WO2022241816A1 - 断层错动对隧洞运行影响真三维物理模拟系统及试验方法 - Google Patents

断层错动对隧洞运行影响真三维物理模拟系统及试验方法 Download PDF

Info

Publication number
WO2022241816A1
WO2022241816A1 PCT/CN2021/096866 CN2021096866W WO2022241816A1 WO 2022241816 A1 WO2022241816 A1 WO 2022241816A1 CN 2021096866 W CN2021096866 W CN 2021096866W WO 2022241816 A1 WO2022241816 A1 WO 2022241816A1
Authority
WO
WIPO (PCT)
Prior art keywords
fault
dislocation
loading
real
physical simulation
Prior art date
Application number
PCT/CN2021/096866
Other languages
English (en)
French (fr)
Inventor
张强勇
张瑞新
陈卫忠
段抗
向文
林韩祥
程磊
王鹏飞
Original Assignee
山东大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东大学 filed Critical 山东大学
Priority to US17/785,179 priority Critical patent/US11835431B1/en
Publication of WO2022241816A1 publication Critical patent/WO2022241816A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • G01M99/008Subject matter not provided for in other groups of this subclass by doing functionality tests
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B25/00Models for purposes not provided for in G09B23/00, e.g. full-sized devices for demonstration purposes
    • G09B25/04Models for purposes not provided for in G09B23/00, e.g. full-sized devices for demonstration purposes of buildings

Definitions

  • the invention relates to a true three-dimensional physical simulation system and test method for simulating the influence of fault dislocation on tunnel operation used in the fields of hydropower, transportation, energy and mine engineering.
  • a pressurized strike-slip fault dislocation simulation device and simulation experiment method discloses a simulation device, which can simulate fault dislocation under the action of self-weight stress , does not consider the influence of the initial structural stress, which is inconsistent with the actual engineering geological conditions, and cannot simulate the impact of fault dislocation on the safety and stability of tunnel operation under the real true three-dimensional initial stress environment.
  • a test device is disclosed in the patent No. CN 201620006494.9 and the patent name is: Destruction test device for simulating tunnel crossing obliquely staggered active faults.
  • the device simulates the mechanical failure of the tunnel through plane loading, but does not consider the true three-dimensional
  • the influence of initial in-situ stress does not match the actual engineering geological conditions, and it is impossible to simulate the influence of fault dislocation on the safety and stability of tunnel operation under the real true three-dimensional initial in-situ stress environment.
  • test chamber device for testing the stick-slip dislocation of normal faults in tunnels.
  • a test chamber device is disclosed.
  • the device includes a simulation test chamber and a jack, which can simulate high earthquake areas. Aiming at the anti-seismic and shock-absorbing effect of the fault zone, the model test device is prone to sideways during the fault dislocation process, and it cannot simulate the influence of the fault dislocation on the safety and stability of the tunnel operation under the real true three-dimensional initial in-situ stress environment.
  • Tunnel fault dislocation model test device and dislocation model test system discloses a model test system, which consists of an outer box, an inner box, a loading device and a measuring device. The thrust is applied to the inner box to simulate the fault dislocation, and the force and deformation law of the tunnel under the fault dislocation state can be obtained, but the influence of inclined structural faults cannot be considered, and the impact of the fault dislocation under the real true three-dimensional initial stress environment cannot be simulated. The impact on the safety and stability of tunnel operation.
  • the patent name is: A three-dimensional similar physical test device for simulating fault dislocation, a test device is disclosed.
  • the device uses a transparent acrylic board rectangular box as a loading reaction device to simulate shallow buried Fault dislocation, but the device is not rigid enough to simulate the influence of deep faults, nor can it simulate the impact of fault dislocation on tunnel operation safety and stability under the real true three-dimensional initial stress environment.
  • test device and method of use for simulating the mechanism of active fault damage to tunnel damage a test device is disclosed, which can simulate the influence of fault dislocation on tunnel damage under the action of its own weight, but The influence of initial structural stress is not considered, which is inconsistent with the actual engineering geological conditions, and it is impossible to simulate the influence of fault dislocation on the safety and stability of tunnel operation under the real true three-dimensional initial stress environment.
  • the object of the present invention is to provide a real three-dimensional physical simulation system and test method for the influence of fault dislocation on tunnel operation.
  • An embodiment of the present invention provides a true three-dimensional physical simulation system for simulating the influence of fault dislocation on tunnel operation, including a fault dislocation platform system, a fault dislocation jacking system, and a loading and dislocation control system;
  • the staggered platform system is composed of the fault hanging wall system, the fault foot wall system, the loading actuator and the platform rotation device, wherein any one of the fault hanging wall system and the fault foot wall system is compatible with the fault staggered jacking system.
  • the fault dislocation jacking system is used to realize the relative sliding of the fault hanging wall system and the fault foot wall system, and then implement the fault dislocation of the test model body;
  • the pedestal rotating device is used to drive the fault hanging wall system, fault The footwall system rotates;
  • the loading actuator is installed on the fault hanging wall system and the fault footwall system, which is connected with the loading and dislocation control system, and is used to apply the true three-dimensional initial ground stress to the test model body;
  • the loading and dislocation control The system controls the loading of the actuator, the rotation of the hanging wall and the footwall system of the fault, and the slippage and dislocation of the fault.
  • the present invention also proposes a test method, as follows:
  • the loading actuator is controlled by the loading and staggering control system to load the test model with true three-dimensional initial ground stress.
  • the model After the true three-dimensional initial ground stress field is formed, the model The tunnel is excavated and the initial ground stress is kept constant.
  • the fault dislocation jacking system is controlled by the loading and dislocation control system to implement the slip dislocation of the model fault, thereby effectively simulating the impact of underground fault dislocation on the safety and stability of the tunnel operation.
  • the present invention as a whole can realize the slip and dislocation of underground faults under the conditions of true three-dimensional initial in-situ stress environment, truly simulate the influence of complex geological environment on the construction and operation safety and stability of deep tunnels, and scientifically reveal different scales and occurrences.
  • the present invention embeds the loading actuator on the fault dislocation bench system.
  • the bench system is equipped with a bench rotation device, through which the rotating fault hanging wall system and the fault foot wall system can realize the processing and manufacturing of the test model body containing inclined faults.
  • the fault dislocation anti-twist device of the present invention is used to ensure that the fault hanging wall system and the fault foot wall system are closely attached without separation during the fault dislocation process, and ensure continuous and stable horizontal stress loading.
  • the fault dislocation anti-twist device is installed between the fault hanging wall system and the outer frame balance device.
  • the anti-twist oil cylinder and the spring sleeve installed
  • the anti-torsion spring also moves vertically upwards synchronously along the vertical guide rail fixed on the outer frame balance device.
  • the anti-torsion oil cylinder drives the anti-torsion spring to continuously apply horizontal elastic resistance to the fault hanging wall system to ensure the fault hanging wall system and the fault footwall.
  • the system is tightly fitted without opening and separation, which prevents any offset and torsion of the model body during the fault slipping and dislocation process.
  • the outer frame balance device of the present invention is used as a counter force device for model loading during the fault slipping and dislocation process, and prevents the fault dislocation platform system from toppling.
  • the present invention has wide application prospects in underground projects such as transportation, hydropower, mines and energy, especially in the physical simulation tests of the Sichuan-Tibet railway and the long-term deep-buried water diversion tunnel project in the west.
  • Fig. 1 is a schematic diagram of the overall structure of the system of the present invention.
  • Fig. 2 is a schematic diagram of the fault dislocation jacking system of the present invention.
  • Fig. 3 is a three-dimensional schematic diagram of the fault dislocation platform system of the present invention.
  • Fig. 4 is a side view of the fault dislocation bench system of the present invention.
  • Fig. 5 is the front view of the fault dislocation bench system of the present invention.
  • Fig. 6 is a top view of the fault dislocation bench system of the present invention.
  • Fig. 7 is a schematic diagram of the mortise and tenon mosaic structure of the fault dislocation bench system of the present invention.
  • Fig. 8 is a schematic diagram of a stand rotating device of the present invention.
  • Fig. 9 is a schematic diagram of a model fault dislocation of the present invention.
  • Fig. 10 is a schematic diagram of the fault displacement anti-twist device of the present invention.
  • Figure 11 is a three-dimensional schematic diagram of the outer frame balancing device of the present invention.
  • Fig. 12 is a schematic diagram of the load limiting device of the present invention.
  • the present invention proposes a real three-dimensional physical simulation system and test method for the influence of fault dislocation on tunnel operation.
  • the real three-dimensional physical simulation system for the influence of fault dislocation on tunnel operation proposed in this embodiment mainly consists of a model test bench system 1 and a loading and dislocation control system 2, of which the model test bench system 1 is composed of a fault shift bench system and a fault shift jacking system; the fault shift jacking system is used to drive the two parts of the fault shift bench system to slide relative to each other
  • Loading and dislocation control system 2 mainly includes loading and dislocation control software system 22, loading and dislocation control cabinet 23 and high-pressure pipeline 24, etc.; loading and dislocation control system 2 controls fault dislocation through high-pressure pipeline 24 Jacking system, loading actuator 10 and jacking actuator 11.
  • the fault dislocation bench system is mainly used to accommodate the dislocation model body and as a loading reaction device.
  • the fault dislocation bench system is mainly composed of the fault hanging wall system 8, the fault footwall system 9, the loading actuator 10 and the bench rotation device; 9 to apply initial ground stress; the rig rotation device is used to drive the fault hanging wall system 8 and the fault footwall system 9 to rotate.
  • the structures of the fault hanging wall system 8 and the fault footwall system 9 are basically the same, and the fault hanging wall system 8 consists of a top reaction wall 25, a front reaction wall 29 and a left reaction wall.
  • the wall 27 and the right reaction wall 28 are connected by high-strength bolts; the fault footwall system 9 is passed by the bottom reaction wall 26, the rear reaction wall 30, the left reaction wall 27, and the right reaction wall 28. It is combined by high-strength bolt connection; the vertical section of the fault hanging wall system 8 and the fault foot wall system 9 is trapezoidal, and the fault hanging wall system 8 and the fault foot wall system 9 are combined to form a rectangle.
  • Each steel reaction wall module is welded by high-quality high-strength Q345B steel plate with a thickness of 30mm.
  • the fault hanging wall system 8 and the fault foot wall system 9 pass through the mortise and tenon structure (including sliding guide tenon 20 and Slip guide mortise 21) mosaic connection, see Fig. 7 for details, in this embodiment, the slip guide mortise 20 is set on the slip surface of the fault footwall system 9, and the slip guide mortise is set on the fault hanging wall system 8 21.
  • the slip guide mortise 20 and the slip guide mortise 21 cooperate with each other; of course, it is not difficult to understand, it can also be exchanged, and the slip guide mortise 21 is set on the slip surface of the fault footwall system 9, and the fault hanging wall system 8
  • the sliding guide tenon 20 arranged on the top cooperates with each other, which can also prevent the lateral deviation of the fault dislocation bench system.
  • the loading actuator 10 is externally embedded on the fault dislocation bench system.
  • a total of 48 loading actuators 10 with a designed loading tonnage of 450 kN are embedded on the reaction wall of the fault staggering platform system, and 24 loading actuators 10 are respectively arranged in the fault hanging wall system 8 and the fault footwall system 9 , the stroke of the loading actuator 10 is 150 mm, and the loading actuator 10 is systematically connected with the loading and misalignment control system 2 through the high-pressure oil pipe 24 .
  • the test model body is subjected to high ground stress non-uniform loading and Voltage regulation control.
  • the fault dislocation bench system is equipped with a bench rotating device, and the bench rotating device includes two, wherein the first bench rotating device Drive the rotation of the fault footwall system 9, and the second gantry rotation device drives the fault upper wall system 8 to rotate;
  • the gantry rotation device for driving the tomographic bottom wall system 9 includes the bottom wall rotation cylinder 38 on the left side in Figure 8, the bottom wall rotation cylinder foot 39, and the bottom wall rotation base 32-1.
  • the foot 39 is fixed on the ground beam 16
  • the cylinder body of the footwall rotating cylinder 38 is hinged with the feet 39 of the footwall rotating cylinder
  • the driving rod of the footwall rotating cylinder 38 is hinged with the fault footwall system 9, and the fault footwall system 9
  • the foot is connected to the ground beam 16 through the rotating shaft and the footwall rotating base 32-1. It should be noted that the foot is a right-angled part on the left side of the lower end of the fault footwall system 9;
  • the platform rotation device for driving the tomographic upper plate system 8 includes the upper plate rotary cylinder 40, the upper plate rotary cylinder foot 41, and the upper plate rotary base 32-2, which are located on the right side of FIG.
  • the foot 41 is fixed in the trough 19
  • the cylinder body of the upper wall rotating cylinder 40 is hinged with the foot 41 of the upper wall rotating oil cylinder
  • the driving rod of the upper wall rotating oil cylinder 40 is hinged with the fault hanging wall system 8, and the fault hanging wall system 8
  • the foot rotating shaft 31 is connected to the rotating base 32-2 fixed on the ground beam. It should be noted that the foot is a right-angled part on the right side of the lower end of the fault hanging disk system 8;
  • the specific working process of the gantry rotation device is as follows:
  • the fault hanging wall system 8 and the fault foot wall system 9 are first rotated to a horizontal state, and then the fault hanging wall system 8 and the fault foot wall system 9 are rotated to a horizontal state.
  • the frame device is filled with compacted model materials, and finally the upper wall rotating cylinder 40 and the lower wall rotating oil cylinder 38 are adjusted so that the fault hanging wall system 8 and the fault foot wall system 9 are combined into a whole to obtain the test model body containing the inclined fault 42 .
  • the fault dislocation jacking system is mainly used for slipping and dislocation of the fault hanging wall system 8 along the fault 42.
  • the fault dislocation jacking system mainly consists of a hydraulic jacking device, a fault dislocation The anti-twist device and the outer frame balance device 3 etc. are composed.
  • the hydraulic jacking device is connected to the bottom of the fault hanging wall system 8 to drive the fault hanging wall system 8 to slide relative to the fault foot wall system 9.
  • the frame balancing device 3 is connected, and the structure of this part is described in detail below:
  • the above-mentioned hydraulic jacking device is installed in the trough 19, and mainly consists of a jacking actuator 11, a guide rod 12, a reaction force plate 13, an inclination adjuster 14 and a support platform 15; the support platform 15 is horizontally installed in the ground trough, and an inclination adjuster 14 is installed on the top of the supporting platform 15, and a reaction force plate 13 is installed on the inclination adjuster 14, and the reaction force plate is obliquely fixed, and is fixed on the reaction force plate 13 by a guide rod 12
  • a jacking actuator 11 is connected with the fault hanging wall system 8; it should be noted that the axis of the jacking actuator 11 is in contact with the fault of the fault hanging wall system 8 and the fault footwall system 9
  • the jacking actuator 11 is adjusted to the angle required for the test through the inclination adjuster 14 arranged on the support platform 15, and then the jacking actuator 11 is fixed on the fault hanging disk system 8 by using the guide rod
  • lugs 18 and pull rods 17 are installed at the tail of the reaction force plate 13 connected to the guide rod 12, and the pull rod 17 is fixed on the ground beam 16 on the top of the groove 19, so that It fully guarantees the safety and stability of the hydraulic jacking device when implementing fault slippage and dislocation.
  • the thrust of the jacking actuator is 2000kN, the stroke is 150mm, the displacement loading rate is 0.1mm/min ⁇ 10mm/min, and the vertical fault distance is ⁇ 120mm.
  • the above-mentioned fault dislocation anti-twist device is mainly used to ensure that the fault hanging wall system 8 and the fault foot wall system 9 are in close contact with each other during the fault slip and dislocation process without separation, and to ensure the horizontal The stress is continuously and steadily loaded.
  • a total of 8 sets of fault stagger anti-twist devices are installed on the front reaction wall 29 of the fault hanging wall system 8, and each set of fault stagger anti-twist devices has a design tonnage of 450KN.
  • Anti-twist oil cylinder 4 four anti-twist springs 5 installed in spring sleeve 6, spring fixed plate 43 and sleeve fixed plate 44 form.
  • the anti-twist oil cylinder 4 rear end is connected with the front part reaction force wall 29 by the anti-twist fixed plate 45, and the front end of the anti-twist oil cylinder 4 is connected with the anti-twist spring 5 installed in the spring sleeve 6 by the spring fixed plate 43, and the anti-twist spring 5.
  • One end is installed on the spring fixing plate 43, and the other end is connected with the vertical guide rail 7 fixed on the outer frame balancing device 3 through the sleeve fixing plate 44.
  • a total of 32 anti-twist springs 5 and 32 spring sleeves 6 are provided in the model fault stagger anti-twist device.
  • an outer frame balance device 3 is set outside the fault dislocation platform system.
  • the outer frame balance device 3 is composed of a column with a cross-sectional size of 500mm ⁇ 500mm and a crossbeam connecting the column through high-strength bolts;
  • the bottom of 44 is inlaid with balls, and the balls can roll along the vertical guide rail 7 simultaneously, and then under the action of external force, the sleeve fixing plate 44 can slide up and down along the vertical guide rail 7.
  • a loading limit device 37 is set inside the fault dislocation bench system, and the loading limit device 37 consists of High-strength steel beams are connected by high-strength bolts to form a hollowed-out three-dimensional device.
  • the loading actuator 10 is controlled by the loading and stagger control system 2 to load the test model with true three-dimensional initial ground stress.
  • the model tunnel 36 is excavated and the initial geostress is kept constant, and then the fault displacement jacking system is controlled by the loading and displacement control system 2 to implement the slip displacement of the model fault 42, thereby effectively Simulate the influence of underground fault dislocation on the safety and stability of tunnel operation.

Abstract

一种断层错动对隧洞运行影响真三维物理模拟系统及试验方法,系统包括断层错动台架系统、断层错动顶升系统、加载与错动控制系统(2)。断层错动台架系统用于容纳错动模型体并作为加载反力装置;断层错动顶升系统用于实施断层错动,并保证断层错动过程中模型体不发生扭转和倾覆现象;加载与错动控制系统(2)用于对模型体进行初始地应力加载并控制断层错动顶升系统实施模型的断层错动。可模拟复杂高地应力条件下深部地层的断层错动,真实模拟地下断层错动对深部隧洞运行安全稳定的影响,为深部工程安全建设提供强有力技术支撑。

Description

断层错动对隧洞运行影响真三维物理模拟系统及试验方法 技术领域
本发明涉及一种在水电、交通、能源和矿山工程领域使用的模拟断层错动对隧洞运行影响真三维物理模拟系统及试验方法。
背景技术
随着社会经济的快速发展,中国已发展成为世界上隧洞和地下工程建造数量最多、规模最大、结构形式最多样的国家。近年来,中国交通、水电建设蓬勃发展,建设重心逐渐向地质条件更为复杂的西部地区转移,然而西部地区地震频繁、地震烈度高、地质构造复杂,极易导致地下活动断层产生滑移错动,由此对深部交通、水电隧洞运行安全造成极为不利的影响,因此有必要深入研究复杂断层错动对隧洞运行安全稳定的影响。面对深部工程,传统理论方法难以胜任,数值模拟困难重重,现场原位试验条件受限且费用昂贵,相比之下,物理模拟试验以其形象、直观、真实的特性成为研究深部工程的重要手段。要开展地下断层错动对隧洞运行安全影响的物理模拟试验,就必须具备相应的物理模拟试验系统。
目前有关断层错动物理模拟试验系统的研究现状如下:
在专利号为CN 201510200464.1,专利名称为:一种可加压走滑断层错动模拟装置及模拟实验方法的专利中公开了一种模拟装置,该模拟装置能够模拟自重应力作用下的断层错动,没有考虑初始构造地应力的影响,与实际工程地质 条件不符,无法模拟真实的真三维初始地应力环境条件下断层错动对隧洞运行安全稳定的影响。
在专利号为CN 201620006494.9,专利名称为:模拟隧道穿越斜向错动活断层的破坏试验装置的专利中公开了一种试验装置,该装置通过平面加载模拟隧道受力破坏,但没有考虑真三维初始地应力的影响,与实际工程地质条件不符,且无法模拟真实的真三维初始地应力环境条件下断层错动对隧洞运行安全稳定的影响。
在专利号为CN 201720049666.5,专利名称为:一种测试隧道正断层黏滑错动的试验箱装置的专利中公开了一种试验箱装置,该装置包括模拟试验箱和千斤顶,能够模拟高地震区域针对断层带的抗震减震效应,但在断层错动过程中模型试验装置容易产生侧转,且无法模拟真实的真三维初始地应力环境条件下断层错动对隧洞运行安全稳定的影响。
在专利号为CN 201810860128.3,专利名称为:隧道断层错动模型试验装置及错动模型试验系统的专利中公开了一种模型试验系统,由外箱、内箱、加载装置和测量装置组成,通过对内箱施加推力模拟断层错动,并获得断层错动状态下隧道的受力变形规律,但无法考虑倾斜构造断层的影响,也无法模拟真实的真三维初始地应力环境条件下断层错动对隧洞运行安全稳定的影响。
在专利号为CN 201910049175.4,专利名称为:一种模拟断层错动的三维相似物理试验装置的专利中公开了一种试验装置,该装置采用透明亚克力板矩形箱体作为加载反力装置模拟浅埋断层错动,但该装置刚度不够,无法模拟深部断层的影响,也无法模拟真实的真三维初始地应力环境条件下断层错动对隧洞运行安全稳定的影响。
在专利号为CN 201911125822.1,专利名称为:模拟活动断层对隧道损伤机理研究的试验装置及使用方法的专利中公开了一种试验装置,能模拟自重作用下断层错动对隧道损伤的影响,但没有考虑初始构造地应力的影响,与实际工程地质条件不符,无法模拟真实的真三维初始地应力环境条件下断层错动对隧洞运行安全稳定的影响。
在《岩石力学与工程学报》2008年第9期文章《地铁隧道穿越地裂缝带的物理模型试验研究》介绍了一种模型试验装置,能够模拟地裂缝错动对隧洞运行的影响,但没有考虑真三维初始地应力的影响,与实际工程地质条件不符,无法模拟真实的真三维初始地应力环境条件下断层错动对隧洞运行安全稳定的影响。
在《同济大学学报》2012年第7期文章《逆断层粘滑错动对公路隧道的影响》介绍了一种模型试验装置,装置由固定盘、活动盘、加载系统组成,能够模拟不同倾角断层对隧洞稳定的影响,但没有考虑真三维初始地应力的影响,与实际工程地质条件不符,无法模拟真实的真三维初始地应力环境条件下断层错动对隧洞运行安全稳定的影响。
发明内容
针对现有技术存在的不足,本发明的目的是提供一种断层错动对隧洞运行影响真三维物理模拟系统及试验方法。
为了实现上述目的,本发明是通过如下的技术方案来实现:
本发明的实施例提供了一种模拟断层错动对隧洞运行影响的真三维物理模拟系统,包括断层错动台架系统、断层错动顶升系统、加载与错动控制系统;所述的断层错动台架系统,由断层上盘系统、断层下盘系统、加载作动器和台 架旋转装置组成,其中断层上盘系统和断层下盘系统中的任一系统与断层错动顶升系统相连,断层错动顶升系统用于实现断层上盘系统和断层下盘系统的相对滑动,进而实施试验模型体的断层错动;所述的台架旋转装置用于驱动断层上盘系统、断层下盘系统旋转;加载作动器安装在断层上盘系统和断层下盘系统上,其与加载与错动控制系统相连,用于对试验模型体施加真三维初始地应力;加载与错动控制系统控制作动器加载、断层上盘与下盘系统旋转和断层滑移错动。
第二方面,基于上述模拟断层错动对隧洞运行影响的真三维物理模拟系统,本发明还提出了一种试验方法,如下:
上述的真三维物理模拟系统安装调试完毕,首先通过加载与错动控制系统控制加载作动器对试验模型体进行真三维初始地应力加载,待模型真三维初始地应力场形成以后,再进行模型隧洞开挖并保持初始地应力恒定,最后通过加载与错动控制系统控制断层错动顶升系统实施模型断层的滑移错动,籍此有效模拟地下断层错动对隧洞运行安全稳定的影响。
上述本发明的实施例的有益效果如下:
(1)本发明整体上可以实现在真三维初始地应力环境条件下地下断层的滑移错动,真实模拟复杂地质环境对深部隧洞施工和运行安全稳定的影响,科学揭示不同规模、产状的地下断层错动对隧洞长期运行安全的影响。
(2)本发明为了节省断层错动台架系统的空间尺寸,将加载作动器外嵌在断层错动台架系统上,同时为了方便制作内含倾斜断层的试验模型体,在断层错动台架系统上配备了台架旋转装置,通过旋转断层上盘系统、断层下盘系统实现内含倾斜断层的试验模型体的加工制作。
(3)本发明的断层错动防扭装置用于保证断层错动过程中断层上盘系统和断层下盘系统紧密贴合不产生分离,并确保水平地应力持续稳定加载。断层错动防扭装置安装在断层上盘系统和外框平衡装置之间,当断层错动顶升系统推动断层上盘系统产生滑移错动时,防扭油缸和安装在弹簧套筒内的防扭弹簧也沿着固定在外框平衡装置上的竖向导轨同步垂直向上移动,同时防扭油缸驱动防扭弹簧持续对断层上盘系统施加水平弹性抗力,以确保断层上盘系统和断层下盘系统紧密贴合不出现张开分离现象,防止断层滑移错动过程中模型体出现任何偏移和扭转现象。
(4)本发明的外框平衡装置作为断层滑移错动过程中模型加载的反力装置,并防止断层错动台架系统发生倾倒。
(5)本发明在交通、水电、矿山和能源等地下工程,尤其在川藏铁路、西部长大深埋引水隧洞工程的物理模拟试验中具有广泛的应用前景。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1本发明的系统整体结构示意图;
图2本发明的断层错动顶升系统示意图;
图3本发明的断层错动台架系统三维示意图;
图4本发明的断层错动台架系统侧视图;
图5本发明的断层错动台架系统前视图;
图6本发明的断层错动台架系统俯视图;
图7本发明的断层错动台架系统榫卯镶嵌结构示意图;
图8本发明的台架旋转装置示意图;
图9本发明的模型断层错动示意图;
图10本发明的断层错动防扭装置示意图;
图11本发明的外框平衡装置三维示意图;
图12本发明的加载限位装置示意图。
图中:为显示各部位位置而夸大了互相间间距或尺寸,示意图仅作示意使用。
图中:1.模型试验台架系统;2.加载与错动控制系统;3.外框平衡装置;4.防扭油缸;5.防扭弹簧;6.弹簧套筒;7.竖向导轨;8.断层上盘系统;9.断层下盘系统;10.加载作动器;11.顶升作动器;12.导向杆;13.反力板;14.倾角调节器;15.支撑台;16.地梁;17.吊杆;18.吊耳;19.地槽;20.滑移导向榫;21.滑移导向卯;22.加载与错动控制软件系统;23.加载与错动控制柜;24.高压管路;25.顶部反力墙;26.底部反力墙;27.左侧反力墙;28.右侧反力墙;29.前部反力墙;30.后部反力墙;31.旋转轴;32-1.下盘旋转底座;32-2.上盘旋转底座;33.开挖窗口;34.下盘模型体;35.上盘模型体;36.开挖隧洞;37.加载限位装置;38.下盘旋转油缸;39.下盘旋转油缸地脚;40.上盘旋转油缸;41.上盘旋转油缸地脚;42.地下断层;43.弹簧固定板;44.套筒固定板;45.防扭固定板。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本发明提供进一步的说明。除非另有指明,本发明使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图 限制根据本发明的示例性实施方式。如在这里所使用的,除非本发明另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合;
为了方便叙述,本发明中如果出现“上”、“下”、“左”、“右”、“前”、“后”、字样,仅表示与附图本身的上、下、左、右、前、后方向一致,并不对结构起限定作用,仅仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的设备或元件必须具有特定的方位,以特定的方位构造和操作,因此不能理解为对本发明的限制。
正如背景技术所介绍的,现有技术中存在不足,为了解决如上的技术问题,本发明提出了一种断层错动对隧洞运行影响真三维物理模拟系统及试验方法。
本发明的一种典型的实施方式中,如图1所示,本实施例提出的断层错动对隧洞运行影响真三维物理模拟系统,主要由模型试验台架系统1和加载与错动控制系统2组成,其中模型试验台架系统1又由断层错动台架系统、断层错动顶升系统组成;断层错动顶升系统用于驱动断层错动台架系统的两部分结构相对滑移错动;加载与错动控制系统2主要包括加载与错动控制软件系统22、加载与错动控制柜23和高压管路24等;加载与错动控制系统2通过高压管路24控制断层错动顶升系统、加载作动器10和顶升作动器11。
如图2-图7所示,断层错动台架系统主要用于容纳错动模型体,并作为加载反力装置。断层错动台架系统主要由断层上盘系统8、断层下盘系统9、加载作动器10和台架旋转装置组成;加载作动器10用于对断层上盘系统8、断层下盘系统9施加初始地应力;台架旋转装置用于驱动断层上盘系统8、断层下盘系 统9进行旋转。
其中,如图3、图7所示,断层上盘系统8和断层下盘系统9的结构基本相同,断层上盘系统8由顶部反力墙25、前部反力墙29和左侧反力墙27、右侧反力墙28通过高强螺栓连接组合而成;断层下盘系统9由底部反力墙26、后部反力墙30、左侧反力墙27、右侧反力墙28通过高强螺栓连接组合而成;断层上盘系统8和断层下盘系统9的竖向截面为梯形,断层上盘系统8和断层下盘系统9组合在一起形成了矩形。各钢制反力墙模块由厚度30mm的优质高强Q345B钢板焊接制作而成。
进一步的,为防止断层错动过程中断层错动台架系统发生侧向偏移,断层上盘系统8和断层下盘系统9在断层接触面处通过榫卯结构(包括滑移导向榫20和滑移导向卯21)镶嵌连接,具体参见图7,在本实施例中,断层下盘系统9的滑移面上设置有滑移导向榫20,断层上盘系统8上设置有滑移导向卯21,滑移导向榫20和滑移导向卯21相互配合;当然不难理解的,还可以调换一下,在断层下盘系统9的滑移面上设置滑移导向卯21,断层上盘系统8上设置滑移导向榫20相互配合,同样可以防止断层错动台架系统发生侧向偏移。
如图2-图7所示,为节省断层错动台架系统的空间尺寸,加载作动器10外嵌在断层错动台架系统上。在断层错动台架系统的反力墙上共外嵌了48个设计加载吨位为450kN的加载作动器10,断层上盘系统8和断层下盘系统9各布设24个加载作动器10,加载作动器10行程为150mm,加载作动器10通过高压油管24与加载与错动控制系统2系统连接。断层上盘系统8沿断层42向上滑移错动之前和滑移错动过程中,通过加载与错动控制系统2内设的8个独立油路通道对试验模型体进行高地应力非均匀加载与稳压控制。
如图3和图8所示,为方便制作内含倾斜断层42的试验模型体,断层错动台架系统配备了台架旋转装置,台架旋转装置包括两个,其中第一台架旋转装置驱动断层下盘系统9旋转,第二台架旋转装置驱动断层上盘系统8旋转;
用于驱动断层下盘系统9的台架旋转装置包括位于附图8中左侧的下盘旋转油缸38、下盘旋转油缸地脚39、下盘旋转底座32-1,其中下盘旋转油缸地脚39固定在地梁16上,下盘旋转油缸38的缸体与下盘旋转油缸地脚39铰接,下盘旋转油缸38的驱动杆与断层下盘系统9铰接,且断层下盘系统9的脚部通过旋转轴、下盘旋转底座32-1与地梁16相连,需要说明的是,该脚部为断层下盘系统9下端左侧的直角部;
用于驱动断层上盘系统8的台架旋转装置包括位于附图8中右侧的上盘旋转油缸40、上盘旋转油缸地脚41、上盘旋转底座32-2,其中上盘旋转油缸地脚41固定在地槽19内,上盘旋转油缸40的缸体与上盘旋转油缸地脚41铰接,上盘旋转油缸40的驱动杆与断层上盘系统8铰接,且断层上盘系统8的脚部旋转轴31与固定在地梁上的旋转底座32-2相连,需要说明的是,该脚部为断层上盘系统8下端右侧的直角部;
台架旋转装置具体工作过程如下:
填料时,通过驱动上盘旋转油缸40、下盘旋转油缸38,首先将断层上盘系统8、断层下盘系统9旋转至水平状态,然后在断层上盘系统8和断层下盘系统9的台架装置内分别填充压实模型材料,最后再调节上盘旋转油缸40和下盘旋转油缸38使断层上盘系统8和断层下盘系统9合拢为一整体从而得到含有倾斜断层42的试验模型体。
如图2、图9所示,断层错动顶升系统主要用于实施断层上盘系统8沿着断 层42发生滑移错动,断层错动顶升系统主要由液压顶升装置、断层错动防扭装置和外框平衡装置3等组成。液压顶升装置与断层上盘系统8的底部连接,驱动断层上盘系统8与断层下盘系统9相对滑动,断层错动防扭装置的两端分别与断层上盘系统8的侧部和外框平衡装置3连接,下面对该部分的结构进行详细说明:
如图1所示,上述的液压顶升装置安设在地槽19内,主要由顶升作动器11、导向杆12、反力板13、倾角调节器14和支撑台15组成;支撑台15水平安装在地槽内,在支撑台15的顶部安装有倾角调节器14,倾角调节器14上安装一个反力板13,反力板倾斜固定,在反力板13上通过导向杆12固定有顶升作动器11,顶升作动器11与断层上盘系统8相连;需要说明的是,顶升作动器11的轴线与断层上盘系统8和断层下盘系统9的断层接触面平行;通过设置在支撑台15上的倾角调节器14将顶升作动器11调节至试验所需的角度后,再利用导向杆12将顶升作动器11固定在断层上盘系统8的前部反力墙29上。为保证液压顶升装置的稳定性,在与导向杆12连接的反力板13的尾部安装了吊耳18和拉杆17,并将拉杆17固定在地槽19上部的地梁16上,这样可以完全保证在实施断层滑移错动时液压顶升装置的安全稳定。顶升作动器推力为2000kN,行程为150mm,位移加载速率0.1mm/min~10mm/min,断层垂直错距≤120mm。
如图2、图10所示,上述的断层错动防扭装置主要用于保证断层滑移错动过程中断层上盘系统8和断层下盘系统9紧密贴合不产生分离,并确保水平地应力持续稳定加载。如图2所示,本实施例中,在断层上盘系统8的前部反力墙29上共安装了8套断层错动防扭装置,每套断层错动防扭装置由设计吨位为450KN的防扭油缸4、四根安装在弹簧套筒6内的防扭弹簧5、弹簧固定板43和 套筒固定板44组成。防扭油缸4后端通过防扭固定板45与前部反力墙29连接,防扭油缸4的前端通过弹簧固定板43与安装在弹簧套筒6内的防扭弹簧5连接,防扭弹簧5一端安装在弹簧固定板43上,另一端通过套筒固定板44与固定在外框平衡装置3上的竖向导轨7连接。模型断层错动防扭装置共设置了32根防扭弹簧5和32个弹簧套筒6。
如图2所示,当断层错动顶升系统的顶升作动器11推动断层上盘系统8沿断层面42向上滑移错动时,断层错动防扭装置的防扭油缸4和防扭弹簧5也沿着竖向导轨7同步垂直向上移动,同时防扭油缸4驱动防扭弹簧5持续对断层上盘系统8施加水平弹性抗力,以确保断层滑移错动过程中断层上盘系统8和断层下盘系统9不出现张开分离现象。
如图2、图11所示,为实施断层错动过程中模型水平地应力持续加载并确保断层错动台架系统不发生倾倒,在断层错动台架系统外部设置了外框平衡装置3,本实施例中,外框平衡装置3由截面尺寸为500mm×500mm立柱和连接立柱的横梁通过高强螺栓连接组合而成;在外框平衡装置3的内侧面安装有竖向导轨7,套筒固定板44的底部镶嵌有滚珠,同时滚珠可以沿着竖向导轨7滚动,进而在外力作用下,套筒固定板44可以沿着竖向导轨7上下滑动。
如图2、图12所示,为避免模型试验真三维加载过程中各方向加载板之间的相互干扰,在断层错动台架系统内部设置了加载限位装置37,加载限位装置37由高强度钢梁通过高强螺栓连接组合而成镂空立体装置。
如图1、图2所示,真三维物理模拟试验系统安装调试完毕,首先通过加载与错动控制系统2控制加载作动器10对试验模型体进行真三维初始地应力加载,待模型真三维初始地应力场形成以后,再开挖模型隧洞36并保持初始地应 力不变,然后通过加载与错动控制系统2控制断层错动顶升系统实施模型断层42的滑移错动,籍此有效模拟地下断层错动对隧洞运行安全稳定的影响。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (11)

  1. 断层错动对隧洞运行影响真三维物理模拟系统,其特征在于:包括断层错动台架系统、断层错动顶升系统、加载与错动控制系统;所述的断层错动台架系统,由断层上盘系统、断层下盘系统、加载作动器和台架旋转装置组成,其中断层上盘系统和断层下盘系统中的任一系统与断层错动顶升系统相连,断层错动顶升系统用于实现断层上盘系统和断层下盘系统的相对滑动,进而实施试验模型体的断层错动;所述的台架旋转装置用于驱动断层上盘系统、断层下盘系统旋转;加载作动器安装在断层上盘系统、断层下盘系统上,其与加载与错动控制系统相连,用于对试验模型体施加真三维初始地应力;加载与错动控制系统控制作动器加载、断层上盘与下盘系统旋转和断层滑移错动。
  2. 如权利要求1所述的断层错动对隧洞运行影响真三维物理模拟系统,其特征在于,所述的断层上盘系统和断层下盘系统在断层接触面处通过榫卯镶嵌结构连接。
  3. 如权利要求1所述的断层错动对隧洞运行影响真三维物理模拟系统,其特征在于,所述的台架旋转装置包括两个,第一台架旋转装置驱动断层下盘系统旋转,第二台架旋转装置驱动断层上盘系统旋转。
  4. 如权利要求3所述的断层错动对隧洞运行影响真三维物理模拟系统,其特征在于,所述的第一台架旋转装置包括第一安装座、第一液压驱动装置,所述的第一安装座固定在地梁上,第一液压驱动装置的缸体与第一安装座铰接,液压驱动杆与断层下盘系统相连,且断层下盘系统底部与地梁铰接。
  5. 如权利要求3所述的断层错动对隧洞运行影响真三维物理模拟系统,其特征在于,所述的第二台架旋转装置包括第二安装座、第二液压驱动装置,所述的第二安装座固定在地槽内,第二液压驱动装置的缸体与第二安装座铰接, 液压驱动杆与断层上盘系统相连,且断层上盘系统底部与地梁铰接,地梁安装在地槽顶部。
  6. 如权利要求1所述的断层错动对隧洞运行影响真三维物理模拟系统,其特征在于,所述断层错动顶升系统包括断层错动防扭装置、外框平衡装置和液压顶升装置;所述的液压顶升装置与断层上盘系统或者断层下盘系统连接,断层错动防扭装置一端与断层上盘系统或者断层下盘系统连接,另一端与外框平衡装置连接。
  7. 如权利要求6所述的断层错动对隧洞运行影响真三维物理模拟系统,其特征在于,所述的断层错动防扭装置包括防扭油缸、防扭弹簧、弹簧套筒、弹簧固定板和套筒固定板;所述的防扭油缸一端与断层上盘系统或者断层下盘系统连接,另一端与弹簧固定板相连;弹簧固定板与套筒固定板之间通过多个防扭弹簧相连,每个防扭弹簧外面套装有一个弹簧套筒,弹簧套筒固定在套筒固定板上。
  8. 如权利要求6所述的断层错动对隧洞运行影响真三维物理模拟系统,其特征在于,所述的外框平衡装置由安装在断层错动台架系统外侧四个边角的四根立柱和连接立柱的横梁通过螺栓连接组合而成。
  9. 如权利要求6所述的断层错动对隧洞运行影响真三维物理模拟系统,其特征在于,外框平衡装置的内侧面竖直地设有导轨,所述的套筒固定板在外力作用下可沿着所述导轨自由滑动。
  10. 如权利要求6所述的断层错动对隧洞运行影响真三维物理模拟系统,其特征在于,所述的液压顶升装置包括顶升作动器和导向杆,所述顶升作动器的轴线由导向杆控制并与断层上盘系统和断层下盘系统的断层接触面平行。
  11. 如权利要求1-10任一所述的断层错动对隧洞运行影响真三维物理模拟系统的试验方法,其特征在于:真三维物理模拟系统安装调试完毕,首先通过加载与错动控制系统控制加载作动器对试验模型体进行真三维初始地应力加载,待模型真三维初始地应力场形成以后,再进行模型隧洞开挖并保持初始地应力恒定,最后通过加载与错动控制系统控制断层错动顶升系统实施模型断层的滑移错动,籍此有效模拟地下断层错动对隧洞运行安全稳定的影响。
PCT/CN2021/096866 2021-05-19 2021-05-28 断层错动对隧洞运行影响真三维物理模拟系统及试验方法 WO2022241816A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/785,179 US11835431B1 (en) 2021-05-19 2021-05-28 True three-dimensional physical simulation system for influence of fault movement on tunnel operation and test method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110546814.5A CN113310716B (zh) 2021-05-19 2021-05-19 断层错动对隧洞运行影响真三维物理模拟系统及试验方法
CN202110546814.5 2021-05-19

Publications (1)

Publication Number Publication Date
WO2022241816A1 true WO2022241816A1 (zh) 2022-11-24

Family

ID=77374021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/096866 WO2022241816A1 (zh) 2021-05-19 2021-05-28 断层错动对隧洞运行影响真三维物理模拟系统及试验方法

Country Status (3)

Country Link
US (1) US11835431B1 (zh)
CN (1) CN113310716B (zh)
WO (1) WO2022241816A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114018516B (zh) * 2021-10-28 2022-08-19 西南交通大学 一种模拟活动断层黏滑的试验装置
CN114863779B (zh) * 2022-04-06 2024-03-15 云南省滇中引水工程有限公司 一种引水隧洞过活断层带结构模型
CN114859017B (zh) * 2022-07-06 2022-10-11 湖南大学 一种地层应力场和位移场控制试验装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04327693A (ja) * 1991-04-25 1992-11-17 Hazama Gumi Ltd 断層ズレに追随するトンネル構造
CN101285808A (zh) * 2008-05-29 2008-10-15 山东大学 高地应力真三维加载模型试验系统
CN109377849A (zh) * 2018-12-11 2019-02-22 山东大学 一种模拟深部洞室突涌水灾害的真三维物理模型试验系统
CN109470839A (zh) * 2018-11-22 2019-03-15 山东科技大学 模拟深部断层形成、断层活化和断层突水的物理试验装置及方法
CN110780056A (zh) * 2019-11-18 2020-02-11 四川农业大学 模拟活动断层对隧道损伤机理研究的试验装置及使用方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104809947B (zh) 2015-04-24 2017-07-21 华侨大学 一种可加压走滑断层错动模拟装置及模拟实验方法
CN205317963U (zh) 2016-01-05 2016-06-15 西南交通大学 模拟隧道穿越斜向错动活断层的破坏试验装置
CN106226808B (zh) * 2016-07-20 2018-01-16 西南交通大学 一种模拟断层错动下隧道地震响应的试验装置及试验方法
CN106198191B (zh) * 2016-07-21 2018-11-20 中国科学院武汉岩土力学研究所 一种可以考虑走滑型断层的隧道抗错断模型试验装置
CN206540677U (zh) 2017-01-17 2017-10-03 中铁十六局集团第四工程有限公司 一种测试隧道正断层黏滑错动的试验箱装置
AU2017329096B2 (en) * 2017-04-28 2019-01-31 Shandong University Intelligent numerically-controlled ultrahigh pressure true three-dimensional non-uniform loading/unloading and steady pressure model test system
CN108333054B (zh) * 2018-04-26 2024-02-13 北京交通大学 隧道三维模型加载试验台及用于隧道病害观察的试验方法
CN108982219A (zh) 2018-08-01 2018-12-11 北方工业大学 隧道断层错动模型试验装置及错动模型试验系统
CN109754697B (zh) 2019-01-18 2021-01-12 安徽理工大学 一种模拟断层错动的三维相似物理试验装置
CN109839315B (zh) * 2019-03-29 2023-09-01 四川大学 双向滑移式物理模型箱及跨断层隧道力学行为测试方法
CN110006757B (zh) * 2019-04-08 2019-10-29 山东科技大学 煤系断层形成模拟试验装置及正、逆断层模拟试验方法
CN110006758B (zh) * 2019-04-08 2019-12-13 山东科技大学 角度和起裂位置可调的正断层模拟试验装置及使用方法
CN111158067B (zh) * 2020-01-08 2022-02-15 北京工业大学 一种模拟隧道跨活动断层的试验装置
CN112116861B (zh) * 2020-11-23 2021-04-23 西南交通大学 一种用于模拟断层错动下隧道动力响应的装置及方法
CN113310766A (zh) * 2020-12-09 2021-08-27 山东科技大学 一种不同粗糙度界面变倾角断层滑移模拟试验方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04327693A (ja) * 1991-04-25 1992-11-17 Hazama Gumi Ltd 断層ズレに追随するトンネル構造
CN101285808A (zh) * 2008-05-29 2008-10-15 山东大学 高地应力真三维加载模型试验系统
CN109470839A (zh) * 2018-11-22 2019-03-15 山东科技大学 模拟深部断层形成、断层活化和断层突水的物理试验装置及方法
CN109377849A (zh) * 2018-12-11 2019-02-22 山东大学 一种模拟深部洞室突涌水灾害的真三维物理模型试验系统
CN110780056A (zh) * 2019-11-18 2020-02-11 四川农业大学 模拟活动断层对隧道损伤机理研究的试验装置及使用方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JI DE-XUE, LI PENG, SU SHENG-RUI, WAGN YAN-CHAO: "Development and Application of Physical Model Test Device Showing Evolution Process of the Reverse Fault", JOURNAL OF XI'AN UNIVERSITY OF SCIENCE AND TECHNOLOGY, vol. 33, no. 2, 31 March 2013 (2013-03-31), pages 190 - 194, XP009541362, ISSN: 1672-9315, DOI: 10.13800/j.cnki.xakjdxxb.2013.02.003 *

Also Published As

Publication number Publication date
US11835431B1 (en) 2023-12-05
CN113310716A (zh) 2021-08-27
CN113310716B (zh) 2022-05-27
US20230393027A1 (en) 2023-12-07

Similar Documents

Publication Publication Date Title
WO2022241816A1 (zh) 断层错动对隧洞运行影响真三维物理模拟系统及试验方法
CN108872530B (zh) 一种模拟非对称小净距隧道开挖过程的大型模型试验装置
CN108444833B (zh) 一种模拟正逆断层形成的试验装置
CN102175516B (zh) 大型组合式动静多功能岩土工程模拟试验装置
US11860135B2 (en) Three-dimensional dynamic and static load test system for simulating deep roadway excavation and method thereof
CN105675319B (zh) 模拟隧道穿越活动断层的位移同步控制装置及试验方法
CN109556965B (zh) 盾构管片力学性能模拟试验装置
CN103439105B (zh) 空间轴向随动加载装置
CN104713738B (zh) 一种双向多角度智能翻转模型试验装置及试验方法
CN106323750A (zh) 变地压巷道掘进负载实验台
CN110632275B (zh) 一种地下工程扰动相似模型试验台及试验方法
CN101793616B (zh) 盾构模拟试验台用可移动式液压加载装置
CN208109600U (zh) 一种模拟正逆断层形成的试验装置
CN108398330B (zh) 矿柱支撑系统动载稳定性试验系统及试验方法
CN111638147A (zh) 一种包砖城墙锚固体系拟静力试验装置及方法
CN109269905B (zh) 一种模拟高湿酸性环境状态下的岩石试验装置及方法
CN205538894U (zh) 用于模拟受采动影响煤层底板突水的试验系统
CN107860660A (zh) 一种大吨位的岩体工程动力灾害模拟试验系统
CN106601111A (zh) 一种大型真三轴巷道顶板支护模拟试验台
CN205538895U (zh) 受采动影响煤层底板突水模拟试验系统
CN111289349B (zh) 一种恒压伺服地应力加载隧道抗错断试验装置
CN205404524U (zh) 模拟受采动影响煤层底板突水试验系统的模拟试验装置
CN108918272B (zh) 一种输电铁塔受水平荷载与地基拉伸作用的试验系统
CN212340883U (zh) 一种包砖城墙锚固体系拟静力试验装置
CN102636386B (zh) 大吨位均布-集中式加载系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21940269

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE