WO2022134517A1 - 自主式水下航行器的回收方法及自主式水下航行器 - Google Patents

自主式水下航行器的回收方法及自主式水下航行器 Download PDF

Info

Publication number
WO2022134517A1
WO2022134517A1 PCT/CN2021/102743 CN2021102743W WO2022134517A1 WO 2022134517 A1 WO2022134517 A1 WO 2022134517A1 CN 2021102743 W CN2021102743 W CN 2021102743W WO 2022134517 A1 WO2022134517 A1 WO 2022134517A1
Authority
WO
WIPO (PCT)
Prior art keywords
underwater vehicle
autonomous underwater
recovery
drone
cable
Prior art date
Application number
PCT/CN2021/102743
Other languages
English (en)
French (fr)
Inventor
张爱东
王超
梅涛
李胜全
孔文超
苏杭
邓豪
杨仁友
Original Assignee
鹏城实验室
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鹏城实验室 filed Critical 鹏城实验室
Publication of WO2022134517A1 publication Critical patent/WO2022134517A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C11/00Equipment for dwelling or working underwater; Means for searching for underwater objects
    • B63C11/52Tools specially adapted for working underwater, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/028Micro-sized aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/20Remote controls

Definitions

  • the present application relates to the technical field of marine vehicles, and in particular, to a method for recovering an autonomous underwater vehicle and an autonomous underwater vehicle.
  • AUVs autonomous underwater vehicles
  • Many different types of unmanned underwater vehicles have been applied to the military. Marine technology, marine science and technology investigation, seabed exploration, pipeline maintenance, seabed salvage, oilfield exploration and other fields of work. After the AUV operation is completed, the AUV needs to be recycled.
  • the methods of underwater recovery of AUVs used in deep-sea vehicles mainly include fixed cage docking, manipulator capture and other methods. These methods all have shortcomings such as low docking success rate, complex mechanical structure, and poor adjustability of the docking mechanism, which seriously restrict the The efficiency of AUV deployment and recycling is improved. Especially when multiple AUVs are used to improve work area and work efficiency, recycling efficiency becomes the biggest constraint on AUV applications. Therefore, improving the success rate and efficiency of AUV recycling is the key to the cutting-edge technology field of AUV recycling.
  • the main purpose of this application is to propose a recovery method for an autonomous underwater vehicle, aiming at improving the recovery success rate and efficiency of the autonomous underwater vehicle.
  • the present application proposes a method for recovering an autonomous underwater vehicle.
  • the autonomous underwater vehicle includes a main body and an unmanned aerial vehicle.
  • the main body is provided with an installation cabin, and the installation cabin has a cabin. a door;
  • the UAV is placed in the installation cabin, the UAV is connected to the installation cabin through a cable, and the UAV can fly away from the installation cabin when the cabin door is opened;
  • the recovery method of the autonomous underwater vehicle comprises the following steps:
  • the cable is controlled to land on the target position of the surface recovery craft.
  • the autonomous underwater vehicle further includes an ejection device, and the ejection device is used to eject the UAV; before the step of controlling the UAV to take off, it further includes:
  • the ejection device After detecting the ejection command, the ejection device is controlled to eject the UAV into the air.
  • step of controlling the drone to take off before the step of controlling the drone to take off, it further includes:
  • the drone After detecting the ascending command, the drone is controlled to surface.
  • the step of controlling the drone to take off includes:
  • the UAV After detecting that the UAV has surfaced, the UAV is controlled to take off.
  • step of controlling the cable to land at the target position of the surface recovery boat further comprising;
  • the drone After the identification instruction is detected, the drone is controlled to identify the target position of the surface recovery boat.
  • the step of controlling the cable to land at the target position of the surface recovery craft includes:
  • the drone is controlled to land on the surface recovery boat, so that the cable is landed at the target position of the surface recovery boat.
  • the autonomous underwater vehicle further includes a separation mechanism, the separation mechanism is arranged on the drone, and one end of the cable close to the drone is connected to the separation mechanism; After the step of controlling the drone to land on the water surface recovery boat, so that the cable is landed at the target position of the water surface recovery boat, the method further includes:
  • the drone After the separation instruction is detected, the drone is controlled to be separated from the cable.
  • the step of controlling the cable to land at the target position of the surface recovery craft includes:
  • the drone is controlled to launch the cable to a target location of the surface recovery craft.
  • the method further includes:
  • the recovery device of the surface recovery boat is controlled to start, and the cable is tightened, so as to recover the autonomous underwater vehicle to the surface recovery boat.
  • the present application proposes an autonomous underwater vehicle, comprising:
  • the body is provided with an installation cabin, the installation cabin has a hatch;
  • the UAV is placed in the installation cabin, the UAV is connected to the installation cabin by a cable, and the UAV can fly away from the installation after the cabin door is opened cabin.
  • the autonomous underwater vehicle further includes a winding device, the winding device is fixed on the body, one end of the cable is wound on the winding device, and the other end is wound on the winding device. Connect the drone.
  • the installation compartment is detachably connected to the body.
  • the body includes at least two cabin sections, two adjacent cabin sections are detachably connected, and the installation cabin is detachably connected to the cabin sections.
  • the installation compartment is provided on the head of the body.
  • the autonomous underwater vehicle of the present application includes a main body and an unmanned aerial vehicle, the main body is provided with an installation cabin, and the installation cabin has a hatch; the unmanned aerial vehicle is placed in the installation cabin, and the unmanned aerial vehicle is placed in the installation cabin. Connected to the mounting bay by a cable, the drone can fly away from the mounting bay when the hatch is opened. In this way, by positioning and identifying the autonomous underwater vehicle in the air, the positioning of the autonomous underwater vehicle is easier and more accurate, thereby improving the recovery success rate and efficiency of the autonomous underwater vehicle.
  • 1 is a schematic structural diagram of an embodiment of an autonomous underwater vehicle of the application
  • Fig. 2 is the schematic diagram of the autonomous underwater vehicle of the application in the first use state
  • FIG. 3 is a schematic diagram of the autonomous underwater vehicle of the application in a second state of use
  • FIG. 4 is a schematic diagram of the autonomous underwater vehicle of the present application in a third use state.
  • the present application proposes a recovery method of an autonomous underwater vehicle.
  • the recovery of autonomous underwater vehicles has the problems of difficult positioning, failure of recovery and too long recovery time, and it cannot be applied to the recovery of unmanned systems.
  • a section (installation cabin) equipped with a small unmanned aerial vehicle is installed on the autonomous underwater vehicle, and the unmanned aerial vehicle is released through the unmanned aerial vehicle section of the AUV when it is close to the surface recovery boat or recovery boat.
  • the drone is fixed with a cable, the other end of the cable is fixed on the AUV, the released drone can autonomously fly and identify the surface recovery boat or recovery boat, and autonomously approach and identify the target position of the surface recovery boat or boat
  • the cable fixed at the end of the drone is fixed on the recovery device.
  • the recovery device pulls the AUV into the recovery device by shrinking the cable, and then it can be safely and reliably placed on the surface recovery boat or recovery boat.
  • the autonomous underwater vehicle 100 of the present application includes a main body 110 and an unmanned aerial vehicle 130 .
  • the main body 110 is provided with an installation cabin 120 , and the installation cabin 120 has a cabin door (not shown).
  • the UAV 130 is placed in the installation cabin 120, the UAV 130 is connected to the installation cabin 120 through a cable 140, and the UAV 130 can fly away from the cabin after the cabin door is opened.
  • the installation cabin 120 is described.
  • the autonomous underwater vehicle 100 has an installation cabin 120 , and the installation cabin 120 is used for placing the drone 130 .
  • the installation compartment 120 may be disposed at the head, tail or middle position of the main body 110 , which is not specifically limited.
  • the installation compartment 120 may be integrally formed on the main body 110.
  • the installation compartment 120 may also be provided separately from the main body 110. on the main body 110.
  • the drone 130 is placed in the installation cabin 120 , and the door of the installation cabin 120 is usually closed, so that the drone 130 can be prevented from being immersed in water.
  • the drone 130 has a certain waterproof performance and wind resistance level.
  • the wind resistance level of the UAV 130 is generally five winds, the corresponding wave height is about 2.5 meters, and the sea conditions are 4 ⁇ 5 sea conditions, which can meet the vast majority of sea conditions.
  • the hatch door can be opened, so that the drone 130 can fly away from the installation cabin 120 .
  • the drone 130 flies out of the installation cabin 120 , it can maintain a suspended flight state in the air (as shown in FIG. 3 ).
  • the control cable 140 descends At the target position of the recovery craft 200 on the surface.
  • start the recovery device 210 for example, a hoisting mechanism
  • the target position can be understood as a position where the recovery device 210 can clamp and fix the cable 140 .
  • the autonomous underwater vehicle 100 of the present application includes a main body 110 and an unmanned aerial vehicle 130, the main body 110 is provided with an installation cabin 120, and the installation cabin 120 has a hatch; the unmanned aerial vehicle 130 is placed in the installation cabin Inside 120, the drone 130 is connected to the installation cabin 120 through a cable 140, and the drone 130 can fly away from the installation cabin 120 after the hatch door is opened.
  • the positioning of the autonomous underwater vehicle 100 is easier and more accurate, thereby improving the recovery success rate and efficiency of the autonomous underwater vehicle 100 .
  • the autonomous underwater vehicle 100 further includes a winding device (not shown), the winding device is fixed on the body 110, and one end of the cable 140 is wound around the On the winding device, the other end is connected to the drone 130 .
  • the winding device may be a winding reel, a winding post, a winding frame and the like.
  • the cable 140 can choose a light-weight and high-strength cable, such as a Kevlar cable.
  • the Kevlar cable is a new type of high-strength cable 140 woven with Kevlar fiber from DuPont, and is widely used. It is used in special fields such as military fire protection, safety protection, marine engineering and so on.
  • the diameter of the cable 140 is 3 mm ⁇ 10 mm, for example, the diameter of the cable 140 may be 4 mm, 5 mm, 6 mm, or the like.
  • the tensile force of the cable 140 can reach 600Kg.
  • the mass of the commonly used autonomous underwater vehicle 100 is less than 100Kg, so the strength of the cable 140 is sufficient to support all the weight of the autonomous underwater vehicle 100 .
  • the autonomous underwater vehicle 100 further includes a separation mechanism, the separation mechanism is provided on the UAV 130 , and the cable 140 is connected to one end of the UAV 130 the separation mechanism.
  • the separation mechanism can separate the drone 130 from the cable 140 .
  • the cable 140 can be recovered by the recovery device of the surface recovery boat 200 .
  • 210 is connected and fixed (as shown in FIG. 4 ), and the cable 140 is tightened by the recovery device 210 , so as to pull the autonomous underwater vehicle 100 onto the surface recovery boat 200 .
  • the separation mechanism may be, but is not limited to, an electromagnetic attraction mechanism.
  • the cable 140 When the electromagnetic attraction mechanism is powered on, the cable 140 is fixedly connected to the drone 130 , and when the electromagnetic attraction mechanism is powered off, the cable 140 is disconnected from the drone 130 . Similarly, the cable 140 can also be fixedly connected to the recovery device 210 through an electromagnetic attraction mechanism.
  • the separation mechanism may not be provided. In this way, after the drone 130 is landed on the surface recovery boat 200, the drone 130 may not be separated from the cable 140, which is not particularly limited.
  • the UAV 130 further includes a monitoring device, and the monitoring device is used for monitoring and identifying the position of the surface recovery boat 200 .
  • the position of the surface recovery boat 200 includes but is not limited to the azimuth and distance of the surface recovery boat 200 .
  • the monitoring device includes a camera and a distance sensor
  • the camera is used to identify the orientation of the surface recovery boat 200
  • the distance sensor is used to identify the distance of the surface recovery boat 200 .
  • the drone 130 can autonomously identify the surface recovery boat 200. Specifically, the drone 130 can autonomously identify the marking point of the recovery device 210 installed on the surface recovery boat 200, and land on the surface recovery boat 200 through visual guidance.
  • the autonomous underwater vehicle 100 further includes an ejection device, and the ejection device is used to eject the UAV 130 out.
  • the autonomous underwater vehicle 100 uses the water depth sensor to detect the distance information between itself and the water surface. , start the command to eject the drone 130, and eject the drone 130 into the air through the ejection device.
  • the UAV 130 is activated, and the attitude of the UAV 130 is adjusted to keep it in a flying state.
  • the drone 130 itself can also fly into the air without providing the ejection device.
  • the drone 130 can be released to float to the surface and take off over the water.
  • the structure of the installation cabin 120 may be the same as that of the cabin section 111 of the main body 110 of the autonomous underwater vehicle 100 .
  • the body 110 includes at least two cabin sections 111 , two adjacent cabin sections 111 are detachably connected, and the installation cabin 120 is detachably connected to the cabin sections 111 .
  • the installation cabin 120 It can be optionally arranged between any two adjacent compartments 111 .
  • the installation compartment 120 has an outlet to which the door is installed to open or close the outlet.
  • the hatch door may be installed at the outlet by rotating, or may be installed at the outlet by sliding.
  • the hatch door can be reset to a state where the exit is closed, the autonomous underwater vehicle 100 includes a reset part, and the reset part is connected to the hatch
  • the door and the mounting bay 120 are used to reset the bay door to close the outlet.
  • the reset member may be a spring.
  • the main underwater vehicle further includes a driving mechanism, and the driving mechanism is connected to the hatch to drive the hatch to open or close.
  • the recovery method of the autonomous underwater vehicle 100 includes the following steps:
  • Step S10 after detecting the opening instruction, control the hatch door to open;
  • Step S20 controlling the drone 130 to take off
  • Step S30 controlling the cable 140 to land on the target position of the surface recovery boat 200 .
  • the hatch door is controlled to open; after the hatch door is opened, the control station
  • the UAV 130 takes off, so that the UAV 130 flies away from the installation cabin 120 .
  • the drone 130 flies away from the installation cabin 120 , it can maintain a flying state in the air (as shown in FIG. 3 ).
  • the drone 130 recognizes the target position of the surface recovery boat 200 , it controls the cable The end of 140 close to the UAV 130 landed on the target position of the surface recovery boat 200 (as shown in FIG. 4 ).
  • the target position can be understood as a position where the recovery device 210 can clamp and fix the cable 140 .
  • the autonomous underwater vehicle 100 of the present application performs positioning and identification in the air through the unmanned aerial vehicle 130, which can cleverly avoid problems such as recovery and alignment, motion control, and weak observation positioning of the main underwater vehicle.
  • Human-machine positioning, identification, and control are used to solve the problem, which makes the positioning of the autonomous underwater vehicle 100 easier and more accurate, thereby improving the recovery success rate and efficiency of the autonomous underwater vehicle 100 .
  • the method further includes:
  • Step S40 controlling the autonomous underwater vehicle 100 to surface.
  • the autonomous underwater vehicle 100 sails to the vicinity of the surface recovery boat 200, the autonomous underwater vehicle 100 is controlled to surface after detecting the ascending command. After the autonomous underwater vehicle 100 emerges from the water, after detecting the opening command, the hatch door is controlled to open, and the drone 130 is controlled to take off, and the drone 130 can directly fly into the air .
  • the step of controlling the drone 130 to take off includes:
  • Step S21 after detecting that the drone 130 has surfaced, control the drone 130 to take off.
  • the autonomous underwater vehicle 100 may not surface, but the UAV 130 may surface.
  • the drone 130 may be surfaced under the action of its own buoyancy, or it may be ejected to the surface by an auxiliary device such as an ejection device. After detecting that the UAV 130 has surfaced, the UAV 130 is controlled to take off.
  • the drone 130 is divided into a waterproof drone 130 and a non-waterproof drone 130 .
  • the UAV 130 needs to be ejected into the air through an ejection device.
  • the autonomous underwater vehicle 100 further includes an ejection device, and the ejection device is used to eject the UAV; before the step of controlling the UAV to take off, further comprising: :
  • Step S50 after detecting the ejection instruction, control the ejection device to eject the drone 130 into the air.
  • the autonomous underwater vehicle 100 uses the water depth sensor to detect the distance information between itself and the water surface, where the distance information satisfies the ejection drone 130 distance After surface conditions, launch the ejection drone 130 command. After detecting the ejection command, the ejection device is controlled to eject the drone 130 into the air.
  • the drone 130 itself has positive buoyancy, and after being separated from the autonomous underwater vehicle 100 , it can float above the water surface by its own positive buoyancy. Therefore, for the waterproof drone 130, before the step of controlling the drone 130 to take off, it also includes:
  • Step S60 after detecting the floating command, control the UAV 130 to surface.
  • the drone 130 is controlled to be released, so that the drone 130 can surface.
  • the method further includes;
  • Step S70 after detecting the identification instruction, control the UAV 130 to identify the target position 200 of the surface recovery boat.
  • the UAV 130 After the UAV 130 flies away from the installation cabin 120 , it can maintain a flying state in the air (as shown in FIG. 3 ).
  • the unmanned aerial vehicle 130 When the unmanned aerial vehicle 130 is in a suspended flight state, the unmanned aerial vehicle 130 is controlled to identify the target position of the surface recovery boat 200 , and specifically, a marking point may be set on the target position.
  • the cable 140 After the drone 130 recognizes the target position of the recovery device 210 on the surface recovery boat 200 , the cable 140 is controlled to land on the target position of the surface recovery boat 200 .
  • the drone 130 includes a monitoring device for monitoring and identifying the location of the surface recovery craft 200 .
  • the position of the surface recovery boat 200 includes but is not limited to the azimuth and distance of the surface recovery boat 200 .
  • the monitoring device includes a camera and a distance sensor, the camera is used to identify the orientation of the surface recovery boat 200 , and the distance sensor is used to identify the distance of the surface recovery boat 200 .
  • the drone 130 can autonomously identify the surface recovery boat 200. Specifically, the drone 130 can autonomously identify the marking point of the recovery device 210 installed on the surface recovery boat 200, and land on the surface recovery boat 200 through visual guidance.
  • the step of controlling the cable 140 to land at the target position of the surface recovery craft 200 includes:
  • Step S31 controlling the drone 130 to land on the water surface recovery boat 200 , so that the cable 140 is landed on the target position of the water surface recovery boat 200 .
  • the UAV 130 after the UAV 130 recognizes the position of the recovery device 210 , the UAV 130 autonomously lands on the surface recovery boat 200 with the cable 140 .
  • a mature aerial drone is used to locate, identify, and control the cable 140 to land on the surface recovery boat 200 quickly and accurately.
  • the drone 130 with the cable 140 can also be remotely controlled to land on the surface recovery boat 200 .
  • This recovery method avoids the need for the staff to use a recovery rod in the traditional recovery method, and to precisely hook the hook on the ring of the autonomous underwater vehicle 100 on the fluctuating sea surface. Compared with the traditional manual recovery method, the recovery method effectively improves the recovery success rate and recovery efficiency.
  • the drone 130 can be separated from the cable 140 .
  • the autonomous underwater vehicle 100 further includes a separation mechanism, the separation mechanism is provided on the UAV 130, and one end of the cable 140 close to the UAV 130 is connected to the the separation mechanism; after recognizing the surface recovery boat 200, the drone 130 is controlled to land on the surface recovery boat 200, so that the cable 140 is landed on the surface recovery boat 200 After 200 steps of the target location, it also includes:
  • Step S70 after detecting the separation instruction, control the drone 130 to separate from the cable 140 .
  • the separation mechanism enables the drone 130 to be separated from the cable 140
  • the cable 140 can be connected and fixed by the recovery device 210 of the surface recovery boat 200, and the cable 140 can be tightened by the recovery device 210, thereby pulling the autonomous underwater vehicle 100 to the The target location of the surface recovery craft 200.
  • the separation mechanism may be, but is not limited to, an electromagnetic attraction mechanism. When the electromagnetic attraction mechanism is powered on, the cable 140 is fixedly connected to the drone 130 , and when the electromagnetic attraction mechanism is powered off, the cable 140 is disconnected from the drone 130 . Similarly, the cable 140 can also be fixedly connected to the recovery device 210 through an electromagnetic attraction mechanism.
  • the step of controlling the cable 140 to land at the target position of the surface recovery boat 200 includes:
  • Step S32 controlling the drone 130 to launch the cable 140 to a target position of the surface recovery boat 200 .
  • the method further includes:
  • Step S80 controlling the recovery device 210 (hoisting mechanism) of the surface recovery boat 200 to start, and tightening the cable 140 to recover the autonomous underwater vehicle 100 into the recovery device 210 .
  • the recovery device 210 is activated, the cable 140 is clamped and fixed by the recovery device 210, and all the cables are tightened.
  • the cable 140 is used to pull the autonomous underwater vehicle 100 back onto the surface recovery boat 200 .
  • a guide member may be provided on the surface recovery boat 200 through which the autonomous underwater vehicle 100 can pass.
  • the guide member moves to the target position of the recovery device 210 .
  • the installation cabin 120 can be replaced to prepare for the next deployment and recovery.
  • the recovery method of the autonomous underwater vehicle of the present application can be applied to the recovery of AUVs by an unmanned surface vessel, and at the same time, the recovery method can also be applied to the manual recovery of AUVs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Remote Sensing (AREA)
  • Ocean & Marine Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本申请公开一种自主式水下航行器的回收方法及自主式水下航行器,其中,所述自主式水下航行器的方法包括以下步骤:在检测到开启指令后,控制所述舱门打开;控制所述无人机起飞;控制所述线缆降落在所述水面回收艇的目标位置。本申请的技术方案利用无人机在空中进行定位和识别,提高了自主式水下航行器的回收成功率和效率。

Description

自主式水下航行器的回收方法及自主式水下航行器
本申请要求于2020年12月23日提交中国专利局、申请号为202011544054.6、申请名称为“自主式水下航行器的回收方法及自主式水下航行器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及海洋航行器技术领域,特别涉及一种自主式水下航行器的回收方法及自主式水下航行器。
背景技术
随着海洋资源被逐渐走入国家和人们的视线,自主式水下航行器(Autonomous Underwater Vehicle ,AUV)更多的被投入使用,目前已有很多不同种类的无人水下航行器应用到军事海洋技术、海洋科学技术考察、海底勘探、管路检修、海底打捞、油田勘探等多个工作领域。在AUV作业完成后,都需要对AUV进行回收。目前应用于深海运载器水下回收AUV的方式,主要有固定罩笼式对接、机械手捕捉等方式方法,该方法都存在对接成功率低、机械结构复杂、对接机构可调性差等缺点,严重制约了AUV布放与回收的效率。特别是当使用多个AUV来提高作业面积和作业效率时,回收效率成为了AUV应用的最大制约因素。因此,提高AUV回收成功率和效率是AUV回收这一前沿技术领域的关键。
上述内容仅用于辅助理解申请的技术方案,并不代表承认上述内容是现有技术。
技术问题
本申请的主要目的是提出一种自主式水下航行器的回收方法,旨在提高该自主式水下航行器的回收成功率和效率。
技术解决方案
为实现上述目的,本申请提出一种自主式水下航行器的回收方法,所述自主式水下航行器包括本体以及无人机,所述本体上设有安装舱,所述安装舱具有舱门;所述无人机放置于所述安装舱内,所述无人机通过线缆与所述安装舱连接,所述无人机能够在所述舱门打开时飞离所述安装舱;所述自主式水下航行器的回收方法包括以下步骤:
在检测到开启指令后,控制所述舱门打开;
控制所述无人机起飞;
控制所述线缆降落在所述水面回收艇的目标位置。
在一实施例中,所述自主式水下航行器还包括弹射装置,所述弹射装置用以将所述无人机弹射出去;所述控制所述无人机起飞的步骤之前,还包括:
在检测到弹射指令后,控制所述弹射装置将所述无人机弹射到空中。
在一实施例中,所述控制所述无人机起飞的步骤之前,还包括:
在检测到上浮指令后,控制所述无人机浮出水面。
在一实施例中,所述控制所述无人机起飞的步骤包括:
在检测到所述无人机浮出水面后,控制所述无人机起飞。
在一实施例中,所述控制所述线缆降落在所述水面回收艇的目标位置的步骤之前,还包括;
在检测到识别指令后,控制所述无人机对所述水面回收艇的目标位置进行识别。
在一实施例中,所述控制所述线缆降落在所述水面回收艇的目标位置的步骤包括:
控制所述无人机降落在所述水面回收艇上,以使所述线缆降落在所述水面回收艇的目标位置。
在一实施例中,所述自主式水下航行器还包括分离机构,所述分离机构设于所述无人机上,所述线缆靠近所述无人机的一端连接所述分离机构;所述控制所述无人机降落在所述水面回收艇上,以使所述线缆降落在所述水面回收艇的目标位置的步骤之后,还包括:
在检测到分离指令后,控制所述无人机与所述线缆分离。
在一实施例中,所述控制所述线缆降落在所述水面回收艇的目标位置的步骤包括:
控制所述无人机将所述线缆发射到所述水面回收艇的目标位置。
在一实施例中,所述控制所述线缆降落在所述水面回收艇的目标位置的步骤之后,还包括:
在检测到回收指令后,控制所述水面回收艇的回收装置启动,收紧所述线缆,以将所述自主式水下航行器回收至所述水面回收艇上。
本申请提出一种自主式水下航行器,包括:
本体,所述本体上设有安装舱,所述安装舱具有舱门;以及
无人机,所述无人机放置于所述安装舱内,所述无人机通过线缆与所述安装舱连接,所述无人机能够在所述舱门打开后飞离所述安装舱。
在一实施例中,所述自主式水下航行器还包括绕线装置,所述绕线装置固定于所述本体上,所述线缆的一端卷绕在所述绕线装置上,另一端连接所述无人机。
在一实施例中,所述安装舱与所述本体可拆卸连接。
在一实施例中,所述本体包括至少两个舱段,相邻的两个所述舱段可拆卸连接,所述安装舱与所述舱段可拆卸连接。
在一实施例中,所述安装舱设于所述本体的头部。
有益效果
本申请自主式水下航行器包括本体以及无人机,所述本体上设有安装舱,所述安装舱具有舱门;所述无人机放置于所述安装舱内,所述无人机通过线缆与所述安装舱连接,所述无人机能够在所述舱门打开时飞离所述安装舱。如此,通过无人机在空中进行定位和识别,使得自主式水下航行器的定位更加容易且更加准确,从而提高了该自主式水下航行器的回收成功率和效率。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本申请自主式水下航行器一实施例的结构示意图;
图2为本申请自主式水下航行器处于第一使用状态的示意图;
图3为本申请自主式水下航行器处于第二使用状态的示意图;
图4为本申请自主式水下航行器处于第三使用状态的示意图。
附图标号说明:
标号 名称 标号 名称
100 自主式水下航行器 130 无人机
110 本体 140 线缆
111 舱段 200 水面回收艇
120 安装舱 210 回收装置
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
本发明的实施方式
需要说明,若本申请实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,全文中出现的“和/或”的含义为,包括三个并列的方案,以“A和/或B”为例,包括A方案,或B方案,或A和B同时满足的方案。
本申请提出一种自主式水下航行器的回收方法。
目前,自主式水下航行器(AUV)的回收存在定位难、回收失败以及回收耗费的时间过长的问题,更无法应用于无人系统回收。本申请通过在自主式水下航行器上加装一段装有小型无人机的舱段(安装舱),在靠近水面回收艇或者回收船时,通过AUV的无人机舱段释放出无人机,该无人机固定一个线缆,线缆的另一端固定在AUV上,被释放的无人机能够自主飞行和识别水面回收艇或者回收船,自主靠近并识别水面回收艇或船上的目标位置后降落,降落后无人机端固定的线缆被固定在回收装置上,回收装置通过收缩线缆,将AUV拉进回收装置中,便安全可靠的安置在水面回收艇或者回收船上。
请参阅图1至图4,本申请的自主式水下航行器100包括本体110及无人机130。所述本体110上设有安装舱120,所述安装舱120具有舱门(图未示)。所述无人机130放置于所述安装舱120内,所述无人机130通过线缆140与所述安装舱120连接,所述无人机130能够在所述舱门打开后飞离所述安装舱120。
在本申请实施例中,自主式水下航行器100具有安装舱120,所述安装舱120用于放置无人机130。其中,所述安装舱120可设于所述本体110的头部、尾部或者中间位置,不做具体限定。所述安装舱120可以是一体成型地设置在所述本体110上,当然,为了方便拆装,所述安装舱120也可以与所述本体110为分体设置,例如,可拆卸地安装在所述本体110上。无人机130放置于所述安装舱120内,通常安装舱120的舱门处于关闭状态,从而可以避免无人机130浸泡在水中。在本实施例中,无人机130具有一定的防水性能和抗风等级。无人机130的抗风等级常规下一般是五级风,对应的浪高大约是2.5米,海况为4~5级海况,满足绝大多数的海况使用情况。
在自主式水下航行器100航行到水面回收艇200附近后(如图2所示),可将舱门打开,使无人机130飞离所述安装舱120。在无人机130飞离所述安装舱120后,可以在空中保持悬空飞行状态(如图3所示),在无人机130识别到水面回收艇200的目标位置后,控制线缆140降落在水面回收艇200的目标位置。之后,启动水面回收艇200上的回收装置210(例如卷扬机构),通过收紧线缆140,将自主式水下航行器100拉至水面回收艇200上,完成对自主式水下航行器100的回收。这里,目标位置可以理解为回收装置210能够将线缆140卡住固定的位置。
本申请自主式水下航行器100包括本体110以及无人机130,所述本体110上设有安装舱120,所述安装舱120具有舱门;所述无人机130放置于所述安装舱120内,所述无人机130通过线缆140与所述安装舱120连接,所述无人机130能够在所述舱门打开后飞离所述安装舱120。如此,通过无人机130在空中进行定位和识别,使得自主式水下航行器100的定位更加容易且更加准确,从而提高了该自主式水下航行器100的回收成功率和效率。
在一实施例中,所述自主式水下航行器100还包括绕线装置(图未示),所述绕线装置固定于所述本体110上,所述线缆140的一端卷绕在所述绕线装置上,另一端连接所述无人机130。
具体而言,所述绕线装置可以是绕线盘、绕线柱、绕线架等等。线缆140可选择质量轻、强度高的拉绳,例如凯夫拉绳,凯夫拉绳是采用美国杜邦公司的凯夫拉纤维编织而成的一种新型强拉力线缆140,被广泛应用于军工消防、安全防护、海洋工程等特殊领域。所述线缆140的直径为3mm~10mm,例如所述线缆140的直径可以为4mm、5mm、6mm等。以所述线缆140的直径为4mm为例,该线缆140的拉力可达600Kg。一般常用的自主式水下航行器100质量小于100Kg,所以该线缆140的强度足以支撑自主式水下航行器100的所有重量。
在另一实施例中,所述自主式水下航行器100还包括分离机构,所述分离机构设于所述无人机130上,所述线缆140靠近所述无人机130的一端连接所述分离机构。在无人机130降落到水面回收艇200上后,所述分离机构可使所述无人机130与所述线缆140分离,此时,所述线缆140可由水面回收艇200的回收装置210连接固定(如图4所示),并通过所述回收装置210对线缆140进行收紧,从而将所述自主式水下航行器100拉至水面回收艇200上。在该实施例中,所述分离机构可以是但并不限于电磁吸合机构。当电磁吸合机构通电时,所述线缆140与所述无人机130固定连接,当电磁吸合机构断电时,所述线缆140与所述无人机130断开连接。同样地,所述线缆140也可通过电磁吸合机构固定连接至所述回收装置210上。
可以理解的是,在其他实施例中,也可不设置所述分离机构。这样,在无人机130降落到水面回收艇200后,所述无人机130也可不与所述线缆140分离,不做特殊限定。
在上述实施例的基础上,所述无人机130还包括监测装置,所述监测装置用于监测并识别水面回收艇200的位置。其中,所述水面回收艇200的位置包括但不限于所述水面回收艇200的方位和距离。
在一实施例中,所述监测装置包括摄像头和距离传感器,所述摄像头用于识别所述水面回收艇200的方位,所述距离传感器用于识别所述水面回收艇200的距离。无人机130能够自主识别水面回收艇200,具体地,无人机130能够自主识别出安装在水面回收艇200上回收装置210的标示点,通过视觉引导方式降落在水面回收艇200上。
另外,所述自主式水下航行器100还包括弹射装置,所述弹射装置用以将所述无人机130弹射出去。在自主式水下航行器100航行到水面回收艇200的附近后,自主式水下航行器100利用水深传感器检测自身与水面的距离信息,在该距离信息满足弹射无人机130距离水面条件后,启动弹射无人机130指令,通过所述弹射装置将所述无人机130弹射到空中。之后,启动无人机130,并调整无人机130的姿态以使其保持悬空飞行状态。当然,在不设置所述弹射装置的情况下,无人机130自身也可飞至空中。例如,可将无人机130释放使其浮至水面上,并在水面上起飞。
为了将无人机130的安装舱120设计为能够更换,可以使所述安装舱120的结构与所述自主式水下航行器100本体110的舱段111结构相同。具体地,所述本体110包括至少两个舱段111,相邻的两个所述舱段111可拆卸连接,所述安装舱120与所述舱段111可拆卸连接。如此,由于所述自主式水下航行器100本体110的舱段111之间是可拆卸连接的,且所述安装舱120与所述舱段111也是可拆卸连接的,所以所述安装舱120可以选择设置在任意相邻的两个舱段111之间。
所述安装舱120具有出口,所述舱门安装于所述出口,以将所述出口打开或者关闭。其中,所述舱门安装于所述出口处的方式有多种,例如可以是转动安装于所述出口处,也可以是滑动安装于所述出口处。为了使无人机130自所述出口飞出后,所述舱门能够复位至将所述出口关闭的状态,所述自主式水下航行器100包括复位件,所述复位件连接所述舱门与所述安装舱120,用以使所述舱门复位至将所述出口关闭。具体地,所述复位件可以是弹簧。当然,为了更好地控制所述舱门打开或者关闭,所述主式水下航行器还包括驱动机构,所述驱动机构连接所述舱门,以驱动所述舱门打开或者关闭。
下面将对自主式水下航行器100的回收方法进行介绍。所述自主式水下航行器100的回收方法包括以下步骤:
步骤S10,在检测到开启指令后,控制所述舱门打开;
步骤S20,控制所述无人机130起飞;
步骤S30,控制所述线缆140降落在所述水面回收艇200的目标位置。
当所述自主式水下航行器100航行到水面回收艇200附近时(如图2所示),在检测到开启指令后,控制所述舱门打开;在所述舱门打开后,控制所述无人机130起飞,使无人机130飞离所述安装舱120。在无人机130飞离所述安装舱120后,可以在空中保持悬空飞行状态(如图3所示),在无人机130识别到水面回收艇200的目标位置后,控制所述线缆140靠近所述无人机130的一端降落在水面回收艇200的目标位置(如图4所示)。这里,目标位置可以理解为回收装置210能够将线缆140卡住固定的位置。
本申请自主式水下航行器100通过无人机130在空中进行定位和识别,能够巧妙避免水下主式水下航行器回收对准、运动控制、弱观测定位等难题,使用成熟的空中无人机定位、识别、控制来解决问题,使得自主式水下航行器100的定位更加容易且更加准确,从而提高了该自主式水下航行器100的回收成功率和效率。
在一实施例中,所述在检测到开启指令后,控制所述舱门打开的步骤之前,还包括:
步骤S40,控制所述自主式水下航行器100浮出水面。
当所述自主式水下航行器100航行到水面回收艇200附近时,在检测到上浮指令后,控制所述自主式水下航行器100浮出水面。在所述自主式水下航行器100浮出水面后,在检测到开启指令后,控制所述舱门打开,在控制所述无人机130起飞,所述无人机130能够直接飞至空中。
在另一实施例中,所述控制所述无人机130起飞的步骤包括:
步骤S21,在检测到所述无人机130浮出水面后,控制所述无人机130起飞。
在该实施例中,所述自主式水下航行器100可以不浮出水面,而使所述无人机130浮出水面。关于无人机130浮出水面的方式有多种,例如,可以是在自身浮力作用下浮出水面,也可以是通过辅助装置例如弹射装置将其弹出至水面上。在检测到所述无人机130浮出水面后,控制所述无人机130起飞。
考虑到无人机130分为防水的无人机130和不防水的无人机130。对于不防水的无人机130而言,需要通过弹射装置将该无人机130弹射到空中。在一实施例中,所述自主式水下航行器100还包括弹射装置,所述弹射装置用以将所述无人机弹射出去;所述控制所述无人机起飞的步骤之前,还包括:
步骤S50,在检测到弹射指令后,控制所述弹射装置将所述无人机130弹射到空中。
具体地,在自主式水下航行器100运行到无人回收艇200附近后,自主式水下航行器100利用水深传感器检测自身与水面的距离信息,在该距离信息满足弹射无人机130距离水面条件后,启动弹射无人机130指令。在检测到弹射指令后,控制所述弹射装置将所述无人机130弹射到空中。
对于防水的无人机130而言,该无人机130自身有正浮力,在脱离自主式水下航行器100后,能够靠自身的正浮力上浮至水面以上。所以,对于防水的无人机130而言,所述控制所述无人机130起飞的步骤之前,还包括:
步骤S60,在检测到上浮指令后,控制所述无人机130浮出水面。
具体地,在检测到上浮指令后,控制释放无人机130,以使所述无人机130浮出水面。
在一实施例中,所述在识别到水面回收艇200后,控制所述线缆140降落在所述水面回收艇200的目标位置的步骤之前,还包括;
步骤S70,在检测到识别指令后,控制所述无人机130对所述水面回收艇的目标位置200进行识别。
在无人机130飞离所述安装舱120后,可以在空中保持悬空飞行状态(如图3所示)。在无人机130保持悬空飞行状态时,控制所述无人机130对所述水面回收艇200的目标位置进行识别,具体地,该目标位置上可以设置标示点。在无人机130识别到水面回收艇200上回收装置210的目标位置后,控制所述线缆140降落在水面回收艇200的目标位置。
在一实施例中,所述无人机130包括监测装置,所述监测装置用于监测并识别水面回收艇200的位置。其中,所述水面回收艇200的位置包括但不限于所述水面回收艇200的方位和距离。所述监测装置包括摄像头和距离传感器,所述摄像头用于识别所述水面回收艇200的方位,所述距离传感器用于识别所述水面回收艇200的距离。无人机130能够自主识别水面回收艇200,具体地,无人机130能够自主识别出安装在水面回收艇200上回收装置210的标示点,通过视觉引导方式降落在水面回收艇200上。
关于控制所述线缆140降落在所述水面回收艇200的目标位置的方式也有多种。例如,在一实施例中,所述控制所述线缆140降落在所述水面回收艇200的目标位置的步骤包括:
步骤S31,控制所述无人机130降落在所述水面回收艇200上,以使所述线缆140降落在所述水面回收艇200的目标位置。
在该实施例中,所述无人机130识别到所述回收装置210的位置后,无人机130带着线缆140自主降落在所述水面回收艇200上。如此,利用成熟的空中无人机定位、识别、控制以使所述线缆140快速准确地降落在所述水面回收艇200上。可以理解地,在其他实施例中,也可通过遥控带有线缆140的无人机130降落在水面回收艇200上。该回收方法,避免了传统的回收方法中工作人员需要使用回收杆,在波动的海面上要精准的将钩子勾在自主式水下航行器100的圆环上。与传统的人工回收方法相比较,该回收方法有效提高了回收成功率和回收效率。
为了便于对线缆140进行收紧,可以使所述无人机130与线缆140发生分离。在一些实施例中,所述自主式水下航行器100还包括分离机构,所述分离机构设于所述无人机130上,所述线缆140靠近所述无人机130的一端连接所述分离机构;所述在识别到所述水面回收艇200后,所述控制所述无人机130降落在所述水面回收艇200上,以使所述线缆140降落在所述水面回收艇200的目标位置的步骤之后,还包括:
步骤S70,在检测到分离指令后,控制所述无人机130与所述线缆140分离。
在无人机130降落到水面回收艇200上,并且所述线缆140降落在所述水面回收艇200的目标位置后,所述分离机构可使所述无人机130与所述线缆140分离,此时,所述线缆140可由水面回收艇200的回收装置210连接固定,并通过所述回收装置210对线缆140进行收紧,从而将所述自主式水下航行器100拉至水面回收艇200的目标位置。在该实施例中,所述分离机构可以是但并不限于电磁吸合机构。当电磁吸合机构通电时,所述线缆140与所述无人机130固定连接,当电磁吸合机构断电时,所述线缆140与所述无人机130断开连接。同样地,所述线缆140也可通过电磁吸合机构固定连接至所述回收装置210上。
当然,在其他实施例中,所述控制所述线缆140降落在所述水面回收艇200的目标位置的步骤包括:
步骤S32,控制所述无人机130将所述线缆140发射到所述水面回收艇200的目标位置。
在上述各实施例的基础上,所述控制所述线缆140降落在所述水面回收艇200的目标位置的步骤之后,还包括:
步骤S80,控制所述水面回收艇200的回收装置210(卷扬机构)启动,收紧所述线缆140,以将所述自主式水下航行器100回收至所述回收装置210内。
在该实施例中,在所述线缆140降落在所述水面回收艇200的目标位置后,启动所述回收装置210,通过所述回收装置210将线缆140卡住固定,并收紧所述线缆140,以将所述自主式水下航行器100拉回至所述水面回收艇200上。
为了更方便地将所述自主式水下航行器100拉回至所述水面回收艇200上,可以在所述水面回收艇200上设置导向件,所述自主式水下航行器100可经由所述导向件移动至所述回收装置210的目标位置。待将所述自主式水下航行器100回收至所述回收装置210后,可更换安装舱120,做好下次的布放和回收准备工作。
本申请自主式水下航行器的回收方法可应用于无人水面艇回收AUV,同时该回收方法也可应用于人工回收AUV。
以上所述仅为本申请的可选实施例,并非因此限制本申请的专利范围,凡是在本申请的申请构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (18)

  1. 一种自主式水下航行器的回收方法,其中,所述自主式水下航行器包括本体以及无人机,所述本体上设有安装舱,所述安装舱具有舱门;所述无人机放置于所述安装舱内,所述无人机通过线缆与所述安装舱连接,所述无人机能够在所述舱门打开时飞离所述安装舱;所述自主式水下航行器的回收方法包括以下步骤:
    在检测到开启指令后,控制所述舱门打开;
    控制所述无人机起飞;
    控制所述线缆降落在所述水面回收艇的目标位置。
  2. 如权利要求1所述的自主式水下航行器的回收方法,其中,所述自主式水下航行器还包括弹射装置,所述弹射装置用以将所述无人机弹射出去;所述控制所述无人机起飞的步骤之前,还包括:
    在检测到弹射指令后,控制所述弹射装置将所述无人机弹射到空中。
  3. 如权利要求1所述的自主式水下航行器的回收方法,其中,所述控制所述无人机起飞的步骤之前,还包括:
    在检测到上浮指令后,控制所述无人机浮出水面。
  4. 如权利要求3所述的自主式水下航行器的回收方法,其中,所述控制所述无人机起飞的步骤包括:
    在检测到所述无人机浮出水面后,控制所述无人机起飞。
  5. 如权利要求1所述的自主式水下航行器的回收方法,其中,所述控制所述线缆降落在所述水面回收艇的目标位置的步骤之前,还包括;
    在检测到识别指令后,控制所述无人机对所述水面回收艇的目标位置进行识别。
  6. 如权利要求1至5中任意一项所述的自主式水下航行器的回收方法,其中,所述控制所述线缆降落在所述水面回收艇的目标位置的步骤包括:
    控制所述无人机降落在所述水面回收艇上,以使所述线缆降落在所述水面回收艇的目标位置。
  7. 如权利要6所述的自主式水下航行器的回收方法,其中,所述自主式水下航行器还包括分离机构,所述分离机构设于所述无人机上,所述线缆靠近所述无人机的一端连接所述分离机构;所述控制所述无人机降落在所述水面回收艇上,以使所述线缆降落在所述水面回收艇的目标位置的步骤之后,还包括:
    在检测到分离指令后,控制所述无人机与所述线缆分离。
  8. 如权利要求1至5中任意一项所述的自主式水下航行器的回收方法,其中,所述控制所述线缆降落在所述水面回收艇的目标位置的步骤包括:
    控制所述无人机将所述线缆发射到所述水面回收艇的目标位置。
  9. 如权利要求1至5中任意一项所述的自主式水下航行器的回收方法,其中,所述控制所述线缆降落在所述水面回收艇的目标位置的步骤之后,还包括:
    在检测到回收指令后,控制所述水面回收艇的回收装置启动,收紧所述线缆,以将所述自主式水下航行器回收至所述水面回收艇上。
  10. 如权利要求5所述的自主式水下航行器的回收方法,其中,所述无人机还包括监测装置,在检测到识别指令后,控制所述无人机对所述水面回收艇的目标位置进行识别,包括:
    通过所述监测装置监测并识别水面回收艇的目标位置,其中,所述水面回收艇的目标位置包括所述水面回收艇的目标方位和目标距离。
  11. 如权利要求10所述的自主式水下航行器的回收方法,其中,所述监测装置包括摄像头和距离传感器,通过所述摄像头识别所述水面回收艇的目标方位,通过所述距离传感器识别所述水面回收艇的目标距离。
  12. 如权利要求2所述的自主式水下航行器的回收方法,其中,所述自主式水下航行器还包括弹射装置,在自主式水下航行器航行到水面回收艇的附近后,所述自主式水下航行器利用水深传感器检测自身与水面的距离信息,在该距离信息满足弹射所述无人机距离水面条件后,启动所述弹射指令,通过所述弹射装置将所述无人机弹射到空中。
  13. 如权利要求1所述的自主式水下航行器的回收方法,其中,所述水面回收艇上设置有导向件,所述自主式水下航行器经由所述导向件移动至所述回收装置的目标位置。
  14. 一种自主式水下航行器,其中,包括:
    本体,所述本体上设有安装舱,所述安装舱具有舱门;以及
    无人机,所述无人机放置于所述安装舱内,所述无人机通过线缆与所述安装舱连接,所述无人机能够在所述舱门打开后飞离所述安装舱。
  15. 如权利要求14所述的自主式水下航行器,其中,所述自主式水下航行器还包括绕线装置,所述绕线装置固定于所述本体上,所述线缆的一端卷绕在所述绕线装置上,另一端连接所述无人机。
  16. 如权利要求14所述的自主式水下航行器,其中,所述安装舱与所述本体可拆卸连接。
  17. 如权利要求14所述的自主式水下航行器,其中,所述本体包括至少两个舱段,相邻的两个所述舱段可拆卸连接,所述安装舱与所述舱段可拆卸连接。
  18. 如权利要求14所述的自主式水下航行器,其中,所述安装舱设于所述本体的头部。
PCT/CN2021/102743 2020-12-23 2021-06-28 自主式水下航行器的回收方法及自主式水下航行器 WO2022134517A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011544054.6 2020-12-23
CN202011544054.6A CN112591053B (zh) 2020-12-23 2020-12-23 自主式水下航行器的回收方法及自主式水下航行器

Publications (1)

Publication Number Publication Date
WO2022134517A1 true WO2022134517A1 (zh) 2022-06-30

Family

ID=75200603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/102743 WO2022134517A1 (zh) 2020-12-23 2021-06-28 自主式水下航行器的回收方法及自主式水下航行器

Country Status (2)

Country Link
CN (1) CN112591053B (zh)
WO (1) WO2022134517A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116055689A (zh) * 2023-03-29 2023-05-02 中国人民解放军军事科学院国防科技创新研究院 一种水下大型潜航器水面观测系统及观测方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112591053B (zh) * 2020-12-23 2022-04-01 鹏城实验室 自主式水下航行器的回收方法及自主式水下航行器
CN113031632B (zh) * 2021-03-15 2022-09-20 王曰英 一种适用于潜航器水面回收的控制系统及其控制方法
CN113086137A (zh) * 2021-04-14 2021-07-09 鹏城实验室 一种auv水面自主回收系统及回收方法
CN113148019B (zh) * 2021-05-13 2022-05-06 鹏城实验室 一种水面自主回收自主水下机器人的回收系统及回收方法
CN114275106B (zh) * 2021-12-21 2022-12-09 上海交通大学 海空水下一体化自供给检测装置及其检测方法
CN114313170A (zh) * 2021-12-30 2022-04-12 中国特种飞行器研究所 一种固定翼无人机水下预置使用方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017024630A (ja) * 2015-07-24 2017-02-02 株式会社Ihi 水中無人機の回収装置及び回収方法
CN107848613A (zh) * 2016-03-29 2018-03-27 韩国海洋科学技术院 无人艇回收用连接装置及使用其的连接控制方法
CN108622344A (zh) * 2018-04-19 2018-10-09 广东容祺智能科技有限公司 一种潜艇无人机及其无人机的释放方法
CN110001879A (zh) * 2019-04-10 2019-07-12 上海大学 一种无人机协助回收无人艇系统
CN112061354A (zh) * 2020-08-24 2020-12-11 西北工业大学 可搭载和回收无人机的自主水下航行器及无人机回收方法
CN112591053A (zh) * 2020-12-23 2021-04-02 鹏城实验室 自主式水下航行器的回收方法及自主式水下航行器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6595900B2 (ja) * 2015-12-22 2019-10-23 川崎重工業株式会社 自律型無人潜水機
NO20190136A1 (en) * 2019-02-01 2020-08-03 Birdview As System and method for underwater surveillance
CN111547208A (zh) * 2020-06-18 2020-08-18 张学锋 一种基于无人机的水下航行器打捞回收装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017024630A (ja) * 2015-07-24 2017-02-02 株式会社Ihi 水中無人機の回収装置及び回収方法
CN107848613A (zh) * 2016-03-29 2018-03-27 韩国海洋科学技术院 无人艇回收用连接装置及使用其的连接控制方法
CN108622344A (zh) * 2018-04-19 2018-10-09 广东容祺智能科技有限公司 一种潜艇无人机及其无人机的释放方法
CN110001879A (zh) * 2019-04-10 2019-07-12 上海大学 一种无人机协助回收无人艇系统
CN112061354A (zh) * 2020-08-24 2020-12-11 西北工业大学 可搭载和回收无人机的自主水下航行器及无人机回收方法
CN112591053A (zh) * 2020-12-23 2021-04-02 鹏城实验室 自主式水下航行器的回收方法及自主式水下航行器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116055689A (zh) * 2023-03-29 2023-05-02 中国人民解放军军事科学院国防科技创新研究院 一种水下大型潜航器水面观测系统及观测方法
CN116055689B (zh) * 2023-03-29 2023-06-06 中国人民解放军军事科学院国防科技创新研究院 一种水下大型潜航器水面观测系统及观测方法

Also Published As

Publication number Publication date
CN112591053B (zh) 2022-04-01
CN112591053A (zh) 2021-04-02

Similar Documents

Publication Publication Date Title
WO2022134517A1 (zh) 自主式水下航行器的回收方法及自主式水下航行器
US11319041B2 (en) Recovery device and recovery method of unmanned underwater vehicles
CN111776148B (zh) 一种基于小型无人艇的海空潜一体化巡检系统
US7806366B2 (en) Systems and methods for capturing and controlling post-recovery motion of unmanned aircraft
US8028952B2 (en) System for shipboard launch and recovery of unmanned aerial vehicle (UAV) aircraft and method therefor
US7264204B1 (en) Unmanned aerial vehicle catcher
JP6595900B2 (ja) 自律型無人潜水機
EP3835834A1 (en) Sensor node
KR20100032894A (ko) 2차 수중 운송 수단을 릴리스 및 회수하기 위한 장치를 구비한 잠수함
CN212022927U (zh) 一种应用于无人船的潜航器回收装置
EP3436337B1 (de) System und verfahren zur navigation eines autonom navigierenden tauchkörpers beim einfahren in eine fangstation
EP3680181A1 (en) Cable-assisted point take-off and landing of unmanned flying objects
CN114275106B (zh) 海空水下一体化自供给检测装置及其检测方法
JP6593771B2 (ja) 水中無人機の回収装置及び回収方法
JP2018526263A (ja) 無人船回収用結合装置及びこれを利用した結合制御方法
CN107914893A (zh) 一种舰载系留伞翼无人机
CN113044172A (zh) 一种蜂窝状的auv集群布放回收系统
CN113086137A (zh) 一种auv水面自主回收系统及回收方法
CN110683000B (zh) 一种自主限位和收放海洋航行器的系统
DE102016210128A1 (de) Bergevorrichtung und zugehöriges Verfahren
CN112722221B (zh) 水下航行器
CN112278198A (zh) 一种用于水下救援的无人艇
CN113148019B (zh) 一种水面自主回收自主水下机器人的回收系统及回收方法
CN108545148A (zh) 一种载人潜水器回收装置及应急回收载人潜水器的方法
Zheng et al. An automated launch and recovery system for USVs based on the pneumatic ejection mechanism

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21908522

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21908522

Country of ref document: EP

Kind code of ref document: A1