WO2022134448A1 - 一种基于炉内催化氧化的有机固废自维持阴燃处置方法 - Google Patents

一种基于炉内催化氧化的有机固废自维持阴燃处置方法 Download PDF

Info

Publication number
WO2022134448A1
WO2022134448A1 PCT/CN2021/095376 CN2021095376W WO2022134448A1 WO 2022134448 A1 WO2022134448 A1 WO 2022134448A1 CN 2021095376 W CN2021095376 W CN 2021095376W WO 2022134448 A1 WO2022134448 A1 WO 2022134448A1
Authority
WO
WIPO (PCT)
Prior art keywords
smoldering
solid waste
organic solid
furnace
catalyst
Prior art date
Application number
PCT/CN2021/095376
Other languages
English (en)
French (fr)
Inventor
乔瑜
冯超
黄经春
高翔鹏
徐明厚
Original Assignee
华中科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华中科技大学 filed Critical 华中科技大学
Publication of WO2022134448A1 publication Critical patent/WO2022134448A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/027Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • F23G5/442Waste feed arrangements
    • F23G5/444Waste feed arrangements for solid waste
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/50Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • F23G7/07Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases in which combustion takes place in the presence of catalytic material

Definitions

  • the invention belongs to the field of solid waste disposal, and more particularly relates to a self-sustaining smoldering disposal method for organic solid waste based on catalytic oxidation in a furnace.
  • Organic solid waste includes organic solid waste with high water content and low calorific value, such as kitchen waste, oil field sludge, municipal sludge, river sludge, oily soil, biogas residue, etc.
  • kitchen waste oil field sludge
  • municipal sludge municipal sludge
  • river sludge oily soil
  • biogas residue etc.
  • the disposal of traditional organic solid waste mainly relies on incinerator incineration.
  • organic solid wastes with high water content and low calorific value do not have the conditions for direct incineration and disposal in traditional incinerators due to their own characteristics.
  • Smoldering treatment is a new type of organic solid waste heat treatment technology, and its special principle is especially for organic solid waste with high water content and low calorific value.
  • the smoldering treatment process relies on porous media materials (usually sand) as auxiliary ingredients to fully mix with organic solid wastes with high water content and low calorific value, thereby indirectly increasing the specific surface area of the organic components involved in the reaction and improving the transmission path of oxygen in the organic components. And provide heat storage function in the process, so that the limited heat released by the combustion reaction can be fully utilized.
  • smoldering treatment makes it possible to directly incinerate organic solid waste with high water content and low calorific value.
  • the disposal process does not require a large amount of external heat energy or the addition of fuel, which greatly reduces the energy consumption of the process.
  • the current smoldering technology has the characteristics of combustion in the lower part of the process, pyrolysis in the upper part, and continuous transfer from the bottom to the top, resulting in a high composition of combustible gas such as carbon monoxide in the exhaust gas, which needs to be purified and discharged into the atmosphere.
  • the current catalytic oxidation flue gas treatment technology mainly uses temperature rise or residual flue gas temperature to catalyze the oxidation of the combustible flue gas components in the waste after the flue gas is discharged from the furnace body, and then achieves the purpose of purification.
  • the flue gas temperature is low ( ⁇ 80°C) and the humidity is high (about 80% to 90%), which improves the technical difficulty of flue gas purification in the smoldering treatment process in the prior art, and improves the overall complexity and realization of the process system. cost.
  • the present invention provides a self-sustaining smoldering treatment method for organic solid waste based on catalytic oxidation in a furnace, the purpose of which is to organically combine the catalytic oxidation technology with the smoldering technology to improve
  • the smoldering treatment reaction process improves the further oxidation of combustible gas components in the self-reaction process, reduces the emission of flue gas pollution, and optimizes the smoldering organic solid waste treatment process.
  • the present invention proposes a self-sustaining smoldering treatment method for organic solid waste based on catalytic oxidation in a furnace, comprising the following steps:
  • the mixture of organic solid waste, porous media material and catalyst is used as the packed bed material in the smoldering furnace, and then heating is started, and air is introduced into the smoldering furnace to make the organic solid waste mixed in the porous media material smoldering.
  • the unburned flue gas produced by the smoldering reaction passes through the pyrolysis reaction layer above the smoldering reaction surface, it continues to oxidize with the remaining oxygen under the action of the catalyst, thereby reducing the exhaust gas content of the smoldering reaction and completing the organic reaction. Smoldering disposal of solid waste.
  • the mass ratio of the porous medium material, the organic solid waste and the catalyst in the mixture is 33.3-81.4:14.3-20:4.1-51.4.
  • the temperature of the pyrolysis reaction layer is 300°C to 500°C.
  • the Darcy flow rate of the air introduced into the smoldering furnace is 3 cm/s to 5 cm/s.
  • the catalyst is a platinum supported catalyst, a ceria supported catalyst, a zirconia supported catalyst, a manganese cobalt catalyst or a copper dichromate catalyst.
  • the catalyst is a manganese-cobalt catalyst supported on diatomaceous earth or alumina particles.
  • the particle size of the catalyst is 0.5 mm to 2 mm.
  • the porous medium material is quasi-spherical particles with a particle size of 0.5 mm to 1.2 mm.
  • the moisture content of the organic solid waste is not less than 80%.
  • the present invention is aimed at the organic solid waste with high water content and low calorific value, combines the smoldering treatment process with the catalytic oxidation technology, and replaces part of the porous medium material with the catalyst as the mixed packed bed material component in the smoldering furnace, so that the smoldering reaction surface is produced.
  • the unburned flue gas continues to undergo oxidation reaction with the remaining oxygen when passing through the pyrolysis reaction bed above the smoldering reaction surface, so as to reduce the concentration of the unburned flue gas finally discharged, so as to realize the optimization of the traditional smoldering treatment process , reducing the need for flue gas purification.
  • the smoldering treatment process there are three processes of particle size smoldering, pyrolysis, and drying from bottom to top in the reactor.
  • the smoldering and pyrolysis processes will inevitably produce carbon monoxide, alkanes, olefins,
  • the temperature of the pyrolysis bed is controlled at the same time, which can assist the above gases to further conduct sufficient oxidation reaction with the remaining oxygen in the flue gas in the pyrolysis bed.
  • the present invention makes the organic solid waste fully react by regulating the ratio of the packed bed material and the flow rate of air Darcy; Flue gas (such as carbon monoxide, methane, and other gaseous small-molecule organic compounds) is treated to avoid affecting the smoldering process.
  • Flue gas such as carbon monoxide, methane, and other gaseous small-molecule organic compounds
  • the use of catalysts can improve the propagation rate of the smoldering reaction surface under the same smoldering treatment conditions. So as to achieve the process optimization of the smoldering disposal process.
  • FIG. 1 is a schematic diagram of an organic solid waste self-sustaining smoldering treatment method based on catalytic oxidation in a furnace according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of the structure and working process of a typical smoldering furnace according to an embodiment of the present invention.
  • the smoldering treatment method provided by the embodiment of the present invention is performed based on a typical smoldering furnace, as shown in FIG. 2 , wherein, from bottom to top, it is divided into DE section air distribution device, CD section coarse sand filler, BC section heating device, AB section Mixed material reaction section, when working, the packed bed material is placed in the mixed material reaction section, air is introduced from the lower end, so that the organic solid waste in the packed bed material undergoes smoldering reaction, so as to treat it, but it is discharged in the flue gas.
  • Combustible gases such as carbon monoxide have high components and need to be purified and discharged into the atmosphere.
  • the embodiment of the present invention provides a self-sustaining smoldering treatment method for organic solid waste based on catalytic oxidation in a furnace. As shown in Figure 1, it includes the following steps:
  • Part of the porous media material is replaced by the catalyst as the mixed packed bed material in the smoldering furnace, that is, the organic solid waste, the porous media material and the catalyst are mixed and uniformly stirred, and the mixture is used as the packed bed material in the smoldering furnace; then heating The device starts heating.
  • the temperature of the bottom layer of the packed bed material reaches 250°C ⁇ 300°C
  • the air is introduced into the smoldering furnace. After the air is supplied for 10min ⁇ 30min, the heating is turned off, and the air supply is continued until the disposal of all the packed bed materials in the furnace is completed.
  • the smoldering furnace goes through three processes: smoldering, pyrolysis, and drying from bottom to top.
  • the organic solid waste smoldering and pyrolysis process will inevitably produce carbon monoxide, Alkanes, alkenes, alkynes and small molecular organic gas compounds, and after adding a catalyst, the unburned flue gas generated by the smoldering reaction can assist the above unburned flue gas when it passes through the pyrolysis reaction layer above the smoldering reaction surface.
  • the pyrolysis reaction layer of the gas at 300°C ⁇ 500°C further conducts oxidation reaction with the remaining oxygen in the flue gas (oxygen content is 12% ⁇ 19%), thereby reducing the waste gas content of smoldering reaction and completing the smoldering of organic solid waste dispose of.
  • the Darcy flow rate of the air introduced into the smoldering furnace is 3cm/s ⁇ 5cm/s.
  • the mass ratio of porous medium material, organic solid waste and catalyst in the mixture is 33.3-81.4:14.3-20:4.1-51.4, and a comprehensive evaluation needs to be made in combination with disposal requirements and economic costs in the actual use process.
  • the catalyst is a platinum-supported catalyst, a ceria-supported catalyst, a zirconia-supported catalyst, a manganese-cobalt catalyst or a copper dichromate catalyst, more preferably a manganese-cobalt catalyst supported on diatomite or alumina particles.
  • the particle size of the catalyst is 0.5 mm to 2 mm;
  • the porous medium material is spherical, quasi-spherical or cubic particles with a particle size of less than 2 mm, more preferably quasi-spherical particles of 0.5 mm to 1.2 mm.
  • the concentration of carbon monoxide in the flue gas can be reduced by about 78%, and the smoldering reaction rate can be increased by about 18%.
  • the municipal sludge with a moisture content of 80% was disposed of by a smoldering device, and the sludge, sand, and manganese-cobalt catalyst (particle size: 0.5 mm to 1 mm) supported on diatomite or alumina particles were treated at 14.3%, 81.4%, 4.3%
  • the mixing ratio of % is uniformly mixed by physical stirring. After mixing, it is sent to the smoldering reaction device through the feeder, and then the heating is turned on. When the temperature of the bottom mixed material reaches 280 °C, the air supply starts.
  • the air flow rate in the furnace is 4.5 cm/s, the heating is turned off after about 10 minutes of air supply, and the air supply is continued until the disposal of all the filling materials in the furnace is completed, that is, the temperature of the uppermost layer of the filling materials in the furnace reaches above 350 °C.
  • concentration of carbon monoxide in the flue gas can be reduced by about 65%, and the smoldering reaction rate can be increased by about 13%.
  • the air supply starts, and the Darcy flow rate of the air in the furnace is 3.0cm/s , Turn off the heating after supplying air for about 30 minutes, and continue to supply air until all the filling materials in the furnace are disposed of, that is, the temperature of the uppermost layer of the filling materials in the furnace reaches above 350°C.
  • the concentration of carbon monoxide in the flue gas can be reduced by about 76%, and the smoldering reaction rate can be increased by about 15%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

一种基于炉内催化氧化的有机固废自维持阴燃处置方法,包括如下步骤:将有机固废、多孔介质材料和催化剂的混合物作为阴燃炉内的填充床料,然后开始加热,并向阴燃炉内通入空气,使混合在多孔介质材料中的有机固废发生阴燃反应,阴燃反应产生的未燃尽烟气在通过阴燃反应面之上的热解反应层时,在催化剂作用下继续与剩余氧气发生氧化反应,从而降低阴燃反应的废气含量,完成有机固废的阴燃处置。该方法将催化氧化技术与阴燃技术有机结合,在改善阴燃处置反应过程的同时提高了自反应过程可燃气组分的进一步氧化,降低烟气污染排放。

Description

一种基于炉内催化氧化的有机固废自维持阴燃处置方法 【技术领域】
本发明属于固废处置领域,更具体地,涉及一种基于炉内催化氧化的有机固废自维持阴燃处置方法。
【背景技术】
有机固废中包括高含水低热值有机固废一类,如厨余垃圾、油田污泥、市政污泥、河道污泥、油污土壤、沼渣等。当前,传统有机固废如生活垃圾处置主要依靠焚烧炉焚烧。然而,高含水低热值一类有机固废由于自身特性不具备其在传统焚烧炉中直接焚烧处置的条件,焚烧处置工艺往往燃烧困难,或需通过添加高热值燃料提升燃烧温度,增加工艺成本。
阴燃处置是一种新型有机固废热处置技术,其特殊原理尤其针对高含水低热值有机固废。阴燃处置工艺依托多孔介质材料(通常为沙子)作为辅助配料与高含水低热值有机固废进行充分混合,从而间接提升有机组分参与反应的比表面积、改善氧气在有机组分中传输路径,并在工艺过程中提供蓄热功能,使燃烧反应所释放的有限热量得到充分利用。相较于传统燃烧工艺,阴燃处置使高含水低热值有机固废的直接焚烧处置成为可能,其处置过程无需大量外界热能或燃料的添加,极大的降低了工艺能耗。
然而,目前的阴燃技术由于其自身工艺下部燃烧、上部热解、自下至上持续传递的特点,导致其排放烟气中一氧化碳等可燃气体组分较高,需净化后排放到大气中。同时,目前的催化氧化烟气处理技术主要在烟气排出炉体后利用升温或烟气余温对废弃中的可燃烟气组分进行催化氧化,继而达到净化的目的,然而由于阴燃处置技术烟气温度较低(<80℃)、湿度较大(约80%~90%),提高了现有技术对阴燃处置过程烟气净化的技术难度,提升了工艺系统的整体复杂程度和实现成本。
【发明内容】
针对现有技术的以上缺陷或改进需求,本发明提供了一种基于炉内催化氧化的有机固废自维持阴燃处置方法,其目的在于,将催化氧化技术与阴燃技术有机结合,在改善阴燃处置反应过程的同时提高了自反应过程可燃气组分的进一步氧化,降低烟气污染排放,优化阴燃有机固废处置工艺。
为实现上述目的,本发明提出了一种基于炉内催化氧化的有机固废自维持阴燃处置方法,包括如下步骤:
将有机固废、多孔介质材料和催化剂的混合物作为阴燃炉内的填充床料,然后开始加热,并向阴燃炉内通入空气,使混合在多孔介质材料中的有机固废发生阴燃反应,阴燃反应产生的未燃尽烟气在通过阴燃反应面之上的热解反应层时,在催化剂作用下继续与剩余氧气发生氧化反应,从而降低阴燃反应的废气含量,完成有机固废的阴燃处置。
作为进一步优选的,所述混合物中多孔介质材料、有机固废和催化剂的质量份数比为33.3~81.4:14.3~20:4.1~51.4。
作为进一步优选的,未燃尽烟气在催化剂作用下继续与剩余氧气发生氧化反应时,热解反应层温度为300℃~500℃。
作为进一步优选的,开始加热后,当填充床料底层温度达250℃~300℃时,开始向阴燃炉内通入空气。
作为进一步优选的,向阴燃炉内通入空气的达西流速为3cm/s~5cm/s。
作为进一步优选的,所述催化剂为铂负载催化剂、氧化铈负载催化剂、氧化锆负载催化剂、锰钴催化剂或重铬酸铜催化剂。
作为进一步优选的,所述催化剂为负载在硅藻土或氧化铝颗粒上的锰钴催化剂。
作为进一步优选的,所述催化剂的粒径为0.5mm~2mm。
作为进一步优选的,所述多孔介质材料为粒径0.5mm~1.2mm的类球形颗粒。
作为进一步优选的,所述有机固废的含水率不小于80%。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,主要具备以下的技术优点:
1.本发明针对高含水低热值有机固废,将阴燃处置工艺与催化氧化技术结合,由催化剂代替部分多孔介质材料作为阴燃炉内的混合填充床料组分,使阴燃反应面产生的未燃尽烟气在通过阴燃反应面之上的热解反应床层时继续与剩余氧气发生氧化反应,以降低最终排放的未燃尽烟气浓度,从而实现传统阴燃处置工艺的优化,降低烟气净化需求。
2.阴燃处置过程反应器内自下而上粒径阴燃、热解、干化三个过程,其中阴燃和热解过程在该工艺条件下会不可避免的产生一氧化碳、烷烃、烯烃、炔烃以及小分子有机气体化合物,本发明添加催化剂后,同时控制热解床层温度,可辅助以上气体在热解床层进一步与烟气中的剩余氧气进行充分的氧化反应。
3.本发明通过调控填充床料比例及空气达西流速,使有机固废充分反应;并选择负载锰钴的基于硅藻土或氧化铝颗粒的催化剂,可针对阴燃反应产生的未燃尽烟气(如一氧化碳、甲烷以及其他气体小分子有机化合物)进行处理,避免对阴燃过程造成影响,同时催化剂的使用可在相同的阴燃处置工况下实现阴燃反应面传播速率的提升,从而达到阴燃处置过程的工艺优化。
【附图说明】
图1为本发明实施例基于炉内催化氧化的有机固废自维持阴燃处置方法示意图;
图2为本发明实施例典型阴燃炉结构及工作过程示意图。
【具体实施方式】
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体 实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
本发明实施例提供的阴燃处置方法基于典型阴燃炉进行,如图2所示,其中,由下至上分为DE段布风装置、CD段粗沙粒填料、BC段加热装置、AB段混合料反应段,工作时,填充床料置于混合料反应段,空气自下端通入,使填充床料中的有机固废发生阴燃反应,从而对其进行处理,但其排放烟气中一氧化碳等可燃气体组分较高,需净化后排放到大气中。
为解决此问题,本发明实施例提供的一种基于炉内催化氧化的有机固废自维持阴燃处置方法,该有机固废指含水率不小于80%的高含水低热值有机固废,如图1所示,包括如下步骤:
由催化剂代替部分多孔介质材料作为阴燃炉内的混合填充床料组分,即将有机固废、多孔介质材料和催化剂混合并均匀搅拌,以该混合物作为阴燃炉内的填充床料;然后加热装置开始加热,当填充床料底层温度达250℃~300℃时,开始向阴燃炉内通入空气,供风10min~30min后关闭加热,并持续供风直到炉内所有填充床料处置结束。
在这一处置过程中,阴燃炉内自下而上历经阴燃、热解、干化三个过程,其中有机固废阴燃和热解过程在该工艺条件下会不可避免的产生一氧化碳、烷烃、烯烃、炔烃以及小分子有机气体化合物,而添加催化剂后,阴燃反应产生的未燃尽烟气在通过阴燃反应面之上的热解反应层时,可辅助以上未燃尽烟气在300℃~500℃的热解反应层进一步与烟气中的剩余氧气(氧气含量为12%~19%)进行氧化反应,从而降低阴燃反应的废气含量,完成有机固废的阴燃处置。
进一步的,向阴燃炉内通入空气的达西流速为3cm/s~5cm/s。
进一步的,所述混合物中多孔介质材料、有机固废和催化剂的质量份数比为33.3~81.4:14.3~20:4.1~51.4,实际使用过程中需结合处置需求 和经济成本做综合评估。
优选的,所述催化剂为铂负载催化剂、氧化铈负载催化剂、氧化锆负载催化剂、锰钴催化剂或重铬酸铜催化剂,进一步优选为负载在硅藻土或氧化铝颗粒上的锰钴催化剂。
优选的,所述催化剂的粒径为0.5mm~2mm;所述多孔介质材料为粒径小于2mm的球形、类球形或正立方体颗粒,进一步优选为0.5mm~1.2mm的类球形颗粒。
以下为具体实施例:
实施例1
通过阴燃装置处置含水率80%的市政污泥,将污泥、沙子、铂负载催化剂(粒径1mm~2mm)以20%、76%、4%的混合比例通过物理搅拌均匀混合,混合后通过给料机送进阴燃反应装置,然后开启加热,当最底层混合物料温度达到250℃时,开始供风,炉内空气达西流速为3.5cm/s,供风约20min后关闭加热,持续供风直到炉内所有填充物料处置结束,即炉内填充物料的最上层温度达350℃以上。通过添加催化剂,烟气中一氧化碳的浓度可以降低约78%,阴燃反应速率可以提升约18%。
实施例2
通过阴燃装置处置含水率80%的市政污泥,将污泥、沙子、负载在硅藻土或氧化铝颗粒上的锰钴催化剂(粒径0.5mm~1mm)以14.3%、81.4%、4.3%的混合比例通过物理搅拌均匀混合,混合后通过给料机送进阴燃反应装置,然后开启加热,当最底层混合物料温度达到280℃时,开始供风,炉内空气达西流速为4.5cm/s,供风约10min后关闭加热,持续供风直到炉内所有填充物料处置结束,即炉内填充物料的最上层温度达350℃以上。通过添加催化剂,烟气中一氧化碳的浓度可以降低约65%,阴燃反应速率可以提升约13%。
实施例3
通过阴燃装置处置含水率90%的市政污泥,将污泥、锯末、沙子、重铬酸铜催化剂(粒径0.5mm~1.2mm)以16%、4%、60%、20%的混合比例通过物理搅拌均匀混合,混合后通过给料机送进阴燃反应装置,然后开启加热,当最底层混合物料温度达到300℃时,开始供风,炉内空气达西流速为3.0cm/s,供风约30min后关闭加热,持续供风直到炉内所有填充物料处置结束,即炉内填充物料的最上层温度达350℃以上。通过添加催化剂,烟气中一氧化碳的浓度可以降低约76%,阴燃反应速率可以提升约15%。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种基于炉内催化氧化的有机固废自维持阴燃处置方法,其特征在于,包括如下步骤:将有机固废、多孔介质材料和催化剂的混合物作为阴燃炉内的填充床料,然后开始加热,并向阴燃炉内通入空气,使混合在多孔介质材料中的有机固废发生阴燃反应,阴燃反应产生的未燃尽烟气在通过阴燃反应面之上的热解反应层时,在催化剂作用下继续与剩余氧气发生氧化反应,从而降低阴燃反应的废气含量,完成有机固废的阴燃处置。
  2. 如权利要求1所述的基于炉内催化氧化的有机固废自维持阴燃处置方法,其特征在于,所述混合物中多孔介质材料、有机固废和催化剂的质量份数比为33.3~81.4:14.3~20:4.1~51.4。
  3. 如权利要求1所述的基于炉内催化氧化的有机固废自维持阴燃处置方法,其特征在于,未燃尽烟气在催化剂作用下继续与剩余氧气发生氧化反应时,热解反应层温度为300℃~500℃。
  4. 如权利要求1所述的基于炉内催化氧化的有机固废自维持阴燃处置方法,其特征在于,开始加热后,当填充床料底层温度达250℃~300℃时,开始向阴燃炉内通入空气。
  5. 如权利要求4所述的基于炉内催化氧化的有机固废自维持阴燃处置方法,其特征在于,向阴燃炉内通入空气的达西流速为3cm/s~5cm/s。
  6. 如权利要求1所述的基于炉内催化氧化的有机固废自维持阴燃处置方法,其特征在于,所述催化剂为铂负载催化剂、氧化铈负载催化剂、氧化锆负载催化剂、锰钴催化剂或重铬酸铜催化剂。
  7. 如权利要求6所述的基于炉内催化氧化的有机固废自维持阴燃处置方法,其特征在于,所述催化剂为负载在硅藻土或氧化铝颗粒上的锰钴催化剂。
  8. 如权利要求1所述的基于炉内催化氧化的有机固废自维持阴燃处置 方法,其特征在于,所述催化剂的粒径为0.5mm~2mm。
  9. 如权利要求1所述的基于炉内催化氧化的有机固废自维持阴燃处置方法,其特征在于,所述多孔介质材料为粒径0.5mm~1.2mm的类球形颗粒。
  10. 如权利要求1-9任一项所述的基于炉内催化氧化的有机固废自维持阴燃处置方法,其特征在于,所述有机固废的含水率不小于80%。
PCT/CN2021/095376 2020-12-24 2021-05-24 一种基于炉内催化氧化的有机固废自维持阴燃处置方法 WO2022134448A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011551461.X 2020-12-24
CN202011551461.XA CN112648619B (zh) 2020-12-24 2020-12-24 一种基于炉内催化氧化的有机固废自维持阴燃处置方法

Publications (1)

Publication Number Publication Date
WO2022134448A1 true WO2022134448A1 (zh) 2022-06-30

Family

ID=75360175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/095376 WO2022134448A1 (zh) 2020-12-24 2021-05-24 一种基于炉内催化氧化的有机固废自维持阴燃处置方法

Country Status (2)

Country Link
CN (1) CN112648619B (zh)
WO (1) WO2022134448A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115820315A (zh) * 2022-09-21 2023-03-21 中南大学 低浓度有机物污染土壤阴燃的助燃材料及制备方法与应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112648619B (zh) * 2020-12-24 2022-03-18 华中科技大学 一种基于炉内催化氧化的有机固废自维持阴燃处置方法
CN117072980A (zh) * 2023-09-01 2023-11-17 北京华能长江环保科技研究院有限公司 一种可稳燃的阴燃炉

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130310624A1 (en) * 2011-05-10 2013-11-21 Chevron U.S.A. Inc Thermal treatment of a contaminated volume of material
CN103884043A (zh) * 2014-04-01 2014-06-25 山东理工大学 一种阴燃供暖装置
CN103900145A (zh) * 2014-04-01 2014-07-02 山东理工大学 一种阴燃供暖的工艺
CN109073216A (zh) * 2016-04-19 2018-12-21 吉奥森泰克咨询公司 通过阴燃燃烧产生或回收物质的方法
US20200331043A1 (en) * 2019-04-18 2020-10-22 Geosyntec Consultants, Inc. Method for Mitigating Acid Rock Drainage Potential through the Smoldering Combustion of Organic Materials
CN112097261A (zh) * 2019-06-17 2020-12-18 香港理工大学深圳研究院 有机固体废弃物阴燃处理及烟气净化的装置
CN112648619A (zh) * 2020-12-24 2021-04-13 华中科技大学 一种基于炉内催化氧化的有机固废自维持阴燃处置方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW551154U (en) * 2003-01-27 2003-09-01 Bo-Jie Liang Thermostat device
CN109642044B (zh) * 2016-07-26 2022-05-27 普瑞特全球管理有限责任公司 用于热分解轮胎和其他废物的装置和方法
CN109990301B (zh) * 2019-04-11 2024-05-10 宇恒(南京)环保装备科技有限公司 一种油类污染物负压反烧设备及回收油的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130310624A1 (en) * 2011-05-10 2013-11-21 Chevron U.S.A. Inc Thermal treatment of a contaminated volume of material
CN103884043A (zh) * 2014-04-01 2014-06-25 山东理工大学 一种阴燃供暖装置
CN103900145A (zh) * 2014-04-01 2014-07-02 山东理工大学 一种阴燃供暖的工艺
CN109073216A (zh) * 2016-04-19 2018-12-21 吉奥森泰克咨询公司 通过阴燃燃烧产生或回收物质的方法
US20200331043A1 (en) * 2019-04-18 2020-10-22 Geosyntec Consultants, Inc. Method for Mitigating Acid Rock Drainage Potential through the Smoldering Combustion of Organic Materials
CN112097261A (zh) * 2019-06-17 2020-12-18 香港理工大学深圳研究院 有机固体废弃物阴燃处理及烟气净化的装置
CN112648619A (zh) * 2020-12-24 2021-04-13 华中科技大学 一种基于炉内催化氧化的有机固废自维持阴燃处置方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115820315A (zh) * 2022-09-21 2023-03-21 中南大学 低浓度有机物污染土壤阴燃的助燃材料及制备方法与应用
CN115820315B (zh) * 2022-09-21 2024-04-19 中南大学 低浓度有机物污染土壤阴燃的助燃材料及制备方法与应用

Also Published As

Publication number Publication date
CN112648619B (zh) 2022-03-18
CN112648619A (zh) 2021-04-13

Similar Documents

Publication Publication Date Title
WO2022134448A1 (zh) 一种基于炉内催化氧化的有机固废自维持阴燃处置方法
CN104211274A (zh) 污泥减量化资源化处理装置及处理方法
CN1769397A (zh) 利用热解气化处理技术抑制垃圾尾气有害物的装置与方法
CN109679672A (zh) 一种催化热解有机固体废弃物制取气体燃料的反应系统及其方法
Xu et al. NOx emission from the combustion of mixed fuel pellets of Fenton/CaO-conditioned municipal sludge and rice husk
Zhang et al. Simultaneous NO/CO2 removal performance of biochar/limestone in calcium looping process
CN101357290A (zh) 循环使用含硫抑制剂控制烟气中二恶英排放的方法及系统
CN101955802B (zh) 固体生物质热解气化裂解炉
CN106244240A (zh) 一种垃圾、固体废物气化产生燃气的方法
CN112939397A (zh) 一种污泥碳化耦合熔融处理的方法和系统
JP2009132564A (ja) 人工骨材の製造方法
CN108424790A (zh) 一种垃圾气化热电联供系统
CN204097297U (zh) 污泥减量化资源化处理装置
CN208869480U (zh) 一种工业污泥裂解的工艺系统
CN113321182B (zh) 一种污泥耦合制氢的系统和方法
CN201746507U (zh) 一种自供能污泥热解炭化处理系统
CN205807442U (zh) 一种环保型催化燃烧装置
CN112011343B (zh) 一种用于协同炭化生物质和污泥的回转炉
CN211339404U (zh) 一种城市生活垃圾热解气化炉
CN112254136A (zh) 一种高湿物料干燥和固体废弃物资源化利用方法及装置
CN210826081U (zh) 一种城市生活垃圾双床热解气化装置
CN106190315A (zh) 一种垃圾、固体废物气化系统
CN206298553U (zh) 一种垃圾、固体废物气化炉
CN201834892U (zh) 固体生物质热解气化裂解炉
CN111396900A (zh) 一种微波辅助催化燃烧高浓度油脂废水的装置及工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21908459

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21908459

Country of ref document: EP

Kind code of ref document: A1