WO2022131143A1 - Power-transmitting device, power-receiving device, and contactless power supply system - Google Patents

Power-transmitting device, power-receiving device, and contactless power supply system Download PDF

Info

Publication number
WO2022131143A1
WO2022131143A1 PCT/JP2021/045434 JP2021045434W WO2022131143A1 WO 2022131143 A1 WO2022131143 A1 WO 2022131143A1 JP 2021045434 W JP2021045434 W JP 2021045434W WO 2022131143 A1 WO2022131143 A1 WO 2022131143A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power transmission
antenna
power receiving
multilayer board
Prior art date
Application number
PCT/JP2021/045434
Other languages
French (fr)
Japanese (ja)
Inventor
雄作 河端
健太 小西
孝幸 石原
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Priority to JP2022569938A priority Critical patent/JPWO2022131143A1/ja
Publication of WO2022131143A1 publication Critical patent/WO2022131143A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields

Definitions

  • This disclosure relates to a power transmission device, a power receiving device, and a contactless power supply system.
  • a non-contact power feeding system in which power is supplied from a power transmitting device having a power transmitting antenna to a power receiving device having a power receiving antenna in a non-contact manner using both antennas (see, for example, Patent Document 1).
  • a contactless power supply system has been used for charging electronic devices such as smartphones.
  • the power transmission device or the power receiving device since the antenna coil constituting the power transmission antenna or the power receiving antenna and the circuit component for controlling the power transmission or the power receiving are arranged side by side on the surface of the circuit board, the power transmission device or the power receiving device is arranged. There is room for improvement in the miniaturization of.
  • the power transmission device that solves the above problems is a power transmission device that transmits power in a non-contact manner to a power receiving device having a power receiving antenna, and has a front surface, a multilayer substrate having a back surface facing the opposite side to the front surface, and a multi-layer substrate on the front surface.
  • the multilayer board includes a power transmission side circuit that is mounted and controls power transmission, and a power transmission antenna that is formed on the back surface and transmits power in a non-contact manner toward the power reception antenna.
  • the multilayer substrate includes the power transmission side circuit and the power transmission antenna. Includes a shield layer provided between the two to reduce electromagnetic waves from the power transmission antenna to the power transmission side circuit.
  • the power receiving device that solves the above problems is a power receiving device that receives power from a power transmitting device having a power transmitting antenna in a non-contact manner, and is mounted on the front surface and a multilayer substrate having a back surface facing the opposite side to the front surface.
  • a power receiving side circuit for performing power receiving control and a power receiving antenna formed on the back surface thereof for receiving power from the power transmission antenna in a non-contact manner are provided, and the multilayer substrate is provided between the power receiving side circuit and the power receiving antenna. , Includes a shield layer that reduces electromagnetic waves from the power receiving antenna to the power receiving side circuit.
  • the contactless power supply system for solving the above problems is a contactless power supply system including a power transmission device and a power receiving device, which transmits power from the power transmission device to the power receiving device in a non-contact manner, and the power transmission device and the power receiving device.
  • At least one of the above is a multilayer substrate having a front surface and a back surface facing the opposite side to the front surface, a circuit mounted on the front surface and used for non-contact power supply from the power transmission device to the power receiving device, and the back surface. It comprises an antenna that is mounted and used for non-contact power feeding from the power transmission device to the power receiving device, and the multilayer board is provided between the circuit and the antenna to transmit electromagnetic waves from the antenna to the circuit. Includes a reduced shield layer.
  • the size of the device can be reduced.
  • FIG. 1 is a circuit diagram showing an embodiment of a non-contact power feeding system.
  • FIG. 2 is a perspective view of a power transmission device of a contactless power supply system.
  • FIG. 3 is a plan view showing a state in which the sealing resin is omitted from the power transmission device.
  • FIG. 4 is a back view of the power transmission device.
  • FIG. 5 is a cross-sectional view taken along the line 5-5 of the power transmission device of FIG.
  • FIG. 6 is a plan view of the power receiving device of the non-contact power feeding system in a state where the sealing resin is omitted from the power receiving device.
  • FIG. 7 is a back view of the power receiving device.
  • FIG. 8 is a cross-sectional view taken along the line 8-8 of the power receiving device of FIG.
  • FIG. 9 is a perspective view of the power transmission device of the modified example.
  • FIG. 10 is a perspective view of the power transmission device of the modified example.
  • FIG. 11 is an exploded perspective view of
  • the non-contact power feeding system 1 includes a power transmitting device 10 and a power receiving device 20, and is a device that non-contactly transmits power from the power transmitting device 10 to the power receiving device 20.
  • the non-contact power transmission from the power transmission device 10 to the power receiving device 20 means that the power transmission device 10 performs non-contact power supply and communication to the power receiving device 20.
  • proximity wireless communication is used as the non-contact power transmission from the power transmission device 10 to the power reception device 20.
  • NFC Near field communication
  • a carrier wave electromagnétique wave
  • the power receiving device 20 does not supply power to the power transmitting device 10 in a non-contact manner, but the power receiving device 20 performs non-contact communication to the power transmitting device 10.
  • Such a contactless power supply system 1 is applied to, for example, a tablet PC and an electronic pen.
  • the power transmission device 10 is built in the tablet PC, and the power receiving device 20 is built in the electronic pen.
  • the power transmission device 10 may be built in the charger of the electronic pen instead of the tablet PC.
  • the power transmission device 10 includes an external electrode 11, a power transmission control unit 12, an oscillator 13, a matching circuit 14, and a power transmission antenna 15.
  • the power transmission control unit 12, the oscillator 13, and the matching circuit 14 correspond to the “power transmission side circuit” and the “circuit”.
  • the power transmission antenna 15 corresponds to an "antenna”.
  • the external electrode 11 is an interface for electrically connecting to an external device (for example, a tablet PC) of the power transmission device 10. For example, driving power is supplied to the power transmission device 10 by electrically connecting the external electrode 11 to an external power source of the power transmission device 10.
  • the external electrode 11 is electrically connected to the power transmission control unit 12.
  • a control signal for controlling the power transmission device 10 is input from an external device (for example, a tablet PC) to the power transmission control unit 12 through the external electrode 11.
  • the power transmission control unit 12 includes a power supply control unit, a communication circuit, and a power transmission circuit.
  • the power supply control unit is individually and electrically connected to both the communication circuit and the power transmission circuit.
  • the power supply control unit controls the communication circuit and the power transmission circuit according to the control signal input through the external electrode 11.
  • the communication circuit and the power transmission circuit are individually and electrically connected to the power transmission antenna 15.
  • the communication circuit is a circuit for communicating with the power receiving device 20 by proximity wireless communication using the power transmission antenna 15.
  • the power transmission circuit is a circuit for performing non-contact power supply to the power receiving device 20 by using the power transmission antenna 15. That is, the power transmission device 10 uses the power transmission antenna 15 to individually transmit power and signals to the power reception device 20.
  • the non-contact power feeding method is a magnetic field resonance method.
  • An oscillator 13 for operating the power supply control unit is electrically connected to the power transmission control unit 12.
  • the oscillator 13 is, for example, a crystal oscillator of about 27.12 MHz.
  • the matching circuit 14 is electrically connected to both the power transmission control unit 12 and the power transmission antenna 15.
  • the matching circuit 14 is a circuit that constitutes a resonance circuit configured with the transmission antenna 15 and adjusts the resonance frequency of the resonance circuit, and has one or a plurality of capacitors.
  • the matching circuit 14 has a plurality of capacitors.
  • the resonance frequency of the resonance circuit is set to the frequency (reference frequency) of the carrier wave (electromagnetic wave) in the communication using the transmission antenna 15. In this embodiment, since wireless communication by NFC is used, the reference frequency is 13.56 MHz.
  • the power transmission antenna 15 is configured to supply power and communicate with the power receiving device 20 from the power transmission control unit 12.
  • the transmission antenna 15 and the plurality of capacitors of the matching circuit 14 are connected to each other in series or in parallel to form a resonance circuit (series resonance circuit, parallel resonance circuit). That is, the plurality of capacitors of the matching circuit 14 include at least one of a series capacitor connected in series with the power transmission antenna 15 and a parallel capacitor connected in parallel with the power transmission antenna 15.
  • the power receiving device 20 includes a power receiving antenna 21, a matching circuit 22, a rectifier circuit 23, a power receiving control unit 24, and an external electrode 25.
  • the matching circuit 22, the rectifier circuit 23, and the power receiving control unit 24 correspond to the “power receiving side circuit” and the “circuit”.
  • the power receiving antenna 21 corresponds to an "antenna”.
  • the external electrode 25 is an interface for electrically connecting to an external device of the power receiving device 20.
  • the external device is, for example, a secondary battery built in an electronic pen and an integrated circuit (IC) for controlling charging of the secondary battery.
  • Examples of the secondary battery include a lithium ion battery.
  • the power receiving antenna 21 is configured to perform close radio communication with the power transmitting antenna 15.
  • the power receiving antenna 21 is electrically connected to the matching circuit 22.
  • the matching circuit 22 is electrically connected to the rectifier circuit 23.
  • the matching circuit 22 is a circuit that forms a resonance circuit with the power receiving antenna 21 and adjusts the resonance frequency of the resonance circuit, and has one or a plurality of capacitors.
  • the power receiving antenna 21 and the capacitor of the matching circuit 22 are connected to each other in series or in parallel to form a resonance circuit (series resonance circuit, parallel resonance circuit).
  • the resonance frequency of the resonance circuit is set to the frequency (reference frequency) of the carrier wave in the communication using the power receiving antenna 21.
  • the reference frequency is 13.56 MHz.
  • the matching circuit 14 of the power transmission device 10 and the matching circuit 22 of the power receiving device 20 are adjusted so as to have the same resonance frequency.
  • the rectifier circuit 23 is a circuit that converts the AC power received by the power receiving antenna 21 into DC power.
  • the rectifier circuit 23 is electrically connected to the power receiving control unit 24, and outputs the converted DC power to the power receiving control unit 24.
  • the rectifier circuit 23 is composed of a diode bridge circuit and a capacitor.
  • the power receiving control unit 24 includes a communication circuit and a power receiving circuit.
  • the communication circuit and the power receiving circuit are electrically connected.
  • the communication circuit is electrically connected to the matching circuit 22 by the signal line SL.
  • the power receiving circuit is electrically connected to the external electrode 25.
  • a signal from the power transmission device 10 is input to the communication circuit from the power receiving antenna 21 via the matching circuit 14 and the signal line SL.
  • the communication circuit communicates with the power transmission device 10 using the power receiving antenna 21.
  • the communication circuit uses the power receiving antenna 21 to transmit a charge control signal SV according to the charge state of the secondary battery to the power transmission device 10.
  • the communication circuit transmits the identification code CD to the power transmission device 10 by using the power receiving antenna 21.
  • the identification code CD is a unique code for identifying the power receiving device 20, and is stored in, for example, a storage unit provided in the power receiving control unit 24.
  • the storage unit is composed of, for example, a non-volatile memory.
  • the power receiving circuit is a circuit that is electrically connected to the rectifier circuit 23, and is a circuit that controls at least one of the current and the voltage of the DC power from the power receiving antenna 21.
  • the power receiving circuit changes the voltage of the DC power to a voltage according to the specifications of the secondary battery electrically connected to the external electrode 25 and outputs the voltage to the secondary battery.
  • the power receiving circuit changes the current of DC power according to the state of charge of the secondary battery and outputs it to the secondary battery.
  • the DC power of the power receiving circuit is output to the communication circuit. As a result, the communication circuit operates.
  • the first electric power P1 is supplied from the power transmitting device 10 to the power receiving device 20 in a non-contact manner.
  • the power receiving device 20 is activated by the first electric power P1. That is, the communication circuit operates by supplying the first electric power P1 to the communication circuit of the power receiving device 20.
  • the communication circuit transmits the identification code CD to the power transmission device 10.
  • the first electric power P1 is such an electric power that the communication circuit can be activated.
  • the power supply process of the first electric power P1 is performed at predetermined intervals (for example, 1 second intervals). Since the power receiving device 20 activated by the first electric power P1 transmits the identification code CD, the power transmission device 10 can recognize that the power receiving device 20 is placed in the power feeding place by receiving the identification code CD.
  • the power transmission device 10 determines whether or not the second electric power P2 can be supplied based on the authentication result of the identification code CD.
  • the power transmission device 10 supplies the second electric power P2.
  • the power transmission device 10 does not supply the second electric power P2.
  • the second electric power P2 is an electric power for charging the secondary battery connected to the power receiving device 20, and is, for example, a electric power larger than the first electric power P1.
  • the power receiving device 20 supplies the supplied second power P2 to the secondary battery via the power receiving circuit of the power receiving device 20.
  • the state of charge of the secondary battery is transmitted to the power receiving device 20.
  • the communication circuit of the power receiving device 20 transmits a charge control signal SV to the power transmitting device 10 according to the charging state of the secondary battery.
  • the power transmission device 10 controls non-contact power supply to the power receiving device 20 according to the charge control signal SV.
  • the configuration of the power transmission device 10 and the power reception device 20 of the non-contact power supply system 1 will be described. 2 to 5 show an example of the configuration of the power transmission device 10.
  • the sealing resin 50 described later is omitted.
  • the cross-sectional view of the power transmission device 10 of FIG. 5 there are parts with hatching and parts without hatching from the viewpoint of easy viewing of the drawing.
  • the shield layer 33 which will be described later, is provided with dot hatching.
  • the power transmission device 10 has a rectangular parallelepiped package structure.
  • the power transmission device 10 includes a multilayer board 30.
  • the thickness direction of the multilayer substrate 30 is defined as the z direction, and the two directions orthogonal to the z direction are defined as the x direction and the y direction, respectively. Therefore, in the description of the power transmission device 10, "viewed from the z direction” means "viewed from the thickness direction of the multilayer board 30".
  • the multilayer board 30 is formed in a rectangular plate shape, and has a front surface 30s and a back surface 30r facing opposite sides in the z direction.
  • the multilayer board 30 has a side surface 30a that intersects both the front surface 30s and the back surface 30r.
  • the multilayer board 30 has four side surfaces 30a. Each side surface 30a is orthogonal to both the front surface 30s and the back surface 30r.
  • the shape of the multilayer board 30 when viewed from the z direction is a rectangular shape having a long side and a short side.
  • the direction along the long side of the multilayer board 30 is the x direction
  • the direction along the short side is the y direction.
  • the circuit component of the power transmission device 10 is mounted on the surface 30s of the multilayer board 30.
  • the circuit component includes a first chip 41 constituting the power transmission control unit 12 shown in FIG. 1, a second chip 42 constituting the oscillator 13, and a plurality of capacitors 43 constituting the matching circuit 14.
  • the plurality of capacitors 43 include a series capacitor forming a series resonance circuit with the transmission antenna 15 and a parallel capacitor forming a parallel resonance circuit with the transmission antenna 15. Therefore, the plurality of capacitors 43 are electrically connected to the power transmission antenna 15.
  • a wiring layer 34 is formed on the surface 30s of the multilayer substrate 30.
  • the wiring layer 34 is made of a conductive material, and in this embodiment, is made of Cu (copper).
  • Each chip 41, 42 and a plurality of capacitors 43 are mounted on the wiring layer 34.
  • Each chip 41, 42 and the plurality of capacitors 43 are electrically connected to the wiring layer 34.
  • each chip 41, 42 and the plurality of capacitors 43 are sealed with a sealing resin 50 having electrical insulation. That is, it can be said that the power transmission side circuit of the power transmission device 10 is sealed by the sealing resin 50.
  • the sealing resin 50 is made of, for example, an epoxy resin, a polyimide resin, or the like.
  • the sealing resin 50 is colored, for example, black.
  • the shape of the sealing resin 50 is a rectangular parallelepiped shape formed over the entire surface 30s of the multilayer substrate 30.
  • a power transmission antenna 15 is formed on the back surface 30r of the multilayer board 30.
  • the power transmission antenna 15 is composed of an antenna coil and is formed in a rectangular spiral shape when viewed from the z direction.
  • the power transmission antenna 15 is made of a conductive material, for example, Cu.
  • the power transmission antenna 15 is covered with, for example, an insulating film (not shown). When viewed from the z direction, the power transmission antenna 15 is arranged at the center of the back surface 30r of the multilayer board 30.
  • the chips 41 and 42, the plurality of capacitors 43, and the power transmission antenna 15 are arranged at positions where they overlap each other. If the chips 41, 42 and the plurality of capacitors 43 are arranged in the region R1 in which the electromagnetic wave is mainly generated in the power transmission antenna 15 when viewed from the z direction, the chips 41, 42 and the plurality of capacitors 43 are viewed from the z direction. It can be said that the capacitor 43 and the power transmission antenna 15 are arranged at positions where they overlap each other.
  • the region R1 is a region corresponding to the spiral portion of the power transmission antenna 15.
  • the chips 41, 42 and the plurality of capacitors 43 are arranged in the region R1 as a whole when viewed from the z direction. At least one of a part of the first chip 41, a part of the second chip 42, and a part of each capacitor 43 may protrude from the region R1. That is, if a part of the first chip 41, a part of the second chip 42, and a part of each capacitor 43 are arranged in the region R1, the chips 41, 42 and a plurality of the chips 41, 42 and a plurality of the chips 41, 42 are viewed from the z direction. It can be said that the capacitor 43 and the power transmission antenna 15 are arranged at positions where they overlap each other.
  • the power transmission antenna 15 has a first end portion 15A and a second end portion 15B.
  • the second end portion 15B is connected to the connection wiring 15C formed on the back surface 30r of the multilayer board 30.
  • the connection wiring 15C is included in the back surface side wiring layer 32 (see FIG. 5), which will be described later.
  • the second end portion 15B and the connection wiring 15C are connected via a through hole 35B.
  • the connection wiring 15C has through holes 35C penetrating the first to third base materials 10A to 10C, the front surface side wiring layer 31, the back surface side wiring layer 32, and the shield layer 33 (both see FIG. 5) described later in the z direction. It is connected to the matching circuit 14 (see FIG. 1) via.
  • the first end portion 15A of the power transmission antenna 15 is electrically connected to a plurality of capacitors 43 via a through hole 35D penetrating the multilayer board 30 in the z direction.
  • An external electrode 11 is provided on the back surface 30r of the multilayer board 30.
  • a plurality of external electrodes 11 may be provided on the back surface 30r of the multilayer substrate 30.
  • four external electrodes 11 are provided on the back surface 30r of the multilayer board 30.
  • Each external electrode 11 is a land pattern formed on the back surface 30r of the multilayer substrate 30. That is, each external electrode 11 includes a metal layer such as Cu.
  • the plurality of external electrodes 11 are arranged around the power transmission antenna 15. In the present embodiment, the plurality of external electrodes 11 are dispersedly arranged at the four corners of the back surface 30r of the multilayer substrate 30.
  • the power transmission device 10 has a surface mount type package structure.
  • Each external electrode 11 is electrically connected to the first chip 41 (transmission side circuit) via a through hole 35E which is a wiring penetrating the multilayer board 30 in the z direction.
  • the through hole 35E penetrates the shield layer 33 in the z direction. More specifically, the through hole 35E includes the fourth base material 30D, the back surface side wiring layer 32, the third base material 30C, the shield layer 33, the second base material 30B, the front surface side wiring layer 31, and the first base material 30A. Penetrates.
  • the through hole 35E connects the external electrode 11 and the wiring layer 34. In this way, the through hole 35E corresponds to "wiring connecting the power transmission side circuit and the external electrode".
  • the multilayer substrate 30 includes a first base material 30A, a second base material 30B, a third base material 30C, and a fourth base material 30D, and a front surface side wiring layer 31 and a back surface side wiring layer 32. , And a shield layer 33.
  • Each of the base materials 30A to 30D is made of a material having electrical insulating properties, and is made of, for example, an epoxy resin, a polyimide resin, or the like.
  • Each base material 30A to 30D is composed of a rigid substrate or a flexible substrate. In the present embodiment, each of the base materials 30A to 30D is composed of a rigid substrate.
  • the first substrate 30A is a substrate including the front surface 30s of the multilayer substrate 30, and the fourth substrate 30D is a substrate including the back surface 30r of the multilayer substrate 30. That is, in the present embodiment, the first base material 30A corresponds to the "front surface side insulating layer", and the fourth base material 30D corresponds to the "back surface side insulating layer”.
  • the second base material 30B and the third base material 30C are arranged between the first base material 30A and the fourth base material 30D in the thickness direction (z direction) of the multilayer board 30. In the z direction, the second base material 30B is arranged closer to the first base material 30A than the third base material 30C.
  • the surface side wiring layer 31 is arranged between the first base material 30A and the second base material 30B.
  • the surface side wiring layer 31 is, for example, a wiring layer used for connecting each chip 41, 42 and a plurality of capacitors 43.
  • the surface side wiring layer 31 and the wiring layer 34 formed on the surface 30s of the multilayer board 30 are connected via a through hole 35A which is a wiring penetrating the first base material 30A in the thickness direction (z direction). Has been done.
  • the back surface side wiring layer 32 is arranged between the third base material 30C and the fourth base material 30D.
  • the back surface side wiring layer 32 includes, for example, a connection wiring 15C (both see FIG. 4) connected to the second end portion 15B of the power transmission antenna 15.
  • the back surface side wiring layer 32 and the power transmission antenna 15 are connected via a through hole 35B which is a wiring penetrating the fourth base material 30D.
  • Each of the wiring layers 31 and 32 is made of a conductive material, for example, Cu.
  • the shield layer 33 is a layer that reduces electromagnetic waves directed from the power transmission antenna 15 to the chips 41, 42 and the plurality of capacitors 43. That is, it can be said that the shield layer 33 is a layer that reduces electromagnetic waves directed from the power transmission antenna 15 to the power transmission control unit 12, the vibrator 13, and the matching circuit 14.
  • the shield layer 33 contains, for example, a magnetic material and has electrical insulation.
  • the shield layer 33 is made of ferrite. Ferrite has both electrical insulation and magnetism.
  • the shield layer 33 is provided between each chip 41, 42, a plurality of capacitors 43, and a power transmission antenna 15 in the z direction.
  • the shield layer 33 may be arranged between the front surface 30s and the back surface 30r of the multilayer substrate 30 in the z direction, and is arranged between the third base material 30C and the fourth base material 30D in the present embodiment. ing. It can be said that the shield layer 33 is arranged between the front surface side wiring layer 31 and the back surface side wiring layer 32 in the z direction.
  • the shield layer 33 When viewed from the z direction, the shield layer 33 is arranged at a position where it overlaps with both the chips 41 and 42, the plurality of capacitors 43 (see FIG. 3), and the power transmission antenna 15. When viewed from the z direction, the shield layer 33 covers the entire power transmission antenna 15. Further, when viewed from the z direction, the shield layer 33 covers each chip 41, 42 and a plurality of capacitors 43. That is, when viewed from the z direction, the shield layer 33 may be formed so as to cover at least the entire region R1 of FIG. In the present embodiment, the shield layer 33 is formed over the entire front surface 30s (back surface 30r) of the multilayer substrate 30 when viewed from the z direction.
  • the shield layer 33 is exposed from the side surface 30a of the multilayer board 30 when the multilayer board 30 is viewed from the x direction and the y direction.
  • the thickness of the shield layer 33 is higher than, for example, the thickness of the front side wiring layer 31 and the thickness of the back side wiring layer 32.
  • the thickness of the shield layer 33 is not limited to this, and the thickness of the shield layer 33 is arbitrary.
  • a base material for the multilayer board 30 is prepared.
  • the base material of the multilayer board 30 includes a plurality of multilayer boards 30 and is a base material before being cut into the plurality of multilayer boards 30. Similar to the multilayer board 30, the base material of the multilayer board 30 has a configuration in which the first to fourth base materials, the front surface side wiring layer, the back surface side wiring layer, and the shield layer are laminated.
  • the shield layer is formed over the entire base material of the multilayer board 30 when viewed from the thickness direction of the base material.
  • a wiring layer for mounting each chip 41, 42 and a plurality of capacitors 43 is formed on the surface of the base material of the multilayer board 30, and a plurality of power transmission antennas corresponding to each multilayer board 30 are formed on the back surface of the base material. 15 and an external electrode 11 are formed.
  • the chips 41, 42 and the plurality of capacitors 43 are mounted in the region corresponding to each multilayer board 30 in the base material of the multilayer board 30, for example, by die bonding.
  • a resin layer is formed over the entire surface of the base material of the multilayer board 30.
  • the resin layer is a layer for sealing each chip 41, 42 and a plurality of capacitors 43 mounted in the region corresponding to each multilayer board 30.
  • a dicing blade is used to cut the base material and the resin layer of the multilayer substrate 30.
  • the power transmission device 10 is separated into individual pieces.
  • the side surface 30a of the multilayer board 30 becomes the dicing side surface which is the diced surface, and the shield layer 33 is exposed.
  • the shield layer 33 exposed from the side surface 30a is flush with the side surface 30a. Therefore, it can be said that the shield layer 33 exposed from the side surface 30a is also the dicing side surface.
  • FIG. 6 to 8 show an example of the configuration of the power receiving device 20.
  • the sealing resin 80 described later is omitted from the power receiving device 20.
  • a part of the hatching of the power receiving device 20 is omitted.
  • the shield layer 63 which will be described later, is provided with dot hatching.
  • the power receiving device 20 is formed in a rectangular parallelepiped shape like the power transmitting device 10. In this embodiment, the size of the power receiving device 20 is smaller than the size of the power transmitting device 10.
  • the power receiving device 20 includes a multilayer board 60.
  • the configuration of the multilayer board 60 is the same as the configuration of the multilayer board 30 (see FIG. 5) of the power transmission device 10.
  • the configuration of the multilayer board 60 is such that the wiring patterns of the front surface side wiring layer 61, the back surface side wiring layer 62, and the wiring layer 64, which will be described later, are the front surface side wiring layer 31, the back surface side wiring layer 32 of the multilayer board 30 of the power transmission device 10. It is different from the wiring layer 34.
  • the size of the multilayer board 60 of the present embodiment is smaller than the size of the multilayer board 30 (see FIG. 3) of the power transmission device 10.
  • the thickness direction of the multilayer substrate 60 is defined as the z direction, and the two directions orthogonal to the z direction are defined as the x direction and the y direction, respectively. Therefore, in the description of the power receiving device 20, "viewed from the z direction” means "viewed from the thickness direction of the multilayer board 60".
  • a first chip 71 constituting the power receiving control unit 24 shown in FIG. 1, a second chip 72 constituting the rectifier circuit 23, and a matching circuit 22 are configured on the surface 60s of the multilayer board 60.
  • a plurality of capacitors 73 and the like are mounted on the surface 60s of the multilayer board 60 by die bonding, for example.
  • the plurality of capacitors 73 include a series capacitor forming a series resonance circuit with the power receiving antenna 21 and a parallel capacitor forming a parallel resonance circuit with the power receiving antenna 21. In this way, the plurality of capacitors 73 are electrically connected to the power receiving antenna 21. Further, in the present embodiment, although not shown in FIG. 6, a wiring layer 64 (see FIG. 8) is formed on the surface 60s of the multilayer board 60. The wiring layer 64 is made of a conductive material, and in this embodiment, is made of Cu. Each chip 71, 72 and the plurality of capacitors 73 are electrically connected to the wiring layer 64.
  • a power receiving antenna 21 is formed on the back surface 60r of the multilayer board 60.
  • the shape of the power receiving antenna 21 seen from the z direction is the same as the shape of the power transmission antenna 15 seen from the z direction shown in FIG. That is, the power receiving antenna 21 has a first end portion 21A and a second end portion 21B. The second end 21B is electrically connected to the connection wiring 21C.
  • the connection wiring 21C is wiring included in the back surface side wiring layer 62.
  • the size of the power receiving antenna 21 viewed from the z direction is smaller than the size of the power transmission antenna 15 viewed from the z direction.
  • non-contact power supply can be performed between the power transmission device 10 and the power reception device 20 even if the position accuracy of the power reception antenna 21 with respect to the power transmission antenna 15 is not high.
  • the power receiving antenna 21 When viewed from the z direction, the power receiving antenna 21 is arranged in the center of the back surface 60r of the multilayer board 60. As shown in FIG. 6, when viewed from the z direction, the chips 71 and 72, the plurality of capacitors 73, and the power receiving antenna 21 are arranged at positions where they overlap each other.
  • the chips 71, 72 and the plurality of capacitors 73 are arranged in the region R2 in which the electromagnetic wave is mainly generated in the power receiving antenna 21 when viewed from the z direction. It can be said that the capacitor 73 and the power receiving antenna 21 are arranged at positions where they overlap each other.
  • the region R2 is a region corresponding to the spiral portion of the power receiving antenna 21.
  • the size of the region R2 is smaller than the size of the region R1 in FIG.
  • the chips 71, 72 and the plurality of capacitors 73 are arranged in the region R2 as a whole when viewed from the z direction.
  • At least one of a part of the first chip 71, a part of the second chip 72, and a part of each capacitor 73 may protrude from the region R2. That is, if a part of the first chip 71, a part of the second chip 72, and a part of each capacitor 73 are arranged in the region R2, each chip 71, 72 and a plurality of chips 71, 72 when viewed from the z direction. It can be said that the capacitor 73 and the power receiving antenna 21 are arranged at positions where they overlap each other.
  • an external electrode 25 is provided on the back surface 60r of the multilayer board 60.
  • a plurality of external electrodes 25 may be provided on the back surface 60r of the multilayer substrate 60.
  • four external electrodes 25 are provided on the back surface 60r of the multilayer board 60.
  • the four external electrodes 25 are arranged around the power receiving antenna 21.
  • the four external electrodes 25 are dispersedly arranged at the four corners of the back surface 60r of the multilayer substrate 60.
  • the power receiving device 20 has a surface mount type package structure.
  • the multilayer substrate 60 has a laminated structure of a plurality of base materials, a front surface side wiring layer, a back surface side wiring layer, and a shield layer. That is, the multilayer board 60 includes first to fourth base materials 60A to 60D, a front surface side wiring layer 61, a back surface side wiring layer 62, and a shield layer 63.
  • the laminated structure of the multilayer board 60 is the same as the laminated structure of the multilayer board 30.
  • the first base material 60A forms the front surface 60s of the multilayer board 60
  • the fourth base material 60D forms the back surface 60r of the multilayer board 60, so that the first base material 60A is "front side”.
  • the fourth base material 60D corresponds to the "insulating layer", and corresponds to the "backside insulating layer”.
  • the laminated structure of the multilayer board 60 may be different from the laminated structure of the multilayer board 30.
  • Each base material 60A to 60D is made of the same material as each base material 30A to 30D of, for example, the multilayer board 30.
  • the front surface side wiring layer 61 and the back surface side wiring layer 62 are made of the same material as the front surface side wiring layer 31 and the back surface side wiring layer 32 of the multilayer board 30.
  • the shield layer 63 is a layer that reduces electromagnetic waves directed from the power receiving antenna 21 to the chips 71 and 72 and the plurality of capacitors 73. That is, it can be said that the shield layer 63 is a layer that reduces electromagnetic waves directed from the power receiving antenna 21 to the power receiving control unit 24, the rectifier circuit 23, and the matching circuit 22 (both see FIG. 1).
  • the shield layer 63 is arranged at a position where both the chips 71 and 72, the plurality of capacitors 73, and the power receiving antenna 21 overlap each other. That is, when viewed from the z direction, the shield layer 63 may be formed so as to cover at least the entire region R2 of FIG. In the present embodiment, the shield layer 63 is formed over the entire surface of the multilayer substrate 60 when viewed from the z direction.
  • the wiring layer 64 and the surface side wiring layer 61 are connected by a through hole 65A which is a wiring penetrating the first base material 60A in the z direction.
  • the back surface side wiring layer 62 (connection wiring 21C) and the power receiving antenna 21 are connected by a through hole 65B penetrating the fourth base material 60D in the z direction.
  • the connection wiring 21C is connected to the wiring layer 64 by a through hole 65C which is a wiring penetrating the first to third base materials 60A to 60C, the surface side wiring layer 31, and the shield layer 63.
  • the first end portion 21A of the power receiving antenna 21 and the wiring layer 64 are connected by a through hole 65D which is a wiring penetrating the multilayer board 60 in the z direction.
  • Each external electrode 25 is electrically connected to the first chip 71 by a through hole 65E which is a wiring penetrating the multilayer board 60 in the z direction.
  • the through hole 65E is connected to the wiring layer 64. Since the first chip 71 is electrically connected to the wiring layer 64, the external electrode 25 is electrically connected to the first chip 71. In this way, the through hole 65E corresponds to "wiring connecting the power receiving side circuit and the external electrode".
  • the power receiving device 20 includes a sealing resin 80 that protects each chip 71, 72 and a plurality of capacitors 73, similarly to the power transmission device 10. That is, each chip 71, 72 and the plurality of capacitors 73 are sealed with a sealing resin 80 having electrical insulation.
  • the sealing resin 80 is formed of the same shape and material as the sealing resin 50 of the power transmission device 10. Further, the power receiving device 20 is manufactured by the same manufacturing method as the manufacturing method of the power transmission device 10.
  • the power receiving device 20 is arranged with respect to the power transmitting device 10 so that the power transmitting antenna 15 of the power transmitting device 10 and the power receiving antenna 21 of the power receiving device 20 face each other in the z direction. That is, the power receiving device 20 is arranged with respect to the power transmitting device 10 so that the chips 71 and 72 and the plurality of capacitors 73 are arranged on the side opposite to the power transmitting antenna 15 with respect to the power receiving antenna 21 in the z direction. Will be done.
  • the size of the power transmitting antenna 15 is larger than the size of the power receiving antenna 21, even if the center of the power receiving antenna 21 is displaced from the center of the power transmitting antenna 15, the power is transmitted when viewed from the z direction.
  • the probability that the power receiving antenna 21 is arranged in the antenna 15 is high. Therefore, in order to supply power from the power transmitting device 10 to the power receiving device 20 in a non-contact manner, high positional accuracy of the power receiving device 20 with respect to the power transmitting device 10 is not required.
  • the multilayer board 30 of the power transmission device 10 has chips 41, 42 and a plurality of capacitors 43 mounted on its front surface 30s, and a power transmission antenna 15 is formed on its back surface 30r. That is, the chips 41 and 42, the plurality of capacitors 43, and the power transmission antenna 15 are dispersedly arranged on both sides of the multilayer board 30. Therefore, for example, the power transmission antenna 15 is arranged on the surface 30s of the multilayer board 30 as compared with the case where the chips 41, 42, the plurality of capacitors 43, and the power transmission antenna 15 are arranged side by side on the surface 30s of the multilayer board 30. Since no space is required for this, the area of the surface 30s of the multilayer board 30 can be reduced.
  • each chip 41, 42 and the plurality of capacitors 43 and the power transmission antenna 15 are arranged side by side on the surface 30s of the multilayer substrate 30, each chip 41, 42 and the plurality of capacitors 43 are affected by the electromagnetic waves of the power transmission antenna 15. In order to avoid this, it is necessary to increase the distance between each chip 41, 42 and the plurality of capacitors 43 and the power transmission antenna 15.
  • each chip 41 is provided on the surface 30s of the multilayer substrate 30. Even in a configuration in which 42 and a plurality of capacitors 43 are mounted and a power transmission antenna 15 is formed on the back surface 30r of the multilayer substrate 30, the electromagnetic wave of the power transmission antenna 15 affects each chip 41, 42 and the plurality of capacitors 43. It can be suppressed.
  • the multilayer board 60 of the power receiving device 20 has chips 71 and 72 and a plurality of capacitors 73 mounted on the front surface 60s thereof, and a power receiving antenna 21 is formed on the back surface 60r thereof. That is, the chips 71 and 72, the plurality of capacitors 73, and the power receiving antenna 21 are dispersedly arranged on both sides of the multilayer board 60. Therefore, for example, the power receiving antenna 21 is arranged on the surface 60s of the multilayer board 60 as compared with the case where the chips 71, 72, the plurality of capacitors 73, and the power receiving antenna 21 are arranged side by side on the surface 60s of the multilayer board 60. Since no space is required for this, the area of the surface 60s of the multilayer board 60 can be reduced.
  • the chips 71, 72 and the plurality of capacitors 73 and the power receiving antenna 21 are arranged side by side on the surface 60s of the multilayer board 60, the chips 71, 72 and the plurality of capacitors 73 are affected by the electromagnetic waves of the power receiving antenna 21. In order to avoid this, it is necessary to increase the distance between each chip 71, 72 and the plurality of capacitors 73 and the power receiving antenna 21.
  • the shield layer is provided in the multilayer board 60, the chips 71, 72 and the plurality of capacitors 73 are mounted on the front surface 60s of the multilayer board 60, and the back surface 60r of the multilayer board 60 is mounted. Even in the configuration in which the power receiving antenna 21 is formed, it is possible to suppress the electromagnetic wave of the power receiving antenna 21 from affecting each of the chips 71 and 72 and the plurality of capacitors 73.
  • the power transmission device 10 includes a multilayer substrate 30 having a front surface 30s and a back surface 30r facing the opposite side to the front surface 30s, and chips 41 and 42 mounted on the front surface 30s and serving as a power transmission side circuit for power transmission control.
  • a shield layer 33 for reducing electromagnetic waves from the power transmission antenna 15 to the chips 41, 42 and the plurality of capacitors 43 is provided between the two.
  • each chip 41, 42 and a plurality of capacitors 43 are mounted on the front surface 30s of the multilayer board 30, and the power transmission antenna 15 is formed on the back surface 30r. Therefore, for example, the power transmission antenna 15 is formed on the surface of the circuit board.
  • the power transmission device 10 can be downsized.
  • the shield layer 33 is provided between the chips 41 and 42 and the plurality of capacitors 43 and the power transmission antenna 15 in the z direction, so that the electromagnetic waves from the power transmission antenna 15 to the chips 41 and 42 are transmitted by the shield layer 33. Since it is reduced, it is possible to suppress the electromagnetic wave generated from the power transmission antenna 15 from affecting each chip 41, 42 and the plurality of capacitors 43. That is, it is possible to suppress the electromagnetic wave generated from the power transmission antenna 15 from affecting the power transmission control unit 12, the vibrator 13, and the matching circuit 14.
  • the chips 41 and 42, the plurality of capacitors 43, and the power transmission antenna 15 are arranged at positions where they overlap each other.
  • the shield layer 33 is arranged at a position where both the chips 41 and 42 and the plurality of capacitors 43 and the power transmission antenna 15 overlap each other.
  • the surface 30s of the multilayer substrate 30 is compared with the configuration in which a part of the chips 41, 42 and the plurality of capacitors 43 is arranged so as to be offset from the power transmission antenna 15. Since the area can be reduced, the power transmission device 10 can be miniaturized.
  • the shield layer 33 is arranged at a position where both the chips 41 and 42 and the plurality of capacitors 43 and the power transmission antenna 15 overlap, so that the electromagnetic waves generated by the power transmission antenna 15 are generated by each chip. It is possible to further suppress the influence on the 41, 42 and the plurality of capacitors 43. That is, it is possible to further suppress that the electromagnetic wave generated from the power transmission antenna 15 affects the power transmission control unit 12, the vibrator 13, and the matching circuit 14.
  • the shield layer 33 When viewed from the z direction, the shield layer 33 is formed over the entire surface of the multilayer substrate 30. According to this configuration, the shield layer 33 is reliably overlapped with both the chips 41 and 42 and the plurality of capacitors 43 and the power transmission antenna 15. Therefore, it is possible to further suppress the electromagnetic wave generated by the power transmission antenna 15 from affecting the chips 41, 42 and the plurality of capacitors 43. That is, it is possible to further suppress that the electromagnetic wave generated from the power transmission antenna 15 affects the power transmission control unit 12, the vibrator 13, and the matching circuit 14.
  • the power transmission device 10 has electrical insulation and includes a sealing resin 50 that seals each chip 41, 42 and a plurality of capacitors 43. According to this configuration, for example, when the power transmission device 10 is transported, contact between external parts of the power transmission device 10 and the chips 41, 42 and the plurality of capacitors 43 can be suppressed.
  • the sealing resin 50 is formed in a rectangular parallelepiped shape. According to this configuration, since the power transmission device 10 can be conveyed by the mounter, it becomes easy to mount the power transmission device 10 on, for example, a circuit board.
  • the power transmission device 10 uses the power transmission antenna 15 to supply power and communicate with the power receiving device 20. According to this configuration, since a common power transmission antenna 15 is used for power supply and communication, the power transmission device 10 is downsized as compared with a configuration in which a power transmission antenna and a communication antenna are separately provided as the power transmission antenna. be able to.
  • the power receiving device 20 includes a multilayer board 60 having a front surface 60s and a back surface 60r facing the opposite side to the front surface 60s, chips 71 and 72 mounted on the front surface 60s and performing power receiving control, and a plurality of capacitors 73.
  • a power receiving antenna 21 formed on the back surface 60r and receiving power from the power transmitting antenna 15 in a non-contact manner, and provided between each chip 71, 72 and a plurality of capacitors 73 and the power receiving antenna 21, from the power receiving antenna 21 to each chip 71, It includes a shield layer 63 that reduces electromagnetic waves directed toward the 72 and the plurality of capacitors 73.
  • the power receiving antenna 21 and each of them are formed on the front surface of the circuit board.
  • the power receiving device 20 can be downsized.
  • the shield layer 63 is provided between each chip 71, 72 and the plurality of capacitors 73 and the power receiving antenna 21, so that the electromagnetic wave directed from the power receiving antenna 21 to each chip 71, 72 and the plurality of capacitors 73 is the shield layer. Since it is cut off by 63, it is possible to suppress the electromagnetic wave generated from the power receiving antenna 21 from affecting each of the chips 71 and 72 and the plurality of capacitors 73. That is, it is possible to suppress that the electromagnetic wave generated from the power receiving antenna 21 affects the power receiving control unit 24, the rectifier circuit 23, and the matching circuit 22.
  • the multilayer board 60 of the power receiving device 20 has the same configuration as the multilayer board 30 of the power transmission device 10. According to this configuration, the effects according to the above (2) to (5) can be obtained. (9) The power receiving device 20 receives power from the power transmitting device 10 and communicates using the power receiving antenna 21. According to this configuration, since a common power receiving antenna 21 is used for power receiving and communication, the power receiving device 20 is miniaturized as compared with a configuration in which a power receiving antenna and a communication antenna are separately provided as the power receiving antenna. be able to.
  • the above-described embodiment is an example of possible embodiments of a power transmission device, a power receiving device, and a contactless power supply system according to the present disclosure, and is not intended to limit the embodiments.
  • the power transmission device, the power receiving device, and the non-contact power feeding system according to the present disclosure may take a form different from the embodiment exemplified above.
  • One example thereof is a form in which a part of the above embodiment is replaced, changed, or omitted, or a form in which a new configuration is added to the above embodiment.
  • the following modification examples can be combined with each other as long as they are not technically inconsistent.
  • the configuration of the external electrode 11 can be arbitrarily changed.
  • the external electrode 11 may not be formed on the back surface 30r of the multilayer substrate 30.
  • the external electrode 11 may be formed on the side surface 30a of the multilayer substrate 30.
  • the external electrode 11 may be formed so as to extend from the front surface 30s of the multilayer substrate 30 to the back surface 30r in the z direction. That is, the external electrode 11 may be provided as an end face electrode extending in the thickness direction of the multilayer board 30 so as to penetrate the multilayer board 30 in the thickness direction (z direction).
  • the external electrode 11 is configured by forming a conductive layer such as Cu on the inner surface of a semicircular recess formed in the y direction from the side surface 30a of the multilayer substrate 30 when viewed from the z direction.
  • the recess also penetrates the shield layer 33. That is, the recess is similarly formed in the shield layer 33 exposed from the side surface 30a.
  • the bonding state between the power transmission device 10 and the circuit board by the conductive bonding material can be visually recognized. Therefore, the joint state between the power transmission device 10 and the circuit board can be easily confirmed.
  • the shield layer 33 may be formed so as to be located inward of the side surface 30a of the multilayer substrate 30 on which the external electrode 11 is formed. That is, the shield layer 33 and the external electrode 11 may be provided so as to be separated from each other. In this case, the shield layer 33 is not exposed from the side surface 30a of the multilayer board 30.
  • the configuration of the external electrode 11 is not limited to the configuration of the metal layer formed on the back surface 30r of the multilayer substrate 30, and can be arbitrarily changed.
  • the external electrode 11 may have a configuration that can be electrically connected to an external device (for example, a circuit board of a tablet PC) of the power transmission device 10.
  • the external electrode 11 may have a connector structure formed on the surface 30s of the multilayer substrate 30.
  • the external electrode 11 of the connector structure is electrically connected to the external device of the power transmission device 10 by joining to an external connector such as a harness.
  • the external electrode 11 may be sealed with the sealing resin 50 in a state where the portion for connecting to the external device of the power transmission device 10 is exposed.
  • the arrangement configuration of the shield layer 33 in the multilayer board 30 can be arbitrarily changed.
  • the shield layer 33 may be arranged at a position where it overlaps with each of the chips 41, 42 and the plurality of capacitors 43 when viewed from the z direction.
  • the power transmission antenna 15 may have a portion that does not overlap with the shield layer 33 when viewed from the z direction.
  • the shield layer 33 may be arranged at a position overlapping with the power transmission antenna 15 when viewed from the z direction.
  • each chip 41, 42 and the plurality of capacitors 43 may have a portion that does not overlap with the shield layer 33 when viewed from the z direction.
  • the material constituting the shield layer 33 is not limited to ferrite, and can be arbitrarily changed.
  • the shield layer 33 may be a magnetic material. Therefore, the shield layer 33 may be made of a conductive material as long as it is a magnetic material.
  • the through hole 35E for electrically connecting each external electrode 11 and the first chip 41 is provided as a wiring penetrating the multilayer board 30 in the z direction, but the present invention is not limited to this.
  • the through hole 35E may be connected to the surface side wiring layer 31. That is, the through hole 35E may be provided as wiring penetrating the fourth base material 30D, the back surface side wiring layer 32, the third base material 30C, the shield layer 33, and the second base material 30B.
  • the surface-side wiring layer 31 may be electrically connected to the first chip 41 via a through hole 35A which is a wiring penetrating the first base material 30A. As a result, each external electrode 11 and the first chip 41 are electrically connected.
  • the power transmission device 10 includes a metal housing 90 instead of the sealing resin 50.
  • the housing 90 is attached to, for example, the surface 30s of the multilayer board 30 using an adhesive.
  • the housing 90 is formed in a box shape that covers each chip 41, 42 and a plurality of capacitors 43. In other words, it can be said that the power transmission circuit is covered with a box-shaped housing made of metal.
  • connection wiring 15C may be omitted from the power transmission antenna 15.
  • the arrangement position of the connection wiring 15C in the z direction can be arbitrarily changed.
  • the connection wiring 15C may be the wiring included in the surface side wiring layer 31 or the wiring included in the wiring layer 34.
  • the arrangement position of the power transmission antenna 15 on the back surface 30r of the multilayer board 30 can be arbitrarily changed.
  • at least one of each chip 41, 42 and each capacitor 43 may be arranged at a position not overlapping with the power transmission antenna 15 when viewed from the z direction.
  • at least one of each chip 41, 42 and each capacitor 43 may be arranged around the power transmission antenna 15 on the surface 30s of the multilayer board 30 when viewed from the z direction.
  • the sealing resin 50 may be omitted.
  • the connection configuration of each chip 41, 42 and the plurality of capacitors 43 can be arbitrarily changed.
  • lands on which the chips 41, 42 and a plurality of capacitors 43 are placed are formed on the surface 30s of the multilayer board 30, and each land and the surface are formed by through holes penetrating the first base material 30A of the multilayer board 30.
  • the side wiring layer 31 may be electrically connected to the side wiring layer 31. That is, the chips 41, 42 and the plurality of capacitors 43 may be connected to each other by the surface side wiring layer 31.
  • the power transmission device 10 has a power transmission control unit 12, an oscillator 13, and a matching circuit 14 as a power transmission side circuit, but the configuration of the power transmission side circuit is not limited to this.
  • the power transmission side circuit may have at least a circuit configuration capable of performing power transmission control.
  • the power receiving device 20 has a matching circuit 22, a rectifier circuit 23, and a power receiving control unit 24 as the power receiving side circuit, but the configuration of the power receiving side circuit is not limited to this.
  • the power receiving side circuit may have at least a circuit configuration capable of performing power receiving control.
  • both the power transmission device 10 and the power receiving device 20 have chips 41, 42 (71, 72) and a plurality of capacitors 43 (73) mounted on the surface 30s (60s) of the multilayer board 30 (60).
  • the power transmission antenna 15 (power receiving antenna 21) is formed on the back surface 30r (60r) of the multilayer board 30 (60), and the shield layer 33 is provided in the multilayer board 30 (60), but the present invention is not limited to this. ..
  • the power receiving device 20 may include a substrate, chips 71 and 72 arranged side by side on the surface of the substrate, a plurality of capacitors 73, and a power receiving antenna 21. good.
  • the power transmission control unit 12, the oscillator 13, and the matching circuit 14, which are the power transmission side circuits of the power transmission device 10, correspond to the “circuit”
  • the power transmission antenna 15 corresponds to the “antenna”.
  • the power transmission device 10 may include a substrate, chips 41, 42 arranged side by side on the surface of the substrate, a plurality of capacitors 43, and a power transmission antenna 15. good.
  • the matching circuit 22, the rectifier circuit 23, and the power receiving control unit 24, which are the power receiving side circuits of the power receiving device 20, correspond to the “circuit”, and the power receiving antenna 21 corresponds to the “antenna”.
  • the power transmission device 10 may include a power supply antenna connected to the power supply circuit of the power transmission control unit 12 and a communication antenna connected to the communication circuit. That is, an antenna dedicated to power supply and an antenna dedicated to communication may be provided separately.
  • the non-contact power feeding system 1 transmits power and a signal individually between the power transmitting device 10 and the power receiving device 20 in a non-contact manner, but the present invention is not limited to this.
  • the electric power and the signal may be simultaneously transmitted between the power transmitting device 10 and the power receiving device 20.
  • the non-contact power feeding system 1 transmits both power and a signal between the power transmitting device 10 and the power receiving device 20 in a non-contact manner, but the present invention is not limited to this.
  • the non-contact power feeding system 1 may be configured to transmit power from the power transmitting device 10 to the power receiving device 20 in a non-contact manner. That is, the non-contact power feeding system 1 may be configured so that the power transmitting device 10 and the power receiving device 20 do not communicate in a non-contact manner.
  • the power transmission device 10 and the power reception device 20 are connected by wire. As a result, communication is performed between the power transmission device 10 and the power reception device 20.
  • on as used in this disclosure includes the meanings of “on” and “above” unless the context clearly indicates otherwise. Therefore, the expression “A is formed on B” can be placed directly on B in contact with B in the present embodiment, but as a modification, A can be placed on B without contacting B. It is intended that it can be placed above. That is, the term “on top” does not exclude structures in which other members are formed between A and B.
  • the z direction used in the present disclosure does not necessarily have to be the vertical direction, and does not have to be exactly the same as the vertical direction.
  • the various structures according to the present disclosure are not limited to the z-direction "top” and “bottom” described herein being “top” and “bottom” in the vertical direction.
  • the x direction may be the vertical direction, or the y direction may be the vertical direction.
  • a power transmission device (10) that transmits power in a non-contact manner to a power receiving device (20) having a power receiving antenna (21).
  • a multilayer substrate (30) having a front surface (30s) and a back surface (30r) facing the opposite side to the front surface (30s).
  • a power transmission side circuit (12, 13, 14) mounted on the surface (30s) and performing power transmission control, and A power transmission antenna (15) formed on the back surface (30r) and transmitting power in a non-contact manner toward the power receiving antenna (21) is provided.
  • the multilayer board (30) is A shield provided between the power transmission side circuit (12,13,14) and the power transmission antenna (15) to reduce electromagnetic waves directed from the power transmission antenna (15) to the power transmission side circuit (12,13,14).
  • a power transmission device (10) including a layer (33).
  • the power transmission side circuit (12, 13, 14, 41, 42, 43) and the power transmission antenna (15) are arranged at positions where they overlap each other when viewed from the thickness direction (z direction) of the multilayer board (30). And When viewed from the thickness direction (z direction) of the multilayer board (30), the shield layer (33) is located at a position where it overlaps with both the power transmission side circuit (12, 13, 14) and the power transmission antenna (15).
  • the power transmission device (10) according to the appendix A1 which is arranged.
  • the multilayer board (30) includes the shield layer (33), the front surface side insulating layer (30A) forming the front surface (30s), and the back surface side insulating layer (30D) forming the back surface (30r).
  • the power transmission device (10) according to any one of the appendices A1 to A5.
  • An external electrode (11) provided on the back surface (30r) and connected to the power transmission side circuit (12, 13, 14) is provided.
  • the power transmission device (10) according to any one of the appendices A1 to A6, wherein the external electrode (11) is arranged around the power transmission antenna (15).
  • the multilayer substrate (30) has a side surface (30a) that intersects both the front surface (30s) and the back surface (30r).
  • the side surface (30a) extends in the thickness direction (z direction) of the multilayer board (30) so as to penetrate the multilayer board (30), and is connected to the power transmission side circuit (12, 13, 14).
  • the power transmission device (10) according to any one of Supplementary A1 to A6, which is provided with an end face electrode (11).
  • the power transmission device (10) according to any one of the appendices A1 to A9, which is made of metal and includes a box-shaped housing (90) that covers the power transmission side circuit (12, 13, 14).
  • a power receiving antenna (21) formed on the back surface (60r) and receiving power from the power transmitting antenna (15) in a non-contact manner is provided.
  • the multilayer board (60) is A shield provided between the power receiving side circuit (22, 23, 24) and the power receiving antenna (21) to reduce electromagnetic waves directed from the power receiving antenna (21) to the power receiving side circuit (22, 23, 24).
  • Power receiving device (20) including layer (63).
  • the power receiving side circuit (22, 23, 24) and the power receiving antenna (21) are arranged at positions where they overlap each other when viewed from the thickness direction (z direction) of the multilayer board (60).
  • the shield layer (63) is located at a position where it overlaps with both the power receiving side circuit (22, 23, 24) and the power receiving antenna (21).
  • the power receiving device (20) according to the appendix A13, which is arranged.
  • the multilayer board (60) includes the shield layer (63), the front surface side insulating layer (60A) forming the front surface (60s), and the back surface side insulating layer (60D) forming the back surface (60r).
  • the power receiving device (20) according to any one of the appendices A13 to A17.
  • the power receiving device (20) according to any one of the appendices A13 to A18, wherein the external electrode (25) is arranged around the power receiving antenna (21).
  • the multilayer substrate (60) has a side surface that intersects both the front surface (60s) and the back surface (60r). On the side surface, an end face electrode extending in the thickness direction (z direction) of the multilayer board (60) so as to penetrate the multilayer board (60) and connected to the power receiving side circuit (22, 23, 24).
  • the power receiving device (20) according to any one of the appendices A13 to A18 provided with the above.
  • a non-contact power feeding system (1) including a power transmitting device (10) and a power receiving device (20), which transmits power from the power transmitting device (10) to the power receiving device (20) in a non-contact manner.
  • At least one of the power transmission device (10) and the power receiving device (20) A multilayer substrate (30/60) having a front surface (30s / 60s) and a back surface (30r / 60r) facing away from the front surface (30s / 60s).
  • a circuit (12,13,14 / 22,23,24) mounted on the surface (30s / 60s) and used for non-contact power feeding from the power transmission device (10) to the power receiving device (20).
  • the multilayer board (30/60) is It is provided between the circuit (12,13,14 / 22,23,24) and the antenna (15/21), and is provided from the antenna (15/21) to the circuit (12,13,14 / 22,23). , 24), a non-contact power supply system (1) including a shield layer (33/63) that reduces electromagnetic waves directed toward.
  • Non-contact power supply system 10 Power transmission device 11 ... External electrode 12 . Power transmission control unit (power transmission side circuit, circuit) 13 ... Oscillator (power transmission side circuit, circuit) 14 ... Matching circuit (power transmission side circuit, circuit) 15 ... Transmission antenna (antenna) 15A ... 1st end 15B ... 2nd end 15C ... Connection wiring 20 . Power receiving device 21 ... Power receiving antenna (antenna) 21A ... 1st end 21B ... 2nd end 21C ... Connection wiring 22 ... Matching circuit (power receiving side circuit, circuit) 23 ... Rectifier circuit (power receiving side circuit, circuit) 24 ... Power receiving control unit (power receiving side circuit, circuit) 25 ... External electrode 30 ...
  • Multilayer substrate 30s ... Front surface 30r ... Back surface 30a ... Side surface 30A ... First base material 30B ... Second base material 30C ... Third base material 30D ... Fourth base material 31 ... Front side wiring layer 32 ... Back side Side wiring layer 33 ... Shield layer 34 ... Wiring layer 35A to 35E ... Through hole 41 ... First chip (transmission side circuit, circuit) 42 ... 2nd chip (power transmission side circuit, circuit) 43 ... Capacitor (power transmission side circuit, circuit) 50 ... Sealing resin 60 ... Multilayer board 60s ... Front surface 60r ... Back side 60A ... First base material 60B ... Second base material 60C ... Third base material 60D ... Fourth base material 61 ... Front side wiring layer 62 ...
  • Back side wiring Layer 63 Shield layer 64 ... Wiring layer 65A to 65E ... Through hole 71 ... First chip (power receiving side circuit, circuit) 72 ... 2nd chip (power receiving side circuit, circuit) 73 ... Capacitor (power receiving side circuit, circuit) 80 ... Sealing resin 90 ... Housing

Abstract

This power-transmitting device transmits power, in a contactless manner, to a power-receiving device having a power-receiving antenna. The power-transmitting device includes: a multi-layer board, a power-transmitting-side circuit, and a power-transmitting antenna. The multi-layer board has a front surface and a back surface facing opposite the front surface. The power-transmitting-side circuit is mounted on the front surface and controls power transmission. The power-transmitting antenna is formed on the back surface and transmits power to the power-receiving antenna in a contactless manner. The multi-layer board includes a shield layer that is provided between the power-transmitting-side circuit and the power-transmitting antenna and that reduces electromagnetic waves travelling from the power-transmitting antenna to the power-transmitting-side circuit.

Description

送電装置、受電装置、および非接触給電システムTransmission equipment, power receiving equipment, and contactless power supply system
 本開示は、送電装置、受電装置、および非接触給電システムに関する。 This disclosure relates to a power transmission device, a power receiving device, and a contactless power supply system.
 従来、送電アンテナを有する送電装置から、受電アンテナを有する受電装置に、両アンテナを用いて非接触で給電する非接触給電システムが知られている(たとえば特許文献1参照)。近年、このような非接触給電システムは、スマートフォン等の電子機器の充電に用いられている。 Conventionally, a non-contact power feeding system is known in which power is supplied from a power transmitting device having a power transmitting antenna to a power receiving device having a power receiving antenna in a non-contact manner using both antennas (see, for example, Patent Document 1). In recent years, such a contactless power supply system has been used for charging electronic devices such as smartphones.
特開2015-37228号公報JP-A-2015-37228
 ところで、送電装置や受電装置では、回路基板の表面に、送電アンテナや受電アンテナを構成するアンテナコイルと、送電や受電を制御する回路部品とが並んで配置されているため、送電装置や受電装置の小型化に改善の余地がある。 By the way, in a power transmission device or a power receiving device, since the antenna coil constituting the power transmission antenna or the power receiving antenna and the circuit component for controlling the power transmission or the power receiving are arranged side by side on the surface of the circuit board, the power transmission device or the power receiving device is arranged. There is room for improvement in the miniaturization of.
 上記課題を解決する送電装置は、受電アンテナを有する受電装置に対して非接触で送電する送電装置であって、表面、および前記表面とは反対側を向く裏面を有する多層基板と、前記表面に実装され、送電制御を行う送電側回路と、前記裏面に形成され、前記受電アンテナに向けて非接触で送電する送電アンテナと、を備え、前記多層基板は、前記送電側回路と前記送電アンテナとの間に設けられ、前記送電アンテナから前記送電側回路に向かう電磁波を低減するシールド層を含む。 The power transmission device that solves the above problems is a power transmission device that transmits power in a non-contact manner to a power receiving device having a power receiving antenna, and has a front surface, a multilayer substrate having a back surface facing the opposite side to the front surface, and a multi-layer substrate on the front surface. The multilayer board includes a power transmission side circuit that is mounted and controls power transmission, and a power transmission antenna that is formed on the back surface and transmits power in a non-contact manner toward the power reception antenna. The multilayer substrate includes the power transmission side circuit and the power transmission antenna. Includes a shield layer provided between the two to reduce electromagnetic waves from the power transmission antenna to the power transmission side circuit.
 上記課題を解決する受電装置は、送電アンテナを有する送電装置から非接触で受電する受電装置であって、表面、および表面とは反対側を向く裏面を有する多層基板と、前記表面に実装され、受電制御を行う受電側回路と、前記裏面に形成され、前記送電アンテナから非接触で受電する受電アンテナと、を備え、前記多層基板は、前記受電側回路と前記受電アンテナとの間に設けられ、前記受電アンテナから前記受電側回路に向かう電磁波を低減するシールド層を含む。 The power receiving device that solves the above problems is a power receiving device that receives power from a power transmitting device having a power transmitting antenna in a non-contact manner, and is mounted on the front surface and a multilayer substrate having a back surface facing the opposite side to the front surface. A power receiving side circuit for performing power receiving control and a power receiving antenna formed on the back surface thereof for receiving power from the power transmission antenna in a non-contact manner are provided, and the multilayer substrate is provided between the power receiving side circuit and the power receiving antenna. , Includes a shield layer that reduces electromagnetic waves from the power receiving antenna to the power receiving side circuit.
 上記課題を解決する非接触給電システムは、送電装置および受電装置を備え、前記送電装置から前記受電装置に向けて非接触で送電を行う非接触給電システムであって、前記送電装置および前記受電装置の少なくとも一方は、表面、および前記表面とは反対側を向く裏面を有する多層基板と、前記表面に実装され、前記送電装置から前記受電装置への非接触給電に用いられる回路と、前記裏面に実装され、前記送電装置から前記受電装置への非接触給電に用いられるアンテナと、を備え、前記多層基板は、前記回路と前記アンテナとの間に設けられ、前記アンテナから前記回路に向かう電磁波を低減するシールド層を含む。 The contactless power supply system for solving the above problems is a contactless power supply system including a power transmission device and a power receiving device, which transmits power from the power transmission device to the power receiving device in a non-contact manner, and the power transmission device and the power receiving device. At least one of the above is a multilayer substrate having a front surface and a back surface facing the opposite side to the front surface, a circuit mounted on the front surface and used for non-contact power supply from the power transmission device to the power receiving device, and the back surface. It comprises an antenna that is mounted and used for non-contact power feeding from the power transmission device to the power receiving device, and the multilayer board is provided between the circuit and the antenna to transmit electromagnetic waves from the antenna to the circuit. Includes a reduced shield layer.
 上記送電装置、受電装置、および非接触給電システムによれば、装置の小型化を図ることができる。 According to the above-mentioned power transmission device, power receiving device, and non-contact power supply system, the size of the device can be reduced.
図1は、非接触給電システムの一実施形態を示す回路図である。FIG. 1 is a circuit diagram showing an embodiment of a non-contact power feeding system. 図2は、非接触給電システムの送電装置の斜視図である。FIG. 2 is a perspective view of a power transmission device of a contactless power supply system. 図3は、送電装置から封止樹脂を省略した状態の平面図である。FIG. 3 is a plan view showing a state in which the sealing resin is omitted from the power transmission device. 図4は、送電装置の裏面図である。FIG. 4 is a back view of the power transmission device. 図5は、図3の送電装置の5-5線の断面図である。FIG. 5 is a cross-sectional view taken along the line 5-5 of the power transmission device of FIG. 図6は、非接触給電システムの受電装置について、受電装置から封止樹脂を省略した状態の平面図である。FIG. 6 is a plan view of the power receiving device of the non-contact power feeding system in a state where the sealing resin is omitted from the power receiving device. 図7は、受電装置の裏面図である。FIG. 7 is a back view of the power receiving device. 図8は、図6の受電装置の8-8線の断面図である。FIG. 8 is a cross-sectional view taken along the line 8-8 of the power receiving device of FIG. 図9は、変更例の送電装置の斜視図である。FIG. 9 is a perspective view of the power transmission device of the modified example. 図10は、変更例の送電装置の斜視図である。FIG. 10 is a perspective view of the power transmission device of the modified example. 図11は、変更例の送電装置の分解斜視図である。FIG. 11 is an exploded perspective view of the power transmission device of the modified example.
 以下、非接触給電システムの実施形態について図面を参照して説明する。以下に示す実施形態は、技術的思想を具体化するための構成や方法を例示するものであり、各構成部品の材料、構造、配置、寸法等を下記のものに限定するものではない。 Hereinafter, embodiments of the non-contact power supply system will be described with reference to the drawings. The embodiments shown below exemplify configurations and methods for embodying the technical idea, and the materials, structures, arrangements, dimensions, etc. of each component are not limited to the following.
 図1~図7を参照して、非接触給電システム1の一実施形態について説明する。
 図1に示すように、非接触給電システム1は、送電装置10および受電装置20を備え、送電装置10から受電装置20に非接触で送電する装置である。ここで、送電装置10から受電装置20に非接触で送電するとは、送電装置10から受電装置20に非接触での給電および通信を行うことを意味する。また、送電装置10から受電装置20への非接触の送電としては、近接無線通信が用いられる。本実施形態では、近接無線通信として、NFC(Near field communication)による無線通信が用いられている。つまり、13.56MHzの搬送波(電磁波)で送電装置10から受電装置20に非接触で送電される。なお、本実施形態では、受電装置20から送電装置10への非接触での給電は行われないが、受電装置20から送電装置10への非接触での通信は行われる。
An embodiment of the non-contact power feeding system 1 will be described with reference to FIGS. 1 to 7.
As shown in FIG. 1, the non-contact power feeding system 1 includes a power transmitting device 10 and a power receiving device 20, and is a device that non-contactly transmits power from the power transmitting device 10 to the power receiving device 20. Here, the non-contact power transmission from the power transmission device 10 to the power receiving device 20 means that the power transmission device 10 performs non-contact power supply and communication to the power receiving device 20. Further, as the non-contact power transmission from the power transmission device 10 to the power reception device 20, proximity wireless communication is used. In this embodiment, NFC (Near field communication) wireless communication is used as near field communication. That is, a carrier wave (electromagnetic wave) of 13.56 MHz is transmitted from the power transmitting device 10 to the power receiving device 20 in a non-contact manner. In this embodiment, the power receiving device 20 does not supply power to the power transmitting device 10 in a non-contact manner, but the power receiving device 20 performs non-contact communication to the power transmitting device 10.
 このような非接触給電システム1は、たとえばタブレットPCおよび電子ペンに適用される。この場合、送電装置10はタブレットPCに内蔵され、受電装置20は電子ペンに内蔵される。また、送電装置10はタブレットPCに代えて、電子ペンの充電器に内蔵されていてもよい。 Such a contactless power supply system 1 is applied to, for example, a tablet PC and an electronic pen. In this case, the power transmission device 10 is built in the tablet PC, and the power receiving device 20 is built in the electronic pen. Further, the power transmission device 10 may be built in the charger of the electronic pen instead of the tablet PC.
 図1に示すように、送電装置10は、外部電極11と、送電制御部12と、振動子13と、マッチング回路14と、送電アンテナ15と、を備えている。本実施形態では、送電制御部12、振動子13、およびマッチング回路14は、「送電側回路」および「回路」に対応している。また、送電アンテナ15は「アンテナ」に対応している。 As shown in FIG. 1, the power transmission device 10 includes an external electrode 11, a power transmission control unit 12, an oscillator 13, a matching circuit 14, and a power transmission antenna 15. In the present embodiment, the power transmission control unit 12, the oscillator 13, and the matching circuit 14 correspond to the “power transmission side circuit” and the “circuit”. Further, the power transmission antenna 15 corresponds to an "antenna".
 外部電極11は、送電装置10の外部の機器(たとえばタブレットPC)と電気的に接続するためのインターフェースである。たとえば外部電極11が送電装置10の外部の電源と電気的に接続されることによって、送電装置10に駆動電力が供給される。外部電極11は、送電制御部12と電気的に接続されている。たとえば、外部の機器(たとえばタブレットPC)から外部電極11を通じて送電制御部12に、送電装置10を制御するための制御信号が入力される。 The external electrode 11 is an interface for electrically connecting to an external device (for example, a tablet PC) of the power transmission device 10. For example, driving power is supplied to the power transmission device 10 by electrically connecting the external electrode 11 to an external power source of the power transmission device 10. The external electrode 11 is electrically connected to the power transmission control unit 12. For example, a control signal for controlling the power transmission device 10 is input from an external device (for example, a tablet PC) to the power transmission control unit 12 through the external electrode 11.
 送電制御部12は、給電制御部と、通信回路と、送電回路と、を含む。給電制御部は、通信回路と送電回路との双方と個別に電気的に接続されている。
 給電制御部は、外部電極11を通じて入力された制御信号に応じて通信回路および送電回路を制御する。通信回路および送電回路は、送電アンテナ15と個別に電気的に接続されている。通信回路は、送電アンテナ15を用いた近接無線通信によって、受電装置20と通信するための回路である。送電回路は、送電アンテナ15を用いて、受電装置20に対して非接触給電を行うための回路である。つまり、送電装置10は、送電アンテナ15を用いて、電力と信号とを個別に受電装置20に伝達する。本実施形態では、非接触給電の方式は、磁界共鳴方式である。送電制御部12には、給電制御部を動作させるための振動子13が電気的に接続されている。本実施形態では、振動子13は、たとえば27.12MHz程度の水晶振動子が用いられている。
The power transmission control unit 12 includes a power supply control unit, a communication circuit, and a power transmission circuit. The power supply control unit is individually and electrically connected to both the communication circuit and the power transmission circuit.
The power supply control unit controls the communication circuit and the power transmission circuit according to the control signal input through the external electrode 11. The communication circuit and the power transmission circuit are individually and electrically connected to the power transmission antenna 15. The communication circuit is a circuit for communicating with the power receiving device 20 by proximity wireless communication using the power transmission antenna 15. The power transmission circuit is a circuit for performing non-contact power supply to the power receiving device 20 by using the power transmission antenna 15. That is, the power transmission device 10 uses the power transmission antenna 15 to individually transmit power and signals to the power reception device 20. In the present embodiment, the non-contact power feeding method is a magnetic field resonance method. An oscillator 13 for operating the power supply control unit is electrically connected to the power transmission control unit 12. In the present embodiment, the oscillator 13 is, for example, a crystal oscillator of about 27.12 MHz.
 マッチング回路14は、送電制御部12および送電アンテナ15の双方と電気的に接続されている。マッチング回路14は、送電アンテナ15との間で構成される共振回路を構成し、かつこの共振回路の共振周波数を調整する回路であり、1または複数のコンデンサを有している。本実施形態では、マッチング回路14は、複数のコンデンサを有している。共振回路の共振周波数は、送電アンテナ15を用いた通信における搬送波(電磁波)の周波数(基準周波数)に設定される。本実施形態では、NFCによる無線通信を用いるため、基準周波数は13.56MHzとなる。 The matching circuit 14 is electrically connected to both the power transmission control unit 12 and the power transmission antenna 15. The matching circuit 14 is a circuit that constitutes a resonance circuit configured with the transmission antenna 15 and adjusts the resonance frequency of the resonance circuit, and has one or a plurality of capacitors. In this embodiment, the matching circuit 14 has a plurality of capacitors. The resonance frequency of the resonance circuit is set to the frequency (reference frequency) of the carrier wave (electromagnetic wave) in the communication using the transmission antenna 15. In this embodiment, since wireless communication by NFC is used, the reference frequency is 13.56 MHz.
 送電アンテナ15は、受電装置20との間で送電制御部12からの給電および通信を行うように構成されている。送電アンテナ15とマッチング回路14の複数のコンデンサとは、互いに直列または並列に接続されて共振回路(直列共振回路、並列共振回路)を構成している。つまり、マッチング回路14の複数のコンデンサは、送電アンテナ15と直列に接続される直列用コンデンサと、送電アンテナ15と並列に接続される並列用コンデンサとの少なくとも一方を含む。 The power transmission antenna 15 is configured to supply power and communicate with the power receiving device 20 from the power transmission control unit 12. The transmission antenna 15 and the plurality of capacitors of the matching circuit 14 are connected to each other in series or in parallel to form a resonance circuit (series resonance circuit, parallel resonance circuit). That is, the plurality of capacitors of the matching circuit 14 include at least one of a series capacitor connected in series with the power transmission antenna 15 and a parallel capacitor connected in parallel with the power transmission antenna 15.
 受電装置20は、受電アンテナ21と、マッチング回路22と、整流回路23と、受電制御部24と、外部電極25と、を備えている。本実施形態では、マッチング回路22、整流回路23、および受電制御部24は、「受電側回路」および「回路」に対応している。また、受電アンテナ21は「アンテナ」に対応している。 The power receiving device 20 includes a power receiving antenna 21, a matching circuit 22, a rectifier circuit 23, a power receiving control unit 24, and an external electrode 25. In the present embodiment, the matching circuit 22, the rectifier circuit 23, and the power receiving control unit 24 correspond to the “power receiving side circuit” and the “circuit”. Further, the power receiving antenna 21 corresponds to an "antenna".
 外部電極25は、受電装置20の外部の機器と電気的に接続するためのインターフェースである。この外部の機器としては、たとえば電子ペンに内蔵された二次電池および二次電池の充電を制御するための集積回路(IC)である。二次電池としては、たとえばリチウムイオン電池が挙げられる。 The external electrode 25 is an interface for electrically connecting to an external device of the power receiving device 20. The external device is, for example, a secondary battery built in an electronic pen and an integrated circuit (IC) for controlling charging of the secondary battery. Examples of the secondary battery include a lithium ion battery.
 受電アンテナ21は、送電アンテナ15との間で近接無線通信を行うように構成されている。受電アンテナ21は、マッチング回路22と電気的に接続されている。
 マッチング回路22は、整流回路23と電気的に接続されている。マッチング回路22は、受電アンテナ21のとの間で共振回路を構成し、かつこの共振回路の共振周波数を調整する回路であり、1または複数のコンデンサを有している。受電アンテナ21とマッチング回路22のコンデンサとは、互いに直列または並列に接続されて共振回路(直列共振回路、並列共振回路)を構成している。共振回路の共振周波数は、受電アンテナ21を用いた通信における搬送波の周波数(基準周波数)に設定される。本実施形態では、基準周波数は13.56MHzとなる。本実施形態では、送電装置10のマッチング回路14と受電装置20のマッチング回路22とは、互いに同じ共振周波数となるように調整する。
The power receiving antenna 21 is configured to perform close radio communication with the power transmitting antenna 15. The power receiving antenna 21 is electrically connected to the matching circuit 22.
The matching circuit 22 is electrically connected to the rectifier circuit 23. The matching circuit 22 is a circuit that forms a resonance circuit with the power receiving antenna 21 and adjusts the resonance frequency of the resonance circuit, and has one or a plurality of capacitors. The power receiving antenna 21 and the capacitor of the matching circuit 22 are connected to each other in series or in parallel to form a resonance circuit (series resonance circuit, parallel resonance circuit). The resonance frequency of the resonance circuit is set to the frequency (reference frequency) of the carrier wave in the communication using the power receiving antenna 21. In this embodiment, the reference frequency is 13.56 MHz. In the present embodiment, the matching circuit 14 of the power transmission device 10 and the matching circuit 22 of the power receiving device 20 are adjusted so as to have the same resonance frequency.
 整流回路23は、受電アンテナ21が受電した交流電力を直流電力に変換する回路である。整流回路23は、受電制御部24に電気的に接続されており、変換した直流電力を受電制御部24に出力する。本実施形態では、整流回路23は、ダイオードブリッジ回路およびコンデンサから構成されている。 The rectifier circuit 23 is a circuit that converts the AC power received by the power receiving antenna 21 into DC power. The rectifier circuit 23 is electrically connected to the power receiving control unit 24, and outputs the converted DC power to the power receiving control unit 24. In this embodiment, the rectifier circuit 23 is composed of a diode bridge circuit and a capacitor.
 受電制御部24は、通信回路と、受電回路と、を含む。本実施形態では、通信回路と受電回路とは電気的に接続されている。通信回路は、信号線SLによってマッチング回路22と電気的に接続されている。受電回路は、外部電極25と電気的に接続されている。通信回路には、受電アンテナ21からマッチング回路14および信号線SLを介して送電装置10からの信号が入力される。 The power receiving control unit 24 includes a communication circuit and a power receiving circuit. In this embodiment, the communication circuit and the power receiving circuit are electrically connected. The communication circuit is electrically connected to the matching circuit 22 by the signal line SL. The power receiving circuit is electrically connected to the external electrode 25. A signal from the power transmission device 10 is input to the communication circuit from the power receiving antenna 21 via the matching circuit 14 and the signal line SL.
 通信回路は、受電アンテナ21を用いて送電装置10と通信する。一例では、通信回路は、受電アンテナ21を用いて二次電池の充電状態に応じた充電制御信号SVを送電装置10に送信する。また、通信回路は、受電アンテナ21を用いて識別コードCDを送電装置10に送信する。識別コードCDは、受電装置20を識別するための固有のコードであり、たとえば受電制御部24に設けられた記憶部に記憶されている。記憶部は、たとえば不揮発性メモリから構成されている。 The communication circuit communicates with the power transmission device 10 using the power receiving antenna 21. In one example, the communication circuit uses the power receiving antenna 21 to transmit a charge control signal SV according to the charge state of the secondary battery to the power transmission device 10. Further, the communication circuit transmits the identification code CD to the power transmission device 10 by using the power receiving antenna 21. The identification code CD is a unique code for identifying the power receiving device 20, and is stored in, for example, a storage unit provided in the power receiving control unit 24. The storage unit is composed of, for example, a non-volatile memory.
 受電回路は、整流回路23と電気的に接続されている回路であり、受電アンテナ21からの直流電力の電流および電圧の少なくとも一方を制御する回路である。たとえば、受電回路は、直流電力の電圧を、外部電極25に電気的に接続された二次電池の仕様に応じた電圧に変更して二次電池に出力する。またたとえば、受電回路は、直流電力の電流を、二次電池の充電状態に応じて変更して二次電池に出力する。一方、受電回路の直流電力は、通信回路に出力される。これにより、通信回路は動作する。 The power receiving circuit is a circuit that is electrically connected to the rectifier circuit 23, and is a circuit that controls at least one of the current and the voltage of the DC power from the power receiving antenna 21. For example, the power receiving circuit changes the voltage of the DC power to a voltage according to the specifications of the secondary battery electrically connected to the external electrode 25 and outputs the voltage to the secondary battery. Further, for example, the power receiving circuit changes the current of DC power according to the state of charge of the secondary battery and outputs it to the secondary battery. On the other hand, the DC power of the power receiving circuit is output to the communication circuit. As a result, the communication circuit operates.
 このような非接触給電システム1における通信および給電の制御の一例について説明する。
 まず、送電装置10から受電装置20に第1電力P1を非接触で給電する。受電装置20は、第1電力P1によって起動する。つまり、第1電力P1が受電装置20の通信回路に供給されることによって通信回路が動作する。通信回路は、識別コードCDを送電装置10に送信する。このように、第1電力P1は、通信回路が起動できる程度の電力である。
An example of communication and power supply control in such a non-contact power supply system 1 will be described.
First, the first electric power P1 is supplied from the power transmitting device 10 to the power receiving device 20 in a non-contact manner. The power receiving device 20 is activated by the first electric power P1. That is, the communication circuit operates by supplying the first electric power P1 to the communication circuit of the power receiving device 20. The communication circuit transmits the identification code CD to the power transmission device 10. As described above, the first electric power P1 is such an electric power that the communication circuit can be activated.
 第1電力P1の給電処理は、所定の間隔(たとえば1秒間隔)で行われる。第1電力P1によって起動した受電装置20が識別コードCDを送信するため、送電装置10は、識別コードCDの受信によって、受電装置20が給電場所に載置されたことを認識できる。 The power supply process of the first electric power P1 is performed at predetermined intervals (for example, 1 second intervals). Since the power receiving device 20 activated by the first electric power P1 transmits the identification code CD, the power transmission device 10 can recognize that the power receiving device 20 is placed in the power feeding place by receiving the identification code CD.
 次に、送電装置10は、識別コードCDの認証結果に基づいて第2電力P2の供給可否を判定する。送電装置10は、識別コードCDを認証した場合、第2電力P2を供給する。一方、送電装置10は、識別コードCDを認証しない場合、第2電力P2を供給しない。第2電力P2は、受電装置20に接続された二次電池を充電するための電力であり、たとえば第1電力P1よりも大きい電力である。 Next, the power transmission device 10 determines whether or not the second electric power P2 can be supplied based on the authentication result of the identification code CD. When the identification code CD is authenticated, the power transmission device 10 supplies the second electric power P2. On the other hand, if the identification code CD is not authenticated, the power transmission device 10 does not supply the second electric power P2. The second electric power P2 is an electric power for charging the secondary battery connected to the power receiving device 20, and is, for example, a electric power larger than the first electric power P1.
 受電装置20は、給電された第2電力P2を受電装置20の受電回路を介して二次電池に供給する。二次電池の充電状態は、受電装置20に送信される。受電装置20の通信回路は、二次電池の充電状態に応じて送電装置10に充電制御信号SVを送信する。送電装置10は、充電制御信号SVに応じて受電装置20への非接触給電を制御する。 The power receiving device 20 supplies the supplied second power P2 to the secondary battery via the power receiving circuit of the power receiving device 20. The state of charge of the secondary battery is transmitted to the power receiving device 20. The communication circuit of the power receiving device 20 transmits a charge control signal SV to the power transmitting device 10 according to the charging state of the secondary battery. The power transmission device 10 controls non-contact power supply to the power receiving device 20 according to the charge control signal SV.
 このような非接触給電システム1の送電装置10および受電装置20の構成について説明する。
 図2~図5は送電装置10の構成の一例を示している。図3では、説明の便宜上、後述する封止樹脂50を省略して示している。また、図5の送電装置10の断面図では、図面の見やすさの観点から、ハッチングを付した部品と、ハッチングを付していない部品とがある。また、便宜上、図2および図5において、後述するシールド層33にはドットハッチングを付している。
The configuration of the power transmission device 10 and the power reception device 20 of the non-contact power supply system 1 will be described.
2 to 5 show an example of the configuration of the power transmission device 10. In FIG. 3, for convenience of explanation, the sealing resin 50 described later is omitted. Further, in the cross-sectional view of the power transmission device 10 of FIG. 5, there are parts with hatching and parts without hatching from the viewpoint of easy viewing of the drawing. Further, for convenience, in FIGS. 2 and 5, the shield layer 33, which will be described later, is provided with dot hatching.
 図2に示すように、送電装置10は、直方体状のパッケージ構造を有している。送電装置10は、多層基板30を備えている。以降の送電装置10の説明において、多層基板30の厚さ方向をz方向とし、z方向と直交する方向のうち互いに直交する2方向をそれぞれx方向およびy方向とする。このため、送電装置10の説明において、「z方向から視て」とは「多層基板30の厚さ方向から視て」を意味している。 As shown in FIG. 2, the power transmission device 10 has a rectangular parallelepiped package structure. The power transmission device 10 includes a multilayer board 30. In the following description of the power transmission device 10, the thickness direction of the multilayer substrate 30 is defined as the z direction, and the two directions orthogonal to the z direction are defined as the x direction and the y direction, respectively. Therefore, in the description of the power transmission device 10, "viewed from the z direction" means "viewed from the thickness direction of the multilayer board 30".
 多層基板30は、矩形板状に形成されており、z方向において互いに反対側を向く表面30sおよび裏面30rを有している。多層基板30は、表面30sおよび裏面30rの双方と交差する側面30aを有している。本実施形態では、多層基板30は、4つの側面30aを有している。各側面30aは、表面30sおよび裏面30rの双方と直交している。図3に示すように、z方向から視た多層基板30の形状は、長辺および短辺を有する矩形状である。本実施形態では、多層基板30の長辺に沿う方向をx方向とし、短辺に沿う方向をy方向とする。 The multilayer board 30 is formed in a rectangular plate shape, and has a front surface 30s and a back surface 30r facing opposite sides in the z direction. The multilayer board 30 has a side surface 30a that intersects both the front surface 30s and the back surface 30r. In this embodiment, the multilayer board 30 has four side surfaces 30a. Each side surface 30a is orthogonal to both the front surface 30s and the back surface 30r. As shown in FIG. 3, the shape of the multilayer board 30 when viewed from the z direction is a rectangular shape having a long side and a short side. In the present embodiment, the direction along the long side of the multilayer board 30 is the x direction, and the direction along the short side is the y direction.
 図3に示すように、多層基板30の表面30sには、送電装置10の回路部品が実装されている。回路部品は、図1に示す送電制御部12を構成する第1チップ41と、振動子13を構成する第2チップ42と、マッチング回路14を構成する複数のコンデンサ43と、を含む。複数のコンデンサ43は、送電アンテナ15との間で直列共振回路を構成する直列用コンデンサと、送電アンテナ15との間で並列共振回路を構成する並列用コンデンサとを含む。このため、複数のコンデンサ43は、送電アンテナ15と電気的に接続されている。また、本実施形態では、図3では図示していないが、多層基板30の表面30sには、配線層34(図5参照)が形成されている。配線層34は、導電性材料からなり、本実施形態では、Cu(銅)からなる。配線層34には、各チップ41,42および複数のコンデンサ43が実装されている。各チップ41,42および複数のコンデンサ43は、配線層34と電気的に接続されている。 As shown in FIG. 3, the circuit component of the power transmission device 10 is mounted on the surface 30s of the multilayer board 30. The circuit component includes a first chip 41 constituting the power transmission control unit 12 shown in FIG. 1, a second chip 42 constituting the oscillator 13, and a plurality of capacitors 43 constituting the matching circuit 14. The plurality of capacitors 43 include a series capacitor forming a series resonance circuit with the transmission antenna 15 and a parallel capacitor forming a parallel resonance circuit with the transmission antenna 15. Therefore, the plurality of capacitors 43 are electrically connected to the power transmission antenna 15. Further, in the present embodiment, although not shown in FIG. 3, a wiring layer 34 (see FIG. 5) is formed on the surface 30s of the multilayer substrate 30. The wiring layer 34 is made of a conductive material, and in this embodiment, is made of Cu (copper). Each chip 41, 42 and a plurality of capacitors 43 are mounted on the wiring layer 34. Each chip 41, 42 and the plurality of capacitors 43 are electrically connected to the wiring layer 34.
 図2および図5に示すように、各チップ41,42および複数のコンデンサ43は、電気絶縁性を有する封止樹脂50によって封止されている。つまり、送電装置10の送電側回路は、封止樹脂50によって封止されているともいえる。封止樹脂50は、たとえばエポキシ樹脂、ポリイミド樹脂等からなる。封止樹脂50は、たとえば黒色に着色されている。本実施形態では、封止樹脂50の形状は、多層基板30の表面30sの全体にわたり形成された直方体状である。 As shown in FIGS. 2 and 5, each chip 41, 42 and the plurality of capacitors 43 are sealed with a sealing resin 50 having electrical insulation. That is, it can be said that the power transmission side circuit of the power transmission device 10 is sealed by the sealing resin 50. The sealing resin 50 is made of, for example, an epoxy resin, a polyimide resin, or the like. The sealing resin 50 is colored, for example, black. In the present embodiment, the shape of the sealing resin 50 is a rectangular parallelepiped shape formed over the entire surface 30s of the multilayer substrate 30.
 図4に示すように、多層基板30の裏面30rには、送電アンテナ15が形成されている。本実施形態では、送電アンテナ15は、アンテナコイルからなり、z方向から視て、矩形の渦巻き状に形成されている。送電アンテナ15は、導電性を有する材料からなり、たとえばCuからなる。送電アンテナ15は、たとえば図示していない絶縁膜によって覆われている。z方向から視て、送電アンテナ15は、多層基板30の裏面30rの中央に配置されている。 As shown in FIG. 4, a power transmission antenna 15 is formed on the back surface 30r of the multilayer board 30. In the present embodiment, the power transmission antenna 15 is composed of an antenna coil and is formed in a rectangular spiral shape when viewed from the z direction. The power transmission antenna 15 is made of a conductive material, for example, Cu. The power transmission antenna 15 is covered with, for example, an insulating film (not shown). When viewed from the z direction, the power transmission antenna 15 is arranged at the center of the back surface 30r of the multilayer board 30.
 図3に示すように、z方向から視て、各チップ41,42および複数のコンデンサ43と送電アンテナ15とは互いに重なる位置に配置されている。z方向から視て、各チップ41,42および複数のコンデンサ43が送電アンテナ15において主に電磁波が発生する領域R1内に配置されていれば、z方向から視て、各チップ41,42および複数のコンデンサ43と送電アンテナ15とは互いに重なる位置に配置されているといえる。領域R1は、送電アンテナ15のうち渦巻き状の部分に対応する領域である。本実施形態では、各チップ41,42および複数のコンデンサ43は、その全体がz方向から視て、領域R1内に配置されている。なお、第1チップ41の一部、第2チップ42の一部、および各コンデンサ43の一部のうち少なくとも1つが領域R1からはみ出していてもよい。つまり、第1チップ41の一部、第2チップ42の一部、および各コンデンサ43の一部が領域R1内に配置されていれば、z方向から視て、各チップ41,42および複数のコンデンサ43と送電アンテナ15とは互いに重なる位置に配置されているといえる。 As shown in FIG. 3, when viewed from the z direction, the chips 41 and 42, the plurality of capacitors 43, and the power transmission antenna 15 are arranged at positions where they overlap each other. If the chips 41, 42 and the plurality of capacitors 43 are arranged in the region R1 in which the electromagnetic wave is mainly generated in the power transmission antenna 15 when viewed from the z direction, the chips 41, 42 and the plurality of capacitors 43 are viewed from the z direction. It can be said that the capacitor 43 and the power transmission antenna 15 are arranged at positions where they overlap each other. The region R1 is a region corresponding to the spiral portion of the power transmission antenna 15. In the present embodiment, the chips 41, 42 and the plurality of capacitors 43 are arranged in the region R1 as a whole when viewed from the z direction. At least one of a part of the first chip 41, a part of the second chip 42, and a part of each capacitor 43 may protrude from the region R1. That is, if a part of the first chip 41, a part of the second chip 42, and a part of each capacitor 43 are arranged in the region R1, the chips 41, 42 and a plurality of the chips 41, 42 and a plurality of the chips 41, 42 are viewed from the z direction. It can be said that the capacitor 43 and the power transmission antenna 15 are arranged at positions where they overlap each other.
 図4に示すように、送電アンテナ15は、第1端部15Aおよび第2端部15Bを有している。第2端部15Bは、多層基板30の裏面30rに形成された接続配線15Cに接続されている。一例では、接続配線15Cは、後述する裏面側配線層32(図5参照)に含まれる。具体的には、第2端部15Bと接続配線15Cとは、スルーホール35Bを介して接続されている。接続配線15Cは、後述する第1~第3基材10A~10C、表面側配線層31、裏面側配線層32、およびシールド層33(ともに図5参照)をz方向に貫通するスルーホール35Cを介してマッチング回路14(図1参照)に接続されている。送電アンテナ15の第1端部15Aは、多層基板30をz方向に貫通するスルーホール35Dを介して複数のコンデンサ43に電気的に接続されている。 As shown in FIG. 4, the power transmission antenna 15 has a first end portion 15A and a second end portion 15B. The second end portion 15B is connected to the connection wiring 15C formed on the back surface 30r of the multilayer board 30. In one example, the connection wiring 15C is included in the back surface side wiring layer 32 (see FIG. 5), which will be described later. Specifically, the second end portion 15B and the connection wiring 15C are connected via a through hole 35B. The connection wiring 15C has through holes 35C penetrating the first to third base materials 10A to 10C, the front surface side wiring layer 31, the back surface side wiring layer 32, and the shield layer 33 (both see FIG. 5) described later in the z direction. It is connected to the matching circuit 14 (see FIG. 1) via. The first end portion 15A of the power transmission antenna 15 is electrically connected to a plurality of capacitors 43 via a through hole 35D penetrating the multilayer board 30 in the z direction.
 多層基板30の裏面30rには、外部電極11が設けられている。外部電極11は、多層基板30の裏面30rに複数設けられていてもよい。本実施形態では、多層基板30の裏面30rには、4つの外部電極11が設けられている。各外部電極11は、多層基板30の裏面30rに形成されたランドパターンである。つまり、各外部電極11は、Cu等の金属層を含む。複数の外部電極11は、送電アンテナ15の周囲に配置されている。本実施形態では、複数の外部電極11は、多層基板30の裏面30rの四隅に分散して配置されている。このように、送電装置10は、表面実装型のパッケージ構造を有している。 An external electrode 11 is provided on the back surface 30r of the multilayer board 30. A plurality of external electrodes 11 may be provided on the back surface 30r of the multilayer substrate 30. In the present embodiment, four external electrodes 11 are provided on the back surface 30r of the multilayer board 30. Each external electrode 11 is a land pattern formed on the back surface 30r of the multilayer substrate 30. That is, each external electrode 11 includes a metal layer such as Cu. The plurality of external electrodes 11 are arranged around the power transmission antenna 15. In the present embodiment, the plurality of external electrodes 11 are dispersedly arranged at the four corners of the back surface 30r of the multilayer substrate 30. As described above, the power transmission device 10 has a surface mount type package structure.
 各外部電極11は、多層基板30をz方向に貫通する配線であるスルーホール35Eを介して第1チップ41(送電側回路)に電気的に接続されている。スルーホール35Eは、z方向においてシールド層33を貫通している。より詳細には、スルーホール35Eは、第4基材30D、裏面側配線層32、第3基材30C、シールド層33、第2基材30B、表面側配線層31、および第1基材30Aを貫通している。本実施形態では、スルーホール35Eは、外部電極11と配線層34とを接続している。このように、スルーホール35Eは、「送電側回路と外部電極とを接続する配線」に対応している。 Each external electrode 11 is electrically connected to the first chip 41 (transmission side circuit) via a through hole 35E which is a wiring penetrating the multilayer board 30 in the z direction. The through hole 35E penetrates the shield layer 33 in the z direction. More specifically, the through hole 35E includes the fourth base material 30D, the back surface side wiring layer 32, the third base material 30C, the shield layer 33, the second base material 30B, the front surface side wiring layer 31, and the first base material 30A. Penetrates. In the present embodiment, the through hole 35E connects the external electrode 11 and the wiring layer 34. In this way, the through hole 35E corresponds to "wiring connecting the power transmission side circuit and the external electrode".
 図5に示すように、多層基板30は、第1基材30A、第2基材30B、第3基材30C、および第4基材30Dと、表面側配線層31および裏面側配線層32と、シールド層33と、を備えている。各基材30A~30Dは、電気絶縁性を有する材料からなり、たとえばエポキシ樹脂、ポリイミド樹脂等からなる。各基材30A~30Dは、リジッド基板やフレキシブル基板からなる。本実施形態では、各基材30A~30Dは、リジッド基板からなる。 As shown in FIG. 5, the multilayer substrate 30 includes a first base material 30A, a second base material 30B, a third base material 30C, and a fourth base material 30D, and a front surface side wiring layer 31 and a back surface side wiring layer 32. , And a shield layer 33. Each of the base materials 30A to 30D is made of a material having electrical insulating properties, and is made of, for example, an epoxy resin, a polyimide resin, or the like. Each base material 30A to 30D is composed of a rigid substrate or a flexible substrate. In the present embodiment, each of the base materials 30A to 30D is composed of a rigid substrate.
 第1基材30Aは多層基板30の表面30sを含む基材であり、第4基材30Dは多層基板30の裏面30rを含む基材である。つまり、本実施形態では、第1基材30Aは「表面側絶縁層」に対応しており、第4基材30Dは「裏面側絶縁層」に対応している。第2基材30Bおよび第3基材30Cは、多層基板30の厚さ方向(z方向)において第1基材30Aと第4基材30Dとの間に配置されている。z方向において、第2基材30Bは、第3基材30Cよりも第1基材30Aの近くに配置されている。 The first substrate 30A is a substrate including the front surface 30s of the multilayer substrate 30, and the fourth substrate 30D is a substrate including the back surface 30r of the multilayer substrate 30. That is, in the present embodiment, the first base material 30A corresponds to the "front surface side insulating layer", and the fourth base material 30D corresponds to the "back surface side insulating layer". The second base material 30B and the third base material 30C are arranged between the first base material 30A and the fourth base material 30D in the thickness direction (z direction) of the multilayer board 30. In the z direction, the second base material 30B is arranged closer to the first base material 30A than the third base material 30C.
 表面側配線層31は、第1基材30Aと第2基材30Bとの間に配置されている。表面側配線層31は、たとえば各チップ41,42および複数のコンデンサ43を接続するのに用いられる配線層である。表面側配線層31と、多層基板30の表面30sに形成された配線層34とは、第1基材30Aをその厚さ方向(z方向)に貫通する配線であるスルーホール35Aを介して接続されている。 The surface side wiring layer 31 is arranged between the first base material 30A and the second base material 30B. The surface side wiring layer 31 is, for example, a wiring layer used for connecting each chip 41, 42 and a plurality of capacitors 43. The surface side wiring layer 31 and the wiring layer 34 formed on the surface 30s of the multilayer board 30 are connected via a through hole 35A which is a wiring penetrating the first base material 30A in the thickness direction (z direction). Has been done.
 裏面側配線層32は、第3基材30Cと第4基材30Dとの間に配置されている。裏面側配線層32は、たとえば送電アンテナ15の第2端部15Bに接続された接続配線15C(ともに図4参照)を含む。裏面側配線層32および送電アンテナ15とは、第4基材30Dを貫通する配線であるスルーホール35Bを介して接続されている。各配線層31,32は、導電性を有する材料からなり、たとえばCuからなる。 The back surface side wiring layer 32 is arranged between the third base material 30C and the fourth base material 30D. The back surface side wiring layer 32 includes, for example, a connection wiring 15C (both see FIG. 4) connected to the second end portion 15B of the power transmission antenna 15. The back surface side wiring layer 32 and the power transmission antenna 15 are connected via a through hole 35B which is a wiring penetrating the fourth base material 30D. Each of the wiring layers 31 and 32 is made of a conductive material, for example, Cu.
 シールド層33は、送電アンテナ15から各チップ41,42および複数のコンデンサ43に向かう電磁波を低減する層である。つまり、シールド層33は、送電アンテナ15から送電制御部12、振動子13、およびマッチング回路14に向かう電磁波を低減する層であるともいえる。シールド層33は、たとえば磁性材料を含み、電気絶縁性を有している。本実施形態では、シールド層33は、フェライトからなる。フェライトは、電気絶縁性および磁性の両方を有している。 The shield layer 33 is a layer that reduces electromagnetic waves directed from the power transmission antenna 15 to the chips 41, 42 and the plurality of capacitors 43. That is, it can be said that the shield layer 33 is a layer that reduces electromagnetic waves directed from the power transmission antenna 15 to the power transmission control unit 12, the vibrator 13, and the matching circuit 14. The shield layer 33 contains, for example, a magnetic material and has electrical insulation. In this embodiment, the shield layer 33 is made of ferrite. Ferrite has both electrical insulation and magnetism.
 シールド層33は、z方向において、各チップ41,42および複数のコンデンサ43と送電アンテナ15との間に設けられている。シールド層33は、z方向において、多層基板30の表面30sと裏面30rとの間に配置されていればよく、本実施形態では第3基材30Cと第4基材30Dとの間に配置されている。シールド層33は、z方向において表面側配線層31と裏面側配線層32との間に配置されているともいえる。 The shield layer 33 is provided between each chip 41, 42, a plurality of capacitors 43, and a power transmission antenna 15 in the z direction. The shield layer 33 may be arranged between the front surface 30s and the back surface 30r of the multilayer substrate 30 in the z direction, and is arranged between the third base material 30C and the fourth base material 30D in the present embodiment. ing. It can be said that the shield layer 33 is arranged between the front surface side wiring layer 31 and the back surface side wiring layer 32 in the z direction.
 z方向から視て、シールド層33は、各チップ41,42および複数のコンデンサ43(図3参照)および送電アンテナ15の双方と重なる位置に配置されている。z方向から視て、シールド層33は、送電アンテナ15の全体を覆っている。またz方向から視て、シールド層33は、各チップ41,42および複数のコンデンサ43を覆っている。つまり、z方向から視て、シールド層33は、少なくとも図3の領域R1の全体を覆うように形成されていればよい。本実施形態では、z方向から視て、シールド層33は、多層基板30の表面30s(裏面30r)の全体にわたり形成されている。このため、シールド層33は、多層基板30をx方向およびy方向から視て、多層基板30の側面30aから露出している。シールド層33の厚さは、たとえば表面側配線層31の厚さおよび裏面側配線層32の厚さよりも厚い。なお、これに限られず、シールド層33の厚さは任意である。 When viewed from the z direction, the shield layer 33 is arranged at a position where it overlaps with both the chips 41 and 42, the plurality of capacitors 43 (see FIG. 3), and the power transmission antenna 15. When viewed from the z direction, the shield layer 33 covers the entire power transmission antenna 15. Further, when viewed from the z direction, the shield layer 33 covers each chip 41, 42 and a plurality of capacitors 43. That is, when viewed from the z direction, the shield layer 33 may be formed so as to cover at least the entire region R1 of FIG. In the present embodiment, the shield layer 33 is formed over the entire front surface 30s (back surface 30r) of the multilayer substrate 30 when viewed from the z direction. Therefore, the shield layer 33 is exposed from the side surface 30a of the multilayer board 30 when the multilayer board 30 is viewed from the x direction and the y direction. The thickness of the shield layer 33 is higher than, for example, the thickness of the front side wiring layer 31 and the thickness of the back side wiring layer 32. The thickness of the shield layer 33 is not limited to this, and the thickness of the shield layer 33 is arbitrary.
 次に、送電装置10の製造方法の一例の概要について説明する。
 まず、多層基板30の母材を用意する。多層基板30の母材は、複数の多層基板30を含み、複数の多層基板30に切断される前の基材である。多層基板30の母材は、多層基板30と同様に、第1~第4基材と、表面側配線層および裏面側配線層と、シールド層とが積層された構成である。シールド層は、多層基板30の母材の厚さ方向から視て、この母材の全体にわたり形成されている。多層基板30の母材の表面には、各チップ41,42および複数のコンデンサ43を実装する配線層が形成されており、母材の裏面には、各多層基板30に対応した複数の送電アンテナ15および外部電極11が形成されている。
Next, an outline of an example of a method for manufacturing the power transmission device 10 will be described.
First, a base material for the multilayer board 30 is prepared. The base material of the multilayer board 30 includes a plurality of multilayer boards 30 and is a base material before being cut into the plurality of multilayer boards 30. Similar to the multilayer board 30, the base material of the multilayer board 30 has a configuration in which the first to fourth base materials, the front surface side wiring layer, the back surface side wiring layer, and the shield layer are laminated. The shield layer is formed over the entire base material of the multilayer board 30 when viewed from the thickness direction of the base material. A wiring layer for mounting each chip 41, 42 and a plurality of capacitors 43 is formed on the surface of the base material of the multilayer board 30, and a plurality of power transmission antennas corresponding to each multilayer board 30 are formed on the back surface of the base material. 15 and an external electrode 11 are formed.
 次に、多層基板30の母材のうち各多層基板30に対応する領域に各チップ41,42および複数のコンデンサ43を、たとえばダイボンディングによって実装する。次に、多層基板30の母材の表面の全体にわたり樹脂層を形成する。樹脂層は、各多層基板30に対応する領域に実装された各チップ41,42および複数のコンデンサ43を封止する層である。次に、たとえばダイシングブレードを用いて、多層基板30の母材および樹脂層を切断する。これにより、送電装置10が個片化される。この場合、多層基板30の側面30aは、ダイシングされた面であるダイシング側面となり、シールド層33が露出する。側面30aから露出したシールド層33は、側面30aと面一となる。このため、側面30aから露出したシールド層33もダイシング側面であるといえる。以上の工程を経て、送電装置10が製造される。 Next, the chips 41, 42 and the plurality of capacitors 43 are mounted in the region corresponding to each multilayer board 30 in the base material of the multilayer board 30, for example, by die bonding. Next, a resin layer is formed over the entire surface of the base material of the multilayer board 30. The resin layer is a layer for sealing each chip 41, 42 and a plurality of capacitors 43 mounted in the region corresponding to each multilayer board 30. Next, for example, a dicing blade is used to cut the base material and the resin layer of the multilayer substrate 30. As a result, the power transmission device 10 is separated into individual pieces. In this case, the side surface 30a of the multilayer board 30 becomes the dicing side surface which is the diced surface, and the shield layer 33 is exposed. The shield layer 33 exposed from the side surface 30a is flush with the side surface 30a. Therefore, it can be said that the shield layer 33 exposed from the side surface 30a is also the dicing side surface. Through the above steps, the power transmission device 10 is manufactured.
 図6~図8は、受電装置20の構成の一例を示している。なお、図6では、説明の便宜上、受電装置20から後述する封止樹脂80を省略して示している。また、図8の受電装置20の断面図では、便宜上、受電装置20の一部のハッチングを省略して示している。また、便宜上、図8において、後述するシールド層63にはドットハッチングを付している。 6 to 8 show an example of the configuration of the power receiving device 20. In FIG. 6, for convenience of explanation, the sealing resin 80 described later is omitted from the power receiving device 20. Further, in the cross-sectional view of the power receiving device 20 of FIG. 8, for convenience, a part of the hatching of the power receiving device 20 is omitted. Further, for convenience, in FIG. 8, the shield layer 63, which will be described later, is provided with dot hatching.
 受電装置20は、送電装置10と同様に、直方体状に形成されている。本実施形態では、受電装置20のサイズは、送電装置10のサイズよりも小さい。
 図6に示すように、受電装置20は、多層基板60を備えている。多層基板60の構成は、送電装置10の多層基板30(図5参照)の構成と同様である。多層基板60の構成は、後述する表面側配線層61、裏面側配線層62、および配線層64の配線パターンが送電装置10の多層基板30の表面側配線層31、裏面側配線層32、および配線層34と異なる。本実施形態の多層基板60のサイズは、送電装置10の多層基板30(図3参照)のサイズよりも小さい。
The power receiving device 20 is formed in a rectangular parallelepiped shape like the power transmitting device 10. In this embodiment, the size of the power receiving device 20 is smaller than the size of the power transmitting device 10.
As shown in FIG. 6, the power receiving device 20 includes a multilayer board 60. The configuration of the multilayer board 60 is the same as the configuration of the multilayer board 30 (see FIG. 5) of the power transmission device 10. The configuration of the multilayer board 60 is such that the wiring patterns of the front surface side wiring layer 61, the back surface side wiring layer 62, and the wiring layer 64, which will be described later, are the front surface side wiring layer 31, the back surface side wiring layer 32 of the multilayer board 30 of the power transmission device 10. It is different from the wiring layer 34. The size of the multilayer board 60 of the present embodiment is smaller than the size of the multilayer board 30 (see FIG. 3) of the power transmission device 10.
 以降の受電装置20の説明において、多層基板60の厚さ方向をz方向とし、z方向と直交する方向のうち互いに直交する2方向をそれぞれx方向およびy方向とする。このため、受電装置20の説明において、「z方向から視て」とは「多層基板60の厚さ方向から視て」を意味している。 In the following description of the power receiving device 20, the thickness direction of the multilayer substrate 60 is defined as the z direction, and the two directions orthogonal to the z direction are defined as the x direction and the y direction, respectively. Therefore, in the description of the power receiving device 20, "viewed from the z direction" means "viewed from the thickness direction of the multilayer board 60".
 図6に示すように、多層基板60の表面60sには、図1に示す受電制御部24を構成する第1チップ71と、整流回路23を構成する第2チップ72と、マッチング回路22を構成する複数のコンデンサ73と、が実装されている。各チップ71,72および複数のコンデンサ73は、たとえばダイボンディングによって多層基板60の表面60sに実装されている。 As shown in FIG. 6, on the surface 60s of the multilayer board 60, a first chip 71 constituting the power receiving control unit 24 shown in FIG. 1, a second chip 72 constituting the rectifier circuit 23, and a matching circuit 22 are configured. A plurality of capacitors 73 and the like are mounted. Each chip 71, 72 and the plurality of capacitors 73 are mounted on the surface 60s of the multilayer board 60 by die bonding, for example.
 複数のコンデンサ73は、受電アンテナ21との間で直列共振回路を構成する直列用コンデンサと、受電アンテナ21との間で並列共振回路を構成する並列用コンデンサとを含む。このように、複数のコンデンサ73は、受電アンテナ21と電気的に接続されている。また、本実施形態では、図6では図示していないが、多層基板60の表面60sには、配線層64(図8参照)が形成されている。配線層64は、導電性材料からなり、本実施形態では、Cuからなる。各チップ71,72および複数のコンデンサ73は、配線層64と電気的に接続されている。 The plurality of capacitors 73 include a series capacitor forming a series resonance circuit with the power receiving antenna 21 and a parallel capacitor forming a parallel resonance circuit with the power receiving antenna 21. In this way, the plurality of capacitors 73 are electrically connected to the power receiving antenna 21. Further, in the present embodiment, although not shown in FIG. 6, a wiring layer 64 (see FIG. 8) is formed on the surface 60s of the multilayer board 60. The wiring layer 64 is made of a conductive material, and in this embodiment, is made of Cu. Each chip 71, 72 and the plurality of capacitors 73 are electrically connected to the wiring layer 64.
 図7に示すように、多層基板60の裏面60rには、受電アンテナ21が形成されている。z方向から視た受電アンテナ21の形状は、図4に示すz方向から視た送電アンテナ15の形状と同一である。つまり、受電アンテナ21は、第1端部21Aおよび第2端部21Bを有している。第2端部21Bは、接続配線21Cに電気的に接続されている。接続配線21Cは、裏面側配線層62に含まれる配線である。 As shown in FIG. 7, a power receiving antenna 21 is formed on the back surface 60r of the multilayer board 60. The shape of the power receiving antenna 21 seen from the z direction is the same as the shape of the power transmission antenna 15 seen from the z direction shown in FIG. That is, the power receiving antenna 21 has a first end portion 21A and a second end portion 21B. The second end 21B is electrically connected to the connection wiring 21C. The connection wiring 21C is wiring included in the back surface side wiring layer 62.
 また、z方向から視た受電アンテナ21のサイズは、z方向から視た送電アンテナ15のサイズよりも小さい。これにより、送電アンテナ15に対する受電アンテナ21の位置精度が高くなくても、送電装置10と受電装置20との間で非接触給電を行うことができる。 Further, the size of the power receiving antenna 21 viewed from the z direction is smaller than the size of the power transmission antenna 15 viewed from the z direction. As a result, non-contact power supply can be performed between the power transmission device 10 and the power reception device 20 even if the position accuracy of the power reception antenna 21 with respect to the power transmission antenna 15 is not high.
 z方向から視て、受電アンテナ21は、多層基板60の裏面60rの中央に配置されている。図6に示すように、z方向から視て、各チップ71,72および複数のコンデンサ73と受電アンテナ21とは互いに重なる位置に配置されている。 When viewed from the z direction, the power receiving antenna 21 is arranged in the center of the back surface 60r of the multilayer board 60. As shown in FIG. 6, when viewed from the z direction, the chips 71 and 72, the plurality of capacitors 73, and the power receiving antenna 21 are arranged at positions where they overlap each other.
 z方向から視て、各チップ71,72および複数のコンデンサ73が受電アンテナ21において主に電磁波が発生する領域R2内に配置されていれば、z方向から視て、各チップ71,72および複数のコンデンサ73と受電アンテナ21とは互いに重なる位置に配置されているといえる。領域R2は、受電アンテナ21のうち渦巻き状の部分に対応する領域である。領域R2のサイズは、図3の領域R1のサイズよりも小さい。本実施形態では、各チップ71,72および複数のコンデンサ73は、その全体がz方向から視て、領域R2内に配置されている。なお、第1チップ71の一部、第2チップ72の一部、および各コンデンサ73の一部のうち少なくとも1つが領域R2からはみ出していてもよい。つまり、第1チップ71の一部、第2チップ72の一部、および各コンデンサ73の一部が領域R2内に配置されていれば、z方向から視て、各チップ71,72および複数のコンデンサ73と受電アンテナ21とは互いに重なる位置に配置されているといえる。 If the chips 71, 72 and the plurality of capacitors 73 are arranged in the region R2 in which the electromagnetic wave is mainly generated in the power receiving antenna 21 when viewed from the z direction, the chips 71, 72 and the plurality of capacitors 73 are viewed from the z direction. It can be said that the capacitor 73 and the power receiving antenna 21 are arranged at positions where they overlap each other. The region R2 is a region corresponding to the spiral portion of the power receiving antenna 21. The size of the region R2 is smaller than the size of the region R1 in FIG. In the present embodiment, the chips 71, 72 and the plurality of capacitors 73 are arranged in the region R2 as a whole when viewed from the z direction. At least one of a part of the first chip 71, a part of the second chip 72, and a part of each capacitor 73 may protrude from the region R2. That is, if a part of the first chip 71, a part of the second chip 72, and a part of each capacitor 73 are arranged in the region R2, each chip 71, 72 and a plurality of chips 71, 72 when viewed from the z direction. It can be said that the capacitor 73 and the power receiving antenna 21 are arranged at positions where they overlap each other.
 また、多層基板60の裏面60rには、外部電極25が設けられている。外部電極25は、多層基板60の裏面60rに複数設けられていてもよい。本実施形態では、多層基板60の裏面60rには、4つの外部電極25が設けられている。4つの外部電極25は、受電アンテナ21の周囲に配置されている。本実施形態では、4つの外部電極25は、多層基板60の裏面60rの四隅に分散して配置されている。このように、受電装置20は、表面実装型のパッケージ構造を有している。 Further, an external electrode 25 is provided on the back surface 60r of the multilayer board 60. A plurality of external electrodes 25 may be provided on the back surface 60r of the multilayer substrate 60. In the present embodiment, four external electrodes 25 are provided on the back surface 60r of the multilayer board 60. The four external electrodes 25 are arranged around the power receiving antenna 21. In the present embodiment, the four external electrodes 25 are dispersedly arranged at the four corners of the back surface 60r of the multilayer substrate 60. As described above, the power receiving device 20 has a surface mount type package structure.
 図8に示すように、多層基板60は、複数の基材、表面側配線層、裏面側配線層、およびシールド層の積層構造からなる。すなわち、多層基板60は、第1~第4基材60A~60Dと、表面側配線層61および裏面側配線層62と、シールド層63と、を備えている。本実施形態では、多層基板60の積層構造は、多層基板30の積層構造と同じである。ここで、本実施形態では、第1基材60Aが多層基板60の表面60sを形成し、第4基材60Dが多層基板60の裏面60rを形成するため、第1基材60Aは「表面側絶縁層」に対応しており、第4基材60Dは「裏面側絶縁層」に対応している。なお、多層基板60の積層構造は、多層基板30の積層構造と異なっていてもよい。 As shown in FIG. 8, the multilayer substrate 60 has a laminated structure of a plurality of base materials, a front surface side wiring layer, a back surface side wiring layer, and a shield layer. That is, the multilayer board 60 includes first to fourth base materials 60A to 60D, a front surface side wiring layer 61, a back surface side wiring layer 62, and a shield layer 63. In the present embodiment, the laminated structure of the multilayer board 60 is the same as the laminated structure of the multilayer board 30. Here, in the present embodiment, the first base material 60A forms the front surface 60s of the multilayer board 60, and the fourth base material 60D forms the back surface 60r of the multilayer board 60, so that the first base material 60A is "front side". The fourth base material 60D corresponds to the "insulating layer", and corresponds to the "backside insulating layer". The laminated structure of the multilayer board 60 may be different from the laminated structure of the multilayer board 30.
 各基材60A~60Dは、たとえば多層基板30の各基材30A~30Dと同じ材料からなる。また表面側配線層61および裏面側配線層62は、多層基板30の表面側配線層31および裏面側配線層32と同じ材料からなる。 Each base material 60A to 60D is made of the same material as each base material 30A to 30D of, for example, the multilayer board 30. The front surface side wiring layer 61 and the back surface side wiring layer 62 are made of the same material as the front surface side wiring layer 31 and the back surface side wiring layer 32 of the multilayer board 30.
 シールド層63は、受電アンテナ21から各チップ71,72および複数のコンデンサ73に向かう電磁波を低減する層である。つまり、シールド層63は、受電アンテナ21から受電制御部24、整流回路23、およびマッチング回路22(ともに図1参照)に向かう電磁波を低減する層であるともいえる。z方向から視て、シールド層63は、各チップ71,72および複数のコンデンサ73と受電アンテナ21との双方と重なる位置に配置されている。つまり、z方向から視て、シールド層63は、少なくとも図6の領域R2の全体を覆うように形成されていればよい。本実施形態では、シールド層63は、z方向から視て、多層基板60の全面にわたり形成されている。 The shield layer 63 is a layer that reduces electromagnetic waves directed from the power receiving antenna 21 to the chips 71 and 72 and the plurality of capacitors 73. That is, it can be said that the shield layer 63 is a layer that reduces electromagnetic waves directed from the power receiving antenna 21 to the power receiving control unit 24, the rectifier circuit 23, and the matching circuit 22 (both see FIG. 1). When viewed from the z direction, the shield layer 63 is arranged at a position where both the chips 71 and 72, the plurality of capacitors 73, and the power receiving antenna 21 overlap each other. That is, when viewed from the z direction, the shield layer 63 may be formed so as to cover at least the entire region R2 of FIG. In the present embodiment, the shield layer 63 is formed over the entire surface of the multilayer substrate 60 when viewed from the z direction.
 配線層64と表面側配線層61とは、第1基材60Aをz方向に貫通する配線であるスルーホール65Aによって接続されている。裏面側配線層62(接続配線21C)と受電アンテナ21とは、第4基材60Dをz方向に貫通するスルーホール65Bによって接続されている。接続配線21Cは、第1~第3基材60A~60C、表面側配線層31、およびシールド層63を貫通する配線であるスルーホール65Cによって配線層64に接続されている。図7に示すように、受電アンテナ21の第1端部21Aと配線層64とは、z方向において多層基板60を貫通する配線であるスルーホール65Dによって接続されている。各外部電極25は、z方向において多層基板60を貫通する配線であるスルーホール65Eによって第1チップ71と電気的に接続されている。本実施形態では、スルーホール65Eは、配線層64に接続されている。第1チップ71は配線層64と電気的に接続されているため、外部電極25は第1チップ71と電気的に接続されている。このように、スルーホール65Eは、「受電側回路と外部電極とを接続する配線」に対応している。 The wiring layer 64 and the surface side wiring layer 61 are connected by a through hole 65A which is a wiring penetrating the first base material 60A in the z direction. The back surface side wiring layer 62 (connection wiring 21C) and the power receiving antenna 21 are connected by a through hole 65B penetrating the fourth base material 60D in the z direction. The connection wiring 21C is connected to the wiring layer 64 by a through hole 65C which is a wiring penetrating the first to third base materials 60A to 60C, the surface side wiring layer 31, and the shield layer 63. As shown in FIG. 7, the first end portion 21A of the power receiving antenna 21 and the wiring layer 64 are connected by a through hole 65D which is a wiring penetrating the multilayer board 60 in the z direction. Each external electrode 25 is electrically connected to the first chip 71 by a through hole 65E which is a wiring penetrating the multilayer board 60 in the z direction. In this embodiment, the through hole 65E is connected to the wiring layer 64. Since the first chip 71 is electrically connected to the wiring layer 64, the external electrode 25 is electrically connected to the first chip 71. In this way, the through hole 65E corresponds to "wiring connecting the power receiving side circuit and the external electrode".
 図8に示すように、受電装置20は、送電装置10と同様に、各チップ71,72および複数のコンデンサ73を保護する封止樹脂80を備えている。つまり、各チップ71,72および複数のコンデンサ73は、電気絶縁性を有する封止樹脂80によって封止されている。封止樹脂80は、送電装置10の封止樹脂50と同様の形状および材料によって形成されている。また、受電装置20は、送電装置10の製造方法と同様の製造方法によって製造される。 As shown in FIG. 8, the power receiving device 20 includes a sealing resin 80 that protects each chip 71, 72 and a plurality of capacitors 73, similarly to the power transmission device 10. That is, each chip 71, 72 and the plurality of capacitors 73 are sealed with a sealing resin 80 having electrical insulation. The sealing resin 80 is formed of the same shape and material as the sealing resin 50 of the power transmission device 10. Further, the power receiving device 20 is manufactured by the same manufacturing method as the manufacturing method of the power transmission device 10.
 このような非接触給電システム1では、z方向において、送電装置10の送電アンテナ15と受電装置20の受電アンテナ21とが対向するように、送電装置10に対して受電装置20が配置される。つまり、受電装置20は、各チップ71,72および複数のコンデンサ73が、z方向において、受電アンテナ21に対して送電アンテナ15とは反対側に配置されるように、送電装置10に対して配置される。 In such a non-contact power feeding system 1, the power receiving device 20 is arranged with respect to the power transmitting device 10 so that the power transmitting antenna 15 of the power transmitting device 10 and the power receiving antenna 21 of the power receiving device 20 face each other in the z direction. That is, the power receiving device 20 is arranged with respect to the power transmitting device 10 so that the chips 71 and 72 and the plurality of capacitors 73 are arranged on the side opposite to the power transmitting antenna 15 with respect to the power receiving antenna 21 in the z direction. Will be done.
 本実施形態では、送電アンテナ15のサイズが受電アンテナ21のサイズよりも大きいため、受電アンテナ21の中心が送電アンテナ15の中心に対してずれて配置されたとしても、z方向から視て、送電アンテナ15内に受電アンテナ21が配置される確率が高くなる。したがって、送電装置10から受電装置20に非接触給電するために送電装置10に対する受電装置20の高い位置精度が必要ではなくなる。 In the present embodiment, since the size of the power transmitting antenna 15 is larger than the size of the power receiving antenna 21, even if the center of the power receiving antenna 21 is displaced from the center of the power transmitting antenna 15, the power is transmitted when viewed from the z direction. The probability that the power receiving antenna 21 is arranged in the antenna 15 is high. Therefore, in order to supply power from the power transmitting device 10 to the power receiving device 20 in a non-contact manner, high positional accuracy of the power receiving device 20 with respect to the power transmitting device 10 is not required.
 (作用)
 本実施形態の非接触給電システム1の作用について説明する。
 送電装置10の多層基板30は、その表面30sに各チップ41,42および複数のコンデンサ43が実装されており、その裏面30rに送電アンテナ15が形成されている。つまり、多層基板30の両面に各チップ41,42および複数のコンデンサ43と送電アンテナ15とが分散して配置されている。このため、たとえば多層基板30の表面30sに各チップ41,42および複数のコンデンサ43と送電アンテナ15とを並べて配置する場合と比較して、多層基板30の表面30sには送電アンテナ15を配置するためのスペースが不要となるため、多層基板30の表面30sの面積を小さくできる。
(Action)
The operation of the non-contact power feeding system 1 of the present embodiment will be described.
The multilayer board 30 of the power transmission device 10 has chips 41, 42 and a plurality of capacitors 43 mounted on its front surface 30s, and a power transmission antenna 15 is formed on its back surface 30r. That is, the chips 41 and 42, the plurality of capacitors 43, and the power transmission antenna 15 are dispersedly arranged on both sides of the multilayer board 30. Therefore, for example, the power transmission antenna 15 is arranged on the surface 30s of the multilayer board 30 as compared with the case where the chips 41, 42, the plurality of capacitors 43, and the power transmission antenna 15 are arranged side by side on the surface 30s of the multilayer board 30. Since no space is required for this, the area of the surface 30s of the multilayer board 30 can be reduced.
 加えて、多層基板30の表面30sに各チップ41,42および複数のコンデンサ43と送電アンテナ15とを並べて配置する場合、各チップ41,42および複数のコンデンサ43は、送電アンテナ15の電磁波の影響を避けるため、各チップ41,42および複数のコンデンサ43と送電アンテナ15との間の距離を大きくとる必要がある。 In addition, when the chips 41, 42 and the plurality of capacitors 43 and the power transmission antenna 15 are arranged side by side on the surface 30s of the multilayer substrate 30, each chip 41, 42 and the plurality of capacitors 43 are affected by the electromagnetic waves of the power transmission antenna 15. In order to avoid this, it is necessary to increase the distance between each chip 41, 42 and the plurality of capacitors 43 and the power transmission antenna 15.
 この点、本実施形態では、z方向において各チップ41,42および複数のコンデンサ43と送電アンテナ15との間にシールド層33が設けられているため、多層基板30の表面30sに各チップ41,42および複数のコンデンサ43が実装され、多層基板30の裏面30rに送電アンテナ15が形成された構成であっても、送電アンテナ15の電磁波が各チップ41,42および複数のコンデンサ43に影響を与えることを抑制できる。 In this respect, in the present embodiment, since the shield layer 33 is provided between each chip 41, 42 and the plurality of capacitors 43 and the power transmission antenna 15 in the z direction, each chip 41, is provided on the surface 30s of the multilayer substrate 30. Even in a configuration in which 42 and a plurality of capacitors 43 are mounted and a power transmission antenna 15 is formed on the back surface 30r of the multilayer substrate 30, the electromagnetic wave of the power transmission antenna 15 affects each chip 41, 42 and the plurality of capacitors 43. It can be suppressed.
 受電装置20の多層基板60は、その表面60sに各チップ71,72および複数のコンデンサ73が実装されており、その裏面60rに受電アンテナ21が形成されている。つまり、多層基板60の両面に各チップ71,72および複数のコンデンサ73と受電アンテナ21とが分散して配置されている。このため、たとえば多層基板60の表面60sに各チップ71,72および複数のコンデンサ73と受電アンテナ21とを並べて配置する場合と比較して、多層基板60の表面60sには受電アンテナ21を配置するためのスペースが不要となるため、多層基板60の表面60sの面積を小さくできる。 The multilayer board 60 of the power receiving device 20 has chips 71 and 72 and a plurality of capacitors 73 mounted on the front surface 60s thereof, and a power receiving antenna 21 is formed on the back surface 60r thereof. That is, the chips 71 and 72, the plurality of capacitors 73, and the power receiving antenna 21 are dispersedly arranged on both sides of the multilayer board 60. Therefore, for example, the power receiving antenna 21 is arranged on the surface 60s of the multilayer board 60 as compared with the case where the chips 71, 72, the plurality of capacitors 73, and the power receiving antenna 21 are arranged side by side on the surface 60s of the multilayer board 60. Since no space is required for this, the area of the surface 60s of the multilayer board 60 can be reduced.
 加えて、多層基板60の表面60sに各チップ71,72および複数のコンデンサ73と受電アンテナ21とを並べて配置する場合、各チップ71,72および複数のコンデンサ73は、受電アンテナ21の電磁波の影響を避けるため、各チップ71,72および複数のコンデンサ73と受電アンテナ21との間の距離を大きくとる必要がある。 In addition, when the chips 71, 72 and the plurality of capacitors 73 and the power receiving antenna 21 are arranged side by side on the surface 60s of the multilayer board 60, the chips 71, 72 and the plurality of capacitors 73 are affected by the electromagnetic waves of the power receiving antenna 21. In order to avoid this, it is necessary to increase the distance between each chip 71, 72 and the plurality of capacitors 73 and the power receiving antenna 21.
 この点、本実施形態では、多層基板60内にシールド層が設けられているため、多層基板60の表面60sに各チップ71,72および複数のコンデンサ73が実装され、多層基板60の裏面60rに受電アンテナ21が形成された構成であっても、受電アンテナ21の電磁波が各チップ71,72および複数のコンデンサ73に影響を与えることを抑制できる。 In this respect, in this embodiment, since the shield layer is provided in the multilayer board 60, the chips 71, 72 and the plurality of capacitors 73 are mounted on the front surface 60s of the multilayer board 60, and the back surface 60r of the multilayer board 60 is mounted. Even in the configuration in which the power receiving antenna 21 is formed, it is possible to suppress the electromagnetic wave of the power receiving antenna 21 from affecting each of the chips 71 and 72 and the plurality of capacitors 73.
 (効果)
 本実施形態の非接触給電システム1によれば、以下の効果が得られる。
 (1)送電装置10は、表面30s、および表面30sとは反対側を向く裏面30rを有する多層基板30と、表面30sに実装され、送電制御を行う送電側回路となる各チップ41,42および複数のコンデンサ43と、裏面30rに形成され、受電装置20の受電アンテナ21に向けて非接触送電を行う送電アンテナ15と、z方向において各チップ41,42および複数のコンデンサ43と送電アンテナ15との間に設けられ、送電アンテナ15から各チップ41,42および複数のコンデンサ43に向かう電磁波を低減するシールド層33と、を備えている。
(effect)
According to the non-contact power feeding system 1 of the present embodiment, the following effects can be obtained.
(1) The power transmission device 10 includes a multilayer substrate 30 having a front surface 30s and a back surface 30r facing the opposite side to the front surface 30s, and chips 41 and 42 mounted on the front surface 30s and serving as a power transmission side circuit for power transmission control. A plurality of capacitors 43, a power transmission antenna 15 formed on the back surface 30r and performing non-contact power transmission toward the power receiving antenna 21 of the power receiving device 20, and each chip 41, 42 and a plurality of capacitors 43 and a power transmission antenna 15 in the z direction. A shield layer 33 for reducing electromagnetic waves from the power transmission antenna 15 to the chips 41, 42 and the plurality of capacitors 43 is provided between the two.
 この構成によれば、多層基板30の表面30sに各チップ41,42および複数のコンデンサ43が実装され、裏面30rに送電アンテナ15が形成されているため、たとえば回路基板の表面に送電アンテナ15と各チップ41,42および複数のコンデンサ43とが並んで配置される構成と比較して、送電装置10の小型化を図ることができる。 According to this configuration, each chip 41, 42 and a plurality of capacitors 43 are mounted on the front surface 30s of the multilayer board 30, and the power transmission antenna 15 is formed on the back surface 30r. Therefore, for example, the power transmission antenna 15 is formed on the surface of the circuit board. Compared with the configuration in which the chips 41, 42 and the plurality of capacitors 43 are arranged side by side, the power transmission device 10 can be downsized.
 加えて、z方向においてシールド層33が各チップ41,42および複数のコンデンサ43と送電アンテナ15との間に設けられることによって、送電アンテナ15から各チップ41,42に向かう電磁波がシールド層33で低減されるため、送電アンテナ15から発生する電磁波が各チップ41,42および複数のコンデンサ43に影響を与えることを抑制できる。つまり、送電アンテナ15から発生する電磁波が送電制御部12、振動子13、およびマッチング回路14に影響を与えることを抑制できる。 In addition, the shield layer 33 is provided between the chips 41 and 42 and the plurality of capacitors 43 and the power transmission antenna 15 in the z direction, so that the electromagnetic waves from the power transmission antenna 15 to the chips 41 and 42 are transmitted by the shield layer 33. Since it is reduced, it is possible to suppress the electromagnetic wave generated from the power transmission antenna 15 from affecting each chip 41, 42 and the plurality of capacitors 43. That is, it is possible to suppress the electromagnetic wave generated from the power transmission antenna 15 from affecting the power transmission control unit 12, the vibrator 13, and the matching circuit 14.
 (2)z方向から視て、各チップ41,42および複数のコンデンサ43と送電アンテナ15とは互いに重なる位置に配置されている。z方向から視て、シールド層33は、各チップ41,42および複数のコンデンサ43と送電アンテナ15との双方と重なる位置に配置されている。 (2) When viewed from the z direction, the chips 41 and 42, the plurality of capacitors 43, and the power transmission antenna 15 are arranged at positions where they overlap each other. When viewed from the z direction, the shield layer 33 is arranged at a position where both the chips 41 and 42 and the plurality of capacitors 43 and the power transmission antenna 15 overlap each other.
 この構成によれば、z方向から視て、各チップ41,42および複数のコンデンサ43のうちの一部が送電アンテナ15からずれて配置された構成と比較して、多層基板30の表面30sの面積を小さくできるため、送電装置10の小型化を図ることができる。 According to this configuration, when viewed from the z direction, the surface 30s of the multilayer substrate 30 is compared with the configuration in which a part of the chips 41, 42 and the plurality of capacitors 43 is arranged so as to be offset from the power transmission antenna 15. Since the area can be reduced, the power transmission device 10 can be miniaturized.
 加えて、z方向から視て、シールド層33が各チップ41,42および複数のコンデンサ43と送電アンテナ15との双方と重なる位置に配置されているため、送電アンテナ15が発生する電磁波が各チップ41,42および複数のコンデンサ43に影響を与えることを一層抑制できる。つまり、送電アンテナ15から発生する電磁波が送電制御部12、振動子13、およびマッチング回路14に影響を与えることを一層抑制できる。 In addition, when viewed from the z direction, the shield layer 33 is arranged at a position where both the chips 41 and 42 and the plurality of capacitors 43 and the power transmission antenna 15 overlap, so that the electromagnetic waves generated by the power transmission antenna 15 are generated by each chip. It is possible to further suppress the influence on the 41, 42 and the plurality of capacitors 43. That is, it is possible to further suppress that the electromagnetic wave generated from the power transmission antenna 15 affects the power transmission control unit 12, the vibrator 13, and the matching circuit 14.
 (3)z方向から視て、シールド層33は、多層基板30の全面にわたり形成されている。この構成によれば、シールド層33が各チップ41,42および複数のコンデンサ43と送電アンテナ15との双方と確実に重なる位置となる。したがって、送電アンテナ15が発生する電磁波が各チップ41,42および複数のコンデンサ43に影響を与えることを一層抑制できる。つまり、送電アンテナ15から発生する電磁波が送電制御部12、振動子13、およびマッチング回路14に影響を与えることを一層抑制できる。 (3) When viewed from the z direction, the shield layer 33 is formed over the entire surface of the multilayer substrate 30. According to this configuration, the shield layer 33 is reliably overlapped with both the chips 41 and 42 and the plurality of capacitors 43 and the power transmission antenna 15. Therefore, it is possible to further suppress the electromagnetic wave generated by the power transmission antenna 15 from affecting the chips 41, 42 and the plurality of capacitors 43. That is, it is possible to further suppress that the electromagnetic wave generated from the power transmission antenna 15 affects the power transmission control unit 12, the vibrator 13, and the matching circuit 14.
 (4)送電装置10は、電気絶縁性を有し、各チップ41,42および複数のコンデンサ43を封止する封止樹脂50を備えている。この構成によれば、たとえば送電装置10の搬送時に送電装置10の外部の部品と各チップ41,42および複数のコンデンサ43との接触を抑制できる。 (4) The power transmission device 10 has electrical insulation and includes a sealing resin 50 that seals each chip 41, 42 and a plurality of capacitors 43. According to this configuration, for example, when the power transmission device 10 is transported, contact between external parts of the power transmission device 10 and the chips 41, 42 and the plurality of capacitors 43 can be suppressed.
 (5)封止樹脂50は、直方体状に形成されている。この構成によれば、送電装置10をマウンタによって搬送できるため、送電装置10をたとえば回路基板に実装しやすくなる。 (5) The sealing resin 50 is formed in a rectangular parallelepiped shape. According to this configuration, since the power transmission device 10 can be conveyed by the mounter, it becomes easy to mount the power transmission device 10 on, for example, a circuit board.
 (6)送電装置10は、送電アンテナ15を用いて受電装置20と給電および通信を行う。この構成によれば、給電および通信に対して共通の送電アンテナ15を用いるため、送電アンテナとして、給電用アンテナおよび通信用アンテナを個別に設ける構成と比較して、送電装置10の小型化を図ることができる。 (6) The power transmission device 10 uses the power transmission antenna 15 to supply power and communicate with the power receiving device 20. According to this configuration, since a common power transmission antenna 15 is used for power supply and communication, the power transmission device 10 is downsized as compared with a configuration in which a power transmission antenna and a communication antenna are separately provided as the power transmission antenna. be able to.
 (7)受電装置20は、表面60s、および表面60sとは反対側を向く裏面60rを有する多層基板60と、表面60sに実装され、受電制御を行う各チップ71,72および複数のコンデンサ73と、裏面60rに形成され、送電アンテナ15から非接触で受電する受電アンテナ21と、各チップ71,72および複数のコンデンサ73と受電アンテナ21との間に設けられ、受電アンテナ21から各チップ71,72および複数のコンデンサ73に向かう電磁波を低減するシールド層63と、を備えている。 (7) The power receiving device 20 includes a multilayer board 60 having a front surface 60s and a back surface 60r facing the opposite side to the front surface 60s, chips 71 and 72 mounted on the front surface 60s and performing power receiving control, and a plurality of capacitors 73. , A power receiving antenna 21 formed on the back surface 60r and receiving power from the power transmitting antenna 15 in a non-contact manner, and provided between each chip 71, 72 and a plurality of capacitors 73 and the power receiving antenna 21, from the power receiving antenna 21 to each chip 71, It includes a shield layer 63 that reduces electromagnetic waves directed toward the 72 and the plurality of capacitors 73.
 この構成によれば、多層基板60の表面60sに各チップ71,72および複数のコンデンサ73が実装され、裏面60rに受電アンテナ21が形成されているため、回路基板の表面に受電アンテナ21と各チップ71,72および複数のコンデンサ73とが並んで配置される構成と比較して、受電装置20の小型化を図ることができる。 According to this configuration, since the chips 71 and 72 and the plurality of capacitors 73 are mounted on the front surface 60s of the multilayer board 60 and the power receiving antenna 21 is formed on the back surface 60r, the power receiving antenna 21 and each of them are formed on the front surface of the circuit board. Compared with the configuration in which the chips 71 and 72 and the plurality of capacitors 73 are arranged side by side, the power receiving device 20 can be downsized.
 加えて、シールド層63が各チップ71,72および複数のコンデンサ73と受電アンテナ21との間に設けられることによって、受電アンテナ21から各チップ71,72および複数のコンデンサ73に向かう電磁波がシールド層63で遮断されるため、受電アンテナ21から発生する電磁波が各チップ71,72および複数のコンデンサ73に影響を与えることを抑制できる。つまり、受電アンテナ21から発生する電磁波が受電制御部24、整流回路23、およびマッチング回路22に影響を与えることを抑制できる。 In addition, the shield layer 63 is provided between each chip 71, 72 and the plurality of capacitors 73 and the power receiving antenna 21, so that the electromagnetic wave directed from the power receiving antenna 21 to each chip 71, 72 and the plurality of capacitors 73 is the shield layer. Since it is cut off by 63, it is possible to suppress the electromagnetic wave generated from the power receiving antenna 21 from affecting each of the chips 71 and 72 and the plurality of capacitors 73. That is, it is possible to suppress that the electromagnetic wave generated from the power receiving antenna 21 affects the power receiving control unit 24, the rectifier circuit 23, and the matching circuit 22.
 (8)受電装置20の多層基板60は、送電装置10の多層基板30と同様の構成である。この構成によれば、上記(2)~(5)に準じた効果を得ることができる。
 (9)受電装置20は、受電アンテナ21を用いて送電装置10からの受電および通信を行う。この構成によれば、受電および通信に対して共通の受電アンテナ21を用いるため、受電アンテナとして、受電用アンテナおよび通信用アンテナを個別に設ける構成と比較して、受電装置20の小型化を図ることができる。
(8) The multilayer board 60 of the power receiving device 20 has the same configuration as the multilayer board 30 of the power transmission device 10. According to this configuration, the effects according to the above (2) to (5) can be obtained.
(9) The power receiving device 20 receives power from the power transmitting device 10 and communicates using the power receiving antenna 21. According to this configuration, since a common power receiving antenna 21 is used for power receiving and communication, the power receiving device 20 is miniaturized as compared with a configuration in which a power receiving antenna and a communication antenna are separately provided as the power receiving antenna. be able to.
 [変更例]
 上記実施形態は本開示に関する送電装置、受電装置、および非接触給電システムが取り得る形態の例示であり、その形態を制限することを意図していない。本開示に関する送電装置、受電装置、および非接触給電システムは、上記実施形態に例示された形態とは異なる形態を取り得る。その一例は、上記実施形態の一部を置換、変更、もしくは省略した形態、または上記実施形態に新たな構成を付加した形態である。また、以下の各変更例は、技術的に矛盾しない限り、互いに組み合わせることができる。以下の各変更例において、上記実施形態に共通する部分について、上記実施形態と同一符号を付してその説明を省略する。なお、以下の各変更例は、送電装置10に対する変更例として説明するが、受電装置20に対しても同様に適用できる。
[Change example]
The above-described embodiment is an example of possible embodiments of a power transmission device, a power receiving device, and a contactless power supply system according to the present disclosure, and is not intended to limit the embodiments. The power transmission device, the power receiving device, and the non-contact power feeding system according to the present disclosure may take a form different from the embodiment exemplified above. One example thereof is a form in which a part of the above embodiment is replaced, changed, or omitted, or a form in which a new configuration is added to the above embodiment. In addition, the following modification examples can be combined with each other as long as they are not technically inconsistent. In each of the following modification examples, the parts common to the above embodiments are designated by the same reference numerals as those of the above embodiments, and the description thereof will be omitted. Although each of the following modification examples will be described as a modification example for the power transmission device 10, it can be similarly applied to the power receiving device 20.
 ・上記実施形態において、外部電極11の構成は任意に変更可能である。一例では、外部電極11は、多層基板30の裏面30rに形成されていなくてもよい。たとえば図9に示すように、外部電極11は、多層基板30の側面30aに形成されていてもよい。この場合、外部電極11は、z方向において多層基板30の表面30sから裏面30rまで延びるように形成されていてもよい。すなわち外部電極11は、多層基板30をその厚さ方向(z方向)に貫通するように多層基板30の厚さ方向に延びる端面電極として設けられていてもよい。 -In the above embodiment, the configuration of the external electrode 11 can be arbitrarily changed. In one example, the external electrode 11 may not be formed on the back surface 30r of the multilayer substrate 30. For example, as shown in FIG. 9, the external electrode 11 may be formed on the side surface 30a of the multilayer substrate 30. In this case, the external electrode 11 may be formed so as to extend from the front surface 30s of the multilayer substrate 30 to the back surface 30r in the z direction. That is, the external electrode 11 may be provided as an end face electrode extending in the thickness direction of the multilayer board 30 so as to penetrate the multilayer board 30 in the thickness direction (z direction).
 外部電極11は、z方向から視て、多層基板30の側面30aからy方向に凹む半円状に形成された凹部の内面にCu等の導電層が形成されることによって構成されている。この場合、凹部は、シールド層33も貫通している。つまり、凹部は、側面30aから露出するシールド層33にも同様に形成されている。 The external electrode 11 is configured by forming a conductive layer such as Cu on the inner surface of a semicircular recess formed in the y direction from the side surface 30a of the multilayer substrate 30 when viewed from the z direction. In this case, the recess also penetrates the shield layer 33. That is, the recess is similarly formed in the shield layer 33 exposed from the side surface 30a.
 この構成によれば、送電装置10をたとえばタブレットPCの回路基板にはんだ等の導電性接合材によって実装する場合、導電性接合材による送電装置10と回路基板との接合状態を視認できる。したがって、送電装置10と回路基板との接合状態を容易に確認できる。 According to this configuration, when the power transmission device 10 is mounted on the circuit board of a tablet PC with a conductive bonding material such as solder, the bonding state between the power transmission device 10 and the circuit board by the conductive bonding material can be visually recognized. Therefore, the joint state between the power transmission device 10 and the circuit board can be easily confirmed.
 ・図9に示す変更例において、シールド層33と外部電極11との関係は任意に変更可能である。一例では、図10に示すように、シールド層33は、外部電極11が形成された多層基板30の側面30aよりも内方に位置するように形成されていてもよい。つまり、シールド層33と外部電極11とが互いに離間して設けられていてもよい。この場合、シールド層33は、多層基板30の側面30aから露出していない。 -In the modification shown in FIG. 9, the relationship between the shield layer 33 and the external electrode 11 can be arbitrarily changed. In one example, as shown in FIG. 10, the shield layer 33 may be formed so as to be located inward of the side surface 30a of the multilayer substrate 30 on which the external electrode 11 is formed. That is, the shield layer 33 and the external electrode 11 may be provided so as to be separated from each other. In this case, the shield layer 33 is not exposed from the side surface 30a of the multilayer board 30.
 ・上記実施形態において、外部電極11の構成は、多層基板30の裏面30rに形成された金属層による構成に限られず、任意に変更可能である。外部電極11は、送電装置10の外部の機器(たとえばタブレットPCの回路基板)と電気的に接続可能な構成であればよい。一例では、外部電極11は、多層基板30の表面30sに形成されたコネクタ構造であってもよい。この場合、コネクタ構造の外部電極11は、ハーネス等の外部のコネクタと接合することによって、送電装置10の外部の機器と電気的に接続される。この場合、外部電極11は、送電装置10の外部の機器と接続するための部分が露出した状態で封止樹脂50によって封止されていてもよい。 -In the above embodiment, the configuration of the external electrode 11 is not limited to the configuration of the metal layer formed on the back surface 30r of the multilayer substrate 30, and can be arbitrarily changed. The external electrode 11 may have a configuration that can be electrically connected to an external device (for example, a circuit board of a tablet PC) of the power transmission device 10. In one example, the external electrode 11 may have a connector structure formed on the surface 30s of the multilayer substrate 30. In this case, the external electrode 11 of the connector structure is electrically connected to the external device of the power transmission device 10 by joining to an external connector such as a harness. In this case, the external electrode 11 may be sealed with the sealing resin 50 in a state where the portion for connecting to the external device of the power transmission device 10 is exposed.
 ・上記実施形態において、多層基板30内におけるシールド層33の配置構成は任意に変更可能である。一例では、シールド層33は、z方向から視て、各チップ41,42および複数のコンデンサ43と重なる位置に配置されていればよい。この場合、送電アンテナ15は、z方向から視て、シールド層33と重ならない部分を有していてもよい。また一例では、シールド層33は、z方向から視て、送電アンテナ15と重なる位置に配置されていればよい。この場合、各チップ41,42および複数のコンデンサ43は、z方向から視て、シールド層33と重ならない部分を有していてもよい。 -In the above embodiment, the arrangement configuration of the shield layer 33 in the multilayer board 30 can be arbitrarily changed. In one example, the shield layer 33 may be arranged at a position where it overlaps with each of the chips 41, 42 and the plurality of capacitors 43 when viewed from the z direction. In this case, the power transmission antenna 15 may have a portion that does not overlap with the shield layer 33 when viewed from the z direction. Further, in one example, the shield layer 33 may be arranged at a position overlapping with the power transmission antenna 15 when viewed from the z direction. In this case, each chip 41, 42 and the plurality of capacitors 43 may have a portion that does not overlap with the shield layer 33 when viewed from the z direction.
 ・上記実施形態において、シールド層33を構成する材料は、フェライトに限られず、任意に変更可能である。シールド層33は、磁性体であればよい。このため、シールド層33は、磁性体であれば、導電性を有する材料から構成されていてもよい。 -In the above embodiment, the material constituting the shield layer 33 is not limited to ferrite, and can be arbitrarily changed. The shield layer 33 may be a magnetic material. Therefore, the shield layer 33 may be made of a conductive material as long as it is a magnetic material.
 ・上記実施形態では、各外部電極11と第1チップ41とを電気的に接続するスルーホール35Eは、z方向において多層基板30を貫通する配線として設けられていたが、これに限られない。たとえば、スルーホール35Eは、表面側配線層31に接続されていてもよい。つまり、スルーホール35Eは、第4基材30D、裏面側配線層32、第3基材30C、シールド層33、および第2基材30Bを貫通する配線として設けられていてもよい。この場合、表面側配線層31は、第1基材30Aを貫通する配線であるスルーホール35Aを介して第1チップ41と電気的に接続されていてもよい。これにより、各外部電極11と第1チップ41とが電気的に接続される。 -In the above embodiment, the through hole 35E for electrically connecting each external electrode 11 and the first chip 41 is provided as a wiring penetrating the multilayer board 30 in the z direction, but the present invention is not limited to this. For example, the through hole 35E may be connected to the surface side wiring layer 31. That is, the through hole 35E may be provided as wiring penetrating the fourth base material 30D, the back surface side wiring layer 32, the third base material 30C, the shield layer 33, and the second base material 30B. In this case, the surface-side wiring layer 31 may be electrically connected to the first chip 41 via a through hole 35A which is a wiring penetrating the first base material 30A. As a result, each external electrode 11 and the first chip 41 are electrically connected.
 ・上記実施形態において、各チップ41,42および複数のコンデンサ43を保護する構成は任意に変更可能である。一例では、図11に示すように、送電装置10は、封止樹脂50に代えて、金属製のハウジング90を備えている。ハウジング90は、たとえば多層基板30の表面30sに、接着剤を用いて取り付けられる。ハウジング90は、各チップ41,42および複数のコンデンサ43を覆う箱状に形成されている。つまり、送電回路は、金属製からなる箱状のハウジングによって覆われているともいえる。 -In the above embodiment, the configuration for protecting each chip 41, 42 and the plurality of capacitors 43 can be arbitrarily changed. In one example, as shown in FIG. 11, the power transmission device 10 includes a metal housing 90 instead of the sealing resin 50. The housing 90 is attached to, for example, the surface 30s of the multilayer board 30 using an adhesive. The housing 90 is formed in a box shape that covers each chip 41, 42 and a plurality of capacitors 43. In other words, it can be said that the power transmission circuit is covered with a box-shaped housing made of metal.
 ・上記実施形態において、z方向から視た送電アンテナ15の形状は、任意に変更可能である。一例では、送電アンテナ15から接続配線15Cを省略してもよい。
 ・上記実施形態において、接続配線15Cのz方向における配置位置は任意に変更可能である。一例では、接続配線15Cは、表面側配線層31に含まれる配線であってもよいし、配線層34に含まれる配線であってもよい。
-In the above embodiment, the shape of the power transmission antenna 15 viewed from the z direction can be arbitrarily changed. In one example, the connection wiring 15C may be omitted from the power transmission antenna 15.
-In the above embodiment, the arrangement position of the connection wiring 15C in the z direction can be arbitrarily changed. In one example, the connection wiring 15C may be the wiring included in the surface side wiring layer 31 or the wiring included in the wiring layer 34.
 ・上記実施形態において、多層基板30の裏面30rにおける送電アンテナ15の配置位置は、任意に変更可能である。
 ・上記実施形態において、z方向から視て、各チップ41,42および各コンデンサ43のうち少なくとも1つが送電アンテナ15と重ならない位置に配置されていてもよい。一例では、z方向から視て、多層基板30の表面30sにおいて各チップ41,42および各コンデンサ43のうち少なくとも1つが送電アンテナ15の周囲に配置されていてもよい。
-In the above embodiment, the arrangement position of the power transmission antenna 15 on the back surface 30r of the multilayer board 30 can be arbitrarily changed.
-In the above embodiment, at least one of each chip 41, 42 and each capacitor 43 may be arranged at a position not overlapping with the power transmission antenna 15 when viewed from the z direction. In one example, at least one of each chip 41, 42 and each capacitor 43 may be arranged around the power transmission antenna 15 on the surface 30s of the multilayer board 30 when viewed from the z direction.
 ・上記実施形態において、封止樹脂50を省略してもよい。
 ・上記実施形態において、各チップ41,42および複数のコンデンサ43の接続構成は任意に変更可能である。一例では、多層基板30の表面30sには、各チップ41,42および複数のコンデンサ43を載置するランドが形成され、多層基板30の第1基材30Aを貫通するスルーホールによって各ランドと表面側配線層31とが電気的に接続される構成であってもよい。つまり、各チップ41,42および複数のコンデンサ43は、表面側配線層31によって互いに接続されていてもよい。
-In the above embodiment, the sealing resin 50 may be omitted.
-In the above embodiment, the connection configuration of each chip 41, 42 and the plurality of capacitors 43 can be arbitrarily changed. In one example, lands on which the chips 41, 42 and a plurality of capacitors 43 are placed are formed on the surface 30s of the multilayer board 30, and each land and the surface are formed by through holes penetrating the first base material 30A of the multilayer board 30. The side wiring layer 31 may be electrically connected to the side wiring layer 31. That is, the chips 41, 42 and the plurality of capacitors 43 may be connected to each other by the surface side wiring layer 31.
 ・上記実施形態では、送電装置10は、送電側回路として送電制御部12、振動子13、およびマッチング回路14を有していたが、送電側回路の構成はこれに限られない。送電側回路は、少なくとも送電制御を行うことができる回路構成であればよい。 -In the above embodiment, the power transmission device 10 has a power transmission control unit 12, an oscillator 13, and a matching circuit 14 as a power transmission side circuit, but the configuration of the power transmission side circuit is not limited to this. The power transmission side circuit may have at least a circuit configuration capable of performing power transmission control.
 ・上記実施形態では、受電装置20は、受電側回路としてマッチング回路22、整流回路23、および受電制御部24を有していたが、受電側回路の構成はこれに限られない。受電側回路は、少なくとも受電制御を行うことができる回路構成であればよい。 -In the above embodiment, the power receiving device 20 has a matching circuit 22, a rectifier circuit 23, and a power receiving control unit 24 as the power receiving side circuit, but the configuration of the power receiving side circuit is not limited to this. The power receiving side circuit may have at least a circuit configuration capable of performing power receiving control.
 ・上記実施形態では、送電装置10および受電装置20の双方が、多層基板30(60)の表面30s(60s)に各チップ41,42(71,72)および複数のコンデンサ43(73)が実装され、多層基板30(60)の裏面30r(60r)に送電アンテナ15(受電アンテナ21)が形成され、多層基板30(60)内にシールド層33が設けられていたが、これに限られない。 In the above embodiment, both the power transmission device 10 and the power receiving device 20 have chips 41, 42 (71, 72) and a plurality of capacitors 43 (73) mounted on the surface 30s (60s) of the multilayer board 30 (60). The power transmission antenna 15 (power receiving antenna 21) is formed on the back surface 30r (60r) of the multilayer board 30 (60), and the shield layer 33 is provided in the multilayer board 30 (60), but the present invention is not limited to this. ..
 送電装置10が上記実施形態の構成の場合、受電装置20は、基板と、基板の表面に並べて配置された各チップ71,72および複数のコンデンサ73と受電アンテナ21とを備える構成であってもよい。この場合、送電装置10の送電側回路である送電制御部12、振動子13、およびマッチング回路14は「回路」に対応し、送電アンテナ15は「アンテナ」に対応している。 When the power transmission device 10 has the configuration of the above embodiment, the power receiving device 20 may include a substrate, chips 71 and 72 arranged side by side on the surface of the substrate, a plurality of capacitors 73, and a power receiving antenna 21. good. In this case, the power transmission control unit 12, the oscillator 13, and the matching circuit 14, which are the power transmission side circuits of the power transmission device 10, correspond to the “circuit”, and the power transmission antenna 15 corresponds to the “antenna”.
 受電装置20が上記実施形態の構成の場合、送電装置10は、基板と、基板の表面に並べて配置された各チップ41,42および複数のコンデンサ43と送電アンテナ15とを備える構成であってもよい。この場合、受電装置20の受電側回路であるマッチング回路22、整流回路23、および受電制御部24は「回路」に対応し、受電アンテナ21は「アンテナ」に対応している。 When the power receiving device 20 has the configuration of the above embodiment, the power transmission device 10 may include a substrate, chips 41, 42 arranged side by side on the surface of the substrate, a plurality of capacitors 43, and a power transmission antenna 15. good. In this case, the matching circuit 22, the rectifier circuit 23, and the power receiving control unit 24, which are the power receiving side circuits of the power receiving device 20, correspond to the “circuit”, and the power receiving antenna 21 corresponds to the “antenna”.
 ・上記実施形態において、送電装置10は、送電制御部12の給電回路に接続される給電用アンテナと、通信回路に接続される通信用アンテナと、を備えていてもよい。つまり、給電専用のアンテナと通信専用のアンテナとが個別に設けられていてもよい。 -In the above embodiment, the power transmission device 10 may include a power supply antenna connected to the power supply circuit of the power transmission control unit 12 and a communication antenna connected to the communication circuit. That is, an antenna dedicated to power supply and an antenna dedicated to communication may be provided separately.
 ・上記実施形態では、非接触給電システム1は、送電装置10と受電装置20との間で電力と信号とを個別に非接触で伝達していたが、これに限られない。送電装置10と受電装置20との間で電力と信号とを同時に伝達する構成であってもよい。 -In the above embodiment, the non-contact power feeding system 1 transmits power and a signal individually between the power transmitting device 10 and the power receiving device 20 in a non-contact manner, but the present invention is not limited to this. The electric power and the signal may be simultaneously transmitted between the power transmitting device 10 and the power receiving device 20.
 ・上記実施形態では、非接触給電システム1は、送電装置10と受電装置20との間で電力と信号との双方を非接触で伝達していたが、これに限られない。一例では、非接触給電システム1は、送電装置10から受電装置20に非接触で送電する構成であってもよい。つまり、非接触給電システム1は、送電装置10と受電装置20との間で非接触で通信しない構成であってもよい。この場合、非接触給電システム1では、送電装置10と受電装置20とが有線で接続されている。これにより、送電装置10と受電装置20との間で通信される。 -In the above embodiment, the non-contact power feeding system 1 transmits both power and a signal between the power transmitting device 10 and the power receiving device 20 in a non-contact manner, but the present invention is not limited to this. In one example, the non-contact power feeding system 1 may be configured to transmit power from the power transmitting device 10 to the power receiving device 20 in a non-contact manner. That is, the non-contact power feeding system 1 may be configured so that the power transmitting device 10 and the power receiving device 20 do not communicate in a non-contact manner. In this case, in the non-contact power supply system 1, the power transmission device 10 and the power reception device 20 are connected by wire. As a result, communication is performed between the power transmission device 10 and the power reception device 20.
 本開示で使用される「~上に」という用語は、文脈によって明らかにそうでないことが示されない限り、「~上に」と「~の上方に」の意味を含む。したがって、「AがB上に形成される」という表現は、本実施形態ではAがBに接触してB上に直接配置され得るが、変更例として、AがBに接触することなくBの上方に配置され得ることが意図される。すなわち、「~上に」という用語は、AとBとの間に他の部材が形成される構造を排除しない。 The term "on" as used in this disclosure includes the meanings of "on" and "above" unless the context clearly indicates otherwise. Therefore, the expression "A is formed on B" can be placed directly on B in contact with B in the present embodiment, but as a modification, A can be placed on B without contacting B. It is intended that it can be placed above. That is, the term "on top" does not exclude structures in which other members are formed between A and B.
 本開示で使用されるz方向は必ずしも鉛直方向である必要はなく、鉛直方向に完全に一致している必要もない。したがって、本開示による種々の構造は、本明細書で説明されるz方向の「上」および「下」が鉛直方向の「上」および「下」であることに限定されない。例えば、x方向が鉛直方向であってもよく、またはy方向が鉛直方向であってもよい。 The z direction used in the present disclosure does not necessarily have to be the vertical direction, and does not have to be exactly the same as the vertical direction. Thus, the various structures according to the present disclosure are not limited to the z-direction "top" and "bottom" described herein being "top" and "bottom" in the vertical direction. For example, the x direction may be the vertical direction, or the y direction may be the vertical direction.
 本明細書における記述「A及びBの少なくとも一つ」は、「Aのみ、または、Bのみ、または、AとBの両方」を意味するものとして理解されたい。
 [付記]
 上記実施形態および上記各変更例から把握できる技術的思想を以下に記載する。なお、各付記に記載された構成要素に対応する実施形態の構成要素の符号を括弧書きで示す。符号は、理解の補助のために例として示すものであり、各付記に記載された構成要素は、符号で示される構成要素に限定されるべきではない。
The description "at least one of A and B" herein is to be understood as meaning "only A, or only B, or both A and B."
[Additional Notes]
The technical ideas that can be grasped from the above-described embodiment and each of the above-mentioned modified examples are described below. In addition, the code of the component of the embodiment corresponding to the component described in each appendix is shown in parentheses. The symbols are shown as examples for the sake of comprehension, and the components described in each appendix should not be limited to the components indicated by the symbols.
 (付記A1)
 受電アンテナ(21)を有する受電装置(20)に対して非接触で送電する送電装置(10)であって、
 表面(30s)、および前記表面(30s)とは反対側を向く裏面(30r)を有する多層基板(30)と、
 前記表面(30s)に実装され、送電制御を行う送電側回路(12,13,14)と、
 前記裏面(30r)に形成され、前記受電アンテナ(21)に向けて非接触で送電する送電アンテナ(15)と、を備え、
 前記多層基板(30)は、
 前記送電側回路(12,13,14)と前記送電アンテナ(15)との間に設けられ、前記送電アンテナ(15)から前記送電側回路(12,13,14)に向かう電磁波を低減するシールド層(33)を含む
 送電装置(10)。
(Appendix A1)
A power transmission device (10) that transmits power in a non-contact manner to a power receiving device (20) having a power receiving antenna (21).
A multilayer substrate (30) having a front surface (30s) and a back surface (30r) facing the opposite side to the front surface (30s).
A power transmission side circuit (12, 13, 14) mounted on the surface (30s) and performing power transmission control, and
A power transmission antenna (15) formed on the back surface (30r) and transmitting power in a non-contact manner toward the power receiving antenna (21) is provided.
The multilayer board (30) is
A shield provided between the power transmission side circuit (12,13,14) and the power transmission antenna (15) to reduce electromagnetic waves directed from the power transmission antenna (15) to the power transmission side circuit (12,13,14). A power transmission device (10) including a layer (33).
 (付記A2)
 前記多層基板(30)の厚さ方向(z方向)から視て、前記送電側回路(12,13,14,41,42,43)と前記送電アンテナ(15)とは互いに重なる位置に配置されており、
 前記多層基板(30)の厚さ方向(z方向)から視て、前記シールド層(33)は、前記送電側回路(12,13,14)および前記送電アンテナ(15)の双方と重なる位置に配置されている
 付記A1に記載の送電装置(10)。
(Appendix A2)
The power transmission side circuit (12, 13, 14, 41, 42, 43) and the power transmission antenna (15) are arranged at positions where they overlap each other when viewed from the thickness direction (z direction) of the multilayer board (30). And
When viewed from the thickness direction (z direction) of the multilayer board (30), the shield layer (33) is located at a position where it overlaps with both the power transmission side circuit (12, 13, 14) and the power transmission antenna (15). The power transmission device (10) according to the appendix A1 which is arranged.
 (付記A3)
 前記多層基板(30)の厚さ方向(z方向)から視て、前記シールド層(33)は、前記多層基板(30)の全面にわたり形成されている
 付記A1またはA2に記載の送電装置(10)。
(Appendix A3)
The power transmission device (10) according to Supplementary A1 or A2, wherein the shield layer (33) is formed over the entire surface of the multilayer board (30) when viewed from the thickness direction (z direction) of the multilayer board (30). ).
 (付記A4)
 前記シールド層(33)は、磁性材料を含み、かつ電気絶縁性を有している
 付記A1~A3のいずれか1つに記載の送電装置(10)。
(Appendix A4)
The power transmission device (10) according to any one of Supplementary A1 to A3, wherein the shield layer (33) contains a magnetic material and has electrical insulation.
 (付記A5)
 前記シールド層(33)は、フェライトからなる
 付記A4に記載の送電装置(10)。
(Appendix A5)
The power transmission device (10) according to Appendix A4, wherein the shield layer (33) is made of ferrite.
 (付記A6)
 前記多層基板(30)は、前記シールド層(33)と、前記表面(30s)を形成する表面側絶縁層(30A)と、前記裏面(30r)を形成する裏面側絶縁層(30D)と、を含む
 付記A1~A5のいずれか1つに記載の送電装置(10)。
(Appendix A6)
The multilayer board (30) includes the shield layer (33), the front surface side insulating layer (30A) forming the front surface (30s), and the back surface side insulating layer (30D) forming the back surface (30r). The power transmission device (10) according to any one of the appendices A1 to A5.
 (付記A7)
 前記裏面(30r)に設けられ、前記送電側回路(12,13,14)と接続された外部電極(11)を備え、
 前記外部電極(11)は、前記送電アンテナ(15)の周囲に配置されている
 付記A1~A6のいずれか1つに記載の送電装置(10)。
(Appendix A7)
An external electrode (11) provided on the back surface (30r) and connected to the power transmission side circuit (12, 13, 14) is provided.
The power transmission device (10) according to any one of the appendices A1 to A6, wherein the external electrode (11) is arranged around the power transmission antenna (15).
 (付記A8)
 前記シールド層(33)を貫通し、前記送電側回路(12,13,14)と前記外部電極(11)とを接続する配線(35E)を備える
 付記A7に記載の送電装置(10)。
(Appendix A8)
The power transmission device (10) according to Appendix A7, comprising a wiring (35E) that penetrates the shield layer (33) and connects the power transmission side circuit (12, 13, 14) to the external electrode (11).
 (付記A9)
 前記多層基板(30)は、前記表面(30s)および前記裏面(30r)の双方と交差する側面(30a)を有しており、
 前記側面(30a)には、前記多層基板(30)を貫通するように前記多層基板(30)の厚さ方向(z方向)に延び、前記送電側回路(12,13,14)と接続された端面電極(11)が設けられている
 付記A1~A6のいずれか1つに記載の送電装置(10)。
(Appendix A9)
The multilayer substrate (30) has a side surface (30a) that intersects both the front surface (30s) and the back surface (30r).
The side surface (30a) extends in the thickness direction (z direction) of the multilayer board (30) so as to penetrate the multilayer board (30), and is connected to the power transmission side circuit (12, 13, 14). The power transmission device (10) according to any one of Supplementary A1 to A6, which is provided with an end face electrode (11).
 (付記A10)
 電気絶縁性を有し、前記送電側回路(12,13,14)を封止する封止樹脂(50)を備える
 付記A1~A9のいずれか1つに記載の送電装置(10)。
(Appendix A10)
The power transmission device (10) according to any one of the appendices A1 to A9, which has electrical insulation and includes a sealing resin (50) for sealing the power transmission side circuit (12, 13, 14).
 (付記A11)
 金属製からなり、前記送電側回路(12,13,14)を覆う箱状のハウジング(90)を備える
 付記A1~A9のいずれか1つに記載の送電装置(10)。
(Appendix A11)
The power transmission device (10) according to any one of the appendices A1 to A9, which is made of metal and includes a box-shaped housing (90) that covers the power transmission side circuit (12, 13, 14).
 (付記A12)
 前記送電装置(10)は、前記送電アンテナ(15)を用いて、電力と信号とを個別に前記受電装置(10)に伝達する
 付記A1~A11のいずれか1つに記載の送電装置(10)。
(Appendix A12)
The power transmission device (10) according to any one of the appendices A1 to A11, wherein the power transmission device (10) individually transmits power and a signal to the power reception device (10) by using the power transmission antenna (15). ).
 (付記A13)
 送電アンテナ(15)を有する送電装置(10)から非接触で受電する受電装置(20)であって、
 表面(60s)、および表面(60s)とは反対側を向く裏面(60r)を有する多層基板(60)と、
 前記表面(60s)に実装され、受電制御を行う受電側回路(22,23,24)と、
 前記裏面(60r)に形成され、前記送電アンテナ(15)から非接触で受電する受電アンテナ(21)と、を備え、
 前記多層基板(60)は、
 前記受電側回路(22,23,24)と前記受電アンテナ(21)との間に設けられ、前記受電アンテナ(21)から前記受電側回路(22,23,24)に向かう電磁波を低減するシールド層(63)を含む
 受電装置(20)。
(Appendix A13)
A power receiving device (20) that receives power from a power transmitting device (10) having a power transmitting antenna (15) in a non-contact manner.
A multilayer substrate (60) having a front surface (60s) and a back surface (60r) facing away from the front surface (60s).
A power receiving side circuit (22, 23, 24) mounted on the surface (60s) and performing power receiving control, and
A power receiving antenna (21) formed on the back surface (60r) and receiving power from the power transmitting antenna (15) in a non-contact manner is provided.
The multilayer board (60) is
A shield provided between the power receiving side circuit (22, 23, 24) and the power receiving antenna (21) to reduce electromagnetic waves directed from the power receiving antenna (21) to the power receiving side circuit (22, 23, 24). Power receiving device (20) including layer (63).
 (付記A14)
 前記多層基板(60)の厚さ方向(z方向)から視て、前記受電側回路(22,23,24)と前記受電アンテナ(21)とは互いに重なる位置に配置されており、
 前記多層基板(60)の厚さ方向(z方向)から視て、前記シールド層(63)は、前記受電側回路(22,23,24)および前記受電アンテナ(21)の双方と重なる位置に配置されている
 付記A13に記載の受電装置(20)。
(Appendix A14)
The power receiving side circuit (22, 23, 24) and the power receiving antenna (21) are arranged at positions where they overlap each other when viewed from the thickness direction (z direction) of the multilayer board (60).
When viewed from the thickness direction (z direction) of the multilayer board (60), the shield layer (63) is located at a position where it overlaps with both the power receiving side circuit (22, 23, 24) and the power receiving antenna (21). The power receiving device (20) according to the appendix A13, which is arranged.
 (付記A15)
 前記多層基板(60)の厚さ方向(z方向)から視て、前記シールド層(63)は、前記多層基板(60)の全面にわたり形成されている
 付記A13またはA14に記載の受電装置(20)。
(Appendix A15)
The power receiving device (20) according to Supplementary A13 or A14, wherein the shield layer (63) is formed over the entire surface of the multilayer board (60) when viewed from the thickness direction (z direction) of the multilayer board (60). ).
 (付記A16)
 前記シールド層(63)は、磁性材料を含み、かつ電気絶縁性を有している
 付記A13~A15のいずれか1つに記載の受電装置(20)。
(Appendix A16)
The power receiving device (20) according to any one of Supplementary A13 to A15, wherein the shield layer (63) contains a magnetic material and has an electrical insulating property.
 (付記A17)
 前記シールド層(63)は、フェライトからなる
 付記A16に記載の受電装置(20)。
(Appendix A17)
The power receiving device (20) according to Appendix A16, wherein the shield layer (63) is made of ferrite.
 (付記A18)
 前記多層基板(60)は、前記シールド層(63)と、前記表面(60s)を形成する表面側絶縁層(60A)と、前記裏面(60r)を形成する裏面側絶縁層(60D)と、を含む
 付記A13~A17のいずれか1つに記載の受電装置(20)。
(Appendix A18)
The multilayer board (60) includes the shield layer (63), the front surface side insulating layer (60A) forming the front surface (60s), and the back surface side insulating layer (60D) forming the back surface (60r). The power receiving device (20) according to any one of the appendices A13 to A17.
 (付記A19)
 前記裏面(60r)に設けられ、前記受電側回路(22,23,24)に接続された外部電極(25)を備え、
 前記外部電極(25)は、前記受電アンテナ(21)の周囲に配置されている
 付記A13~A18のいずれか1つに記載の受電装置(20)。
(Appendix A19)
An external electrode (25) provided on the back surface (60r) and connected to the power receiving side circuit (22, 23, 24) is provided.
The power receiving device (20) according to any one of the appendices A13 to A18, wherein the external electrode (25) is arranged around the power receiving antenna (21).
 (付記A20)
 前記シールド層(63)を貫通し、前記受電側回路(22,23,24)と前記外部電極(25)とを接続する配線(65E)を備える
 付記A19に記載の受電装置(20)。
(Appendix A20)
The power receiving device (20) according to Appendix A19, comprising a wiring (65E) that penetrates the shield layer (63) and connects the power receiving side circuit (22, 23, 24) to the external electrode (25).
 (付記A21)
 前記多層基板(60)は、前記表面(60s)および前記裏面(60r)の双方と交差する側面を有しており、
 前記側面には、前記多層基板(60)を貫通するように前記多層基板(60)の厚さ方向(z方向)に延び、前記受電側回路(22,23,24)に接続された端面電極が設けられている
 付記A13~A18のいずれか1つに記載の受電装置(20)。
(Appendix A21)
The multilayer substrate (60) has a side surface that intersects both the front surface (60s) and the back surface (60r).
On the side surface, an end face electrode extending in the thickness direction (z direction) of the multilayer board (60) so as to penetrate the multilayer board (60) and connected to the power receiving side circuit (22, 23, 24). The power receiving device (20) according to any one of the appendices A13 to A18 provided with the above.
 (付記A22)
 電気絶縁性を有し、前記受電側回路(22,23,24)を封止する封止樹脂(80)を備える
 付記A13~A21のいずれか1つに記載の受電装置(20)。
(Appendix A22)
The power receiving device (20) according to any one of Supplementary A13 to A21, which has electrical insulation and includes a sealing resin (80) for sealing the power receiving side circuit (22, 23, 24).
 (付記A23)
 金属製からなり、前記受電側回路(22,23,24)を覆う箱状のハウジングを備える
 付記A13~A21のいずれか1つに記載の受電装置(20)。
(Appendix A23)
The power receiving device (20) according to any one of Supplementary A13 to A21, which is made of metal and has a box-shaped housing covering the power receiving side circuit (22, 23, 24).
 (付記A24)
 前記受電装置(20)は、前記受電アンテナ(21)を用いて、電力と信号とを個別に前記送電装置(10)から受電する
 付記A13~A23のいずれか1つに記載の受電装置(20)。
(Appendix A24)
The power receiving device (20) according to any one of Supplementary A13 to A23, wherein the power receiving device (20) receives power and a signal individually from the power transmitting device (10) using the power receiving antenna (21). ).
 (付記A25)
 送電装置(10)および受電装置(20)を備え、前記送電装置(10)から前記受電装置(20)に向けて非接触で送電を行う非接触給電システム(1)であって、
 前記送電装置(10)および前記受電装置(20)の少なくとも一方は、
 表面(30s/60s)、および前記表面(30s/60s)とは反対側を向く裏面(30r/60r)を有する多層基板(30/60)と、
 前記表面(30s/60s)に実装され、前記送電装置(10)から前記受電装置(20)への非接触給電に用いられる回路(12,13,14/22,23,24)と、
 前記裏面(30r/60r)に実装され、前記送電装置(10)から前記受電装置(20)への非接触給電に用いられるアンテナ(15/21)と、を備え、
 前記多層基板(30/60)は、
 前記回路(12,13,14/22,23,24)と前記アンテナ(15/21)との間に設けられ、前記アンテナ(15/21)から前記回路(12,13,14/22,23,24)に向かう電磁波を低減するシールド層(33/63)を含む、非接触給電システム(1)。
(Appendix A25)
A non-contact power feeding system (1) including a power transmitting device (10) and a power receiving device (20), which transmits power from the power transmitting device (10) to the power receiving device (20) in a non-contact manner.
At least one of the power transmission device (10) and the power receiving device (20)
A multilayer substrate (30/60) having a front surface (30s / 60s) and a back surface (30r / 60r) facing away from the front surface (30s / 60s).
A circuit (12,13,14 / 22,23,24) mounted on the surface (30s / 60s) and used for non-contact power feeding from the power transmission device (10) to the power receiving device (20).
It is equipped with an antenna (15/21) mounted on the back surface (30r / 60r) and used for non-contact power feeding from the power transmission device (10) to the power receiving device (20).
The multilayer board (30/60) is
It is provided between the circuit (12,13,14 / 22,23,24) and the antenna (15/21), and is provided from the antenna (15/21) to the circuit (12,13,14 / 22,23). , 24), a non-contact power supply system (1) including a shield layer (33/63) that reduces electromagnetic waves directed toward.
 1…非接触給電システム
 10…送電装置
 11…外部電極
 12…送電制御部(送電側回路、回路)
 13…振動子(送電側回路、回路)
 14…マッチング回路(送電側回路、回路)
 15…送電アンテナ(アンテナ)
 15A…第1端部
 15B…第2端部
 15C…接続配線
 20…受電装置
 21…受電アンテナ(アンテナ)
 21A…第1端部
 21B…第2端部
 21C…接続配線
 22…マッチング回路(受電側回路、回路)
 23…整流回路(受電側回路、回路)
 24…受電制御部(受電側回路、回路)
 25…外部電極
 30…多層基板
 30s…表面
 30r…裏面
 30a…側面
 30A…第1基材
 30B…第2基材
 30C…第3基材
 30D…第4基材
 31…表面側配線層
 32…裏面側配線層
 33…シールド層
 34…配線層
 35A~35E…スルーホール
 41…第1チップ(送電側回路、回路)
 42…第2チップ(送電側回路、回路)
 43…コンデンサ(送電側回路、回路)
 50…封止樹脂
 60…多層基板
 60s…表面
 60r…裏面
 60A…第1基材
 60B…第2基材
 60C…第3基材
 60D…第4基材
 61…表面側配線層
 62…裏面側配線層
 63…シールド層
 64…配線層
 65A~65E…スルーホール
 71…第1チップ(受電側回路、回路)
 72…第2チップ(受電側回路、回路)
 73…コンデンサ(受電側回路、回路)
 80…封止樹脂
 90…ハウジング
1 ... Non-contact power supply system 10 ... Power transmission device 11 ... External electrode 12 ... Power transmission control unit (power transmission side circuit, circuit)
13 ... Oscillator (power transmission side circuit, circuit)
14 ... Matching circuit (power transmission side circuit, circuit)
15 ... Transmission antenna (antenna)
15A ... 1st end 15B ... 2nd end 15C ... Connection wiring 20 ... Power receiving device 21 ... Power receiving antenna (antenna)
21A ... 1st end 21B ... 2nd end 21C ... Connection wiring 22 ... Matching circuit (power receiving side circuit, circuit)
23 ... Rectifier circuit (power receiving side circuit, circuit)
24 ... Power receiving control unit (power receiving side circuit, circuit)
25 ... External electrode 30 ... Multilayer substrate 30s ... Front surface 30r ... Back surface 30a ... Side surface 30A ... First base material 30B ... Second base material 30C ... Third base material 30D ... Fourth base material 31 ... Front side wiring layer 32 ... Back side Side wiring layer 33 ... Shield layer 34 ... Wiring layer 35A to 35E ... Through hole 41 ... First chip (transmission side circuit, circuit)
42 ... 2nd chip (power transmission side circuit, circuit)
43 ... Capacitor (power transmission side circuit, circuit)
50 ... Sealing resin 60 ... Multilayer board 60s ... Front surface 60r ... Back side 60A ... First base material 60B ... Second base material 60C ... Third base material 60D ... Fourth base material 61 ... Front side wiring layer 62 ... Back side wiring Layer 63 ... Shield layer 64 ... Wiring layer 65A to 65E ... Through hole 71 ... First chip (power receiving side circuit, circuit)
72 ... 2nd chip (power receiving side circuit, circuit)
73 ... Capacitor (power receiving side circuit, circuit)
80 ... Sealing resin 90 ... Housing

Claims (14)

  1.  受電アンテナを有する受電装置に対して非接触で送電する送電装置であって、
     表面、および前記表面とは反対側を向く裏面を有する多層基板と、
     前記表面に実装され、送電制御を行う送電側回路と、
     前記裏面に形成され、前記受電アンテナに向けて非接触で送電する送電アンテナと、
    を備え、
     前記多層基板は、
     前記送電側回路と前記送電アンテナとの間に設けられ、前記送電アンテナから前記送電側回路に向かう電磁波を低減するシールド層を含む
     送電装置。
    A power transmission device that transmits power in a non-contact manner to a power receiving device that has a power receiving antenna.
    A multilayer board having a front surface and a back surface facing away from the front surface.
    A power transmission side circuit mounted on the surface and controlling power transmission,
    A power transmission antenna formed on the back surface and transmitting power to the power receiving antenna in a non-contact manner,
    Equipped with
    The multilayer board is
    A power transmission device provided between the power transmission side circuit and the power transmission antenna and including a shield layer for reducing electromagnetic waves directed from the power transmission antenna to the power transmission side circuit.
  2.  前記多層基板の厚さ方向から視て、前記送電側回路と前記送電アンテナとは互いに重なる位置に配置されており、
     前記多層基板の厚さ方向から視て、前記シールド層は、前記送電側回路および前記送電アンテナの双方と重なる位置に配置されている
     請求項1に記載の送電装置。
    The power transmission side circuit and the power transmission antenna are arranged at positions where they overlap each other when viewed from the thickness direction of the multilayer board.
    The power transmission device according to claim 1, wherein the shield layer is arranged at a position overlapping both the power transmission side circuit and the power transmission antenna when viewed from the thickness direction of the multilayer board.
  3.  前記多層基板の厚さ方向から視て、前記シールド層は、前記多層基板の全面にわたり形成されている
     請求項1または2に記載の送電装置。
    The power transmission device according to claim 1 or 2, wherein the shield layer is formed over the entire surface of the multilayer board when viewed from the thickness direction of the multilayer board.
  4.  前記シールド層は、磁性材料を含み、かつ電気絶縁性を有している
     請求項1~3のいずれか一項に記載の送電装置。
    The power transmission device according to any one of claims 1 to 3, wherein the shield layer contains a magnetic material and has electrical insulation.
  5.  前記シールド層は、フェライトからなる
     請求項4に記載の送電装置。
    The power transmission device according to claim 4, wherein the shield layer is made of ferrite.
  6.  前記多層基板は、前記シールド層と、前記表面を形成する表面側絶縁層と、前記裏面を形成する裏面側絶縁層と、を含む
     請求項1~5のいずれか一項に記載の送電装置。
    The power transmission device according to any one of claims 1 to 5, wherein the multilayer board includes the shield layer, the front surface side insulating layer forming the front surface, and the back surface side insulating layer forming the back surface.
  7.  前記裏面に設けられ、前記送電側回路と接続された外部電極を備え、
     前記外部電極は、前記送電アンテナの周囲に配置されている
     請求項1~6のいずれか一項に記載の送電装置。
    An external electrode provided on the back surface and connected to the power transmission side circuit is provided.
    The power transmission device according to any one of claims 1 to 6, wherein the external electrode is arranged around the power transmission antenna.
  8.  前記シールド層を貫通し、前記送電側回路と前記外部電極とを接続する配線を備える
     請求項7に記載の送電装置。
    The power transmission device according to claim 7, further comprising wiring that penetrates the shield layer and connects the power transmission side circuit and the external electrode.
  9.  前記多層基板は、前記表面および前記裏面の双方と交差する側面を有しており、
     前記側面には、前記多層基板を貫通するように前記多層基板の厚さ方向に延び、前記送電側回路と接続された端面電極が設けられている
     請求項1~6のいずれか一項に記載の送電装置。
    The multilayer board has a side surface that intersects both the front surface and the back surface.
    The aspect according to any one of claims 1 to 6, wherein an end face electrode extending in the thickness direction of the multilayer board so as to penetrate the multilayer board and connected to the power transmission side circuit is provided on the side surface. Power transmission device.
  10.  電気絶縁性を有し、前記送電側回路を封止する封止樹脂を備える
     請求項1~9のいずれか一項に記載の送電装置。
    The power transmission device according to any one of claims 1 to 9, further comprising a sealing resin having electrical insulation and sealing the power transmission side circuit.
  11.  金属製からなり、前記送電側回路を覆う箱状のハウジングを備える
     請求項1~9のいずれか一項に記載の送電装置。
    The power transmission device according to any one of claims 1 to 9, which is made of metal and has a box-shaped housing covering the power transmission side circuit.
  12.  前記送電装置は、前記送電アンテナを用いて、電力と信号とを個別に前記受電装置に伝達する
     請求項1~11のいずれか一項に記載の送電装置。
    The power transmission device according to any one of claims 1 to 11, wherein the power transmission device uses the power transmission antenna to individually transmit electric power and a signal to the power reception device.
  13.  送電アンテナを有する送電装置から非接触で受電する受電装置であって、
     表面、および前記表面とは反対側を向く裏面を有する多層基板と、
     前記表面に実装され、受電制御を行う受電側回路と、
     前記裏面に形成され、前記送電アンテナから非接触で受電する受電アンテナと、
    を備え、
     前記多層基板は、
     前記受電側回路と前記受電アンテナとの間に設けられ、前記受電アンテナから前記受電側回路に向かう電磁波を低減するシールド層を含む
     受電装置。
    A power receiving device that receives power in a non-contact manner from a power transmission device having a power transmission antenna.
    A multilayer board having a front surface and a back surface facing away from the front surface.
    The power receiving side circuit mounted on the surface and performing power receiving control,
    A power receiving antenna formed on the back surface and receiving power from the power transmission antenna in a non-contact manner,
    Equipped with
    The multilayer board is
    A power receiving device provided between the power receiving side circuit and the power receiving antenna and including a shield layer for reducing electromagnetic waves directed from the power receiving antenna to the power receiving side circuit.
  14.  送電装置および受電装置を備え、前記送電装置から前記受電装置に向けて非接触で送電を行う非接触給電システムであって、
     前記送電装置および前記受電装置の少なくとも一方は、
     表面、および前記表面とは反対側を向く裏面を有する多層基板と、
     前記表面に実装され、前記送電装置から前記受電装置への非接触給電に用いられる回路と、
     前記裏面に実装され、前記送電装置から前記受電装置への非接触給電に用いられるアンテナと、
    を備え、
     前記多層基板は、
     前記回路と前記アンテナとの間に設けられ、前記アンテナから前記回路に向かう電磁波を低減するシールド層を含む
     非接触給電システム。
    A non-contact power supply system including a power transmission device and a power receiving device, which transmits power from the power transmission device to the power receiving device in a non-contact manner.
    At least one of the power transmission device and the power receiving device
    A multilayer board having a front surface and a back surface facing away from the front surface.
    A circuit mounted on the surface and used for non-contact power supply from the power transmission device to the power receiving device.
    An antenna mounted on the back surface and used for non-contact power supply from the power transmission device to the power receiving device.
    Equipped with
    The multilayer board is
    A non-contact power feeding system provided between the circuit and the antenna and including a shield layer that reduces electromagnetic waves directed from the antenna to the circuit.
PCT/JP2021/045434 2020-12-18 2021-12-10 Power-transmitting device, power-receiving device, and contactless power supply system WO2022131143A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022569938A JPWO2022131143A1 (en) 2020-12-18 2021-12-10

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-210586 2020-12-18
JP2020210586 2020-12-18

Publications (1)

Publication Number Publication Date
WO2022131143A1 true WO2022131143A1 (en) 2022-06-23

Family

ID=82059143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/045434 WO2022131143A1 (en) 2020-12-18 2021-12-10 Power-transmitting device, power-receiving device, and contactless power supply system

Country Status (2)

Country Link
JP (1) JPWO2022131143A1 (en)
WO (1) WO2022131143A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005027148A (en) * 2003-07-04 2005-01-27 Sharp Corp Balun circuit and high-frequency communication system
JP2009072043A (en) * 2007-09-18 2009-04-02 Funai Electric Co Ltd Remote operation system
JP2014220953A (en) * 2013-05-10 2014-11-20 株式会社東海理化電機製作所 Coil device and non-contact charger
JP2018093013A (en) * 2016-12-01 2018-06-14 太陽誘電株式会社 Wireless module and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005027148A (en) * 2003-07-04 2005-01-27 Sharp Corp Balun circuit and high-frequency communication system
JP2009072043A (en) * 2007-09-18 2009-04-02 Funai Electric Co Ltd Remote operation system
JP2014220953A (en) * 2013-05-10 2014-11-20 株式会社東海理化電機製作所 Coil device and non-contact charger
JP2018093013A (en) * 2016-12-01 2018-06-14 太陽誘電株式会社 Wireless module and manufacturing method thereof

Also Published As

Publication number Publication date
JPWO2022131143A1 (en) 2022-06-23

Similar Documents

Publication Publication Date Title
JP5522227B2 (en) Mobile communication terminal
US9830552B2 (en) Radio IC device
CN106463831B (en) Loop antenna
KR102017621B1 (en) Coil substrate for cordless charging and electric device using the same
US8400307B2 (en) Radio frequency IC device and electronic apparatus
JP5549787B2 (en) Antenna device and communication terminal device
JP2018125704A (en) Antenna device and method of manufacturing antenna device
EP2086052A1 (en) Wireless ic device
KR20180017687A (en) Coil assembly
CN110062982B (en) Antenna substrate and method for manufacturing same
JPWO2008142957A1 (en) Wireless IC device
KR20150013199A (en) Antenna sheet for contactless charging device and charging device using said sheet
WO2006085466A1 (en) Semiconductor memory module having built-in antenna
US11875210B2 (en) Wireless communication device and method of manufacturing same
JP2012060372A (en) Antenna device and communication terminal device
JP2006262054A (en) Antenna module and portable information terminal provided with the same
WO2022131143A1 (en) Power-transmitting device, power-receiving device, and contactless power supply system
JPWO2014199862A1 (en) Antenna device and communication terminal device
WO2015178127A1 (en) Rfid tag and communication device provided with same
JP2009290553A (en) High-frequency module and its production process
JP4840275B2 (en) Wireless IC device and electronic apparatus
JP2022097163A (en) Transmission device, power receiving device, and contactless power supply system
CN210579552U (en) Multilayer substrate and electronic device
US20110001608A1 (en) Rfid tag
US10772204B2 (en) Electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21906505

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022569938

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21906505

Country of ref document: EP

Kind code of ref document: A1