WO2022134567A1 - 外参标定方法、装置、计算机设备及存储介质 - Google Patents

外参标定方法、装置、计算机设备及存储介质 Download PDF

Info

Publication number
WO2022134567A1
WO2022134567A1 PCT/CN2021/108437 CN2021108437W WO2022134567A1 WO 2022134567 A1 WO2022134567 A1 WO 2022134567A1 CN 2021108437 W CN2021108437 W CN 2021108437W WO 2022134567 A1 WO2022134567 A1 WO 2022134567A1
Authority
WO
WIPO (PCT)
Prior art keywords
calibration
external parameter
cloud data
point cloud
target
Prior art date
Application number
PCT/CN2021/108437
Other languages
English (en)
French (fr)
Inventor
刘余钱
Original Assignee
上海商汤临港智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海商汤临港智能科技有限公司 filed Critical 上海商汤临港智能科技有限公司
Publication of WO2022134567A1 publication Critical patent/WO2022134567A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • G01C25/005Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass initial alignment, calibration or starting-up of inertial devices

Definitions

  • the present disclosure relates to the technical field of multi-sensor fusion, and in particular, to an external parameter calibration method, device, computer equipment and storage medium.
  • Multi-sensor Information Fusion refers to the use of computer technology to automatically analyze and synthesize information and data from multiple sensors or multiple sources under certain criteria to complete the required decision-making and integration.
  • Multi-sensor information fusion has a wide range of applications in autonomous driving, industrial robots, medical imaging and other fields. Taking autonomous driving as an example, the installation positions of multiple sensors on the autonomous driving equipment are different, resulting in certain differences in the perception of the same space by different sensors; in order to eliminate the perception differences between different sensors, it is necessary to use pre-calibrated external parameters Differences are corrected.
  • the current external parameter calibration method has the problem of low calibration efficiency.
  • the embodiments of the present disclosure provide at least one external parameter calibration method, device, computer equipment, and storage medium.
  • an embodiment of the present disclosure provides a method for calibrating external parameters, including: using the current calibration external parameters and multi-frame radar point cloud data obtained by scanning the target space to determine the number of subspaces in the target space in an array.
  • the first value of the corresponding bit in the space under the current calibration external parameter wherein, the first value of the bit corresponding to any subspace is used to indicate whether there is a multi-frame radar point cloud in the subspace point in the data; based on the first value, the current calibration external parameter, and the second value of the bits corresponding to the plurality of subspaces in the array space under the reference calibration external parameter, determine Target calibration external parameters; wherein, the reference calibration external parameters are determined according to the initial reference calibration external parameters or the calibration external parameters used in the previous iteration.
  • each point in the radar point cloud data is mapped to each bit in the array space, and the bit operation of the bit is used to realize whether a certain position in the space has been stored.
  • each of the multiple subspaces corresponds to at least one bit in the array space; and bits corresponding to different subspaces are different.
  • the subspace is represented by at least one bit in the array space
  • the data representation of the subspace is simplified, and the efficiency of external parameter calibration is improved.
  • the current calibration external parameters and the multi-frame radar point cloud data obtained by scanning the target space are used to determine that the corresponding bits of the multiple subspaces in the target space in the array space are
  • the first value under the current calibration extrinsic parameter includes: based on the points in each frame of radar point cloud data in the multi-frame radar point cloud data, respectively in the target space for the current calibration extrinsic parameter first three-dimensional position information, to determine the subspace to which the point in the multi-frame radar point cloud data belongs; based on the subspace to which the point in the multi-frame radar point cloud data belongs, determine the bit corresponding to each subspace in the target space The first value under the current calibration external parameter.
  • the bit position corresponding to each subspace in the target space is under the current calibration external parameter.
  • the first value of includes: traversing each point in the multi-frame radar point cloud data, and for the traversed point, according to the subspace to which the traversed point belongs, determining the target corresponding to the subspace bit; when the current value of the target bit is the first value, the first value is changed to the second value; wherein, when the current value of the target bit is the first value , indicating that the subspace corresponding to the target bit does not have a point in the multi-frame radar point cloud data; when the current value of the target bit is the second value, it indicates that the target bit corresponds to There are points in the multi-frame radar point cloud data in the subspace of .
  • the method further includes: according to the number of subspaces, allocating an array of preset size to the points in the multi-frame radar point cloud data; according to the subspaces to which the traversed points belong; space, and determining the target bit corresponding to the subspace includes: determining the index information of the point in the array according to the coordinate information corresponding to the subspace to which the traversed point belongs; The position in the array is determined as the target bit corresponding to the subspace.
  • the radar point cloud data is mapped to the array space, and whether there are points in the subspace of the target space is represented by determining the value of the bits, faster.
  • the second value, determining the target calibration external parameter includes: determining a first number of points in the target space under the current calibration external parameter based on the first value; and determining based on the second value a second number of points in the target space under the reference calibration extrinsic parameter; the target calibration extrinsic parameter is determined based on the first number and the second number.
  • the determining the target calibration external parameter based on the first quantity and the second quantity includes: in response to the first quantity being less than the second quantity, setting the target calibration external parameter. Describe the current calibration external parameter as the new reference calibration external parameter, determine the new current calibration external parameter according to the current optimization direction, and return to the step of using the new current calibration external parameter to determine the first value; Not less than the second number, and only one optimization direction is currently carried out, determine a new current calibration external parameter according to another optimization direction, and return to the step of using the new current calibration external parameter to determine the first value; in response to The first quantity is not less than the second quantity, and two optimization directions are currently performed, and the current reference calibration external parameter is determined as the target calibration external parameter.
  • the determining the target calibration external parameter based on the first quantity and the second quantity includes: in response to the number of iterations reaching a preset number of times, and the first quantity is less than For the second quantity, the current calibration external parameter is determined as the target calibration external parameter; in response to the number of iterations reaching a preset number, and the first quantity is not less than the second quantity, the current reference external parameter is calibrated. The parameter is determined as the target calibration external parameter.
  • the method in response to the existence of the uncalibrated external parameter, after determining the target calibrated external parameter for the current external parameter, the method further includes: for the uncalibrated external parameter, returning to the uncalibrated external parameter for the uncalibrated external parameter. Steps to determine target calibration external parameters.
  • the first three-dimensional position information of the points in each frame of radar point cloud data in the multi-frame radar point cloud data in the target space for the currently calibrated extrinsic parameter is determined in the following manner:
  • the radar corresponding to each frame of radar point cloud data is determined by using the currently calibrated external parameters and the inertial navigation device in the target space and a plurality of the inertial navigation poses corresponding to each frame of radar point cloud data. pose; based on the radar pose corresponding to the radar point cloud data of each frame, convert the second three-dimensional position information of the points in the radar point cloud data of each frame in the corresponding radar coordinate system to the world coordinate system, and obtain The first three-dimensional position information of the points in the radar point cloud data of each frame in the target space.
  • the radar pose corresponding to each frame of radar point cloud data can be obtained more conveniently by using the current calibration external parameters and the inertial navigation device's multiple inertial navigation poses in the target space, and then the radar point cloud data can be converted from The radar coordinate system is transformed into the world coordinate system, which is beneficial to the subsequent calibration processing.
  • the method further includes: dividing the target space into multiple subspaces based on the size of the target space and a preset resolution.
  • the target space is determined in the following manner: obtaining an initial reference calibration external parameter between the inertial navigation device and the radar device; using the initial reference calibration external parameter, and The inertial navigation device determines a plurality of inertial navigation poses corresponding to each frame of radar point cloud data in the target space, and determines the initial radar pose corresponding to each frame of radar point cloud data; based on multiple frames of radar point cloud data The corresponding initial radar poses are determined, respectively, and the scanning space corresponding to each frame of radar point cloud data is determined; the target space is determined based on the scanning spaces corresponding to the multi-frame radar point cloud data respectively.
  • the target space corresponding to the multi-frame radar point cloud data obtained when the radar device scans, and the size of the target space can be more accurately determined.
  • the calibration external parameters include at least one of the following calibration parameters: the pitch angle difference, yaw angle difference, and rotation angle difference of the radar relative to the inertial navigation device, and the radar is relative to the inertial navigation device in the world coordinate system.
  • the relative pose relationship between the inertial navigation device and the radar device can be accurately characterized by the above-mentioned calibration parameters, and through the calibration of the above-mentioned parameters, the differences in the perception of the same space by different sensors due to the different installation positions of the multi-sensors can be eliminated. .
  • an embodiment of the present disclosure also provides an external parameter calibration device, including:
  • the first determination module is used to use the current calibration external parameters and the multi-frame radar point cloud data obtained by scanning the target space to determine that the corresponding bits of the multiple subspaces in the target space in the array space are in the current calibration.
  • the first value under the external parameter wherein, the first value of the bit corresponding to any subspace is used to represent whether there are points of multi-frame radar point cloud data in the subspace;
  • a second determining module configured to base on the first value, the current calibration external parameter, and the second value of the bits corresponding to the plurality of subspaces in the array space under the reference calibration external parameter , and determine the target calibration external parameter; wherein, the reference calibration external parameter is determined according to the initial reference calibration external parameter or the calibration external parameter used in the previous iteration.
  • each of the multiple subspaces corresponds to at least one bit in the array space; and bits corresponding to different subspaces are different.
  • the first determination module determines that multiple subspaces in the target space are respectively in the array space by using the current calibration external parameters and the multi-frame radar point cloud data obtained by scanning the target space.
  • the corresponding bit is the first value under the current calibration external parameter, it is used for: based on the points in each frame of radar point cloud data in the multi-frame radar point cloud data, respectively, in the target space for the current.
  • the first three-dimensional position information of the external parameter is calibrated, and the subspace to which the point in the multi-frame radar point cloud data belongs is determined; based on the subspace to which the point in the multi-frame radar point cloud data belongs, the subspace in the target space is determined.
  • the first determining module determines, based on the subspace to which the point in the multi-frame radar point cloud data belongs, the bit corresponding to each subspace in the target space in the target space.
  • the first value under the current calibration external parameter it is used to: traverse each point in the multi-frame radar point cloud data, and determine the traversed point according to the subspace to which the traversed point belongs.
  • the target bit corresponding to the subspace when the current value of the target bit is the first value, the first value is changed to the second value; wherein, in the current value of the target bit In the case of the first numerical value, it indicates that the subspace corresponding to the target bit does not have a point in the multi-frame radar point cloud data; when the current value of the target bit is the second numerical value, Points in the multi-frame radar point cloud data are represented in the subspace corresponding to the target bits.
  • an allocation module is further included, configured to allocate an array of preset size to the points in the multi-frame radar point cloud data according to the number of subspaces; Describe the subspace to which the traversed point belongs, and when determining the target bit corresponding to the subspace, it is used to: determine the index of the point in the array according to the coordinate information corresponding to the subspace to which the traversed point belongs. information; determining the position in the array indicated by the index information as the target bit corresponding to the subspace.
  • the second determination module is based on the first value, the current calibration external parameter, and the corresponding bits of the multiple subspaces in the array space.
  • the second value under the calibration external parameter when determining the target calibration external parameter, is used for: determining the first number of points in the target space under the current calibration external parameter based on the first value; and based on the The second value determines a second number of points in the target space under the reference calibration external parameter; based on the first number and the second number, the target calibration external parameter is determined.
  • the second determining module when determining the target calibration external parameter based on the first quantity and the second quantity, is configured to: in response to the first quantity being less than the The second quantity is described, the current calibration external parameter is used as a new reference calibration external parameter, the new current calibration external parameter is determined according to the current optimization direction, and the step of using the new current calibration external parameter to determine the first value is returned; In response to the first quantity not being less than the second quantity, and only one optimization direction is currently being performed, a new current calibration external parameter is determined according to another optimization direction, and the process returns to using the new current calibration external parameter to determine the first The step of taking a value: in response to the first quantity being not less than the second quantity and two optimization directions are currently being carried out, determining the current reference calibration external parameter as the target calibration external parameter.
  • the second determining module when determining the target calibration external parameter based on the first quantity and the second quantity, is configured to: in response to the number of iterations reaching a preset number of times, and the first number is less than the second number, the current calibration external parameter is determined as the target calibration external parameter; in response to the number of iterations reaching a preset number, and the first number is not less than the second number, The current reference calibration external parameter is determined as the target calibration external parameter.
  • the second determination module in response to the existence of the uncalibrated external parameters, after determining the target calibrated external parameters for the current calibrated external parameters, the second determination module is further used for: for the uncalibrated external parameters, return to the uncalibrated external parameter.
  • the calibration external parameter determines the steps of the target calibration external parameter.
  • the first determining module determines the points in each frame of radar point cloud data in the multi-frame radar point cloud data in the target space for the currently calibrated external parameters in the following manner: The first three-dimensional position information: using the current calibration external parameters, the inertial navigation device in the target space and a plurality of the inertial navigation poses corresponding to each frame of radar point cloud data, to determine the radar of each frame.
  • the radar pose corresponding to the point cloud data based on the radar pose corresponding to the radar point cloud data of each frame, the second three-dimensional position information of the point in the radar point cloud data of each frame in the corresponding radar coordinate system is converted to In the world coordinate system, the first three-dimensional position information of the point cloud points in the radar point cloud data of each frame in the target space is obtained.
  • a space division module is further included: configured to divide the target space into multiple subspaces based on the size of the target space and a preset resolution.
  • the first determining module determines the target space in the following manner: obtaining an initial reference between the inertial navigation device and the radar device to calibrate external parameters; using the initial reference calibrating the external parameters, and the inertial navigation device in the target space respectively corresponding to a plurality of inertial navigation poses corresponding to each frame of radar point cloud data, and determining the initial radar pose corresponding to each frame of radar point cloud data; based on The respective initial radar poses corresponding to the multiple frames of radar point cloud data are determined, and the scanning space corresponding to each frame of radar point cloud data is determined; the target space is determined based on the respective scanning spaces corresponding to the multiple frames of radar point cloud data.
  • the calibration external parameters include at least one of the following calibration parameters: the pitch angle difference, yaw angle difference, and rotation angle difference of the radar relative to the inertial navigation device, and the radar is relative to the inertial navigation device in the world coordinate system.
  • an optional implementation manner of the present disclosure further provides a computer device, including a processor and a memory, where the processor is configured to execute machine-readable instructions stored in the memory, and the machine-readable instructions are processed by the memory When executed by the processor, when the machine-readable instructions are executed by the processor, the above-mentioned first aspect or the steps in any possible implementation manner of the first aspect are performed.
  • an optional implementation manner of the present disclosure further provides a computer-readable storage medium, on which a computer program is run to execute the steps in the first aspect or any possible implementation manner of the first aspect .
  • FIG. 1 shows a flowchart of an external parameter calibration method provided by an embodiment of the present disclosure
  • FIG. 2 shows a flowchart of a specific method for determining a target space provided by an embodiment of the present disclosure
  • FIG. 3 shows a flowchart of a specific method for determining a first value provided by an embodiment of the present disclosure
  • FIG. 4 shows a flowchart of a method for determining a target calibration external parameter provided by an embodiment of the present disclosure
  • FIG. 5 shows a flowchart of a specific method for determining external parameters of target calibration provided by an embodiment of the present disclosure
  • FIG. 6 shows a flowchart of another specific method for determining target calibration external parameters provided by an embodiment of the present disclosure
  • FIG. 7 shows a flowchart of a specific example of calibrating an external parameter in the external parameter calibration method provided by the embodiment of the present disclosure
  • FIG. 8 shows a schematic diagram of an external parameter calibration device provided by an embodiment of the present disclosure
  • FIG. 9 shows a schematic diagram of a computer device provided by an embodiment of the present disclosure.
  • the relative pose relationship between different sensors needs to be calibrated in advance to obtain a representation that can characterize the space.
  • the calibration external parameter of the relative pose relationship between different sensors is used to eliminate the perception difference between different sensors for the same space.
  • inertial navigation device Taking the external parameter calibration of lidar and integrated inertial navigation device (hereinafter referred to as "inertial navigation device") as an example, when the calibration method based on point cloud size is currently used to calibrate the external parameters between radar and inertial navigation device, it is necessary to Splicing multi-frame radar point cloud data, calibrating the point cloud points in the multi-frame radar point cloud data, and optimizing each parameter in the external parameters based on the position calibration results of the points; In this case, there will not be multiple points representing the same position in the position calibration results of the points.
  • the number of points can reach the minimum value after the multi-frame radar point cloud data is spliced; in each iteration of the external parameter optimization process , it is necessary to detect the number of points; when it is detected that the number of points obtained by a certain round of iteration is the least, the external parameters determined by this round of iterations are used as the calibration external parameters; this method usually adopts the point cloud library (Point Cloud Library). , PCL) in the octree to calibrate the position of the point, each point needs to be traversed in each iteration process, and it is necessary to use the octree to repeatedly judge whether a certain position is used for the position calibration of each traversed point. Points have been added, so it is less efficient.
  • the manual measurement method can also be used for calibration: obtain the parameters of the translation part of the external parameters with the help of a laser rangefinder or other measurement tools, and manually adjust the rotation part by observing the degree of coincidence of the multi-frame radar point cloud data during splicing. parameter.
  • this method mostly relies on human experience, so the accuracy and robustness are poor, and it is not suitable for scenarios that require high calibration accuracy.
  • the hand-eye calibration method can also be used for calibration: that is, a set of radar point cloud data and inertial navigation positioning data of the inertial navigation device are collected around the "8" route, and the position and attitude of the inertial navigation device can be obtained directly through the inertial navigation positioning data.
  • LiDAR-Simultaneous Localization and Mapping LiDAR-SLAM
  • LiDAR-SLAM LiDAR-Simultaneous Localization and Mapping
  • the present disclosure provides an external parameter calibration method, device, computer equipment and storage medium.
  • each point in the radar point cloud data is mapped to each bit in the array space.
  • the bit operation of bits can be used to realize the judgment of whether there is a point corresponding to the radar point cloud data in a certain position in the space and the operation of inserting a point into a certain position in the space, and optimize the external parameters based on the array space, so as to The calibration of external parameters is realized with higher efficiency.
  • the computer equipment includes, for example, a terminal device or a server or other processing device, and the terminal device can be a user equipment (User Equipment, UE), a mobile device, a user terminal, a terminal, a cellular phone, a cordless phone, a personal digital assistant (Personal Digital Assistant, PDA), handheld devices, computing devices, in-vehicle devices, wearable devices, etc.
  • the external parameter calibration method may be implemented by the processor calling computer-readable instructions stored in the memory.
  • an embodiment of the present disclosure provides an external parameter calibration method, including steps S101 to S102, wherein:
  • S101 Using the current calibration external parameters and the multi-frame radar point cloud data obtained by scanning the target space, determine the first selection of the corresponding bits in the array space of the multiple subspaces in the target space under the current calibration external parameters value; wherein, the first value of the bit corresponding to any subspace is used to represent whether there is a point in the multi-frame radar point cloud data in the subspace;
  • S102 Determine the target calibration external parameter based on the first value, the current calibration external parameter, and the second value of the bits corresponding to the plurality of subspaces in the array space under the reference calibration external parameter; wherein the reference calibration external parameter Determined based on the initial reference calibration extrinsic parameters or the calibration extrinsic parameters used in the previous iteration.
  • the current calibration extrinsic parameter may be determined, for example, using a reference calibration extrinsic parameter between the inertial navigation device and the radar device.
  • Each calibration external parameter in the embodiment of the present disclosure is, for example, a calibration parameter representing the relative pose relationship between the radar device and the inertial navigation device as a calibration external parameter, denoted as T.
  • the calibration parameters in the calibration external parameter T include at least one of the following: pitch angle difference pitch, yaw angle difference yaw, rotation angle difference roll of the radar relative to the inertial navigation device, and the world coordinate of the radar relative to the inertial navigation device
  • the distances corresponding to the three coordinate axes of the system respectively include the distance u of the x-axis, the distance v of the y-axis, and the distance s of the z-axis in the world coordinate system.
  • the initial reference calibration extrinsic parameter can be denoted as T 0 .
  • the methods for obtaining the initial reference calibration external parameter T 0 include, but are not limited to, at least one of the following: random value method, manual measurement method, and hand-eye calibration method.
  • the random value method may, for example, randomly determine the value of each calibration parameter within a predetermined value range of the external parameter to obtain the initial reference calibration external parameter.
  • the calibration external parameters between the inertial navigation device and the radar device it is possible to perform multiple rounds of iterations on at least part of the calibration parameters in the initial reference calibration external parameters based on the initial reference calibration external parameters. At least one calibration parameter is adjusted numerically, and the accuracy of the calibrated external parameter after adjustment and the calibration external parameter before adjustment is determined, and based on the accuracy, a round of iteration is realized.
  • the initial reference calibration external parameter T 0 can be used as the reference calibration external parameter, and then at least one calibration parameter in the reference calibration external parameters can be adjusted numerically to obtain the current calibration in the first round of iteration. External reference.
  • the reference calibration external parameters of the current iteration cycle can be determined based on the calibration external parameters used in the previous iteration, and then at least one calibration parameter in the reference calibration external parameters can be adjusted numerically to obtain The current calibration extrinsic parameter in the current iteration cycle.
  • the embodiment of the present disclosure takes the numerical adjustment of a calibration parameter in the reference calibration external parameter as an example.
  • the numerical adjustment of a calibration parameter in the reference calibration external parameter is performed, for example, it can be adjusted randomly; it can also be adjusted according to a preset adjustment step size. , and a certain adjustment direction to adjust.
  • At least one iteration may be sequentially performed on multiple calibration parameters.
  • the following formula (1) can be used to adjust the value of the calibration parameter in the reference calibration external parameter to obtain the current calibration external parameter:
  • ⁇ i ⁇ i-1 +d j ⁇ (1).
  • represents any of the above-mentioned calibration parameters
  • ⁇ i represents the value at the ith iteration of ⁇
  • ⁇ i-1 represents the value at the i-1th iteration of ⁇
  • i represents the number of iterations of ⁇ .
  • any calibration parameter in the reference calibration external parameter is adjusted numerically to obtain the current calibration external parameter.
  • the adjustment direction of the calibration parameter may be determined randomly, or may be determined based on the first value and the second value in the following steps. For details, please refer to the specific description of the following process, which will not be repeated here.
  • an embodiment of the present disclosure further provides a specific method for determining the target space, including:
  • the acquisition method of the initial reference calibration external parameter can be referred to, for example, as shown above, and details are not described herein again.
  • the specific method of determining the initial radar pose is the same as the following method of determining the radar pose corresponding to each frame of radar point cloud data by using the current calibration external parameters and multiple inertial navigation poses of the inertial navigation device in the target space. The method is similar and will not be repeated here.
  • S203 Determine the scanning space corresponding to each frame of radar point cloud data based on the initial radar poses corresponding to the multiple frames of radar point cloud data respectively.
  • the scanning space corresponding to each frame of radar point cloud data is determined, for example, by the initial radar pose and the parameters of the radar device, which are used to represent the size of the space covered by each frame of radar point cloud data obtained by the radar device.
  • the scanning space size of the radar device based on the three-dimensional coordinate values of each point in the radar point cloud data in the radar coordinate system, and then use the pose corresponding to the radar point cloud data and the size of the scanning space to determine the radar.
  • the scanning space corresponding to the point cloud data it is also possible to determine the scanning space size of the radar device based on the three-dimensional coordinate values of each point in the radar point cloud data in the radar coordinate system, and then use the pose corresponding to the radar point cloud data and the size of the scanning space to determine the radar.
  • the scanning space corresponding to the point cloud data is also possible to determine the scanning space size of the radar device based on the three-dimensional coordinate values of each point in the radar point cloud data in the radar coordinate system
  • the scanning space corresponding to each frame of radar point cloud data is, for example, the space in the world coordinate system.
  • S204 Determine the target space based on the scanning spaces corresponding to the multi-frame radar point cloud data respectively.
  • the scanning space corresponding to the multi-frame radar point cloud data can be spliced to obtain the target space.
  • the target space When the target space is determined, the target space can be scanned to obtain multiple frames of radar point cloud data, and multiple subspaces in the target space can be determined. Among them, the multi-frame radar point cloud data is preloaded into the memory, for example. In the process of iterative calibration of external parameters, the radar point cloud data can be directly read from the memory, avoiding re-reading the point cloud file in each iteration process, and further improving the efficiency of external parameter calibration.
  • the following method may be adopted: based on the size of the target space and a preset resolution, the target space is divided into multiple subspaces.
  • the size of the target space can be determined according to, for example, the size of the scanning space and the position in the world coordinate system.
  • the length, width and height of the size of the target space are represented as L (Length), W (Width) and H (Height), respectively.
  • a preset resolution can be used to further divide the target space to determine multiple subspaces of the target space; wherein, each subspace may have a point.
  • the preset resolution can be represented as S, for example, to represent the spatial size occupied by each subspace in the point cloud space.
  • the length l (length) of multiple subspaces in the target space is the ratio of L and S;
  • the width w (width) of the point cloud space is the ratio of W and S;
  • the height h (height) of the point cloud space is the ratio of H and S. ratio.
  • each subspace in the multiple subspaces corresponds to at least one bit in the array space, and the bits corresponding to different subspaces are different. Therefore, the number G of bits in the array space is equal to D above.
  • the array space includes arrays; the array type can be determined according to actual needs, including but not limited to at least one of the following: uint16, uint32, uint64, and uint128. According to the preset array type, the number of bits that can be stored in each array in the array space can be determined. Exemplarily, when the array type is set to uint64, an array in the array space can store 64 bits, that is, an array can represent 64 subspaces that have a mapping relationship with the bits.
  • the values of the bits in the array space are initialized to a first value, and the first value represents a point in the radar-free point cloud data in the current target space. If the value of the bit is the second value, it indicates that the position corresponding to the bit exists as a point in the radar point cloud data.
  • the current calibration external parameters are determined and the target space is scanned to obtain multiple frames of radar point cloud data, it can be determined that the corresponding bits of the multiple subspaces in the target space in the array space are the current calibration external parameters.
  • the following method may be adopted: based on the points in each frame of radar point cloud data in the multi-frame radar point cloud data, respectively in the target space for the current calibration of the first external parameter Three-dimensional position information, determine the subspace to which the points in the multi-frame radar point cloud data belong; The first value under the calibration external parameter.
  • the following method can be adopted: using the current calibration external parameter , Based on multiple inertial navigation poses corresponding to each frame of radar point cloud data in the target space by the inertial navigation device, determine the radar pose corresponding to each frame of radar point cloud data; based on the radar position corresponding to each frame of radar point cloud data Attitude, convert the second three-dimensional position information of the points in each frame of radar point cloud data in the corresponding radar coordinate system to the world coordinate system, and obtain the first three-dimensional position of the points in each frame of radar point cloud data in the target space information.
  • the multiple inertial navigation poses of the inertial navigation device in the target space are the inertial navigation poses of the inertial navigation device in the world coordinate system; the determined points in the radar point cloud data of the corresponding frame are respectively in the target space
  • the first three-dimensional position information for the current calibration external parameter is the three-dimensional position information of the point in the world coordinate system.
  • the first time stamp corresponding to each frame of radar point cloud data and the second time stamp corresponding to the inertial navigation pose can be used to determine that the radar is collecting each frame of radar.
  • the first time stamp is synchronized with the second time stamp, that is, in the case that the radar device and the inertial navigation device are synchronized to collect the target scene
  • an interpolation method may be used. Determine the inertial navigation pose N' of the inertial navigation device when the radar device acquires the radar point cloud data M. Then, use the inertial navigation pose N' of the inertial navigation device when the radar device acquires the radar point cloud data to determine the radar pose of the radar point cloud data M.
  • the second three-dimensional coordinate value of the point in the radar coordinate system in each frame of radar point cloud data can be converted into a point The first three-dimensional coordinate value in the world coordinate system.
  • the subspace to which the points in the multi-frame radar point cloud data belong can be determined.
  • the first value of the bit corresponding to each subspace in the target space under the current calibration external parameter can be determined.
  • an embodiment of the present disclosure provides a specific method for determining a first value, including:
  • S301 Traverse each point in the multi-frame radar point cloud data, and for the traversed point, determine a target bit corresponding to the subspace according to the subspace to which the traversed point belongs.
  • each point traversed when traversing each point in the multi-frame radar point cloud data, since each point traversed can determine the subspace to which it belongs, the correspondence between the subspace to which the point belongs and the bits can be used. , uniquely determine the corresponding target bit for each point in the radar point cloud data.
  • the following method when determining the target bit corresponding to the subspace according to the subspace to which the traversed point belongs, for example, the following method can be used: according to the coordinate information corresponding to the subspace to which the traversed point belongs, determine that the point is in the array The index information in ; determine the position in the array indicated by the index information as the target bit corresponding to the subspace.
  • the first three-dimensional position information for the current calibration extrinsic parameter in the target space and the resolution corresponding to the target space can be used respectively.
  • the position information of the subspace in the target space is the corresponding coordinate information of the point in the subspace to which it belongs.
  • the first three-dimensional position information of the point m1 in the target space is: (x 1 , y 1 , z 1 ), then its corresponding subspace in the subspace to which it belongs
  • the coordinate information of is expressed as And as the index information of the point in the array.
  • the position in the array indicated by the index information can be determined as the target bit corresponding to the subspace.
  • the target bits corresponding to the location information can be determined in the following manner:
  • the retrieval information of the traversed point in the array space is determined; wherein, the retrieval information includes index information idx 1 and coordinate information idx 2 , based on the index information idx 1 , it can be determined that the traversed point is traversed to The array where the point is located in the array space, based on the coordinate information idx 2 , the position coordinates of the specific bit of the traversed point in the determined array can be determined.
  • the retrieval information of the traversed points satisfies the following formula (3):
  • (x, y, z) represents the position information of the traversed point in the target space; % represents the remainder. length indicates the length of the target space; width indicates the width of the target space.
  • the specific position of the target bit corresponding to the traversed point in the array space is determined; and then according to the retrieval information, the target bit can be read from the array space. current value.
  • the finally obtained values of multiple bits in the array space are determined as the first values of multiple bits under the current calibration external parameters.
  • the first value is changed to the second value, indicating that the subspace has been traversed, and this There are points in the subspace.
  • the target calibration external parameter can be determined.
  • the method of determining the second value of the bits corresponding to the plurality of subspaces in the array space under the reference calibration external parameter is the same as that of the bits corresponding to the multiple subspaces in the array space under the current calibration external parameter.
  • the manner of determining the first value is similar, and details are not repeated here.
  • an embodiment of the present disclosure provides a method for determining external parameters of target calibration, including:
  • S401 Determine a first number of points in the target space under the current calibration extrinsic parameter based on the first value; and determine a second number of points in the target space under the reference calibration extrinsic parameter based on the second value.
  • each bit in the array space under the first value and "0" can also be XORed, and based on the XOR operation result corresponding to each bit, the XOR operation result is obtained as “1” ”, the total number of bits whose XOR operation result is “1” is determined as the first number.
  • the first number represents the number of points included in the target space under the current calibration extrinsic parameter.
  • the second number of points in the target space under the reference calibration extrinsic parameter may be determined based on the second values of the plurality of bits respectively under the reference calibration extrinsic parameter.
  • the second number characterizes the number of points included in the target space under the reference calibration extrinsic parameter.
  • an embodiment of the present disclosure provides a specific method for determining a target calibration external parameter, including:
  • the adjustment direction of the same calibration parameter is the same as that of the current round. In the iterative process, the adjustment direction of the reference calibration external parameters is the same.
  • the adjustment direction of the same calibration parameter is the same as the reference in the current iteration process.
  • the adjustment direction of the calibration external parameter is opposite.
  • the adjusted calibration parameter is different from the adjusted calibration parameter in the current iteration.
  • another specific method for determining external parameters of target calibration includes:
  • the current iteration cycle is between the first value and the second value
  • the difference degree of is less than or equal to the preset difference degree threshold, it is determined that the iteration stop condition is satisfied, and the finally obtained current reference calibration external parameter is determined as the target calibration external parameter.
  • This embodiment of the present disclosure uses the current calibration external parameters and the multi-frame radar point cloud data obtained by scanning the target space to determine that the corresponding bits in the array space of multiple subspaces in the target space are under the current calibration external parameters
  • the first value of and then based on the first value, the current calibration external parameter, and the second value of the bits corresponding to the plurality of subspaces in the array space under the reference calibration external parameter , determine the target calibration external parameters, so as to map each point in the radar point cloud data to each bit in the array space, and then use the bit operation of multiple bits to realize whether the radar point cloud data already exists in a certain position in the space.
  • the insertion point in the middle has a faster speed, thus realizing the calibration of external parameters with higher efficiency.
  • FIG. 7 a flowchart of a specific example of calibrating an external parameter in the external parameter calibration method provided by the embodiment of the present disclosure is shown.
  • S702 Determine an initial radar pose corresponding to each frame of radar point cloud data acquired by the radar device based on the initial reference calibration external parameters and multiple inertial navigation poses of the inertial navigation device.
  • S703 Determine the scanning space corresponding to each frame of radar point cloud data based on the initial radar poses corresponding to the multiple frames of radar point cloud data respectively.
  • S704 Determine the target space based on the respective scanning spaces corresponding to the multi-frame radar point cloud data.
  • S705 Determine a plurality of subspaces included in the target space based on the size of the target space and the preset resolution.
  • S706 Determine the array space based on the number of subspaces.
  • S707 Use the initial radar pose and the second three-dimensional position information of each point in each frame of radar point cloud data in the radar coordinate system to determine the initial first three-dimensional position of the point in each frame of radar point cloud data in the target space information.
  • S708 Using the initial first three-dimensional position information of the points in the multi-frame radar point cloud data in the target space, respectively, determine the initial values of the multiple bits in the array space corresponding to the target space under the initial reference calibration external parameters. .
  • S711 Use the current calibration external parameters, multiple inertial navigation poses of the inertial navigation device in the target space, and the second three-dimensional image of the points in each frame of radar point cloud data in the multi-frame radar point cloud data in the corresponding radar coordinate system
  • the position information is to determine the first three-dimensional position information of the points in each frame of radar point cloud data in the target space.
  • S712 Using the first three-dimensional position information of the points in the multi-frame radar point cloud data in the target space, respectively, determine the first values of the multiple bits in the array space corresponding to the target space under the current calibration external parameters.
  • S713 Determine a new reference calibration external parameter based on the first value and the second values of the plurality of bits respectively under the reference calibration external parameter.
  • S714 Determine whether the iteration stop condition is satisfied; if not, jump to S710; if yes, jump to S715.
  • the target calibration external parameters are obtained.
  • the writing order of each step does not mean a strict execution order but constitutes any limitation on the implementation process, and the specific execution order of each step should be based on its function and possible Internal logic is determined.
  • the embodiment of the present disclosure also provides an external parameter calibration device corresponding to the external parameter calibration method.
  • an external parameter calibration device corresponding to the external parameter calibration method.
  • an embodiment of the present disclosure provides an external parameter calibration device, including: a first determination module 81 and a second determination module 82; wherein,
  • the first determination module 81 is used to use the current calibration external parameters and the multi-frame radar point cloud data obtained by scanning the target space to determine that the corresponding bits of the multiple subspaces in the target space in the array space are in the current state.
  • the first value under the calibration external parameter wherein, the first value of the bit corresponding to any subspace is used to represent whether there is a point in the multi-frame radar point cloud data in the subspace;
  • the second determination module 82 is configured to obtain a second value based on the first value, the current calibration extrinsic parameter, and the bits corresponding to the plurality of subspaces in the array space under the reference calibration extrinsic parameter value to determine the target calibration external parameter; wherein, the reference calibration external parameter is determined according to the initial reference calibration external parameter or the calibration external parameter used in the previous iteration.
  • each of the multiple subspaces corresponds to at least one bit in the array space; and bits corresponding to different subspaces are different.
  • the first determination module 81 uses the current calibration external parameters and the multi-frame radar point cloud data obtained by scanning the target space to determine that multiple subspaces in the target space are in the array space.
  • the corresponding bits are in the first value of the current calibration external parameter, they are used for: based on the points in each frame of radar point cloud data in the multi-frame radar point cloud data, respectively, in the target space for the
  • the first three-dimensional position information of the current calibration external parameter is used to determine the subspace to which the point in the multi-frame radar point cloud data belongs; and the target space is determined based on the subspace to which the point in the multi-frame radar point cloud data belongs.
  • the first value of the bit corresponding to each subspace in the current calibration external parameter is used for: based on the points in each frame of radar point cloud data in the multi-frame radar point cloud data, respectively, in the target space for the
  • the first three-dimensional position information of the current calibration external parameter is used to determine the subspace to which the point in the multi-frame radar point cloud data belongs;
  • the first determining module 81 determines, based on the subspace to which the point in the multi-frame radar point cloud data belongs, the bit corresponding to each subspace in the target space is in the subspace.
  • the first value under the current calibration external parameter it is used to: traverse each point in the multi-frame radar point cloud data, and for the traversed point, according to the subspace to which the traversed point belongs, Determine the target bit corresponding to the subspace; when the current value of the target bit is the first value, change the first value to the second value; wherein, in the current value of the target bit In the case where the value is the first value, it indicates that the subspace corresponding to the target bit does not have a point in the multi-frame radar point cloud data; in the case where the current value of the target bit is the second value , representing the points in the multi-frame radar point cloud data that exist in the subspace corresponding to the target bits.
  • the apparatus further includes an allocation module 83 for allocating an array of preset sizes to the points in the multi-frame radar point cloud data according to the number of subspaces; the first determining When determining the target bit position corresponding to the subspace according to the subspace to which the traversed point belongs, the module 81 is used for: according to the coordinate information corresponding to the subspace to which the traversed point belongs, to determine where the point is located. index information in the array; determine the position in the array indicated by the index information as the target bit corresponding to the subspace.
  • the second determination module 82 is based on the first value, the current calibration external parameter, and the corresponding bits of the multiple subspaces in the array space.
  • determining the target calibration external parameter with reference to the second value under the calibration external parameter it is used for: determining the first number of points in the target space under the current calibration external parameter based on the first value; and Based on the second value, a second number of points in the target space under the reference calibration external parameter is determined; based on the first number and the second number, the target calibration external parameter is determined.
  • the second determining module 82 when determining the target calibration external parameter based on the first quantity and the second quantity, is configured to: in response to the first quantity being less than For the second quantity, use the current calibration external parameter as a new reference calibration external parameter, determine the new current calibration external parameter according to the current optimization direction, and return to the step of using the new current calibration external parameter to determine the first value ; In response to the first quantity not being less than the second quantity, and only one optimization direction is currently carried out, determine a new current calibration external parameter according to another optimization direction, and return to using the new current calibration external parameter to determine the first A step of obtaining a value; in response to the first quantity being not less than the second quantity and two optimization directions are currently being carried out, determining the current reference calibration external parameter as the target calibration external parameter.
  • the second determination module 82 determines the target calibration external parameter based on the first quantity and the second quantity, it is used for: in response to the number of iterations reaching a preset number of times. , and the first number is less than the second number, the current calibration external parameter is determined as the target calibration external parameter; in response to the number of iterations reaching a preset number, and the first number is not less than the second number , and the current reference calibration external parameter is determined as the target calibration external parameter.
  • the second determination module 82 in response to the existence of the uncalibrated external parameters, after determining the target calibrated external parameters for the current calibrated external parameters, the second determination module 82 is further configured to: for the uncalibrated external parameters, return to The uncalibrated external parameter determines the steps of the target calibrated external parameter.
  • the first determination module 81 uses the following method to determine that the points in each frame of radar point cloud data in the multi-frame radar point cloud data are respectively in the target space for the current calibration external parameters: The first three-dimensional position information of : using the current calibration external parameters, the inertial navigation device in the target space and the inertial navigation pose corresponding to each frame of radar point cloud data respectively, determine the each frame The radar pose corresponding to the radar point cloud data; based on the radar pose corresponding to the radar point cloud data of each frame, the second three-dimensional position information of the points in the radar point cloud data of each frame in the corresponding radar coordinate system is converted In the world coordinate system, the first three-dimensional position information of the points in the radar point cloud data of each frame in the target space is obtained.
  • a space division module 84 is further included: configured to divide the target space into multiple subspaces based on the size of the target space and a preset resolution.
  • the first determining module 81 determines the target space in the following manner: obtaining an initial reference calibration external parameter between the inertial navigation device and the radar device; using the initial reference Determine the initial radar pose corresponding to each frame of radar point cloud data with reference to the calibration external parameters and the inertial navigation device in the target space corresponding to a plurality of inertial navigation poses corresponding to each frame of radar point cloud data; The scanning space corresponding to each frame of radar point cloud data is determined based on the respective initial radar poses corresponding to the multiple frames of radar point cloud data; the target space is determined based on the respective scanning spaces corresponding to the multiple frames of radar point cloud data.
  • the calibration external parameters include at least one of the following calibration parameters: the pitch angle difference, yaw angle difference, and rotation angle difference of the radar relative to the inertial navigation device, and the radar is relative to the inertial navigation device in the world coordinate system.
  • an embodiment of the present disclosure further provides a computer device, including: a processor 91 and a memory 92; the processor 91 is configured to execute machine-readable instructions stored in the memory 92, and the machine-readable instructions are When the processor 91 executes, the processor 91 executes the following steps:
  • the first value of the bits corresponding to the multiple subspaces in the target space in the array space under the current calibration external parameters is used to represent whether there are points in the multi-frame radar point cloud data in the subspace;
  • the second value of the corresponding bits in the array space under the reference calibration extrinsic parameter determines the target calibration extrinsic parameter; wherein, the reference calibration extrinsic parameter is determined according to the initial reference calibration extrinsic parameter or the calibration extrinsic parameter used in the previous iteration.
  • the above-mentioned memory 92 includes a memory 921 and an external memory 922; the memory 921 here is also called an internal memory, and is used to temporarily store the operation data in the processor 91 and the data exchanged with the external memory 922 such as the hard disk.
  • the external memory 922 performs data exchange.
  • Embodiments of the present disclosure further provide a computer-readable storage medium, where a computer program stored on the computer program is executed by a processor to execute the steps of the external parameter calibration method described in the above method embodiments.
  • the storage medium may be a volatile or non-volatile computer-readable storage medium.
  • the embodiments of the present disclosure further provide a computer program product, the computer program product carries program codes, and the instructions included in the program codes can be used to execute the steps of the external parameter calibration method described in the above method embodiments.
  • the computer program product carries program codes
  • the instructions included in the program codes can be used to execute the steps of the external parameter calibration method described in the above method embodiments.
  • please refer to the above The method embodiments are not repeated here.
  • the above-mentioned computer program product can be specifically implemented by means of hardware, software or a combination thereof.
  • the computer program product is embodied as a computer storage medium, and in another optional embodiment, the computer program product is embodied as a software product, such as a software development kit (Software Development Kit, SDK), etc. Wait.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as stand-alone products, may be stored in a processor-executable non-volatile computer-readable storage medium.
  • the computer software products are stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of the present disclosure.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

提供一种外参标定方法、装置、计算机设备及存储介质,方法包括:利用当前标定外参、以及对目标空间进行扫描得到的多帧雷达点云数据,确定目标空间中的多个子空间在数组空间中分别对应的比特位在当前标定外参下的第一取值;其中,任一子空间对应的比特位的第一取值用于表征该子空间中是否存在多帧雷达点云数据中的点(S101);基于第一取值、当前标定外参、以及多个子空间在数组空间中分别对应的比特位在参考标定外参下的第二取值,确定目标标定外参;其中,参考标定外参根据初始参考标定外参或者前一次迭代使用的标定外参确定(S102)。

Description

外参标定方法、装置、计算机设备及存储介质
相关申请的交叉引用
本专利申请要求于2020年12月25日提交的、申请号为202011565128.4、发明名称为“一种外参标定方法、装置、计算机设备及存储介质”的中国专利申请的优先权,该申请以引用的方式并入本文中。
技术领域
本公开涉及多传感融合技术领域,具体而言,涉及一种外参标定方法、装置、计算机设备及存储介质。
背景技术
多传感器信息融合(Multi-sensor Information Fusion,MSIF),是指利用计算机技术将来自多个传感器或多源的信息和数据,在一定的准则下加以自动分析和综合,以完成所需要的决策和估计而进行的信息处理过程。多传感器信息融合在自动驾驶、工业机器人、医学影像等领域有着广泛的应用。以自动驾驶为例,多个传感器在自动驾驶设备上的安装位置不同,造成了不同传感器对于相同空间的感知存在一定的差异;为了消除不同传感器的感知差异,需要利用预先标定的外参对该差异进行校正。然而,当前的外参标定方法存在标定效率低的问题。
发明内容
本公开实施例至少提供一种外参标定方法、装置、计算机设备及存储介质。
第一方面,本公开实施例提供了一种外参标定方法,包括:利用当前标定外参、以及对目标空间进行扫描得到的多帧雷达点云数据,确定目标空间中的多个子空间在数组空间中分别对应的比特位在所述当前标定外参下的第一取值;其中,任一子空间对应的比特位的第一取值用于表征该子空间中是否存在多帧雷达点云数据中的点;基于所述第一取值、所述当前标定外参、以及所述多个子空间在所述数组空间中分别对应的比特位在参考标定外参下的第二取值,确定目标标定外参;其中,所述参考标定外参根据初始参考标定外参或者前一次迭代使用的标定外参确定。
这样,通过建立与目标空间对应的数组空间,将雷达点云数据中的各个点映射至数组空间中的各个比特位,利用比特位的位运算来实现空间中某位置是否已经存点的判断以及向空间中某位置插入点的操作,并基于数组空间,对外参进行优化,从而以更高的效率实现对外参的标定。
一种可选的实施方式中,所述多个子空间中的每个子空间对应所述数组空间中的至少一个比特位;且不同子空间对应的比特位不同。
这样,通过数组空间中的至少一个比特位表征子空间,简化对子空间的数据表示,提升外参标定的效率。
一种可选的实施方式中,所述利用当前标定外参、以及对目标空间进行扫描得到的多帧雷达点云数据,确定目标空间中的多个子空间在数组空间中分别对应的比特位在所述当前标定外参下的第一取值,包括:基于所述多帧雷达点云数据中每帧雷达点云数据中的点分别在目标空间内针对所述当前标定外参的第一三维位置信息,确定所述多帧雷达点云数据中的点所属的子空间;基于所述多帧雷达点云数据中的点所属的子空间,确 定所述目标空间中的每个子空间对应的比特位在所述当前标定外参下的第一取值。
一种可选的实施方式中,所述基于所述多帧雷达点云数据中的点所属的子空间,确定所述目标空间中的每个子空间对应的比特位在所述当前标定外参下的第一取值,包括:遍历所述多帧雷达点云数据中的每个点,并针对遍历到的点,根据所述遍历到的点所属的子空间,确定与该子空间对应的目标比特位;在所述目标比特位的当前取值为第一数值的情况下,将第一数值更改为第二数值;其中,在所述目标比特位的当前取值为第一数值的情况下,表征所述目标比特位对应的子空间不存在所述多帧雷达点云数据中的点;在所述目标比特位的当前取值为第二数值的情况下,表征所述目标比特位对应的子空间存在所述多帧雷达点云数据中的点。
这样,在遍历点时可以通过更改比特位取值的方式确定对应的数组空间,操作方法简单且效率更高。
一种可选的实施方式中,所述方法还包括:根据子空间的数量,为所述多帧雷达点云数据中的点分配预设大小的数组;根据所述遍历到的点所属的子空间,确定与该子空间对应的目标比特位,包括:根据所述遍历到的点所属的子空间对应的坐标信息,确定点在所述数组中的索引信息;将所述索引信息指示的所述数组中的位置确定为与该子空间对应的目标比特位。
这样,利用多个比特位与所述目标空间中的子空间的一一对应关系,将雷达点云数据映射至数组空间中,通过确定比特位的取值表征目标空间的子空间是否存在点,更为快捷。
一种可选的实施方式中,所述基于所述第一取值、所述当前标定外参、以及所述多个子空间在所述数组空间中分别对应的比特位在参考标定外参下的第二取值,确定目标标定外参,包括:基于所述第一取值确定所述目标空间中的点在所述当前标定外参下的第一数量;以及基于所述第二取值确定所述目标空间中的点在所述参考标定外参下第二数量;基于所述第一数量和所述第二数量,确定所述目标标定外参。
这样,通过将所述目标空间中的点在所述当前标定外参下的第一数量,与所述目标空间中的点在所述参考标定外参下的第二数量进行比较,更迅速的对标定外参进行迭代,提高了迭代的效率。
一种可选的实施方式中,所述基于所述第一数量和所述第二数量,确定所述目标标定外参,包括:响应于所述第一数量小于所述第二数量,将所述当前标定外参作为新的参考标定外参,按照当前优化方向确定新的当前标定外参,并返回至利用新的当前标定外参确定第一取值的步骤;响应于所述第一数量不小于所述第二数量,且当前仅进行了一个优化方向,按照另一个优化方向确定新的当前标定外参,并返回至利用新的当前标定外参确定第一取值的步骤;响应于所述第一数量不小于所述第二数量,且当前进行了两个优化方向,将当前参考标定外参确定为目标标定外参。
一种可选的实施方式中,所述基于所述第一数量和所述第二数量,确定所述目标标定外参,包括:响应于迭代次数达到预设次数,且所述第一数量小于所述第二数量,将所述当前标定外参确定为目标标定外参;响应于迭代次数达到预设次数,且所述第一数量不小于所述第二数量,将所述当前参考标定外参确定为目标标定外参。
这样,通过将所述目标空间中的点在所述当前标定外参下的第一数量,与所述目标空间中的点在所述参考标定外参下的第二数量进行比较,更迅速的对标定外参进行迭代,提高了迭代的效率。
一种可选的实施方式中,响应于存在尚未标定外参,在为当前外参确定出目标标定 外参之后,所述方法还包括:针对尚未标定外参,返回至为该未标定外参确定目标标定外参的步骤。
一种可选的实施方式中,采用如下方式确定所述多帧雷达点云数据中每帧雷达点云数据中的点分别在目标空间内针对所述当前标定外参的第一三维位置信息:利用所述当前标定外参、所述惯导装置在所述目标空间内分别与每帧雷达点云数据对应的多个所述惯导位姿,确定所述每帧雷达点云数据对应的雷达位姿;基于所述每帧雷达点云数据对应的雷达位姿,将所述每帧雷达点云数据中的点在对应雷达坐标系下的第二三维位置信息转换至世界坐标系下,得到所述每帧雷达点云数据中的点在目标空间内的第一三维位置信息。
这样,利用当前标定外参、惯导装置在所述目标空间内的多个所述惯导位姿,更便捷地获得每帧雷达点云数据对应的雷达位姿,进而将雷达点云数据从雷达坐标系转化至世界坐标系下,有利于后续的标定处理。
一种可选的实施方式中,还包括:基于所述目标空间的尺寸、以及预先设置的分辨率,将所述目标空间划分为多个子空间。
这样,将目标空间转换为包括多个子空间的点云空间,更有利于为目标空间确定的对应的数组空间。
一种可选的实施方式中,采用下述方式确定所述目标空间:获取所述惯导装置和所述雷达装置之间的初始参考标定外参;利用所述初始参考标定外参、以及所述惯导装置在所述目标空间内分别与每帧雷达点云数据对应的多个惯导位姿,确定所述每帧雷达点云数据对应的初始雷达位姿;基于多帧雷达点云数据分别对应的初始雷达位姿,确定所述每帧雷达点云数据分别对应的扫描空间;基于多帧雷达点云数据分别对应的扫描空间,确定所述目标空间。
这样,能够更准确地确定雷达设备进行扫描时获得的多帧雷达点云数据对应的目标空间,以及目标空间的尺寸。
一种可选的实施方式中,标定外参包括下述至少一个标定参数:雷达相对于惯导装置的俯仰角度差、偏航角度差、旋转角度差、雷达相对于惯导装置在世界坐标系的三个坐标轴分别对应的距离。
这样,可以通过上述标定参数准确表征惯导装置和雷达装置之间的相对位姿关系,通过对上述参数的标定,消除由于多传感器的安装位置不同造成的不同传感器对于相同空间的感知存在的差异。
第二方面,本公开实施例还提供一种外参标定装置,包括:
第一确定模块,用于利用当前标定外参、以及对目标空间进行扫描得到的多帧雷达点云数据,确定目标空间中的多个子空间在数组空间中分别对应的比特位在所述当前标定外参下的第一取值;其中,任一子空间对应的比特位的第一取值用于表征该子空间中是否存在多帧雷达点云数据的点;
第二确定模块,用于基于所述第一取值、所述当前标定外参、以及所述多个子空间在所述数组空间中分别对应的比特位在参考标定外参下的第二取值,确定目标标定外参;其中,所述参考标定外参根据初始参考标定外参或者前一次迭代使用的标定外参确定。
一种可选的实施方式中,所述多个子空间中的每个子空间对应所述数组空间中的至少一个比特位;且不同子空间对应的比特位不同。
一种可选的实施方式中,所述第一确定模块在利用当前标定外参、以及对目标空间 进行扫描得到的多帧雷达点云数据,确定目标空间中的多个子空间在数组空间中分别对应的比特位在所述当前标定外参下的第一取值时,用于:基于所述多帧雷达点云数据中每帧雷达点云数据中的点分别在目标空间内针对所述当前标定外参的第一三维位置信息,确定所述多帧雷达点云数据中的点所属的子空间;基于所述多帧雷达点云数据中的点所属的子空间,确定所述目标空间中的每个子空间对应的比特位在所述当前标定外参下的第一取值。
一种可选的实施方式中,所述第一确定模块在基于所述多帧雷达点云数据中的点所属的子空间,确定所述目标空间中的每个子空间对应的比特位在所述当前标定外参下的第一取值时,用于:遍历所述多帧雷达点云数据中的每个点,并针对遍历到的点,根据所述遍历到的点所属的子空间,确定与该子空间对应的目标比特位;在所述目标比特位的当前取值为第一数值的情况下,将第一数值更改为第二数值;其中,在所述目标比特位的当前取值为第一数值的情况下,表征所述目标比特位对应的子空间不存在所述多帧雷达点云数据中的点;在所述目标比特位的当前取值为第二数值的情况下,表征所述目标比特位对应的子空间存在所述多帧雷达点云数据中的点。
一种可选的实施方式中,还包括分配模块,用于根据子空间的数量,为所述多帧雷达点云数据中的点分配预设大小的数组;所述第一确定模块在根据所述遍历到的点所属的子空间,确定与该子空间对应的目标比特位时,用于:根据所述遍历到的点所属的子空间对应的坐标信息,确定点在所述数组中的索引信息;将所述索引信息指示的所述数组中的位置确定为与该子空间对应的目标比特位。
一种可选的实施方式中,所述第二确定模块在基于所述第一取值、所述当前标定外参、以及所述多个子空间在所述数组空间中分别对应的比特位在参考标定外参下的第二取值,确定目标标定外参时,用于:基于所述第一取值确定所述目标空间中的点在所述当前标定外参下的第一数量;以及基于所述第二取值确定所述目标空间中的点在所述参考标定外参下第二数量;基于所述第一数量和所述第二数量,确定所述目标标定外参。
一种可选的实施方式中,所述第二确定模块在基于所述第一数量和所述第二数量,确定所述目标标定外参时,用于:响应于所述第一数量小于所述第二数量,将所述当前标定外参作为新的参考标定外参,按照当前优化方向确定新的当前标定外参,并返回至利用新的当前标定外参确定第一取值的步骤;响应于所述第一数量不小于所述第二数量,且当前仅进行了一个优化方向,按照另一个优化方向确定新的当前标定外参,并返回至利用新的当前标定外参确定第一取值的步骤;响应于所述第一数量不小于所述第二数量,且当前进行了两个优化方向,将当前参考标定外参确定为目标标定外参。
一种可选的实施方式中,所述第二确定模块在基于所述第一数量和所述第二数量,确定所述目标标定外参时,用于:响应于迭代次数达到预设次数,且所述第一数量小于所述第二数量,将所述当前标定外参确定为目标标定外参;响应于迭代次数达到预设次数,且所述第一数量不小于所述第二数量,将所述当前参考标定外参确定为目标标定外参。
一种可选的实施方式中,响应于存在尚未标定外参,在为当前标定外参确定出目标标定外参之后,第二确定模块还用于:针对尚未标定外参,返回至为该未标定外参确定目标标定外参的步骤。
一种可选的实施方式中,所述第一确定模块采用如下方式确定所述多帧雷达点云数据中每帧雷达点云数据中的点分别在目标空间内针对所述当前标定外参的第一三维位置信息:利用所述当前标定外参、所述惯导装置在所述目标空间内分别与每帧雷达点云数据对应的多个所述惯导位姿,确定所述每帧雷达点云数据对应的雷达位姿;基于所述每帧雷达点云数据对应的雷达位姿,将所述每帧雷达点云数据中的点在对应雷达坐标系 下的第二三维位置信息转换至世界坐标系下,得到所述每帧雷达点云数据中的点云点在目标空间内的第一三维位置信息。
一种可选的实施方式中,还包括空间划分模块:用于基于所述目标空间的尺寸、以及预先设置的分辨率,将所述目标空间划分为多个子空间。
一种可选的实施方式中,所述第一确定模块采用下述方式确定所述目标空间:获取所述惯导装置和所述雷达装置之间的初始参考标定外参;利用所述初始参考标定外参、以及所述惯导装置在所述目标空间内分别与每帧雷达点云数据对应的多个惯导位姿,确定所述每帧雷达点云数据对应的初始雷达位姿;基于多帧雷达点云数据分别对应的初始雷达位姿,确定所述每帧雷达点云数据分别对应的扫描空间;基于多帧雷达点云数据分别对应的扫描空间,确定所述目标空间。
一种可选的实施方式中,标定外参包括下述至少一个标定参数:雷达相对于惯导装置的俯仰角度差、偏航角度差、旋转角度差、雷达相对于惯导装置在世界坐标系的三个坐标轴分别对应的距离。
第三方面,本公开可选实现方式还提供一种计算机设备,包括处理器和存储器,所述处理器用于执行所述存储器中存储的机器可读指令,所述机器可读指令被所述处理器执行时,所述机器可读指令被所述处理器执行时执行上述第一方面,或第一方面中任一种可能的实施方式中的步骤。
第四方面,本公开可选实现方式还提供一种计算机可读存储介质,其上存储的计算机程序被运行时执行上述第一方面,或第一方面中任一种可能的实施方式中的步骤。
关于上述外参标定装置、计算机设备、及计算机可读存储介质的效果描述参见上述外参标定方法的说明,这里不再赘述。
为使本公开的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍。这些附图示出了符合本公开的实施例,并与说明书一起用于说明本公开的技术方案。应当理解,以下附图仅示出了本公开的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1示出了本公开实施例所提供的一种外参标定方法的流程图;
图2示出了本公开实施例所提供的一种确定目标空间的具体方法的流程图;
图3示出了本公开实施例所提供的一种确定第一取值的具体方法的流程图;
图4示出了本公开实施例所提供的一种确定目标标定外参的方法的流程图;
图5示出了本公开实施例所提供的一种确定目标标定外参的具体方法的流程图;
图6示出了本公开实施例所提供的另一种确定目标标定外参的具体方法的流程图;
图7示出了本公开实施例所提供的外参标定方法中的一种对外参进行标定的具体示例的流程图;
图8示出了本公开实施例所提供的一种外参标定装置的示意图;
图9示出了本公开实施例所提供的一种计算机设备的示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。通常在此处描述和示出的本公开实施例的组件可以以各种不同的配置来布置和设计。因此,以下对本公开的实施例的详细描述并非旨在限制要求保护的本公开的范围,而是仅仅表示本公开的选定实施例。基于本公开的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
经研究发现,在多传感器信息融合中,由于多传感器的安装位置不同,造成的不同传感器对于相同空间的感知存在差异,通常需要预先对不同传感器之间的相对位姿关系进行标定,得到能够表征不同传感器之间相对位姿关系的标定外参,利用该标定外参,以消除不同传感器对于相同空间存在的感知差异。以对激光雷达和组合惯性导航装置(以下简称“惯导装置”)进行外参标定为例,当前在基于点云大小的标定法对雷达和惯导装置之间的外参进行标定时,需要拼接多帧雷达点云数据,对多帧雷达点云数据中的点云点进行位置标定,并基于点的位置标定结果,优化外参中的各个参数;理论上而言,在外参标定准确的情况下,对点的位置标定结果中,不会出现表征同一位置的多个点,此时多帧雷达点云数据进行拼接后点的数量可以达到最小值;在外参优化的每轮迭代过程中,都需要对点的数量进行检测;当检测到某轮迭代过程得到的点的数量最少,则将该轮迭代确定的外参作为标定外参;该种方式通常采用点云库(Point Cloud Library,PCL)中的八叉树进行点的位置标定,在每次迭代过程中需要遍历每个点,为遍历到的每个点进行位置标定时需要利用八叉树多次重复判断某一位置是否已添加点,因此效率较低。
另外,还可以利用手动测量法标定:借助与激光测距仪或者其他测量工具获取外参中平移部分的参数,并通过观察多帧雷达点云数据在拼接时的重合程度,人工调节旋转部分的参数。但该种方法多依赖于人的经验,故精确度和鲁棒性较差,不适用于对标定精度要求较高的场景。
另外,还可以利用手眼标定法进行标定:即绕“8”字路线采集一组雷达点云数据和惯导装置的惯导定位数据,通过惯导定位数据直接解算获得惯导装置的位姿,并利用雷达-同步定位与建图(LiDAR-Simultaneous Localization and Mapping,LiDAR-SLAM)算法求解得到激光雷达的位姿,进而采用手眼标定算法基于组合惯导及激光雷达的位姿进行外参解算;该种方法要求充分在不同自由度上运动的过程中获取雷达点云数据和惯导定位数据;但对于某些场景,例如自动车辆驾驶场景而言很难满足,因此限制性较强,不具有普适性。
基于上述研究,本公开提供了一种外参标定方法、装置、计算机设备及存储介质,通过建立与目标空间对应的数组空间,将雷达点云数据中的各个点映射至数组空间中的各个比特位,进而可以利用比特位的位运算来实现空间中某位置是否已经存在雷达点云数据对应的点的判断以及向空间中某位置插入点的操作,并基于数组空间,对外参进行优化,从而以更高的效率实现对外参的标定。
针对以上方案所存在的缺陷,均是发明人在经过实践并仔细研究后得出的结果,因此,上述问题的发现过程以及下文中本公开针对上述问题所提出的解决方案,都应该是发明人在本公开过程中对本公开做出的贡献。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
为便于对本实施例进行理解,首先对本公开实施例所公开的一种外参标定方法进行详细介绍,本公开实施例所提供的外参标定方法的执行主体一般为具有一定计算能力的计算机设备,该计算机设备例如包括:终端设备或服务器或其它处理设备,终端设备可以为用户设备(User Equipment,UE)、移动设备、用户终端、终端、蜂窝电话、无绳电话、个人数字助理(Personal Digital Assistant,PDA)、手持设备、计算设备、车载设备、可穿戴设备等。在一些可能的实现方式中,该外参标定方法可以通过处理器调用存储器中存储的计算机可读指令的方式来实现。
下面对本公开实施例提供的外参标定方法加以说明。
参见图1所示,本公开实施例提供一种外参标定方法,包括步骤S101至S102,其中:
S101:利用当前标定外参、以及对目标空间进行扫描得到的多帧雷达点云数据,确定目标空间中的多个子空间在数组空间中分别对应的比特位在当前标定外参下的第一取值;其中,任一子空间对应的比特位的第一取值用于表征该子空间中是否存在所述多帧雷达点云数据中的点;
S102:基于第一取值、当前标定外参、以及多个子空间在数组空间中分别对应的比特位在参考标定外参下的第二取值,确定目标标定外参;其中,参考标定外参根据初始参考标定外参或者前一次迭代使用的标定外参确定。
针对上述步骤S101:
当前标定外参例如可以是利用惯导装置和雷达装置之间的参考标定外参确定的。
本公开实施例中的各标定外参例如是将表征所述雷达装置与惯导装置之间相对位姿关系的标定参数作为标定外参,表示为T。其中,标定外参T中的标定参数包括下述至少一种:雷达相对于惯导装置的俯仰角度差pitch、偏航角度差yaw、旋转角度差roll、以及雷达相对于惯导装置在世界坐标系的三个坐标轴分别对应的距离,包括在世界坐标系中的x轴的距离u、y轴的距离v、及z轴的距离s。
在进行外参标定时,首先确定惯导装置和雷达装置之间的初始参考标定外参。
示例性的,可以将初始参考标定外参表示为T 0。获取初始参考标定外参T 0的方法包括但不限于下述至少一种:随机取值法、手动测量法、手眼标定法。
其中,随机取值法例如可以在预先确定的外参取值范围内,随机确定各个标定参数的取值,得到初始参考标定外参。
示例性的,在标定外参包括上述六种的情况下,初始参考标定外参T 0可以表示为T 0={pitch 0,yaw 0,roll 0,u 0,v 0,s 0}。
在确定惯导装置和雷达装置之间的标定外参时,可以基于初始参考标定外参,对初始参考标定外参中的至少部分标定参数进行多轮迭代,在每轮迭代过程中,对其中的至少一个标定参数进行数值调整,并确定调整后的标定外参和调整前的标定外参的准确度,并基于该准确度,实现一轮迭代。
在首轮迭代过程中,可以将初始参考标定外参T 0作为参考标定外参,然后,对参考标定外参中的至少一个标定参数进行数值上的调整,得到首轮迭代过程中的当前标定外参。
在除首轮迭代的其他迭代过程中,可以基于前一次迭代使用的标定外参确定当前迭代周期的参考标定外参,然后对参考标定外参中的至少一个标定参数进行数值上的调整,得到当前迭代周期中的当前标定外参。
本公开实施例以对参考标定外参中一个标定参数进行数值调整为例,在对参考标定外参中的一个标定参数进行数值调整时,例如可以随机调整;还可以按照预设的调整步长,以及一定的调整方向进行调整。
示例性的,在对外参进行标定的过程中,可以对多个标定参数依次进行至少一次迭代。
若对任一标定参数进行迭代的过程中,某次迭代结果满足预设的停止条件,则停止对该标定参数的迭代,转而进行对下一标定参数的迭代。
在对某标定参数进行迭代的过程中,例如可以采用下述公式(1)对参考标定外参中的该标定参数进行数值的调整,得到当前标定外参:
α i=α i-1+d jλ        (1)。
其中,α表示上述任一标定参数,α i表示在对α进行第i次迭代时的数值,α i-1表示对α进行第i-1次迭代时的数值,i表示对α的迭代次数。
以参考标定外参为标定基础,对任一标定参数α进行两个方向上的调整,调整方向表示为d j的正负,其中,d j的取值例如为正或负;d j的取值为正的情况下,表示将标定参数α的数值增加,在d j的取值为负的情况下,表示将标定参数α的数值减小,基于标定参数α在数值上变化的绝对值λ,基于上述公式(1)对参考标定外参中的任一标定参数进行数值上的调整,得到当前标定外参。
标定参数的调整方向可以是随机确定的,也可以是基于下述步骤中的第一取值和第二取值确定的,具体的,可以参见下述过程的具体说明,在此不再赘述。
在对目标空间进行扫描得到多帧雷达点云数据时,参见图2所示,本公开实施例还提供一种确定目标空间的具体方法,包括:
S201:获取惯导装置和雷达装置之间的初始参考标定外参。
此处,初始参考标定外参的获取方式例如可以参见上述所示,在此不再赘述。
S202:利用初始参考标定外参、以及惯导装置在目标空间内分别与每帧雷达点云数据对应的多个惯导位姿,确定每帧雷达点云数据对应的初始雷达位姿。
此处,初始雷达位姿的具体确定方式,与下述利用当前标定外参、以及惯导装置在目标空间内的多个惯导位姿,确定每帧雷达点云数据对应的雷达位姿的方式类似,在此不再赘述。
S203:基于多帧雷达点云数据分别对应的初始雷达位姿,确定每帧雷达点云数据分别对应的扫描空间。
此处,每帧雷达点云数据分别对应的扫描空间,例如通过初始雷达位姿、以及雷达装置的参数确定,该参数用于表征雷达装置获取的每帧雷达点云数据所涵盖的空间大小。
又例如,也可以基于雷达点云数据中各个点在雷达坐标系下的三维坐标值,确定雷达装置的扫描空间大小,然后利用雷达点云数据对应的位姿、以及该扫描空间大小,确定雷达点云数据对应的扫描空间。
此处,每帧雷达点云数据对应的扫描空间例如为在世界坐标系下的空间。
S204:基于多帧雷达点云数据分别对应的扫描空间,确定目标空间。
此处,例如可以将多帧雷达点云数据对应的扫描空间进行拼接,得到目标空间。
在确定了目标空间的情况下,即可以对目标空间进行扫描得到多帧雷达点云数据, 并确定目标空间中的多个子空间。其中,多帧雷达点云数据例如预先加载至内存中。在对标定外参进行迭代的过程中,可以直接从内存中读取雷达点云数据,避免每次迭代过程都重新读入点云文件,进一步提升外参标定的效率。
在确定目标空间中的多个子空间时,例如可以采用下述方法:基于目标空间的尺寸、以及预先设置的分辨率,将目标空间划分为多个子空间。
其中,目标空间的尺寸例如可以根据扫描空间的大小、和在世界坐标系中的位置确定。示例性的,将目标空间的尺寸的长度、宽度及高度分别表示为L(Length)、W(Width)和H(Height)。
在确定了目标空间的尺寸后,例如可以利用预先设置的分辨率(Solution)对目标空间进行进一步的划分,确定目标空间的多个子空间;其中,每个子空间可以存在一个点。
其中,预先设置的分辨率例如可以表示为S,用于表征点云空间中每个子空间所占据的空间尺寸。目标空间中的多个子空间的长度l(length)为L和S的比值;点云空间的宽度w(width)为W和S的比值;点云空间的高度h(height)为H和S的比值。
则目标空间中子空间的数量D满足下述公式(2):
D=l×w×h          (2)。
在基于目标空间确定数组空间时,例如可以基于目标空间中包括的子空间的数量确定。其中,多个子空间中的每个子空间对应数组空间中的至少一个比特位,且不同子空间对应的比特位不同。因此,数组空间中比特位的数量G与上述D相等。
数组空间中包括数组;数组类型可以根据实际需要进行确定,包括但不限于下述至少一种:uint16、uint32、uint64、uint128。根据预设的数组类型,可以确定所述数组空间中的每个数组可以存放的比特位数量。示例性的,当数组类型设置为uint64时,所述数组空间中的一个数组可以存放64个比特位,即一个数组中可以表征与比特位具有映射关系的64个子空间。
在一种可能的实施方式中,在生成数组空间后,将数组空间中的比特位的取值均初始化为第一数值,第一数值表征当前目标空间中无雷达点云数据中的点。若比特位的取值为第二数值,则表征与该比特位对应的位置存在雷达点云数据中的点。
在确定了当前标定外参、以及对目标空间进行扫描得到了多帧雷达点云数据的情况下,即可确定目标空间中的多个子空间在数组空间中分别对应的比特为在当前标定外参下的第一取值。
在具体实施中,在确定第一取值时,例如可以采用下述方法:基于多帧雷达点云数据中每帧雷达点云数据中的点分别在目标空间内针对当前标定外参的第一三维位置信息,确定多帧雷达点云数据中的点分别所属的子空间;基于多帧雷达点云数据中的点分别所属的子空间,确定目标空间中的每个子空间对应的比特位在当前标定外参下的第一取值。
其中,在确定多帧雷达点云数据中每帧雷达点云数据中的点分别在目标空间内针对当前标定外参的第一三维位置信息时,例如可以采用下述方法:利用当前标定外参、基于惯导装置在目标空间内分别与每帧雷达点云数据对应的多个惯导位姿,确定每帧雷达点云数据对应的雷达位姿;基于每帧雷达点云数据对应的雷达位姿,将每帧雷达点云数据中的点在对应雷达坐标系下的第二三维位置信息转换至世界坐标系下,得到每帧雷达点云数据中的点在目标空间内的第一三维位置信息。
具体地,惯导装置在目标空间内的多个惯导位姿,是惯导装置在世界坐标系下的 惯导位姿;所确定的对应帧雷达点云数据中的点分别在目标空间内针对当前标定外参的第一三维位置信息,为点在世界坐标系下的三维位置信息。
在确定每帧雷达点云数据对应的雷达位姿时,例如可以利用各帧雷达点云数据对应的第一时间戳、以及惯导位姿对应的第二时间戳,确定雷达在采集每帧雷达点云数据时,惯导装置的惯导位姿;然后利用雷达在采集每帧雷达点云数据时惯导装置的惯导位姿,确定对应雷达点云数据的雷达位姿。
在一种可能的实施方式中,在所述第一时间戳与第二时间戳同步的情况下,即所述雷达装置与所述惯导装置同步对目标场景进行采集的情况下,假设某帧雷达点云数据M的第一时间戳T1=t0,则将第二时间戳T2=t0时的惯导位姿N,确定为雷达在采集雷达点云数据M时,惯导装置的惯导位姿。然后,利用该惯导位姿N、以及当前标定外参确定雷达点云数据M的雷达位姿。
在另一种可能的实施方式中,在所述第一时间戳与第二时间戳不同步的情况下,即雷达装置与惯导装置在分别对目标场景进行采集的情况下,可以利用插值法确定雷达装置在获取雷达点云数据M时,惯导装置的惯导位姿N’。然后,利用雷达装置在获取雷达点云数据时惯导装置的惯导位姿N’,确定雷达点云数据M的雷达位姿。
在确定了雷达装置获取各帧雷达点云数据在世界坐标系下的雷达位姿后,即能够将各帧雷达点云数据中,点在雷达坐标系下的第二三维坐标值,转换为点在世界坐标系下的第一三维坐标值。
此时,根据点分别在目标空间内针对当前标定外参的第一三维位置信息、以及对目标空间进行划分得到的多个子空间,即可以确定多帧雷达点云数据中的点所属的子空间。
在确定了点所属的子空间的情况下,即能够确定目标空间中的每个子空间对应的比特位在当前标定外参下的第一取值。
参见图3所示,本公开实施例提供一种确定第一取值的具体方法,包括:
S301:遍历多帧雷达点云数据中的每个点,并针对遍历到的点,根据遍历到的点所属的子空间,确定与该子空间对应的目标比特位。
此处,在对多帧雷达点云数据中的每个点进行遍历时,由于遍历到的每个点均可以确定所属的子空间,因此可以利用点所属子空间与比特位之间的对应关系,为雷达点云数据中的每个点唯一确定对应的目标比特位。
其中,在根据遍历到的点所属的子空间,确定与该子空间对应的目标比特位时,例如可以采用下述方法:根据遍历到的点所属的子空间对应的坐标信息,确定点在数组中的索引信息;将索引信息指示的数组中的位置确定为与该子空间对应的目标比特位。
此处,示例性的,例如可以基于多帧雷达点云数据中每帧雷达点云数据中的点分别在目标空间内针对当前标定外参的第一三维位置信息、以及目标空间对应的分辨率,确定所述每帧雷达点云数据中的点在目标空间中对应的子空间,该子空间在目标空间中的位置信息,即为点在所属子空间中的对应的坐标信息。
例如,针对雷达点云数据M中的某个点m1,该点m1在目标空间内的第一三维位置信息为:(x 1,y 1,z 1),则其在所属子空间中的对应的坐标信息表示为
Figure PCTCN2021108437-appb-000001
并作为该点在数组中的索引信息。
根据索引信息,即可以将索引信息指示的数组中的位置确定为与该子空间对应的目标比特位。
其中,例如可以采用下述方式确定与位置信息对应的目标比特位:
根据遍历到的点的位置信息,确定该遍历到的点在数组空间内的检索信息;其中,检索信息包括索引信息idx 1与坐标信息idx 2,基于所述索引信息idx 1可以确定该遍历到的点在数组空间中所在的数组,基于坐标信息idx 2可以确定遍历到的点在确定的数组中具体的比特位的位置坐标。
以构成数组空间的数组类型为uint64时为例,具体地,所述遍历到的点的检索信息满足下述公式(3):
Figure PCTCN2021108437-appb-000002
其中,(x,y,z)表示遍历到的点在目标空间中的位置信息;%表示求余数。length表示目标空间的长度;width表示目标空间宽度。
在确定遍历到的点的检索信息后,即确定了遍历到的点对应的目标比特位在数组空间中的具体位置;进而根据该检索信息,就能够从数组空间中,读取目标比特位的当前取值。
在遍历了多帧雷达点云数据中的所有点后,将最终得到的数组空间中多个比特位的取值,确定为多个比特位分别在当前标定外参下的第一取值。
S302:在目标比特位的当前取值为第一数值的情况下,将第一数值更改为第二数值;其中,在目标比特位的当前取值为第一数值的情况下,表征目标比特位对应的子空间不存在点;在目标比特位的当前取值为第二数值的情况下,表征目标比特位对应的子空间存在点。
在目标比特位的当前取值为第一数值的情况下,由于与目标比特位对应的子空间中存在点,因此将第一数值更改为第二数值,表征已遍历过此子空间,且此子空间中存在点。
针对上述S102:
在确定了第一取值、当前标定外参、以及多个子空间在数组空间中分别对应的比特位在参考标定外参下的第二取值的情况下,即可以确定目标标定外参。
此处,多个子空间在数组空间中分别对应的比特位在参考标定外参下的第二取值的确定方式,与多个子空间在数组空间中分别对应的比特位在当前标定外参下的第一取值的确定方式相似,在此不再赘述。
在一种可能的实施方式中,参见图4所示,本公开实施例提供一种确定目标标定外参的方法,包括:
S401:基于第一取值确定目标空间中的点在当前标定外参下的第一数量;以及基于第二取值确定目标空间中的点在参考标定外参下第二数量。
示例性的,假设每个比特位的第一数值为0,第二数值为1,将数组空间中的各个比特位分别在第一取值下的数值和“1”做与运算,并基于各个比特位对应的与运算结果,获得与运算结果为“1”的比特位的总数量,将该与运算结果为“1”的比特位的总数量,确定为第一数量。
另外,还可以将数组空间中的各个比特位分别在第一取值下的数值和“0”做异或运算,并基于各个比特位对应的异或运算结果,获得异或运算结果为“1”的比特位的总数量,将该异或运算结果为“1”的比特位的总数量,确定为第一数量。
此时,第一数量表征在目标空间在当前标定外参下包括的点的数量。
类似的,可以基于多个比特位分别在参考标定外参下的第二取值,确定目标空间中的点在参考标定外参下的第二数量。
此时,第二数量表征在目标空间在参考标定外参下包括的点的数量。
S402:基于第一数量和第二数量,确定目标标定外参。
在具体实施中,在一种可能的实施方式中,参见图5所示,本公开实施例提供一种确定目标标定外参的具体方法,包括:
S501:响应于第一数量小于第二数量,将当前标定外参作为新的参考标定外参,按照当前优化方向确定新的当前标定外参,并返回至利用新的当前标定外参确定第一取值的步骤;
S502:响应于第一数量不小于第二数量,且当前仅进行了一个优化方向,按照另一个优化方向确定新的当前标定外参,并返回至利用新的当前标定外参确定第一取值的步骤;
S503:响应于第一数量不小于第二数量,且当前进行了两个优化方向,将当前参考标定外参确定为目标标定外参。
在具体实施中,在所述第一数量小于第二数量的情况下,在下一轮迭代过程基于当前标定外参确定新的当前标定外参的时候,对同一标定参数的调整方向,与本轮迭代过程中对参考标定外参的调整方向一致。
在所述第一数量大于第二数量的情况下,在下一轮迭代过程基于当前标定外参确定新的当前标定外参的时候,对同一标定参数的调整方向,与本轮迭代过程中对参考标定外参的调整方向相反。
在所述第一数量等于第二数量的情况下,在下一轮迭代过程基于参考标定外参确定当前标定外参的时候,调整的标定参数,与本轮迭代过程中调整的标定参数不同。
在对所有的标定参数均进行过迭代后,若无法达到第一数量和第二数量相等,则重新利用上述过程,依次对各个标定参数分别进行迭代。
在另一种可能的实施方式中,参见图6所示,为本公开实施例提供的另一种确定目标标定外参的具体方法,包括:
S601:响应于迭代次数达到预设次数,且第一数量小于第二数量,将当前标定外参确定为目标标定外参;
S602:响应于迭代次数达到预设次数,且第一数量不小于第二数量,将当前参考标定外参确定为目标标定外参。
在具体实施中,在迭代次数达到预设次数的情况下,或者在当前标定外参中的标定参数进行过至少一次迭代处理,且当前迭代周期中的第一取值与第二取值之间的差异度小于或者等于预设的差异度阈值的情况下,确定满足迭代停止条件,将最后得到的当前参考标定外参确定为目标标定外参。
此外,针对尚未标定外参,返回至为该标定外参确定目标标定外参的步骤,以使所有的标定外参完成标定,确定目标标定外参。
本公开实施例利用当前标定外参、以及对目标空间进行扫描得到的多帧雷达点云数据,确定目标空间中的多个子空间在数组空间中分别对应的比特位在所述当前标定外参下的第一取值,然后基于所述第一取值、所述当前标定外参、以及所述多个子空间在 所述数组空间中分别对应的比特位在参考标定外参下的第二取值,确定目标标定外参,从而将雷达点云数据中的各个点映射至数组空间中的各个比特位,进而可以利用多个比特位的位运算来实现空间中某位置是否已经存在雷达点云数据中的点的判断以及向空间中某位置插入雷达点云数据中的点的操作,并利用数组空间中各个比特位的取值,对外参进行优化,由于位运算较之通过八叉树在空间中插入点具有更快的速度,从而以更高的效率实现对外参的标定。
参见图7所示,本公开实施例提供的外参标定方法中的一种对外参进行标定的具体示例的流程图。
S701:获取初始参考标定外参。
S702:基于初始参考标定外参、及惯导装置的多个惯导位姿,确定雷达装置获取的每帧雷达点云数据对应的初始雷达位姿。
S703:基于多帧雷达点云数据分别对应的初始雷达位姿,确定每帧雷达点云数据分别对应的扫描空间。
S704:基于多帧雷达点云数据分别对应的扫描空间,确定目标空间。
S705:基于目标空间的尺寸、以及预先设置的分辨率,确定目标空间中包括的多个子空间。
S706:基于子空间的数量,确定数组空间。
S707:利用初始雷达位姿、以及每帧雷达点云数据中各个点在雷达坐标系下的第二三维位置信息,确定每帧雷达点云数据中的点在目标空间内的初始第一三维位置信息。
S708:利用多帧雷达点云数据中的点分别在目标空间内的初始第一三维位置信息,确定与目标空间对应的数组空间中多个比特位分别在初始参考标定外参下的初始取值。
S709:将初始参考标定外参作为参考标定外参。
S710:确定当前标定外参。
S711:利用当前标定外参、惯导装置在目标空间内的多个惯导位姿,以及多帧雷达点云数据中每帧雷达点云数据中的点在对应雷达坐标系下的第二三维位置信息,确定每帧雷达点云数据中的点在目标空间内的第一三维位置信息。
S712:利用多帧雷达点云数据中的点分别在目标空间内的第一三维位置信息,确定与目标空间对应的数组空间中多个比特位分别在当前标定外参下的第一取值。
S713:基于第一取值、以及多个比特位分别在参考标定外参下的第二取值,确定新的参考标定外参。
S714:判断是否满足迭代停止条件;如果否,则跳转至S710;如果是,则跳转至S715。
S715:最后得到的参考标定外参作为目标标定外参。
通过上述过程,经过对标定外参中标定参数的迭代,得到目标标定外参。
此外,上述S701~S715的具体实现方式,可参见上述图1至图6对应的实施例所示,在此不再赘述。
本领域技术人员可以理解,在具体实施方式的上述方法中,各步骤的撰写顺序并不意味着严格的执行顺序而对实施过程构成任何限定,各步骤的具体执行顺序应当以其功能和可能的内在逻辑确定。
基于同一发明构思,本公开实施例中还提供了与外参标定方法对应的外参标定装置,由于本公开实施例中的装置解决问题的原理与本公开实施例上述外参标定方法相似,因此装置的实施可以参见方法的实施,重复之处不再赘述。
参照图8所示,本公开实施例提供一种外参标定装置,包括:第一确定模块81、以及第二确定模块82;其中,
第一确定模块81,用于利用当前标定外参、以及对目标空间进行扫描得到的多帧雷达点云数据,确定目标空间中的多个子空间在数组空间中分别对应的比特位在所述当前标定外参下的第一取值;其中,任一子空间对应的比特位的第一取值用于表征该子空间中是否存在所述多帧雷达点云数据中的点;
第二确定模块82,用于基于所述第一取值、所述当前标定外参、以及所述多个子空间在所述数组空间中分别对应的比特位在参考标定外参下的第二取值,确定目标标定外参;其中,所述参考标定外参根据初始参考标定外参或者前一次迭代使用的标定外参确定。
一种可选的实施方式中,所述多个子空间中的每个子空间对应所述数组空间中的至少一个比特位;且不同子空间对应的比特位不同。
一种可选的实施方式中,所述第一确定模块81在利用当前标定外参、以及对目标空间进行扫描得到的多帧雷达点云数据,确定目标空间中的多个子空间在数组空间中分别对应的比特位在所述当前标定外参下的第一取值时,用于:基于所述多帧雷达点云数据中每帧雷达点云数据中的点分别在目标空间内针对所述当前标定外参的第一三维位置信息,确定所述多帧雷达点云数据中的点所属的子空间;基于所述多帧雷达点云数据中的点所属的子空间,确定所述目标空间中的每个子空间对应的比特位在所述当前标定外参下的第一取值。
一种可选的实施方式中,所述第一确定模块81在基于所述多帧雷达点云数据中的点所属的子空间,确定所述目标空间中的每个子空间对应的比特位在所述当前标定外参下的第一取值时,用于:遍历所述多帧雷达点云数据中的每个点,并针对遍历到的点,根据所述遍历到的点所属的子空间,确定与该子空间对应的目标比特位;在所述目标比特位的当前取值为第一数值的情况下,将第一数值更改为第二数值;其中,在所述目标比特位的当前取值为第一数值的情况下,表征所述目标比特位对应的子空间不存在所述多帧雷达点云数据中的点;在所述目标比特位的当前取值为第二数值的情况下,表征所述目标比特位对应的子空间存在所述多帧雷达点云数据中的点。
一种可选的实施方式中,所述装置还包括分配模块83,用于根据子空间的数量,为所述多帧雷达点云数据中的点分配预设大小的数组;所述第一确定模块81在根据所述遍历到的点所属的子空间,确定与该子空间对应的目标比特位时,用于:根据所述遍历到的点所属的子空间对应的坐标信息,确定点在所述数组中的索引信息;将所述索引信息指示的所述数组中的位置确定为与该子空间对应的目标比特位。
一种可选的实施方式中,所述第二确定模块82在基于所述第一取值、所述当前标定外参、以及所述多个子空间在所述数组空间中分别对应的比特位在参考标定外参下的第二取值,确定目标标定外参时,用于:基于所述第一取值确定所述目标空间中的点在所述当前标定外参下的第一数量;以及基于所述第二取值确定所述目标空间中的点在所述参考标定外参下第二数量;基于所述第一数量和所述第二数量,确定所述目标标定外参。
一种可选的实施方式中,所述第二确定模块82在基于所述第一数量和所述第二数量,确定所述目标标定外参时,用于:响应于所述第一数量小于所述第二数量,将所述 当前标定外参作为新的参考标定外参,按照当前优化方向确定新的当前标定外参,并返回至利用新的当前标定外参确定第一取值的步骤;响应于所述第一数量不小于所述第二数量,且当前仅进行了一个优化方向,按照另一个优化方向确定新的当前标定外参,并返回至利用新的当前标定外参确定第一取值的步骤;响应于所述第一数量不小于所述第二数量,且当前进行了两个优化方向,将当前参考标定外参确定为目标标定外参。
一种可选的实施方式中,所述第二确定模块82在基于所述第一数量和所述第二数量,确定所述目标标定外参时,用于:响应于迭代次数达到预设次数,且所述第一数量小于所述第二数量,将所述当前标定外参确定为目标标定外参;响应于迭代次数达到预设次数,且所述第一数量不小于所述第二数量,将所述当前参考标定外参确定为目标标定外参。
一种可选的实施方式中,响应于存在尚未标定外参,在为当前标定外参确定出目标标定外参之后,第二确定模块82还用于:针对尚未标定外参,返回至为该未标定外参确定目标标定外参的步骤。
一种可选的实施方式中,所述第一确定模块81采用如下方式确定所述多帧雷达点云数据中每帧雷达点云数据中的点分别在目标空间内针对所述当前标定外参的第一三维位置信息:利用所述当前标定外参、所述惯导装置在所述目标空间内分别与每帧雷达点云数据对应的多个所述惯导位姿,确定所述每帧雷达点云数据对应的雷达位姿;基于所述每帧雷达点云数据对应的雷达位姿,将所述每帧雷达点云数据中的点在对应雷达坐标系下的第二三维位置信息转换至世界坐标系下,得到所述每帧雷达点云数据中的点在目标空间内的第一三维位置信息。
一种可选的实施方式中,还包括空间划分模块84:用于基于所述目标空间的尺寸、以及预先设置的分辨率,将所述目标空间划分为多个子空间。
一种可选的实施方式中,所述第一确定模块81采用下述方式确定所述目标空间:获取所述惯导装置和所述雷达装置之间的初始参考标定外参;利用所述初始参考标定外参、以及所述惯导装置在所述目标空间内分别与每帧雷达点云数据对应的多个惯导位姿,确定所述每帧雷达点云数据对应的初始雷达位姿;基于多帧雷达点云数据分别对应的初始雷达位姿,确定所述每帧雷达点云数据分别对应的扫描空间;基于多帧雷达点云数据分别对应的扫描空间,确定所述目标空间。
一种可选的实施方式中,标定外参包括下述至少一个标定参数:雷达相对于惯导装置的俯仰角度差、偏航角度差、旋转角度差、雷达相对于惯导装置在世界坐标系的三个坐标轴分别对应的距离。
关于装置中的各模块的处理流程、以及各模块之间的交互流程的描述可以参照上述方法实施例中的相关说明,这里不再详述。
如图9所示,本公开实施例还提供了一种计算机设备,包括:处理器91和存储器92;处理器91用于执行存储器92中存储的机器可读指令,所述机器可读指令被处理器91执行时,处理器91执行下述步骤:
利用当前标定外参、以及对目标空间进行扫描得到的多帧雷达点云数据,确定目标空间中的多个子空间在数组空间中分别对应的比特位在当前标定外参下的第一取值;其中,任一子空间对应的比特位的第一取值用于表征该子空间中是否存在多帧雷达点云数据中的点;基于第一取值、当前标定外参、以及多个子空间在数组空间中分别对应的比特位在参考标定外参下的第二取值,确定目标标定外参;其中,参考标定外参根据初始参考标定外参或者前一次迭代使用的标定外参确定。
上述存储器92包括内存921和外部存储器922;这里的内存921也称内存储器,用于暂时存放处理器91中的运算数据,以及与硬盘等外部存储器922交换的数据,处理器91通过内存921与外部存储器922进行数据交换。
上述指令的具体执行过程可以参考本公开实施例中所述的外参标定方法的步骤,此处不再赘述。
本公开实施例还提供一种计算机可读存储介质,其上存储的计算机程序被处理器运行时执行上述方法实施例中所述的外参标定方法的步骤。其中,该存储介质可以是易失性或非易失的计算机可读取存储介质。
本公开实施例还提供一种计算机程序产品,该计算机程序产品承载有程序代码,所述程序代码包括的指令可用于执行上述方法实施例中所述的外参标定方法的步骤,具体可参见上述方法实施例,在此不再赘述。
其中,上述计算机程序产品可以具体通过硬件、软件或其结合的方式实现。在一个可选实施例中,所述计算机程序产品具体体现为计算机存储介质,在另一个可选实施例中,计算机程序产品具体体现为软件产品,例如软件开发包(Software Development Kit,SDK)等等。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统和装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。在本公开所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,又例如,多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些通信接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个处理器可执行的非易失的计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上所述实施例,仅为本公开的具体实施方式,用以说明本公开的技术方案,而非对其限制,本公开的保护范围并不局限于此,尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,其依然可以对前述实施例所记载的技术方案进行修改或可轻易想到变化,或者对其中部分技术特征进行等同替换;而这些修改、变化或者替换,并不使相应技术方案的本质脱离本公开实施例技术方案的精神和范围,都应涵 盖在本公开的保护范围之内。因此,本公开的保护范围应所述以权利要求的保护范围为准。

Claims (16)

  1. 一种外参标定方法,包括:
    利用当前标定外参、以及对目标空间进行扫描得到的多帧雷达点云数据,确定目标空间中的多个子空间在数组空间中分别对应的比特位在所述当前标定外参下的第一取值;其中,任一子空间对应的比特位的第一取值用于表征该子空间中是否存在所述多帧雷达点云数据中的点;
    基于所述第一取值、所述当前标定外参、以及所述多个子空间在所述数组空间中分别对应的比特位在参考标定外参下的第二取值,确定目标标定外参;
    其中,所述参考标定外参根据初始参考标定外参或者前一次迭代使用的标定外参确定。
  2. 根据权利要求1所述的外参标定方法,其特征在于,所述多个子空间中的每个子空间对应所述数组空间中的至少一个比特位;且不同子空间对应的比特位不同。
  3. 根据权利要求1或2所述的外参标定方法,其特征在于,所述利用当前标定外参、以及对目标空间进行扫描得到的多帧雷达点云数据,确定目标空间中的多个子空间在数组空间中分别对应的比特位在所述当前标定外参下的第一取值,包括:
    基于所述多帧雷达点云数据中每帧雷达点云数据中的点分别在目标空间内针对所述当前标定外参的第一三维位置信息,确定所述多帧雷达点云数据中的点所属的子空间;
    基于所述多帧雷达点云数据中的点所属的子空间,确定所述目标空间中的每个子空间对应的比特位在所述当前标定外参下的第一取值。
  4. 根据权利要求3所述的外参标定方法,其特征在于,所述基于所述多帧雷达点云数据中的点所属的子空间,确定所述目标空间中的每个子空间对应的比特位在所述当前标定外参下的第一取值,包括:
    遍历所述多帧雷达点云数据中的每个点,并针对遍历到的点,根据所述遍历到的点所属的子空间,确定与该子空间对应的目标比特位;
    在所述目标比特位的当前取值为第一数值的情况下,将第一数值更改为第二数值;
    其中,在所述目标比特位的当前取值为第一数值的情况下,表征所述目标比特位对应的子空间不存在所述多帧雷达点云数据中的点;在所述目标比特位的当前取值为第二数值的情况下,表征所述目标比特位对应的子空间存在所述多帧雷达点云数据中的点。
  5. 根据权利要求4所述的外参标定方法,其特征在于,所述方法还包括:根据子空间的数量,为所述多帧雷达点云数据中的点分配预设大小的数组;
    所述根据所述遍历到的点所属的子空间,确定与该子空间对应的目标比特位,包括:
    根据所述遍历到的点所属的子空间对应的坐标信息,确定点在所述数组中的索引信息;
    将所述索引信息指示的所述数组中的位置确定为与该子空间对应的目标比特位。
  6. 根据权利要求1至5任一项所述的外参标定方法,其特征在于,所述基于所述第一取值、所述当前标定外参、以及所述多个子空间在所述数组空间中分别对应的比特位在参考标定外参下的第二取值,确定目标标定外参,包括:
    基于所述第一取值确定所述目标空间中的点在所述当前标定外参下的第一数量;以及基于所述第二取值确定所述目标空间中的点在所述参考标定外参下第二数量;
    基于所述第一数量和所述第二数量,确定所述目标标定外参。
  7. 根据权利要求6所述的外参标定方法,其特征在于,所述基于所述第一数量和所述第二数量,确定所述目标标定外参,包括:
    响应于所述第一数量小于所述第二数量,将所述当前标定外参作为新的参考标定外参,按照当前优化方向确定新的当前标定外参,并返回至利用新的当前标定外参确定第一取值的步骤;
    响应于所述第一数量不小于所述第二数量,且当前仅进行了一个优化方向,按照另 一个优化方向确定新的当前标定外参,并返回至利用新的当前标定外参确定第一取值的步骤;
    响应于所述第一数量不小于所述第二数量,且当前进行了两个优化方向,将当前参考标定外参确定为目标标定外参。
  8. 根据权利要求6所述的外参标定方法,其特征在于,所述基于所述第一数量和所述第二数量,确定所述目标标定外参,包括:
    响应于迭代次数达到预设次数,且所述第一数量小于所述第二数量,将所述当前标定外参确定为目标标定外参;
    响应于迭代次数达到预设次数,且所述第一数量不小于所述第二数量,将所述当前参考标定外参确定为目标标定外参。
  9. 根据权利要求7或8所述的外参标定方法,其特征在于,响应于存在尚未标定外参,在为当前标定外参确定出目标标定外参之后,所述方法还包括:
    针对尚未标定外参,返回至为该未标定外参确定目标标定外参的步骤。
  10. 根据权利要求3所述的外参标定方法,其特征在于,采用如下方式确定所述多帧雷达点云数据中每帧雷达点云数据中的点分别在目标空间内针对所述当前标定外参的第一三维位置信息:
    利用所述当前标定外参、惯导装置在所述目标空间内分别与每帧雷达点云数据对应的多个惯导位姿,确定所述每帧雷达点云数据对应的雷达位姿;
    基于所述每帧雷达点云数据对应的雷达位姿,将所述每帧雷达点云数据中的点在对应雷达坐标系下的第二三维位置信息转换至世界坐标系下,得到所述每帧雷达点云数据中的点在目标空间内的第一三维位置信息。
  11. 根据权利要求1至10任一项所述的外参标定方法,其特征在于,还包括:
    基于所述目标空间的尺寸、以及预先设置的分辨率,将所述目标空间划分为多个子空间。
  12. 根据权利要求1至11任一项所述的外参标定方法,其特征在于,采用下述方式确定所述目标空间:
    获取惯导装置和雷达装置之间的初始参考标定外参;
    利用所述初始参考标定外参、以及所述惯导装置在所述目标空间内分别与每帧雷达点云数据对应的多个惯导位姿,确定所述每帧雷达点云数据对应的初始雷达位姿;
    基于所述多帧雷达点云数据分别对应的初始雷达位姿,确定所述每帧雷达点云数据分别对应的扫描空间;
    基于多帧雷达点云数据分别对应的扫描空间,确定所述目标空间。
  13. 根据权利要求1至12任一项所述的外参标定方法,其特征在于,标定外参包括下述至少一个标定参数:
    雷达相对于惯导装置的俯仰角度差、偏航角度差、旋转角度差、雷达相对于惯导装置在世界坐标系的三个坐标轴分别对应的距离。
  14. 一种外参标定装置,包括:
    第一确定模块,用于利用当前标定外参、以及对目标空间进行扫描得到的多帧雷达点云数据,确定目标空间中的多个子空间在数组空间中分别对应的比特位在所述当前标定外参下的第一取值;其中,任一子空间对应的比特位的第一取值用于表征该子空间中是否存在所述多帧雷达点云数据中的点;
    第二确定模块,用于基于所述第一取值、所述当前标定外参、以及所述多个子空间在所述数组空间中分别对应的比特位在参考标定外参下的第二取值,确定目标标定外参;其中,所述参考标定外参根据初始参考标定外参或者前一次迭代使用的标定外参确定。
  15. 一种计算机设备,包括处理器和存储器,所述处理器用于执行所述存储器中存储的机器可读指令,所述机器可读指令被所述处理器执行时,所述处理器执行如权利要 求1至13任一项所述的外参标定方法的步骤。
  16. 一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被计算机设备运行时,所述计算机设备执行如权利要求1至13任一项所述的外参标定方法的步骤。
PCT/CN2021/108437 2020-12-25 2021-07-26 外参标定方法、装置、计算机设备及存储介质 WO2022134567A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011565128.4A CN112578356B (zh) 2020-12-25 2020-12-25 一种外参标定方法、装置、计算机设备及存储介质
CN202011565128.4 2020-12-25

Publications (1)

Publication Number Publication Date
WO2022134567A1 true WO2022134567A1 (zh) 2022-06-30

Family

ID=75140612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/108437 WO2022134567A1 (zh) 2020-12-25 2021-07-26 外参标定方法、装置、计算机设备及存储介质

Country Status (2)

Country Link
CN (1) CN112578356B (zh)
WO (1) WO2022134567A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115201796A (zh) * 2022-07-26 2022-10-18 白犀牛智达(北京)科技有限公司 一种车辆传感器的外参校正方法
CN115236644A (zh) * 2022-07-26 2022-10-25 广州文远知行科技有限公司 一种激光雷达外参标定方法、装置、设备和存储介质
CN115388914A (zh) * 2022-10-28 2022-11-25 福思(杭州)智能科技有限公司 传感器的参数标定方法、装置、存储介质和电子装置
CN115993089A (zh) * 2022-11-10 2023-04-21 山东大学 基于pl-icp的在线四舵轮agv内外参标定方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020138463A1 (ja) * 2018-12-28 2021-11-04 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
CN112578356B (zh) * 2020-12-25 2024-05-17 上海商汤临港智能科技有限公司 一种外参标定方法、装置、计算机设备及存储介质
CN112991549A (zh) * 2021-03-31 2021-06-18 上海商汤临港智能科技有限公司 一种点云数据处理方法、装置、计算机设备和存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104516888A (zh) * 2013-09-27 2015-04-15 腾讯科技(北京)有限公司 多维数据的权限查询方法及装置
US9215382B1 (en) * 2013-07-25 2015-12-15 The United States Of America As Represented By The Secretary Of The Navy Apparatus and method for data fusion and visualization of video and LADAR data
CN109919893A (zh) * 2019-03-20 2019-06-21 湖北亿咖通科技有限公司 点云修正方法、装置和可读存储介质
CN110837080A (zh) * 2019-10-28 2020-02-25 武汉海云空间信息技术有限公司 激光雷达移动测量系统的快速标定方法
CN111427028A (zh) * 2020-03-20 2020-07-17 新石器慧通(北京)科技有限公司 参数监测方法、装置、设备和存储介质
CN112051575A (zh) * 2020-08-31 2020-12-08 广州文远知行科技有限公司 一种毫米波雷达与激光雷达的调整方法及相关装置
CN112106111A (zh) * 2019-07-30 2020-12-18 深圳市大疆创新科技有限公司 一种标定方法、设备、可移动平台及存储介质
CN112578356A (zh) * 2020-12-25 2021-03-30 上海商汤临港智能科技有限公司 一种外参标定方法、装置、计算机设备及存储介质

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102306180B (zh) * 2011-08-29 2013-03-27 北京建筑工程学院 一种基于海量激光雷达栅格点云数据的建模方法
CN104656097B (zh) * 2015-01-28 2017-03-08 武汉理工大学 基于旋转式二维激光三维重构系统的标定装置及方法
CN105931202B (zh) * 2016-04-20 2018-02-23 广州华端科技有限公司 几何校正模体的校正方法和系统
CN107121062A (zh) * 2016-12-07 2017-09-01 苏州笛卡测试技术有限公司 一种机器人三维扫描装置及方法
CN109425365B (zh) * 2017-08-23 2022-03-11 腾讯科技(深圳)有限公司 激光扫描设备标定的方法、装置、设备及存储介质
CN109507661B (zh) * 2018-09-28 2023-04-07 西南电子技术研究所(中国电子科技集团公司第十研究所) 雷达和通信一体化信号处理方法
CN111208492B (zh) * 2018-11-21 2022-04-19 长沙智能驾驶研究院有限公司 车载激光雷达外参标定方法及装置、计算机设备及存储介质
CN110060288A (zh) * 2019-03-15 2019-07-26 华为技术有限公司 点云特征图的生成方法、装置及存储介质
CN110007293B (zh) * 2019-04-24 2021-11-02 禾多科技(北京)有限公司 场端多线束激光雷达的在线标定方法
CN110824443B (zh) * 2019-04-29 2020-07-31 当家移动绿色互联网技术集团有限公司 雷达仿真方法、装置、存储介质及电子设备
CN110097605B (zh) * 2019-05-05 2022-05-27 山东大学 一种基于支持向量机的点云压缩编码器关键参数优化方法
CN110823106B (zh) * 2019-10-16 2021-09-10 江苏大学 一种基于激光连续波调制原理的平板玻璃质量检测方法
CN111080781A (zh) * 2019-12-30 2020-04-28 浙江欣奕华智能科技有限公司 一种三维地图显示方法及移动终端
CN111965625B (zh) * 2020-08-11 2023-02-21 上海禾赛科技有限公司 用于激光雷达的校正方法及装置、环境感知系统
CN112102418B (zh) * 2020-09-16 2022-02-11 上海商汤临港智能科技有限公司 一种标定方法、装置、电子设备及存储介质
CN112101222A (zh) * 2020-09-16 2020-12-18 中国海洋大学 一种基于无人艇多模态传感器的海面三维目标检测方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9215382B1 (en) * 2013-07-25 2015-12-15 The United States Of America As Represented By The Secretary Of The Navy Apparatus and method for data fusion and visualization of video and LADAR data
CN104516888A (zh) * 2013-09-27 2015-04-15 腾讯科技(北京)有限公司 多维数据的权限查询方法及装置
CN109919893A (zh) * 2019-03-20 2019-06-21 湖北亿咖通科技有限公司 点云修正方法、装置和可读存储介质
CN112106111A (zh) * 2019-07-30 2020-12-18 深圳市大疆创新科技有限公司 一种标定方法、设备、可移动平台及存储介质
CN110837080A (zh) * 2019-10-28 2020-02-25 武汉海云空间信息技术有限公司 激光雷达移动测量系统的快速标定方法
CN111427028A (zh) * 2020-03-20 2020-07-17 新石器慧通(北京)科技有限公司 参数监测方法、装置、设备和存储介质
CN112051575A (zh) * 2020-08-31 2020-12-08 广州文远知行科技有限公司 一种毫米波雷达与激光雷达的调整方法及相关装置
CN112578356A (zh) * 2020-12-25 2021-03-30 上海商汤临港智能科技有限公司 一种外参标定方法、装置、计算机设备及存储介质

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115201796A (zh) * 2022-07-26 2022-10-18 白犀牛智达(北京)科技有限公司 一种车辆传感器的外参校正方法
CN115236644A (zh) * 2022-07-26 2022-10-25 广州文远知行科技有限公司 一种激光雷达外参标定方法、装置、设备和存储介质
CN115201796B (zh) * 2022-07-26 2024-04-30 白犀牛智达(北京)科技有限公司 一种车辆传感器的外参校正方法
CN115388914A (zh) * 2022-10-28 2022-11-25 福思(杭州)智能科技有限公司 传感器的参数标定方法、装置、存储介质和电子装置
CN115993089A (zh) * 2022-11-10 2023-04-21 山东大学 基于pl-icp的在线四舵轮agv内外参标定方法
CN115993089B (zh) * 2022-11-10 2023-08-15 山东大学 基于pl-icp的在线四舵轮agv内外参标定方法

Also Published As

Publication number Publication date
CN112578356B (zh) 2024-05-17
CN112578356A (zh) 2021-03-30

Similar Documents

Publication Publication Date Title
WO2022134567A1 (zh) 外参标定方法、装置、计算机设备及存储介质
JP6745328B2 (ja) 点群データを復旧するための方法及び装置
CN110738143B (zh) 定位方法及装置、设备、存储介质
US11300964B2 (en) Method and system for updating occupancy map for a robotic system
US10086955B2 (en) Pattern-based camera pose estimation system
JP5627325B2 (ja) 位置姿勢計測装置、位置姿勢計測方法、およびプログラム
KR20140060454A (ko) 포인트 클라우드에서의 포인트 백필링
US10451403B2 (en) Structure-based camera pose estimation system
CN107170042B (zh) 一种无序图像的多视立体匹配的三维重建方法
WO2018201677A1 (zh) 基于光束平差的远心镜头三维成像系统的标定方法及装置
CN113048980B (zh) 位姿优化方法、装置、电子设备及存储介质
US9858669B2 (en) Optimized camera pose estimation system
CN111144349B (zh) 一种室内视觉重定位方法及系统
WO2020063878A1 (zh) 一种处理数据的方法和装置
CN111123242B (zh) 一种基于激光雷达和相机的联合标定方法及计算机可读存储介质
US11908081B2 (en) Method and system for automatic characterization of a three-dimensional (3D) point cloud
CN116129037B (zh) 视触觉传感器及其三维重建方法、系统、设备及存储介质
CN112967340A (zh) 同时定位和地图构建方法、装置、电子设备及存储介质
CN113052907A (zh) 一种动态环境移动机器人的定位方法
CN112929626A (zh) 一种基于智能手机影像的三维信息提取方法
JP7166446B2 (ja) ロボットの姿勢を推定するシステムおよび方法、ロボット、並びに記憶媒体
CN105783881A (zh) 空中三角测量的方法和装置
KR102455546B1 (ko) 색상을 반영한 포인트 클라우드의 재구성을 위한 반복 최근접 포인트 탐색 방법
US9852542B1 (en) Methods and apparatus related to georeferenced pose of 3D models
Otero et al. Local iterative DLT soft-computing vs. interval-valued stereo calibration and triangulation with uncertainty bounding in 3D reconstruction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21908572

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/11/2023)