the preset time area with the preset peak threshold, it is determined that the amplitude of the peak of the reflected signal within the preset time area is greater than or After it is equal to the peak threshold, enter the step of determining the highest peak with the largest amplitude among the peaks of the reflected signal within the preset time area, otherwise the reflected signal is determined to be an invalid signal, that is, a small useless interference signal.
  • invalid reflection signals can be filtered out by setting the peak threshold in advance, and most of the tiny useless interference signals can be basically removed, which can improve the efficiency of interference signal identification and shorten the model identification time.
  • the above method further includes: determining a corresponding triangle area according to the first point, the second point and the vertex; determining the first angle and the second angle corresponding to the two base corners of the triangle area; determining the first angle and the The absolute value of the difference between the second angles is greater than the angle threshold; the reflected signal is identified as an interference signal.
  • the first angle is an angle value of one base corner of the triangle area
  • the second angle is an angle value of another base corner of the triangle area.
  • the angle threshold is the minimum value of the difference between the two base angles of the triangle area.
  • the water dispenser determines the corresponding triangle area according to the first point, the second point and the vertex of the highest peak, and determines the first angle and the second angle corresponding to the two bottom corners of the triangle area respectively.
  • Angle do the difference operation between the first angle and the second angle, after obtaining the difference between the two, compare the absolute value of the difference with the angle threshold, when it is determined that the absolute value of the difference is greater than the angle threshold,
  • the reflected signal is determined to be an interfering signal (eg, a human hand), otherwise considered a non-interfering signal (eg, a cup).
  • the interference signal and the non-interference signal can be distinguished. Further improve the accuracy of interference signal identification and ensure the safety of the water dispenser during use.
  • the above method further includes: determining a first slope of the straight line formed by the first point and the vertex and a second slope of the straight line formed by the second point and the vertex; determining the absolute value of the first slope and the second slope The difference between the absolute values of the slopes is greater than the slope threshold; the reflected signal is identified as an interfering signal.
  • first slope is the slope of a straight line formed by connecting the first point and the vertex
  • second slope is the slope of the straight line formed by connecting the second point and the vertex.
  • the slope threshold is the lower limit value of the difference between the absolute values of the slope.
  • the water dispenser determines the first slope of the straight line formed by the first point and the vertex and the second slope of the straight line formed by the second point and the vertex.
  • the coordinates of the first point and the vertex, the The coordinates of the two points and the coordinates of the vertex determine the corresponding trigonometric function value (for example, the tangent value) to determine the slope value, thereby determining the first slope and the second slope, and the absolute value of the first slope and the absolute value of the second slope are calculated as Difference operation, after obtaining the difference between the two, compare the difference with the slope threshold, when it is determined that the difference is greater than the slope threshold, determine that the reflected signal is an interference signal (for example, human hands), otherwise it is considered a non-interference signal (eg cups).
  • an interference signal for example, human hands
  • the interference can be distinguished.
  • Signal and non-interference signal further improve the accuracy of interference signal identification, and ensure the safety of the water dispenser in the process of use.
  • FIG. 2 schematically shows a schematic flowchart of a method for identifying an interference signal in another embodiment of the present invention.
  • a method for identifying an interference signal is provided, and the method is applied to a water dispenser including an ultrasonic detector as an example for description.
  • the method may include the following steps:
  • Step S201 acquiring the reflected signal received by the ultrasonic detector.
  • the water dispenser transmits ultrasonic signals through the probe of the ultrasonic detector.
  • the ultrasonic detector of the water dispenser receives the reflected signal reflected by the obstacle, and multiple continuous reflected signals form a time domain curve, thereby Determine whether the obstacle is a cup according to the time domain curve formed by the reflected signal.
  • Step S202 it is determined that the amplitude of the peak of the reflected signal within the preset time region is greater than or equal to the peak threshold.
  • the water dispenser before the water dispenser officially identifies the interference signal, by comparing the peak of the reflected signal within the preset time area with the preset peak threshold, it is determined that the amplitude of the peak of the reflected signal within the preset time area is greater than or After it is equal to the peak threshold value, go to step S203, otherwise it is determined that the reflected signal is an invalid signal, that is, a small useless interference signal.
  • Step S203 determining the highest peak with the largest amplitude among the peaks of the reflected signal within the preset time zone.
  • the water dispenser generates a time domain curve related to time (that is, the distance from the probe) and amplitude according to the received reflected signal, and determines that the reflected signal is within a preset area (that is, the receiving area) by acquiring the amplitude of the wave peak. The highest peak with the largest amplitude among the peaks.
  • Step S204 Determine the first point and the second point in the reflected signal that are closest to the highest peak and whose amplitude is equal to the critical value.
  • the water dispenser determines that the amplitude closest to the highest peak is equal to the first point and the second point of the critical value.
  • the critical value may be equal to the crest threshold.
  • Step S205 determine the vertex of the highest peak.
  • the water dispenser determines the position of the apex of the highest wave crest within the preset time zone.
  • Step S206 Determine the area of the interval according to the distance between the first point and the second point and the distance between the vertex and the critical value.
  • Step S207 it is determined that the area of the interval is greater than the area threshold.
  • the water dispenser compares the area of the interval with the area threshold, thereby determining that the area of the interval with the highest peak is greater than the area threshold.
  • Step S208 Determine the corresponding triangle area according to the first point, the second point and the vertex.
  • Step S209 determining the first angle and the second angle corresponding to the two base corners of the triangular area.
  • Step S210 it is determined that the absolute value of the difference between the first angle and the second angle is greater than the angle threshold.
  • Step S211 identifying the reflected signal as an interference signal.
  • the water dispenser determines the corresponding triangle area according to the first point, the second point and the vertex of the highest peak, and determines the first angle and the second angle corresponding to the two bottom corners of the triangle area respectively.
  • Angle do the difference operation between the first angle and the second angle, after obtaining the difference between the two, compare the absolute value of the difference with the angle threshold, when it is determined that the absolute value of the difference is greater than the angle threshold, Determine the reflected signal as the interference signal.
  • the area of the interval covering the highest peak is compared with the area threshold, and after determining that the area of the interval is greater than the area threshold, the first point, the second point and the vertex are compared.
  • the absolute value of the difference between the two base angles of the formed triangular area is compared with the angle threshold, and after determining that it is greater than the angle threshold, the reflected signal is identified as an interference signal to control the water dispenser to stop water.
  • the method of this embodiment while reducing the hardware cost, does not change the original hardware of the water dispenser, and extracts multi-dimensional characteristic signals based on the existing basic time domain signals through software algorithms and mathematical models, and establishes a signal belonging to the interference signal.
  • the model further improves the accuracy of the identification results, reduces the false trigger probability of the water dispenser, and improves the safety of the water dispenser during use.
  • FIG. 3 schematically shows a schematic flowchart of a method for identifying an interference signal in another embodiment of the present invention.
  • a method for identifying an interference signal is provided. Taking the method applied to a water dispenser including an ultrasonic detector as an example, the method may include the following steps:
  • Step S301 acquiring the reflected signal received by the ultrasonic probe.
  • the water dispenser transmits ultrasonic signals through the probe of the ultrasonic detector.
  • the ultrasonic detector of the water dispenser receives the reflected signal reflected by the obstacle, and multiple continuous reflected signals form a time domain curve, thereby Determine whether the obstacle is a cup according to the time domain curve formed by the reflected signal.
  • Step S302 it is determined that the amplitude of the peak of the reflected signal within the preset time region is greater than or equal to the peak threshold.
  • the water dispenser before the water dispenser officially identifies the interference signal, by comparing the peak of the reflected signal within the preset time area with the preset peak threshold, it is determined that the amplitude of the peak of the reflected signal within the preset time area is greater than or After it is equal to the peak threshold, go to step S303, otherwise it is determined that the reflected signal is an invalid signal, that is, a small useless interference signal.
  • Step S303 determining the highest peak with the largest amplitude among the peaks of the reflected signal within the preset time zone.
  • the water dispenser generates a time domain curve related to time (that is, the distance from the probe) and amplitude according to the received reflected signal, and determines that the reflected signal is within a preset area (that is, the receiving area) by acquiring the amplitude of the wave peak. The highest peak with the largest amplitude among the peaks.
  • Step S304 Determine the first point and the second point in the reflected signal that are closest to the highest peak and whose amplitude is equal to the critical value.
  • the water dispenser determines that the amplitude closest to the highest peak is equal to the first point and the second point of the critical value.
  • the critical value may be equal to the crest threshold.
  • Step S305 determine the vertex of the highest peak.
  • the water dispenser determines the position of the apex of the highest wave crest within the preset time zone.
  • Step S306 Determine the area of the interval according to the distance between the first point and the second point and the distance between the vertex and the critical value.
  • Step S307 it is determined that the area of the interval is greater than the area threshold.
  • the water dispenser compares the area of the interval with the area threshold, thereby determining that the area of the interval with the highest peak is greater than the area threshold.
  • Step S308 determining the first slope of the straight line formed by the first point and the vertex and the second slope of the straight line formed by the second point and the vertex.
  • Step S309 it is determined that the difference between the absolute value of the first slope and the absolute value of the second slope is greater than the slope threshold.
  • Step S310 identifying the reflected signal as an interference signal.
  • the water dispenser determines the first slope of the straight line formed by the first point and the vertex and the second slope of the straight line formed by the second point and the vertex.
  • the coordinates of the first point and the vertex, the The coordinates of the two points and the coordinates of the vertex determine the corresponding trigonometric function value (for example, the tangent value) to determine the slope value, thereby determining the first slope and the second slope, and the absolute value of the first slope and the absolute value of the second slope are calculated as Difference operation, after the difference between the two is obtained, the difference is compared with the slope threshold, and when the difference is determined to be greater than the slope threshold, the reflected signal is determined to be an interference signal.
  • the area of the interval covering the highest peak is compared with the area threshold, and after it is determined that the area of the interval is greater than the area threshold, the straight line formed by the first point and the vertex is compared The difference between the absolute value of the first slope and the absolute value of the second slope of the straight line formed by the second point and the vertex is compared with the slope threshold, and after determining that it is greater than the slope threshold, the reflected signal is identified as an interference signal to control the water dispenser Stop water.
  • the method of this embodiment while reducing the hardware cost, does not change the original hardware of the water dispenser, and extracts multi-dimensional characteristic signals based on the existing basic time domain signals through software algorithms and mathematical models, and establishes a signal belonging to the interference signal.
  • the model further improves the accuracy of the identification results, reduces the false trigger probability of the water dispenser, and improves the safety of the water dispenser during use.
  • FIG. 4 schematically shows a structural block diagram of an apparatus for identifying an interference signal in an embodiment of the present invention.
  • an apparatus 400 for identifying interference signals is provided, including: an ultrasonic detector 410 and a processor 420, wherein:
  • the processor 420 is configured to: acquire the reflected signal received by the ultrasonic detector; determine the highest peak with the largest amplitude among the peaks of the reflected signal within the preset time zone; determine the area of the interval covering the highest peak according to the highest peak; determine the area of the interval greater than the area threshold; and identifying the reflected signal as an interfering signal.
  • the reflected signal is a sound wave signal that is reflected back by the ultrasonic wave emitted by the ultrasonic detector when it encounters an obstacle.
  • the working principle of the ultrasonic detector is to judge the attribute category of the obstacle by transmitting ultrasonic waves and receiving the sound waves reflected back by the ultrasonic waves encountering obstacles.
  • the preset time area is the time area representing the reflected signal of the water-receiving area of the water dispenser in the time-domain curve formed by the reflected signal. Further, the time-domain curve can be divided into three major areas, including the time area representing the probe closer to the ultrasonic detector.
  • the transmitting area of the reflected signal of the area, the receiving area of the reflected signal representing the water receiving area of the water dispenser, and the water receiving area representing the reflected signal of the water receiving area of the water dispenser, the water receiving area on the time domain curve is mainly for the purpose of After obtaining the reference altitude, the data after the water platform area is generally regarded as invalid data.
  • the interval area is the area of the interval covering the wave crest, that is, the area of the wave crest in a certain reflection interval (eg, strong reflection interval) on the time domain curve, for example, the area of the rectangular interval covering the wave crest on the time domain curve graph.
  • the area threshold is a preset area threshold for the water dispenser to determine whether it is an interference signal.
  • the interference signal is a signal that the measured object is a non-water-taking appliance in the detection area, that is, a water signal that is invalid for the ultrasonic water dispenser, such as a human hand signal.
  • the water dispenser transmits ultrasonic signals through the probe of the ultrasonic detector.
  • the ultrasonic detector of the water dispenser receives the reflected signal reflected by the obstacle, and multiple continuous reflected signals form a time domain curve, thereby Determine whether the obstacle is a cup according to the time domain curve formed by the reflected signal.
  • the water dispenser generates a time domain curve related to time (that is, the distance from the probe) and amplitude according to the received reflected signal. By obtaining the amplitude of the wave peak, it is determined that the reflected signal is in the wave peak in the preset area (that is, the receiving area). The highest peak with the largest amplitude.
  • the water dispenser determines the area of the interval covering the highest wave crest by determining the area of the highest wave crest within a certain reflection interval (eg, a strong reflection interval).
  • the water dispenser can compare the area of the interval with the area threshold to determine that the area of the highest peak is greater than the area threshold. For example, in scenarios such as the user wipes the water dispenser with his hand or the user puts his hand into the detection area of the ultrasonic detector of the water dispenser, the water dispenser determines that the area of the highest peak of the time domain curve in the preset time region is greater than the area threshold.
  • the reflected signal is identified as an interfering signal (eg, a hand signal).
  • the above-mentioned device for identifying an interference signal determines the highest peak with the largest amplitude among the peaks of the reflected signal within the preset time region by acquiring the reflected signal received by the ultrasonic detector, and determines the area covering the highest peak according to the highest peak, and in the When it is determined that the area of the interval is greater than the area threshold, the reflected signal is identified as an interference signal, and the interference signal (for example, a human hand) and a non-interference signal (for example, a cup) can be distinguished without the help of other hardware such as sensors, while reducing hardware costs.
  • the interference signal for example, a human hand
  • a non-interference signal for example, a cup
  • the processor 420 is further configured to: determine the first point and the second point in the reflected signal that are closest to the highest peak and whose amplitude is equal to the critical value; determine the vertex of the highest peak; The distance between the two points and the distance between the vertex and the critical value determines the area of the interval.
  • the critical value is a preset lower limit value of the amplitude of a certain reflection interval (for example, a strong reflection interval).
  • the first point is one of the points in the time-domain curve where the amplitude closest to the highest peak is equal to the critical value, and the second point is another point in the time-domain curve where the amplitude closest to the highest peak is equal to the critical value.
  • the water dispenser determines that the amplitude closest to the highest peak is equal to the first point and the second point of the critical value, and further determines The apex of the highest peak (including the magnitude of the apex), thereby determining the area of the interval based on the distance between the first point and the second point and the distance between the magnitude of the apex and the critical value.
  • the processor 420 is further configured to: determine the value of the product of the distance between the first point and the second point and the distance between the vertex and the critical value to determine the area of the interval.
  • the water dispenser After determining the distance between the first point and the second point and the distance between the vertex and the critical value, that is, after determining the lengths (or length and width) of two adjacent sides of the rectangle, the water dispenser will The product value of the two distances is used as the interval area.
  • the processor 420 is further configured to: determine that the amplitude of the peak of the reflected signal within the preset time region is greater than or equal to the peak threshold.
  • the peak threshold is the lowest peak amplitude preset in the filtering process to indicate that the signal is valid, that is to say, the reflected signal whose peak amplitude is smaller than the peak threshold can be determined as a small useless interference signal in advance, and the signal can be pre-determined. After filtering, only the peaks whose peak amplitude is greater than or equal to the peak threshold are confirmed as valid data.
  • the water dispenser before the water dispenser officially identifies the interference signal, by comparing the peak of the reflected signal within the preset time area with the preset peak threshold, it is determined that the amplitude of the peak of the reflected signal within the preset time area is greater than or After it is equal to the peak threshold, enter the step of determining the highest peak with the largest amplitude among the peaks of the reflected signal within the preset time area, otherwise the reflected signal is determined to be an invalid signal, that is, a small useless interference signal.
  • the device in this embodiment can filter out invalid reflected signals by setting the peak threshold in advance, and basically remove most of the tiny useless interference signals, which can improve the efficiency of interference signal identification and shorten the model identification time.
  • the processor 420 is further configured to: determine the corresponding triangle area according to the first point, the second point and the vertex; determine the first angle and the second angle corresponding to the two base corners of the triangle area; The absolute value of the difference between the first angle and the second angle is greater than the angle threshold; the reflected signal is identified as an interference signal.
  • the first angle is an angle value of one base corner of the triangle area
  • the second angle is an angle value of another base corner of the triangle area.
  • the angle threshold is the minimum value of the difference between the two base angles of the triangle area.
  • the water dispenser determines the corresponding triangle area according to the first point, the second point and the vertex of the highest peak, and determines the first angle and the second angle corresponding to the two bottom corners of the triangle area respectively.
  • Angle do the difference operation between the first angle and the second angle, after obtaining the difference between the two, compare the absolute value of the difference with the angle threshold, when it is determined that the absolute value of the difference is greater than the angle threshold,
  • the reflected signal is determined to be an interfering signal (eg, a human hand), otherwise considered a non-interfering signal (eg, a cup).
  • the device in this embodiment compares the difference between the first angle and the second angle by setting an angle threshold, and when the difference is greater than the angle threshold, identifies the reflected signal as an interference signal, and can distinguish the interference signal from the non-interference signal signal, further improve the accuracy of interference signal identification, and ensure the safety of the water dispenser in the process of use.
  • the processor 420 is further configured to: determine a first slope of the line formed by the first point and the vertex and a second slope of the line formed by the second point and the vertex; determine the absolute value of the first slope The difference from the absolute value of the second slope is greater than the slope threshold; the reflected signal is identified as an interfering signal.
  • first slope is the slope of a straight line formed by connecting the first point and the vertex
  • second slope is the slope of the straight line formed by connecting the second point and the vertex.
  • the slope threshold is the lower limit value of the difference between the absolute values of the slope.
  • the water dispenser determines the first slope of the straight line formed by the first point and the vertex and the second slope of the straight line formed by the second point and the vertex.
  • the coordinates of the first point and the vertex, the The coordinates of the two points and the coordinates of the vertex determine the corresponding trigonometric function value (for example, the tangent value) to determine the slope value, thereby determining the first slope and the second slope, and the absolute value of the first slope and the absolute value of the second slope are calculated as Difference operation, after obtaining the difference between the two, compare the difference with the slope threshold, when it is determined that the difference is greater than the slope threshold, determine that the reflected signal is an interference signal (for example, human hands), otherwise it is considered a non-interference signal (eg cups).
  • an interference signal for example, human hands
  • the device in this embodiment by setting a slope threshold, compares the difference between the absolute value of the first slope and the absolute value of the second slope, and identifies the reflected signal as an interference signal when the difference is greater than the slope threshold, which can be distinguished Interfering signals and non-interfering signals can be generated to further improve the accuracy of interference signal identification and ensure the safety of the water dispenser during use.
  • the above-mentioned apparatus for identifying interference signals includes a processor and a memory, the processor includes a kernel, and the kernel retrieves the corresponding program unit from the memory.
  • the kernel can be set to one or more, which can be used to identify interference signals by adjusting the kernel parameters.
  • Memory may include non-persistent memory in computer readable media, random access memory (RAM) and/or non-volatile memory, such as read only memory (ROM) or flash memory (flash RAM), the memory including at least one memory chip.
  • RAM random access memory
  • ROM read only memory
  • flash RAM flash memory
  • An embodiment of the present invention provides a processor, where the processor is configured to execute the method for identifying an interference signal according to the above embodiment.
  • An embodiment of the present invention provides a water dispenser, including the device for identifying an interference signal according to the above embodiment.
  • An embodiment of the present invention provides a machine-readable storage medium, where instructions are stored on the machine-readable storage medium, the instructions, when executed by a processor, cause the processor to execute the method for identifying an interference signal according to the foregoing embodiments .
  • the present application also provides a computer program product, which, when executed on a data processing device, is adapted to execute a program initialized with the method for identifying an interfering signal in the above-described embodiments.
  • the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
  • the apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.
  • a computing device includes one or more processors (CPUs), input/output interfaces, network interfaces, and memory.
  • processors CPUs
  • input/output interfaces network interfaces
  • memory volatile and non-volatile memory
  • Memory may include non-persistent memory in computer readable media, random access memory (RAM) and/or non-volatile memory in the form of, for example, read only memory (ROM) or flash memory (flash RAM). Memory is an example of a computer-readable medium.
  • RAM random access memory
  • ROM read only memory
  • flash RAM flash memory
  • Computer-readable media includes both persistent and non-permanent, removable and non-removable media, and storage of information may be implemented by any method or technology.
  • Information may be computer readable instructions, data structures, modules of programs, or other data.
  • Examples of computer storage media include, but are not limited to, phase-change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read only memory (ROM), Electrically Erasable Programmable Read Only Memory (EEPROM), Flash Memory or other memory technology, Compact Disc Read Only Memory (CD-ROM), Digital Versatile Disc (DVD) or other optical storage, Magnetic tape cassettes, magnetic tape magnetic disk storage or other magnetic storage devices or any other non-transmission medium that can be used to store information that can be accessed by a computing device.
  • computer-readable media does not include transitory computer-readable media, such as modulated data signals and carrier waves.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Acoustics & Sound (AREA)
  • Time Recorders, Dirve Recorders, Access Control (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种用于识别干扰信号的方法,包括:获取超声波探测器接收的反射信号(S102);确定反射信号在预设时间区域内的波峰中幅值最大的最高波峰(S104);根据最高波峰确定覆盖最高波峰的区间面积(S106);确定区间面积大于面积阈值(S108);识别反射信号为干扰信号(S110)。方法可以解决硬件成本较高的问题。还提供了一种识别干扰信号的装置、存储介质及处理器。

Description

用于识别干扰信号的方法、装置、存储介质及处理器
相关申请的交叉引用
本申请要求2020年12月24日提交的中国专利申请202011554168.9的权益,该申请的内容通过引用被合并于本文。
技术领域
本发明涉及电器领域,具体地涉及一种用于识别干扰信号的方法、装置、存储介质及处理器。
背景技术
超声波饮水机的原理是通过换能器发射声波,声波遇到障碍物反射回来,换能器根据反射回来的声波能量换算出对应的时域曲线。由于声波的这一特征,通常可以用来测杯子的高度和液面的高度。
正常情况下,放进超声波饮水机接水台的物体就是我们喝水的杯子,超声波饮水机的工作闭环是检测到杯高后自动出水,待满杯后自动停水。然而,如果我们放进去的不是杯子,而是其他的物体,譬如我们的人手,这时我们希望超声波能识别出来杯子和其他物体(例如,人手)的细微差别,从而停止出水。
由于超声波反馈的信息并非点阵的成像数据,而是距离和幅值的时域曲线,所以要在时域曲线上把两个不同的物体区分比较困难。现有技术通常是通过增加额外的传感器来辅助超声波识别干扰信号(例如,人手)和杯子的区别,譬如增加红外传感器、TOF光学传感以及压力传感器等额外的硬件来解决。因此,现有的识别干扰信号的方法存在硬件成本较高的问题。
发明内容
本发明实施例的目的是提供一种用于识别干扰信号的方法、处理器、装置、饮水机及存储介质,以解决现有的用于识别干扰信号的方法存在的硬件成本较高的问题。
为了实现上述目的,本发明第一方面提供一种用于识别干扰信号的方法,应用于包括超声波探测器的饮水机,包括:
获取超声波探测器接收的反射信号;
确定反射信号在预设时间区域内的波峰中幅值最大的最高波峰;
根据最高波峰确定覆盖最高波峰的区间面积;
确定区间面积大于面积阈值;以及
识别反射信号为干扰信号。
在本发明实施例中,确定区间面积包括:确定反射信号中距离最高波峰最近的且幅值等于临界值的第一点和第二点;确定最高波峰的顶点;根据第一点与第二点之间的距离以及顶点与临界值之间的距离确定区间面积。
在本发明实施例中,根据第一点与第二点之间的距离以及顶点与临界值之间的距离确定区间面积,包括:确定第一点与第二点之间的距离以及顶点与临界值之间的距离的乘积值,以确定区间面积。
在本发明实施例中,确定反射信号在预设时间区域内的波峰中幅值最大的最高波峰之前还包括:确定反射信号在预设时间区域内的波峰的幅值大于或者等于波峰阈值。
在本发明实施例中,方法还包括:根据第一点、第二点以及顶点确定对应的三角形区域;确定三角形区域的两个底角对应的第一角度和第二角度;确定第一角度与第二角度之间的差的绝对值大于角度阈值;识别反射信号为干扰信号。
在本发明实施例中,方法还包括:确定第一点与顶点所形成的直线的第一斜率以及第二点与顶点所形成的直线的第二斜率;确定第一斜率的绝对值与第二斜率的绝对值之间的差大于斜率阈值;识别反射信号为干扰信号。
本发明第二方面提供一种处理器,处理器被配置成执行上述任意一项的用于识别干扰信号的方法。
本发明第三方面提供一种用于识别干扰信号的装置,包括:
超声波探测器;以及
处理器,被配置成:
获取超声波探测器接收的反射信号;
确定反射信号在预设时间区域内的波峰中幅值最大的最高波峰;
根据最高波峰确定覆盖最高波峰的区间面积;
确定区间面积大于面积阈值;以及
识别反射信号为干扰信号。
在本发明实施例中,处理器进一步被配置成:确定反射信号中距离最高波峰最近的且幅值等于临界值的第一点和第二点;确定最高波峰的顶点;根据第一点与第二点之间的距离以及顶点与临界值之间的距离确定区间面积。
在本发明实施例中,处理器进一步被配置成:确定第一点与第二点之间的距离以及顶点与临界值之间的距离的乘积值,以确定区间面积。
在本发明实施例中,处理器进一步被配置成:确定反射信号在预设时间区域内的波峰的幅值大于或者等于波峰阈值。
在本发明实施例中,处理器进一步被配置成:根据第一点、第二点以及顶点确定对应的三角形区域;确定三角形区域的两个底角对应的第一角度和第二角度;确定第一角度与第二角度之间的差的绝对值大于角度阈值;识别反射信号为干扰信号。
在本发明实施例中,处理器进一步被配置成:确定第一点与顶点所形成的直线的第一斜率以及第二点与顶点所形成的直线的第二斜率;确定第一斜率的绝对值与第二斜率的绝对值之间的差大于斜率阈值;识别反射信号为干扰信号。
本发明第四方面提供一种饮水机,包括上述任意一项的用于识别干扰信号的装置。
本发明第五方面提供一种机器可读存储介质,该机器可读存储介质上存储有指令,该指令在被处理器执行时使得处理器执行上述任意一项的用于识别干扰信号的方法。
上述用于识别干扰信号的方法,通过获取超声波探测器接收的反射信号,确定反射信号在预设时间区域内的波峰中幅值最大的最高波峰,根据最高波峰确定覆盖最高波峰的区间面积,在确定区间面积大于面积阈值的时候,识别反射信号为干扰信号,不需要借助其他传感器等硬件,即可区分干扰信号(例如,人手)和非干扰信号(例如,杯子),在减少硬件成本的同时,不需要改变饮水机原有的硬件,通过软件算法和数学模型,基于已有的基本时域信号,提炼出多维的特征信号,建立属于干扰信号的模型,提高了识别结果的准确度,降低了饮水机的误触发概率,提高了饮水机使用过程中的安全性。
本发明实施例的其它特征和优点将在随后的具体实施方式部分予以详细说 明。
附图说明
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1示意性示出了本发明一实施例中用于识别干扰信号的方法的流程示意图;
图2示意性示出了本发明另一实施例中用于识别干扰信号的方法的流程示意图;
图3示意性示出了本发明另一实施例中用于识别干扰信号的方法的流程示意图;
图4示意性示出了本发明一实施例中用于识别干扰信号的装置的结构框图。
具体实施方式
以下结合附图对本发明实施例的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明实施例,并不用于限制本发明实施例。
图1示意性示出了本发明一实施例中用于识别干扰信号的方法的流程示意图。如图1所示,在本发明实施例中,提供了一种用于识别干扰信号的方法,以该方法应用于包括超声波探测器的饮水机为例进行说明,该方法可以包括以下步骤:
步骤S102,获取超声波探测器接收的反射信号。
可以理解,反射信号为超声波探测器发射的超声波遇到障碍物反射回来的声波信号。超声波探测器的工作原理是通过发射超声波和接收超声波遇到障碍物反射回来的声波,以判断该障碍物的属性类别。
具体地,饮水机通过超声波探测器的探头发射超声波信号,当饮水机存在障碍物时,饮水机的超声波探测器接收障碍物反射回来的反射信号,多个连续的反射信号形成时域曲线,从而根据反射信号形成的时域曲线判断障碍物是否为杯子。
步骤S104,确定反射信号在预设时间区域内的波峰中幅值最大的最高波峰。
可以理解,预设时间区域为反射信号形成的时域曲线中表示饮水机的接水区域的反射信号的时间区域,进一步地,时域曲线可以分成三大区域,包括表示离超声波探测器的探头较近的区域的反射信号的发射区、表示饮水机接水区域的反射信号的接收区以及表示饮水机的接水台区域的反射信号的接水台区,时域曲线上的接水台区主要是为了取得基准高度,接水台区之后的数据通常被认为是无效数据。
具体地,饮水机根据接收到的反射信号生成有关时间(即与探头的距离)和幅值的时域曲线,通过获取波峰的幅值,从而确定反射信号在预设区域内(即接收区)的波峰中幅值最大的最高波峰。
步骤S106,根据最高波峰确定覆盖最高波峰的区间面积。
可以理解,区间面积为覆盖波峰的区间面积,也就是象征时域曲线上某一反射区间(例如,强反射区间)内的波峰面积,例如可以是时域曲线图上覆盖了波峰的长方形区间的面积。
具体地,饮水机通过确定最高波峰在某一反射区间(例如,强反射区间)内的面积确定覆盖最高波峰的区间面积。
步骤S108,确定区间面积大于面积阈值。
可以理解,面积阈值为预先设置的饮水机判断是否为干扰信号的面积临界值。
具体地,饮水机可以将区间面积和面积阈值进行比较,从而确定最高波峰的区间面积大于面积阈值。
步骤S110,识别反射信号为干扰信号。
可以理解,干扰信号为检测区域出现被测对象为非取水器具的信号,即对于超声波饮水机来说无效的用水信号,例如人手信号。
具体地,例如在用户用手擦拭饮水机或者用户将手伸入饮水机的超声波探测器的检测区域等场景中,饮水机在确定时域曲线在预设时间区域内的最高波峰的区间面积大于面积阈值的情况下,识别该反射信号为干扰信号(例如,手信号)。
上述用于识别干扰信号的方法,通过获取超声波探测器接收的反射信号,确定反射信号在预设时间区域内的波峰中幅值最大的最高波峰,根据最高波峰确 定覆盖最高波峰的区间面积,在确定区间面积大于面积阈值的时候,识别反射信号为干扰信号,不需要借助其他传感器等硬件,即可区分干扰信号(例如,人手)和非干扰信号(例如,杯子),在减少硬件成本的同时,不需要改变饮水机原有的硬件,通过软件算法和数学模型,基于已有的基本时域信号,提炼出多维的特征信号,建立属于干扰信号的模型,提高了识别结果的准确度,降低了饮水机的误触发概率,提高了饮水机使用过程中的安全性。
在一个实施例中,确定区间面积可以包括:确定反射信号中距离最高波峰最近的且幅值等于临界值的第一点和第二点;确定最高波峰的顶点;根据第一点与第二点之间的距离以及顶点与临界值之间的距离确定区间面积。
可以理解,临界值为预先设置的某一反射区间(例如,强反射区间)的幅值的下限值。第一点为时域曲线中距离最高波峰最近的幅值等于临界值的其中一个点,第二点为时域曲线中距离最高波峰最近的幅值等于临界值的另一点。
具体地,在预设时间区域内存在多个连续的波峰且其中一个波峰为最高波峰的情况下,饮水机确定距离最高波峰最近的幅值等于临界值的第一点和第二点,进一步确定最高波峰的顶点(包括顶点的幅值),从而根据第一点和第二点之间的距离以及顶点的幅值与临界值之间的距离确定区间面积。
在一个实施例中,根据第一点与第二点之间的距离以及顶点与临界值之间的距离确定区间面积,可以包括:确定第一点与第二点之间的距离以及顶点与临界值之间的距离的乘积值,以确定区间面积。
具体地,饮水机在确定第一点与第二点之间的距离以及顶点与临界值之间的距离之后,也就是确定矩形的两条相邻的边长(或者长和宽)之后,将两个距离的乘积值作为区间面积。
在一个实施例中,确定反射信号在预设时间区域内的波峰中幅值最大的最高波峰之前还包括:确定反射信号在预设时间区域内的波峰的幅值大于或者等于波峰阈值。
可以理解,波峰阈值为滤波过程中预先设置的表示信号有效的最低波峰幅值,也就是说,波峰幅值小于该波峰阈值的反射信号可以事先确定为微小的无用干扰信号,该信号可以被事先过滤掉,只有波峰幅值大于或者等于波峰阈值的波峰才被确认为是有效的数据。
具体地,在饮水机正式识别干扰信号之前,通过将反射信号在预设时间区域内的波峰与预先设置的波峰阈值进行比较,在确定反射信号在预设时间区域内的波峰的幅值大于或者等于波峰阈值之后,进入确定反射信号在预设时间区域内的波峰中幅值最大的最高波峰的步骤,否则确定该反射信号为无效信号,即微小的无用干扰信号。
本实施例中,通过事先设置波峰阈值可以过滤掉无效的反射信号,基本去除大部分的微小的无用干扰信号,可以提高干扰信号识别的效率,缩短模型识别的时间。
在一个实施例中,上述方法还包括:根据第一点、第二点以及顶点确定对应的三角形区域;确定三角形区域的两个底角对应的第一角度和第二角度;确定第一角度与第二角度之间的差的绝对值大于角度阈值;识别反射信号为干扰信号。
可以理解,第一角度为三角形区域的其中一个底角的角度值,第二角度为三角形区域的另一个底角的角度值。角度阈值为三角形区域的两个底角的差的最小值。
具体地,饮水机在生成时域曲线后,根据第一点、第二点以及最高波峰的顶点确定对应的三角形区域,并确定该三角形区域的两个底角分别对应的第一角度和第二角度,将第一角度和第二角度做差运算,在得到两者之间的差值后,将差值的绝对值与角度阈值进行比较,在确定差值的绝对值大于角度阈值的时候,确定反射信号为干扰信号(例如,人手),否则认为是非干扰信号(例如,杯子)。
本实施例中,通过设置角度阈值,比较第一角度与第二角度之间的差值大小,在差值大于角度阈值的时候识别反射信号为干扰信号,可以区分出干扰信号和非干扰信号,进一步提高干扰信号识别的准确度,保证饮水机使用过程的安全性。
在一个实施例中,上述方法还包括:确定第一点与顶点所形成的直线的第一斜率以及第二点与顶点所形成的直线的第二斜率;确定第一斜率的绝对值与第二斜率的绝对值之间的差大于斜率阈值;识别反射信号为干扰信号。
可以理解,第一斜率为第一点与顶点连接所形成的直线的斜率,第二斜率为第二点与顶点连接所形成的直线的斜率。斜率阈值为斜率绝对值的差的下限值。
具体地,饮水机通过确定第一点与顶点所形成的直线的第一斜率以及第二 点与顶点所形成的直线的第二斜率,例如,可以通过第一点的坐标与顶点的坐标、第二点的坐标与顶点的坐标确定对应的三角函数值(例如,正切值)以确定斜率值,从而确定第一斜率和第二斜率,将第一斜率的绝对值和第二斜率的绝对值做差运算,在得到两者之间的差值后,将差值与斜率阈值进行比较,在确定差值大于斜率阈值的时候,确定反射信号为干扰信号(例如,人手),否则认为是非干扰信号(例如,杯子)。
本实施例中,通过设置斜率阈值,比较第一斜率的绝对值与第二斜率的绝对值之间的差值大小,在差值大于斜率阈值的时候识别反射信号为干扰信号,可以区分出干扰信号和非干扰信号,进一步提高干扰信号识别的准确度,保证饮水机使用过程的安全性。
图2示意性示出了本发明另一实施例中用于识别干扰信号的方法的流程示意图。如图2所示,在本发明实施例中,提供了一种用于识别干扰信号的方法,以该方法应用于包括超声波探测器的饮水机为例进行说明,该方法可以包括以下步骤:
步骤S201,获取超声波探测器接收的反射信号。
具体地,饮水机通过超声波探测器的探头发射超声波信号,当饮水机存在障碍物时,饮水机的超声波探测器接收障碍物反射回来的反射信号,多个连续的反射信号形成时域曲线,从而根据反射信号形成的时域曲线判断障碍物是否为杯子。
步骤S202,确定反射信号在预设时间区域内的波峰的幅值大于或者等于波峰阈值。
具体地,在饮水机正式识别干扰信号之前,通过将反射信号在预设时间区域内的波峰与预先设置的波峰阈值进行比较,在确定反射信号在预设时间区域内的波峰的幅值大于或者等于波峰阈值之后,进入步骤S203,否则确定该反射信号为无效信号,即微小的无用干扰信号。
步骤S203,确定反射信号在预设时间区域内的波峰中幅值最大的最高波峰。
具体地,饮水机根据接收到的反射信号生成有关时间(即与探头的距离)和幅值的时域曲线,通过获取波峰的幅值,从而确定反射信号在预设区域内(即接收区)的波峰中幅值最大的最高波峰。
步骤S204,确定反射信号中距离最高波峰最近的且幅值等于临界值的第一点和第二点。
具体地,在预设时间区域内存在多个连续的波峰且其中一个波峰为最高波峰的情况下,饮水机确定距离最高波峰最近的幅值等于临界值的第一点和第二点。在一个示例中,临界值可以等于波峰阈值。
步骤S205,确定最高波峰的顶点。
具体地,饮水机确定预设时间区域内的最高波峰的顶点的位置。
步骤S206,根据第一点与第二点之间的距离以及顶点与临界值之间的距离确定区间面积。
具体地,饮水机可以在确定第一点与第二点之间的距离以及顶点与临界值之间的距离之后,也就是确定矩形的两条相邻的边长(或者长和宽)之后,将两个距离的乘积值作为区间面积。
步骤S207,确定区间面积大于面积阈值。
具体地,饮水机将区间面积和面积阈值进行比较,从而确定最高波峰的区间面积大于面积阈值。
步骤S208,根据第一点、第二点以及顶点确定对应的三角形区域。
步骤S209,确定三角形区域的两个底角对应的第一角度和第二角度。
步骤S210,确定第一角度与第二角度之间的差的绝对值大于角度阈值。
步骤S211,识别反射信号为干扰信号。
具体地,饮水机在生成时域曲线后,根据第一点、第二点以及最高波峰的顶点确定对应的三角形区域,并确定该三角形区域的两个底角分别对应的第一角度和第二角度,将第一角度和第二角度做差运算,在得到两者之间的差值后,将差值的绝对值与角度阈值进行比较,在确定差值的绝对值大于角度阈值的时候,确定反射信号为干扰信号。
本实施例中,在通过设置波峰阈值过滤掉一部分无效的干扰信号之后,将覆盖最高波峰的区间面积和面积阈值进行比较,确定区间面积大于面积阈值之后,将第一点、第二点以及顶点形成的三角形区域的两个底角的差的绝对值与角度阈值进行比较,在确定大于角度阈值之后,识别反射信号为干扰信号,以控制饮水机停止出水。本实施例的方法,在减少硬件成本的同时,不改变饮水机原有的硬 件,通过软件算法和数学模型,基于已有的基本时域信号,提炼出多维的特征信号,建立属于干扰信号的模型,进一步提高了识别结果的准确度,降低了饮水机的误触发概率,提高了饮水机使用过程中的安全性。
图3示意性示出了本发明另一实施例中用于识别干扰信号的方法的流程示意图。如图3所示,在本发明实施例中,提供了一种用于识别干扰信号的方法,以该方法应用于包括超声波探测器的饮水机为例进行说明,该方法可以包括以下步骤:
步骤S301,获取超声波探测器接收的反射信号。
具体地,饮水机通过超声波探测器的探头发射超声波信号,当饮水机存在障碍物时,饮水机的超声波探测器接收障碍物反射回来的反射信号,多个连续的反射信号形成时域曲线,从而根据反射信号形成的时域曲线判断障碍物是否为杯子。
步骤S302,确定反射信号在预设时间区域内的波峰的幅值大于或者等于波峰阈值。
具体地,在饮水机正式识别干扰信号之前,通过将反射信号在预设时间区域内的波峰与预先设置的波峰阈值进行比较,在确定反射信号在预设时间区域内的波峰的幅值大于或者等于波峰阈值之后,进入步骤S303,否则确定该反射信号为无效信号,即微小的无用干扰信号。
步骤S303,确定反射信号在预设时间区域内的波峰中幅值最大的最高波峰。
具体地,饮水机根据接收到的反射信号生成有关时间(即与探头的距离)和幅值的时域曲线,通过获取波峰的幅值,从而确定反射信号在预设区域内(即接收区)的波峰中幅值最大的最高波峰。
步骤S304,确定反射信号中距离最高波峰最近的且幅值等于临界值的第一点和第二点。
具体地,在预设时间区域内存在多个连续的波峰且其中一个波峰为最高波峰的情况下,饮水机确定距离最高波峰最近的幅值等于临界值的第一点和第二点。
在一个示例中,临界值可以等于波峰阈值。
步骤S305,确定最高波峰的顶点。
具体地,饮水机确定预设时间区域内的最高波峰的顶点的位置。
步骤S306,根据第一点与第二点之间的距离以及顶点与临界值之间的距离确定区间面积。
具体地,饮水机可以在确定第一点与第二点之间的距离以及顶点与临界值之间的距离之后,也就是确定矩形的两条相邻的边长(或者长和宽)之后,将两个距离的乘积值作为区间面积。
步骤S307,确定区间面积大于面积阈值。
具体地,饮水机将区间面积和面积阈值进行比较,从而确定最高波峰的区间面积大于面积阈值。
步骤S308,确定第一点与顶点所形成的直线的第一斜率以及第二点与顶点所形成的直线的第二斜率。
步骤S309,确定第一斜率的绝对值与第二斜率的绝对值之间的差大于斜率阈值。
步骤S310,识别反射信号为干扰信号。
具体地,饮水机通过确定第一点与顶点所形成的直线的第一斜率以及第二点与顶点所形成的直线的第二斜率,例如,可以通过第一点的坐标与顶点的坐标、第二点的坐标与顶点的坐标确定对应的三角函数值(例如,正切值)以确定斜率值,从而确定第一斜率和第二斜率,将第一斜率的绝对值和第二斜率的绝对值做差运算,在得到两者之间的差值后,将差值与斜率阈值进行比较,在确定差值大于斜率阈值的时候,确定反射信号为干扰信号。
本实施例中,在通过设置波峰阈值过滤掉一部分无效的干扰信号之后,将覆盖最高波峰的区间面积和面积阈值进行比较,确定区间面积大于面积阈值之后,将第一点与顶点所形成的直线的第一斜率的绝对值以及第二点与顶点所形成的直线的第二斜率的绝对值的差与斜率阈值进行比较,在确定大于斜率阈值之后,识别反射信号为干扰信号,以控制饮水机停止出水。本实施例的方法,在减少硬件成本的同时,不改变饮水机原有的硬件,通过软件算法和数学模型,基于已有的基本时域信号,提炼出多维的特征信号,建立属于干扰信号的模型,进一步提高了识别结果的准确度,降低了饮水机的误触发概率,提高了饮水机使用过程中的安全性。
图4示意性示出了本发明一实施例中用于识别干扰信号的装置的结构框图。 如图4所示,在本发明实施例中,提供了一种用于识别干扰信号的装置400,包括:超声波探测器410和处理器420,其中:
处理器420,被配置成:获取超声波探测器接收的反射信号;确定反射信号在预设时间区域内的波峰中幅值最大的最高波峰;根据最高波峰确定覆盖最高波峰的区间面积;确定区间面积大于面积阈值;以及识别反射信号为干扰信号。
可以理解,反射信号为超声波探测器发射的超声波遇到障碍物反射回来的声波信号。超声波探测器的工作原理是通过发射超声波和接收超声波遇到障碍物反射回来的声波,以判断该障碍物的属性类别。预设时间区域为反射信号形成的时域曲线中表示饮水机的接水区域的反射信号的时间区域,进一步地,时域曲线可以分成三大区域,包括表示离超声波探测器的探头较近的区域的反射信号的发射区、表示饮水机接水区域的反射信号的接收区以及表示饮水机的接水台区域的反射信号的接水台区,时域曲线上的接水台区主要是为了取得基准高度,接水台区之后的数据通常被认为是无效数据。区间面积为覆盖波峰的区间面积,也就是象征时域曲线上某一反射区间(例如,强反射区间)内的波峰面积,例如可以是时域曲线图上覆盖了波峰的长方形区间的面积。面积阈值为预先设置的饮水机判断是否为干扰信号的面积临界值。干扰信号为检测区域出现被测对象为非取水器具的信号,即对于超声波饮水机来说无效的用水信号,例如人手信号。
具体地,饮水机通过超声波探测器的探头发射超声波信号,当饮水机存在障碍物时,饮水机的超声波探测器接收障碍物反射回来的反射信号,多个连续的反射信号形成时域曲线,从而根据反射信号形成的时域曲线判断障碍物是否为杯子。饮水机根据接收到的反射信号生成有关时间(即与探头的距离)和幅值的时域曲线,通过获取波峰的幅值,从而确定反射信号在预设区域内(即接收区)的波峰中幅值最大的最高波峰。饮水机通过确定最高波峰在某一反射区间(例如,强反射区间)内的面积确定覆盖最高波峰的区间面积。饮水机可以将区间面积和面积阈值进行比较,从而确定最高波峰的区间面积大于面积阈值。例如在用户用手擦拭饮水机或者用户将手伸入饮水机的超声波探测器的检测区域等场景中,饮水机在确定时域曲线在预设时间区域内的最高波峰的区间面积大于面积阈值的情况下,识别该反射信号为干扰信号(例如,手信号)。
上述用于识别干扰信号的装置,通过获取超声波探测器接收的反射信号, 确定反射信号在预设时间区域内的波峰中幅值最大的最高波峰,根据最高波峰确定覆盖最高波峰的区间面积,在确定区间面积大于面积阈值的时候,识别反射信号为干扰信号,不需要借助其他传感器等硬件,即可区分干扰信号(例如,人手)和非干扰信号(例如,杯子),在减少硬件成本的同时,不改变饮水机原有的硬件,通过软件算法和数学模型,基于已有的基本时域信号,提炼出多维的特征信号,建立属于干扰信号的模型,提高了识别结果的准确度,降低了饮水机的误触发概率,提高了饮水机使用过程中的安全性。
在一个实施例中,处理器420进一步被配置成:确定反射信号中距离最高波峰最近的且幅值等于临界值的第一点和第二点;确定最高波峰的顶点;根据第一点与第二点之间的距离以及顶点与临界值之间的距离确定区间面积。
可以理解,临界值为预先设置的某一反射区间(例如,强反射区间)的幅值的下限值。第一点为时域曲线中距离最高波峰最近的幅值等于临界值的其中一个点,第二点为时域曲线中距离最高波峰最近的幅值等于临界值的另一点。
具体地,在预设时间区域内存在多个连续的波峰且其中一个波峰为最高波峰的情况下,饮水机确定距离最高波峰最近的幅值等于临界值的第一点和第二点,进一步确定最高波峰的顶点(包括顶点的幅值),从而根据第一点和第二点之间的距离以及顶点的幅值与临界值之间的距离确定区间面积。
在一个实施例中,处理器420进一步被配置成:确定第一点与第二点之间的距离以及顶点与临界值之间的距离的乘积值,以确定区间面积。
具体地,饮水机在确定第一点与第二点之间的距离以及顶点与临界值之间的距离之后,也就是确定矩形的两条相邻的边长(或者长和宽)之后,将两个距离的乘积值作为区间面积。
在一个实施例中,处理器420进一步被配置成:确定反射信号在预设时间区域内的波峰的幅值大于或者等于波峰阈值。
可以理解,波峰阈值为滤波过程中预先设置的表示信号有效的最低波峰幅值,也就是说,波峰幅值小于该波峰阈值的反射信号可以事先确定为微小的无用干扰信号,该信号可以被事先过滤掉,只有波峰幅值大于或者等于波峰阈值的波峰才被确认为是有效的数据。
具体地,在饮水机正式识别干扰信号之前,通过将反射信号在预设时间区 域内的波峰与预先设置的波峰阈值进行比较,在确定反射信号在预设时间区域内的波峰的幅值大于或者等于波峰阈值之后,进入确定反射信号在预设时间区域内的波峰中幅值最大的最高波峰的步骤,否则确定该反射信号为无效信号,即微小的无用干扰信号。
本实施例中的装置,通过事先设置波峰阈值可以过滤掉无效的反射信号,基本去除大部分的微小的无用干扰信号,可以提高干扰信号识别的效率,缩短模型识别的时间。
在一个实施例中,处理器420进一步被配置成:根据第一点、第二点以及顶点确定对应的三角形区域;确定三角形区域的两个底角对应的第一角度和第二角度;确定第一角度与第二角度之间的差的绝对值大于角度阈值;识别反射信号为干扰信号。
可以理解,第一角度为三角形区域的其中一个底角的角度值,第二角度为三角形区域的另一个底角的角度值。角度阈值为三角形区域的两个底角的差的最小值。
具体地,饮水机在生成时域曲线后,根据第一点、第二点以及最高波峰的顶点确定对应的三角形区域,并确定该三角形区域的两个底角分别对应的第一角度和第二角度,将第一角度和第二角度做差运算,在得到两者之间的差值后,将差值的绝对值与角度阈值进行比较,在确定差值的绝对值大于角度阈值的时候,确定反射信号为干扰信号(例如,人手),否则认为是非干扰信号(例如,杯子)。
本实施例中的装置,通过设置角度阈值,比较第一角度与第二角度之间的差值大小,在差值大于角度阈值的时候识别反射信号为干扰信号,可以区分出干扰信号和非干扰信号,进一步提高干扰信号识别的准确度,保证饮水机使用过程的安全性。
在一个实施例中,处理器420进一步被配置成:确定第一点与顶点所形成的直线的第一斜率以及第二点与顶点所形成的直线的第二斜率;确定第一斜率的绝对值与第二斜率的绝对值之间的差大于斜率阈值;识别反射信号为干扰信号。
可以理解,第一斜率为第一点与顶点连接所形成的直线的斜率,第二斜率为第二点与顶点连接所形成的直线的斜率。斜率阈值为斜率绝对值的差的下限值。
具体地,饮水机通过确定第一点与顶点所形成的直线的第一斜率以及第二 点与顶点所形成的直线的第二斜率,例如,可以通过第一点的坐标与顶点的坐标、第二点的坐标与顶点的坐标确定对应的三角函数值(例如,正切值)以确定斜率值,从而确定第一斜率和第二斜率,将第一斜率的绝对值和第二斜率的绝对值做差运算,在得到两者之间的差值后,将差值与斜率阈值进行比较,在确定差值大于斜率阈值的时候,确定反射信号为干扰信号(例如,人手),否则认为是非干扰信号(例如,杯子)。
本实施例中的装置,通过设置斜率阈值,比较第一斜率的绝对值与第二斜率的绝对值之间的差值大小,在差值大于斜率阈值的时候识别反射信号为干扰信号,可以区分出干扰信号和非干扰信号,进一步提高干扰信号识别的准确度,保证饮水机使用过程的安全性。
上述用于识别干扰信号的装置包括处理器和存储器,处理器中包含内核,由内核去存储器中调取相应的程序单元。内核可以设置一个或以上,通过调整内核参数来用于识别干扰信号。
存储器可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM),存储器包括至少一个存储芯片。
本发明实施例提供了一种处理器,该处理器被配置成执行根据上述实施方式中的用于识别干扰信号的方法。
本发明实施例提供了一种饮水机,包括根据上述实施方式中的用于识别干扰信号的装置。
本发明实施例提供了一种机器可读存储介质,该机器可读存储介质上存储有指令,该指令在被处理器执行时使得处理器执行根据上述实施方式中的用于识别干扰信号的方法。
本申请还提供了一种计算机程序产品,当在数据处理设备上执行时,适于执行初始化有上述实施方式中用于识别干扰信号的方法的程序。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、 CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
在一个典型的配置中,计算设备包括一个或多个处理器(CPU)、输入/输出接口、网络接口和内存。
存储器可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。存储器是计算机可读介质的示例。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按 照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法、商品或者设备中还存在另外的相同要素。
以上仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (15)

  1. 一种用于识别干扰信号的方法,应用于包括超声波探测器的饮水机,其特征在于,所述方法包括:
    获取所述超声波探测器接收的反射信号;
    确定所述反射信号在预设时间区域内的波峰中幅值最大的最高波峰;
    根据所述最高波峰确定覆盖所述最高波峰的区间面积;
    确定所述区间面积大于面积阈值;以及
    识别所述反射信号为干扰信号。
  2. 根据权利要求1所述的方法,其特征在于,所述确定所述区间面积包括:
    确定所述反射信号中距离最高波峰最近的且幅值等于临界值的第一点和第二点;
    确定所述最高波峰的顶点;
    根据所述第一点与第二点之间的距离以及所述顶点与所述临界值之间的距离确定所述区间面积。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述第一点与第二点之间的距离以及所述顶点与所述临界值之间的距离确定所述区间面积,包括:
    确定所述第一点与第二点之间的距离以及所述顶点与所述临界值之间的距离的乘积值,以确定所述区间面积。
  4. 根据权利要求1所述的方法,其特征在于,所述确定所述反射信号在预设时间区域内的波峰中幅值最大的最高波峰之前还包括:
    确定所述反射信号在预设时间区域内的波峰的幅值大于或者等于波峰阈值。
  5. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    根据所述第一点、所述第二点以及所述顶点确定对应的三角形区域;
    确定所述三角形区域的两个底角对应的第一角度和第二角度;
    确定所述第一角度与所述第二角度之间的差的绝对值大于角度阈值;
    识别所述反射信号为干扰信号。
  6. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    确定所述第一点与所述顶点所形成的直线的第一斜率以及所述第二点与所述顶点所形成的直线的第二斜率;
    确定所述第一斜率的绝对值与所述第二斜率的绝对值之间的差大于斜率阈值;
    识别所述反射信号为干扰信号。
  7. 一种处理器,其特征在于,所述处理器被配置成执行根据权利要求1至6中任意一项所述的用于识别干扰信号的方法。
  8. 一种用于识别干扰信号的装置,其特征在于,包括:
    超声波探测器;以及
    处理器,被配置成:
    获取所述超声波探测器接收的反射信号;
    确定所述反射信号在预设时间区域内的波峰中幅值最大的最高波峰;
    根据所述最高波峰确定覆盖所述最高波峰的区间面积;
    确定所述区间面积大于面积阈值;以及
    识别所述反射信号为干扰信号。
  9. 根据权利要求8所述的装置,其特征在于,所述处理器进一步被配置成:
    确定所述反射信号中距离最高波峰最近的且幅值等于临界值的第一点和第二点;
    确定所述最高波峰的顶点;
    根据所述第一点与第二点之间的距离以及所述顶点与所述临界值之间的距离确定所述区间面积。
  10. 根据权利要求9所述的装置,其特征在于,所述处理器进一步被配置 成:
    确定所述第一点与第二点之间的距离以及所述顶点与所述临界值之间的距离的乘积值,以确定所述区间面积。
  11. 根据权利要求8所述的装置,其特征在于,所述处理器进一步被配置成:
    确定所述反射信号在预设时间区域内的波峰的幅值大于或者等于波峰阈值。
  12. 根据权利要求9所述的装置,其特征在于,所述处理器进一步被配置成:
    根据所述第一点、所述第二点以及所述顶点确定对应的三角形区域;
    确定所述三角形区域的两个底角对应的第一角度和第二角度;
    确定所述第一角度与所述第二角度之间的差的绝对值大于角度阈值;
    识别所述反射信号为干扰信号。
  13. 根据权利要求9所述的装置,其特征在于,所述处理器进一步被配置成:
    确定所述第一点与所述顶点所形成的直线的第一斜率以及所述第二点与所述顶点所形成的直线的第二斜率;
    确定所述第一斜率的绝对值与所述第二斜率的绝对值之间的差大于斜率阈值;
    识别所述反射信号为干扰信号。
  14. 一种饮水机,其特征在于,包括根据权利要求8至13中任意一项所述的用于识别干扰信号的装置。
  15. 一种机器可读存储介质,该机器可读存储介质上存储有指令,其特征在于,该指令在被处理器执行时使得所述处理器执行根据权利要求1至6中任意一项所述的用于识别干扰信号的方法。
PCT/CN2021/120208 2020-12-24 2021-09-24 用于识别干扰信号的方法、装置、存储介质及处理器 WO2022134694A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011554168.9A CN112731406B (zh) 2020-12-24 2020-12-24 用于识别干扰信号的方法、装置、存储介质及处理器
CN202011554168.9 2020-12-24

Publications (1)

Publication Number Publication Date
WO2022134694A1 true WO2022134694A1 (zh) 2022-06-30

Family

ID=75615455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/120208 WO2022134694A1 (zh) 2020-12-24 2021-09-24 用于识别干扰信号的方法、装置、存储介质及处理器

Country Status (2)

Country Link
CN (1) CN112731406B (zh)
WO (1) WO2022134694A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112731406B (zh) * 2020-12-24 2023-05-12 佛山市顺德区美的饮水机制造有限公司 用于识别干扰信号的方法、装置、存储介质及处理器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140222374A1 (en) * 2011-09-20 2014-08-07 Monford Ag Systems Limited System and Method for Measuring Parameters Relating to Agriculture
CN109288393A (zh) * 2018-10-31 2019-02-01 上海沐鹭科技有限公司 一种智能饮水机
CN109770715A (zh) * 2018-11-29 2019-05-21 珠海格力电器股份有限公司 一种智能饮水机及其控制方法
CN112731406A (zh) * 2020-12-24 2021-04-30 佛山市顺德区美的饮水机制造有限公司 用于识别干扰信号的方法、装置、存储介质及处理器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109745050A (zh) * 2018-12-24 2019-05-14 曾乐朋 运动信号的特征信息检测方法和装置
CN113030979B (zh) * 2021-05-26 2021-08-17 北京星天科技有限公司 一种探测目标物体位置深度的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140222374A1 (en) * 2011-09-20 2014-08-07 Monford Ag Systems Limited System and Method for Measuring Parameters Relating to Agriculture
CN109288393A (zh) * 2018-10-31 2019-02-01 上海沐鹭科技有限公司 一种智能饮水机
CN109770715A (zh) * 2018-11-29 2019-05-21 珠海格力电器股份有限公司 一种智能饮水机及其控制方法
CN112731406A (zh) * 2020-12-24 2021-04-30 佛山市顺德区美的饮水机制造有限公司 用于识别干扰信号的方法、装置、存储介质及处理器

Also Published As

Publication number Publication date
CN112731406B (zh) 2023-05-12
CN112731406A (zh) 2021-04-30

Similar Documents

Publication Publication Date Title
WO2022134693A1 (zh) 用于识别错误信号的方法、装置、存储介质及处理器
KR101784755B1 (ko) 불꽃을 감지하기 위한 장치, 이를 위한 방법 및 이 방법을 수행하는 프로그램이 기록된 컴퓨터 판독 가능한 기록매체
WO2022134694A1 (zh) 用于识别干扰信号的方法、装置、存储介质及处理器
WO2019154112A1 (zh) 入离场状态检测方法和装置
JP2004511024A (ja) コンピュータ入力装置
US20090122642A1 (en) Bottom-sediment classification device and method
US20190056519A1 (en) Method And Apparatus For Determining Permeability Of Reservoir
JP7161071B2 (ja) 車両に取り付けられた超音波センサにより受信される超音波信号によって物体高さを評価するための方法およびデバイス
CN113030979B (zh) 一种探测目标物体位置深度的方法和装置
WO2022057793A1 (zh) 饮水机、饮水机的控制方法、装置及计算机可读存储介质
US11403480B2 (en) Device and method for determining the presence, absence, and/or movement of an object contained in a housing
KR102061514B1 (ko) 객체 감지 장치 및 방법
JP2006242619A (ja) 超音波センサ信号処理システム
CN113589293B (zh) 用于超声波饮水机的信号识别方法、装置及处理器
WO2020173094A1 (zh) 一种调整微波雷达设备的输出功率的方法及装置
TWI756904B (zh) 智慧儲物裝置及智慧儲物方法
US11209541B1 (en) Estimating a location of an object in close proximity to an ultrasonic transducer
CN114158946B (zh) 用于识别对象的方法、饮水机及存储介质
TWI609193B (zh) 基於調頻聲波的空間擾動偵測方法與裝置
US8144544B2 (en) Method of processing echo profile, and pulse-echo system for use with the method
JP2008180532A (ja) 距離測定装置
WO2018045711A1 (zh) 一种食物确定方法及装置、移动终端
Lacroix et al. On the identification of sonar features
KR102529265B1 (ko) 영상과 음향을 이용한 누설 감지장치 및 방법
JP2967673B2 (ja) スペックル対策機能付測距センサー装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21908695

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/11/2023)