WO2022134656A1 - 一种用于氢原子激射器的电离源装置及氢原子激射器 - Google Patents

一种用于氢原子激射器的电离源装置及氢原子激射器 Download PDF

Info

Publication number
WO2022134656A1
WO2022134656A1 PCT/CN2021/116949 CN2021116949W WO2022134656A1 WO 2022134656 A1 WO2022134656 A1 WO 2022134656A1 CN 2021116949 W CN2021116949 W CN 2021116949W WO 2022134656 A1 WO2022134656 A1 WO 2022134656A1
Authority
WO
WIPO (PCT)
Prior art keywords
ionization
hydrogen atom
source device
maser
magnetic field
Prior art date
Application number
PCT/CN2021/116949
Other languages
English (en)
French (fr)
Inventor
高善格
吴玲玲
武晓光
刘善敏
Original Assignee
上海光链电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海光链电子科技有限公司 filed Critical 上海光链电子科技有限公司
Publication of WO2022134656A1 publication Critical patent/WO2022134656A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/02Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma
    • H05H1/16Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma using externally-applied electric and magnetic fields
    • H05H1/18Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma using externally-applied electric and magnetic fields wherein the fields oscillate at very high frequency, e.g. in the microwave range, e.g. using cyclotron resonance
    • GPHYSICS
    • G04HOROLOGY
    • G04FTIME-INTERVAL MEASURING
    • G04F5/00Apparatus for producing preselected time intervals for use as timing standards
    • G04F5/14Apparatus for producing preselected time intervals for use as timing standards using atomic clocks

Definitions

  • the present application relates to the field of hydrogen atom masers, and in particular, to an ionization source device for a hydrogen atom maser and a hydrogen atom maser.
  • Time is one of the five basic physical quantities, and its precise measurement has important scientific research and application value.
  • atomic clocks that utilize definite energy level transitions to achieve high-precision time output have gradually matured and have been widely used.
  • the practical atomic clocks include rubidium atomic clocks, cesium atomic clocks and hydrogen atomic clocks.
  • hydrogen atomic clocks have excellent short- and medium-term stability, good long-term stability and drift rate indicators, and can be used in many fields such as punctuality, navigation and positioning, and communication support.
  • Industrial hydrogen passes through After purification, it is introduced into the ionization source device. During this period, the hydrogen molecules dissociate into a plasma state, and emit light and heat at the same time.
  • the hydrogen plasma is formed into a particle beam by a collimator .
  • the commonly used ionization source device is ICP (Inductively Coupled Plasma, Inductively Coupled Plasma) ionization source device.
  • ICP Inductively Coupled Plasma, Inductively Coupled Plasma
  • the patent application with publication number CN 102749839A discloses a hydrogen atomic maser ionization source system, as shown in FIG. 1 , as shown in FIG.
  • the hydrogen atomic maser ionization source system of the present application consists of an ionization source box 1, a heat conduction support 2, an ionization bubble 3, a fixed knob 4, a sealing installation surface 5, a heat dissipation cover 6, a heat conduction pipe 7, a radio frequency coil 8, and an excitation circuit 9 , the photosensitive detector 10 and the fixing screws 11 and 12 are constituted.
  • the screw 11 is used to connect the ionization source box 1 and the heat conduction support 2
  • the screw 12 is used to connect the heat conduction support 2 and the sealing mounting surface 50
  • the hydrogen gas is continuously introduced into the ionization bubble made of quartz
  • the radio frequency signal is inductively coupled or capacitively coupled. It acts on the ionization bubble, so that the hydrogen molecules dissociate in the ionization bubble to form a hydrogen plasma.
  • the structure is simple, the ionization efficiency is high, and the effect is good, and it can be directly applied to the hydrogen atomic maser .
  • the present application provides an ECR (Electron cyclotron resonance, electron cyclotron resonance) hydrogen plasma source applied to a hydrogen atom maser, which can further improve the Ionization density of hydrogen plasma.
  • ECR Electrode cyclotron resonance, electron cyclotron resonance
  • An ionization source device for a hydrogen atom maser comprising:
  • an ionization bubble which is provided with an input port for inputting hydrogen and an output port for outputting hydrogen plasma;
  • a resonant cavity assembly includes a connection flange, an inner conductor and an outer conductor for transmitting microwave coaxial lines, and a microwave introduction part, one end of the inner conductor and the outer conductor are both connected with the connection flange, the The inner conductor, the outer conductor and the connecting flange are enclosed to form a resonant cavity with only one open end, the ionization bubble is arranged at the opening and adjacent to the inner conductor, and the connecting flange is provided with microwaves transmitted from the microwave generating part
  • the microwave introduction part is introduced into the resonant cavity, and the outer conductor is fixedly connected with the sealing structure of the hydrogen atom maser;
  • At least one magnetic field generating component the magnetic field generating component is arranged outside the ionization bubble, and the magnetic field generated by the magnetic field and the microwave cooperates to make the electrons in the ionization bubble form electron cyclotron resonance, so that the hydrogen gas in the ionization bubble is ionized into hydrogen plasma.
  • B is the magnetic flux density
  • e is the charge of the charged particle
  • m is the mass of the charged particle.
  • the frequency of the microwave is 2.45 GHz
  • the magnetic field strength is greater than or equal to 875 Gs.
  • the cyclotron frequency of electrons can be calculated as 2.45GHz.
  • the 2.45GHz microwave is used to excite and maintain the plasma.
  • the electron cyclotron frequency ⁇ c is equal to the natural frequency ⁇ of the input microwave, that is, when the magnetic field is 875Gs, electron cyclotron resonance occurs, and the microwave energy is efficiently coupled to the electrons. It obtains energy and ionizes neutral hydrogen molecules by collision, resulting in plasma with an ionization density of 10 11 to 10 13 cm -3 , and the electron temperature, electron density and electron energy distribution can be adjusted by changing the microwave power.
  • the magnetic field generating component is configured as a ring magnet, the ring magnet is sleeved on the outer side of the ionization bubble, and the magnetic lines of force generated by the ring magnet penetrate into the ionization bubble. More preferably, the cross section of the ring magnet is rectangular.
  • the ring magnet can generate a continuous ring magnetic field, which can better cooperate with microwaves, and then meet the conditions of ECR.
  • the cross section of the ring magnet is set to be rectangular, which can facilitate the assembly of the ring magnet.
  • the ring magnets are arranged in two groups, the magnetic poles of the two groups of ring magnets are arranged the same, and there is a space between the two groups of ring magnets.
  • the two sets of ring magnets form a special magnetic field configuration with weak middle and strong ends in the ionization bubble, which can constrain charged particles. area, it will be subjected to a reverse force. This force slows down the speed of the particles, shortens the orbital pitch, then stops and reflects back. After the reflected particles reach the central area of the tube, they spiral toward the other end, and after reaching the port, they are reflected back, forming a magnetic mirror.
  • the interval between the two sets of ring magnets determines the size of the space region that can be confined by the two magnetic mirrors. The larger the interval, the more plasma is confined.
  • the formation of the magnetic mirror increases the density of the hydrogen plasma and further improves the ionization density of the hydrogen plasma.
  • the value range of the interval a is 5mm ⁇ a ⁇ 9mm. Setting the interval within this range can maximize the confinement effect of the magnetic mirror.
  • the magnetic field generating component further comprises a magnetic cake, the magnetic cake is arranged on the central axis of the ring magnet, and the magnetic field lines generated by the magnetic cake penetrate into the ionization bubble.
  • the configuration of the magnetic field can be further adjusted to make the effect of electron cyclotron resonance better.
  • the value range of the ratio of the outer diameter d of the inner conductor to the inner diameter D of the outer conductor is: 2.3 ⁇ D/d ⁇ 2.4.
  • the ratio of the outer diameter d of the inner conductor to the inner diameter D of the outer conductor preferably matches the characteristic impedance of the coaxial cable.
  • the outer diameter d of the inner conductor and the inner diameter of the outer conductor are The ratio of D is kept within the above range, which can be consistent with the preset characteristic impedance value, so that the microwave transmission effect is better.
  • the microwave introduction component includes a coupling ring and a joint, one end of the coupling ring extends into the resonant cavity, and the other end is connected to the microwave generating component through the joint.
  • the microwave is introduced into the resonant cavity through the coupling ring, it is then introduced into the ionization bubble through the inner conductor and the outer conductor, and the inner conductor and the outer conductor make the microwave propagate as a TEM wave.
  • TEM transverse electromagnetic mode, transverse electromagnetic wave mode
  • wave refers to the microwave whose electric field component and magnetic field component will be perpendicular to the propagation direction.
  • the coupling ring is an integrally formed structure. After bending a sheet of material into an annular portion, both ends are respectively bent to the outside to form a fixed portion fixedly connected with the connecting flange and a fixed portion with the connecting flange. The connecting part of the joint connection.
  • This structure can make the coupling effect better.
  • the magnetic field generating component is configured as a coil or a permanent magnet for generating a magnetic field.
  • the selection of magnets can be adjusted according to the required magnetic field strength of the magnets. When the required magnetic field strength is small, a permanent magnet can be selected; when the required magnetic field strength is large, a coil for generating a magnetic field can be selected.
  • the inner conductor is arranged in a hollow cylindrical shape or a solid cylindrical shape.
  • a solid cylindrical inner conductor can be used.
  • the inner conductor can be arranged in a hollow column shape, and the cooling medium can be used for cooling, for example, air cooling can be used.
  • the inner conductor and/or the outer conductor is formed by consolidation of at least two sections. In this way, the assembly can be facilitated, and the structure of the ionization source device used in the hydrogen atom maser is more reasonable.
  • the present application also provides a hydrogen atom maser, the hydrogen atom maser comprising the ionization source device for the hydrogen atom maser as described above.
  • the present application provides an ionization source device for a hydrogen atom maser, including an ionization bubble, a resonant cavity assembly and at least one magnetic field generating component, and the ionization bubble is provided with an input port for inputting hydrogen gas and an output port for outputting hydrogen plasma,
  • the resonant cavity assembly includes a connecting flange, an inner conductor and an outer conductor for transmitting the microwave coaxial line, and a microwave introduction part, one end of the inner conductor and the outer conductor are connected with the connection method.
  • the inner conductor, outer conductor and connection flange are enclosed into a resonant cavity with only one end open, the ionization bubble is arranged at the opening and adjacent to the inner conductor, and the connection flange is provided with a microwave generator.
  • the microwave transmitted from the component is introduced into the microwave introduction component of the resonant cavity, the outer conductor is fixedly connected with the sealing structure of the ionization source device for the hydrogen atom maser; the magnetic field generating component is arranged outside the ionization bubble
  • the generated magnetic field and the microwaves act together to make electrons in the ionization bubble form electron cyclotron resonance, so that the hydrogen gas in the ionization bubble is ionized into hydrogen plasma.
  • FIG. 1 is a schematic structural diagram of an ionization source system of a hydrogen atomic maser described in the background art of the application;
  • FIG. 2 is a schematic structural diagram of an ionization source device for a hydrogen atom maser according to an embodiment of the application
  • FIG. 3 is a schematic structural diagram of an outer conductor of an ionization source device for a hydrogen atom maser according to an embodiment of the application;
  • FIG. 4 is a schematic structural diagram of an inner conductor of an ionization source device for a hydrogen atom maser according to an embodiment of the application;
  • FIG. 5 is a front view of a coupling ring of an ionization source device for a hydrogen maser according to an embodiment of the application;
  • FIG. 6 is a side view of a coupling ring of an ionization source device for a hydrogen maser according to an embodiment of the application.
  • an ionization source device for a hydrogen atom maser the ionization source device includes:
  • the ionization bubble 1 is provided with an input port 11 for inputting hydrogen gas and an output port 12 for outputting hydrogen plasma; the ionization bubble 1 can adopt the ionization bubble commonly used in the ionization source device of the current hydrogen atom maser 1.
  • the resonant cavity assembly 2 includes a flange cover 21, an inner conductor 22 and an outer conductor 23 for transmitting microwave coaxial lines, and a microwave introduction part 24.
  • One end of the inner conductor 22 and the outer conductor 23 is It is connected with the flange cover 21. In the specific implementation process, it can be detachably connected by fasteners such as bolts.
  • the inner conductor 22, the outer conductor 23 and the flange cover 21 are enclosed into a resonant cavity 25 with only one end open.
  • the ionizing bubble 1 is disposed at the opening and adjacent to the inner conductor 22
  • the microwave introduction part 24 is shown through the flange cover 21 for introducing the microwaves transmitted from the microwave generating part into the resonant cavity 25 Inside;.
  • the inner conductor 22 and/or the outer conductor 23 may be an integral structure or a separate structure.
  • the inner conductor 22 and the outer conductor 23 are made of multi-section consolidation, and the consolidation place is provided with steps for convenient positioning.
  • the outer conductor 23 is composed of three parts, namely a first outer conductor 231 , a second outer conductor 232 and a third outer conductor 233 , and the second outer conductor 232 is arranged on the first outer conductor 231 .
  • both ends of the first outer conductor 231 are provided with a first upper flange 231a and a first lower flange 231b.
  • the inner side wall of the first lower flange 231b is provided with a step matching the upper end of the second outer conductor 232; the lower end of the second outer conductor 232 is provided with a second lower flange 232a, and the third outer conductor
  • the upper end of the conductor 233 is provided with a second upper flange 233a, and the lower end of the third outer conductor 233 is matched with the upper part of the sealing structure 26 of the inner vacuum system of the ionization source device for hydrogen atom maser, and is fixed.
  • the outer conductor 23 is on the inner vacuum structure.
  • the first upper flange 231a and the connecting flange 21 are fixed by bolts, and the first lower flange 231b, the second lower flange 232a and the second upper flange 233a are fixed by bolts.
  • the second upper flange 233a is also provided with another mounting hole for fixing the sealing structure 26 of the ionization source device by bolts through the second upper flange 233a.
  • the outer conductor 23 can be made of aluminum material or 1Cr18Ni9Ti non-magnetic stainless steel.
  • the inner conductor 22 adopts a solid columnar structure, especially when the input power of the microwave is low.
  • the inner conductor 22 is a hollow cylinder. As shown in FIG. 3 , the hollow claimed inner conductor 22 is arranged in a separate body, including a first inner conductor 221 and a second inner conductor 222 , The first inner conductor 221 is arranged between the second inner conductor 222 and the connecting flange 21 , and the lower surface of the connecting flange 21 is provided with a raised structure matching with the first inner conductor 221 .
  • the upper end of an inner conductor 221 is provided with a step for matching with the protrusion, and the contact point between the first inner conductor 221 and the second inner conductor 222 is also provided with a limit step, and the lower end of the second inner conductor 222 extends to the
  • the upper end of the ionization bubble 1 maintains a gap of about 2 mm with the ionization bubble 1 , so as to prevent extrusion between the inner conductor 22 and the ionization bubble 1 .
  • the inner conductor 22 can be made of brass.
  • the ratio of the outer diameter d of the inner conductor 22 to the inner diameter D of the outer conductor 23 is preferably kept in the range of 2.3 ⁇ D/d ⁇ 2.4, which can satisfy the characteristic impedance value of 50 -60 ohms between requirements.
  • the effective length of the first outer conductor 231 and the second outer conductor 232 after consolidation and the effective length of the first inner conductor 221 and the second inner conductor 222 after consolidation are both set is 75mm
  • the inner diameter of the outer conductor 23 is set to 55.5mm
  • the outer diameter of the inner conductor 22 is set to 23.4mm.
  • the length of the third outer conductor 233 is set to match the height of the ionization bubble 1 , that is, the top of the ionization bubble 1 is substantially flush with the top of the third outer conductor 233 , and the lower end of the ionization bubble 1 slightly exceeds The lower end of the third outer conductor 233 is provided.
  • the microwave introduction component 24 includes a coupling ring 241 and a joint 242 , one end of the coupling ring 241 extends into the resonant cavity 25 , and the other end is connected to the microwave generating component through the joint 242 .
  • the microwave is introduced into the resonant cavity 25 through the coupling ring 241, it is then introduced into the ionization bubble 1 through the inner conductor 22 and the outer conductor 23, which make the microwave propagate as a TEM wave.
  • TEM transverse electromagnetic mode, transverse electromagnetic wave mode
  • the connector 242 can be an L16 connector.
  • the microwave source can be selected according to the required natural frequency of the microwave. For example, if the required natural frequency of the microwave is 2.45 GHz, a WB-200 microwave source or a Walter can be used.
  • the coupling ring 241 is an integrally formed structure. After bending a sheet of material into an annular portion, the two ends are respectively bent to the outside. A fixed part fixedly connected with the connecting flange 21 and a connecting part connected with the joint 242 are formed. This structure can make the coupling effect better.
  • the magnetic field generating component adopts a ring magnet 3, and the cross section of the ring magnet 3 is rectangular.
  • the ring magnets 3 are arranged in two groups, an interval is set between the two groups of the ring magnets 3 to form a magnetic mirror, and the width of the interval is set between 5 and 9 mm. Expediently, this is achieved by arranging an insulator between the two sets of ring magnets 3, for example, arranging a plastic spacer.
  • Each group of the ring magnets 3 may be composed of a single ring magnet 3 , or may be composed of a plurality of modular ring magnets 3 that have the same magnetic poles attached together.
  • the magnetic field generating component further includes a magnetic cake 31, the magnetic cake 31 can be fixed on the bottom of the inner conductor 22, and the magnetic cake 31 can further adjust the configuration of the magnetic field.
  • Both the ring magnet 3 and the magnetic cake 31 can be made of rubidium iron boron material.
  • the ionization source device of the test experiment adopts the structure shown in FIG. 2 , that is, the outer conductor 23 is composed of three sections, the material is aluminum, the inner conductor 22 is composed of two ends, and the material is brass, so
  • the ionization bubble 1 is arranged in the resonant cavity 25 enclosed by the outer conductor 23, the inner conductor 22 and the upper connecting flange 21 after being consolidated.
  • the ionization bubble 1 is arranged at the third outer conductor 233, and the top is not There is a gap of 2 mm between the top of the third outer conductor 233 and the bottom of the inner conductor 22 and the top of the ionization bubble 1 .
  • the magnetic field generating component selects two identical ring magnets 3 and a magnetic cake 31.
  • the ring magnets 3 have the same magnetic poles and are sleeved on the ionization bubble 1 and their cross-sectional areas are rectangular.
  • the magnetic poles of the two ring magnets 3 are rectangular. The same is sleeved on the outer wall of the ionization bubble 1, the two groups of the ring magnets 3 are directly pressed at an interval of 5mm, and the outer wall of the ring magnet 3 and the inner wall of the third outer conductor 233 are arranged in close contact with each other. .
  • the effective length of the first outer conductor 231 and the second outer conductor 232 after consolidation and the length of the first inner conductor 221 and the second inner conductor 222 after consolidation are both set to 75mm, and the outer conductor 23
  • the inner diameter of the inner conductor 22 is set to 55.5mm, and the outer diameter of the inner conductor 22 is set to 23.4mm.
  • the microwave source is a 2.45GHz microwave source, and the model is WB-200.
  • the material of the outer conductor 23 is aluminum, the material of the inner conductor 22 is brass, and the magnetic field strength of the ring magnet 3 is 875Gs.
  • the microwave introduction part 24 adopts an L16 joint 242 and a coupling ring 241 .
  • the coupling ring 241 adopts the structure shown in FIG. 2 .
  • the coupling ring 241 is an integrally formed structure. After being bent into a ring portion from a sheet of material, the two ends are respectively bent to the outside to form the same structure as the one described above.
  • the connection flange 21 is fixedly connected to the fixed part and the connection part connected to the joint 242 .
  • the fixing portion is provided with bolt holes for fixing with the lower surface of the connecting flange 21 , the connecting portion is provided with connecting holes, and the connecting holes are matched and connected with the L16.
  • the output port 12 of the ionization bubble 1 is provided with an electrostatic probe to measure the density of hydrogen plasma, wherein the ionization bubble 1
  • the input power of the microwave source is 90W
  • the input flow rate of hydrogen gas is 1-4.5 sccm, which is achieved by connecting the output port 12 with the molecular pump.
  • the measured data are shown in the table below.
  • the electron density and ion density generated by the ECR plasma source are in the order of 10 13 m -3 and above, while the plasma electron density and ion density generated by the ICP ionization source device are in the order of 10 11 m -3 level, significantly lower than the ECR plasma source. It shows that the ECR hydrogen plasma source can further improve the ionization density of hydrogen plasma, which may be beneficial to improve the signal intensity and performance index of the hydrogen atom maser.
  • the present application also provides a hydrogen atom maser, the hydrogen atom maser comprising the ionization source device for the hydrogen atom maser as described above.
  • the present application provides an ionization source device for a hydrogen atom maser, including an ionization bubble, a resonant cavity assembly and at least one magnetic field generating component, and the ionization bubble is provided with an input port for inputting hydrogen gas and an output port for outputting hydrogen plasma,
  • the resonant cavity assembly includes a connecting flange, an inner conductor and an outer conductor for transmitting the microwave coaxial line, and a microwave introduction part, one end of the inner conductor and the outer conductor are connected with the connection method.
  • the inner conductor, outer conductor and connection flange are enclosed into a resonant cavity with only one end open, the ionization bubble is arranged at the opening and adjacent to the inner conductor, and the connection flange is provided with a microwave generator.
  • the microwave transmitted from the component is introduced into the microwave introduction component of the resonant cavity; the magnetic field generating component is arranged on the outside of the ionization bubble, and the magnetic field generated by the component and the microwave act together to make the electrons in the ionization bubble form electron cyclotron resonance,
  • the hydrogen gas within the ionization bubble is ionized into a hydrogen plasma. According to the above technical solution, the effect of the ionization density of the hydrogen plasma can be further improved.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)
  • Lasers (AREA)

Abstract

一种用于氢原子激射器的电离源装置,电离源装置包括电离泡(1)、谐振腔组件(2)和至少一个磁场发生部件,谐振腔组件(2)包括连接法兰、使微波同轴线传输的内导体(22)和外导体(23)、以及微波导入部件(24),内导体(22)和外导体(23)的一端均与连接法兰连接,内导体(22)、外导体(23)和连接法兰围合成仅一端开口的谐振腔(25),电离泡(1)设置在开口处且邻近内导体(22),连接法兰上设有微波导入部件(24),外导体(23)与用于氢原子激射器的电离源装置的密封结构固定连接;磁场发生部件设置在电离泡(1)的外侧且其产生的磁场与微波共同作用使电离泡(1)内的电子形成电子回旋共振,使电离泡(1)内的氢气电离成氢等离子体。通过电离源装置能够进一步提高氢等离子体中氢原子的电离密度。

Description

一种用于氢原子激射器的电离源装置及氢原子激射器 技术领域
本申请涉及氢原子激射器领域,尤其涉及一种用于氢原子激射器的电离源装置及氢原子激射器。
背景技术
时间是五个基本物理量之一,对其的精确计量具有重要的科研和应用价值。进入二十世纪后,利用确定能级跃迁实现高精度时间输出的原子钟逐渐成熟,并得到广泛地应用。目前实用型的原子钟包括铷原子钟、铯原子钟和氢原子钟,其中氢原子钟具有优秀的中短期稳定度和良好长期稳定度和漂移率指标,可用于守时授时、导航定位和通讯保障等众多领域。
电离源装置的工作原理是利用氢原子基态((F=l,m F=0)至(F=O,m F=0)两超精细能级之间的跃迁频率来锁定晶振。工业氢气通过提纯之后导入电离源装置,在此期间氢分子离解成为等离子体状态,同时发光发热,氢等离子体由准直器形成粒子束流,在磁选态器的作用下,(F=l,m F=0)和(F=O,m F=0)态的氢原子射入微波谐振腔中的储存泡,并在其中发生微波共振跃迁,通过检测微波谐振腔内的微波信号就可以将电路系统输出的微波信号锁定在原子跃迁谱线上,从而可以得到具有高稳定度和高准确度的输出信号。
目前常用的电离源装置为ICP(Inductively Coupled Plasma,电感耦合等离子体)电离源装置,例如,公开号为CN 102749839A的申请专利公开了一种氢原子钟电离源系统,如图1所示,如图1所示,本申请的氢原子钟电离源系统由电离源盒1、导热支柱2、电离泡3、固定旋钮4、密封安装面5、散热罩6、导热管7、射频线圈8、激励电路9、光敏探测器10和固定螺钉11,12构成。螺钉11用于连接电离源盒1和导热支柱2,螺钉12用于连接导热支柱2和密封安装面50,将氢气持续导入石英制的电离泡中,同时射频信号以电感耦合或者电容耦合的方式作用于电离泡,从而使氢分子在电离泡内发生离解,形成氢等离子体。结构简单、电离效率高,效果好,可直接应用于氢原子钟,但是其氢等离子体的电离密度为10 10-10 11n e/cm -3,能量转换效率低,据估算小于1%。
发明内容
鉴于目前用于氢原子激射器的电离源装置存在的上述不足,本申请提供一种应用于氢原子激射器上的ECR(Electron cyclotron resonance,电子回旋共振)氢等离子体源,能够进一步提高氢等离子体的电离密度。
为达到上述目的,本申请的实施例采用如下技术方案:
一种用于氢原子激射器的电离源装置,包括:
电离泡,所述电离泡上设有输入氢气的输入口和输出氢等离子体的输出口;
谐振腔组件,所述谐振腔组件包括连接法兰、使微波同轴线传输的内导体和外导体、以及微波导入部件,所述内导体和外导体的一端均与连接法兰连接,所述内导体、外导体和连接法兰围合成仅一端开口的谐振腔,所述电离泡设置在开口处且邻近所述内导体,所述连接法兰上设有将从微波发生部件传送来的微波导入所述谐振腔的微波导入部件,所述外导体与所述氢原子激射器的密封结构固定连接;
至少一个磁场发生部件,所述磁场发生部件设置在电离泡的外侧且其产生的磁场与所述微波共同作用使所述电离泡内的电子形成电子回旋共振,使所述电离泡内的氢气电离成氢等离子体。
在所述氢等离子体系统中,施加一个垂直于电场的磁场,由于电场改变带电粒子的速度,磁场改变带电粒子的运动方向,因此,在电、磁场的共同作用下,带电粒子将沿着磁力线做拉莫回旋运动,回旋角频率ω c满足如下等量关系:
Figure PCTCN2021116949-appb-000001
其中,B为磁通密度,e为带点离粒子的电荷,m为带电粒子质量。如果我们使微波的频率等于电子的回旋角频率,就可以使所述电离泡内的电子产生电子回旋加速共振,提高了微波能量耦合给电子的效率,延长了电子的加速距离,进而使电子具有更高的速度和能量去撞击所述电离泡内的氢分子,提高氢等离子体的电离密度。
优选的,所述微波的频率为2.45GHz,所述磁场强度为大于或等于875Gs。对于875Gs的磁场,根据上述的公式,可以算出电子的回旋频率为2.45GHz。采用2.45GHz的微波来激发并维持等离子体,当电子 回旋频率ω c等于输入微波的固有频率ω时,即在磁场为875Gs处,就会发生电子回旋共振,微波能量高效率地耦合给电子,使其获得能量,通过碰撞电离中性的氢分子,产生电离密度为10 11~10 13cm -3等离子体,并且可以通过改变微波功率的大小来调节电子温度、电子密度和电子能量分布。
优选的,所述磁场发生部件设置为环形磁铁,所述环形磁铁套设所述电离泡的外侧且所述环形磁铁产生的磁力线穿入所述电离泡内。更优选的,所述环形磁铁的截面为矩形。
环形磁铁可以产生连续的环状磁场,可以与微波更好的配合,进而满足ECR的条件。将其截面设置为矩形,可以更加方便所述环形磁铁的装配。
优选的,所述环形磁铁设置为两组,两组所述环形磁铁的磁极相同设置,两组所述环形磁铁之间设有间隔。两组所述环形磁铁在所述电离泡内形成中间弱、两端强的特殊的磁场位形,可以约束带电粒子,当绕着磁力线旋进的带点粒子由弱磁场区进入两端的强磁场区域时,就会受到一反向力的作用。这个力迫使粒子的速度减慢,轨道螺距缩短,然后停下来并反射回去,反射回去的粒子达管子中心区域后,又向另一端螺旋前进,达端口后又被反射回来,即形成了磁镜,两组所述环形磁铁之间的间隔决定了两磁镜能约束的空间区域的大小。间隔越大,受约束的等离子体越多。磁镜的形成,增加了氢等离子体的密度,进一步提高了氢等离子体的电离密度。
优选的,所述间隔a的取值范围是5mm≦a≦9mm。将所述间隔设置在此范围内,可以使磁镜的约束效果最好。
优选的,所述磁场发生部件还包括磁饼,所述磁饼设置在环形磁铁的中心轴线上且所述磁饼产生的磁力线穿入电离泡内。可以进一步调整磁场的位形,使电子回旋共振的效果更好。
优选的,所述内导体的外径d和所述外导体的内径D的比值取值范围为:2.3≦D/d≦2.4。所述内导体的外径d和所述外导体的内径D的比值最好与同轴线缆特性阻抗相匹配,在本申请中,使述内导体的外径d和所述外导体的内径D的比值保持在上述范围内,可以与预设的特性阻抗值相符,使微波的传到效果更好。
优选的,所述微波导入部件包括耦合环和接头,所述耦合环的一 端向谐振腔内延伸,另一端通过接头与所述微波发生部件连接。所述微波经耦合环导入谐振腔后,再经内导体和外导体导入所述电离泡中,所述内导体和外导体使微波成TEM波传播。其中,TEM(transverse electromagnetic mode,横电磁波模式)波是指电场分量和磁场分量都将垂直于传播方向的微波。
优选的,所述耦合环为一体成型的结构,由一片状材料折弯成环状部后,两端分别向外侧折弯,形成与所述连接法兰固定连接的固定部和与所述接头连接的连接部。这种结构可以使耦合的效果更好。
优选的,所述磁场发生部件设置为产生磁场用的线圈或者永磁铁。磁铁的选用可以根据所要求的磁铁的磁场强度来的进行调整。当要求的磁场强度较小时,可以选用永磁铁;当要求的磁场强度大时,可以选用产生磁场用的线圈。
优选的,所述内导体设置为空心柱状或者实心柱状。当微波的输入功率低时,不需要冷却,可以采用实心柱状的内导体。当微波输入的功率高时,可以将内导体的设置为空心柱状,采用通入冷却介质的方式来冷却,例如,可以采用风冷。
优选的,所述内导体和/或外导体由至少两段固结而成。这样可以方便组装,使用于氢原子激射器的电离源装置的结构更加合理。
本申请还提供了一种氢原子激射器,所述氢原子激射器包括如上所述的用于氢原子激射器的电离源装置。
本申请实施的优点:本申请提供了一种用于氢原子激射器的电离源装置,包括电离泡、谐振腔组件和至少一个磁场发生部件,所述电离泡上设有输入氢气的输入口和输出氢等离子体的输出口,所述谐振腔组件包括连接法兰、使微波同轴线传输的内导体和外导体、以及微波导入部件,所述内导体和外导体的一端均与连接法兰连接,所述内导体、外导体和连接法兰围合成仅一端开口的谐振腔,所述电离泡设置在开口处且邻近所述内导体,所述连接法兰上设有将从微波发生部件传送来的微波导入所述谐振腔的微波导入部件,所述外导体与所述用于氢原子激射器的电离源装置的密封结构固定连接;所述磁场发生部件设置在电离泡的外侧且其产生的磁场与所述微波共同作用使所述电离泡内的电子形成电子回旋共振,使所述电离泡内的氢气电离成氢等离子体。通过上述技术方案,能够进一步提高氢等离子体的电离密度。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请背景技术所述的一种氢原子钟的电离源系统的结构示意图;
图2为本申请实施例所述的一种用于氢原子激射器的电离源装置的结构示意图;
图3为本申请实施例所述的一种用于氢原子激射器的电离源装置的外导体的结构示意图;
图4为本申请实施例所述的一种用于氢原子激射器的电离源装置的内导体的结构示意图;
图5为本申请实施例所述的一种用于氢原子激射器的电离源装置的耦合环的正视图;
图6为本申请实施例所述的一种用于氢原子激射器的电离源装置的耦合环的侧视图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
实施例
如图2所示,一种用于氢原子激射器的电离源装置,所述电离源装置包括:
电离泡1,所述电离泡1上设有输入氢气的输入口11和输出氢等离子体的输出口12;所述电离泡1可以采用目前氢原子激射器的电离源装置上常用的电离泡1。
谐振腔组件2,所述谐振腔组件2包括法兰盖21、使微波同轴线传输的内导体22和外导体23、以及微波导入部件24,所述内导体22 和外导体23的一端均与法兰盖21连接,在具体的实施过程中,可以通过螺栓等紧固件进行可拆分连接,所述内导体22、外导体23和法兰盖21围合成仅一端开口的谐振腔25,所述电离泡1设置在开口处且邻近所述内导体22,所示微波导入部件24穿过所述法兰盖21,用于将从微波发生部件传送来的微波导入所述谐振腔25内;。
所述所述内导体22和/或外导体23可以为一体的结构,也可以为分体的结构,在本申请的部分实施例中,如图2所示,所述内导体22和外导体23均由多段固结而成,固结处设置有方便限位的台阶。
具体的,如图3所示,所述外导体23由三部分组成,分别是第一外导体231、第二外导体232和第三外导体233,所述第二外导体232设置在第一外导体231和第三外导体233的中间,所述第一外导体231的两端设有第一上部法兰231a和第一下部法兰231b。所述第一下部法兰231b的内侧壁设有与第二外导体232的上端相配合的台阶;所述第二外导体232的下端设有第二下部法兰232a,所述第三外导体233的上端设有第二上部法兰233a,所述第三外导体233的下端与所述用于氢原子激射器的电离源装置的内真空系统的密封结构26的上部相配合,固定外导体23在内真空结构上。所述第一上部法兰231a与所述连接法兰21通过螺栓固结,所述第一下部法兰231b、第二下部法兰232a和第二上部法兰233a通过螺栓固结,所述第二上部法兰233a上还设有另外的安装孔,用来经第二上部法兰233a将电离源装置的密封结构26通过螺栓固结。所述外导体23可以采用铝材质或者1Cr18Ni9Ti无磁不锈钢。
在本申请的部分实施例中,所述内导体22采用实心的柱状结构,特别是当微波的输入功率低时。在本申请另外的部分实施例中,所述内导体22为空心柱状,如图3所示,所述空心主张的内导体22分体设置,包括第一内导体221和第二内导体222,所述第一内导体221设置在第二内导体222和所述连接法兰21之间,所述连接法兰21下表面设有与第一内导体221相配合的凸起结构,所述第一内导体221的上端设有与凸起配合的台阶,所述第一内导体221和第二内导体222接触处也设有限位的台阶,所述第二内导体222的下端延伸至所述电离泡1的上端,与所述电离泡1保持约2mm的间隙,这样可以防止内导体22与所述电离泡1之间发生挤压。所述内导体22可以采用黄铜 材质。
在本申请的实施例中,所述内导体22的外径d和所述外导体23的内径D的比值最好保持在2.3≦D/d≦2.4的范围,这样可以满足特性阻抗值在50-60欧姆之间的要求。在本申请的一个具体实施中,所述第一外导体231和第二外导体232固结后的有效长度与所述第一内导体221和第二内导体222固结后的有效长度均设置为75mm,所述外导体23的内径设置为55.5mm,所述内导体22的外径设置为23.4mm。所述第三外导体233的长度与所述电离泡1高度配合设置,即所述电离泡1的顶端基本与所述第三外导体233的顶端齐平,所述电离泡1的下端略微超出第三外导体233的下端设置。
在本申请的部分实施例中,所述微波导入部件24包括耦合环241和接头242,所述耦合环241的一端向谐振腔25内延伸,另一端通过接头242与所述微波发生部件连接。所述微波经耦合环241导入谐振腔25后,再经内导体22和外导体23导入所述电离泡1中,所述内导体22和外导体23使微波成TEM波传播。其中,TEM(transverse electromagnetic mode,横电磁波模式)波是指电场分量和磁场分量都将垂直于传播方向的微波。所述接头242可以采用L16接头。
在本申请的部分实施例中,所述微波源可以根据需要的微波的固有频率进行选择,例如,如果所需要的微波的固有频率为2.45GHz,则可以采用WB-200型微波源或者沃特塞恩电子技术有限公司提供的WSPS-2450-100M型固态微波源,所述环形磁铁的磁场强度为875Gs。
在本申请的部分实施例中,如图4和图5所示,所述耦合环241为一体成型的结构,由一片状材料折弯成环状部后,两端分别向外侧折弯,形成与所述连接法兰21固定连接的固定部和与所述接头242连接的连接部。这种结构可以使耦合的效果更好。
在本申请的部分实施例中,所述磁场发生部件采用环形磁铁3,且所述环形磁铁3的截面为矩形。在本申请的其它的部分实施例中,所述环形磁铁3设置为两组,两组所述环形磁铁3之间设置间隔,以形成磁镜,所述间隔的宽度设置在5~9mm之间为宜,通过在两组环形磁铁3之间设置绝缘体来实现,例如,设置塑料的垫片。每组所述环形磁铁3可以由单个环形磁铁3组成,也可以由多个模块化的环形磁铁3磁极相同的贴合在一起组成。两个所述环形磁铁3均套设在所述电离 泡1与所述第三外导体233之间。在申请另外的部分实施例中,所述磁场发生部件还包括磁饼31,所述磁饼31可以固结在所述内导体22的底部,所述磁饼31可以进一步调整磁场的位形。所述环形磁铁3和磁饼31均可以采用铷铁硼材质。磁饼31与环形磁铁3放置时,提起电离源装置环形磁铁3有下坠的趋势但被磁饼31吸引,使环形磁铁3靠近磁饼31后受到磁饼31的排斥。我们还做了本申请所述的用于氢原子激射器的电离源装置的电离密度测试实验,。
所述测试实验的电离源装置采用如图2所示的结构,即所述外导体23由三段组成,材质为铝,所述内导体22采用两端组成,所述材质选择黄铜,所述电离泡1设置在所述外导体23、内导体22和上部连接法兰21固结后围合而成的谐振腔25内,所述电离泡1设置在第三外导体233处,顶端不超过第三外导体233的顶部且所述内导体22的底端与所述电离泡1的顶端留有2mm的间隙。所述磁场发生部件选用两个相同的环形磁铁3和一个磁饼31,所述环形磁铁3磁极相同的套设在电离泡1上且其截面积均为矩形,两个所述环形磁铁3磁极相同的套设在所述电离泡1的外壁上,两组所述环形磁铁3直接按的间隔设为为5mm,所述环形磁铁3的外壁与所述第三外导体233的内壁紧贴设置。
其中,所述第一外导体231和第二外导体232固结后的有效长度与所述第一内导体221和第二内导体222固结后的长度均设置为75mm,所述外导体23的内径设置为55.5mm,所述内导体22的外径设置为23.4mm。所述微波源采用2.45GHz的微波源,型号为WB-200。所述外导体23的材质为铝,所述内导体22的材质为黄铜,所述环形磁铁3的磁场强度为875Gs。
所述微波导入部件24采用L16接头242和耦合环241。所述耦合环241采用如图2所示的结构,所述耦合环241为一体成型的结构,由一片状材料折弯成环状部后,两端分别向外侧折弯,形成与所述连接法兰21固定连接的固定部和与所述接头242连接的连接部。所述固定部设有螺栓孔,用来与所述连接法兰21的下表面固结,所述连接部设有连接孔,所述连接孔与L16配合连接。
所述电离泡1的输出口12设有静电探针对氢等离子的密度进行测量,其中,所述电离泡1
测量时,所述微波源的输入功率为90W,氢气的输入流量为1-4.5sccm,通过使输出口12与分子泵连通来实现。测得的数据如下表所示。
Figure PCTCN2021116949-appb-000002
此外,我们还做了本申请所述的电离源装置与ICP电离源装置的对比实验,具体结构如图X所示,通过将设置在电离泡1上部的内导体22、外导体23和连接法兰21形成的谐振腔25,以及套设在所述电离泡1上的磁铁移除,在电离泡1上安装ICP氢等离子体源,测量时,所述ICP氢等离子体源的输入功率为14W,氢气的输入流量为1-4.5sccm,通过使输出口12与分子泵连通来实现。测得的数据如下表所示。
Figure PCTCN2021116949-appb-000003
从上述数据可以看出:ECR等离子体源产生的电子密度和离子密度在10 13m -3量级及以上,而ICP电离源装置产生的等离子体电子密度和离子密度在10 11m -3量级,明显低于ECR等离子体源。说明ECR氢等离子体源能够进一步提高氢等离子体的电离密度,可能会有利于提高氢原子激射器的信号强度和性能指标。
本申请还提供了一种氢原子激射器,所述氢原子激射器包括如上所述的用于氢原子激射器的电离源装置。
本申请实施的优点:本申请提供了一种用于氢原子激射器的电离源装置,包括电离泡、谐振腔组件和至少一个磁场发生部件,所述电离泡上设有输入氢气的输入口和输出氢等离子体的输出口,所述谐振腔组件包括连接法兰、使微波同轴线传输的内导体和外导体、以及微波导入部件,所述内导体和外导体的一端均与连接法兰连接,所述内导体、外导体和连接法兰围合成仅一端开口的谐振腔,所述电离泡设置在开口处且邻近所述内导体,所述连接法兰上设有将从微波发生部件传送来的微波导入所述谐振腔的微波导入部件;所述磁场发生部件设置在电离泡的外侧且其产生的磁场与所述微波共同作用使所述电离泡内的电子形成电子回旋共振,使所述电离泡内的氢气电离成氢等离子体。通过上述技术方案,能够进一步提高氢等离子体的电离密度的效果。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本领域技术的技术人员在本申请公开的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (13)

  1. 一种用于氢原子激射器的电离源装置,其特征在于,包括:
    电离泡,所述电离泡上设有输入氢气的输入口和输出氢等离子体的输出口;
    谐振腔组件,所述谐振腔组件包括连接法兰、使微波同轴线传输的内导体和外导体、以及微波导入部件,所述内导体和外导体的一端均与连接法兰连接,所述内导体、外导体和连接法兰围合成仅一端开口的谐振腔,所述电离泡设置在开口处且邻近所述内导体,所述连接法兰上设有将从微波发生部件传送来的微波导入所述谐振腔的微波导入部件,所述外导体与所述氢原子激射器的密封结构固定连接;
    至少一个磁场发生部件,所述磁场发生部件设置在电离泡的外侧且其产生的磁场与所述微波共同作用使所述电离泡内的电子形成电子回旋共振,使所述电离泡内的氢气电离成氢等离子体。
  2. 根据权利要求1所述的用于氢原子激射器的电离源装置,其特征在于,所述微波的频率为2.45GHz,所述磁场强度为875Gs。
  3. 根据权利要求1所述的用于氢原子激射器的电离源装置,其特征在于,所述磁场发生部件设置为环形磁铁,所述环形磁铁套设所述电离泡的外侧且所述环形磁铁产生的磁力线穿入所述电离泡内。
  4. 根据权利要求3所述的用于氢原子激射器的电离源装置,其特征在于,所述环形磁铁设置为两组,两组所述环形磁铁的磁极相同设置,两组所述环形磁铁之间设有间隔。
  5. 根据权利要求4所述的用于氢原子激射器的电离源装置,其特征在于,所述间隔a的取值范围是5mm≦a≦9mm。
  6. 根据权利要求3-5任一项所述的用于氢原子激射器的电离源装置,其特征在于,所述磁场发生部件还包括磁饼,所述磁饼设置在环形磁铁的中心轴线上且所述磁饼产生的磁力线穿入电离泡内。
  7. 根据权利要求1所述的用于氢原子激射器的电离源装置,其特征在于,所述内导体的外径d和所述外导体的内径D的比值取值范围为:2.3≦D/d≦2.4。
  8. 根据权利要求1所述的用于氢原子激射器的电离源装置,其特征在于,所述微波导入部件包括耦合环和接头,所述耦合环的一端向谐振腔内延伸,另一端通过接头与所述微波发生部件连接。
  9. 根据权利要求1所述的用于氢原子激射器的电离源装置,其特 征在于,所述耦合环为一体成型的结构,由一片状材料折弯成环状部后,两端分别向外侧折弯,形成与所述连接法兰固定连接的固定部和与所述接头连接的连接部。
  10. 根据权利要求1所述的用于氢原子激射器的电离源装置,其特征在于,所述磁场发生部件设置为产生磁场用的线圈或者永磁铁。
  11. 根据权利要求1所述的用于氢原子激射器的电离源装置,其特征在于,所述内导体设置为空心柱状或者实心柱状。
  12. 根据权利要求1所述的用于氢原子激射器的电离源装置,其特征在于,所述内导体和/或外导体由至少两段固结而成。
  13. 氢原子激射器,其特征在于,所述氢原子激射器包括权利要求1-12任一项所述的用于氢原子激射器的电离源装置。
PCT/CN2021/116949 2020-12-25 2021-09-07 一种用于氢原子激射器的电离源装置及氢原子激射器 WO2022134656A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011567480.1 2020-12-25
CN202011567480.1A CN114698219B (zh) 2020-12-25 2020-12-25 一种用于氢原子激射器的电离源装置及氢原子激射器

Publications (1)

Publication Number Publication Date
WO2022134656A1 true WO2022134656A1 (zh) 2022-06-30

Family

ID=82130344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/116949 WO2022134656A1 (zh) 2020-12-25 2021-09-07 一种用于氢原子激射器的电离源装置及氢原子激射器

Country Status (2)

Country Link
CN (1) CN114698219B (zh)
WO (1) WO2022134656A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100074807A1 (en) * 2007-03-30 2010-03-25 Ecole Polytechnique Apparatus for generating a plasma
CN103426706A (zh) * 2012-05-17 2013-12-04 中国原子能科学研究院 一种微波离子源
CN109729635A (zh) * 2019-01-28 2019-05-07 北京工业大学 一种增强ecr等离子体源性能的方法
CN109786205A (zh) * 2019-01-30 2019-05-21 中国科学院近代物理研究所 电子回旋共振离子源
CN110234195A (zh) * 2019-07-18 2019-09-13 中国科学技术大学 谐振腔式ecr等离子体源装置以及方法
CN111526653A (zh) * 2020-06-03 2020-08-11 吉林大学 具备电磁能量双重激发功能的微波耦合等离子体发生装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB785110A (en) * 1955-06-28 1957-10-23 Standard Telephones Cables Ltd Electron tube magnetic focusing device
JPH0821476B2 (ja) * 1993-09-20 1996-03-04 ニチメン電子工研株式会社 Ecrプラズマ発生装置
US5975014A (en) * 1996-07-08 1999-11-02 Asm Japan K.K. Coaxial resonant multi-port microwave applicator for an ECR plasma source
US5841237A (en) * 1997-07-14 1998-11-24 Lockheed Martin Energy Research Corporation Production of large resonant plasma volumes in microwave electron cyclotron resonance ion sources
JP2002207056A (ja) * 2001-01-09 2002-07-26 Advantest Corp 発振器試験方法及び発振器
CN107201529A (zh) * 2016-03-20 2017-09-26 陈世浩 一种磁场制氢装置的电路结构
CN109818652B (zh) * 2018-12-28 2022-03-25 北京航天测控技术有限公司 一种微型大功率微波链路参数调理仪器
CN111916878B (zh) * 2020-08-12 2024-02-20 电子科技大学 一种微波谐振腔耦合环强耦合装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100074807A1 (en) * 2007-03-30 2010-03-25 Ecole Polytechnique Apparatus for generating a plasma
CN103426706A (zh) * 2012-05-17 2013-12-04 中国原子能科学研究院 一种微波离子源
CN109729635A (zh) * 2019-01-28 2019-05-07 北京工业大学 一种增强ecr等离子体源性能的方法
CN109786205A (zh) * 2019-01-30 2019-05-21 中国科学院近代物理研究所 电子回旋共振离子源
CN110234195A (zh) * 2019-07-18 2019-09-13 中国科学技术大学 谐振腔式ecr等离子体源装置以及方法
CN111526653A (zh) * 2020-06-03 2020-08-11 吉林大学 具备电磁能量双重激发功能的微波耦合等离子体发生装置

Also Published As

Publication number Publication date
CN114698219B (zh) 2024-03-12
CN114698219A (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
US4906900A (en) Coaxial cavity type, radiofrequency wave, plasma generating apparatus
US5361016A (en) High density plasma formation using whistler mode excitation in a reduced cross-sectional area formation tube
CA2678885C (en) High frequency helical amplifier and oscillator
JP2010525155A (ja) プラズマ発生装置
US2817045A (en) Electromagnetic wave generator
Samsonov et al. Frequency-tunable CW gyro-BWO with a helically rippled operating waveguide
CN109256309A (zh) 一种s波段小型化超构材料扩展互作用振荡器
Chen et al. Bifrequency magnetically insulated transmission line oscillator
Chen RF production of high density plasmas for accelerators
WO2022134656A1 (zh) 一种用于氢原子激射器的电离源装置及氢原子激射器
Sung et al. Influence of anode-cathode gap distance on output characteristics of high-power microwave from coaxial virtual cathode oscillator
Tanaka et al. Propagating quasi-TE modes in a vacuum axisymmetric corrugated-wall waveguide
Choi et al. Characteristics of diode perveance and vircator output under various anode-cathode gap distances
JPH088159B2 (ja) プラズマ発生装置
Leprince et al. Microwave excitation technology
Fang et al. A 35GHz 100kW Klystron Amplifier Design
JP3055806B2 (ja) マイクロ波によるプラズマ発生装置
RU2422938C1 (ru) Релятивистский магнетрон с волноводными выводами мощности
Yoshida Plasma properties in the open‐ended region of a coaxial‐type microwave cavity
RU2190281C1 (ru) Релятивистский магнетрон
Kato et al. Effects of fundamental and second harmonic electron cyclotron resonances on ECRIS
Kreischer et al. The operation of a megawatt gyrotron in the submillimeter wave region
US2878412A (en) Travelling wave oscillator
Christensen et al. Performance of Intense Pulsed Ion Source
Schneider Helicon Waves in High density plasmas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21908659

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24.11.2023)