WO2022134187A1 - 深部复杂构造条件下岩石真三轴动态压剪试验装置及方法 - Google Patents

深部复杂构造条件下岩石真三轴动态压剪试验装置及方法 Download PDF

Info

Publication number
WO2022134187A1
WO2022134187A1 PCT/CN2020/142067 CN2020142067W WO2022134187A1 WO 2022134187 A1 WO2022134187 A1 WO 2022134187A1 CN 2020142067 W CN2020142067 W CN 2020142067W WO 2022134187 A1 WO2022134187 A1 WO 2022134187A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure chamber
cylinder
jacket
piston rod
self
Prior art date
Application number
PCT/CN2020/142067
Other languages
English (en)
French (fr)
Inventor
刘焕新
陈玉民
王剑波
张希巍
杜树浩
侯奎奎
刘洋
李桂林
朱明德
王玺
吴钦正
Original Assignee
山东黄金矿业科技有限公司深井开采实验室分公司
张希巍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东黄金矿业科技有限公司深井开采实验室分公司, 张希巍 filed Critical 山东黄金矿业科技有限公司深井开采实验室分公司
Priority to US17/265,999 priority Critical patent/US11761865B2/en
Publication of WO2022134187A1 publication Critical patent/WO2022134187A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/10Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces generated by pneumatic or hydraulic pressure
    • G01N3/12Pressure testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/06Special adaptations of indicating or recording means
    • G01N3/066Special adaptations of indicating or recording means with electrical indicating or recording means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/24Investigating strength properties of solid materials by application of mechanical stress by applying steady shearing forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0019Compressive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0025Shearing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/0042Pneumatic or hydraulic means
    • G01N2203/0048Hydraulic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/0617Electrical or magnetic indicating, recording or sensing means
    • G01N2203/0635Electrical or magnetic indicating, recording or sensing means using magnetic properties

Definitions

  • the invention belongs to the technical field of rock mechanics, and in particular relates to a true triaxial dynamic compression shear test device and method for rocks under complex structural conditions in deep parts.
  • Deep shaft mining is currently the only way to obtain resources in deep metal underground mines. Deep wells are driven through different strata from top to bottom, with large changes in lithology, development of tectonic stress, many large fault structures, and discontinuous rock mass caused by local fragmentation. At the same time, the in-situ stress ( ⁇ 1 > ⁇ 2 > ⁇ 3 >0, ⁇ 1 is the maximum principal stress, ⁇ 2 is the intermediate principal stress, ⁇ 3 is the minimum principal stress) not only increases with the burial depth, but also depends on the structure.
  • the influence of stress varies significantly, resulting in extremely complex geological environment and rock mechanics conditions, and geological disasters such as sudden landslides, rock bursts, large deformations, and rock mass structural instability induced by blasting often occur. Therefore, it is necessary to deeply study the mechanical properties evolution characteristics of rock mass fracture and brittle failure caused by dynamic compression, dynamic shearing and strong unloading of deep rock under true triaxial stress conditions.
  • the true triaxial dynamic tests of rock mechanics are mainly divided into the following categories: 1.
  • the flexible or rigid true triaxial test device is used to load to a certain high true triaxial stress level, and the single surface is suddenly unloaded to form a free surface.
  • Rock burst to simulate rock burst; 2 use a flexible or rigid true triaxial test device to load to a certain high true triaxial stress level, and suddenly unload on one side to form a free surface, and at the same time, the actuator applies a low-frequency disturbance load, and by exciting the rock Burst to simulate rockburst; 3.
  • a true triaxial test device with a three-dimensional orthogonal Hopkinson bar structure is used to impact the sample to simulate rock dynamic failure; 4.
  • a rigid true triaxial loading frame and a one-dimensional Hopkinson A high-pressure hard rock low-frequency perturbation and high-speed impact-type true triaxial test device combined with a rod is used to simulate the failure of intact rock under dynamic conditions.
  • the present invention provides a true triaxial dynamic compression shear test device and method for rocks under complex structural conditions in deep parts, which can simulate in-situ stress conditions at a depth of 5000 meters, and can execute different stress paths under high stress conditions.
  • Complete rock samples and rock samples with discontinuous structures (joints, bedding, fissures) fracture deformation, sudden instability, dynamic compression shear, low-cycle fatigue and other types of tests can be used to study the external stiffness and three-dimensional stress of different rock bodies
  • the dynamic mechanism of critical fracture and instability of rock under combined conditions can effectively meet the needs of failure and failure test research of deep engineering rock mass under the structural control of discontinuities and dynamic action.
  • a true triaxial dynamic compression shear test device for rocks under complex structural conditions in the deep, including a reaction force frame, a pressure chamber, a foundation platform, a first maximum principal stress actuator, a second Two maximum principal stress actuators, a first intermediate principal stress actuator and a second intermediate principal stress actuator;
  • the reaction force frame is fixedly arranged on the ground, the first maximum principal stress actuator and the second intermediate principal stress actuator
  • the maximum principal stress actuator is symmetrically arranged at the upper and lower ends of the reaction force frame, and the first intermediate principal stress actuator and the second intermediate principal stress actuator are symmetrically arranged at the left and right ends of the reaction force frame;
  • the foundation platform is fixed on the ground on the front and rear sides of the reaction force frame, and a pressure chamber transfer track is horizontally laid on the top of the foundation platform.
  • the pressure chamber transfer track adopts a parallel double-track structure, and the pressure chamber transfer track runs through the central working cavity of the reaction force frame;
  • the pressure chamber transfer track is provided with a pressure chamber transfer slide, and the pressure chamber transfer slide can move linearly along the pressure chamber transfer track;
  • the pressure chamber adopts a split cylindrical structure, including a pressure chamber base and a pressure chamber barrel, A complete pressure chamber is composed of the pressure chamber base and the pressure chamber cylinder;
  • the pressure chamber base is arranged on the pressure chamber transfer slide, and the pressure chamber base and the pressure chamber transfer slide follow up; above the basic platform
  • a pressure chamber barrel hoisting mechanism is provided, and a pressure chamber barrel lifting platform is hidden inside the base platform just below the boom of the pressure chamber barrel lifting mechanism.
  • the side is provided with a pressure chamber cylinder and a base packaging fixture.
  • the reaction force frame adopts an annular plane integrated structure, the cross-sectional shape of the reaction force frame is a polygon, and the bottom plane of the reaction force frame is fixedly connected to the ground through the main support base, between the main support base and the bottom slope of the reaction force frame.
  • a side support base is provided; the first maximum principal stress actuator is vertically hidden and embedded in the top of the reaction force frame, and the second maximum main stress actuator is vertically hidden and embedded in the bottom of the reaction force frame, The first maximum principal stress actuator and the second maximum principal stress actuator are coaxially distributed; the first intermediate principal stress actuator is horizontally hidden and embedded in the left end of the reaction force frame, and the second intermediate principal stress actuator The force actuator is horizontally hidden and embedded in the right end of the reaction force frame, and the first intermediate principal stress actuator and the second intermediate principal stress actuator are coaxially distributed.
  • the first maximum principal stress actuator, the second maximum principal stress actuator, the first intermediate principal stress actuator and the second intermediate principal stress actuator have the same structure, including a cylinder barrel, a piston rod, and a cylinder tail.
  • a static pressure support sealing sleeve is set between the rod and the cylinder barrel, and a dust sleeve is set between the piston rod and the piercing hole of the cylinder tail cover; a magnetostriction is
  • a first self-balancing piston rod is vertically arranged at the top center of the pressure chamber cylinder, the first self-balancing piston rod and the pressure chamber cylinder are sealed by a first flange end cover, and the first self-balancing piston rod is sealed One end extends to the outside of the pressure chamber cylinder, the other end of the first self-balancing piston rod extends to the inside of the pressure chamber cylinder, and a first LVDT displacement sensor is connected between the first self-balancing piston rod and the pressure chamber cylinder;
  • the center of the pressure chamber base is vertically arranged with a second self-balancing piston rod, the second self-balancing piston rod and the pressure chamber base are sealed by a second flange end cover, and one end of the second self-balancing piston rod extends to the pressure chamber base Below, the other end of the second self-balancing piston rod extends above the pressure chamber base, and a second LVDT displacement sensor is connected between the second self-balancing piston rod and the pressure chamber base;
  • the left side of the pressure chamber cylinder
  • the third self-balancing piston rod and the pressure chamber cylinder are sealed by a third flange end cover.
  • One end of the third self-balancing piston rod extends to the outside of the pressure chamber cylinder.
  • the other end of the balance piston rod extends to the inside of the pressure chamber cylinder, and a third LVDT displacement sensor is connected between the third self-balancing piston rod and the pressure chamber cylinder;
  • a third LVDT displacement sensor is horizontally arranged on the right side of the pressure chamber cylinder
  • Four self-balancing piston rods, the fourth self-balancing piston rod and the pressure chamber cylinder are sealed by a fourth flange end cover, one end of the fourth self-balancing piston rod extends to the outside of the pressure chamber cylinder, and the fourth self-balancing piston rod
  • the other end extends to the inside of the pressure chamber cylinder, and a fourth LVDT displacement sensor is connected between the fourth self-balancing piston rod and the pressure chamber cylinder;
  • a slide guide slider is fixed on the lower surface of the pressure chamber transfer slide, and the slide guide slide is slidably connected with the pressure chamber transfer track;
  • a rack is fixed on the side of one of the pressure chamber transfer tracks , the rack is parallel to the transfer track of the pressure chamber;
  • a hydraulic motor is installed vertically on the transfer slide of the pressure chamber, and the power output shaft of the hydraulic motor faces and extends to the bottom of the transfer slide of the pressure chamber.
  • a gear is fixedly installed on the output shaft, and the gear is meshed with the rack.
  • the pressure chamber barrel and the base packaging fixture include a left half-clamp and a right half-clamp, the left and right half-clamps have the same structure, and both include a half-ring jacket, a jacket guiding support table, a jacket fixing guide rail, and a jacket follower.
  • the guide rail adopts a parallel double-rail structure;
  • the jacket follow-up guide rail is horizontally fixed on the upper surface of the transfer slide in the pressure chamber, and the jacket follow-up guide rail adopts a parallel double-rail structure.
  • the jacket slider is fixedly arranged on the lower surface of the half-ring jacket, and the jacket slider, the jacket follow-up guide rail and the jacket fixed guide rail are both slidingly connected and matched;
  • the jacket electric push mechanism is arranged on the Between the half-ring jacket and the jacket guiding support platform, the electric pushing mechanism of the jacket drives the half-ring jacket to move linearly on the jacket follow-up guide rail and the jacket fixing guide rail;
  • on the half-ring jacket of the left half-clamp A transverse pressure elbow clamp is arranged between the half-ring jacket of the right half-clamp, and the pressure chamber base and the pressure chamber cylinder are packaged and fixed by two half-ring jackets that are fastened together.
  • a true triaxial dynamic compression-shear test method for rocks under complex deep structural conditions adopts the true triaxial dynamic compression-shear test device for rocks under complex deep structural conditions, including the following steps:
  • Step 1 Prepare rock samples, encapsulate the rock samples with interlocking pressure blocks, prepare three sets of LVDT displacement sensors, and combine the three sets of LVDT displacement sensors with the rock samples and the interlocking pressure blocks to At the same time, the sample assembly is finally formed, and the three sets of LVDT displacement sensors are used to measure the volume change of the rock sample in the direction of large principal stress, the direction of medium principal stress and the direction of small principal stress respectively;
  • Step 2 Adjust the test device to the initial state.
  • the base of the pressure chamber is located at the front station of the reaction force frame, and the pressure chamber cylinder is located at the rear station of the reaction force frame.
  • the lifting platform of the pressure chamber cylinder , the pressure chamber cylinder and the left and right half ring jackets of the base packaging fixture are in a separated state;
  • Step 3 Place the prepared sample assembly on the top of the second self-balancing piston rod on the base of the pressure chamber, adjust the positions of the three sets of LVDT displacement sensors and the extension of the stylus on the sample assembly, so that the three sets of LVDTs are displaced The sensor is within the test range;
  • Step 4 First, the pressure chamber cylinder is vertically hoisted from the pressure chamber cylinder lifting platform through the pressure chamber cylinder lifting mechanism, and then the pressure chamber cylinder lifting platform is controlled to drop to a low position, and then the hydraulic motor is started. , Under the meshing transmission of the gear and the rack, the pressure chamber transfer slide carrying the pressure chamber base and the sample assembly will move along the pressure chamber transfer track until the pressure chamber base moves directly below the pressure chamber cylinder. At the same time, the jacket fixed guide rail on the jacket guide support table and the jacket follow-up guide rail on the pressure chamber transfer slide table are accurately connected together;
  • Step 5 Drop the pressure chamber cylinder onto the pressure chamber base through the pressure chamber cylinder hoisting mechanism, so that the pressure chamber cylinder and the pressure chamber base are fastened together.
  • the sample assembly is located inside the pressure chamber cylinder, and then Disconnect the connection between the hoisting arm of the pressure chamber cylinder hoisting mechanism and the external hoisting ears of the pressure chamber cylinder, and then control the lifting and reset of the hoisting arm of the pressure chamber cylinder hoisting mechanism;
  • Step 6 Activate the electric push mechanism of the jacket to move the half-ring jacket, and the jacket slider at the bottom of the half-ring jacket will move from the jacket fixed guide rail to the jacket follow-up guide rail until the left and right half-ring jackets are moved. Snap together completely, and then lock the two half-ring jackets as a whole by pressing the elbow clamp horizontally, and then control the electric push mechanism of the jacket to reset;
  • Step 7 Start the hydraulic motor again, move the pressure chamber transfer slide carrying the pressure chamber and the sample assembly to the test station where the reaction force frame is located, and then pass the first self-balancing piston rod and the second self-balancing piston rod on the pressure chamber.
  • the self-balancing piston rod, the third self-balancing piston rod and the fourth self-balancing piston rod cooperate to pre-clamp the sample assembly inside the pressure chamber;
  • Step 8 First fill the hydraulic oil into the pressure chamber until the hydraulic loading of the minimum principal stress is completed, and then start the first maximum principal stress actuator, the second maximum principal stress actuator, the first intermediate principal stress actuator and the The second intermediate principal stress actuator applies the maximum principal stress and the intermediate principal stress to the rock sample in the sample assembly, and then the rock true triaxial dynamic compression shear test can be carried out, and the test data can be recorded at the same time;
  • Step 9 After the test, first control the first maximum principal stress actuator, the second maximum principal stress actuator, the first intermediate principal stress actuator and the second intermediate principal stress actuator to reset, and then unload the minimum principal stress actuator. Stress hydraulic pressure and complete hydraulic oil discharge;
  • Step 10 Start the hydraulic motor, move the pressure chamber transfer slide carrying the pressure chamber and the sample assembly to the rear position of the reaction force frame, first release the locking of the two half-ring jackets by the transverse pressure elbow clamp, and then The two half-ring jackets are controlled by the jacket electric pushing mechanism to return to the initial position respectively to complete the separation of the two half-ring jackets;
  • Step 11 Control the drop of the hoisting arm of the pressure chamber barrel hoisting mechanism, connect the external hoisting lugs of the pressure chamber barrel with the hoisting arm of the pressure chamber barrel hoisting mechanism, and then control the lifting arm of the pressure chamber barrel hoisting mechanism to make the The pressure chamber cylinder rises to a high position, at this time the separation of the pressure chamber cylinder and the pressure chamber base is completed, and the exposed sample assembly is removed from the top of the second self-balancing piston rod of the pressure chamber base;
  • Step 12 Start the hydraulic motor again, move the pressure chamber transfer slide carrying the pressure chamber base to the front position of the reaction force frame, and control the pressure chamber cylinder lifting platform at the rear position of the reaction force frame. Lift, and finally drop the pressure chamber cylinder onto the pressure chamber cylinder lifting platform through the pressure chamber cylinder hoisting mechanism.
  • the device and method for the true triaxial dynamic compression shear test of rocks under complex structural conditions in the present invention can simulate the in-situ stress conditions of 5000-meter-level buried depth, and can perform complete rock samples with different stress paths under high stress conditions and discontinuous structures (joints). , bedding, fissures) rock sample fracture deformation, sudden instability, dynamic compression shearing, low-cycle fatigue and other types of tests, which can be used to study the critical fracture and instability dynamics of rock under the combination of stiffness and three-dimensional stress of different rock bodies It can effectively meet the needs of failure and failure test research of deep engineering rock mass under the structural control of discontinuous surface and dynamic action.
  • Fig. 1 is the top view of the rock true triaxial dynamic compression shear test device (initial state) under the deep complex structural conditions of the present invention
  • Fig. 2 is A-A sectional view in Fig. 1;
  • FIG 3 is a side view of the reaction force frame of the present invention (equipped with an actuator, etc. and in a working state);
  • Fig. 4 is B-B sectional view in Fig. 3;
  • FIG. 5 is a schematic structural diagram of the actuator (cross-section) of the present invention.
  • Fig. 6 is the structural schematic diagram of the pressure chamber of the present invention.
  • Fig. 7 is C-C sectional view in Fig. 6;
  • a true triaxial dynamic compression-shear test device for rocks under complex structural conditions in deep parts includes a reaction force frame 1, a pressure chamber 2, a foundation platform 3, a first maximum principal stress actuator 4, a first Two maximum principal stress actuators 5, a first intermediate principal stress actuator 6 and a second intermediate principal stress actuator 7; the reaction force frame 1 is fixedly arranged on the ground 8, and the first maximum principal stress actuator
  • the actuator 4 and the second maximum principal stress actuator 5 are symmetrically arranged at the upper and lower ends of the reaction force frame 1
  • the first intermediate principal stress actuator 6 and the second intermediate principal stress actuator 7 are symmetrically arranged at the upper and lower ends of the reaction force frame 1.
  • the pressure chamber 2 adopts a split cylindrical structure, including the pressure chamber base 11 and the pressure chamber cylinder 12, and the pressure chamber base 11 and the pressure chamber cylinder 12 are buckled to form a complete pressure chamber 2; the pressure chamber base 11 is arranged on the pressure chamber transfer slide 10, and the pressure chamber base 11 and the pressure chamber transfer slide 10 follow up; a pressure chamber cylinder hoisting mechanism 13 is arranged above the basic platform 3, and the pressure chamber cylinder hoisting mechanism
  • the base platform 3 directly under the boom of 13 is internally concealed with a pressure
  • the reaction force frame 1 adopts a ring-shaped plane integrated structure.
  • the cross-sectional shape of the reaction force frame 1 is a polygon.
  • a side support base 17 is arranged between the bottom slopes of the frame 1; the first maximum principal stress actuator 4 is vertically hidden and embedded on the top of the reaction force frame 1, and the second maximum principal stress actuator 5 is vertically hidden and embedded.
  • the first maximum principal stress actuator 4 and the second maximum principal stress actuator 5 are coaxially distributed; the first intermediate principal stress actuator 6 is horizontally hidden and embedded At the left end of the reaction force frame 1, the second intermediate principal stress actuator 7 is horizontally hidden and embedded in the right end of the reaction force frame 1, and the first intermediate principal stress actuator 6 and the second intermediate principal stress actuate The device 7 is coaxially distributed.
  • the reaction force frame 1 needs to meet the design requirements of the ultra-high stiffness plane-loaded reaction force frame.
  • the reaction force frame 1 is made of 42CrMo material by a forging process, and its yield strength can reach 930MPa, and the overall effective stiffness can reach more than 20GN/m.
  • the first maximum principal stress actuator 4, the second maximum principal stress actuator 5, the first intermediate principal stress actuator 6 and the second intermediate principal stress actuator 7 have the same structure, and all include a cylinder 18,
  • the cylinder tail cover plate 20 is sealed and fixed at the tail end cylinder mouth of the cylinder barrel 18 , and the cylinder head cover plate 21 is sealed and fixed at the cylinder barrel 18 .
  • the head end cylinder mouth, the cylinder cylinder 18 is coaxially sleeved on the piston rod 19, the rodless cavity in the cylinder cylinder 18 is on the same side as the cylinder tail cover plate 20, and the rod cavity in the cylinder cylinder 18 is on the same side as the cylinder head cover plate 21;
  • the piston rod 19 is sealed through the cylinder tail cover plate 20, a hydrostatic support sealing sleeve 22 is set between the piston rod 19 with the rod cavity and the cylinder barrel 18, and a hole is pierced between the piston rod 19 and the cylinder tail cover plate 20.
  • a dust jacket 23 is arranged between them; a magnetostrictive displacement sensor 24 is connected between the piston rod 19 and the cylinder tail cover plate 20; A load sensor adapter 26 is arranged between the spoke-type load sensor 25 and the piston rod 19, and a pressure head 27 is fixedly connected to the outer end of the spoke-type load sensor 25; Lateral force mechanism 28 .
  • the actuator adopts a static pressure support sealing sleeve 22, which ensures the characteristics of low starting frequency, ultra-high motion precision, control precision and good precision retention;
  • the actuator is equipped with a magnetostrictive displacement sensor 24 And the spoke-type load sensor 25, the magnetostrictive displacement sensor 24 is used to monitor the loading position of the piston rod 19, and the spoke-type load sensor 25 is used to monitor the loading load of the actuator;
  • the actuator is also equipped with an anti-lateral force mechanism 28, through the anti-lateral force mechanism 28 to eliminate the lateral force when the piston is loaded, thereby eliminating the influence of the lateral force on the test data.
  • a first self-balancing piston rod 29 is vertically disposed at the top center of the pressure chamber cylinder 12 , and the first self-balancing piston rod 29 and the pressure chamber cylinder 12 are sealed by the first flange end cover 30 .
  • One end of a self-balancing piston rod 29 extends to the outside of the pressure chamber cylinder 12 , and the other end of the first self-balancing piston rod 29 extends to the inside of the pressure chamber cylinder 12 , between the first self-balancing piston rod 29 and the pressure chamber cylinder 12
  • a first LVDT displacement sensor 31 is connected;
  • a second self-balancing piston rod 32 is vertically arranged in the center of the pressure chamber base 11 , and the second self-balancing piston rod 32 and the pressure chamber base 11 pass through the second flange end
  • the cover 33 is sealed, one end of the second self-balancing piston rod 32 extends below the pressure chamber base 11, the other end of the second self-balancing piston rod 32 extends above the pressure chamber base 11, between the second self-balancing piston rod 32
  • a third LVDT displacement sensor 36 is connected between the balance piston rod 34 and the pressure chamber cylinder 12; a fourth self-balancing piston rod 37 is horizontally arranged on the right side of the pressure chamber cylinder 12, and the fourth self-balancing piston rod 37 and the pressure chamber cylinder 12 are sealed by a fourth flange end cover 38, one end of the fourth self-balancing piston rod 37 extends to the outside of the pressure chamber cylinder 12, and the other end of the fourth self-balancing piston rod 37 extends to the pressure chamber Inside the cylinder 12, a fourth LVDT displacement sensor 39 is connected between the fourth self-balancing piston rod 37 and the pressure chamber cylinder 12; the first self-balancing piston rod 29 and the second self-balancing piston rod 32 are coaxially distributed , the third self-balancing piston rod 34 and the fourth self-balancing piston rod 37 are coaxially distributed; a hoisting lug 40 is provided outside the pressure chamber cylinder 12 .
  • the pressure chamber base 11 and the pressure chamber cylinder 12 are made of 42CrMo material by a forging process, and the yield strength can reach 930MPa.
  • the pressure chamber base 11 and the pressure chamber cylinder 12 are buckled to form a complete pressure chamber. After the test, it can withstand pressure of 120MPa; due to the split design, the traditional sample mounting hole is cancelled, which improves the sample operation space; through the first self-balancing piston rod 29, the second self-balancing piston rod 32, the first The fine adjustment of the three self-balancing piston rods 34 and the fourth self-balancing piston rod 37 can pre-position the sample.
  • a slide guide slider 41 is fixed on the lower surface of the pressure chamber transfer slide 10, and the slide guide slide 41 is slidably connected with the pressure chamber transfer rail 9;
  • a rack 42 is fixed, and the rack 42 is parallel to the pressure chamber transfer track 9;
  • a hydraulic motor 43 is vertically installed on the pressure chamber transfer slide 10, and the power output shaft of the hydraulic motor 43 faces and extends to the pressure
  • a gear is fixedly installed on the power output shaft of the hydraulic motor 43 below the chamber transfer slide 10 , and the gear is meshed with the rack 42 .
  • the pressure chamber cylinder and the base packaging fixture 15 include a left half-clamp and a right half-clamp, the left half-clamp and the right half-clamp have the same structure, and both include a half-ring jacket 44, a jacket guiding support table 45, and a jacket fixing guide rail 46.
  • the jacket guide support platform 45 is fixedly arranged on the side of the base platform 3, and the jacket fixing guide rail 46 is horizontally fixed on the clip
  • the jacket fixed guide rail 46 adopts a parallel double rail structure
  • the jacket follower guide rail 47 is horizontally fixed on the upper surface of the pressure chamber transfer slide 10
  • the jacket follower guide rail 47 adopts a parallel double rail structure
  • the arrangement height and gauge of the jacket follower guide rail 47 and the jacket fixed guide rail 46 are exactly the same;
  • the jacket slide block 48 is fixedly arranged on the lower surface of the half-ring jacket 44, and the jacket slide block 48 and the jacket follower guide rail are 47 and the jacket fixing guide rail 46 are both slidingly connected and matched;
  • the jacket electric pushing mechanism 49 is arranged between the half-ring jacket 44 and the jacket guiding support platform 45, and the half-ring jacket is driven by the jacket electric pushing mechanism 49.
  • the large-flow hydraulic oil source of the test device is designed according to the concept of energy saving, detachable and recyclable, and five sets of oil pumps with different flow can be combined to meet the needs of large and small flow under different functions.
  • five sets of oil pumps with different flow can be combined to meet the needs of large and small flow under different functions.
  • the demand for flow rate under different functional test conditions can be achieved; in addition, in order to meet the static, dynamic, stress-strain whole process curve
  • 4 sets of 100L/min oil pumps can be used in parallel, which can be turned on individually or at the same time, so as to achieve not only large flow required for dynamic control, but also small flow required for the whole process curve, avoiding excessive flow loss and realizing electric energy saving, while avoiding the heating of the equipment, and improving the reliability and stability of the equipment.
  • the EDC i70 controller produced in Germany can be used as the main control element.
  • the EDC i70 multi-channel application, built-in chassis, three main stress control commands and data acquisition functions can be completed on a general software platform.
  • a true triaxial dynamic compression-shear test method for rocks under complex deep structural conditions adopts the true triaxial dynamic compression-shear test device for rocks under complex deep structural conditions, including the following steps:
  • Step 1 Prepare rock samples, encapsulate the rock samples with interlocking pressure blocks, prepare three sets of LVDT displacement sensors, and combine the three sets of LVDT displacement sensors with the rock samples and the interlocking pressure blocks to At the same time, the sample assembly 51 is finally formed, and the three sets of LVDT displacement sensors are used to measure the volume change of the rock sample in the direction of large principal stress, the direction of medium principal stress and the direction of small principal stress respectively;
  • Step 2 Adjust the test device to the initial state.
  • the pressure chamber base 11 is located at the front station of the reaction force frame 1
  • the pressure chamber cylinder 12 is located at the rear station of the reaction force frame 1.
  • the pressure chamber cylinder lifts up and down On the mounting table 14, the pressure chamber cylinder and the left and right half ring jackets 44 of the base packaging fixture 15 are in a separated state;
  • Step 3 Place the prepared sample assembly 51 on the top of the second self-balancing piston rod 32 of the pressure chamber base 11, and adjust the positions of the three sets of LVDT displacement sensors and the extension of the stylus on the sample assembly 51 so that the Three sets of LVDT displacement sensors are within the test range;
  • Step 4 First, the pressure chamber cylinder 12 is vertically hoisted from the pressure chamber cylinder lifting platform 14 by the pressure chamber cylinder lifting mechanism 13, and then the pressure chamber cylinder lifting platform 14 is controlled to fall to a low position, Restart the hydraulic motor 43, under the action of the gear and the rack 42, the pressure chamber transfer slide 10 carrying the pressure chamber base 11 and the sample assembly 51 will move along the pressure chamber transfer track 9 until the pressure chamber base 11 is moved directly below the pressure chamber cylinder 12, at this time the jacket fixed guide rail 46 on the jacket guide support table 45 and the jacket follower guide rail 47 on the pressure chamber transfer slide 10 are accurately connected together;
  • Step 5 drop the pressure chamber cylinder 12 onto the pressure chamber base 11 through the pressure chamber cylinder hoisting mechanism 13, so that the pressure chamber cylinder 12 and the pressure chamber base 11 are fastened together. inside the chamber cylinder 12, then disconnect the connection between the hoisting arm of the pressure chamber cylinder hoisting mechanism 13 and the hoisting lugs 40 outside the pressure chamber cylinder 12, and then control the pressure chamber cylinder hoisting mechanism 13 to lift and reset the jib;
  • Step 6 Activate the jacket electric pushing mechanism 49 to move the half-ring jacket 44, and the jacket slider 48 at the bottom of the half-ring jacket 44 will move from the jacket fixing guide rail 46 to the jacket follower guide rail 47 until the left and right The two half-ring jackets 44 are fully buckled together, and then the two half-ring jackets 44 are locked as a whole by pressing the elbow clamp 50 horizontally, and then the electric push mechanism 49 of the jacket is controlled to reset;
  • Step 7 Start the hydraulic motor 43 again, move the pressure chamber transfer slide 10 carrying the pressure chamber 2 and the sample assembly 51 to the test station where the reaction force frame 1 is located, and then pass the first self-propelled slide on the pressure chamber 2 .
  • the balance piston rod 29, the second self-balancing piston rod 32, the third self-balancing piston rod 34 and the fourth self-balancing piston rod 37 cooperate to pre-clamp the sample assembly 51 inside the pressure chamber 2;
  • Step 8 First fill the hydraulic oil into the pressure chamber 2 until the hydraulic loading of the minimum principal stress is completed, and then start the first maximum principal stress actuator 4, the second maximum principal stress actuator 5, and the first intermediate principal stress action.
  • the actuator 6 and the second intermediate principal stress actuator 7 apply the maximum principal stress and the intermediate principal stress to the rock sample in the sample assembly 51, and then the true triaxial dynamic compression shear test of the rock can be carried out, and the test data can be recorded at the same time. ;
  • Step 9 After the test, first control the first maximum principal stress actuator 4, the second maximum principal stress actuator 5, the first intermediate principal stress actuator 6 and the second intermediate principal stress actuator 7 to reset, Then unload the minimum principal stress hydraulic pressure and complete the hydraulic oil discharge;
  • Step 10 Start the hydraulic motor 43, move the pressure chamber transfer slide 10 carrying the pressure chamber 2 and the sample assembly 51 to the position behind the reaction force frame 1, first release the lateral pressure elbow clamp 50 to the two half rings The locking of the jacket 44 is then controlled by the jacket electric push mechanism 49 to control the two half-ring jackets 44 to return to their original positions, to complete the separation of the two half-ring jackets 44;
  • Step 11 Control the drop of the hoisting arm of the pressure chamber barrel hoisting mechanism 13, connect the external hoisting lugs 40 of the pressure chamber barrel 12 with the hoisting arm of the pressure chamber barrel hoisting mechanism 13, and then control the pressure chamber barrel hoisting mechanism 13
  • the boom rises to make the pressure chamber cylinder 12 rise to a high position.
  • the pressure chamber cylinder 12 and the pressure chamber base 11 are separated, and the exposed sample assembly 51 is removed from the second self-balancing piston rod of the pressure chamber base 11.
  • Step 12 Start the hydraulic motor again, move the pressure chamber transfer slide 10 carrying the pressure chamber base 11 to the front position of the reaction force frame 1, and control the lifting and lowering of the pressure chamber cylinder at the rear position of the reaction force frame 1
  • the lifting platform 14 is lifted, and finally the pressure chamber cylinder 12 is dropped onto the pressure chamber cylinder lifting platform 14 through the pressure chamber cylinder hoisting mechanism 13 .

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

一种深部复杂构造条件下岩石真三轴动态压剪试验装置及方法,装置包括反力框架(1)、压力室(2)、基础平台(3)及四台作动器(4,5,6,7),基础平台(3)上设有压力室转运轨道(9),压力室转运轨道(9)上设有压力室转运滑台(10);压力室(2)为分体式结构,压力室底座(11)位于压力室转运滑台(10)上,压力室筒体(12)配有压力室筒体升降式承放台(14)和压力室筒体吊装机构(13);压力室(2)配有压力室筒体与底座封装夹具(15)。方法为:试样组合体(51)置于压力室底座(11)上;压力室底座(11)移至压力室筒体(12)下方;压力室(2)合体;由夹具封装压力室(2);压力室(2)移至反力框架(1)内;试样预夹紧;施加真三轴;试验结束;作动器(4,5,6,7)复位;压力室(2)卸载围压;压力室(2)移向压力室筒体吊装机构(13);解除压力室(2)夹具封装;压力室筒体(12)起吊并移除试样组合体(51);压力室底座(11)返回原位;压力室筒体(12)下落放到压力室筒体升降式承放台(14)。

Description

深部复杂构造条件下岩石真三轴动态压剪试验装置及方法 技术领域
本发明属于岩石力学技术领域,特别是涉及一种深部复杂构造条件下岩石真三轴动态压剪试验装置及方法。
背景技术
深部金属地下矿采用深竖井开采是目前唯一获取资源的方法,深井掘进自上向下穿越不同地层,具有岩性变化大、构造应力发育、大断层构造多、局部碎裂化造成岩体不连续面多的特点,同时地应力(σ 123>0,σ 1为最大主应力、σ 2为中间主应力,σ 3为最小主应力) 不但随埋深增加,而且受构造应力影响变异显著,致使地质环境和岩石力学条件极为复杂,经常发生突发塌方、岩爆、大变形和爆破诱发岩体结构失稳等地质灾害。因此,深入研究深部岩石在真三轴应力条件下动态压缩、动态剪切和强卸荷造成岩体破裂与脆性破坏力学性能演化特性十分必要。
目前,岩石力学真三轴动力学试验主要分为以下几类:①、采用柔性或刚性真三轴试验装置加载至一定的高真三轴应力水平,单面突然卸荷形成自由面,通过诱导岩石爆裂来模拟岩爆;②、采用柔性或刚性真三轴试验装置加载至一定的高真三轴应力水平,单面突然卸荷形成自由面,同时作动器施加低频扰动荷载,通过激发岩石爆裂来模拟岩爆;③、采用三维正交霍普金森杆结构的真三轴试验装置,对试样进行冲击模拟岩石动力学破坏;④、采用刚性真三轴加载框架和一维霍普金森杆结合的高压硬岩低频扰动和高速冲击型真三轴试验装置,来模拟完整岩石动力条件下的破坏。但是,针对深部复杂构造和高地应力条件下的工程岩体时,想要研究完整岩石和含有各自不连续面的岩石在真三轴动应力作用下的动态压缩和剪切力学行为,现有的岩石力学真三轴动力学试验装置及方法仍存在局限性,因此研发一套全新的深部复杂构造条件下岩石真三轴动态压剪试验装置及方法势在必行。
技术解决方案
针对现有技术存在的不足,本发明提供一种深部复杂构造条件下岩石真三轴动态压剪试验装置及方法,可模拟5000米级埋深地应力条件,可执行高应力条件下不同应力路径完整岩样和具有不连续构造(节理、层理、裂隙)岩样破裂变形、突变失稳、动态压缩剪切、低周疲劳等类型试验,可用于研究不同岩体外在刚度和三向应力组合条件下岩石临界破裂与失稳动力学机制,有效满足深部工程岩体在不连续面的结构控制下和动力作用下失效破坏试验研究需要。
为了实现上述目的,本发明采用如下技术方案:一种深部复杂构造条件下岩石真三轴动态压剪试验装置,包括反力框架、压力室、基础平台、第一最大主应力作动器、第二最大主应力作动器、第一中间主应力作动器及第二中间主应力作动器;所述反力框架固定设置在地面上,所述第一最大主应力作动器和第二最大主应力作动器对称设置在反力框架的上下两端,所述第一中间主应力作动器和及第二中间主应力作动器对称设置在反力框架的左右两端;所述基础平台固定设置在反力框架前后两侧的地面上,在基础平台顶部水平铺设有压力室转运轨道,压力室转运轨道采用平行双轨结构,压力室转运轨道贯穿反力框架的中心工作腔;在所述压力室转运轨道上设置有压力室转运滑台,压力室转运滑台可沿压力室转运轨道直线移动;所述压力室采用分体式筒型结构,包括压力室底座和压力室筒体,由压力室底座与压力室筒体扣合组成完整的压力室;所述压力室底座设置在压力室转运滑台上,压力室底座与压力室转运滑台进行随动;在所述基础平台上方设置有压力室筒体吊装机构,在压力室筒体吊装机构的吊臂正下方的基础平台内部隐藏设置有压力室筒体升降式承放台,在压力室筒体升降式承放台左右两侧设置有压力室筒体与底座封装夹具。
所述反力框架采用环状平面一体式结构,反力框架的截面形状为多边形,反力框架的底平面通过主支撑底座与地面固定连接,在主支撑底座与反力框架的底斜面之间设置有侧支撑底座;所述第一最大主应力作动器竖直隐藏嵌装在反力框架的顶部,所述第二最大主应力作动器竖直隐藏嵌装在反力框架的底部,第一最大主应力作动器与第二最大主应力作动器同轴分布;所述第一中间主应力作动器水平隐藏嵌装在反力框架的左端部,所述第二中间主应力作动器水平隐藏嵌装在反力框架的右端部,第一中间主应力作动器与第二中间主应力作动器同轴分布。
所述第一最大主应力作动器、第二最大主应力作动器、第一中间主应力作动器及第二中间主应力作动器结构相同,均包括缸筒、活塞杆、缸尾盖板及缸头盖板;所述缸尾盖板密封固装在缸筒的尾端筒口,所述缸头盖板密封固装在缸筒的头端筒口,缸筒同轴套装在活塞杆上,缸筒内的无杆腔与缸尾盖板同侧,缸筒内的有杆腔与缸头盖板同侧;所述活塞杆密封穿过缸尾盖板,在有杆腔的活塞杆与缸筒之间套装有静压支撑密封套,在活塞杆与缸尾盖板穿装孔之间设置有防尘套;在所述活塞杆与缸尾盖板之间连接有磁致伸缩式位移传感器;在所述活塞杆的外伸端连接在轮辐式负荷传感器,轮辐式负荷传感器与活塞杆之间设置有负荷传感器转接座,在轮辐式负荷传感器的外端固定连接有压头;在所述负荷传感器转接座外周设置有抗侧向力机构。
在所述压力室筒体的顶部中心竖直设置有第一自平衡活塞杆,第一自平衡活塞杆与压力室筒体之间通过第一法兰端盖进行密封,第一自平衡活塞杆一端延伸至压力室筒体外部,第一自平衡活塞杆另一端延伸至压力室筒体内部,在第一自平衡活塞杆与压力室筒体之间连接有第一LVDT位移传感器;在所述压力室底座的中心竖直设置有第二自平衡活塞杆,第二自平衡活塞杆与压力室底座之间通过第二法兰端盖进行密封,第二自平衡活塞杆一端延伸至压力室底座下方,第二自平衡活塞杆另一端延伸至压力室底座上方,在第二自平衡活塞杆与压力室底座之间连接有第二LVDT位移传感器;在所述压力室筒体的左侧部水平设置有第三自平衡活塞杆,第三自平衡活塞杆与压力室筒体之间通过第三法兰端盖进行密封,第三自平衡活塞杆一端延伸至压力室筒体外部,第三自平衡活塞杆另一端延伸至压力室筒体内部,在第三自平衡活塞杆与压力室筒体之间连接有第三LVDT位移传感器;在所述压力室筒体的右侧部水平设置有第四自平衡活塞杆,第四自平衡活塞杆与压力室筒体之间通过第四法兰端盖进行密封,第四自平衡活塞杆一端延伸至压力室筒体外部,第四自平衡活塞杆另一端延伸至压力室筒体内部,在第四自平衡活塞杆与压力室筒体之间连接有第四LVDT位移传感器;所述第一自平衡活塞杆与第二自平衡活塞杆同轴分布,所述第三自平衡活塞杆与第四自平衡活塞杆同轴分布;在所述压力室筒体外部设置有吊装吊耳。
在所述压力室转运滑台下表面固设有滑台导向滑块,滑台导向滑块与压力室转运轨道滑动连接;在其中一根所述压力室转运轨道的侧部固装有齿条,齿条与压力室转运轨道相平行;在所述压力室转运滑台上竖直安装有一台液压马达,液压马达的动力输出轴朝向且延伸至压力室转运滑台下方,在液压马达的动力输出轴上固定安装有齿轮,齿轮与齿条相啮合。
所述压力室筒体与底座封装夹具包括左半夹具和右半夹具,左半夹具和右半夹具结构相同,均包括半环夹套、夹套导向支撑台、夹套固定导轨、夹套随动导轨、夹套滑块及夹套电动推移机构;所述夹套导向支撑台固定设置在基础平台侧方,所述夹套固定导轨水平固装在夹套导向支撑台上表面,夹套固定导轨采用平行双轨结构;所述夹套随动导轨水平固装在压力室转运滑台上表面,夹套随动导轨采用平行双轨结构,夹套随动导轨与夹套固定导轨的布设高度和轨距完全相同;所述夹套滑块固定设置在半环夹套下表面,夹套滑块与夹套随动导轨和夹套固定导轨均为滑动连接配合;所述夹套电动推移机构设置在半环夹套与夹套导向支撑台之间,由夹套电动推移机构带动半环夹套在夹套随动导轨和夹套固定导轨上直线移动;在所述左半夹具的半环夹套与右半夹具的半环夹套之间设置有横压肘夹,所述压力室底座和压力室筒体之间通过扣合在一起的两个半环夹套进行封装固定。
一种深部复杂构造条件下岩石真三轴动态压剪试验方法,采用了所述的深部复杂构造条件下岩石真三轴动态压剪试验装置,包括如下步骤:
步骤一:制备岩石试样,将岩石试样利用互扣式压块进行封装,再另准备三套LVDT位移传感器,并将这三套LVDT位移传感器与岩石试样和互扣式压块组合到一起,最终形成试样组合体,通过这三套LVDT位移传感器分别用于在大主应力方向、中主应力方向和小主应力方向上对岩石试样进行体变测量;
步骤二:将试验装置调整到初始状态,在初始状态下,压力室底座位于反力框架前方工位处,压力室筒体位于反力框架后方工位处的压力室筒体升降式承放台上,压力室筒体与底座封装夹具的左右两个半环夹套处于分离状态;
步骤三:将制备好的试样组合体放置到压力室底座的第二自平衡活塞杆顶端,调整试样组合体上三套LVDT位移传感器的位置和触针伸长量,使三套LVDT位移传感器处于试验量程范围内;
步骤四:先通过压力室筒体吊装机构将压力室筒体从压力室筒体升降式承放台上垂直吊起,然后控制压力室筒体升降式承放台下落至低位,再启动液压马达,在齿轮与齿条啮合传动作用下,承载有压力室底座和试样组合体的压力室转运滑台将沿着压力室转运轨道移动,直到压力室底座移动到压力室筒体正下方,此时夹套导向支撑台上的夹套固定导轨与压力室转运滑台上的夹套随动导轨准确衔接在一起;
步骤五:通过压力室筒体吊装机构将压力室筒体下落到压力室底座上,使压力室筒体与压力室底座扣合在一起,此时试样组合体位于压力室筒体内部,然后脱开压力室筒体吊装机构吊臂与压力室筒体外部吊装吊耳之间的连接,之后控制压力室筒体吊装机构吊臂抬升复位;
步骤六:启动夹套电动推移机构,使半环夹套移动,半环夹套底部的夹套滑块将从夹套固定导轨移动到夹套随动导轨上,直到左右两个半环夹套完全扣合在一起,然后通过横压肘夹将两个半环夹套锁定为整体,之后控制夹套电动推移机构复位;
步骤七:再次启动液压马达,将承载有压力室和试样组合体的压力室转运滑台移动到反力框架所在试验工位处,之后通过压力室上的第一自平衡活塞杆、第二自平衡活塞杆、第三自平衡活塞杆及第四自平衡活塞杆配合对压力室内部的试样组合体进行预夹紧;
步骤八:先向压力室内部充入液压油,直到完成最小主应力液压加载,然后启动第一最大主应力作动器、第二最大主应力作动器、第一中间主应力作动器及第二中间主应力作动器对试样组合体内的岩石试样施加最大主应力和中间主应力,之后即可开展岩石真三轴动态压剪试验,同时记录试验数据;
步骤九:试验结束后,先控制第一最大主应力作动器、第二最大主应力作动器、第一中间主应力作动器及第二中间主应力作动器复位,然后卸载最小主应力液压并完成液压油排出;
步骤十:启动液压马达,将承载有压力室和试样组合体的压力室转运滑台移动到反力框架后方工位处,先解除横压肘夹对两个半环夹套的锁定,然后由夹套电动推移机构控制两个半环夹套各自退回到初始位置,完成两个半环夹套的分离;
步骤十一:控制压力室筒体吊装机构吊臂下落,将压力室筒体外部吊装吊耳与压力室筒体吊装机构吊臂连接在一起,然后控制压力室筒体吊装机构吊臂上升,使压力室筒体上升到高位,此时压力室筒体与压力室底座完成分离,同时将露出的试样组合体从压力室底座的第二自平衡活塞杆顶端移除;
步骤十二:再次启动液压马达,将承载有压力室底座的压力室转运滑台移动到反力框架前方工位处,同时控制反力框架后方工位处的压力室筒体升降式承放台升起,最后通过压力室筒体吊装机构将压力室筒体落放到压力室筒体升降式承放台上。
有益效果
本发明的有益效果:
本发明的深部复杂构造条件下岩石真三轴动态压剪试验装置及方法,可模拟5000米级埋深地应力条件,可执行高应力条件下不同应力路径完整岩样和具有不连续构造(节理、层理、裂隙)岩样破裂变形、突变失稳、动态压缩剪切、低周疲劳等类型试验,可用于研究不同岩体外在刚度和三向应力组合条件下岩石临界破裂与失稳动力学机制,有效满足深部工程岩体在不连续面的结构控制下和动力作用下失效破坏试验研究需要。
附图说明
图1为本发明的深部复杂构造条件下岩石真三轴动态压剪试验装置(初始状态)的俯视图;
图2为图1中A-A剖视图;
图3为本发明的反力框架(配装有作动器等且处于工作状态)的侧视图;
图4为图3中B-B剖视图;
图5为本发明的作动器(剖视)的结构示意图;
图6为本发明的压力室的结构示意图;
图7为图6中C-C剖视图;
图中,1—反力框架,2—压力室,3—基础平台,4—第一最大主应力作动器,5—第二最大主应力作动器,6—第一中间主应力作动器,7—第二中间主应力作动器,8—地面,9—压力室转运轨道,10—压力室转运滑台,11—压力室底座,12—压力室筒体,13—压力室筒体吊装机构,14—压力室筒体升降式承放台,15—压力室筒体与底座封装夹具,16—主支撑底座,17—侧支撑底座,18—缸筒,19—活塞杆,20—缸尾盖板,21—缸头盖板,22—静压支撑密封套,23—防尘套,24—磁致伸缩式位移传感器,25—轮辐式负荷传感器,26—负荷传感器转接座,27—压头,28—抗侧向力机构,29—第一自平衡活塞杆,30—第一法兰端盖,31—第一LVDT位移传感器,32—第二自平衡活塞杆,33—第二法兰端盖,34—第三自平衡活塞杆,35—第三法兰端盖,36—第三LVDT位移传感器,37—第四自平衡活塞杆,38—第四法兰端盖,39—第四LVDT位移传感器,40—吊装吊耳,41—滑台导向滑块,42—齿条,43—液压马达,44—半环夹套,45—夹套导向支撑台,46—夹套固定导轨,47—夹套随动导轨,48—夹套滑块,49—夹套电动推移机构,50—横压肘夹,51—试样组合体,52—第二LVDT位移传感器。
本发明的实施方式
下面结合附图和具体实施例对本发明做进一步的详细说明。
如图1~7所示,一种深部复杂构造条件下岩石真三轴动态压剪试验装置,包括反力框架1、压力室2、基础平台3、第一最大主应力作动器4、第二最大主应力作动器5、第一中间主应力作动器6及第二中间主应力作动器7;所述反力框架1固定设置在地面8上,所述第一最大主应力作动器4和第二最大主应力作动器5对称设置在反力框架1的上下两端,所述第一中间主应力作动器6和及第二中间主应力作动器7对称设置在反力框架1的左右两端;所述基础平台3固定设置在反力框架1前后两侧的地面上,在基础平台3顶部水平铺设有压力室转运轨道9,压力室转运轨道9采用平行双轨结构,压力室转运轨道9贯穿反力框架1的中心工作腔;在所述压力室转运轨道9上设置有压力室转运滑台10,压力室转运滑台10可沿压力室转运轨道9直线移动;所述压力室2采用分体式筒型结构,包括压力室底座11和压力室筒体12,由压力室底座11与压力室筒体12扣合组成完整的压力室2;所述压力室底座11设置在压力室转运滑台10上,压力室底座11与压力室转运滑台10进行随动;在所述基础平台3上方设置有压力室筒体吊装机构13,在压力室筒体吊装机构13的吊臂正下方的基础平台3内部隐藏设置有压力室筒体升降式承放台14,在压力室筒体升降式承放台14左右两侧设置有压力室筒体与底座封装夹具15。
所述反力框架1采用环状平面一体式结构,反力框架1的截面形状为多边形,反力框架1的底平面通过主支撑底座16与地面8固定连接,在主支撑底座16与反力框架1的底斜面之间设置有侧支撑底座17;所述第一最大主应力作动器4竖直隐藏嵌装在反力框架1的顶部,所述第二最大主应力作动器5竖直隐藏嵌装在反力框架1的底部,第一最大主应力作动器4与第二最大主应力作动器5同轴分布;所述第一中间主应力作动器6水平隐藏嵌装在反力框架1的左端部,所述第二中间主应力作动器7水平隐藏嵌装在反力框架1的右端部,第一中间主应力作动器6与第二中间主应力作动器7同轴分布。
本实施例中,反力框架1需要达到超高刚度平面加载反力框架的设计要求。为此,反力框架1采用42CrMo材料以锻造工艺进行制造,其屈服强度可达930MPa,整体有效刚度可达20GN/m以上。
所述第一最大主应力作动器4、第二最大主应力作动器5、第一中间主应力作动器6及第二中间主应力作动器7结构相同,均包括缸筒18、活塞杆19、缸尾盖板20及缸头盖板21;所述缸尾盖板20密封固装在缸筒18的尾端筒口,所述缸头盖板21密封固装在缸筒18的头端筒口,缸筒18同轴套装在活塞杆19上,缸筒18内的无杆腔与缸尾盖板20同侧,缸筒18内的有杆腔与缸头盖板21同侧;所述活塞杆19密封穿过缸尾盖板20,在有杆腔的活塞杆19与缸筒18之间套装有静压支撑密封套22,在活塞杆19与缸尾盖板20穿装孔之间设置有防尘套23;在所述活塞杆19与缸尾盖板20之间连接有磁致伸缩式位移传感器24;在所述活塞杆19的外伸端连接在轮辐式负荷传感器25,轮辐式负荷传感器25与活塞杆19之间设置有负荷传感器转接座26,在轮辐式负荷传感器25的外端固定连接有压头27;在所述负荷传感器转接座26外周设置有抗侧向力机构28。
本实施例中,第一最大主应力作动器4、第二最大主应力作动器5、第一中间主应力作动器6及第二中间主应力作动器7均需要达到大吨位低摩擦动态伺服作动器的设计要求。为此,作动器采用了静压支撑密封套22,保证了启动频率小、具有超高的运动精度、控制精度、精度保持性好的特性;作动器配置了磁致伸缩式位移传感器24和轮辐式负荷传感器25,通过磁致伸缩式位移传感器24来监测活塞杆19的加载位置,通过轮辐式负荷传感器25来监测作动器的加载负荷;作动器还配置了抗侧向力机构28,通过抗侧向力机构28来消活塞加载时所受侧向力,进而消除侧向力对试验数据的影响。
在所述压力室筒体12的顶部中心竖直设置有第一自平衡活塞杆29,第一自平衡活塞杆29与压力室筒体12之间通过第一法兰端盖30进行密封,第一自平衡活塞杆29一端延伸至压力室筒体12外部,第一自平衡活塞杆29另一端延伸至压力室筒体12内部,在第一自平衡活塞杆29与压力室筒体12之间连接有第一LVDT位移传感器31;在所述压力室底座11的中心竖直设置有第二自平衡活塞杆32,第二自平衡活塞杆32与压力室底座11之间通过第二法兰端盖33进行密封,第二自平衡活塞杆32一端延伸至压力室底座11下方,第二自平衡活塞杆32另一端延伸至压力室底座11上方,在第二自平衡活塞杆32与压力室底座11之间连接有第二LVDT位移传感器52;在所述压力室筒体12的左侧部水平设置有第三自平衡活塞杆34,第三自平衡活塞杆34与压力室筒体12之间通过第三法兰端盖35进行密封,第三自平衡活塞杆34一端延伸至压力室筒体12外部,第三自平衡活塞杆34另一端延伸至压力室筒体12内部,在第三自平衡活塞杆34与压力室筒体12之间连接有第三LVDT位移传感器36;在所述压力室筒体12的右侧部水平设置有第四自平衡活塞杆37,第四自平衡活塞杆37与压力室筒体12之间通过第四法兰端盖38进行密封,第四自平衡活塞杆37一端延伸至压力室筒体12外部,第四自平衡活塞杆37另一端延伸至压力室筒体12内部,在第四自平衡活塞杆37与压力室筒体12之间连接有第四LVDT位移传感器39;所述第一自平衡活塞杆29与第二自平衡活塞杆32同轴分布,所述第三自平衡活塞杆34与第四自平衡活塞杆37同轴分布;在所述压力室筒体12外部设置有吊装吊耳40。
本实施例中,压力室底座11和压力室筒体12均采用42CrMo材料以锻造工艺进行制造,其屈服强度可达930MPa,由压力室底座11和压力室筒体12扣合组成完整的压力室后,其可耐压120MPa;由于采用了分体式设计,因此取消了传统的试样安装孔,提高了试样操作空间;通过第一自平衡活塞杆29、第二自平衡活塞杆32、第三自平衡活塞杆34及第四自平衡活塞杆37的微调配合,可对试样进行预定位处理。
在所述压力室转运滑台10下表面固设有滑台导向滑块41,滑台导向滑块41与压力室转运轨道9滑动连接;在其中一根所述压力室转运轨道9的侧部固装有齿条42,齿条42与压力室转运轨道9相平行;在所述压力室转运滑台10上竖直安装有一台液压马达43,液压马达43的动力输出轴朝向且延伸至压力室转运滑台10下方,在液压马达43的动力输出轴上固定安装有齿轮,齿轮与齿条42相啮合。
所述压力室筒体与底座封装夹具15包括左半夹具和右半夹具,左半夹具和右半夹具结构相同,均包括半环夹套44、夹套导向支撑台45、夹套固定导轨46、夹套随动导轨47、夹套滑块48及夹套电动推移机构49;所述夹套导向支撑台45固定设置在基础平台3侧方,所述夹套固定导轨46水平固装在夹套导向支撑台45上表面,夹套固定导轨46采用平行双轨结构;所述夹套随动导轨47水平固装在压力室转运滑台10上表面,夹套随动导轨47采用平行双轨结构,夹套随动导轨47与夹套固定导轨46的布设高度和轨距完全相同;所述夹套滑块48固定设置在半环夹套44下表面,夹套滑块48与夹套随动导轨47和夹套固定导轨46均为滑动连接配合;所述夹套电动推移机构49设置在半环夹套44与夹套导向支撑台45之间,由夹套电动推移机构49带动半环夹套44在夹套随动导轨47和夹套固定导轨46上直线移动;在所述左半夹具的半环夹套44与右半夹具的半环夹套44之间设置有横压肘夹50,所述压力室底座11和压力室筒体12之间通过扣合在一起的两个半环夹套44进行封装固定。
本实施例中,试验装置的大流量液压油源按照节能、可拆装、可回收理念进行设计,可采用五套不同流量油泵组合方式,以满足在不同功能下对大、小流量的需求,以实现节约能源、减少发热、提升系统稳定性的目的;通过不同流量的伺服阀组合,以实现不同功能试验条件下对流量大小的需求;此外,为了满足静态、动态、应力应变全过程曲线等不同的试验,可采用4套100L/min油泵并联使用,可单独或者同时开启,从而实现既满足动态控制需要的大流量,又满足全过程曲线需要的小流量,避免过多流量损耗,实现电能的节约,同时避免设备的发热,提高设备的可靠性和稳定性。为了保证试验的进行,可采用德国生产的EDC i70控制器作为主控元件,EDC i70多通道应用,机箱内装式,三个主应力控制命令和数据采集功能在通用软件平台上完成即可。
一种深部复杂构造条件下岩石真三轴动态压剪试验方法,采用了所述的深部复杂构造条件下岩石真三轴动态压剪试验装置,包括如下步骤:
步骤一:制备岩石试样,将岩石试样利用互扣式压块进行封装,再另准备三套LVDT位移传感器,并将这三套LVDT位移传感器与岩石试样和互扣式压块组合到一起,最终形成试样组合体51,通过这三套LVDT位移传感器分别用于在大主应力方向、中主应力方向和小主应力方向上对岩石试样进行体变测量;
步骤二:将试验装置调整到初始状态,在初始状态下,压力室底座11位于反力框架1前方工位处,压力室筒体12位于反力框架1后方工位处的压力室筒体升降式承放台14上,压力室筒体与底座封装夹具15的左右两个半环夹套44处于分离状态;
步骤三:将制备好的试样组合体51放置到压力室底座11的第二自平衡活塞杆32顶端,调整试样组合体51上三套LVDT位移传感器的位置和触针伸长量,使三套LVDT位移传感器处于试验量程范围内;
步骤四:先通过压力室筒体吊装机构13将压力室筒体12从压力室筒体升降式承放台14上垂直吊起,然后控制压力室筒体升降式承放台14下落至低位,再启动液压马达43,在齿轮与齿条42啮合传动作用下,承载有压力室底座11和试样组合体51的压力室转运滑台10将沿着压力室转运轨道9移动,直到压力室底座11移动到压力室筒体12正下方,此时夹套导向支撑台45上的夹套固定导轨46与压力室转运滑台10上的夹套随动导轨47准确衔接在一起;
步骤五:通过压力室筒体吊装机构13将压力室筒体12下落到压力室底座11上,使压力室筒体12与压力室底座11扣合在一起,此时试样组合体51位于压力室筒体12内部,然后脱开压力室筒体吊装机构13吊臂与压力室筒体12外部吊装吊耳40之间的连接,之后控制压力室筒体吊装机构13吊臂抬升复位;
步骤六:启动夹套电动推移机构49,使半环夹套44移动,半环夹套44底部的夹套滑块48将从夹套固定导轨46移动到夹套随动导轨47上,直到左右两个半环夹套44完全扣合在一起,然后通过横压肘夹50将两个半环夹套44锁定为整体,之后控制夹套电动推移机构49复位;
步骤七:再次启动液压马达43,将承载有压力室2和试样组合体51的压力室转运滑台10移动到反力框架1所在试验工位处,之后通过压力室2上的第一自平衡活塞杆29、第二自平衡活塞杆32、第三自平衡活塞杆34及第四自平衡活塞杆37配合对压力室2内部的试样组合体51进行预夹紧;
步骤八:先向压力室2内部充入液压油,直到完成最小主应力液压加载,然后启动第一最大主应力作动器4、第二最大主应力作动器5、第一中间主应力作动器6及第二中间主应力作动器7对试样组合体51内的岩石试样施加最大主应力和中间主应力,之后即可开展岩石真三轴动态压剪试验,同时记录试验数据;
步骤九:试验结束后,先控制第一最大主应力作动器4、第二最大主应力作动器5、第一中间主应力作动器6及第二中间主应力作动器7复位,然后卸载最小主应力液压并完成液压油排出;
步骤十:启动液压马达43,将承载有压力室2和试样组合体51的压力室转运滑台10移动到反力框架1后方工位处,先解除横压肘夹50对两个半环夹套44的锁定,然后由夹套电动推移机构49控制两个半环夹套44各自退回到初始位置,完成两个半环夹套44的分离;
步骤十一:控制压力室筒体吊装机构13吊臂下落,将压力室筒体12外部吊装吊耳40与压力室筒体吊装机构13吊臂连接在一起,然后控制压力室筒体吊装机构13吊臂上升,使压力室筒体12上升到高位,此时压力室筒体12与压力室底座11完成分离,同时将露出的试样组合体51从压力室底座11的第二自平衡活塞杆32顶端移除;
步骤十二:再次启动液压马达,将承载有压力室底座11的压力室转运滑台10移动到反力框架1前方工位处,同时控制反力框架1后方工位处的压力室筒体升降式承放台14升起,最后通过压力室筒体吊装机构13将压力室筒体12落放到压力室筒体升降式承放台14上。
实施例中的方案并非用以限制本发明的专利保护范围,凡未脱离本发明所为的等效实施或变更,均包含于本案的专利范围中。

Claims (7)

  1. 一种深部复杂构造条件下岩石真三轴动态压剪试验装置,其特征在于:包括反力框架、压力室、基础平台、第一最大主应力作动器、第二最大主应力作动器、第一中间主应力作动器及第二中间主应力作动器;所述反力框架固定设置在地面上,所述第一最大主应力作动器和第二最大主应力作动器对称设置在反力框架的上下两端,所述第一中间主应力作动器和及第二中间主应力作动器对称设置在反力框架的左右两端;所述基础平台固定设置在反力框架前后两侧的地面上,在基础平台顶部水平铺设有压力室转运轨道,压力室转运轨道采用平行双轨结构,压力室转运轨道贯穿反力框架的中心工作腔;在所述压力室转运轨道上设置有压力室转运滑台,压力室转运滑台可沿压力室转运轨道直线移动;所述压力室采用分体式筒型结构,包括压力室底座和压力室筒体,由压力室底座与压力室筒体扣合组成完整的压力室;所述压力室底座设置在压力室转运滑台上,压力室底座与压力室转运滑台进行随动;在所述基础平台上方设置有压力室筒体吊装机构,在压力室筒体吊装机构的吊臂正下方的基础平台内部隐藏设置有压力室筒体升降式承放台,在压力室筒体升降式承放台左右两侧设置有压力室筒体与底座封装夹具。
  2. 根据权利要求1所述的一种深部复杂构造条件下岩石真三轴动态压剪试验装置,其特征在于:所述反力框架采用环状平面一体式结构,反力框架的截面形状为多边形,反力框架的底平面通过主支撑底座与地面固定连接,在主支撑底座与反力框架的底斜面之间设置有侧支撑底座;所述第一最大主应力作动器竖直隐藏嵌装在反力框架的顶部,所述第二最大主应力作动器竖直隐藏嵌装在反力框架的底部,第一最大主应力作动器与第二最大主应力作动器同轴分布;所述第一中间主应力作动器水平隐藏嵌装在反力框架的左端部,所述第二中间主应力作动器水平隐藏嵌装在反力框架的右端部,第一中间主应力作动器与第二中间主应力作动器同轴分布。
  3. 根据权利要求1所述的一种深部复杂构造条件下岩石真三轴动态压剪试验装置,其特征在于:所述第一最大主应力作动器、第二最大主应力作动器、第一中间主应力作动器及第二中间主应力作动器结构相同,均包括缸筒、活塞杆、缸尾盖板及缸头盖板;所述缸尾盖板密封固装在缸筒的尾端筒口,所述缸头盖板密封固装在缸筒的头端筒口,缸筒同轴套装在活塞杆上,缸筒内的无杆腔与缸尾盖板同侧,缸筒内的有杆腔与缸头盖板同侧;所述活塞杆密封穿过缸尾盖板,在有杆腔的活塞杆与缸筒之间套装有静压支撑密封套,在活塞杆与缸尾盖板穿装孔之间设置有防尘套;在所述活塞杆与缸尾盖板之间连接有磁致伸缩式位移传感器;在所述活塞杆的外伸端连接在轮辐式负荷传感器,轮辐式负荷传感器与活塞杆之间设置有负荷传感器转接座,在轮辐式负荷传感器的外端固定连接有压头;在所述负荷传感器转接座外周设置有抗侧向力机构。
  4. 根据权利要求1所述的一种深部复杂构造条件下岩石真三轴动态压剪试验装置,其特征在于:在所述压力室筒体的顶部中心竖直设置有第一自平衡活塞杆,第一自平衡活塞杆与压力室筒体之间通过第一法兰端盖进行密封,第一自平衡活塞杆一端延伸至压力室筒体外部,第一自平衡活塞杆另一端延伸至压力室筒体内部,在第一自平衡活塞杆与压力室筒体之间连接有第一LVDT位移传感器;在所述压力室底座的中心竖直设置有第二自平衡活塞杆,第二自平衡活塞杆与压力室底座之间通过第二法兰端盖进行密封,第二自平衡活塞杆一端延伸至压力室底座下方,第二自平衡活塞杆另一端延伸至压力室底座上方,在第二自平衡活塞杆与压力室底座之间连接有第二LVDT位移传感器;在所述压力室筒体的左侧部水平设置有第三自平衡活塞杆,第三自平衡活塞杆与压力室筒体之间通过第三法兰端盖进行密封,第三自平衡活塞杆一端延伸至压力室筒体外部,第三自平衡活塞杆另一端延伸至压力室筒体内部,在第三自平衡活塞杆与压力室筒体之间连接有第三LVDT位移传感器;在所述压力室筒体的右侧部水平设置有第四自平衡活塞杆,第四自平衡活塞杆与压力室筒体之间通过第四法兰端盖进行密封,第四自平衡活塞杆一端延伸至压力室筒体外部,第四自平衡活塞杆另一端延伸至压力室筒体内部,在第四自平衡活塞杆与压力室筒体之间连接有第四LVDT位移传感器;所述第一自平衡活塞杆与第二自平衡活塞杆同轴分布,所述第三自平衡活塞杆与第四自平衡活塞杆同轴分布;在所述压力室筒体外部设置有吊装吊耳。
  5. 根据权利要求1所述的一种深部复杂构造条件下岩石真三轴动态压剪试验装置,其特征在于:在所述压力室转运滑台下表面固设有滑台导向滑块,滑台导向滑块与压力室转运轨道滑动连接;在其中一根所述压力室转运轨道的侧部固装有齿条,齿条与压力室转运轨道相平行;在所述压力室转运滑台上竖直安装有一台液压马达,液压马达的动力输出轴朝向且延伸至压力室转运滑台下方,在液压马达的动力输出轴上固定安装有齿轮,齿轮与齿条相啮合。
  6. 根据权利要求1所述的一种深部复杂构造条件下岩石真三轴动态压剪试验装置,其特征在于:所述压力室筒体与底座封装夹具包括左半夹具和右半夹具,左半夹具和右半夹具结构相同,均包括半环夹套、夹套导向支撑台、夹套固定导轨、夹套随动导轨、夹套滑块及夹套电动推移机构;所述夹套导向支撑台固定设置在基础平台侧方,所述夹套固定导轨水平固装在夹套导向支撑台上表面,夹套固定导轨采用平行双轨结构;所述夹套随动导轨水平固装在压力室转运滑台上表面,夹套随动导轨采用平行双轨结构,夹套随动导轨与夹套固定导轨的布设高度和轨距完全相同;所述夹套滑块固定设置在半环夹套下表面,夹套滑块与夹套随动导轨和夹套固定导轨均为滑动连接配合;所述夹套电动推移机构设置在半环夹套与夹套导向支撑台之间,由夹套电动推移机构带动半环夹套在夹套随动导轨和夹套固定导轨上直线移动;在所述左半夹具的半环夹套与右半夹具的半环夹套之间设置有横压肘夹,所述压力室底座和压力室筒体之间通过扣合在一起的两个半环夹套进行封装固定。
  7. 一种深部复杂构造条件下岩石真三轴动态压剪试验方法,采用了权利要求1所述的深部复杂构造条件下岩石真三轴动态压剪试验装置,其特征在于包括如下步骤:
    步骤一:制备岩石试样,将岩石试样利用互扣式压块进行封装,再另准备三套LVDT位移传感器,并将这三套LVDT位移传感器与岩石试样和互扣式压块组合到一起,最终形成试样组合体,通过这三套LVDT位移传感器分别用于在大主应力方向、中主应力方向和小主应力方向上对岩石试样进行体变测量;
    步骤二:将试验装置调整到初始状态,在初始状态下,压力室底座位于反力框架前方工位处,压力室筒体位于反力框架后方工位处的压力室筒体升降式承放台上,压力室筒体与底座封装夹具的左右两个半环夹套处于分离状态;
    步骤三:将制备好的试样组合体放置到压力室底座的第二自平衡活塞杆顶端,调整试样组合体上三套LVDT位移传感器的位置和触针伸长量,使三套LVDT位移传感器处于试验量程范围内;
    步骤四:先通过压力室筒体吊装机构将压力室筒体从压力室筒体升降式承放台上垂直吊起,然后控制压力室筒体升降式承放台下落至低位,再启动液压马达,在齿轮与齿条啮合传动作用下,承载有压力室底座和试样组合体的压力室转运滑台将沿着压力室转运轨道移动,直到压力室底座移动到压力室筒体正下方,此时夹套导向支撑台上的夹套固定导轨与压力室转运滑台上的夹套随动导轨准确衔接在一起;
    步骤五:通过压力室筒体吊装机构将压力室筒体下落到压力室底座上,使压力室筒体与压力室底座扣合在一起,此时试样组合体位于压力室筒体内部,然后脱开压力室筒体吊装机构吊臂与压力室筒体外部吊装吊耳之间的连接,之后控制压力室筒体吊装机构吊臂抬升复位;
    步骤六:启动夹套电动推移机构,使半环夹套移动,半环夹套底部的夹套滑块将从夹套固定导轨移动到夹套随动导轨上,直到左右两个半环夹套完全扣合在一起,然后通过横压肘夹将两个半环夹套锁定为整体,之后控制夹套电动推移机构复位;
    步骤七:再次启动液压马达,将承载有压力室和试样组合体的压力室转运滑台移动到反力框架所在试验工位处,之后通过压力室上的第一自平衡活塞杆、第二自平衡活塞杆、第三自平衡活塞杆及第四自平衡活塞杆配合对压力室内部的试样组合体进行预夹紧;
    步骤八:先向压力室内部充入液压油,直到完成最小主应力液压加载,然后启动第一最大主应力作动器、第二最大主应力作动器、第一中间主应力作动器及第二中间主应力作动器对试样组合体内的岩石试样施加最大主应力和中间主应力,之后即可开展岩石真三轴动态压剪试验,同时记录试验数据;
    步骤九:试验结束后,先控制第一最大主应力作动器、第二最大主应力作动器、第一中间主应力作动器及第二中间主应力作动器复位,然后卸载最小主应力液压并完成液压油排出;
    步骤十:启动液压马达,将承载有压力室和试样组合体的压力室转运滑台移动到反力框架后方工位处,先解除横压肘夹对两个半环夹套的锁定,然后由夹套电动推移机构控制两个半环夹套各自退回到初始位置,完成两个半环夹套的分离;
    步骤十一:控制压力室筒体吊装机构吊臂下落,将压力室筒体外部吊装吊耳与压力室筒体吊装机构吊臂连接在一起,然后控制压力室筒体吊装机构吊臂上升,使压力室筒体上升到高位,此时压力室筒体与压力室底座完成分离,同时将露出的试样组合体从压力室底座的第二自平衡活塞杆顶端移除;
    步骤十二:再次启动液压马达,将承载有压力室底座的压力室转运滑台移动到反力框架前方工位处,同时控制反力框架后方工位处的压力室筒体升降式承放台升起,最后通过压力室筒体吊装机构将压力室筒体落放到压力室筒体升降式承放台上。
PCT/CN2020/142067 2020-12-23 2020-12-31 深部复杂构造条件下岩石真三轴动态压剪试验装置及方法 WO2022134187A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/265,999 US11761865B2 (en) 2020-12-23 2020-12-31 Rock true triaxial dynamic compression-shear test equipment and method under deep complex structure conditions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011538588.8 2020-12-23
CN202011538588.8A CN112730079B (zh) 2020-12-23 2020-12-23 深部复杂构造条件下岩石真三轴动态压剪试验装置及方法

Publications (1)

Publication Number Publication Date
WO2022134187A1 true WO2022134187A1 (zh) 2022-06-30

Family

ID=75396923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/142067 WO2022134187A1 (zh) 2020-12-23 2020-12-31 深部复杂构造条件下岩石真三轴动态压剪试验装置及方法

Country Status (3)

Country Link
CN (1) CN112730079B (zh)
AU (1) AU2020104422A4 (zh)
WO (1) WO2022134187A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116008090A (zh) * 2023-02-16 2023-04-25 北京成立科技有限公司 一种航空发动机燃烧室机匣内压试验装置
CN116773328A (zh) * 2023-06-25 2023-09-19 中国地质大学(北京) 一种真三轴霍普金森压杆试验装置
CN117782839A (zh) * 2024-02-23 2024-03-29 东北大学 一种超大型底部开闭式三维加载装置及试验方法
CN118225553A (zh) * 2024-05-23 2024-06-21 南通研创石油科技有限公司 一种岩样三轴加压试验装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113533067B (zh) * 2021-07-27 2023-08-18 江河安澜工程咨询有限公司 一种基于水压致裂法确定渗透性岩体最大水平主应力的方法
CN113477733B (zh) * 2021-07-30 2023-05-12 安徽科润管业有限公司 一种钢管冷拔生产抗拉强度检测装置
CN113866025B (zh) * 2021-09-27 2024-02-23 辽宁工程技术大学 一种原岩内部动态应变测试方法
CN113686656B (zh) * 2021-10-11 2024-05-03 扬州大学 多功能砝码加载摩擦磨损试验机
CN113959826A (zh) * 2021-10-29 2022-01-21 山东黄金矿业科技有限公司深井开采实验室分公司 一种压力室三工位装样工装及装样方法
CN114034572A (zh) * 2021-11-10 2022-02-11 山东黄金矿业科技有限公司深井开采实验室分公司 一种上下开启式耐压120MPa超高压真三轴压力试验设备及方法
CN118225562A (zh) * 2024-05-23 2024-06-21 东北大学 一种高度集成密闭式真三轴岩样夹持拆卸系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5421205A (en) * 1992-02-14 1995-06-06 Carl Schenck Ag Apparatus for the rapid ultimate material strength testing of test samples
CN102288486A (zh) * 2011-05-17 2011-12-21 中国科学院武汉岩土力学研究所 一种真三轴压力室
CN103698201A (zh) * 2013-12-24 2014-04-02 大连理工大学 一种轨道式动三轴仪
CN205103090U (zh) * 2015-11-19 2016-03-23 长春市科意试验仪器有限公司 一种岩石力学三轴压力试验机的压力室结构
CN107014690A (zh) * 2017-03-24 2017-08-04 东北大学 一种低频扰动与高速冲击型高压真三轴试验装置及方法
CN107860663A (zh) * 2017-11-03 2018-03-30 广东水利电力职业技术学院(广东省水利电力技工学校) 真三轴动态压力试验机及方法
CN110031329A (zh) * 2019-04-29 2019-07-19 沈阳马普科技有限公司 一种能够模拟深部地质环境的超深钻岩芯真三轴试验装置
CN112014227A (zh) * 2020-08-28 2020-12-01 东北大学 一种活塞杆自平衡主动卸载作动器及使用方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100536959B1 (ko) * 2003-08-20 2005-12-19 한국지질자원연구원 진삼축압축시험장치
CN102042281B (zh) * 2011-01-11 2012-12-12 浙江大学 一种静压激振器油缸
CN102323154B (zh) * 2011-05-27 2013-07-31 中国科学院武汉岩土力学研究所 一种高压真三轴测试系统
KR101715110B1 (ko) * 2014-11-12 2017-03-14 한국지질자원연구원 진삼축 압력 하에서 암석 강도 및 변형 측정장치
CN104677815B (zh) * 2015-03-06 2017-03-01 西南石油大学 真三轴岩石参数测试系统
CN106596280B (zh) * 2016-12-12 2019-05-21 东北大学 一种用于研究岩石微观破坏行为的多轴加载试验装置
CN106596281B (zh) * 2016-12-20 2018-03-13 东北大学 一种高压真三轴硬岩恒温时效破裂试验装置及方法
CN106762962A (zh) * 2017-03-07 2017-05-31 长春机械科学研究院有限公司 一种直线作动器
CN106644744B (zh) * 2017-03-16 2019-03-05 中国人民解放军理工大学 一种可外装试样的岩石真三轴试验方法
CN106885740B (zh) * 2017-04-05 2023-07-07 辽宁工程技术大学 一种基于真三轴加载下的煤岩体蠕变力学行为试验装置
CN110186774B (zh) * 2019-07-08 2024-10-01 四川德翔科创仪器有限公司 岩石测试试验真三轴测试装置
CN110411842B (zh) * 2019-08-01 2021-08-17 东北大学 可获取脆岩峰后曲线和残留强度的真三轴实验装置及方法
CN111220452B (zh) * 2020-02-19 2022-06-03 辽宁工程技术大学 一种煤岩模拟试验用真三轴压力室及其试验方法
CN111426575A (zh) * 2020-04-30 2020-07-17 东北大学 一种高温高应力真三轴试验装置及方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5421205A (en) * 1992-02-14 1995-06-06 Carl Schenck Ag Apparatus for the rapid ultimate material strength testing of test samples
CN102288486A (zh) * 2011-05-17 2011-12-21 中国科学院武汉岩土力学研究所 一种真三轴压力室
CN103698201A (zh) * 2013-12-24 2014-04-02 大连理工大学 一种轨道式动三轴仪
CN205103090U (zh) * 2015-11-19 2016-03-23 长春市科意试验仪器有限公司 一种岩石力学三轴压力试验机的压力室结构
CN107014690A (zh) * 2017-03-24 2017-08-04 东北大学 一种低频扰动与高速冲击型高压真三轴试验装置及方法
CN107860663A (zh) * 2017-11-03 2018-03-30 广东水利电力职业技术学院(广东省水利电力技工学校) 真三轴动态压力试验机及方法
CN110031329A (zh) * 2019-04-29 2019-07-19 沈阳马普科技有限公司 一种能够模拟深部地质环境的超深钻岩芯真三轴试验装置
CN112014227A (zh) * 2020-08-28 2020-12-01 东北大学 一种活塞杆自平衡主动卸载作动器及使用方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116008090A (zh) * 2023-02-16 2023-04-25 北京成立科技有限公司 一种航空发动机燃烧室机匣内压试验装置
CN116008090B (zh) * 2023-02-16 2023-06-23 北京成立科技有限公司 一种航空发动机燃烧室机匣内压试验装置
CN116773328A (zh) * 2023-06-25 2023-09-19 中国地质大学(北京) 一种真三轴霍普金森压杆试验装置
CN117782839A (zh) * 2024-02-23 2024-03-29 东北大学 一种超大型底部开闭式三维加载装置及试验方法
CN117782839B (zh) * 2024-02-23 2024-05-10 东北大学 一种超大型底部开闭式三维加载装置及试验方法
CN118225553A (zh) * 2024-05-23 2024-06-21 南通研创石油科技有限公司 一种岩样三轴加压试验装置

Also Published As

Publication number Publication date
CN112730079B (zh) 2022-04-12
CN112730079A (zh) 2021-04-30
AU2020104422A4 (en) 2021-04-15

Similar Documents

Publication Publication Date Title
WO2022134187A1 (zh) 深部复杂构造条件下岩石真三轴动态压剪试验装置及方法
US11761865B2 (en) Rock true triaxial dynamic compression-shear test equipment and method under deep complex structure conditions
CN110595909B (zh) 模拟深部岩体不同温度影响下的真三轴试验系统及方法
CN108124460B (zh) 智能数控超高压真三维非均匀加卸载与稳压模型试验系统
CN106018105B (zh) 煤岩工程多功能物理模拟试验系统及煤岩模型试验方法
CN106596281B (zh) 一种高压真三轴硬岩恒温时效破裂试验装置及方法
CN101285808B (zh) 高地应力真三维加载模型试验系统
CN102175516B (zh) 大型组合式动静多功能岩土工程模拟试验装置
Cai et al. Post-peak stress–strain curves of brittle hard rocks under axial-strain-controlled loading
CN108226441B (zh) 可实现石门巷道掘进诱导煤与瓦斯突出的定量模拟试验系统及方法
WO2022241816A1 (zh) 断层错动对隧洞运行影响真三维物理模拟系统及试验方法
US20240230495A1 (en) Large-scale three-dimensional physical simulation test system for whole development process of deep engineering rock burst
CN110031329B (zh) 一种能够模拟深部地质环境的超深钻岩芯真三轴试验装置
CN111638138B (zh) 充填散体在动-静态作用力下压缩性能的测试装置及方法
CN107421818A (zh) 基于地质力学模型试验的爆破模拟试验装置及方法
CN112763581B (zh) 巷道保压掘进过程多应变率扰动致突模拟试验系统与方法
CN116046552B (zh) 一种超大型深部工程灾害物理模拟设施的三维加载结构
CN103471926A (zh) 一种煤岩真三轴细观力学试验装置
EP4425146A1 (en) Ultra-large deep engineering disaster physical simulation facility
CN201203599Y (zh) 高压加载结构模型试验系统
CN106644753A (zh) 一种提升扭矩施加精度的岩石空心圆柱扭剪仪
Wu et al. Design and application of hydro-mechanical coupling test system for simulating rock masses in high dam reservoir operations
CN109374425B (zh) 含瓦斯煤体卸压后发生层裂破坏的模拟研究实验装置及实验方法
CN109269905B (zh) 一种模拟高湿酸性环境状态下的岩石试验装置及方法
CUI et al. Development and application of multifunctional shear test apparatus for rock discontinuity under dynamic disturbance loading

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20966749

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20966749

Country of ref document: EP

Kind code of ref document: A1