WO2022134422A1 - 一种对锚固边坡风险进行量化分析的方法 - Google Patents

一种对锚固边坡风险进行量化分析的方法 Download PDF

Info

Publication number
WO2022134422A1
WO2022134422A1 PCT/CN2021/091443 CN2021091443W WO2022134422A1 WO 2022134422 A1 WO2022134422 A1 WO 2022134422A1 CN 2021091443 W CN2021091443 W CN 2021091443W WO 2022134422 A1 WO2022134422 A1 WO 2022134422A1
Authority
WO
WIPO (PCT)
Prior art keywords
slope
rock
soil
risk
sliding surface
Prior art date
Application number
PCT/CN2021/091443
Other languages
English (en)
French (fr)
Inventor
李亮
陈富
王上上
褚雪松
袁长丰
路世豹
李东贤
林后来
刘志良
Original Assignee
青岛理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛理工大学 filed Critical 青岛理工大学
Publication of WO2022134422A1 publication Critical patent/WO2022134422A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D17/00Excavations; Bordering of excavations; Making embankments
    • E02D17/20Securing of slopes or inclines
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/74Means for anchoring structural elements or bulkheads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/13Architectural design, e.g. computer-aided architectural design [CAAD] related to design of buildings, bridges, landscapes, production plants or roads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces

Definitions

  • the invention relates to the technical field of safety risk assessment, in particular to a method for quantitatively analyzing the risk of an anchored slope.
  • the bolt protection is favored by the slope engineering field because of its simple construction, low cost and good supporting effect. After the bolt is constructed, it is equivalent to adding reinforcement and bones in the rock and soil mass, and relying on the interaction between the anchoring section and the surrounding rock and soil mass to transmit the bolt force, thereby enhancing the strength of the rock and soil mass in the anchoring area (such as elastic modulus). E, cohesion c and friction angle ⁇ , etc.), the rock and soil mass itself is reinforced, the mechanical parameters and stress state of the rock and soil mass are improved, and its deformation development is restricted to maintain stability. Due to the complexity of the anchor load transfer mechanism and the diversity of support parameters, the risk analysis of anchored slopes still faces challenges.
  • the present invention proposes a method for quantitative analysis of the risk of an anchored slope, which can quantitatively analyze the risk of an anchored slope.
  • a method for quantitatively analyzing the risk of an anchored slope comprising the following steps:
  • Step 1 Construct the slope mathematical model M 0 after applying the anchor, calculate the safety factor F S0 of the slope mathematical model M 0 , and find out the sliding surface S 0 under the safety factor F S0 at this time;
  • Step 2 On the basis of the slope mathematical model M 0 , mark the area of the slope rock and soil affected by the anchoring area, remove the bolt, enhance the mechanical parameters of the rock and soil in the area affected by the anchoring area, and establish a new model M x , based on the principle that the safety factor of the sliding surface S 0 is equal under the slope mathematical model M 0 and the new model M x , use Geo-studio to find out the range of the mechanical parameters of the rock and soil in the area affected by the anchoring zone;
  • Step 3 Simulate the new model M x with the smooth particle hydrodynamic method, and according to the consistency of its initial sliding surface with the sliding surface S 0 , the exact value of the mechanical parameters of rock and soil in the area affected by the bolt can be determined;
  • Step 4 The smooth particle hydrodynamics method is used to simulate again, and the Monte Carlo method is used to quantitatively analyze the risk of the anchored slope.
  • the rock and soil mechanics parameters are cohesion c and friction angle
  • the safety factor F S0 is calculated by the limit equilibrium method in Geo-studio.
  • the action effect of the bolt is equivalent to the enhancement of the strength of the rock and soil mass itself, and based on this, the mechanical parameters of the rock and soil mass in the area affected by the anchoring zone are enhanced.
  • the method for determining the range value of the regional rock and soil mechanics parameters affected by the anchoring zone is:
  • the rock and soil mechanics parameters of the area affected by the anchoring zone are regarded as independent random variables, and the random method is used to generate N parameter samples X 1 , X 2 ,...,X N , and the corresponding cohesion and friction angle of the samples is c 1 , c2 , ..., c N ,
  • the method for determining the exact value of the rock and soil mechanics parameters in the area affected by the bolt is:
  • the mechanical parameter value cf Input into the anchored slope to be calculated, calculate the sliding square of the slope soil after the anchor is applied to the slope, and calculate the failure probability of the slope with the Monte Carlo sampling method, so as to quantitatively analyze the risk of the anchored slope.
  • the present invention provides a technical solution for the risk analysis of the anchored slope.
  • the risk analysis of the anchored slope has more practical reference significance.
  • the present invention can not only determine the slip volume of the anchored slope, but also the slip state after the instability of the anchored slope by considering the geotechnical strength of the area affected by the anchoring zone. .
  • Fig. 1 the flow chart of the present invention
  • FIG. 1 Schematic diagram of the rock and soil area affected by the equivalent replacement anchor bolt slope anchoring area
  • orientation or positional relationship indicated by the terms “upper”, “lower”, “left”, “right”, “top”, “bottom”, “inside”, “outside”, etc. are based on those shown in the accompanying drawings.
  • the orientation or positional relationship is only for describing the present invention and simplifying the description, rather than indicating or implying that the indicated device or element must have a specific orientation, as well as a specific orientation configuration and operation, and therefore should not be construed as a limitation of the present invention.
  • a method for quantitatively analyzing the risk of an anchored slope in the present invention includes the following steps:
  • Step 1 Construct the slope mathematical model M 0 after applying the anchor, calculate the safety factor F S0 of the slope mathematical model M 0 , and find out the sliding surface S 0 under the safety factor F S0 at this time;
  • Step 2 On the basis of the slope mathematical model M 0 , mark the area of the slope rock and soil affected by the anchoring area, remove the bolt, enhance the mechanical parameters of the rock and soil in the area affected by the anchoring area, and establish a new model M x , based on the principle that the safety factor of the sliding surface S 0 is equal under the slope mathematical model M 0 and the new model M x , use Geo-studio to find out the range of the mechanical parameters of the rock and soil in the area affected by the anchoring zone;
  • Step 3 Use the smoothed particle hydrodynamics method (Smoothed Particle Hydrodynamics abbreviated as SPH) to simulate the new model M x .
  • SPH smoothed Particle Hydrodynamics abbreviated as SPH
  • Step 4 The smooth particle hydrodynamics method is used to simulate again, and the Monte Carlo method is used to quantitatively analyze the risk of the anchored slope;
  • rock and soil mechanics parameters are cohesion c and friction angle
  • the safety factor F S0 is calculated by the limit equilibrium method in Geo-studio.
  • the action effect of the bolt is equivalent to the enhancement of the strength of the rock and soil mass itself, and based on this, the mechanical parameters of the rock and soil mass in the area affected by the anchoring zone are enhanced;
  • the method for determining the range value of the mechanical parameters of the rock and soil in the area affected by the anchoring area is as follows: the mechanical parameters of the rock and soil in the area affected by the anchoring area are regarded as independent random variables, and a random method is used.
  • Generate N parameter samples X 1 , X 2 ,...,X N , and the corresponding cohesion force and friction angle of the samples are c 1 , c2 , ..., c N ,
  • the parameter samples X 1 , X 2 , ..., X N are calculated by the method of fully specifying the sliding surface.
  • the method for determining the exact value of the mechanical parameters of the rock and soil in the area affected by the bolt is: simulate the sliding state of the samples Z 1 , Z 2 , ..., Z m , Obtain the initial sliding surface P 1 , P 2 , ..., P m ; find the initial sliding surface closest to the sliding surface S 0 in P 1 , P 2 , ..., P m to determine the geotechnical area affected by the anchorage zone The value of the mechanical parameter c f of the body,
  • step 4 when the smooth particle hydrodynamics method is used to simulate again, the mechanical parameter value cf , Input into the anchored slope to be calculated, calculate the sliding square of the slope soil after the anchor is applied to the slope, and calculate the failure probability of the slope with the Monte Carlo sampling method, so as to quantitatively analyze the risk of the anchored slope.
  • the slope height is 10m
  • the horizontal projection length of the slope is 5m
  • the slope ratio is 1:0.5.
  • the rock-soil mechanical parameters of the slope have an average cohesion c of 5 kPa, an average internal friction angle ⁇ of 25°, and an average bulk density ⁇ of 19.5 kN/m 3 ;
  • the method proposed in the present invention is used to analyze the case.
  • the anchored slope geometric model M 0 is established in the Slope/W module of Geo-Studio, and the mean value of the mechanical parameters of the rock and soil mass is input into the model to calculate the value at this time.
  • the safety factor F S0 of the anchored slope is 1.34, and the sliding surface S 0 at this time is marked, as shown in Figure 7; on the basis of the original model, the anchor rod is removed, and a new model M x is established, as shown in Figure 3,
  • the black soil strip is the rock and soil area affected by the anchoring zone.
  • the cohesion c and friction angle ⁇ of the rock and soil mass in the area affected by the anchoring zone are regarded as independent random variables, and 1 000 parameter samples X are generated by the random method.
  • 1 , X 2 ,...,X 1 000 the cohesion and friction angles corresponding to the samples are c 1 , ⁇ 1 , c 2 , ⁇ 2 ,..., c 1000 , ⁇ 1 000 ;
  • the SPH method is used to simulate the sliding state of the samples Z 1 , Z 2 , ..., Z 89 , and the initial sliding surfaces P 1 , P 2 , ..., P 89 are obtained ;
  • the traditional method can obtain the slip volume of the anchored slope
  • the enhancement of the soil strength by the anchor is not considered
  • the present invention considers the enhancement of the rock and soil strength in the area affected by the anchoring area by the anchor. Not only can the slip volume of the anchored slope be determined, but also the slip state of the anchored slope after instability can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Structural Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • Mining & Mineral Resources (AREA)
  • General Physics & Mathematics (AREA)
  • Civil Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Paleontology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Architecture (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)
  • Piles And Underground Anchors (AREA)
  • Devices Affording Protection Of Roads Or Walls For Sound Insulation (AREA)

Abstract

一种对锚固边坡风险进行量化分析的方法,涉及安全风险评估技术领域,包括如下步骤:构建施加锚杆后的边坡数学模型M 0,计算M 0的安全系数F S0,并找出滑动面S 0;在M 0的基础上,标记岩土体受锚固区影响的区域,撤去锚杆,增强受影响区域的力学参数,建立一个新模型M x,利用Geo-studio找出受锚固区影响的区域岩土体力学参数的范围值;将M x运用光滑粒子流体动力学方法进行模拟,确定受锚杆影响的区域的岩土体力学参数的准确值;再次利用光滑粒子流体动力学方法进行模拟,结合蒙特卡罗方法对锚固边坡风险进行量化分析。本发明提出了一种对锚固边坡风险进行量化分析的方法,该方法可以对锚固边坡的风险进行量化分析。

Description

一种对锚固边坡风险进行量化分析的方法 技术领域
本发明涉及安全风险评估技术领域,具体涉及一种对锚固边坡风险进行量化分析的方法。
背景技术
锚杆防护因其施工简单,成本较低,支护效果好,受到边坡工程界的青睐。锚杆施工后,相当于在岩土体中增加筋骨,并依赖其锚固段与周围岩土体之间的相互作用传递锚杆作用力,进而增强了锚固区岩土体的强度(如弹性模量E、粘聚力c和摩擦角φ等),使岩土体本身得到加固,改善了岩土体的力学参数及应力状态,并限制其变形发展,以保持稳定。由于锚杆荷载传递机理的复杂性及支护参数的多样性,锚固边坡风险分析仍面临挑战,因此亟需一种适用于锚固边坡风险量化的方法。
发明内容
为解决现有技术中存在的问题,本发明提出了一种对锚固边坡风险进行量化分析的方法,该方法可以对锚固边坡的风险进行量化分析。
为了达到上述目的,本发明的技术方案为:
一种对锚固边坡风险进行量化分析的方法,包括如下步骤:
步骤1、构建施加锚杆后的边坡数学模型M 0,计算边坡数学模型M 0的安全系数F S0,并找出此时安全系数F S0下的滑动面S 0
步骤2、在边坡数学模型M 0的基础上,标记出边坡岩土体受锚固区影响的区域,撤去锚杆,增强受锚固区影响的区域的岩土体力学参数,建立一个新模型M x,基于滑动面S 0在边坡数学模型M 0与新模型M x下安全系数相等的原理,利用Geo-studio找出受锚固区影响的区域岩土体力学参数的范围值;
步骤3、将新模型M x运用光滑粒子流体动力学方法进行模拟,根据其初始滑动面与滑动面S 0一致,可以确定受锚杆影响的区域的岩土体力学参数的准确值;
步骤4、再次利用光滑粒子流体动力学方法进行模拟,结合蒙特卡罗方法对锚固边坡风险进行量化分析。
优选的,所述的岩土体力学参数为粘聚力c和摩擦角
Figure PCTCN2021091443-appb-000001
优选的,所述的步骤1中,所述的安全系数F S0通过Geo-studio中的极限平衡方法计算。
优选的,所述的步骤2中,将锚杆作用效果等效为岩土体自身强度增强,以此为依据增强受锚固区影响的区域的岩土体力学参数。
优选的,所述的步骤2中,确定受锚固区影响的区域岩土体力学参数的范围值的方法为:
将受锚固区影响的区域的岩土体力学参数视为相互独立的随机变量,利用随机方法产生N个参数样本X 1,X 2,…,X N,样本相对应的粘聚力和摩擦角为c 1
Figure PCTCN2021091443-appb-000002
c 2
Figure PCTCN2021091443-appb-000003
…,c N
Figure PCTCN2021091443-appb-000004
优选的,所述的步骤3中,将新模型M x运用光滑粒子流体动力学方法进行模拟时,用完全指定滑动面的方法计算与参数样本X 1,X 2,…,X N相应的安全系数Fs 1,Fs 2,…,Fs N,并指定初始滑动面S i,且初始滑动面S i与滑动面S 0相同,找出Fs i=F S0的样本记为Z 1,Z 2,…,Z m,并得到相应的受锚固区影响的区域的岩土体粘聚力和摩擦角c i
Figure PCTCN2021091443-appb-000005
其中i=1,2,…,m,m≤N。
优选的,所述的步骤3中,确定受锚杆影响的区域的岩土体力学参数的准确值的方法为:
对样本Z 1,Z 2,…,Z m进行滑动状态模拟,得到其初始滑动面P 1,P 2,…,P m;在P 1,P 2,…,P m中寻找与滑动面S 0最接近的初始滑动面,以此确定锚固区影响区域岩土体的力学参数值c f
Figure PCTCN2021091443-appb-000006
优选的,所述的步骤4中,再次利用光滑粒子流体动力学方法进行模拟时,将力学参数值c f
Figure PCTCN2021091443-appb-000007
输入到所要计算的锚固边坡中,通过计算边坡施加锚杆后边坡土体的滑动方量,结合蒙特卡罗抽样方法计算边坡的失效概率,以此对锚固边坡风险进行量化分析。
本发明一种对锚固边坡风险进行量化分析的方法具有如下有益效果:
1.本发明对锚固边坡的风险分析提供了技术解决方案,通过考虑到锚固效应对边坡土体强度的影响,使锚固边坡的风险分析更具有实际参考意义。
2.本发明相比起现有技术的方法,通过考虑受锚固区影响的区域的岩土强度,不但能够确定锚固边坡的滑移体积,还可以确定锚固边坡失稳后的滑移状态。
3.通过对锚固边坡的风险进行量化评估,可以为锚固边坡的风险评估、安全防护提供有力的依据。
附图说明
图1、本发明流程图;
图2、锚固边坡安全系数和滑动面;
图3、等效替换锚杆边坡锚固区影响岩土体区域示意图;
图4、运用Geo-studio计算等效替换锚杆边坡安全系数;
图5、运用SPH计算等效替换锚固边坡滑动面和滑坡方量;
图6、算例边坡原始图;
图7、锚固边坡安全系数和滑动面S 0
图8、运用Geo-studio寻找等效替换锚杆区域粘聚力和摩擦角范围值;
图9、运用SPH寻找与S 0最接近的初始滑动面;
图10、运用Geo-studio计算滑移土体体积;
图11、运用SPH计算等效替代锚杆锚固边坡滑坡方量;
具体实施方式
以下所述,是以阶梯递进的方式对本发明的实施方式详细说明,该说明仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
本发明的描述中,需要说明的是,术语“上”“下”“左”“右”“顶”“底”“内”“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以及特定的方位构造和操作,因此不能理解为对本发明的限制。
参考图1~11:
实施例1、
本发明一种对锚固边坡风险进行量化分析的方法,包括如下步骤:
步骤1、构建施加锚杆后的边坡数学模型M 0,计算边坡数学模型M 0的安全系数F S0,并找出此时安全系数F S0下的滑动面S 0
步骤2、在边坡数学模型M 0的基础上,标记出边坡岩土体受锚固区影响的区域,撤去锚杆,增强受锚固区影响的区域的岩土体力学参数,建立一个新模型M x,基于滑动面S 0在边坡数学模型M 0与新模型M x下安全系数相等的原理,利用Geo-studio找出受锚固区影响的区域岩土体力学参数的范围值;
步骤3、将新模型M x运用光滑粒子流体动力学方法(Smoothed Particle Hydrodynamics简写为SPH)进行模拟,根据其初始滑动面与滑动面S 0一致,可以确定受锚杆影响的区域的岩土体力学参数的准确值;
步骤4、再次利用光滑粒子流体动力学方法进行模拟,结合蒙特卡罗方法对锚固边坡风险进行量化分析;
所述的岩土体力学参数为粘聚力c和摩擦角
Figure PCTCN2021091443-appb-000008
实施例2、
在实施例1的基础上,本实施例做出了进一步优化,具体为:
如图2所示,所述的步骤1中,所述的安全系数F S0通过Geo-studio中的极限平衡方法计算。
实施例3、
在实施例2的基础上,本实施例做出了进一步优化,具体为:
所述的步骤2中,将锚杆作用效果等效为岩土体自身强度增强,以此为依据增强受锚固区影响的区域的岩土体力学参数;
所述的步骤2中,确定受锚固区影响的区域岩土体力学参数的范围值的方法为:将受锚固区影响的区域的岩土体力学参数视为相互独立的随机变量,利用随机方法产生N个参数样本X 1,X 2,…,X N,样本相对应的粘聚力和摩擦角为c 1
Figure PCTCN2021091443-appb-000009
c 2
Figure PCTCN2021091443-appb-000010
…,c N
Figure PCTCN2021091443-appb-000011
如图3所示黑色区域,在分析时,将锚杆作用效果等效为岩土体自身强度增强,建立一个新模型M x,黑色区域为等效替换锚杆后岩土体自身强度增强的区域。
实施例3、
在实施例2的基础上,本实施例做出了进一步优化,具体为:
如图4所示,所述的步骤3中,将新模型M x运用光滑粒子流体动力学方法进行模拟时,用完全指定滑动面的方法计算与参数样本X 1,X 2,…,X N相应的安全系数Fs 1,Fs 2,…,Fs N,并指定初始滑动面S i,且初始滑动面S i与滑动面S 0相同,找出Fs i=F S0的样本记为Z 1,Z 2,…,Z m,并得到相应的受锚固区影响的区域的岩土体粘聚力和摩擦角c i
Figure PCTCN2021091443-appb-000012
其中i=1,2,…,m,m≤N;
如图5所示,所述的步骤3中,确定受锚杆影响的区域的岩土体力学参数的准确值的方法为:对样本Z 1,Z 2,…,Z m进行滑动状态模拟,得到其初始滑动面P 1,P 2,…,P m;在P 1,P 2,…,P m中寻找与滑动面S 0最接近的初始滑动面,以此确定锚固区影响区域岩土体的力学参数值c f
Figure PCTCN2021091443-appb-000013
实施例4、
在实施例3的基础上,本实施例做出了进一步优化,具体为:
所述的步骤4中,再次利用光滑粒子流体动力学方法进行模拟时,将力学参数值c f
Figure PCTCN2021091443-appb-000014
输入到所要计算的锚固边坡中,通过计算边坡施加锚杆后边坡土体的滑动方量,结合蒙特卡罗抽样方法计算边坡的失效概率,以此对锚固边坡风险进行量化分析。
下面结合图6进行实例说明。
该边坡坡高10m,坡面水平投影长5m,边坡坡率为1:0.5。该边坡岩土体力学参数粘聚力c均值为5kPa、内摩擦角φ均值为25°、容重γ均值为19.5kN/m 3
运用本发明提出的方法对该案例进行分析,根据图6在Geo-Studio的Slope/W模块中建立锚固边坡几何模型M 0,将岩土体力学参数的均值输入到模型中计算出此时锚固边坡的安全系数F S0=1.34,并标记出此时的滑动面S 0,如图7所示;在原模型基础上,撤去锚杆,建立一个新模型M x,如图3所示,黑色土条为锚固区影响的岩土体区域,接着将锚固区影响的区域岩土体的粘聚力c和摩擦角φ视为相互独立的随机变量,利用随机方法产生1 000个参数样本X 1,X 2,…,X 1 000,样本相对应的粘聚力和摩擦角为c 1、φ 1,c 2、φ 2,…,c 1000、φ 1 000;利 用批处理计算在模型M 0的滑动面S 0下样本X 1,X 2,…,X 1 000相应的安全系数Fs 1,Fs 2,……,Fs 1 000,找出Fs i=F S0=1.34的样本(i=1,2,…,m,m≤1000),记为Z 1,Z 2,…,Z 89,如图8所示,并能得到相应的锚固区影响的区域的岩土体的粘聚力c和摩擦角φ的范围值(40kPa≤c≤200kPa,25°≤φ≤55°);
运用SPH方法对样本Z 1,Z 2,…,Z 89进行滑动状态模拟,得到其初始滑动面P 1,P 2,…,P 89;在P 1,P 2,…,P 89中寻找与S 0最接近的初始滑动面,如图9所示,此时可以确定锚固区影响的区域岩土体的力学参数值c f=85kPa,φ f=36°;
将上述得到的力学参数值c f=85kPa,φ f=36°代替图3模型中黑色土体力学参数值,作为计算锚固边坡模型工具对锚固边坡风险量化分析。由于施工和岩土体参数的变异性,将图3所示灰色的土体的粘聚力c和摩擦角φ视为相互独立的随机变量,利用随机方法产生50个参数样本K 1,K 2,…,K 50,再次运用SPH方法,计算边坡施加锚杆后每个边坡的滑移土体方量V 1,V 2,…,V 50,如图11为该样本中某一边坡失稳滑移状态,统计滑移土体方量
Figure PCTCN2021091443-appb-000015
该50个样本中发生滑动的样本为17个,其中安全系数在0.7~0.8之间有3个,相应的平均滑移土体方量为172.59m 3/m,安全系数在0.8~0.9之间有6个,相应的平均滑移土体方量为119.79m 3/m,安全系数在0.9~1.0之间有8个,相应的平均滑移土体方量为76.21m 3/m,最后统计滑移土体方量V=(172.59*3+119.79*6+76.21*8)/50=36.92m 3/m;为了证明本发明方法的有效性,现进行对比分析,如图10所示为运用Geo-studio商用软件基于极限平衡方法计算得到的滑移土体体积为V 0=31.07m 3/m,本发明方法最终确定的边坡滑移土体体积为V=36.92m 3/m,传统方法得到结果偏小。
因此,对比发现:传统的方法虽然能得出锚固边坡滑移体积,但锚杆对土体强度的增强没有考虑,而本发明考虑到锚杆对锚固区影响区域岩土体强度的增强,不但可以确定锚固边坡的滑移体积,而且还能得到锚固边坡失稳后的滑移状态。

Claims (8)

  1. 一种对锚固边坡风险进行量化分析的方法,其特征为:包括如下步骤:
    步骤1、构建施加锚杆后的边坡数学模型M 0,计算边坡数学模型M 0的安全系数F S0,并找出此时安全系数F S0下的滑动面S 0
    步骤2、在边坡数学模型M 0的基础上,标记出边坡岩土体受锚固区影响的区域,撤去锚杆,增强受锚固区影响的区域的岩土体力学参数,建立一个新模型M x,基于滑动面S 0在边坡数学模型M 0与新模型M x下安全系数相等的原理,利用Geo-studio找出受锚固区影响的区域岩土体力学参数的范围值;
    步骤3、将新模型M x运用光滑粒子流体动力学方法进行模拟,根据其初始滑动面与滑动面S 0一致,可以确定受锚杆影响的区域的岩土体力学参数的准确值;
    步骤4、再次利用光滑粒子流体动力学方法进行模拟,结合蒙特卡罗方法对锚固边坡风险进行量化分析。
  2. 如权利要求1所述的一种对锚固边坡风险进行量化分析的方法,其特征为:所述的岩土体力学参数为粘聚力c和摩擦角
    Figure PCTCN2021091443-appb-100001
  3. 如权利要求2所述的一种对锚固边坡风险进行量化分析的方法,其特征为:所述的步骤1中,所述的安全系数F S0通过Geo-studio中的极限平衡方法计算。
  4. 如权利要求2或3所述的一种对锚固边坡风险进行量化分析的方法,其特征为:所述的步骤2中,将锚杆作用效果等效为岩土体自身强度增强,以此为依据增强受锚固区影响的区域的岩土体力学参数。
  5. 如权利要求4所述的一种对锚固边坡风险进行量化分析的方法,其特征为:所述的步骤2中,确定受锚固区影响的区域岩土体力学参数的范围值的方法为:
    将受锚固区影响的区域的岩土体力学参数视为相互独立的随机变量,利用随机方法产生N个参数样本X 1,X 2,…,X N,样本相对应的粘聚力和摩擦角为
    Figure PCTCN2021091443-appb-100002
  6. 如权利要求5所述的一种对锚固边坡风险进行量化分析的方法,其特征为:所述的步骤3中,将新模型M x运用光滑粒子流体动力学方法进行模拟时,用完全指定滑动面的方法计算与参数样本X 1,X 2,…,X N相应的安全系数Fs 1,Fs 2,…,Fs N,并指定初始滑动面S i,且初始滑动面S i与滑动面S 0相同,找出Fs i=F S0的样本记为Z 1,Z 2,…,Z m,并得到相应的受锚固区影响的区域的岩土体粘聚力和摩擦角c i
    Figure PCTCN2021091443-appb-100003
    其中i=1,2,…,m,m≤N。
  7. 如权利要求6所述的一种对锚固边坡风险进行量化分析的方法,其特征为:所述的步骤3中,确定受锚杆影响的区域的岩土体力学参数的准确值的方法为:
    对样本Z 1,Z 2,…,Z m进行滑动状态模拟,得到其初始滑动面P 1,P 2,…,P m;在P 1,P 2,…, P m中寻找与滑动面S 0最接近的初始滑动面,以此确定锚固区影响区域岩土体的力学参数值c f
    Figure PCTCN2021091443-appb-100004
  8. 如权利要求7所述的一种对锚固边坡风险进行量化分析的方法,其特征为:所述的步骤4中,再次利用光滑粒子流体动力学方法进行模拟时,将力学参数值c f
    Figure PCTCN2021091443-appb-100005
    输入到所要计算的锚固边坡中,通过计算边坡施加锚杆后边坡土体的滑动方量,结合蒙特卡罗抽样方法计算边坡的失效概率,以此对锚固边坡风险进行量化分析。
PCT/CN2021/091443 2020-12-24 2021-04-30 一种对锚固边坡风险进行量化分析的方法 WO2022134422A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011572821.4 2020-12-24
CN202011572821.4A CN112685817B (zh) 2020-12-24 2020-12-24 一种对锚固边坡风险进行量化分析的方法

Publications (1)

Publication Number Publication Date
WO2022134422A1 true WO2022134422A1 (zh) 2022-06-30

Family

ID=75453445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/091443 WO2022134422A1 (zh) 2020-12-24 2021-04-30 一种对锚固边坡风险进行量化分析的方法

Country Status (2)

Country Link
CN (1) CN112685817B (zh)
WO (1) WO2022134422A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115048711A (zh) * 2022-08-15 2022-09-13 中国矿业大学(北京) 动静力锚固支护设计方法
CN115270266A (zh) * 2022-08-03 2022-11-01 南昌大学 基于改进层次分析法的边坡监测状态风险判断方法
CN115754225A (zh) * 2022-10-21 2023-03-07 西南交通大学 基于加速度判断上下坡体相互作用的地震稳定性分析方法
CN117807690A (zh) * 2024-03-01 2024-04-02 济南轨道交通集团有限公司 岩土边坡或基坑锚固体粘结强度的选取方法及系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112685817B (zh) * 2020-12-24 2022-06-14 青岛理工大学 一种对锚固边坡风险进行量化分析的方法
CN113239434B (zh) * 2021-05-11 2022-07-12 青岛理工大学 一种确定锚杆衰减系数的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030143038A1 (en) * 2000-02-22 2003-07-31 Babcock John W. Multiple synthetic deformed bars and retaining walls
CN105956317A (zh) * 2016-05-18 2016-09-21 青岛理工大学 滑坡风险量化方法
CN109359361A (zh) * 2018-09-30 2019-02-19 青岛理工大学 边坡失稳后果量化分析方法
CN110765614A (zh) * 2019-10-24 2020-02-07 青岛理工大学 一种基于滑坡破坏形态的边坡风险综合评估方法
CN111914444A (zh) * 2020-06-30 2020-11-10 河海大学 基于粒子群优化和蒙特卡罗模拟的滑坡有限元区间分析法
CN112685817A (zh) * 2020-12-24 2021-04-20 青岛理工大学 一种对锚固边坡风险进行量化分析的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109977554B (zh) * 2019-03-28 2020-06-30 青岛理工大学 一种边坡滑动面积的评估方法
AU2020100405A4 (en) * 2020-03-17 2020-04-30 Qingdao university of technology A slop risk comprehensive assessment method based on slope failures forms

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030143038A1 (en) * 2000-02-22 2003-07-31 Babcock John W. Multiple synthetic deformed bars and retaining walls
CN105956317A (zh) * 2016-05-18 2016-09-21 青岛理工大学 滑坡风险量化方法
CN109359361A (zh) * 2018-09-30 2019-02-19 青岛理工大学 边坡失稳后果量化分析方法
CN110765614A (zh) * 2019-10-24 2020-02-07 青岛理工大学 一种基于滑坡破坏形态的边坡风险综合评估方法
CN111914444A (zh) * 2020-06-30 2020-11-10 河海大学 基于粒子群优化和蒙特卡罗模拟的滑坡有限元区间分析法
CN112685817A (zh) * 2020-12-24 2021-04-20 青岛理工大学 一种对锚固边坡风险进行量化分析的方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115270266A (zh) * 2022-08-03 2022-11-01 南昌大学 基于改进层次分析法的边坡监测状态风险判断方法
CN115270266B (zh) * 2022-08-03 2023-06-30 南昌大学 基于改进层次分析法的边坡监测状态风险判断方法
CN115048711A (zh) * 2022-08-15 2022-09-13 中国矿业大学(北京) 动静力锚固支护设计方法
CN115048711B (zh) * 2022-08-15 2023-01-10 中国矿业大学(北京) 动静力锚固支护设计方法
CN115754225A (zh) * 2022-10-21 2023-03-07 西南交通大学 基于加速度判断上下坡体相互作用的地震稳定性分析方法
CN115754225B (zh) * 2022-10-21 2024-03-15 西南交通大学 基于加速度判断上下坡体相互作用的地震稳定性分析方法
CN117807690A (zh) * 2024-03-01 2024-04-02 济南轨道交通集团有限公司 岩土边坡或基坑锚固体粘结强度的选取方法及系统

Also Published As

Publication number Publication date
CN112685817B (zh) 2022-06-14
CN112685817A (zh) 2021-04-20

Similar Documents

Publication Publication Date Title
WO2022134422A1 (zh) 一种对锚固边坡风险进行量化分析的方法
Feng et al. Finite element modelling approach for precast reinforced concrete beam-to-column connections under cyclic loading
Herbert et al. On the measurement of stress–strain curves by spherical indentation
Chandler et al. Performance-based design in earthquake engineering: a multi-disciplinary review
Liu et al. Effects of mesh density on finite element analysis
JP5152078B2 (ja) 溶接構造物の疲労寿命推定装置、溶接構造物の疲労寿命推定方法、及びコンピュータプログラム
Kanvinde et al. Exposed column base plate connections in moment frames—Simulations and behavioral insights
Barth et al. Efficient nonlinear finite element modeling of slab on steel stringer bridges
Yuan et al. Seismic failure mode of coastal bridge piers considering the effects of corrosion-induced damage
Andrews et al. The influence of cracks, notches and holes on the tensile strength of cellular solids
Chen et al. A coupled diffusion-mechanical model with boundary element method to predict concrete cover cracking due to steel corrosion
Torres-Rodas et al. A hysteretic model for the rotational response of embedded column base connections
Lai et al. Elastic inter-story drift seismic demand estimate of super high-rise buildings using coupled flexural-shear model with mass and stiffness non-uniformities
Zhang et al. Dynamic brittle fracture with eigenerosion enhanced material point method
Classen et al. Anchorage of composite dowels
Meléndez et al. A simplified approach for the ultimate limit state analysis of three-dimensional reinforced concrete elements
de Sousa Cardoso et al. Composite dowels as load introduction devices in concrete-filled steel tubular columns
Qiu et al. Adaptive finite element method for hybrid phase-field modeling of three-dimensional cracks
Zhai et al. Finite-element analysis of out-of-plane behaviour of masonry infill walls
Garlock et al. Post-buckling mechanics of a square slender steel plate in pure shear
Zhong et al. Ultra-low cycle fatigue life prediction of assembled steel rod energy dissipaters with calibrated ductile fracture models
Lu et al. Prediction method of bridge static deformation based on dynamic test
Romão et al. A comparative application of different EC8-3 procedures for the seismic safety assessment of existing structures
Abdollahi et al. Ratcheting behaviour of stainless steel 316L with interference fitted holes in low-cycle fatigue region
Rawal et al. Optimal design of absorptive glass mat (AGM) separator with fastest electrolyte uptake using X-ray micro-computed tomography

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21908433

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21908433

Country of ref document: EP

Kind code of ref document: A1