WO2022131104A1 - 香味吸引物品のためのフィルタ用カプセル、香味吸引物品用フィルタ、加熱型香味吸引物品、燃焼型香味吸引物品、及び、非燃焼非加熱型香味吸引物品 - Google Patents

香味吸引物品のためのフィルタ用カプセル、香味吸引物品用フィルタ、加熱型香味吸引物品、燃焼型香味吸引物品、及び、非燃焼非加熱型香味吸引物品 Download PDF

Info

Publication number
WO2022131104A1
WO2022131104A1 PCT/JP2021/045181 JP2021045181W WO2022131104A1 WO 2022131104 A1 WO2022131104 A1 WO 2022131104A1 JP 2021045181 W JP2021045181 W JP 2021045181W WO 2022131104 A1 WO2022131104 A1 WO 2022131104A1
Authority
WO
WIPO (PCT)
Prior art keywords
capsule
filter
fine powder
outer shell
flavor suction
Prior art date
Application number
PCT/JP2021/045181
Other languages
English (en)
French (fr)
Inventor
亨 櫻井
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to JP2022569915A priority Critical patent/JPWO2022131104A1/ja
Priority to EP21906467.2A priority patent/EP4265130A1/en
Publication of WO2022131104A1 publication Critical patent/WO2022131104A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D3/00Tobacco smoke filters, e.g. filter-tips, filtering inserts; Filters specially adapted for simulated smoking devices; Mouthpieces for cigars or cigarettes
    • A24D3/04Tobacco smoke filters characterised by their shape or structure
    • A24D3/048Tobacco smoke filters characterised by their shape or structure containing additives
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D3/00Tobacco smoke filters, e.g. filter-tips, filtering inserts; Filters specially adapted for simulated smoking devices; Mouthpieces for cigars or cigarettes
    • A24D3/06Use of materials for tobacco smoke filters
    • A24D3/061Use of materials for tobacco smoke filters containing additives entrapped within capsules, sponge-like material or the like, for further release upon smoking
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D3/00Tobacco smoke filters, e.g. filter-tips, filtering inserts; Filters specially adapted for simulated smoking devices; Mouthpieces for cigars or cigarettes
    • A24D3/06Use of materials for tobacco smoke filters
    • A24D3/16Use of materials for tobacco smoke filters of inorganic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/04Making microcapsules or microballoons by physical processes, e.g. drying, spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/20After-treatment of capsule walls, e.g. hardening
    • B01J13/22Coating

Definitions

  • the present invention relates to a filter capsule for a flavor suction article, a filter for a flavor suction article, a heated flavor suction article, a combustion type flavor suction article, and a non-combustion non-heated flavor suction article.
  • the soft capsule containing the contents is embedded in, for example, a filter for a flavor suction article.
  • a filter for a flavor suction article Normally, the user applies an external force to the capsule in the filter by pressing with a finger from a direction intersecting the central axis of the filter toward the central axis of the filter or by biting to deform and crush the capsule.
  • a filter capsule for a flavor suction article a filter for a flavor suction article including the capsule, and a heated flavor suction filter including the filter for the flavor suction article, which are easily crushed by an external force applied from the outside of the filter by the user. It is an object of the present invention to provide an article, a combustion type flavor suction article including a filter for the flavor suction article, and a non-combustion non-heated flavor suction article containing the filter.
  • the filter capsule for the flavor suction article has fine irregularities on the outer surface, and adheres to the capsule outer shell in which the contents are enclosed and a part of the outer surface of the capsule outer shell. It has a fine powder.
  • a convex portion and a concave portion adjacent to the convex portion and recessed with respect to the convex portion are randomly repeated.
  • the fine powder adheres to a part of the recesses on the outer surface of the capsule outer shell.
  • the particle size of the fine powder as seen under a microscope is smaller than the depth of the concave portion with respect to the top of the convex portion on the outer surface of the outer surface of the capsule.
  • the capsule outer shell to which the fine powder adheres is embedded in the filter material of the flavor suction article filter
  • the capsule outer shell is loaded in a direction intersecting the longitudinal direction of the flavor suction article filter. It deforms according to the external force applied.
  • FIG. 1 is a schematic view of a combustion-type flavor suction article or a heating-type flavor suction article.
  • FIG. 2 is a vertical sectional view of a flavor suction article containing a filter in which a capsule is embedded in a monofilter plug (filter material).
  • FIG. 3 shows the amount of fine powder added during production to a 50 g capsule outer shell containing the contents and the amount of fine powder to be applied to the entire capsule during production (comparative example, carried out from Examples 1-1). It is a figure which shows Example 1-5).
  • the upper figure of Examples 1-1 to 1-5 is an image showing a capsule
  • the lower figure of Examples 1-1 to 1-5 is an image of Example 1-1 of the above figure.
  • FIG. 5 is an image of a laser microscope showing a state in which calcium carbonate is attached to a part of the recesses on the outer surface of the outer shell of the capsule.
  • 6A and 6B are images of a two-dimensional laser microscope (top view) of the outer surface of the outer surface of the capsule outer shell from Examples 1-1 to 1-5, and are from Examples 1-1 to 1
  • the right figure of -5 is a three-dimensional laser microscope image (perspective view) of the outer surface of the capsule outer shell at the position of the left figure.
  • FIG. 5 is an image of a laser microscope showing a state in which calcium carbonate is attached to a part of the recesses on the outer surface of the outer shell of the capsule.
  • 6A and 6B are images of a two-dimensional laser microscope (top view) of the outer surface of the outer surface of the capsule outer shell from Examples 1-1 to 1-5, and are from Examples 1-1 to 1
  • the right figure of -5 is a three-dimensional laser microscope image (perspective view) of the outer
  • FIG. 7 is a graph showing the surface roughness (arithmetic mean roughness Ra, maximum height roughness Rz) of the outer surface of the capsule outer shell with respect to the amount of calcium carbonate added to the capsule outer shell at the time of manufacture.
  • FIG. 8 is a graph showing the roughness in the range of 0.6 mm at an arbitrary position on the outer surface of the capsule outer shell.
  • FIG. 9 is a schematic view showing a state in which calcium carbonate adheres to the recesses on the outer surface of the outer shell of the capsule and one fiber of the filter plug is brought into contact with the outer surface of the outer shell of the capsule.
  • FIG. 10A is a schematic diagram showing the relationship between the fiber bundle of the tow (filter material) of the filter plug and the outer shell of the capsule before the filter plug is deformed toward the central axis.
  • FIG. 10B is a schematic showing the relationship between the fiber bundle of the tow of the filter plug and the outer shell of the capsule when an external force is applied to the outer peripheral surface of the filter plug toward the central axis to deform the fiber bundle of the toe of the filter plug. It is a figure.
  • FIG. 11A is a view along the XIA-XIA line in FIG. 11B, in which the capsule is pressed from one end (upper end) of the through hole formed in the filter toward the other end (lower end) of the through hole with respect to the filter.
  • FIG. 11B is a cross-sectional view taken along the line XIB-XIB in FIG. 11A.
  • FIG. 12 shows the amount of fine powder during production (Comparative Example, Examples 1-1 to Example 1-5) with respect to the entire capsule in Comparative Examples and Examples 1-1 to 1-5, and pushing. It is a figure which shows the passing rate of a capsule with respect to a filter by a method.
  • FIG. 13 is a diagram showing the amount of fine powder during the production of capsules (Comparative Example, Example 1-1, Example 1-2) and the percentage of people who answered that the capsule was easy to break in the sensory test. .. FIG.
  • FIG. 14 is an image showing the presence or absence of the calcium Ca element at a position on the outer surface of the capsule.
  • FIG. 15 shows the amount of fine powder in the production of capsules, the observation mode of an electron microscope, and the electron microscope in Examples 1-1, 1-2, 1-3, and 1-5. It is a figure which shows the amount of the measured calcium element, and the conversion weight (% by weight) converted as calcium carbonate.
  • FIG. 16 is a graph showing the relationship between the amount of calcium carbonate added to the outer shell of the capsule during the production of the capsule and the calcium element of the capsule.
  • FIG. 17 shows the mass% of the element, the ratio of the number of atoms (%), the X-ray energy (keV), and the standard deviation ⁇ to the entire capsule at a position on the outer surface of the capsule to which the fine powder is not attached. It is a figure which shows.
  • FIG. 18 shows the type, shape, reagent name, main component, and distributor of additives in the capsules of Examples 2-1 to 2-10 in which the amount of fine powder at the time of production was constant at 1000 ppm with respect to the entire capsule. It is a figure which shows the grade, the particle size visually observed by SEM, the Mohs hardness, and the passing rate of a capsule with respect to a filter by a pushing method.
  • FIG. 18 shows the type, shape, reagent name, main component, and distributor of additives in the capsules of Examples 2-1 to 2-10 in which the amount of fine powder at the time of production was constant at 1000 ppm with respect to the entire capsule. It is a figure which shows the grade, the particle size visually observed
  • FIG. 19 shows the type, shape, reagent name, main component, and distributor of additives in the capsules of Comparative Example 2-1 to Comparative Example 2-7 in which the amount of fine powder at the time of production was constant at 1000 ppm with respect to the entire capsule. It is a figure which shows the grade, the particle size visually observed by SEM, the Mohs hardness, and the passing rate of a capsule with respect to a filter by a pushing method.
  • FIG. 20 is a diagram showing the passage rate by the indentation method and the findings with respect to the amount of fine powder at the time of production (Comparative Example, Examples 3-1 to 3-7).
  • FIG. 21 is a graph showing the surface coverage of the fine powder with respect to the amount (addition concentration) of the fine powder at the time of manufacture with respect to the entire capsule.
  • FIG. 22 is a graph showing the surface coverage of the fine powder with respect to the ratio of calcium elements in the elements in the vicinity of the capsule outer shell (coating).
  • FIG. 23 is a schematic diagram showing the detected elements and element ratios in Example 2-1 and Example 2-2, Example 2-3, Example 2-10, and Comparative Example 2-2. Is.
  • FIG. 24 is a diagram showing the passage rate by the pushing method with respect to the presence / absence of a mold release agent / coating and the presence / absence of fine powder in the surface treatment agent for the outer shell of the capsule at the time of manufacture.
  • FIG. 24 is a diagram showing the passage rate by the pushing method with respect to the presence / absence of a mold release agent / coating and the presence / absence of fine powder in the surface treatment agent for the outer shell of the capsule at the time of manufacture.
  • FIG. 25A is a vertical cross-sectional view of a flavor suction article containing a filter in which a capsule is embedded in a filter plug on the suction side of a dual filter plug.
  • FIG. 25B is a vertical cross-sectional view of a flavor suction article including a filter in which a capsule is embedded (sandwiched) between filter plugs of a dual filter plug.
  • FIG. 26 is a schematic partial cross-sectional view showing a heated flavor suction article system including a heated flavor suction article.
  • FIG. 27 is a schematic cross-sectional view showing a non-combustion non-heated flavor suction article including a filter for a flavor suction article.
  • FIG. 1 shows a schematic view of a combustion-type or heated-type flavor suction article (cigarette) 10.
  • FIG. 2 shows a vertical cross-sectional view of the flavor suction article 10 having the filter 14 including the capsule 26.
  • the flavor suction article 10 includes a rod (aerosol generation rod) 12 including a filler (chopped leaves, tobacco) 12a and a rolling paper 12b wrapped around the filler 12a, and a rod.
  • a filter 14 for a flavor suction article provided adjacent to the 12 and a chip paper 16 wound around the rod 12 and the filter 14 so as to connect the rod 12 and the filter 14 are included.
  • the filter 14 of the flavor suction article 10 shown in FIG. 2 includes a single filter plug (mono filter plug) 22, a filter wrapping paper 24 wrapped around the outer circumference of the filter plug 22, and the entire filter 14 in the filter plug 22 of the filter 14. Includes a capsule 26 with an embedded circumference.
  • the filter 14 is preferably formed so that the length along the central axis (longitudinal direction) C is longer than the diameter of the filter 14.
  • the capsule 26 exists between one end (mouthpiece end) 22a and the other end (end on the rod 12 side) 22b of one filter plug 22. It is preferable that the capsule 26 is arranged on the central axis C of the filter 14.
  • the filter wrapping paper 24 shown in FIG. 2 is not always necessary because the chip paper 16 is present.
  • the filter plug 22 of the filter 14 shown in FIG. 2 has a function as a general filter plug 22, for example, a tow made of synthetic fibers (also simply referred to as “tow”) or a material such as paper may be used. Those processed into a columnar shape can be used.
  • the filter plug 22 is used as a filter material.
  • Examples of the general function of the filter plug 22 include adjustment of the amount of air mixed when sucking aerosol and the like, adjustment of taste, adjustment of the amount of flavor component and the amount of tar, and the like.
  • the filter plug 22 does not necessarily have to have all of these functions.
  • the filter plug 22 may be configured so as to exhibit a part of the above-mentioned functions.
  • the shape of the filter plug 22 is preferably substantially cylindrical. Therefore, it is preferable that the cross-sectional shape of the cross section orthogonal to the central axis C of the filter plug 22 is substantially circular.
  • the diameter of the circle can be appropriately changed according to the size of the product (combustion type flavor suction article 10 or heating type flavor suction article 10), but is usually 5.0 mm or more and 8.0 mm or less. ..
  • the peripheral length of the cross-sectional shape of the cross section orthogonal to the central axis C of the filter plug 22 can be appropriately changed according to the size of the product, but is usually more preferably about 16 mm to 25 mm.
  • the above diameter is assumed to be a circle having the same area as the cross-sectional area, and the diameter in the circle is applied.
  • the cross-sectional shape of the filter plug 22 is not limited to a circular shape, an elliptical shape, or the like, and an appropriate shape can be adopted.
  • the length in the axial direction along the central axis C of the filter plug 22 can be appropriately changed by the filter 14.
  • the axial length of the filter plug 22 which is a monofilter along the central axis C is usually preferably 4.0 mm or more and 30.0 mm or less.
  • the length of the filter 14 shown in FIGS. 1 and 2 along the central axis C may be at least the diameter of the capsule 26 or more.
  • the length along the central axis C of the filter 14 including the filter wrapping paper 24 substantially coincides with the length along the central axis C of the filter plug 22.
  • the density of the filter plug 22 is not particularly limited, but is usually preferably 0.25 g / cm 3 or more and 0.41 g / cm 3 or less.
  • the ventilation resistance of the filter plug 22 is not particularly limited, but is usually preferably 100 mmH 2 O / 120 mm or more and 600 mmH 2 O / 120 mm or less.
  • the filter 14 may be ventilated by an appropriate method.
  • the filter wrapping paper 24 and / or the chip paper 16 can be used as a pre-drilled wrapping material or an air permeable wrapping material.
  • holes by laser perforation in the filter wrapping paper 24 and / or the chip paper 16 can be used.
  • the chip paper 16 is preferably air permeable and may form vents.
  • the position of the venting portion of the chip paper 16 is preferably aligned with the position of the venting portion of the filter wrapping paper 24.
  • the vents penetrating the filter wrapping paper 24, the vents penetrating the chip paper 16, or both simultaneously may be formed by laser perforation during the manufacture of the filter 14.
  • each fiber forming the toe of the filter plug 22 is not particularly limited, and may have an appropriate shape other than, for example, a circular shape or an elliptical shape.
  • the single fineness (Filament denier) of the tow filter is not particularly limited, and is usually 1 denier (g / 9000 m) or more, preferably 20 denier or less.
  • the total fineness (Total denier) of the tow filter is not particularly limited, and is preferably, for example, 5000 denier or more and 50,000 denier or less.
  • the filter plug 22 may be composed of, for example, a filter medium of tow (acetate tow) formed of acetate (cellulose acetate) fiber.
  • the filter 14 may be composed of only a filter medium. Therefore, the filter 14 does not have to have the filter wrapping paper 24 wrapped around the outer periphery of the filter plug 22.
  • 1 and 2 show an example in which the filter wrapping paper 24 is wound around the outer periphery of the filter plug 22.
  • the fiber width (fiber diameter) of one of the filter plugs 22 can be calculated from 10 ⁇ m to 50 ⁇ m by, for example, a laser scanning method.
  • the fiber width of one of the filter plugs 22 is larger than the width of the recess 32b of the capsule outer shell 32, which will be described later.
  • the fiber width Wt of one fiber 23 of the filter plug 22 in FIG. 9 is set to 20 ⁇ m as an example.
  • the filter plug 22 may have, for example, a total fineness of 10000 denier to 44000 denier of acetate tow, 830 to 23500 fibers, and a ventilation resistance of 100 mmH2 O / 120 mm to 600 mmH 2 O / 120 mm.
  • a plasticizer such as triacetin may be added to the acetate tow.
  • the plasticizer can be added in an amount of 6% by weight to 10% by weight based on the weight of the acetate tow as the filter plug 22.
  • the plasticizer can be added in an amount of 2% by weight to 20% by weight based on the weight of the acetate tow.
  • the type of tow used for the tow filter of the filter plug 22 is not particularly limited, and in addition to acetate tow, for example, cellulose rayon tow, vinylon tow and the like can be used. These tows may use a single material or a combination of two or more types of materials.
  • At least one of the filter wrapping paper 24 and the chip paper 16 has a density of 0.5 g / cm 3 to 1.0 g / cm 3 and a thickness of 100 ⁇ m to 250 ⁇ m.
  • Paper having a density of 0.5 g / cm 3 to 1.0 g / cm 3 and a thickness of 100 ⁇ m to 250 ⁇ m has a density and thickness as compared with the paper generally used for the filter wrapping paper 24 and the chip paper 16. It is preferable to have high capsule crushing performance due to the large density and thickness.
  • the basis weight of the filter wrapping paper 24 is, for example, 50 g / m 2 .
  • the air permeability of the filter wrapping paper 24 can be, for example, 0 CU (cholesta unit) to 30,000 CU.
  • the user can recognize the existence and position of the capsule 26 in the filter 14 by lightly pressing or biting lightly with a finger from the outer peripheral surface of the filter 14 around which the chip paper 16 is wound toward the central axis C.
  • the user can crush the capsule 26 by pressing or biting the outer peripheral surface of the chip paper 16 at the position where the capsule 26 is present with a finger.
  • the capsule 26 is crushed and encapsulated in the capsule outer shell 32 by lightly pressing the capsule 26 from the outer peripheral surface of the filter 14 toward the central axis C with a finger or lightly biting the capsule 26. It can be recognized that the contents 34 that had been used have leaked to the filter plug 22.
  • the user can crush the capsule 26 by pressing or biting with a finger from the outer peripheral surface of the filter 14 around which the chip paper 16 is wound toward the central axis C. If the chip paper 16, the filter wrapping paper 24 around which the chip paper 16 is wrapped, and the filter 14 including the filter plug 22 are too hard, the chip paper 16 for pressing or biting the filter 14 for embedding the capsule 26 with a finger is used. And the repulsive force of the filter 14 becomes too large for the user, which may cause discomfort to the user.
  • the single yarn fineness of the filter plug 22 is 3.0 denier, although it depends on the selection of the chip paper 16 and the filter wrapping paper 24 in order to appropriately control the repulsive force from the chip paper 16 and the filter 14 to the user. The above is more preferable, and the total fineness is more preferably 35,000 denier or less.
  • the capsule 26 has a soft capsule outer shell 32 in which the content 34 is enclosed, and a fine powder 36 that adheres to a part of the outer surface of the capsule outer shell 32.
  • the capsule outer shell 32 is formed of, for example, starch, dextrin, polysaccharide, agar, gellan gum, gelatin, various natural gelling agents, glycerin, sorbitol, calcium chloride and the like, and can further contain a fragrance and a coloring agent.
  • the capsule 26 is colored so that the user can recognize the filter wrapping paper 24 and the chip paper 16 through the filter wrapping paper 24 and the chip paper 16 when the capsule 26 is pressed with a finger even if the capsule 26 is surrounded by the filter wrapping paper 24 and the chip paper 16 having opacity. Is preferable.
  • the capsule outer shell 32 preferably contains a coloring agent such as Blue No. 1. Instead of coloring, the outer surface of the capsule outer shell 32 may be appropriately marked.
  • An example of the content 34 is a fragrance.
  • any fragrance used for smoking articles such as menthol and vegetable essential oil can be used.
  • the main flavors are menthol, leaf tobacco extract, natural vegetable flavors (eg cinnamon, sage, herbs, chamomile, kudzu, sweet tea, cloves, lavender, cardamon, chow, nutmeg, bergamot, geranium, honey essence, rose. Oil, Lemon, Orange, Kay Skin, Caraway, Jasmine, Ginger, Coriander, Vanilla Extract, Spare Mint, Peppermint, Cassia, Coffee, Cellory, Cascarilla, Sandalwood, Cocoa, Iran Iran, Fennel, Anis, Licoris, St.
  • natural vegetable flavors eg cinnamon, sage, herbs, chamomile, kudzu, sweet tea, cloves, lavender, cardamon, chow, nutmeg, bergamot, geranium, honey essence, rose.
  • John's Bread , Sumomo extract, peach extract, etc. sugars (eg, glucose, fructose, isomerized sugar, caramel, etc.), cocoa (powder, extract, etc.), esters (eg, isoamyl acetate, linalyl acetate, isoamyl propionate, butyric acid) Linalyl, etc.), ketones (eg, menthon, ionone, damasenone, ethylmaltor, etc.), alcohols (eg, geraniol, linalol, anatorol, eugenol, etc.), aldehydes (eg, vanillin, benzaldehyde, anisaldehyde, etc.), lactones.
  • sugars eg, glucose, fructose, isomerized sugar, caramel, etc.
  • cocoa powder, extract, etc.
  • esters eg, isoamyl acetate
  • Classes eg, ⁇ -undecalactone, ⁇ -nonalactone, etc.
  • animal fragrances eg, musk, ambassalis, civet, castorium, etc.
  • hydrocarbons eg, limonene, pinen, etc.
  • a solvent suitable for fragrance can be used, and medium-chain fatty acid triglyceride (MCT) (specifically, tricapryl / glycerin caprate), propylene glycol, water, ethanol and the like can be used.
  • MCT medium-chain fatty acid triglyceride
  • the content 34 may further contain other additives such as other solvents, dyes, emulsifiers, thickeners and the like.
  • the capsule outer shell 32 of the capsule 26 is formed in a spherical shape, for example.
  • the sphere includes both a sphere having a substantially circular cross section including the center of the capsule outer shell 32 and an elliptical sphere having an elliptical cross section.
  • the capsule outer shell 32 preferably has a spherical shape having a substantially circular cross section.
  • the capsule outer shell 32 can have a diameter of, for example, about 1 mm to 8 mm, and in the case of an elliptical sphere, the maximum diameter can be about 2 mm to 8 mm, and the minimum diameter can be set. It can be about 1 mm to 7 mm.
  • the pushing distance in which the user presses the filter 14 with, for example, a finger to crush the capsule outer shell 32 becomes long.
  • the diameter of the capsule outer shell 32 is 3.0 mm or more, and in the case of an elliptical sphere, the minimum diameter is 3.0 mm or more. Is more preferable. It is preferable that the capsule outer shell 32 itself can be destroyed when an external force of, for example, about 10 [N] to 70 [N] is applied.
  • micron-level fine irregularities are formed on the outer surface of the capsule outer shell 32.
  • the capsule outer shell 32 is, for example, translucent.
  • the outer surface of the capsule outer shell 32 has undulations, and innumerable convex portions 32a and innumerable concave portions 32b recessed with respect to the convex portions 32a are randomly repeated and formed. That is, the outer surface of the capsule outer shell 32 has a series of innumerable fine irregularities and is formed into a substantially spherical shape as a whole.
  • the method for manufacturing the capsule outer shell 32 that encloses the content 34 is not particularly limited.
  • a capsule 26 having a seamless capsule outer shell 32 is produced.
  • the capsule 26 having the capsule outer shell 32 is also manufactured by the punching method (rotary manufacturing method).
  • a double nozzle is used to simultaneously discharge the content 34 from the inner nozzle and the liquid film substance forming the capsule outer shell 32 from the outer nozzle.
  • the film liquid forming the capsule outer shell 32 is cooled while enclosing the contents 34 without having a seam.
  • the contents 34 are sandwiched between a pair of film sheets forming the capsule outer shell 32, the film sheets are pressure-bonded to each other, and the contents 34 are enclosed by punching into an appropriate shape.
  • the capsule outer shell 32 can be formed into various shapes such as an oval shape and an oblong shape as well as a spherical shape.
  • the capsule outer shell 32 can be formed transparently.
  • the fine powder 36 means a powder having a particle size (hereinafter referred to as “visual particle size”) visually observed with a microscope in the range of 0.1 ⁇ m to 10.0 ⁇ m.
  • the visual particle size of the fine powder 36 is smaller than the depth of the recess 32b with respect to the top of the convex portion 32a on the outer surface of the capsule outer shell 32.
  • a capsule 26 in which the amount of the fine powder 36 to be attached to the capsule outer shell 32 was changed was prepared. Specifically, for example, Comparative Example, Example 1-1, Example 1-2, and Example 1 in which the amount of the fine powder 36 was changed with respect to 50 g of the capsule outer shell 32 in which the content 34 was enclosed. -3, Capsules 26 of Examples 1-4 and Examples 1-5 were prepared.
  • the fine powder 36 of Comparative Example was 0 g (0 ppm, 0% by weight), the fine powder 36 of Example 1-1 was 2.5 mg (50 ppm, 0.005% by weight), and the fine powder of Example 1-2.
  • Example 36 is 25 mg (500 ppm, 0.05% by weight), the fine powder 36 of Example 1-3 is 50 mg (1000 ppm, 0.15% by weight), and the fine powder 36 of Example 1-4 is 75 mg (1500 ppm, 0. 15% by weight), the fine powder 36 of Example 1-5 is 250 mg (5000 ppm, 0.5% by weight).
  • the substantially conical table-shaped or substantially bowl-shaped container connected to the rotor rotating at a predetermined rotation speed is appropriately tilted, and the capsule outer shell 32 containing the contents 34 is put into the container.
  • the container While rotating the container at an appropriate speed with a rotor, about 1/3 of a predetermined amount of the fine powder 36 sieved, for example, made of a metal material is applied to the capsule outer shell 32. Therefore, the fine powder 36 uniformly adheres to the outer surface of the capsule outer shell 32 placed in the container.
  • the rotor is stopped by maintaining the rotation of the container by the rotor for about 1 minute.
  • the fine powder 36 sieved to the container while rotating the rotor again about 1/3 of the predetermined amount is applied to the capsule outer shell 32, and the rotation of the container by the rotor is maintained for about 1 minute, for example, to maintain the rotor.
  • about 1/3 of the remaining predetermined amount is applied to the capsule outer shell 32, and the rotor is stopped by maintaining the rotation of the container by the rotor for, for example, about 1 minute. ..
  • the fine powder 36 is uniformly adhered to the outer surface of the capsule outer shell 32 in about 5 minutes in total to obtain a capsule 26 to which the fine powder 36 is adhered.
  • the fine powder 36 that did not adhere to the capsule outer shell 32 is removed when the capsule 26 is taken out of the container. Further, the surplus fine powder 36 of the fine powder 36 adhering to the capsule 26 is removed from the capsule 26 by a sieve passing through in the subsequent sorting inspection step.
  • the surplus fine powder 36 is mainly attached to the convex portion 32a. Therefore, the fine powder 36 is basically present in the concave portion 32b more than in the convex portion 32a.
  • FIG. 4 shows an external photograph of the capsule 26 of Example 1-1, Example 1-2, Example 1-3, Example 1-4, and Example 1-5.
  • the capsule outer shell 32 is translucent. Due to the contents 34, the capsule outer shell 32 appears to the user to be substantially blue as a whole.
  • the fine powder 36 is white.
  • the fine powder 36 is attached to a part of the recess 32b on the outer surface of the capsule outer shell 32 of the capsule 26 thus formed.
  • An example of the fine powder 36 is, for example, calcium carbonate (CaCO 3 ) particles.
  • the primary particle size of calcium carbonate is, for example, 0.03 ⁇ m to 2.3 ⁇ m.
  • Calcium carbonate as the fine powder 36 may be present in the capsule outer shell 32 as aggregated particles (secondary particles).
  • FIG. 6 shows an enlarged appearance of the capsules 26 of Example 1-1, Example 1-2, Example 1-3, Example 1-4, and Example 1-5 by a laser microscope.
  • the left view of Examples 1-1 to 1-5 in FIG. 6 is a top view of the position where the capsule 26 is located, and the right view is a perspective view of the position of the capsule 26.
  • Example 1-2 rather than Example 1-1
  • Example 1-3 rather than Example 1-2
  • Example 1-4 Example 1-than Example 1-3.
  • the concentration of the fine powder 36 applied to the capsule outer shell 32 increases, as in Example 1-5, the appearance of the capsule 26 gradually increases in the white region. Therefore, the amount of the fine powder 36 adhered to the recess 32b of the capsule outer shell 32 also increases as the amount (concentration) of the fine powder 36 increases.
  • FIG. 7 shows the relationship between the amount of calcium carbonate added to the capsule outer shell 32 as the fine powder 36 and the surface roughness Ra and Rz of the outer surface of the capsule 26.
  • Ra in FIG. 7 is the arithmetic mean roughness, and Rz is the maximum height roughness.
  • the maximum height roughness Rz is the sum of the highest part (maximum mountain height Rp) and the deepest part (maximum valley depth Rv) by extracting a part of the roughness curve measured by the same roughness meter with the reference length. Is.
  • the arithmetic mean roughness Ra and the maximum height roughness Rz decrease. Therefore, as the amount of the fine powder 36 added increases, the amount of the fine powder 36 adhering to the capsule outer shell 32 increases. In other words, the smaller the amount of fine powder 36 adhering to the capsule outer shell 32, the coarser the arithmetic mean roughness of the outer surface of the capsule outer shell 32.
  • the recess 32b of the capsule outer shell 32 has a length along an appropriate direction (length direction) of the outer surface of the capsule outer shell 32, a width along the width direction intersecting the length direction, and an outer surface of the capsule outer shell 32. It is defined by the depth (distance between the convex portion 32a and the bottom surface of the concave portion 32b) along the depth direction from the convex portion 32a toward the center of the capsule 26.
  • the width direction is a direction along the outer surface of the capsule outer shell 32.
  • the fine powder 36 is a very fine powder having a small diameter that can enter the recess 32b defined by the length, width, and depth.
  • the fine powder 36 does not adhere to all of the recesses 32b of the capsule outer shell 32, but may adhere to a part of the recesses 32b on the outer surface of the capsule outer shell 32 in a very small amount.
  • the fine powder 36 adheres evenly to the outer surface of the capsule outer shell 32, and for example, even if an arbitrary first part of the outer surface of the capsule outer shell 32 is viewed, any position such as a second part different from the first part. As seen, it is preferable that substantially the same amount of fine powder 36 is attached to the outer surface of the capsule outer shell 32.
  • FIG. 8 shows a roughness curve over about 0.6 mm at a position on the outer surface of the capsule outer shell 32.
  • the average height (depth) Rc average of the height difference between the convex portion 32a and the concave portion 32b for each portion of the capsule outer shell 32) of the roughness curve element of the concave portion 32b is 4 ⁇ m to 5 ⁇ m. Therefore, particles having a diameter smaller than at least 1 ⁇ m to 5 ⁇ m can enter a part of the recess 32b of the capsule outer shell 32.
  • the width of the recess 32b of the capsule outer shell 32 does not have the corresponding standard surface parameters.
  • the inventor of this application visually inspected the data obtained from the graph shown in FIG.
  • the recess 32b of the capsule outer shell 32 has a width of about 3 ⁇ m at the minimum and about 30 ⁇ m at the maximum when viewed at the position of the reference line (horizontal axis) in the graph shown in FIG.
  • the distance between the peaks on the horizontal axis (convex portion 32a of the capsule outer shell 32) in the graph of FIG. 8 there are many positions in the concave portion 32b of the capsule outer shell 32 having a width of, for example, 10 ⁇ m or more. Therefore, for example, particles of the fine powder 36 having a visual particle size of 0 ⁇ m to 10 ⁇ m can enter a part of the recess 32b of the capsule outer shell 32.
  • FIGS. 10A and 10B show the outside of the capsule including the fiber width (fiber diameter) of the tow fiber 23 of the filter plug 22, the convex portion 32a of the capsule outer shell 32, and the concave portion 32b of the capsule outer shell 32 to which the fine powder 36 is attached. It is a schematic diagram which shows the relationship with the outer surface of a shell 32.
  • FIG. 9 is a size that allows the outer surface of the capsule outer shell 32 to be treated as a substantially flat surface.
  • FIGS. 10A and 10B show the size of the outer surface of the capsule outer shell 32 as a part of a spherical surface.
  • FIG. 9 shows a schematic diagram of the capsule outer shell 32 with respect to the fiber width (fiber diameter) Wt of the tow fiber 23 of the filter plug 22.
  • the fiber width Wt of the tow fiber 23 of the filter plug 22 is, for example, approximately 20 ⁇ m.
  • the width Wc of the recess 32b of the capsule outer shell 32 is approximately 3 ⁇ m, and the depth Dc is approximately 5 ⁇ m.
  • the visual particle size of the fine powder 36 is, for example, 0.2 ⁇ m to 2 ⁇ m.
  • FIG. 9 shows three recesses 32b in which the fine powder 36 has entered and has different densities. There may be a recess 32b in which the fine powder 36 does not enter at all or hardly enters. Further, there may be a recess 32b in which the amount of the fine powder 36 entering the recess 32b is large and the density of the fine powder 36 is high. In the fine powder 36, primary particles and aggregated particles (secondary particles) may coexist in the recesses 32b.
  • FIG. 10A is a schematic view showing a part of the filter plug 22 and the capsule 26 when no external force is applied toward the central axis C (not shown) of the filter 14.
  • FIG. 10B is a schematic view showing a part of the filter plug 22 and the capsule 26 in a state where an external force F is applied toward the central axis C (not shown) of the filter 14.
  • the fiber width Wt of the tow fiber 23 of the filter plug 22 is, for example, 20 ⁇ m, while the width Wc of the recess 32b of the capsule outer shell 32 is, for example, 3 ⁇ m, and the visual particle size of the fine powder 36 is, for example, 2 ⁇ m or less. Therefore, as shown in FIG. 10A, in a no-load state in which the user does not apply an external force to the filter 14 toward the central axis C, the fine powder that has entered the recess 32b of the capsule outer shell 32 and adheres to the filter 14. The fiber 23 of the filter plug 22 does not come into contact with the body 36, or the amount of contact is small.
  • the user When the user crushes the capsule 26, the user presses the outside of the filter 14 with a finger or bites and applies an external force F toward the central axis C (not shown) of the filter plug 22.
  • the external force F may be applied to the capsule 26 in a direction intersecting the central axis C of the filter 14 for flavor suction articles.
  • the capsule 26 to which the fine powder 36 adheres to the outer surface is loaded in a direction intersecting the central axis C of the filter 14 for flavor suction articles with the entire circumference embedded in the filter plug 22 of the filter 14 for flavor suction articles. It deforms according to the external force F. At this time, from the no-load state shown in FIG. 10A, the fibers 23 of the filter plug 22 (see FIG. 9) are deformed by the external force F as shown in FIG. 10B, and the fibers 23 of the filter plug 22 are recessed in the capsule outer shell 32. It is in contact with the fine powder 36 of 32b.
  • the fine powder 36 is made of a material that increases the static friction force rather than the recess 32b of the capsule outer shell 32 and the fiber 23 of the filter plug 22 coming into direct contact with each other. That is, the fine powder (particles) 36 is a material that suppresses slippage of the filter plug 22 with respect to the fibers 23, rather than the material that forms the capsule outer shell 32.
  • the external force F is applied from the outer peripheral surface of the filter plug 22 toward the central axis C as compared with before the external force F is applied from the outer peripheral surface of the filter plug 22 toward the central axis C.
  • F not only increases the static friction force between each fiber 23 of the filter plug 22 and the convex portion 32a of the capsule outer shell 32, but also causes static friction between each fiber 23 of the filter plug 22 and the fine powder 36. .. Therefore, when the user crushes the capsule 26, not only the static friction force due to the external force F but also the static friction force between the fiber 23 of the filter plug 22 and the capsule 26 due to the fine powder 36 is increased.
  • the toe of the filter plug 22 is applied when the external force F is applied from the outer peripheral surface of the filter plug 22 toward the central axis C.
  • the capsule 26 is prevented from slipping with respect to the formed fiber 23. Therefore, when the user wants to crush the capsule 26, the capsule 26 can be crushed more reliably by pressing or biting with a finger.
  • the force is not always applied to the apex of the sphere of the capsule 26 as in a measuring device, but the force is often applied to a position deviated from the apex. ..
  • the capsule 26 is not always loaded with a force from the capsule outer shell 32 toward the center of the capsule 26.
  • a static friction force is generated between the fiber 23 of the filter plug 22 and the fine powder 36 of the recess 32b of the capsule outer shell 32.
  • the force is surely applied to the capsule 26 without slipping the capsule 26 with respect to the filter plug 22, and the capsule 26 can be cracked. Therefore, the point of action of the force on the capsule 26 is not slippery when the capsule 26 is crushed, even if the point of action of the force is deviated from the position of the apex of the capsule 26. Therefore, when the user wants to crush the capsule 26, it is possible to press or bite the capsule 26 with a finger to crush the capsule 26 more reliably.
  • FIGS. 11A and 11B are diagrams illustrating an experiment by a pushing method in which a capsule 26 is pushed through a through hole 44 formed along the central axis C of the filter 14.
  • the jig 40 shown in FIGS. 11A and 11B has a pedestal 41 and a resin pipe 42 arranged so as to penetrate the pedestal 41.
  • the pedestal 41 for example, hard urethane is used.
  • the pedestal 41 is formed in, for example, 50 mm (W) ⁇ 50 mm (D) ⁇ 20 mm (H).
  • the resin pipe 42 is arranged at a position centered on the intersection of the diagonal lines on the upper surface of the pedestal 41 in FIG. 11B.
  • the inner diameter of the upper end side position (upper end side pipe) 42a of the resin pipe 42 is 8 mm, and the inner diameter of the lower end side position (lower end side pipe) 42b is 6 mm.
  • the height of the upper end side position 42a having an inner diameter of 8 mm is formed to be the same as the length of the filter 14 or longer than the length of the filter 14.
  • the length of the upper end side position 42a of the resin pipe 42 is, for example, 20 mm.
  • the height of the lower end side position 42b of the resin pipe 42 is, for example, 5 mm.
  • the height of the resin pipe 42 at the lower end side position 42b having an inner diameter of 6 mm is larger than the outer diameter of the capsule 26.
  • the outer diameter of the capsule 26 is, for example, 3.5 mm.
  • the filter 14 is supported in the upper end side position 42a of the resin pipe 42, and is prevented from falling off through the resin pipe 42.
  • the filter 14 has a filter wrapping paper 24 wrapped around the outer circumference of the filter plug 22 in order to maintain the outer shape and outer diameter of the filter plug 22.
  • the filter plug 22 used here is an example, but has a single yarn fineness of 3.5 denier, a total fineness of 35000 denier, a ventilation resistance of 360 mmH 2 O / 120 mm, and a circumference of about 24 mm.
  • a through hole 44 was formed along the central axis C of the filter plug 22 of the filter 14 by using, for example, a needle (not shown).
  • the diameter (needle diameter) of the through hole 44 formed in the filter plug 22 is 3.0 mm.
  • a capsule 26 having a diameter larger than the diameter of the through hole 44 is placed on the upper end of the through hole 44 of the filter plug 22, and the pressing portion 46a at the lower end of the load cell 46 extends from the upper end to the lower end along the through hole 44. Press the capsule 26 in one direction toward.
  • the pressing speed of the capsule 26 using the load cell 46 against the filter 14 was set to a constant speed of 100 mm / min. Then, an experiment was conducted to obtain the passage rate of the capsule 26 through the through hole 44 of the filter 14 (the rate at which the capsule 26 passed through the through hole 44 from one end to the other end of the filter plug 22 without breaking).
  • a load cell (piston) 46 of a Leo (RHEO) meter manufactured by Sun Scientific Co., Ltd., product number: CR-3000EX was used to push the capsule 26 into the filter 14.
  • the capsule 26 is pressed against the through hole 44 of the filter plug 22 by the pressing portion 46a at the lower end of the load cell 46 of the rheometer.
  • the pressing portion 46a at the lower end of the load cell 46 has a disk shape having a diameter substantially the same as or slightly smaller than the diameter of the through hole 44.
  • the diameter of the pressing portion 46a is 3.0 mm.
  • the capsule 26 When the capsule 26 is pressed against the upper end of the through hole 44 of the filter plug 22 by the pressing portion 46a at the lower end of the load cell 46, the capsule 26 is inserted into the through hole 44 from one end of the through hole 44. At this time, the fine powder 36 adhering to the recess 32b of the capsule outer shell 32 is brought into contact with the fibers on the inner wall of the through hole 44 of the filter plug 22.
  • the capsule 26 When the capsule 26 is pressed from the upper end side to the lower end side of the through hole 44 by the pressing portion 46a of the load cell 46 of the rheometer, the capsule 26 is flattened due to the friction against the fibers of the filter plug 22, and the through hole 44 of the filter plug 22 is flattened. Pressure is applied to the inner peripheral surface (inner wall) of the. In other words, a reaction force toward the central axis C is applied to the capsule 26 from the inner peripheral surface (inner wall) of the through hole 44 of the filter plug 22.
  • the capsule 26 is pushed from the upper end to the lower end along the through hole 44 of the filter plug 22 by the pressing portion 46a of the load cell 46 at an appropriate speed, and the capsule outer shell is deformed by the deformation of the capsule 26.
  • a part of the fine powder 36 attached to 32 is brought into contact with the fibers of the filter plug 22.
  • FIGS. 10A and 10B the actual filter plug 22 of the flavor suction article 10 is deformed toward the central axis C by an external force, and the capsule 26 is deformed via the filter plug 22. It is understood that it is different from the crushing mechanism.
  • the flavor suction article 10 actually applies an external force F from the outer periphery of the filter 14 toward the central axis C to deform the fibers of the filter plug 22 into the fine powder 36 attached to the capsule outer shell 32. It is for contact.
  • Example 1-1 was applied with 50 ppm
  • Example 1-2 was obtained by applying 500 ppm of fine powder 36 to the outer surface of the capsule outer shell 32 during production.
  • Fine powder was applied to the outer surface of the capsule outer shell 32 during production.
  • Example 1-3 was obtained by applying 1000 ppm of 36
  • Example 1-4 was obtained by applying 1500 ppm of fine powder 36 to the outer surface of the capsule outer shell 32 at the time of production.
  • Example 1-5 was obtained by applying 5000 ppm of fine powder 36.
  • Example 1-1 the capsule 26 to which the fine powder 36 is attached has a passing rate through the through hole 44 of the filter plug 22 even if the amount of the fine powder 36 applied at the time of manufacturing the capsule 26 is as small as 50 ppm. However, it is lower than that of the capsule of the comparative example to which the fine powder 36 is not attached. Therefore, it can be said that the capsule 26 to which the fine powder 36 is attached has a higher static friction force with the filter plug 22 than the capsule to which the fine powder 36 is not attached.
  • the filter 14 including the capsule 26 to which even a small amount of the fine powder 36 is adhered does not easily slip with respect to the filter plug 22 in the filter plug 22. Therefore, the fine powder can be pressed or bitten by the user with a finger. It becomes easier to break the capsule 26 with respect to the filter containing the capsule to which the 36 is not attached.
  • Example 1-2 As described above, in the experiment using the capsule 26 of Example 1-2 produced by sprinkling the fine powder 36 in an amount less than 1000 ppm on the capsule outer shell 32 at the time of production, the passage rate was 0%. .. Therefore, in the experiment of Example 1-2, the capsule 26 was always crushed in the through hole 44 of the filter plug 22.
  • capsules 26 (Examples 1-3, 1-4, and 1-5) produced by sprinkling an amount of fine powder 36 of 1000 ppm or more on the capsule outer shell 32 at the time of production were used. In the experiment, the capsule 26 was always crushed in the through hole 44 of the filter plug 22.
  • the amount of the fine powder 36 is required for the capsule outer shell 32 at the time of production, but it is not necessary to apply the fine powder 36 of 1000 ppm or more to produce the capsule 26. That is, the amount of the fine powder 36 applied to the capsule outer shell 32 at the time of production is sufficient at a ratio lower than 1000 ppm.
  • a flavor-sucking article 10 comprising a filter 14 in which three different levels of capsules 26 (Comparative Example, Example 1-1, Example 1-2) were embedded was made, and one capsule 26 of each level was 30 I had the subjects of the name bite and break them in order. Thirty people were asked to fill in the feeling of ease of splitting the capsule 26 in the filter 14 of each level.
  • the diameter of the capsule 26 is 3.5 mm
  • the filter plug 22 is a general monoacetate filter, the dimensions are 15 mm (length) x 7.6 mm (diameter), and the capsule 26 is in the acetate tow fiber bundle of the filter plug 22. It is embedded in.
  • the filter 14 using the capsule of the comparative example 30 persons selected the above (2).
  • the selection of the above (1) and the above (2) was divided into half of the 30 persons.
  • 30 persons selected the above (1).
  • the capsules 26 of Examples 1-1 and 1-2 in which the fine powder 36 is attached to the capsule outer shell 32 are clear with respect to the comparative example in which the fine powder 36 is not attached to the capsule outer shell 32. It can be said that the slip of the filter plug 22 with respect to the toe is suppressed and the capsule 26 is easily broken.
  • the passage rate by the pushing method shown in FIGS. 11A to 12 was 80% in Comparative Example, 40% in Example 1-1, and 0% in Example 1-2, which are appropriate.
  • the capsule 26 having the amount of fine powder 36 makes it easy to reliably break the capsule 26 in the filter plug 22. Also in the sensory test information, when the capsule 26 of Example 1-2 was used for the filter 14, it was judged that 100% of the users were easy to break. That is, by using the capsule 26 in which the amount of fine powder 36 of Example 1-2 is adhered to the outer surface of the capsule outer shell 32 at the time of manufacture, the capsule 26 can be reliably crushed easily.
  • the unevenness (roughness) of the capsule outer shell 32 to which the fine powder 36 is attached to the capsule outer shell 32 becomes the fine powder 36. Is reduced as compared with the amount of unevenness of the capsule outer shell 32 which is not attached to the capsule outer shell 32. Therefore, it is generally assumed that the capsule 26 becomes slippery with respect to the fibers of the filter plug 22. However, when calcium carbonate is used as the fine powder 36, the capsule 26 may not slip easily with respect to the fibers of the filter plug 22, even though the amount of unevenness is reduced as compared with the capsule to which the fine powder 36 is not attached. can.
  • the capsule 26 is made difficult to slip with respect to the filter plug 22 when the capsule 26 in the filter 14 is crushed by the external force F. be able to.
  • the capsule 26 having the fine powder 36 adhered to a part of the recess 32b of the capsule outer shell 32 in an appropriate amount reduces the amount of unevenness with respect to the filter plug 22.
  • the static friction force between the capsule 26 and the filter plug 22 is the static friction force between the filter plug 22 and the filter plug 22. It can be increased by the amount of increase in the static friction force with the fine powder 36.
  • the center of the filter 14 is used.
  • the shaft C, that is, the through hole 44 may be arranged so as to extend in the horizontal direction, for example.
  • the body 36 is removed from the capsule 26 by a sieve passing through in a subsequent sorting inspection step. If the amount of the fine powder 36 applied to the capsule outer shell 32 at the time of production is about 1000 ppm or less, the amount of the fine powder 36 is originally small. Therefore, it is possible to reduce the amount of fine powder 36 that falls off in the production line of the filter 14 that manufactures the filter plug 22 while embedding the capsule 26.
  • the amount of the fine powder 36 that adheres to the convex portion 32a and easily scatters or falls off from the convex portion 32a is basically a small amount. Therefore, the smaller the amount of the fine powder 36, the easier it is to clean the production line of the capsule 26 and the filter 14. Therefore, in the step of adhering the fine powder 36 to the capsule outer shell 32 at the time of manufacturing and the step of embedding the capsule 26 to which the fine powder 36 is attached in the filter plug 22, the area where these steps are performed is contaminated or clogged. Process troubles such as can be suppressed. Therefore, the smaller the amount of the fine powder 36, the easier the maintenance such as cleaning of the production line of the flavor suction article 10.
  • the amount of the fine powder 36 adhered to the capsule outer shell 32 is small. Therefore, the appearance of the capsule 26 does not change much depending on the presence or absence of the fine powder 36.
  • the fine powder 36 adheres to the recess 32b of the capsule 26, although the amount is extremely small. Since the fine powder 36 is adhered so as to enter the recess 32b of the capsule outer shell 32, the fibers of the filter plug 22 are before the external force F is applied from the outside of the filter 14 toward the central axis C. It is difficult to come into direct contact with the capsule 26 and is relatively stable in the capsule 26. The fine powder 36 is not easily removed from the capsule outer shell 32 even during the process of manufacturing the filter 14.
  • the filter that exerts the frictional force contributed by the fine powder 36 between the capsule 26 and the toe of the filter plug 22.
  • This is when an external force F is applied to the filter plug 22 toward the central axis C of 14. That is, before the external force F is applied to the filter plug 22 toward the central axis C of the filter plug 22 (when no force is applied), the toe fiber of the filter plug 22 to which the frictional force is applied to the capsule 26. Does not touch or is difficult to touch the fine powder 36 adhering to the recess 32b of the capsule outer shell 32.
  • the fine powder 36 has more static friction between the tow fibers of the filter plug 22 and the capsule outer shell 32 than when there is no fine powder 36 between the tow fibers of the filter plug 22 and the capsule outer shell 32.
  • the force can be increased. Therefore, the fine powder 36 can generate static friction with the tow fibers of the filter plug 22. Further, the fine powder 36 can generate a static friction force when sandwiched between the tow fiber of the filter plug 22 and the outer surface of the capsule outer shell 32.
  • the fine powder 36 which is present in a wide range of the concave portions 32b on the outer surface of the capsule outer shell 32, grips the toe of the filter plug 22 with respect to the concave portions 32b to which the fine powder 36 adheres. do. Therefore, a static friction force is generated between the toe of the filter plug 22 and the fine powder 36 of the capsule 26, and the displacement of the capsule 26 with respect to the filter plug 22 is effectively prevented. Therefore, when the user presses the filter 14 toward the central axis C with a finger or bites it and applies an external force F, the capsule 26 does not slip easily with respect to the filter plug 22, and the capsule 26 is easily crushed.
  • the presence of the fine powder 36 in the recess 32b on the outer surface of the capsule outer shell 32 does not normally cause a high frictional force between the filter plug 22 and the outer surface of the capsule outer shell 32.
  • the fine powder 36 generates an extremely effective frictional force between the filter plug 22 and the outer surface of the capsule outer shell 32 when an external force F that pushes the outer surface of the capsule outer shell 32 via the filter plug 22 is applied.
  • the fine powder 36 is removed from the convex portion 32a on the outer surface of the capsule outer shell 32.
  • the capsules 26 are in contact with each other in a hopper or the like at the time of manufacturing the filter 14 or feeding the capsules 26, if the fine powder 36 is not removed from the convex portion 32a, for example, due to friction between the capsules 26 or the like. , The fine powder 36 is released from the capsule 26, and the manufacturing equipment may become dirty, or the capsules 26 may not be separated from each other (friction) easily (friction error).
  • FIG. 14 shows an electron micrograph of the outer surface of the capsule outer shell 32 from which the calcium Ca element has been extracted. As shown in FIG. 14, it is recognized that the calcium Ca element is localized in the recess 32b of the capsule outer shell 32.
  • the EDS can identify the presence of the fine powder 36 in the recess 32b of the capsule outer shell 32, except when a large amount of calcium Ca element is contained as a raw material of the capsule outer shell 32.
  • Capsule 26 occupies 90% or more of organic substances (carbon C and oxygen O). Then, the value obtained by converting the weight% of the calcium Ca element into calcium carbonate (CaCO 3 ) can be said to be the weight% with respect to the weight of the capsule outer shell (coating) 32.
  • FIG. 15 shows a predetermined capsule 26 of Example 1-1, Example 1-2, Example 1-3, and Example 1-5 using calcium carbonate as the fine powder 36 using an electron microscope.
  • the result of taking a picture at a magnification (for example, 6000 times) and measuring the weight% of calcium Ca with respect to a capsule 26 is shown.
  • the detected weight% of the calcium Ca element with respect to the amount (ppm) of the fine powder 36 added to the capsule outer shell 32 can be linearly approximated with the vertical axis and the horizontal axis as logarithms. Therefore, as the amount of the fine powder 36 added to the capsule outer shell 32 increases, the amount of calcium Ca element detected increases.
  • the calcium Ca element may be detected by EDS.
  • the mass% of the element, the ratio of the number of atoms (%), the X-ray energy (keV), and the X-ray energy (keV) with respect to the entire capsule 26 at a position on the outer surface of the capsule 26 to which the fine powder 36 is not attached are shown.
  • the standard deviation ⁇ is shown.
  • the energy dispersive X-ray analyzer detects the mass of calcium Ca element per unit area (mass of calcium Ca element shown in one field of view) to obtain fine powder for the capsule 26.
  • the amount of calcium carbonate as 36 can be detected. That is, in Examples 1-1 to 1-5, the amount of the fine powder 36 applied to the capsule outer shell 32 at the time of production and the fine powder 36 attached to the capsule outer shell 32 of the capsule 26 embedded in the filter plug 22. And can be inspected using an electron microscope.
  • the toe constituting the filter plug 22 can be combined with other additional fibers.
  • Other additional fibers include, for example, carbon fibers, activated carbon fibers, natural fibers, synthetic fibers and the like, or any combination thereof.
  • the tow can optionally contain an adhesive additive in it.
  • an adhesive additive for example, a binder, an adhesive, a resin, a tackifier, or any combination thereof can be used. Adhesive additives allow the tow fibers to adhere to each other.
  • the tow can contain any additive.
  • Optional additives include, for example, active particles, active compounds, ionic resins, zeolites, nanoparticles, ceramic particles, fabric softeners, plasticizers, dyes, dyes, flavors, defoamers, controlled release vesicles, surface modifications. Pawnbrokers, lubricants, emulsifiers, vitamins, peroxides, biogenic agents, antifungal agents, antibacterial agents, antistatic agents, flame retardants, antifoaming agents, decomposition agents, conductive modifiers, stabilizers, finishing agents, etc. , Or any combination thereof.
  • the tow can be surface treated to impart surface functionality.
  • treatments such as sensitization, ionization, oxidation, and hydrolysis on the surface of the tow
  • methods such as immersion, spraying, exposure to plasma, and exposure to ionized gas can be used.
  • the material of the filter plug 22 of the filter 14 passes through the fine powder 36 and the capsule outer shell 32 is not in direct contact with the material of the filter plug 22 of the filter 14 and the capsule outer shell 32.
  • It is not limited to calcium carbonate as long as it increases the coefficient of static friction when it comes into contact with.
  • the fine powder 36 having a visual particle size (for example, about 10 ⁇ m or less) that can enter the recess 32b of the capsule outer shell 32 together with calcium carbonate additive example 1-10 shown in FIG. 18 is used. May be good.
  • FIG. 18 shows preferred Examples 2-1 to 2-10 of the capsule 26.
  • the capsules 26 of Examples 2-1 to 2-10 were obtained by sprinkling the capsule outer shell 32 with a preferable fine powder (additive) 36 of, for example, 1000 ppm at the time of producing the capsule 26.
  • the main components of the fine powder 36 of the capsules of Examples 2-1 to 2-10 in FIG. 18 are titanium dioxide, magnesium carbonate, calcium hydrogen phosphate, calcium carbonate, and an alumina silicate compound.
  • FIG. 19 shows capsules of Comparative Examples 2-1 to 2-7 of additives for comparison with FIG. 18.
  • the main components of the capsule powder of Comparative Examples 2-1 to 2-7 in FIG. 19 are polypropylene, magnesium silicate compound, cellulose, sodium alginate, dextrin, and plant sterol.
  • Example 3 Similar to the capsule 26 of Example 1-3 (see FIG. 3) in which 1000 ppm (against the capsule weight) of calcium carbonate fine powder 36 was applied to the outer surface of the capsule outer shell 32 at the time of manufacture, the capsule outer shell 32 was manufactured at the time of manufacture.
  • An experiment using the indentation method shown in FIGS. 11A and 11B for a capsule 26 produced while sprinkling the fine powder 36 of Examples 2-1 to 2-10 shown in FIG. 18 as an additive of 1000 ppm on the outer surface. was done.
  • FIGS. 11A and 11B the capsules produced while applying the powders of Comparative Examples 2-1 to 2-7 shown in FIG. 19 as an additive of 1000 ppm on the outer surface of the capsule outer shell 32 at the time of production are shown in FIGS. 11A and 11B. An experiment using the indentation method shown was performed.
  • the passing rate of the capsule 26 to the through hole 44 of the filter 14 by the indentation method is It became 0%. That is, when the capsule 26 having the fine powder 36 of Examples 2-1 to 2-10 was used, all the capsule outer shells 32 of the capsule 26 did not pass through the filter 14. In the case of the powders of Comparative Examples 2-1 to 2-7 shown in FIG. 19, the passing rate of the capsule 26 through the through hole 44 of the filter 14 by the indentation method is almost the same as the case where the powder is not present. , 70%.
  • the capsule 26 manufactured by applying the fine powder 36 to the capsule outer shell 32 is the result of the passage rate by the pushing method, that is, the effect of preventing the displacement of the capsule 26 with respect to the filter plug 22 of the filter 14.
  • the type of powder depends on the type of powder.
  • FIG. 18 shows a rough outline of the diameter (particle size) d (in ⁇ m) of the fine powder 36 used in the capsules 26 of Examples 2-1 to 2-10 when observed using an electron microscope (SEM). The range (short / long length of the fine powder 36) is shown. The observation was performed on the aggregated particles (secondary particles) of the fine powder 36 at a magnification of 400 times, and on the fine powder 36 of the secondary particles composed of the primary particles at a magnification of 6000 times.
  • FIG. 19 shows a rough range of diameter (particle size) d ( ⁇ m unit) when the powder used for the capsules of Comparative Examples 2-1 to 2-7 is observed using SEM.
  • the visual particle size of Examples 2-1 to 2-10 was compared with that of Comparative Example 2-1. It is smaller than the visual particle size of Example 2-7.
  • the passing rate by the pushing method tends to be lower than when the visual particle size d is relatively large.
  • the fine powder 36 having a large visual particle size tends not to work effectively with respect to the recess 32b, and the fine powder 36 having a small visual particle size tends to work effectively.
  • Mohs hardness As shown in FIGS. 18 and 19, the inventor of this application used Mohs hardness to express the hardness of the additive. Mohs hardness is known as a widely used parameter of hardness. The Mohs hardness is one in which talc having a lower hardness is set as 1, and substances harder than the talc are numbered in order and arranged up to a diamond hardness of 10. The inventor used a Mohs hardness tester manufactured by Tokyo Science Co., Ltd. to measure the Mohs hardness of the powder used.
  • the hardness of the metal plate (lead, zinc, aluminum, copper, nickel) on hand was measured with a Mohs hardness tester. Then, the hardness was determined based on the presence or absence of scratches on the plate surface when the powder fixed with the adhesive tape was lightly rubbed against the plate surface of the metal plate. When it was difficult to judge the hardness, the known hardness information was referred to.
  • the fine powder 36 of the capsule 26 of Examples 2-1 to 2-10 is a powder having an effect of suppressing the displacement of the capsule 26 with respect to the filter tow, and the measured value of the Mohs hardness thereof is 2 in each case. That was all.
  • the fine powder (powder particles) 36 added to the surface of the capsule outer shell 32 needs to have a certain hardness in order to exhibit the effect of suppressing the slip of the capsule 26 with respect to the filter plug 22 of the filter 14. It is understood that there is. It is considered that the fine powder 36 that is mainly present in the recess 32b of the capsule outer shell 32 bites into the filter toe of the filter plug 22 when an external force is applied to the filter 14 and exerts an effect by gripping the filter toe. Be done. Therefore, the primary particles or the lumps of the secondary particles of the powder need to be harder than the filter plug 22. The fine powder 36 having particles softer than the filter plug 22 is destroyed by the force between the capsule outer shell 32 and the filter-toe, loses the grip force, and slips.
  • the fine powder 36 is required to have a high hardness and a property of not easily collapsing in relation to the filter toe of the filter plug 22 in a state of being contained in the concave portion 32b of the capsule outer shell 32.
  • An easy-to-understand example is the capsule talc of Comparative Example 2-2 containing a magnesium silicate compound as a main component.
  • Talc is preferable because it has a small visual particle size as a fine powder to be attached to the outer shell 32 of the capsule, but its hardness is insufficient. Due to its brittle and soft nature, talc is fragile when subjected to force, which is why it is generally used as a slip agent rather than an anti-slip agent.
  • magnesium carbonate which is the fine powder 36 of the capsule 26 of Example 2-2, has a small visual particle size substantially similar to that of talc, but has a Mohs hardness of 2 or more.
  • the capsule 26 of Example 2-2 was found to be sufficiently effective in suppressing the displacement of the capsule 26.
  • Magnesium carbonate, which is the main component of the fine powder 36 of the capsule 26 of Example 2-2, is a non-slip agent used in gymnastics, for example, and is fixed in the recesses of the skin by triggering the moisture of the skin to cause friction. Occur.
  • magnesium carbonate is derived from the original hardness, not the water content.
  • the Mohs hardness required for the fine powder 36 in this embodiment is 2 or more, but the capsule 26 of Example 2-10 in which the main component is an alumina silicate compound is slightly inferior in the effect of suppressing misalignment. Therefore, the Mohs hardness of the fine powder 36 attached to the capsule outer shell 32 is preferably 3 or more as much as possible.
  • the visual particle size d of the fine powder 36 is preferably 0.1 ⁇ m to 10 ⁇ m.
  • the visual particle size d of the fine powder 36 is more preferably 0.1 ⁇ m to 5 ⁇ m.
  • the size of the recess 32b of the capsule outer shell 32 used in the present embodiment has an average depth of 5 ⁇ m and a width of approximately 10 ⁇ m or less. Therefore, the particle size d that can exist in the recess 32b of the capsule outer shell 32 is required to be in the range of 10 ⁇ m or less in diameter, preferably in the range of 5 ⁇ m or less. Since the size of the recess 32b of the capsule outer shell 32 is an average diameter, even if the range of the particle diameter d is slightly wider than the above range, there is no problem in practice as long as the above range is included a lot.
  • the particle size d is 0.1 ⁇ m (100 nm), which is the lower limit of detection of the particle size. Therefore, depending on the type of powder of the fine powder 36, a particle size smaller than that may exist.
  • Example 2-1 to Example 2-7 Example 2 in which the passing rate of the capsule 26 through the through hole 44 of the filter 14 using the pushing method is low and the effect of suppressing the displacement of the capsule 26 with respect to the filter plug 22 is observed.
  • the visual particle size of any of the particles is 10 ⁇ m or less, which is sufficiently small to fill the recess 32b of the capsule outer shell 32.
  • the fine powder 36 of the capsule 26 of Examples 2-8 and 2-9 is heavy calcium carbonate obtained by crushing natural ore.
  • the fine powder 36 has a visual particle size range of about 20 ⁇ m or less, but the center of the particle size distribution is smaller.
  • particles having a large visual particle size d of the fine powder (additive) 36 are present in the recess 32b of the capsule outer shell 32.
  • the particles having a large visual particle size d of the fine powder (additive) 36 are secondary particles in which the primary particles are aggregated. These secondary particles can be easily separated into primary particles by vibration or friction during the manufacturing process of the capsule 26, and can be buried in the recess 32b of the capsule outer shell 32.
  • the visual particle size of the powder (additive) was fine powder of the capsule 26 of Examples 2-1 to 2-10. It is 10 times or more the visual particle size d of 36. That is, the visual particle size of the capsule powders of Comparative Examples 2-5 and 2-6 is one compared to the visual particle size d of the fine powder 36 of the capsules 26 of Examples 2-1 to 2-10. It is in an order of magnitude larger, and the number of particles of 10 ⁇ m or less is not sufficient.
  • the particles having a large visual particle size as used in the capsules of Comparative Examples 2-5 and 2-6 adhere to the surface of the capsule outer shell 32 without filling the recess 32b of the capsule outer shell 32. Only. Therefore, the particles having a large visual particle size can easily fall off from the capsule outer shell 32 during the manufacturing process of the capsule 26, during transportation, or due to other vibrations. Therefore, the particles (additives) having a large visual particle size easily fall off from the capsule outer shell 32 without exhibiting the effect of suppressing the positional deviation of the capsule 26 with respect to the filter plug 22.
  • Example 3-2 When the experiment by the indentation method was performed, the range in which the capsule 26 did not pass through the filter 14 and a clear effect could be obtained was 100 ppm or more in Example 3-2. However, as in Examples 3-6 and 3-7, when the amount of fine powder 36 applied at the time of production is 10,000 ppm or more, an excessive amount of powder is present, so that the powder continues to fall loosely even when subjected to a sieving machine, and the capsules. It is difficult to use 26.
  • the amount of the fine powder 36 is only the amount added at the time of manufacture, and the surplus amount is different from the amount actually present on the surface of the capsule outer shell 32 because it is shaken off. Furthermore, if the weight of the capsule is different, the ratio of the fine powder 36 to the total weight of the capsule 26 will change.
  • the inventors detected elements on the surface of the capsule outer shell 32 using SEM (scanning electron microscopy) and EDS (energy dispersive X-ray spectrometer) so as to approach a clearer quantitative expression.
  • SEM scanning electron microscopy
  • EDS energy dispersive X-ray spectrometer
  • the test product of the capsule 26 was subjected to SEM with EDS (JCM-6000Plus NeoScope (registered trademark) manufactured by JEOL Ltd.), and it was confirmed that particles were concentrated in the recess 32b of the capsule outer shell 32. After that, using EDS, an image for analysis in which the calcium (Ca) element is mapped with the following settings, and carbon (C) existing in the capsule outer shell (coating) 32 and on the capsule outer shell (coating) 32. ) Individual weight information of all elements with the above atomic numbers was obtained.
  • EDS JCM-6000Plus NeoScope (registered trademark) manufactured by JEOL Ltd.
  • This SEM with EDS enables simple quantification of detected elements at the same time as mapping.
  • the total of all the detected elements above carbon (C) constituting the capsule outer shell (coating) 32 is assumed to be the total constituent weight of the capsule outer shell (coating) 32, and the ratio of calcium (Ca) elements to the total weight thereof. was expressed in weight percent as the element ratio in the capsule outer shell (coating) 32.
  • the detection range can be up to a depth of about 20 ⁇ m from the surface of the capsule outer shell 32 under a voltage of 15 KeV. Therefore, the element ratio in the capsule outer shell 32 sufficiently reflects not only the surface of the capsule outer shell 32 but also the element information in the coating film forming the capsule outer shell 32.
  • the elemental information contained in the capsule 26 after the addition of the fine powder 36 measured by this SEM with EDS includes the elemental information contained in the capsule 26 before the addition of the fine powder 36. Therefore, the surface of the capsule outer shell 32 before the addition of the fine powder 36 was also measured in advance by the same method, and the detected amount was subtracted from the coverage and the weight ratio as a background.
  • the fine powder (powder particles) 36 exists as particles aggregated in a non-uniform island shape on the capsule outer shell 32. If the fine powder (powder particles) 36 are uniformly distributed on the capsule outer shell 32, the pattern will be uniform as a whole.
  • the island-shaped aggregated particles (fine powder 36) correspond to the portion corresponding to the recess 32b on the surface of the capsule outer shell 32.
  • the amount of calcium carbonate (fine powder 36) added at the time of manufacturing the capsule 26 is high, the adhesion to the capsule outer shell 32 is saturated and does not enter the recess 32b of the capsule outer shell 32 and does not adhere. Excess powder increases. It can be seen that the upper limit of the effective addition amount of calcium carbonate as the fine powder 36 at the time of producing the capsule 26 is approximately 5000 ppm.
  • (P3) Percentage of elements in the outer shell (coating) of the capsule In FIG. 22, the outer shell of the capsule is shown for each amount of calcium carbonate added as the fine powder 36 (Examples 3-1 to 3-7 shown in FIG. 20). The result of measuring the weight percent of the calcium (Ca) element in the element (detection element) contained in (coating) 32 is shown.
  • the weight ratio of the target element (calcium (Ca)) in the elements of the capsule 26 is , 0.5% to 20%, preferably 1% to 10%.
  • the target element in the element of the capsule 26 includes the fine powder 36.
  • the amount of calcium carbonate (fine powder 36) added at the time of manufacturing the capsule 26 is high, the adhesion to the capsule outer shell 32 is saturated and does not enter the recess 32b of the capsule outer shell 32 and does not adhere. Excess powder increases. It can be seen that the upper limit of the effective addition amount of calcium carbonate as the fine powder 36 at the time of producing the capsule 26 is approximately 5000 ppm.
  • the above-mentioned example is a detection and quantification example targeting calcium carbonate as the fine powder 36.
  • the main components of the fine powder 36 are compared with Examples 2-1 and 2-2, Example 2-3, Example 2-10, and the additives of the additives in FIG.
  • the element ratio of the main component of the fine powder 36 in the capsule 26 shown in FIG. 23 shows each value.
  • the element ratio of the main component of the fine powder 36 in the capsule 26 does not become a large difference more than twice as compared with the example of calcium (Ca) which is the main component of calcium carbonate. Therefore, it can be said that the above-mentioned preferable range of the main component of the element ratio is almost universal regardless of the element or compound of the main component of the fine powder 36 used.
  • the surface coverage (area parameter) and element ratio (elemental amount) were measured using SEM with EDS in the same manner as described above.
  • the surface coverage and the element ratio of the main component can be obtained by the same method using other types of fine powder (powder additive) 36, except that the target elements are different.
  • a surface treatment agent may be applied to the outer surface of the capsule outer shell 32, for example, in order to prevent the capsule outer shells 32 from solidifying with each other.
  • a mold release agent is applied to the outer surface of the capsule outer shell 32 as a surface treatment agent, solidification of the capsule outer shells 32 is prevented.
  • a coating agent is applied to the outer surface of the capsule outer shell 32 as a surface treatment agent, the waterproof property (water absorption) of the capsule outer shell 32 is adjusted. Further, when a coating agent is applied to the outer surface of the capsule outer shell 32 as a surface treatment agent, the slipperiness is adjusted.
  • the surface treatment agent on the outer surface of the capsule outer shell 32 has a passage rate of 50% when the fine powder 36 is not attached, for example, 1000 ppm of the fine powder 36 is attached. If so, the passing rate was 0%. Therefore, it can be said that the surface treatment agent for the outer surface of the capsule outer shell 32 does not affect the effect of preventing the displacement of the capsule 26.
  • the capsule 26 it is preferable to add 100 ppm or more of the fine powder 36 to the capsule outer shell 32.
  • the amount of the fine powder 36 exceeded 10,000 ppm, the amount of the fine powder 36 that did not adhere to the capsule outer shell 32 increased. Therefore, at the time of producing the capsule 26, it is preferable to add the fine powder 36 of 100 ppm or more and less than 10,000 ppm to the capsule outer shell 32.
  • the visual particle size of the fine powder 36 to be attached to the capsule outer shell 32 is preferably 0.1 ⁇ m to 10 ⁇ m, more preferably 0.1 ⁇ m to 5 ⁇ m.
  • the Mohs hardness of the fine powder 36 is 2 or more, more preferably 3 or more.
  • the surface coverage of the fine powder 36 that is, the area ratio occupied by the detection signal of the element of the main component of the fine powder 36 in the area of the surface of the capsule outer shell 32 is in the range of 10% to 45%, more preferably. , 20% to 40%.
  • the weight ratio of the element of the main component of the fine powder 36 and the weight ratio of the element of the main component of the fine powder 36 in the elements on the surface of the capsule 26 are in the range of 0.5% to 20%. Is preferable, and more preferably, it is in the range of 1% to 10%.
  • the structure of the filter 14 has two filter plugs (dual filter plugs) 22 as shown in FIGS. 25A and 25B.
  • the length of each filter plug 22 is 5 mm to 20 mm.
  • the capsule 26 to which the fine powder 36 is attached to the capsule outer shell 32 is embedded in the filter plug 22 on the mouthpiece side.
  • the capsule 26 may be embedded in the filter plug 22 on the rod 12 side. That is, each filter plug 22 of one filter 14 may contain a capsule 26, respectively.
  • a space may be formed between the filter plugs 22 of the filter 14.
  • the capsule 26 is embedded in the filter plug 22 on the mouthpiece side or the filter plug 22 on the rod 12 side.
  • one capsule 26 is sandwiched between two filter plugs 22. In this way, the capsule 26 may be embedded in the filter plug 22 as shown in FIG. 25B.
  • the number of filter plugs 22 of the filter 14 may be three or more.
  • the capsule 26 may be embedded in any of the filter plugs 22.
  • the capsule 26 may be embedded in each filter plug 22. Further, the capsule 26 may be sandwiched between the adjacent filter plugs 22. That is, a plurality of capsules 26 may be contained in one filter 14.
  • the example of the filter 14 in FIG. 2 is an example of a monofilter, and the capsule 26 is embedded inside the filter plug 22.
  • the example of the filter 14 in FIG. 25A is an example of a dual filter, for example, a capsule 26 is embedded inside the filter plug 22 on the mouthpiece side.
  • the example of the filter 14 in FIG. 25B is an example of a dual filter, for example, a capsule is sandwiched at the boundary between the filter plug 22 on the mouthpiece side and the filter plug 22 on the rod 12 side.
  • the filter 14 of FIG. 25A may be separated from the filter plugs 22.
  • the end faces of the filter plug 22 are in contact with each other.
  • each filter 14 the form of the filter plug 22 is not particularly limited, and includes a plane filter including a single filter segment (mono filter segment), a multi-segment filter including a multi-filter segment such as a dual filter or a triple filter, and the like. can do.
  • the entire circumference of the outer surface of any of the capsules 26 may have one end 22a and the other end 22b, and may be embedded by a filter plug 22 between the one end 22a and the other end 22b.
  • One capsule 26 shown in FIGS. 2, 25A and 25B may be present in each filter plug 22, or a plurality of capsules 26 (for example, 2 to 10) may be present in each filter plug 22.
  • a plurality of capsules 26 for example, 2 to 10.
  • 10 capsules 26 when 10 capsules 26 are embedded in one filter plug 22, it is preferable that all the capsules 26 can be crushed, but some of them can be left uncrushed without any problem.
  • the filter plug 22 on the rod 12 side and the filter plug 22 on the mouthpiece side may have the same material and structure, or may have different materials and structures. May be good.
  • the heated flavor suction article system 100 includes a heating device 110 and a non-combustion heating type flavor suction article 10.
  • the schematic structure of the non-combustion heating type flavor suction article 10 is the same as that shown in FIGS. 1, 2, 25A and 25B, although the length of the rod 12 may be different, for example.
  • the heating device 110 has a main body 112, a battery 114, and a heater 116.
  • a battery 114 is arranged in the main body 112.
  • the battery 114 can be charged and discharged.
  • the main body 112 has an inserted portion 112a into which the rod 12 of the flavor suction article 10 can be inserted and removed.
  • a heater 116 driven by electric power supplied from the battery 114 is provided around the inserted portion 112a of the main body 112.
  • the heating device 110 heats the aerosol generation rod 12 by an electric heater 116 or the like.
  • the aerosol generation rod 12 inserted in the inserted portion 112a is heated.
  • the flavor is released into the surrounding air from the filler 12a of the aerosol generation rod 12.
  • the heating temperature of the aerosol-generating rod 12 by the heater 116 is, for example, 400 ° C. or lower, which is considerably lower than the combustion temperature of 700 to 800 ° C. of the combustion-type flavor suction article 10 that ignites the tip of the rod 12.
  • the filtration function of the filter 14 of the non-combustion heating type flavor suction article 10 is the mainstream shared in the smoker's mouth when the filtration function is lower than that of the filter 14 of the combustion type flavor suction article 10.
  • the amount of smoke is suitable.
  • the filter 14 of the non-combustion heating type flavor suction article 10 has a combustion type flavor having a length along the central axis C, for example, in order to reduce the filtration of mainstream smoke with respect to the filter 14 of the combustion type flavor suction article 10. It may be shorter than the filter 14 of the suction article 10.
  • the filter 14 of the non-combustion heating type flavor suction article 10 may adjust the density and diameter of the filter plug 22. Of the total length of the filter 14 of the non-combustion heating type flavor suction article 10, the length in which the filter plug 22 is arranged is shortened, and the cylinder portion and other segments having a low filtration rate of mainstream smoke are arranged in the remaining portions. You can also do it.
  • the configuration of the filter 14 of the non-combustion heating type flavor suction article 10 has almost the same configuration as other embodiments except that the length of the filter plug 22 in the central axis C direction is short.
  • the non-combustion heating type flavor suction article 10 also exerts the same effect as the combustion type flavor suction article 10. That is, the user can easily crush the capsule 26 in the filter 14 by pressing with a finger or by biting. Therefore, in the non-combustion heating type flavor suction article 10 heated by the heating device 110, the ease of splitting the capsule outer shell 32 can be improved as in the combustion type flavor suction article 10, which is convenient for the user. Can improve sex.
  • the filter 14 is compared with the combustion type flavor suction article 10.
  • the length of the filter plug 22 tends to be short. According to the heated flavor suction article 10, the fine powder 36 can prevent the capsule outer shell 32 from moving even in the filter plug 22 having a short length.
  • non-combustion non-heated flavor suction article (so-called smokeless tobacco) 10 including a filter 14 for a flavor suction article will be described.
  • the flavor suction article 10 has a holder 212, a cartridge 214, and a cap 216.
  • the holder 212 is formed in a hollow and cylindrical shape similar to the shape and size of a normal filter cigarette.
  • the holder 212 has openings 212a and 212b at both ends thereof, respectively.
  • the tip end side of the holder 212 is formed in a cylindrical shape having substantially the same inner and outer diameters.
  • the proximal end side of the holder 212 is formed tapered toward the proximal end side.
  • a mouthpiece 213 is formed at the base end of the holder 212.
  • the holder 212 is made of a soft material such as a silicone material that can be crushed by the user while suppressing stress with a finger.
  • the base end side of the holder 212 is thicker than the tip end side. Therefore, the tip side portion of the holder 212 is easier for the user to crush than the base end side portion.
  • the base end side portion of the holder 212 exhibits appropriate elasticity when the user holds the mouthpiece 213.
  • a hollow cylindrical cartridge 214 is housed in the tip of the holder 212.
  • the cartridge 214 has an outer diameter slightly smaller than the inner diameter of the tip of the holder 212, and can be inserted into and removed from the holder 212.
  • the cartridge 214 includes a cylindrical container 222 having openings 222a and 222b at both ends thereof, and a filler 224 arranged in the container 222.
  • the filler 224 is obtained by filling a container 222 with, for example, chopped or crushed tobacco leaves or a mixture of granules and additives (hereinafter referred to as tobacco grains), and a cartridge.
  • a predetermined ventilation resistance is given to 214.
  • the cartridge 214 has lids 226a, 226b provided in the openings 222a, 222b at both ends of the container 222 so as to accommodate the filler 224 in the container 222.
  • the lids 226a and 226b are each breathable.
  • the cartridge 214 has a filter retainer 228 and a filter 14 for flavor suction articles including a capsule 26 between the filler 224 and the lid 226b. Therefore, the filler 224 and the filter 14 are partitioned by a filter retainer 228.
  • the cartridge 20 is inserted into the holder 212 with the end of the container 222 on the filter 14 side facing the mouthpiece 213.
  • the container 222 is made of a soft material such as a silicone material that can be crushed while suppressing stress by the user with a finger.
  • the cap 216 is detachably fitted to the tip of the holder 212, that is, the opening 212a of the holder 212 on the opposite side of the mouthpiece 213.
  • the cap 216 has ventilation holes 216a.
  • the non-combustion non-heated flavor suction article 10 has a ventilation hole 216a, a breathable lid 226a, a filler 224, a filter retainer 228, a filter 14, a breathable lid 226b, and a mouthpiece 213 to provide an air suction path. It is formed.
  • the air taken into the cartridge 214 from the ventilation hole 216a comes into contact with the filler 224.
  • the air in the cartridge 214 contains the flavor released from the filler 224. Therefore, the user sucks in the air containing the flavor discharged from the filler 224 through the main flow path and the mouthpiece 213 of the holder 212, and the flavor discharged from the filler 224 is obtained. That is, when the user uses the non-combustion non-heated flavor suction article 10, the flavor of the filler 224 can be obtained by inhalation without requiring ignition.
  • the user can break the capsule 26 by pressing the filter 14 from the outside of the holder 212 and the outside of the container 222 of the cartridge 214 toward, for example, the central axis of the holder 212. After breaking the capsule 26, the user obtains the flavor of the filler 224 and the flavor of the content 34 encapsulated in the capsule 26 by inhalation.
  • the non-combustion non-heated flavor suction article 10 also exerts the same effect as the combustion type flavor suction article 10. That is, the user can easily crush the capsule 26 in the filter 14 by pressing with a finger or by biting. Therefore, in the non-combustion non-heated flavor suction article 10, the ease of splitting the capsule outer shell 32 can be improved and the convenience of the user can be improved as in the combustion type flavor suction article 10.
  • the filter capsule 26 for the flavor suction article which is easily crushed by the external force F applied from the outside of the filter 14, and the capsule 26 thereof are included.
  • a filter 14 for a flavor suction article a heated flavor suction article 10 including the filter 14, a combustion type flavor suction article 10 including the filter 14, and a non-combustion non-heated flavor suction article 10 including the filter 14. be able to.
  • a method for manufacturing a capsule (26) for a filter (14) for a flavor suction article The contents (34) are enclosed inside, and a capsule outer shell (32) having irregularities on the outer surface is formed.
  • a fine powder (36) having a visual particle size that can enter the recess (32b) is attached to a part of the recess (32b) of the capsule outer shell (32). Including that.
  • the width (Wc) of the recess (32b) is smaller than the fiber width (Wt) of the filter material (22).
  • the present invention is not limited to the above embodiment, and can be variously modified at the implementation stage without departing from the gist thereof.
  • each embodiment may be carried out in combination as appropriate, in which case the combined effect can be obtained.
  • the above-described embodiment includes various inventions, and various inventions can be extracted by a combination selected from a plurality of disclosed constituent requirements. For example, even if some constituent elements are deleted from all the constituent elements shown in the embodiment, if the problem can be solved and the effect is obtained, the configuration in which the constituent elements are deleted can be extracted as an invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Cigarettes, Filters, And Manufacturing Of Filters (AREA)

Abstract

香味吸引物品のためのフィルタ用カプセルは、外表面に微細な凹凸を有し、内容物が封入されたカプセル外殻と、カプセル外殻の外表面の一部に付着する微粉体とを有する。カプセル外殻の外表面では、凸部、及び、凸部に隣接し凸部に対して凹んだ凹部がランダムに繰り返される。微粉体は、カプセル外殻の外表面の凹部の一部に付着する。微粉体が付着した凹部の一部において、微粉体の顕微鏡目視による粒径は、カプセル外殻の外表面の凸部の頂部に対する凹部の深さよりも小さい。外表面に微粉体が付着するカプセル外殻が香味吸引物品用フィルタのフィルタ素材に埋設された状態で、カプセル外殻は香味吸引物品用フィルタの長手方向に交差する方向に負荷される外力にしたがって変形する。

Description

香味吸引物品のためのフィルタ用カプセル、香味吸引物品用フィルタ、加熱型香味吸引物品、燃焼型香味吸引物品、及び、非燃焼非加熱型香味吸引物品
 この発明は、香味吸引物品のためのフィルタ用カプセル、香味吸引物品用フィルタ、加熱型香味吸引物品、燃焼型香味吸引物品、及び、非燃焼非加熱型香味吸引物品に関する。
 内容物が封入されたソフトカプセルは、例えば香味吸引物品用フィルタに埋設される。通常、ユーザは、フィルタの中心軸に交差する方向からフィルタの中心軸に向かって指による押圧により、又は、咬んでフィルタ内のカプセルに外力を負荷し、カプセルを変形させて破砕する。
WO2019/130500 WO2014/171433
 この発明は、ユーザがフィルタの外側から負荷する外力により破砕し易い、香味吸引物品のためのフィルタ用カプセル、そのカプセルを含む香味吸引物品用フィルタ、その香味吸引物品用フィルタを含む加熱型香味吸引物品、その香味吸引物品用フィルタを含む燃焼型香味吸引物品、及び、そのフィルタを含む非燃焼非加熱型香味吸引物品を提供することを目的とする。
 一態様に係る香味吸引物品のためのフィルタ用カプセルは、外表面に微細な凹凸を有し、内容物が封入されたカプセル外殻と、前記カプセル外殻の前記外表面の一部に付着する微粉体とを有する。前記カプセル外殻の前記外表面では、凸部、及び、前記凸部に隣接し前記凸部に対して凹んだ凹部がランダムに繰り返される。前記微粉体は、前記カプセル外殻の前記外表面の前記凹部の一部に付着する。前記微粉体が付着した前記凹部の一部において、前記微粉体の顕微鏡目視による粒径は、前記カプセル外殻の前記外表面の前記凸部の頂部に対する前記凹部の深さよりも小さい。前記外表面に前記微粉体が付着する前記カプセル外殻が香味吸引物品用フィルタのフィルタ素材に埋設された状態で、前記カプセル外殻は前記香味吸引物品用フィルタの長手方向に交差する方向に負荷される外力にしたがって変形する。
図1は、燃焼型香味吸引物品又は加熱型香味吸引物品の概略図である。 図2は、モノフィルタプラグ(フィルタ素材)にカプセルが埋設されたフィルタを含む香味吸引物品の縦断面図である。 図3は、内容物が封入された50gのカプセル外殻に対し製造時にかける微粉体の添加量、及び、カプセル全体に対し製造時にかける微粉体の量(比較例、実施例1-1から実施例1-5)を示す図である。 図4は、実施例1-1から実施例1-5の上図は、カプセルを示す画像であり、実施例1-1から実施例1-5の下図は、上図の実施例1-1から実施例1-5に対応する、あるカプセルのカプセル外殻の拡大図である。 図5は、カプセル外殻の外表面の凹部の一部に炭酸カルシウムを付着させた状態を示すレーザ顕微鏡の像である。 図6は、実施例1-1から実施例1-5の左図は、カプセル外殻の外表面の2次元のレーザ顕微鏡の像(上面図)であり、実施例1-1から実施例1-5の右図は、左図の位置におけるカプセル外殻の外表面の3次元のレーザ顕微鏡の像(斜視図)である。 図7は、カプセル外殻に製造時に付着させた炭酸カルシウムの添加量に対する、カプセル外殻の外表面の表面粗さ(算術平均粗さRa、最大高さ粗さRz)を示すグラフである。 図8は、カプセル外殻の外表面の任意の位置での0.6mmの範囲における粗さを示すグラフである。 図9は、カプセル外殻の外表面の凹部に炭酸カルシウムが付着し、かつ、フィルタプラグの1つの繊維をカプセル外殻の外表面に接触させた状態を示す模式図である。 図10Aは、フィルタプラグを中心軸に向かって変形させる前のフィルタプラグのトウ(フィルタ素材)の繊維束とカプセル外殻との関係を示す模式図である。 図10Bは、フィルタプラグの外周面に中心軸に向かって外力を負荷し、フィルタプラグのトウの繊維束を変形させたときのフィルタプラグのトウの繊維束とカプセル外殻との関係を示す模式図である。 図11Aは、図11B中のXIA-XIA線に沿う図であり、フィルタに形成した貫通孔の一端(上端)からカプセルを貫通孔の他端(下端)に向けて押圧し、フィルタに対してカプセルを通過させる押し込み法に用いる治具の縦断面図である。 図11Bは、図11A中のXIB-XIB線に沿う断面図である。 図12は、比較例及び実施例1-1から実施例1-5における、カプセル全体に対する製造時の微粉体の量(比較例、実施例1-1から実施例1-5)、及び、押し込み法によるフィルタに対するカプセルの通過率を示す図である。 図13は、カプセルの製造時の微粉体の量(比較例、実施例1-1、実施例1-2)、及び、官能検査においてカプセルを割り易いと答えた人の割合を示す図である。 図14は、カプセルの外表面のある位置での、カルシウムCa元素の存在の有無を示す画像である。 図15は、実施例1-1、実施例1-2、実施例1-3、実施例1-5において、カプセルの製造時の微粉体の量、電子顕微鏡の観察モード、電子顕微鏡を用いて測定したカルシウム元素の量、及び、炭酸カルシウムとして換算した換算重量(重量%)を示す図である。 図16は、カプセルの製造時にカプセル外殻に添加した炭酸カルシウムの添加量と、カプセルのカルシウム元素との関係を示すグラフである。 図17は、微粉体を付着させていないカプセルの外表面のある位置での、カプセル全体に対する元素の質量%、原子数の割合(%)、X線エネルギー(keV)、及び、標準偏差σを示す図である。 図18は、カプセル全体に対する製造時の微粉体の量を1000ppmで一定にした実施例2-1から実施例2-10のカプセルにおける、添加物の種別、形状、試薬名称、主成分、販売元・グレード、SEMにより目視観察した粒径、モース硬度、及び、押し込み法によるフィルタに対するカプセルの通過率を示す図である。 図19は、カプセル全体に対する製造時の微粉体の量を1000ppmで一定にした比較例2-1から比較例2-7のカプセルにおける、添加物の種別、形状、試薬名称、主成分、販売元・グレード、SEMにより目視観察した粒径、モース硬度、及び、押し込み法によるフィルタに対するカプセルの通過率を示す図である。 図20は、製造時の微粉体の量(比較例、実施例3-1から実施例3-7)に対する、押し込み法による通過率、及び、所見を示す図である。 図21は、カプセル全体に対する製造時の微粉体の量(添加濃度)に対する微粉体の表面被覆率を示すグラフである。 図22は、カプセル外殻(被膜)の近傍での、元素中のカルシウム元素割合に対する微粉体の表面被覆率を示すグラフである。 図23は、実施例2-1、実施例2-2、実施例2-3、実施例2-10、及び、比較例2-2での検出元素、及び、元素割合を示す概略的な図である。 図24は、製造時のカプセル外殻に対する表面処理剤に離型剤/コートの有無、及び、微粉体の有無に対する、押し込み法による通過率を示す図である。 図25Aは、デュアルフィルタプラグの吸口側のフィルタプラグにカプセルが埋設されたフィルタを含む香味吸引物品の縦断面図である。 図25Bは、デュアルフィルタプラグのフィルタプラグ間にカプセルが埋設(挟持)されたフィルタを含む香味吸引物品の縦断面図である。 図26は、加熱型香味吸引物品を含む加熱型香味吸引物品システムを示す概略的な部分断面図である。 図27は、香味吸引物品用フィルタを含む非燃焼非加熱型香味吸引物品を示す概略的な断面図である。
 以下、図面を参照しながらこの発明を実施するための形態について説明する。
 図1には、燃焼型又は加熱型の香味吸引物品(たばこ)10の概略図を示す。図2には、カプセル26を含むフィルタ14を有する香味吸引物品10の縦断面図を示す。
 図1及び図2に示すように、香味吸引物品10は、充填材(刻み葉、煙草)12a、及び、充填材12aの周囲を巻いた巻紙12bを含むロッド(エアロゾル生成ロッド)12と、ロッド12に隣接して設けられた香味吸引物品用フィルタ14と、ロッド12及びフィルタ14を連結するようにロッド12及びフィルタ14の外周に巻かれたチップペーパ16とを含む。
 図2に示す香味吸引物品10のフィルタ14は、単一のフィルタプラグ(モノフィルタプラグ)22と、フィルタプラグ22の外周に巻かれたフィルタ包装紙24と、フィルタ14のフィルタプラグ22内に全周が埋め込まれたカプセル26とを含む。フィルタ14は、中心軸(長手方向)Cに沿う長さがフィルタ14の直径よりも長く形成されていることが好ましい。カプセル26は、1つのフィルタプラグ22の一端(吸口端)22aと他端(ロッド12側の端部)22bとの間に存在する。カプセル26は、フィルタ14の中心軸C上に配置されていることが好適である。なお、図2に示すフィルタ包装紙24はチップペーパ16が存在することから、必ずしも必要ではない。
 図2に示すフィルタ14のフィルタプラグ22は、一般的なフィルタプラグ22としての機能を有していれば、例えば合成繊維からなるトウ(単に「トウ」とも称する)や、紙等の材料を例えば円柱状に加工したものを用いることができる。フィルタプラグ22は、フィルタ素材として用いられる。
 フィルタプラグ22の一般的な機能とは、例えば、エアロゾル等を吸引する際に混ざる空気量の調整、喫味の調整、香喫味成分量及びタール量の調整等が挙げられる。フィルタプラグ22は、これらの機能を全て備えていることを必ずしも要するものではない。フィルタプラグ22は、上述した機能の一部を発揮できるように構成されていればよい。
 フィルタプラグ22の形状は、略円柱状であることが好適である。このため、フィルタプラグ22の中心軸Cに直交する断面の断面形状は実質的に円形であることが好適である。その円の直径は、製品(燃焼型の香味吸引物品10又は加熱型の香味吸引物品10)のサイズに合わせて適宜変更し得るが、通常5.0mm以上、8.0mm以下であることが好ましい。フィルタプラグ22の中心軸Cに直交する断面の断面形状の周の長さは、製品のサイズに合わせて適宜変更し得るが、通常16mm~25mm程度であることがより好ましい。
 なお、フィルタプラグ22の断面形状が円形でない場合、上記の直径は、その断面の面積と同じ面積を有する円で仮定し、その円における直径が適用される。フィルタプラグ22の断面形状は、円形や楕円形等に制限されず、適宜の形状を採用することができる。
 フィルタプラグ22の中心軸Cに沿う軸方向の長さは、フィルタ14により適宜変更し得る。モノフィルタであるフィルタプラグ22の中心軸Cに沿う軸方向の長さは、通常4.0mm以上、30.0mm以下であることが好ましい。図1及び図2に示すフィルタ14の中心軸Cに沿う長さは、少なくともカプセル26の直径以上であればよい。図2に示す例では、フィルタ包装紙24を含むフィルタ14の中心軸Cに沿う長さは、フィルタプラグ22の中心軸Cに沿う長さに略一致する。
 フィルタプラグ22の密度は、特段制限されないが、通常0.25g/cm以上、0.41g/cm以下であることが好ましい。
 フィルタプラグ22の通気抵抗は、特段制限されないが、通常100mmHO/120mm以上、600mmHO/120mm以下であることが好ましい。
 フィルタ14の通気は、適宜の方式によって行えばよく、例えば、予め穿孔された包装材または空気透過性包装材として、フィルタ包装紙24及び/又はチップペーパ16を利用することができる。また、フィルタ14の通気は、フィルタ包装紙24及び/又はチップペーパ16に対するレーザ穿孔による孔を利用することができる。チップペーパ16は、空気透過性であることが好適であり、通気孔を形成してもよい。フィルタ包装紙24およびチップペーパ16の両方が存在する通気性製品において、チップペーパ16の通気部の位置は、好ましくは、フィルタ包装紙24の通気部の位置と合わせられることが好適である。フィルタ包装紙24を貫通する通気孔、チップペーパ16を貫通する通気孔、またはこの両方を同時に貫通する通気孔は、フィルタ14の製造中に、レーザ穿孔により形成してもよい。
 フィルタプラグ22のトウを形成する各繊維の断面形状は、特段制限されず、例えば、円形又は楕円形以外の適宜の形状があり得る。トウフィルタの単繊度(Filament denier)は、特段制限されず、通常1デニール(g/9000m)以上であり、20デニール以下であることが好ましい。トウフィルタの総繊度(Total denier)は、特段制限されず、例えば5000デニール以上、50000デニール以下であることが好ましい。
 フィルタプラグ22は、例えばアセテート(酢酸セルロース)繊維で形成されたトウ(アセテートトウ)の濾材により構成され得る。フィルタ14は、濾材のみから構成されていてもよい。このため、フィルタ14は、フィルタプラグ22の外周にフィルタ包装紙24が巻かれていなくてもよい。図1及び図2では、フィルタ包装紙24がフィルタプラグ22の外周に巻かれた例について説明する。
 アセテートトウは、例えば、単糸繊度1.5デニール~15.0デニールのものが用いられる。この場合、フィルタプラグ22の1本の繊維幅(繊維径)は、例えばレーザスキャン法により、10μmから50μmと算出できる。なお、フィルタプラグ22の1本の繊維幅は、後述するカプセル外殻32の凹部32bの幅よりも大きい。図9中のフィルタプラグ22の1つの繊維23の繊維幅Wtを、一例として20μmとする。
 フィルタプラグ22は、例えばアセテートトウの総繊度10000デニール~44000デニール、繊維本数830本~23500本、通気抵抗100mmHO/120mm~600mmHO/120mmとすることができる。フィルタプラグ22として、アセテートトウに、トリアセチン等の可塑剤を添加してもよい。可塑剤は、フィルタプラグ22としてのアセテートトウの重量に対して6重量%~10重量%を添加することができる。フィルタプラグ22としてのアセテートトウに活性炭を添加した場合、可塑剤は、アセテートトウの重量に対して2重量%~20重量%を添加することができる。
 フィルタプラグ22のトウフィルタに用いられるトウの種類は、特段制限されず、アセテートトウの他、例えば、セルロースレーヨントウ、ビニロントウ等を用いることができる。これらのトウは、単一の材料を用いてもよく、2以上の種類の材料を組み合わせて用いてもよい。
 フィルタ包装紙24及びチップペーパ16の少なくとも一方の紙は、0.5g/cm~1.0g/cmの密度及び100μm~250μmの厚さを有する。0.5g/cm~1.0g/cmの密度及び100μm~250μmの厚さを有する紙は、フィルタ包装紙24やチップペーパ16に一般に使用される紙と比較して、密度及び厚さが大きく、かかる密度と厚さにより高いカプセル破砕性能を有することが好適である。
 なお、フィルタ包装紙24に0.5g/cm~1.0g/cmの密度および100μm~250μmの厚さを有する紙を採用した場合、フィルタ包装紙24の坪量は例えば50g/m~250g/m、フィルタ包装紙24の通気度は例えば0CU(コレスタユニット)~30000CUとすることができる。
 ところで、ユーザは、チップペーパ16を巻いたフィルタ14の外周面から中心軸Cに向かって指で軽く押圧し、又は、軽く咬むことで、フィルタ14内のカプセル26の存在及び位置を認識できる。ユーザは、チップペーパ16のうち、カプセル26が存在する位置の外周面を指で押圧し、又は、咬むことで、カプセル26を潰すことができる。ユーザは、カプセル26を潰した後、フィルタ14の外周面から中心軸Cに向かって指で軽く押圧し、又は、軽く咬むことで、カプセル26が破砕されて、カプセル外殻32内に封入されていた内容物34がフィルタプラグ22に流出したことを認識できる。
 ユーザは、チップペーパ16を巻いたフィルタ14の外周面から中心軸Cに向かって指で押圧し、又は、咬むことで、カプセル26を潰すことができる。チップペーパ16、チップペーパ16を巻いたフィルタ包装紙24及びフィルタプラグ22を含むフィルタ14が硬すぎると、カプセル26を埋設するフィルタ14を指で押圧し、又は、咬んで潰す際のチップペーパ16及びフィルタ14による反発力がユーザにとって大きくなりすぎ、ユーザに不快感を与える可能性がある。チップペーパ16及びフィルタ14からの反発力をユーザに対して適切に制御するため、チップペーパ16及びフィルタ包装紙24の選択に依存するところがあるが、フィルタプラグ22の単糸繊度は3.0デニール以上であることがより好ましく、総繊度は35000デニール以下であることがより好ましい。
 カプセル26は、内容物34が封入されたソフトカプセル外殻32と、カプセル外殻32の外表面の一部に付着する微粉体(ファインパウダー)36とを有する。
 カプセル外殻32は、例えばデンプン、デキストリン、多糖類、寒天、ジェランガム、ゼラチン、各種天然ゲル化剤、グリセリン、ソルビトール、塩化カルシウムなどで形成され、さらに香料や着色料を含むことができる。カプセル26は、不透明度を有するフィルタ包装紙24やチップペーパ16に囲まれていてもカプセル26を指で押圧する際にフィルタ包装紙24やチップペーパ16を透かしてユーザが認識できるように着色されていることが好ましい。この場合、カプセル外殻32は、着色料、例えば青色1号等を含むことが好ましい。カプセル外殻32の外表面には、着色に代えて、適宜のマークが付されていてもよい。
 内容物34の一例は香料である。内容物34の香料としては、例えばメンソール、植物精油などの喫煙物品に用いられる任意の香料を用いることができる。主な香料としては、メンソール、葉たばこ抽出エキス、天然植物性香料(例えば、シナモン、セージ、ハーブ、カモミール、葛草、甘茶、クローブ、ラベンダー、カルダモン、チョウジ、ナツメグ、ベルガモット、ゼラニウム、蜂蜜エッセンス、ローズ油、レモン、オレンジ、ケイ皮、キャラウェー、ジャスミン、ジンジャー、コリアンダー、バニラエキス、スペアミント、ペパーミント、カシア、コーヒー、セロリー、カスカリラ、サンダルウッド、ココア、イランイラン、フェンネル、アニス、リコリス、セントジョンズブレッド、スモモエキス、ピーチエキス等)、糖類(例えば、グルコース、フルクトース、異性化糖、カラメル等)、ココア類(パウダー、エキス等)、エステル類(例えば、酢酸イソアミル、酢酸リナリル、プロピオン酸イソアミル、酪酸リナリル等)、ケトン類(例えば、メントン、イオノン、ダマセノン、エチルマルトール等)、アルコール類(例えば、ゲラニオール、リナロール、アネトール、オイゲノール等)、アルデヒド類(例えば、バニリン、ベンズアルデヒド、アニスアルデヒド等)、ラクトン類(例えば、γ-ウンデカラクトン、γ-ノナラクトン等)、動物性香料(例えば、ムスク、アンバーグリス、シベット、カストリウム等)、炭化水素類(例えば、リモネン、ピネン等)が挙げられる。これら香料は、単独で用いてもよいし、混合して用いてもよい。
 内容物34の溶媒としては、香料に適した溶媒を用いることができ、中鎖脂肪酸トリグリセリド(MCT)(具体的には、トリカプリル/カプリン酸グリセリン)、プロピレングリコール、水、エタノールなどを用いることができる。内容物34は、さらに他の溶媒、色素、乳化剤、増粘剤などの他の添加剤を含有していてもよい。
 カプセル26のカプセル外殻32は、例えば球体状に形成される。ここで球体は、カプセル外殻32の中心を含む断面がほぼ円である球体及び断面が楕円である楕円球体の何れも含む。カプセル外殻32は、好ましくは、断面がほぼ円である球体の形状を有する。カプセル外殻32は、断面がほぼ円形である球体の場合、例えば直径1mm~8mm程度とすることができ、楕円球体の場合も、最大直径を2mm~8mm程度とすることができ、最小直径を1mmから7mm程度とすることができる。フィルタプラグ22の直径に対してカプセル外殻32の直径が小さすぎると、カプセル外殻32を破砕するためにユーザがフィルタ14を例えば指で押圧する押し込み距離が長くなる。カプセル外殻32が球体で、フィルタ14の直径が8.0mmである場合、カプセル外殻32の直径が3.0mm以上であることがより好ましく、楕円球体の場合、最小直径が3.0mm以上であることがより好ましい。なお、カプセル外殻32は、それ自体、例えば約10[N]~70[N]の外力が負荷されたときに破壊され得ることが好ましい。
 カプセル外殻32の外表面には、例えばミクロンレベルの微細な凹凸が形成されている。カプセル外殻32は、例えば半透明である。カプセル外殻32の外表面には、起伏があり、無数の凸部32aと、凸部32aに対して凹んだ無数の凹部32bとがランダムに繰り返されて形成されている。すなわち、カプセル外殻32の外表面は、細かい無数の凹凸が連続し、全体として略球状に形成されている。
 内容物34を封入するカプセル外殻32の製造方法は特に限定されるものではない。例えば滴下法を用いると、シームレスなカプセル外殻32を有するカプセル26が製造される。また、打ち抜き法(ロータリー式製法)によっても、カプセル外殻32を有するカプセル26が製造される。
 滴下法を用いる場合、二重ノズルを用い、内側ノズルから内容物34を、外側ノズルからカプセル外殻32を形成する液状の皮膜物質を同時に吐出させる。カプセル外殻32を形成する皮膜液が、継ぎ目を有することなく内容物34を封入しながら冷却される。
 打ち抜き法を用いる場合、カプセル外殻32を形成する1対のフィルムシート間に内容物34を挟み、フィルムシート同士を圧着するとともに、適宜の形状に打ち抜くことで、内容物34を封入したカプセル外殻32を形成する。打ち抜き法を用いる場合、球状だけでなく、カプセル外殻32をオーバル形、長楕円形等、種々の形状に形成可能である。この方式でカプセル外殻32が製造される場合、カプセル外殻32を透明に形成することができる。
 本明細書において、微粉体36とは、顕微鏡目視による粒径(以下、目視粒径という)が0.1μm~10.0μmの範囲にある粉体をいう。微粉体36の目視粒径は、カプセル外殻32の外表面の凸部32aの頂部に対する凹部32bの深さよりも小さい。
 ここで、カプセル外殻32に付着させる微粉体36について説明する。図3に示すように、カプセル外殻32に付着させる微粉体36の量を変えたカプセル26を準備した。具体的には、例えば内容物34が封入されたカプセル外殻32が50gに対して、微粉体36の量を変えた、比較例、実施例1-1、実施例1-2、実施例1-3、実施例1-4、及び、実施例1-5のカプセル26を準備した。比較例の微粉体36は、0g(0ppm、0重量%)であり、実施例1-1の微粉体36は2.5mg(50ppm、0.005重量%)、実施例1-2の微粉体36は25mg(500ppm、0.05重量%)、実施例1-3の微粉体36は50mg(1000ppm、0.15重量%)、実施例1-4の微粉体36は75mg(1500ppm、0.15重量%)、実施例1-5の微粉体36は250mg(5000ppm、0.5重量%)である。
 ここで、カプセル外殻32の外表面に微粉体36を付着させ、カプセル26を製造する工程について簡単に説明する。
 所定の回転数で回転するロータに接続された略円錐台状又は略ボウル(bowl)状の容器を適宜に傾け、内容物34を含むカプセル外殻32を容器に入れる。ロータにより適宜の速度で容器を回転させながら、容器に対して例えば金属材製の篩にかけた微粉体36のうち、所定量の1/3程度をカプセル外殻32にかける。このため、容器に入れられたカプセル外殻32の外表面には、均一的に微粉体36が付着する。例えば1分程度、ロータによる容器の回転を維持してロータを停止させる。その後、再びロータを回転させながら容器に対して篩にかけた微粉体36のうち、所定量の1/3程度をカプセル外殻32にかけ、例えば1分程度、ロータによる容器の回転を維持してロータを停止させる。さらにその後、容器に対して篩にかけた微粉体36のうち、残りの所定量の1/3程度をカプセル外殻32にかけ、例えば1分程度、ロータによる容器の回転を維持してロータを停止させる。計5分程度でカプセル外殻32の外表面に均一的に微粉体36を付着させ、微粉体36を付着させたカプセル26を得る。カプセル外殻32に付着しなかった微粉体36は、カプセル26が容器から取り出される際に取り除かれる。また、カプセル26に付着した微粉体36のうちの余剰の微粉体36は、後続の選別検査工程において通る篩においてカプセル26から取り除かれる。余剰の微粉体36は、主に凸部32aに付着したものである。このため、微粉体36は基本的に凸部32aよりも凹部32bに多く存在する。
 実際にカプセル外殻32の外表面に微粉体36を付着させ、カプセル26を製造する場合は、例えば20kgなど、適宜の量のカプセル外殻32に対して、例えば1gから100gの微粉体36を添加してカプセル26を作成する。
 実施例1-1から実施例1-5における微粉体36は、全てがカプセル外殻32の凹部32bに付着するわけではない。微粉体36の一部は、カプセル外殻32の外表面から脱落する。このため、カプセル外殻32の凹部32bに付着する微粉体36の量は、実施例1-1から実施例1-5の製造時の量よりも少なくなる。
 図4には、実施例1-1、実施例1-2、実施例1-3、実施例1-4、及び、実施例1-5のカプセル26の外観写真を示す。図4に示す例の場合、カプセル外殻32は半透明である。内容物34により、ユーザにはカプセル外殻32は全体として略青色に見える。微粉体36は白色である。
 図5に示すように、このように形成したカプセル26のカプセル外殻32の外表面の凹部32bの一部には、微粉体36が付着している。微粉体36の一例は、例えば炭酸カルシウム(CaCO)粒子である。炭酸カルシウムの一次粒子径は例えば0.03μm~2.3μmである。微粉体36としての炭酸カルシウムは、凝集粒子(二次粒子)となってカプセル外殻32に存在していることもあり得る。
 図6には、レーザ顕微鏡による実施例1-1、実施例1-2、実施例1-3、実施例1-4、及び、実施例1-5のカプセル26の外観を拡大して示す。図6中の実施例1-1から実施例1-5における左図は、カプセル26のある位置の上面図、右図は、カプセル26のある位置の斜視図である。図6に示すように、実施例1-1よりも実施例1-2、実施例1-2よりも実施例1-3、実施例1-3よりも実施例1-4、実施例1-4よりも実施例1-5といったように、カプセル外殻32にかけた微粉体36の濃度が上がるにつれて、カプセル26の外観は白色の領域が次第に大きくなっている。このため、カプセル外殻32の凹部32bへの微粉体36の付着量も、微粉体36の量(濃度)を多くするにつれて上昇する。
 図7には、微粉体36としての炭酸カルシウムのカプセル外殻32への添加量と、カプセル26の外表面の表面粗さRa,Rzとの関係を示す。図7中のRaは算術平均粗さであり、Rzは最大高さ粗さである。算術平均粗さRaは、測定器情報
メーカー  株式会社キーエンス
機種    レーザ-顕微鏡VK-X3000
測定条件  観察倍率   :×20
      カットオフ  :λs=2.5μm λc=0.08μm
      基準長数   :7
      プロファイル数:31
      スタイラスモード変換:2μm、60度
で測定した粗さ曲線の一部を基準長さで抜き出し、その区間の凹凸状態を平均値で表す。最大高さ粗さRzは、同じ粗さ計で測定した粗さ曲線の一部を基準長さで抜き出し、最も高い部分(最大山高さRp)と最も深い部分(最大谷深さRv)の和である。カプセル外殻32に対する微粉体36の添加量を多くするにつれて、算術平均粗さRa及び最大高さ粗さRzが低下する。このため、微粉体36の添加量を多くするにつれて、カプセル外殻32に付着する微粉体36の量が増している。言い換えると、カプセル外殻32に付着する微粉体36の付着量が少ないほど、カプセル外殻32の外表面の算術平均粗さは、粗くなる。
 カプセル外殻32の凹部32bは、カプセル外殻32の外表面の適宜の方向(長さ方向)に沿う長さ、長さ方向に交差する幅方向に沿う幅、カプセル外殻32の外表面の凸部32aからカプセル26の中心に向かう深さ方向に沿う深さ(凸部32aと凹部32bの底面との距離)により規定される。幅方向は、カプセル外殻32の外表面に沿う方向である。
 微粉体36は、長さ、幅、深さにより規定される凹部32bに入り込むことが可能な小さい径の極微粉である。カプセル外殻32の凹部32bの全部に微粉体36が付着しているわけではなく、カプセル外殻32の外表面の凹部32bの一部に対して極微量付着していればよい。微粉体36は、カプセル外殻32の外表面に対し、満遍なく付着し、例えばカプセル外殻32の外表面の任意の第1部分を見ても、第1部分と異なる第2部分など、どの位置を見ても、ほぼ同じ量の微粉体36がカプセル外殻32の外表面に付着していることが好適である。
 図8には、カプセル外殻32の外表面のある位置での約0.6mmにわたる粗さ曲線を示す。凹部32bの粗さ曲線要素の平均高さ(深さ)Rc(カプセル外殻32の部分毎の凸部32aと凹部32bとの高低差の平均)は、4μm~5μmである。このため、カプセル外殻32の凹部32bの一部には、少なくとも1μm~5μmよりも小さい径の粒子が入り込み得る。
 カプセル外殻32の凹部32bの幅は、該当する標準的な表面パラメータがない。この出願の発明者は、図8に示すグラフから得られたデータを目視した。その結果、カプセル外殻32の凹部32bは、図8に示すグラフの基準線(横軸)の位置で見て最小で略3μm、最大で略30μm程度の幅がある。図8のグラフの横軸の山(カプセル外殻32の凸部32a)同士の間隔を見れば、カプセル外殻32の凹部32bには、例えば10μm以上の幅がある位置が数多く存在する。このため、例えば0μm~10μmの目視粒径の微粉体36の粒子は、カプセル外殻32の凹部32bの一部に入り込み得る。
 図9から図10Bは、フィルタプラグ22のトウの繊維23の繊維幅(繊維径)と、カプセル外殻32の凸部32a及び微粉体36が付着したカプセル外殻32の凹部32bを含むカプセル外殻32の外表面との関係を示す模式図である。図9は、カプセル外殻32の外表面を略平面として扱うことができる大きさである。これに対し、図10A及び図10Bは、カプセル外殻32の外表面を球面の一部としてとらえた大きさを示す。
 図9は、フィルタプラグ22のトウの繊維23の繊維幅(繊維径)Wtに対するカプセル外殻32の模式図を示す。フィルタプラグ22のトウの繊維23の繊維幅Wtは、例えば略20μmである。図9に示す例の場合、カプセル外殻32の凹部32bの幅Wcは略3μm、深さDcは略5μmである。微粉体36の目視粒径は、例えば0.2μmから2μmである。
 図9は、微粉体36が入り込んだ密度が異なる3つの凹部32bを示す。微粉体36が全く入り込んでいないか、殆ど入り込んでいない凹部32bが存在し得る。また、微粉体36が凹部32bに入り込む量が多く、微粉体36の密度が高い凹部32bが存在し得る。微粉体36は、凹部32bに対して、一次粒子、及び、凝集粒子(二次粒子)が混在し得る。
 図10Aは、フィルタ14の中心軸C(図示せず)に向かって外力が負荷されていない場合の、フィルタプラグ22及びカプセル26の一部を示す模式図である。図10Bは、フィルタ14の中心軸C(図示せず)に向かって外力Fが負荷された状態での、フィルタプラグ22及びカプセル26の一部を示す模式図である。
 フィルタプラグ22のトウの繊維23の繊維幅Wtが例えば20μmであるのに対し、カプセル外殻32の凹部32bの幅Wcは例えば3μmで、微粉体36の目視粒径は例えば2μm以下である。このため、図10Aに示すように、フィルタ14に対してユーザが中心軸Cに向けて外力を負荷していない無負荷状態では、カプセル外殻32の凹部32b内に入り込んで付着している微粉体36に対し、フィルタプラグ22の繊維23が接触しないか、接触量が少ない。
 ユーザがカプセル26を破砕する場合、ユーザは、フィルタ14の外側を指で押圧し、又は、咬んでフィルタプラグ22の中心軸C(図示せず)に向けて外力Fを負荷する。外力Fは、カプセル26に対し、香味吸引物品用フィルタ14の中心軸Cに交差する方向に負荷されればよい。
 外表面に微粉体36が付着するカプセル26は、香味吸引物品用フィルタ14のフィルタプラグ22に全周が埋設された状態で、香味吸引物品用フィルタ14の中心軸Cに交差する方向に負荷される外力Fにしたがって変形する。このとき、図10Aに示す無負荷状態から、図10Bに示すように外力Fによりフィルタプラグ22の各繊維23(図9参照)が変形してフィルタプラグ22の繊維23がカプセル外殻32の凹部32bの微粉体36に接触可能である。このため、フィルタプラグ22の各繊維23とカプセル外殻32の凸部32aとの間の摩擦に加えて、各繊維23とカプセル外殻32の凸部32aに存在する微粉体36との間に摩擦が生じる。微粉体(粒子)36は、凹部32b内での位置によっては、カプセル外殻32の凹部32bとフィルタプラグ22との間に挟まれる。
 ここで、微粉体36は、カプセル外殻32の凹部32bとフィルタプラグ22の繊維23とが直接接触するよりも静摩擦力を上げる素材が用いられる。すなわち、微粉体(粒子)36は、カプセル外殻32を形成する素材よりも、フィルタプラグ22の繊維23に対する滑りを抑制する素材である。
 このため、フィルタプラグ22の外周面から中心軸Cに向けて外力Fが負荷される前に比べて、フィルタプラグ22の外周面から中心軸Cに向けて外力Fが負荷されているとき、外力Fにより、フィルタプラグ22の各繊維23とカプセル外殻32の凸部32aとの間の静摩擦力が増大するだけでなく、フィルタプラグ22の各繊維23と微粉体36との間に静摩擦が生じる。したがって、ユーザがカプセル26を破砕するとき、外力Fによる静摩擦力だけでなく、微粉体36によるフィルタプラグ22の繊維23とカプセル26との間の静摩擦力を増加させる。このため、微粉体36を付着させたカプセル外殻32を有するカプセル26を用いることで、フィルタプラグ22の外周面から中心軸Cに向けて外力Fを負荷したときに、フィルタプラグ22のトウを形成する繊維23に対してカプセル26が滑ることを抑制する。このため、ユーザがカプセル26を破砕したいときに、指で押圧し、又は、咬んで、より確実に破砕することが可能である。
 ユーザがカプセル26を指や歯で咬んで割る行為を行う場合、測定機器のように常にカプセル26の球体の頂点に力が加わるわけではなく、往々にして頂点からずれた位置に力が加えられる。例えば、カプセル26は、カプセル外殻32からカプセル26の中心に向かって力が負荷されるとは限らない。カプセル26は、ユーザがカプセル26を指や歯で咬んで割る行為を行う場合でも、フィルタプラグ22の繊維23とカプセル外殻32の凹部32bの微粉体36との間に静摩擦力が生じる。したがって、カプセル26の頂点からずれた位置に力が加えられても、フィルタプラグ22に対して、カプセル26が滑らずに、カプセル26に確実に力が加わり、カプセル26を割ることができる。したがって、カプセル26に対する力の作用点は、カプセル26の頂点であっても、頂点の位置から力の作用点がズレても、カプセル26を破砕する際に滑り難い。したがって、ユーザがカプセル26を破砕したいときに、指で押圧し、又は、咬んで、より確実に破砕することが可能である。
 図11A及び図11Bは、フィルタ14の中心軸Cに沿って形成した貫通孔44に対して、カプセル26を押し込んで貫通させる押し込み法による実験を説明する図である。図11A及び図11Bに示す治具40は、台座41と、台座41を貫通するように配設された樹脂パイプ42とを有する。台座41は、例えば硬質ウレタンを用いる。台座41は、例えば、50mm(W)×50mm(D)×20mm(H)に形成されている。樹脂パイプ42は、図11B中の台座41の上面の対角線の交点を中心とする位置に配設されている。樹脂パイプ42の上端側位置(上端側パイプ)42aの内径は8mmであり、下端側位置(下端側パイプ)42bの内径は6mmである。樹脂パイプ42のうち、内径が8mmの上端側位置42aの高さは、フィルタ14の長さと同じか又はフィルタ14の長さよりも長く形成されている。フィルタ14の外径が8mmで、長さが15mmである場合、樹脂パイプ42の上端側位置42aの長さは例えば20mmである。樹脂パイプ42の下端側位置42bの高さは例えば5mmである。内径が6mmの下端側位置42bの樹脂パイプ42の高さは、カプセル26の外径よりも大きい。カプセル26の外径は例えば3.5mmである。台座41の底面と樹脂パイプ42の下端が一致する場合、樹脂パイプ42の上端側位置42aの上端は、台座41の上面よりも上側に突出する。フィルタ14は、樹脂パイプ42の上端側位置42a内で支持され、樹脂パイプ42を通して脱落することが防止されている。フィルタ14は、フィルタプラグ22の外形及び外径を維持するため、フィルタプラグ22の外周にフィルタ包装紙24が巻かれている。なお、ここで用いるフィルタプラグ22は、一例であるが、単糸繊度3.5デニール、総繊度35000デニール、通気抵抗360mmHO/120mmで、円周長が略24mmである。
 図11Aに示すように、フィルタ14のフィルタプラグ22の中心軸Cに沿って例えば図示しないニードルを用いて貫通孔44を形成した。フィルタプラグ22に形成した貫通孔44の直径(ニードルの直径)は3.0mmである。
 図11Aに示すように、貫通孔44の直径よりも直径が大きいカプセル26をフィルタプラグ22の貫通孔44の上端に載せ、ロードセル46の下端の押圧部46aで貫通孔44に沿って上端から下端に向かって、一方向にカプセル26を押圧する。このとき、フィルタ14に対し、ロードセル46を用いたカプセル26の押圧速度を100mm/minの一定速度とした。そして、フィルタ14の貫通孔44に対するカプセル26の通過率(カプセル26がフィルタプラグ22の一端から他端まで貫通孔44を通したときに割れずに通過した率)を得る実験を行った。
 この実験において、フィルタ14に対するカプセル26の押し込みには、レオ(RHEO)メータ(サン科学社製、品番:CR-3000EX)のロードセル(ピストン)46を用いた。この方法により、フィルタ14のフィルタプラグ22に対するカプセル26の動き難さ、フィルタプラグ22内の全長(15mm)のいずれの位置でカプセル26が破砕したかを得ることができる。
 カプセル26は、レオメータのロードセル46の下端の押圧部46aによりフィルタプラグ22の貫通孔44に対して押圧される。ロードセル46の下端の押圧部46aは、貫通孔44の直径と略同じか僅かに小さい直径を有する円盤状である。押圧部46aの直径は3.0mmである。
 ロードセル46の下端の押圧部46aでフィルタプラグ22の貫通孔44の上端に対してカプセル26を押圧すると、貫通孔44の一端から貫通孔44内にカプセル26が入れられる。このとき、カプセル外殻32の凹部32bに付着した微粉体36をフィルタプラグ22の貫通孔44の内壁の繊維に接触させる。
 カプセル26を貫通孔44の上端側から下端側に向かってレオメータのロードセル46の押圧部46aで押圧すると、フィルタプラグ22の繊維に対する摩擦により、カプセル26が扁平するとともに、フィルタプラグ22の貫通孔44の内周面(内壁)に圧力を付加する。言い換えると、フィルタプラグ22の貫通孔44の内周面(内壁)からカプセル26には、中心軸Cに向かう反力が負荷される。
 フィルタプラグ22の貫通孔44に対して比較的動き難いカプセル26は、貫通孔44の上端と下端との間の途中で破砕された。
 フィルタプラグ22の貫通孔44に対して比較的動き易いカプセル26は、貫通孔44の上端と下端との間の途中で破砕されることなく、貫通孔44の上端から下端まで移動し、フィルタプラグ22の下端を通過した。なお、本実験では、カプセル外殻32に微粉体36を付着したカプセル26は、フィルタプラグ22内で適宜に破砕されることが好適である。
 このように、押し込み法による実験では、カプセル26をロードセル46の押圧部46aによりフィルタプラグ22の貫通孔44に沿って上端から下端に向かって適宜の速度で押し込み、カプセル26の変形によりカプセル外殻32に付着させた微粉体36の一部をフィルタプラグ22の繊維に接触させる。これは、図10A及び図10Bに模式的に示すように、香味吸引物品10の実際のフィルタプラグ22を外力により中心軸Cに向けて変形させ、フィルタプラグ22を介してカプセル26を変形させて破砕するメカニズムとは異なると解される。すなわち、香味吸引物品10は、実際には、フィルタ14の外周から中心軸Cに向けて外力Fを負荷して、フィルタプラグ22の繊維を変形させてカプセル外殻32に付着した微粉体36に接触させるものである。しかしながら、本実験と、実際の香味吸引物品10とは、フィルタプラグ22の繊維とカプセル外殻32に凹部32bに付着させた微粉体36とを接触させたときのフィルタプラグ22及びカプセル26の挙動を得ることに変わりがない。このため、図11A及び図11Bに示す押し込み法による実験により、フィルタ14に対するカプセル26の動き難さの検証が可能となる。
 上述したように、カプセル26として、図3に示すように、カプセル外殻32の外表面に微粉体36を付着させないものを比較例とし、製造時にカプセル外殻32の外表面に微粉体36を50ppmかけたものを実施例1-1とし、製造時にカプセル外殻32の外表面に微粉体36を500ppmかけたものを実施例1-2とし、製造時にカプセル外殻32の外表面に微粉体36を1000ppmかけたものを実施例1-3とし、製造時にカプセル外殻32の外表面に微粉体36を1500ppmかけたものを実施例1-4とし、製造時にカプセル外殻32の外表面に微粉体36を5000ppmかけたものを実施例1-5とした。なお、実施例1-1から実施例1-5における各カプセル外殻32に実際に付着した微粉体36の量はバラツキがあると想定される。そして、比較例、実施例1-1、実施例1-2、実施例1-3、実施例1-4、実施例1-5について、それぞれ20回試験を行い、図12に示すように、フィルタ14に対する、比較例、実施例1-1、実施例1-2、実施例1-3、実施例1-4、実施例1-5のカプセル26の通過率(%)を得た。
 押し込み法の実験結果について、通過率は、比較例で80%、実施例1-1で40%となった。実施例1-2、実施例1-3、実施例1-4、及び、実施例1-5では、0%となった。微粉体36を付着させたカプセル26は、実施例1-1のように、カプセル26の製造時にかける微粉体36の量が50ppmなど少量であっても、フィルタプラグ22の貫通孔44に対する通過率が、微粉体36を付着させていない比較例のカプセルに比べて低下する。このため、微粉体36を付着させたカプセル26は、微粉体36を付着させていないカプセルと比べて、フィルタプラグ22との静摩擦力が上昇していると言える。したがって、微粉体36を微量でも付着させたカプセル26を含むフィルタ14は、フィルタプラグ22内でフィルタプラグ22に対して滑り難くなるため、ユーザが指で押圧し、又は、咬むことで、微粉体36を付着させていないカプセルを含むフィルタに対して、カプセル26を割り易くなる。
 上述したように、製造時にカプセル外殻32に対して1000ppmよりも少ない量の微粉体36をかけて製造した実施例1-2のカプセル26を用いた実験において、通過率が0%となった。このため、実施例1-2の実験では、フィルタプラグ22の貫通孔44内でカプセル26が必ず破砕した。また、製造時にカプセル外殻32に対して1000ppm以上の量の微粉体36をかけて製造したカプセル26(実施例1-3、実施例1-4、及び、実施例1-5)を用いた実験において、フィルタプラグ22の貫通孔44内でカプセル26が必ず破砕した。このように、製造時にカプセル外殻32に対して適宜の量の微粉体36は必要とするが、1000ppm以上の微粉体36をかけてカプセル26を製造することは不要であることがわかる。すなわち、製造時にカプセル外殻32に対してかける微粉体36は、1000ppmよりも低い割合で十分である。
 次に、香味吸引物品10のユーザによる官能検査情報(咬んだ感触の評価)について図13を用いて説明する。
 3つの水準の異なるカプセル26(比較例、実施例1-1、実施例1-2)が埋設されたフィルタ14を含む香味吸引物品10を作成し、各水準のカプセル26の1つずつを30名の被験者に順に咬んで割ってもらった。30名には、各水準のフィルタ14内のカプセル26の割り易さの感覚を記入してもらった。カプセル26の直径は3.5mm、フィルタプラグ22は一般的なモノアセテートフィルタで、寸法は15mm(長さ)×7.6mm(直径)、カプセル26は、フィルタプラグ22のアセテートトウ繊維束の中に埋め込まれている。
 各人ごとに、以下の(1)、(2)のどちらかを選択してもらった。
(1)カプセル26をしっかりと咬むことができて割り易い。
(2)カプセル26を咬むとフィルタプラグ22に対して少し位置がずれて割り難い。
 図13に示すように、比較例のカプセルを用いたフィルタ14の場合、上記(2)を30名が選択した。実施例1-1を用いたフィルタ14の場合、上記(1)、上記(2)の選択者が30名のうち半数に分かれた。実施例1-2を用いたフィルタ14の場合、上記(1)を30名が選択した。このように、カプセル外殻32に微粉体36を付着した実施例1-1、実施例1-2のカプセル26は、カプセル外殻32に微粉体36を付着していない比較例に対して明らかにフィルタプラグ22のトウに対する滑りが抑制され、カプセル26を割り易くなったと言える。
 なお、図11Aから図12に示す押し込み法による通過率が比較例で80%であったのに対し、実施例1-1において40%で、実施例1-2において0%であり、適宜の量の微粉体36を有するカプセル26は、フィルタプラグ22内でカプセル26を確実に割り易くなっている。官能検査情報においても、フィルタ14に実施例1-2のカプセル26を用いた場合、100%のユーザが割り易いと判断した。すなわち、カプセル外殻32の外表面に製造時に実施例1-2の量の微粉体36を付着させたカプセル26を用いることで、確実にカプセル26を破砕し易くなっている。
 ここで、微粉体36として炭酸カルシウムをカプセル外殻32の凹部32bに付着させると、微粉体36をカプセル外殻32に付着させたカプセル外殻32の凹凸量(粗さ)が、微粉体36をカプセル外殻32に付着させていないカプセル外殻32の凹凸量に比べて減少する。このため、概して、フィルタプラグ22の繊維に対してカプセル26が滑り易くなると想定される。しかしながら、微粉体36として炭酸カルシウムを用いると、微粉体36を付着させていないカプセルに比べて凹凸量が減少するにも関わらず、フィルタプラグ22の繊維に対してカプセル26を滑り難くすることができる。具体的には、適宜の微粉体36を用いることで、外力Fによりフィルタプラグ22及びカプセル26を変形させたときのフィルタプラグ22とカプセル外殻32の外表面との間の静摩擦力に加えて、フィルタプラグ22の繊維と微粉体36との間の静摩擦力が負荷される。したがって、フィルタプラグ22の繊維とカプセル26との間の摩擦力を、微粉体36を用いない場合、すなわち、フィルタプラグ22とカプセル外殻32の外表面との間の静摩擦力だけが負荷される場合に比べて増大させることができる。したがって、カプセル外殻32の凹部32bの一部に微粉体36を付着させることにより、外力Fにより、フィルタ14内のカプセル26を破砕するときに、フィルタプラグ22に対してカプセル26を滑り難くすることができる。
 このように、カプセル外殻32の凹部32bの一部に微粉体36を適宜の量、付着させたカプセル26は、フィルタプラグ22に対して凹凸量を減少させる。一方、フィルタ14の外側から中心軸Cに向けて負荷される外力Fにより、フィルタプラグ22及びカプセル26が変形された状態で、カプセル26とフィルタプラグ22との間の静摩擦力をフィルタプラグ22と微粉体36との間の静摩擦力の増大分、大きくすることができる。
 なお、押し込み法の実験を行う場合、フィルタ14の中心軸C、すなわち貫通孔44が上下方向に延出する状態に配置するのでなく、フィルタ14自体が動かない状態に保持できれば、フィルタ14の中心軸C、すなわち貫通孔44が例えば水平方向に延出する状態に配置してもよい。
 また、上述したように、カプセル外殻32に微粉体36を付着させる工程において、カプセル外殻32に付着しなかった微粉体36、及び、カプセル26に付着した微粉体36のうちの余剰の微粉体36は、後続の選別検査工程において通る篩によりカプセル26から取り除く。カプセル外殻32に対して微粉体36をかける量が製造時に1000ppm以下程度であれば、微粉体36の量が元々少ない。このため、カプセル26を埋め込みながらフィルタプラグ22を製造するフィルタ14の製造ラインにおいて脱落する微粉体36の量を少なくすることができる。カプセル26の製造工程において、カプセル外殻32に対して微粉体36をかける量が少ないほど、カプセル外殻32に付着しない、又は、カプセル外殻32から脱落する微粉体36が少なくなる。凸部32aに付着し、凸部32aから飛散し、又は、脱落し易い微粉体36は基本的に微量である。このため、微粉体36の量が少ないほど、カプセル26及びフィルタ14の製造ラインの清掃を容易にすることができる。このため、製造時にカプセル外殻32に微粉体36を付着させる工程、及び、微粉体36を付着したカプセル26をフィルタプラグ22内に埋設する工程の際に、これら工程を行う領域の汚損やつまり等の工程トラブルを抑制できる。したがって、微粉体36の量が少ないほど、香味吸引物品10の製造ラインの清掃など、メンテナンスを容易にすることができる。
 また、本実施形態に係るカプセル26において、カプセル外殻32に対する微粉体36の付着量は少ない。このため、カプセル26の見た目は、微粉体36の有無による変化が少ない。
 本実施形態で重要であることは、極微量ながらカプセル26の凹部32bに微粉体36が付着することである。その微粉体36はカプセル外殻32の凹部32bに入り込むように付着されていることから、フィルタ14の外側から中心軸Cに向かって外力Fが負荷されるよりも以前は、フィルタプラグ22の繊維と直接接触し難く、比較的安定してカプセル26に存在する。そして、フィルタ14を製造する工程中でもカプセル外殻32から微粉体36は簡単には脱落し難い。
 極少量の微粉体36がカプセル外殻32の凹部32bに付着したカプセル26において、カプセル26とフィルタプラグ22のトウとの間に微粉体36が寄与する摩擦力を発揮するのは、主として、フィルタ14の中心軸Cに向かってフィルタプラグ22に外力Fが負荷されるときである。つまり、フィルタプラグ22の中心軸Cに向けてフィルタプラグ22に外力Fが負荷される前(力がかかっていない場合)、カプセル26に対し摩擦力を負荷する対象となるフィルタプラグ22のトウ繊維は、カプセル外殻32の凹部32bに付着した微粉体36に触れない、又は、触れ難い。一方、フィルタプラグ22に外力Fが負荷され、フィルタプラグ22の中心軸Cに向けて外力Fがかかる場合、フィルタプラグ22のトウ繊維が変形し、カプセル26の外表面の凹部32bに存在する微粉体36にトウ繊維が確実に接触する。
 微粉体36は、フィルタプラグ22のトウの繊維とカプセル外殻32との間に微粉体36がない場合よりも、ある場合にフィルタプラグ22のトウの繊維とカプセル外殻32との間の静摩擦力を増大させることができる。このため、微粉体36は、フィルタプラグ22のトウの繊維との間に静摩擦を生じることができる。また、微粉体36は、フィルタプラグ22のトウの繊維とカプセル外殻32の外表面との間に挟まれたときに静摩擦力を生じさせることができる。
 それぞれの目視粒径は小さいものの、多数がカプセル外殻32の外表面の凹部32bの広範囲に存在する微粉体36は、その微粉体36が付着する凹部32bに対してフィルタプラグ22のトウをグリップする。このため、フィルタプラグ22のトウとカプセル26の微粉体36との間で静摩擦力が発生し、フィルタプラグ22に対するカプセル26の位置ずれが効果的に防がれる。したがって、ユーザによりフィルタ14の中心軸Cに向けて指で押圧し、又は、咬んで外力Fを負荷したとき、フィルタプラグ22に対してカプセル26が滑り難く、カプセル26を破砕し易い。
 このように、カプセル外殻32の外表面の凹部32bに微粉体36が存在することでフィルタプラグ22とカプセル外殻32の外表面との間に常態的には高い摩擦力は生じなくとも、微粉体36は、フィルタプラグ22を介してカプセル外殻32の外表面を押した外力Fがかかったときにフィルタプラグ22とカプセル外殻32の外表面との間に極めて有効な摩擦力を発生させる。
 一方、カプセル外殻32の外表面の凸部32aからは、微粉体36が除去されている。フィルタ14の製造時、カプセル26のフィーディングの際に、ホッパーなどにおいてカプセル26同士が接触している場合、凸部32aから微粉体36が除去されていないと、例えばカプセル26同士の摩擦等により、カプセル26から微粉体36が遊離し、製造設備が汚れ、又は、カプセル26同士が個々に分かれ難い(摩擦)現象が生じる可能性がある(フィーディングエラー)。しかしながら、カプセル外殻32の外表面の凸部32aから適切に微粉体36が除去されていると、カプセル26同士が接触していても、カプセル26同士の間摩擦が生じ難くなるため、上記のような問題が生じ難い。
 微粉体36として炭酸カルシウムがカプセル外殻32に付着していることを電子顕微鏡のエネルギー分散型X線分析装置(EDS)を用いて検証した。EDSにより、電子線により励起された特定X線を検出することにより、カプセル26の炭素C以上の元素の含有量及びその組成比を特定可能である。図14には、カプセル外殻32の外表面の、カルシウムCa元素を抽出した電子顕微鏡写真を示す。図14に示すように、カプセル外殻32の凹部32bにはカルシウムCa元素が局在していることが認識される。EDSは、カプセル外殻32の原料としてカルシウムCa元素を大量に含む場合を除いて、カプセル外殻32の凹部32bでの微粉体36の存在を識別可能である。
 カプセル26は、有機物(炭素C及び酸素O)で90%以上を占める。そして、カルシウムCa元素の重量%を炭酸カルシウム(CaCO)に換算した値は、カプセル外殻(皮膜)32の重量に対する重量%といえる状態となる。
 図15は、微粉体36として炭酸カルシウムを用いた、実施例1-1、実施例1-2、実施例1-3、及び、実施例1-5のカプセル26を電子顕微鏡を用いて所定の倍率(例えば6000倍)で撮影し、カプセル26に対するカルシウムCaの重量%を測定した結果を示す。図16に示すように、カプセル外殻32に対する微粉体36の添加量(ppm)に対するカルシウムCa元素の検出重量%は、縦軸及び横軸を対数として、直線的に近似できる。このため、カプセル外殻32に対する微粉体36の添加量が増すと、カルシウムCa元素の検出量は増す。
 ところで、炭酸カルシウムを微粉体36としてカプセル外殻32に添加していない、比較例の場合も、カルシウムCa元素がEDSにより、検出される場合がある。
 図17には、微粉体36を付着させていないカプセル26の外表面のある位置での、カプセル26全体に対する元素の質量%、原子数の割合(%)、X線エネルギー(keV)、及び、標準偏差σを示す。図14から図17に示すように、エネルギー分散型X線分析装置により、単位面積当たりのカルシウムCa元素の質量(一視野に示すカルシウムCa元素の質量)を検出することで、カプセル26に対する微粉体36としての炭酸カルシウムの量を検出可能である。すなわち、実施例1-1から実施例1-5において、製造時にカプセル外殻32にかけた微粉体36の量と、フィルタプラグ22に埋設されるカプセル26のカプセル外殻32に付着した微粉体36の量とを、電子顕微鏡を用いて検査することができる。
 フィルタプラグ22を構成するトウは、その他の追加繊維と組み合わせることができる。その他の追加繊維としては、例えば、カーボン繊維、活性炭繊維、天然繊維、合成繊維等、又はこれらの任意の組み合わせが挙げられる。
 トウは、その中に、任意に接着添加物を含むことができる。接着添加物としては、例えば、結合剤、接着剤、樹脂、粘着性付与剤等、またはこれらの任意の組み合わせを用いることができる。接着添加物により、トウの繊維同士を接着させることができる。
 トウは、任意の添加物を含有することができる。任意の添加物としては、例えば、活性粒子、活性化合物、イオン性樹脂、ゼオライト、ナノ粒子、セラミック粒子、柔軟剤、可塑剤、色素、染料、香味料、芳香剤、制御放出性ベシクル、表面改質剤、潤滑剤、乳化剤、ビタミン、過酸化物、殺生物剤、抗真菌剤、抗菌剤、帯電防止剤、難燃剤、消泡剤、分解剤、伝導性変性剤、安定剤、仕上げ剤等、又はこれらの任意の組み合わせが挙げられる。
 トウは、表面機能性を付与するために、表面処理することができる。例えば、トウの表面に官能化やイオン化、酸化、加水分解等の処理を施すため、浸漬、スプレー、プラズマへの曝露、イオン化気体への曝露等の方法を用いることができる。
 なお、微粉体36としては、フィルタ14のフィルタプラグ22の素材とカプセル外殻32との間が直接接触するよりも、フィルタ14のフィルタプラグ22の素材が微粉体36を介してカプセル外殻32と接触する方が静摩擦係数を大きくするものであれば、炭酸カルシウムに限られない。例えば、炭酸カルシウムとともに、カプセル外殻32の凹部32bに入り込み得る大きさ(例えば10μm程度以下)の目視粒径を有する微粉体36として、図18に示す添加物例1-10などが用いられてもよい。
 図18は、カプセル26の好ましい実施例2-1から実施例2-10を示す。実施例2-1から実施例2-10のカプセル26は、カプセル26の製造時に、カプセル外殻32に、例えば1000ppmの好ましい微粉体(添加物)36をかけて得た。図18中の実施例2-1から実施例2-10のカプセルの微粉体36の主成分は、二酸化チタン、炭酸マグネシウム、リン酸水素カルシウム、炭酸カルシウム、ケイ酸アルミナ化合物である。また、図19は、図18と比較するための添加物の比較例2-1から比較例2-7のカプセルを示す。図19中の比較例2-1から比較例2-7のカプセルの粉末の主成分は、ポリプロピレン、ケイ酸マグネシウム化合物、セルロース、アルギン酸ナトリウム、デキストリン、植物ステロールである。
 製造時にカプセル外殻32の外表面に1000ppm(対カプセル重量)の炭酸カルシウムの微粉体36をかけた実施例1-3(図3参照)のカプセル26と同様に、製造時にカプセル外殻32の外表面に1000ppmの添加物として図18に示す実施例2-1から実施例2-10の微粉体36をかけながら製造したカプセル26に対し、図11A及び図11Bに示す押し込み法を用いた実験を行った。
 また、製造時にカプセル外殻32の外表面に1000ppmの添加物として図19に示す比較例2-1から比較例2-7の粉体をかけながら製造したカプセルに対し、図11A及び図11Bに示す押し込み法を用いた実験を行った。
 カプセル外殻32に付着させる添加物が、図18に示す実施例2-1から実施例2-10の微粉体36である場合、押し込み法によるフィルタ14の貫通孔44に対するカプセル26の通過率が0%となった。すなわち、実施例2-1から実施例2-10の微粉体36を有するカプセル26を用いる場合、フィルタ14内でカプセル26のカプセル外殻32が全て通過しなかった。図19に示す比較例2-1から比較例2-7の粉体の場合、押し込み法によるフィルタ14の貫通孔44に対するカプセル26の通過率が、粉体が存在しない場合とほぼ同じ結果である、70%となった。
 (微粉体36の粒径について)
 図18及び図19を参照すると、カプセル外殻32に微粉体36をかけながら製造したカプセル26は、押し込み法による通過率の結果、すなわち、フィルタ14のフィルタプラグ22に対するカプセル26の位置ずれ防止効果は、粉体の種類により異なる。
 図18には、実施例2-1から実施例2-10のカプセル26に用いる微粉体36を、電子顕微鏡(SEM)を用いて観察したときの直径(粒径)d(μm単位)のおおまかな範囲(微粉体36の短/長込みの長さ)を示す。観察は、微粉体36の凝集粒子(二次粒子)を400倍の倍率で行い、一次粒子で構成される二次粒子の微粉体36を、6000倍の倍率で行った。
 また、図19には、比較例2-1から比較例2-7のカプセルに用いる粉体をSEMを用いて観察したときの直径(粒径)d(μm単位)の大まかな範囲を示す。
 図18及び図19に示すように、SEMにより、微粉体の粒径を目視確認したところ、実施例2-1から実施例2-10の目視粒径の方が、比較例2-1から比較例2-7の目視粒径に比べて小さい。そして、微粉体36の目視粒径dが小さい方が、目視粒径dが比較的大きい場合に比べて、押し込み法による通過率が低くなる傾向が見られる。凹部32bに対して、微粉体36のうち目視粒径の大きいものは有効に働かない傾向にあり、微粉体36のうち目視粒径の小さいものは有効に働く傾向にある。
 (モース硬度について)
 図18及び図19に示すように、この出願の発明者は、添加物の硬さを表現するために、モース硬度を用いた。モース硬度は、広く一般に使われる硬度のパラメータとして知られている。モース硬度とは、硬度の小さい滑石(タルク)を1として、それより硬い物質を順番に番号付けしダイアモンドの硬度10まで配置したものである。発明者は使用した粉体のモース硬度を測定するために株式会社東京サイエンス製のモース硬度計を使用した。
 添加物が粉体の状態では、モース硬度の計測が困難である。このため、まず先に、手持ちの金属板(鉛、亜鉛、アルミ、銅、ニッケル)の硬度をモース硬度計にて測定した。そして、その金属板の板面に、粘着テープで固定した粉体を軽くこすりつけたときの板面の傷の有無で、硬度を判断した。硬度の判断に窮したときには、公知の硬度情報を参考にした。
 実施例2-1から実施例2-10のカプセル26の微粉体36は、いずれもフィルタートウに対するカプセル26の位置ずれ抑制効果のある粉体であり、そのモース硬度の実測値は、いずれも2以上であった。フィルタートウに対するカプセル26の位置ずれ抑制効果が見られない比較例2-1から比較例2-7のカプセルの粉体は、いずれもモース硬度が2未満であった。したがって、モース硬度が2以上である場合、押し込み法による通過率が低く、カプセル26がフィルタ14内で破砕されやすいという結果を得た。このため、微粉体36のモース硬度は、2以上であることが好適である。微粉体36のモース硬度は、3以上であることがより好適である。
 カプセル外殻32の表面に添加された微粉体(粉体粒子)36には、フィルタ14のフィルタプラグ22に対するカプセル26の滑りを抑制するといった効果の発現のために、一定の硬さが必要であると解される。主に、カプセル外殻32の凹部32bに溜まって存在する微粉体36は、フィルタ14に外力がかかった際にフィルタプラグ22のフィルタートウに食い込み、フィルタートウをグリップすることで効果を発揮すると考えられる。このため、粉体の一次粒子あるいは二次粒子の塊は、フィルタプラグ22よりも硬いことが必要となる。フィルタプラグ22よりも柔らかい粒子の微粉体36は、カプセル外殻32とフィルタ-トウとの間の力により破壊され、グリップ力を消失し、滑ることになる。このため、微粉体36は、カプセル外殻32の凹部32bに入った状態で、フィルタプラグ22のフィルタートウとの関係で、硬度が高く、崩れ難い性質であることが求められると解される。
 わかりやすい例としては、ケイ酸マグネシウム化合物を主成分とする比較例2-2のカプセルのタルクである。タルクは、カプセル外殻32に付着させる微粉体としての目視粒径が小さく好ましいが、硬度が足りない。タルクは、その脆く柔らかい性質のため、力がかかると壊れやすく、一般に滑り防止剤でなく、滑り剤として使用される所以である。
 一方で、実施例2-2のカプセル26の微粉体36である炭酸マグネシウムは、タルクと略同様の小さい目視粒径を有するが、モース硬度が2以上ある。実施例2-2のカプセル26は、カプセル26の位置ズレ抑制に十分な効果が認められた。なお、実施例2-2のカプセル26の微粉体36の主成分である炭酸マグネシウムは、例えば体操競技などで使われる滑り止め剤で、皮膚の水分をトリガーにして皮膚の凹部に定着し摩擦を発生する。
 本実施形態での使用法では、炭酸マグネシウムは、水分ではなく本来の硬さに由来する。本実施形態での微粉体36に求められるモース硬度は2以上であるが、主成分がケイ酸アルミナ化合物である実施例2-10のカプセル26では、位置ズレ抑制の効果がやや劣る。このため、カプセル外殻32に付着させる微粉体36のモース硬度は、できるだけ3以上であることが好ましい。
 微粉体36の目視粒径dは、0.1μmから10μmのものを含むことが好適である。微粉体36の目視粒径dは、0.1μmから5μmであることがより好適である。
 フィルタ14のフィルタプラグ22に対するカプセル26の滑りを抑制するという機能を発現するためには、カプセル外殻32の表面の凸凹に由来する凹部32bに多数の微粉体(粉体粒子)36が存在する必要がある。
 なお、カプセル外殻32の外表面に単純に付着する粒子は存在してもよい。その粒子は、カプセル外殻32同士の擦れなどにより簡単に脱落し、粉由来の様々な不具合の原因となるため、少ないほうが好ましい。
 本実施形態で使用したカプセル外殻32の凹部32bのサイズは、上述したように、平均で深さ5μmであり、幅は概ね10μm以下である。従って、カプセル外殻32の凹部32bに存在可能な粒径dは直径で10μm以下の範囲、好ましくは5μm以下の範囲であることが要求される。なお、カプセル外殻32の凹部32bのサイズは平均径であるため、粒子径dの範囲は上述した範囲よりも多少広くとも、上記の範囲をたくさん含んでいれば、実施上、問題はない。
 なお、観察装置の観察倍率の関係上、粒径dは0.1μm(100nm)が粒径サイズの検出下限である。このため、微粉体36の粉体の種類によってはそれ以下の粒径サイズも存在し得る。
 押し込み法を用いた、フィルタ14の貫通孔44に対するカプセル26の通過率が低く、フィルタプラグ22に対するカプセル26の位置ずれ抑制効果が見られる実施例2-1から実施例2-7、実施例2-10の添加物を有するカプセル26では、いずれの粒子の目視粒径も10μm以下であり、カプセル外殻32の凹部32bを埋めるのに十分に小さい。
 実施例2-8、実施例2-9のカプセル26の微粉体36は、天然鉱石を砕いた重質炭酸カルシウムである。この微粉体36は、目視粒径の範囲が概ね20μm以下ではあるが、粒径分布の中心はより小さいところにある。
 また、カプセル外殻32の凹部32bには、微粉体(添加物)36の目視粒径dが大きい粒子が存在する。このような微粉体(添加物)36の目視粒径dが大きい粒子は、一次粒子が凝集した二次粒子である。これら二次粒子は、カプセル26の製造工程中の振動ないし摩擦により、容易に一次粒子に分離し、カプセル外殻32の凹部32bに埋没することが可能である。
 位置ずれ抑制効果が見られない比較例2-5、比較例2-6のカプセルは、粉末(添加物)の目視粒径が実施例2-1から実施例2-10のカプセル26の微粉体36の目視粒径dに比べて10倍以上である。すなわち、比較例2-5、比較例2-6のカプセルの粉末の目視粒径は、実施例2-1から実施例2-10のカプセル26の微粉体36の目視粒径dに比べて一桁大きい範囲にあり、10μm以下の粒子数が十分ではない。
 また、比較例2-5、比較例2-6のカプセルに用いるような目視粒径が大きい粒子は、カプセル外殻32の凹部32bを埋めることなく、カプセル外殻32の表面に付着しているだけである。このため、目視粒径が大きい粒子は、カプセル26の製造工程中や、輸送時、その他の振動により、カプセル外殻32から容易に脱落し得る。このため、目視粒径が大きい粒子(添加物)は、フィルタプラグ22に対するカプセル26の位置ズレ抑制効果を発現することなく、カプセル外殻32から簡単に脱落してしまう。
 一方で、フィルタプラグ22に対するカプセル26の位置ずれ防止効果が得られない比較例2-1、比較例2-2のように、添加物には、目視粒径が十分に小さいものも存在する。これは、上述したモース硬度などの硬さが足りないことに起因する。
 微粉体36の目視粒径dが0.1μmから10μmの範囲(好ましくは0.1μmから5μmの範囲)内で、モース硬度が2以上(好ましくは3以上)である物質の化学分析は多岐多様にわたり煩雑である。そこで、発明者は、比較的単純な方法でほぼ全ての物質に対応できる所定の方法により定量した。その結果、位置ずれ効果に効果的なカプセル外殻32の表面に存在する粉体の量を三種類のパラメータで求めた。
 (P1)カプセル重量に対して添加した粉体の重量比
 発明者が最初に準備して効果との関係を表したのが、図20に示す、カプセル重量に対して添加した微粉体36の重量比である。製造時にかける微粉体36の量である、50ppm、100ppm、1000ppm、1500ppm、5000ppm、10000ppm50000ppmを、実施例3-1から実施例3-7として、押し込み法(図11A及び図11B参照)を用いて、通過率を得た。
 押し込み法による実験を行ったとき、フィルタ14内をカプセル26が通過せずに、明らかな効果が得られる範囲としては実施例3-2の100ppm以上であった。但し、実施例3-6、実施例3-7のように、製造時にかける微粉体36の量が10000ppm以上では過剰量の粉体が存在するため篩機にかけてもだらだらと粉落ちが続き、カプセル26を使用し難い。
 また、この微粉体36の量は、あくまで製造時の添加量であり、余剰量は振り落とされるために実際にカプセル外殻32の表面に存在する量とは異なる。更には、カプセルの重量が異なると、カプセル26の全重量に対する微粉体36の比率が変わってしまう。
 発明者らは、より明瞭な定量表現に近づけるように、SEM(走査電子顕微)とEDS(エネルギー分散型X線分光器)を用いてカプセル外殻32の表面の元素を検出した。その結果、位置ずれ防止に効果的な新たなパラメータとして、表面被覆率(P2)、及び、カプセル外殻(被膜)32中の元素割合(P3)を定めた。
 カプセル26の試験品をEDS付SEM(日本電子社製JCM-6000Plus NeoScope(登録商標))で、カプセル外殻32の凹部32bに集中的に粒子が存在することを確認した。その後EDSを使用し、以下の設定にてカルシウム(Ca)元素をマッピングした解析用の画像と、カプセル外殻(被膜)32中、及び、カプセル外殻(被膜)32上に存在する炭素(C)以上の原子番号の全元素の個別重量情報を得た。
加速電圧:15KeV  照射電流:7.5nA  測定倍率:×200
画素数:256×192 デュエルタイム:0.2m秒 スイープ回数:20回
 EDS付SEMにより得られたマッピング画像では、画像解析ソフトにより、10μm以下のノイズを排除した。ここでは、10μm以上の輝度部を対象とし、その輝度部の合計面積を算出し、全視野面積で除して、カプセル外殻32の表面の面積におけるカルシウムの検出信号面積が占める割合(表面被覆率)を、パーセントで表した。
 このEDS付SEMは、マッピングと同時に検出元素の簡易定量が可能である。ここでは、カプセル外殻(被膜)32を構成する炭素(C)以上の検出全元素の合計をカプセル外殻(被膜)32の全構成重量と仮定し、そこに占めるカルシウム(Ca)元素の割合をカプセル外殻(被膜)32中の元素割合として重量パーセントで表した。
 なお、ゲル基剤を用いたシームレスカプセルでは、15KeVの電圧下ではカプセル外殻32の表面からおよそ20μm程度の深さまでが検出範囲となり得る。したがって、カプセル外殻32中の元素割合には、カプセル外殻32の表面のみならずカプセル外殻32を形成する被膜中の元素情報も十分反映されている。
 このEDS付SEMで測定する微粉体36の添加後のカプセル26に含まれる元素情報には、微粉体36の添加前のカプセル26に含まれる元素情報が含まれる。そこで、あらかじめ微粉体36の添加前のカプセル外殻32の表面も同じ方法で測定し、検出された分はバックグラウンドとして、被覆率、及び、重量割合からは差し引いた。
 なお、微粉体36の添加後のカプセル26であっても、カプセル外殻32が溶けないアルコール等の溶媒にカプセル26を浸し、超音波洗浄機等で微粉体36を除去すれば、ほぼ、微粉体36の添加前のカプセル26の状態を再現し、計測が可能なことを確認してある。
 微粉体(粉体粒子)36は、カプセル外殻32に不均一な島状に凝集した粒子として存在する。なお、微粉体(粉体粒子)36がカプセル外殻32に均一分布していれば、全体的にムラのない模様となる。その島状に凝集した粒子(微粉体36)は、カプセル外殻32の表面の凹部32bにあたる部分に相当する。
 (P2)表面被覆率
 図21には、微粉体36として用いる炭酸カルシウムの添加量(図20に示す実施例3-1から実施例3-7)毎に微粉体36の表面被覆率(カプセル外殻32の表面の投影面積における対象元素の検出信号の占める面積割合)を計測した結果を示す。その結果、位置ずれ防止効果のある、製造時にカプセル外殻32に100ppm以上の微粉体36をかけて製造したカプセル26では、微粉体36の表面被覆率が10%から45%の範囲であり、好ましくは20%から40%である。
 カプセル26の製造時の炭酸カルシウム(微粉体36)の添加量が、高添加量である場合、カプセル外殻32への付着が飽和し、カプセル外殻32の凹部32bに入らず、付着しない、余剰の粉が増える。カプセル26の製造時の微粉体36としての炭酸カルシウムの有効な添加量の上限は、概ね5000ppmであることがわかる。
 (P3)カプセル外殻(被膜)中の元素割合
 図22には、微粉体36として用いる炭酸カルシウムの添加量(図20に示す実施例3-1から実施例3-7)毎にカプセル外殻(被膜)32中に含む元素(検出元素)に占めるカルシウム(Ca)元素の重量パーセントを計測した結果を示す。
 その結果、位置ずれ防止効果のある、製造時にカプセル外殻32に100ppm以上の微粉体36をかけて製造したカプセル26では、カプセル26の元素中の対象元素(カルシウム(Ca))の重量割合が、0.5%から20%の範囲であり、好ましくは1%から10%の範囲内である。カプセル26の元素中の対象元素には、微粉体36を含む。
 カプセル26の製造時の炭酸カルシウム(微粉体36)の添加量が、高添加量である場合、カプセル外殻32への付着が飽和し、カプセル外殻32の凹部32bに入らず、付着しない、余剰の粉が増える。カプセル26の製造時の微粉体36としての炭酸カルシウムの有効な添加量の上限は、概ね5000ppmであることがわかる。
 なお、上述した例は、微粉体36として炭酸カルシウムを対象とした検出定量例である。図23には、微粉体36の主成分を、図18中の添加物の実施例2-1、実施例2-2、実施例2-3、実施例2-10、及び、添加物の比較例2-2(図19参照)のように変えた場合の元素割合(重量%)の例を示す。
 微粉体36の種類により、カプセル外殻32への微粉体36の付着のしやすさ、元素、及び、化合物の重量が異なる。このため、図23に示す、カプセル26中の微粉体36の主成分の元素割合は、それぞれの値を示す。図23に示すように、カプセル26中の微粉体36の主成分の元素割合は、炭酸カルシウムの主成分のカルシウム(Ca)の例と比較し、2倍を超えるような大きな差異にはならない。このため、元素割合の主成分の上述した好適な範囲は、用いる微粉体36の主成分の元素、化合物によらず概ね普遍的なものと言える。
 表面被覆率(面積パラメータ)及び元素割合(元素量)の測定についてはEDS付きSEMを用いて、上述した方法と同様に行った。図20から図22に示す例では、炭酸カルシウムの微粉体36をカプセル外殻32に添加する場合を例示した。対象とする元素が異なること以外は、基本的に他の種類の微粉体(粉体添加品)36を用いても同じ方法で、表面被覆率及び主成分の元素割合を得ることができる。
 なお、カプセル外殻32の外表面には、例えば、カプセル外殻32同士が固結することを防止するため、表面処理剤が塗布される場合がある。表面処理剤として、例えば離型剤がカプセル外殻32の外表面に塗布される場合、カプセル外殻32同士の固結が防止される。表面処理剤としてコート剤がカプセル外殻32の外表面に塗布される場合、カプセル外殻32の防水性(吸水性)が調整される。また、表面処理剤としてコート剤がカプセル外殻32の外表面に塗布される場合、滑り性が調整される。
 しかし、図24に示すように、カプセル外殻32の外表面への表面処理剤は、微粉体36が付着していない場合、通過率は50%であり、例えば1000ppmの微粉体36が付着している場合、通過率は0%となった。このため、カプセル外殻32の外表面への表面処理剤は、カプセル26の位置ずれ防止効果に影響しないと言える。
 以上説明したように、本実施形態によれば、以下のことが言える。
 例えば、カプセル26の製造時に、カプセル外殻32に対し、好ましくは、100ppm以上の微粉体36を添加することが好適である。一方で、実施例2-6、実施例2-7のように、微粉体36の量が10000ppmを超えると、カプセル外殻32に付着しない微粉体36の量が多くなった。このため、カプセル26の製造時に、カプセル外殻32に対し、好ましくは、100ppm以上、10000ppm未満の微粉体36を添加することが好適である。
 カプセル外殻32に付着させる微粉体36の目視粒径は、0.1μmから10μmであることが好適であり、より好ましくは、0.1μmから5μmであることが好適である。微粉体36のモース硬度は、2以上であり、より好ましくは、3以上であることが好適である。微粉体36の表面被覆率、すなわち、カプセル外殻32の表面の面積における、微粉体36の主成分の元素の検出信号が占める面積割合が、10%から45%の範囲であり、より好ましくは、20%から40%の範囲である。微粉体36の主成分の元素の重量割合、及び、カプセル26の表面の元素中の、微粉体36の主成分の元素の重量割合を合わせた重量割合は、0.5%から20%の範囲であることが好適であり、より好ましくは、1%から10%の範囲である。
 次に、香味吸引物品10のフィルタ14の変形例について説明する。
 なお、フィルタ14の構造は、図25A及び図25Bに示すように、2つのフィルタプラグ(デュアルフィルタプラグ)22を有することも好適である。各フィルタプラグ22の長さは、5mm~20mmである。
 図25Aに示す例では、微粉体36がカプセル外殻32に付着したカプセル26は、吸口側のフィルタプラグ22に埋設されている。図示しないが、ロッド12側のフィルタプラグ22にカプセル26が埋設されていてもよい。すなわち、1つのフィルタ14の各フィルタプラグ22中に、それぞれカプセル26が含まれていてもよい。
 図示しないが、フィルタ14のフィルタプラグ22間に空間が形成されていてもよい。この場合、例えば吸口側のフィルタプラグ22又はロッド12側のフィルタプラグ22にカプセル26が埋設される。
 図25Bに示す例では、1つのカプセル26が2つのフィルタプラグ22間に挟持されている。このように、フィルタプラグ22に対して、図25Bに示すようにカプセル26が埋設されていてもよい。
 図示しないが、フィルタ14のフィルタプラグ22は、3つ以上でもよい。この場合、いずれのフィルタプラグ22にカプセル26が埋設されていてもよい。各フィルタプラグ22内にカプセル26が埋設されていてもよい。また、隣接するフィルタプラグ22同士の間にそれぞれカプセル26が挟持されていてもよい。すなわち、1つのフィルタ14の中に、複数のカプセル26が含まれていてもよい。
 すなわち、図2のフィルタ14の例は、モノフィルタの例で、フィルタプラグ22の内部には、カプセル26が埋設されている。図25Aのフィルタ14の例は、デュアルフィルタの例で、例えば吸口側のフィルタプラグ22の内部には、カプセル26が埋設されている。図25Bのフィルタ14の例は、デュアルフィルタの例で、例えば吸口側のフィルタプラグ22とロッド12側のフィルタプラグ22との境界にカプセルが挟まれている。なお、本実施形態では、図25Aのフィルタ14は、フィルタプラグ22同士が離間していてもよい。一方、図25Bのフィルタ14は、フィルタプラグ22の端面同士が接触している。
 各フィルタ14において、フィルタプラグ22の形態は、特段制限されず、単一のフィルタセグメント(モノフィルタセグメント)を含むプレーンフィルタや、デュアルフィルタ又はトリプルフィルタ等のマルチフィルタセグメントを含むマルチセグメントフィルタ等とすることができる。
 いずれのカプセル26の外表面の全周は、一端22aと他端22bとを有し、一端22aと他端22bとの間で、フィルタプラグ22により埋設されていればよい。
 図2、図25A及び図25Bに示すカプセル26は、各フィルタプラグ22内に1個存在していてもよいし、複数個(例えば2~10個)存在していてもよい。例えば10個のカプセル26が1つのフィルタプラグ22に埋設されている場合、全てのカプセル26を潰すことができることが好ましいが、いくつかは、潰れずに残っても問題はない。
 フィルタ14が複数のフィルタプラグ22を含む場合、ロッド12側のフィルタプラグ22と吸口側のフィルタプラグ22は、同じ素材及び構造を有していてもよいし、異なる素材及び構造を有していてもよい。
 続いて、図26を参照して、加熱型香味吸引物品システム100について説明する。
 加熱型香味吸引物品システム100は、加熱デバイス110及び非燃焼加熱型の香味吸引物品10を有する。非燃焼加熱型の香味吸引物品10の概略構造は、例えばロッド12の長さに相違がある場合があるが、図1、図2、図25A及び図25Bに示すものと同様である。
 加熱デバイス110は、本体112と、バッテリ114と、ヒータ116とを有する。
 本体112内には、バッテリ114が配置されている。バッテリ114は、充電および放電が可能である。本体112は、香味吸引物品10のロッド12が挿入及び抜去可能な被挿入部112aを有する。本体112のうち、被挿入部112aの周囲には、バッテリ114から供給される電力により駆動されるヒータ116が設けられている。
 加熱デバイス110は、電気的なヒータ116等によってエアロゾル生成ロッド12を加熱する。
 バッテリ114から被挿入部112aを取り囲むように配置されたヒータ116に電力が供給されると、被挿入部112aに挿入されたエアロゾル生成ロッド12が加熱される。エアロゾル生成ロッド12の充填材12aから香味を周辺の空気中に放出させる。ヒータ116によるエアロゾル生成ロッド12の加熱温度は、例えば400℃以下であり、ロッド12の先端に着火させるタイプの燃焼型の香味吸引物品10の燃焼温度700~800℃よりもかなり低い。このように低い温度で加熱を行なうことで、エアロゾル生成ロッド12から発生する主流煙の量は燃焼型の香味吸引物品10等と比較して少なくなる。このため、非燃焼加熱型の香味吸引物品10のフィルタ14における濾過機能は、燃焼型の香味吸引物品10におけるフィルタ14と比較して、低い濾過機能であるほうが喫煙者の口内に共有される主流煙量が好適となる。
 非燃焼加熱型の香味吸引物品10のフィルタ14は、燃焼型の香味吸引物品10のフィルタ14に対して主流煙の濾過を低減するために、例えば中心軸Cに沿う長さを燃焼型の香味吸引物品10のフィルタ14よりも短くしてもよい。非燃焼加熱型の香味吸引物品10のフィルタ14は、フィルタプラグ22の密度や直径を調整してもよい。非燃焼加熱型の香味吸引物品10のフィルタ14の全長のうち、フィルタプラグ22が配置される長さを短くし、残りの箇所に筒部やその他の主流煙の濾過率が低いセグメントを配置することもできる。
 非燃焼加熱型の香味吸引物品10のフィルタ14の構成は、フィルタプラグ22の中心軸C方向に関する長さが短い点以外は、他の実施形態とほぼ同様の構成を有する。
 非燃焼加熱型の香味吸引物品10によっても、燃焼型の香味吸引物品10と同様の作用が発揮される。すなわち、ユーザは、フィルタ14内のカプセル26を指による押圧で、又は、咬んで、容易に破砕することができる。このため、加熱デバイス110で加熱される非燃焼加熱型の香味吸引物品10においても燃焼型の香味吸引物品10と同様に、カプセル外殻32の割り易さを向上することができ、ユーザの利便性を向上できる。
 特に、ヒータ116を用いてロッド12が加熱される非燃焼加熱型の香味吸引物品10の場合、主流煙の量が少ないために、燃焼型の香味吸引物品10に比べて、フィルタ14のうちのフィルタプラグ22の長さが短くなる傾向にある。加熱型の香味吸引物品10によれば、長さが短いフィルタプラグ22においても微粉体36によりカプセル外殻32の移動を防止することができる。
 次に、図27を参照して、香味吸引物品用フィルタ14を含む非燃焼非加熱型香味吸引物品(いわゆる無煙たばこ)10について説明する。
 香味吸引物品10は、ホルダ212と、カートリッジ214と、キャップ216とを有する。
 ホルダ212は、通常のフィルタシガレットの形状や大きさと類似する中空且つ円筒形状に形成される。ホルダ212はその両端にそれぞれ開口部212a,212bを有する。ホルダ212の先端側は、略同一の内径及び外径を有する円筒状に形成される。ホルダ212の基端側は基端側に向かうにつれて先細に形成される。ホルダ212の基端には吸口部213を形成する。ホルダ212は、例えばシリコーン材など、ユーザが指でストレスを抑制しながら押し潰すことができる程度に柔らかい素材で形成されている。ホルダ212の基端側は、先端側に比べて厚肉である。このため、ホルダ212の先端側部位は、基端側部位に比べて、ユーザが押し潰しやすい。ホルダ212の基端側部位は、ユーザが吸口部213をくわえたときに適宜の弾発性を発揮する。
 ホルダ212の先端部には中空円筒形状のカートリッジ214が収容される。カートリッジ214はホルダ212の先端部の内径よりも若干小さい外径を有し、ホルダ212に対して挿入及び抜去可能である。
 カートリッジ214は、その両端に開口222a,222bを有する円筒形状の容器222と、この容器222内に配置された充填体224とを含む。
 ここで、充填体224は、容器222内に例えばたばこ葉を裁刻又は粉砕した刻(きざみ)又は粒状体と添加材との混合物(以下、たばこ粒と称する)を充填して得られ、カートリッジ214に所定の通気抵抗を与える。
 カートリッジ214は、充填体224を容器222内に収容するように、容器222の両端の開口222a,222bに設けられる蓋226a,226bを有する。蓋226a,226bは、それぞれ通気性を有する。カートリッジ214は、充填体224と、蓋226bとの間に、フィルタ押さえ228、及び、カプセル26を含む香味吸引物品用フィルタ14を有する。このため、充填体224とフィルタ14との間はフィルタ押さえ228により仕切られている。このように、カートリッジ20は、フィルタ14側の容器222の端部が吸口部213に向けた状態でホルダ212内に挿入されている。
 容器222は、例えばシリコーン材など、ユーザが指でストレスを抑制しながら押し潰すことができる程度に柔らかい素材で形成されている。
 ホルダ212の先端、即ち、吸口部213と反対側のホルダ212の開口部212aにはキャップ216が取り外し可能に嵌合されている。このキャップ216は通気孔216aを有する。
 非燃焼非加熱型香味吸引物品10は、通気孔216a、通気性を有する蓋226a、充填体224、フィルタ押さえ228、フィルタ14、通気性を有する蓋226b、吸口部213により、空気の吸引経路が形成される。
 ユーザがホルダ212の吸口部213から吸気したとき、通気孔216aからカートリッジ214内、即ち、メイン流路内に取り入れられた空気は充填体224と接触する。これにより、カートリッジ214内の空気には充填体224から放出される香味が含まれる。それ故、ユーザはホルダ212のメイン流路及び吸口部213を通じて、充填体224から放出される香味を含んだ空気を吸い込み、充填体224から放出される香味が得られる。すなわち、ユーザは、非燃焼非加熱型香味吸引物品10を使用するとき、着火を要することなく、吸気によって充填体224の香味が得られる。
 ユーザは、ホルダ212の外側、カートリッジ214の容器222の外側からフィルタ14をホルダ212の例えば中心軸に向かって押圧することで、カプセル26を割ることができる。ユーザは、カプセル26を割った後、吸気によって充填体224の香味とカプセル26内に封入された内容物34の香味が得られる。
 非燃焼非加熱型香味吸引物品10によっても、燃焼型の香味吸引物品10と同様の作用が発揮される。すなわち、ユーザは、フィルタ14内のカプセル26を指による押圧で、又は、咬んで、容易に破砕することができる。このため、非燃焼非加熱型香味吸引物品10においても燃焼型の香味吸引物品10と同様に、カプセル外殻32の割り易さを向上することができ、ユーザの利便性を向上できる。
 以上説明したように、上述した変形例を含む実施形態によれば、ユーザがフィルタ14の外側から負荷する外力Fにより破砕し易い、香味吸引物品のためのフィルタ用カプセル26、そのカプセル26を含む香味吸引物品用フィルタ14、そのフィルタ14を含む加熱型香味吸引物品10、そのフィルタ14を含む燃焼型香味吸引物品10、及び、そのフィルタ14を含む非燃焼非加熱型香味吸引物品10を提供することができる。
 [付記]
(1)香味吸引物品のためのフィルタ(14)用カプセル(26)の製造方法であって、
 内部に内容物(34)を封入するとともに、外表面に凹凸を有するカプセル外殻(32)を形成し、
 カプセル外殻(32)の凹部(32b)の一部に凹部(32b)に入り込み可能な目視粒径の微粉体(36)を付着させる、
 ことを含む。
(2)付記(1)の製造方法において、
 前記凹部(32b)の幅(Wc)は、フィルタ素材(22)の繊維幅(Wt)に比べて小さい。
 本発明は、上記実施形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。また、各実施形態は適宜組み合わせて実施してもよく、その場合組み合わせた効果が得られる。更に、上記実施形態には種々の発明が含まれており、開示される複数の構成要件から選択された組み合わせにより種々の発明が抽出され得る。例えば、実施形態に示される全構成要件からいくつかの構成要件が削除されても、課題が解決でき、効果が得られる場合には、この構成要件が削除された構成が発明として抽出され得る。
 10…香味吸引物品、12…ロッド、14…フィルタ、16…チップペーパ、22…フィルタプラグ、22a…一端、22b…他端、23…繊維、24…フィルタ包装紙、26…カプセル、32…カプセル外殻、32a…凸部、32b…凹部、34…内容物、36…微粉体、42…樹脂パイプ、44…貫通孔、46…ロードセル、46a…押圧部。

Claims (14)

  1.  外表面に微細な凹凸を有し、内容物が封入されたカプセル外殻と、
     前記カプセル外殻の前記外表面の一部に付着する微粉体と
     を有し、
     前記カプセル外殻の前記外表面では、凸部、及び、前記凸部に隣接し前記凸部に対して凹んだ凹部がランダムに繰り返され、
     前記微粉体は、前記カプセル外殻の前記外表面の前記凹部の一部に付着し、
     前記微粉体が付着した前記凹部の一部において、前記微粉体の顕微鏡目視による粒径は、前記カプセル外殻の前記外表面の前記凸部の頂部に対する前記凹部の深さよりも小さく、
     前記外表面に前記微粉体が付着する前記カプセル外殻が香味吸引物品用フィルタのフィルタ素材に埋設された状態で、前記カプセル外殻は前記香味吸引物品用フィルタの長手方向に交差する方向に負荷される外力にしたがって変形する、
     香味吸引物品のためのフィルタ用カプセル。
  2.  前記外力が負荷されたとき、前記微粉体の一部は前記フィルタ素材に接触可能である、請求項1に記載のカプセル。
  3.  前記微粉体は、前記フィルタ素材が直接接触する状態において、前記フィルタ素材を前記カプセル外殻の前記外表面に対して滑り難くする素材で形成されている、請求項1又は請求項2に記載のカプセル。
  4.  前記微粉体は、前記カプセル外殻の前記凹部と前記フィルタ素材との間に接触しながら挟まれた状態で、前記カプセル外殻の前記凹部と前記フィルタ素材とが直接接触するよりも摩擦力を上げる素材が用いられる、請求項1乃至請求項3のいずれか1項に記載のカプセル。
  5.  前記微粉体は、主成分として、二酸化チタン、炭酸マグネシウム、リン酸水素カルシウム、炭酸カルシウム、及び、ケイ酸アルミナ化合物の少なくとも1つを含む、請求項1乃至請求項4のいずれか1項に記載のカプセル。
  6.  前記カプセル外殻に付着する前記微粉体の付着量が少ないほど、前記カプセル外殻の前記外表面の算術平均粗さは、粗くなる、請求項1乃至請求項5のいずれか1項に記載のカプセル。
  7.  前記微粉体のモース硬度は、2以上である、請求項1乃至請求項6のいずれか1項に記載のカプセル。
  8.  前記微粉体の前記粒径は、0.1μmから10μmの範囲にある、請求項1乃至請求項7のいずれか1項に記載のカプセル。
  9.  前記カプセル外殻の前記外表面に対する前記微粉体の表面被覆率は、10%から45%の範囲にある、請求項1乃至請求項8のいずれか1項に記載のカプセル。
  10.  前記微粉体、及び、前記カプセル外殻の前記外表面のうち前記微粉体と同じ主成分の元素の重量割合は、0.5%から20%の範囲にある、請求項1乃至請求項9のいずれか1項に記載のカプセル。
  11.  請求項1乃至請求項10のいずれか1項に記載の香味吸引物品のためのフィルタ用カプセルと、
     一端と他端とを有し、前記フィルタ用カプセルの前記外表面の全周が前記一端と前記他端との間に埋設されたフィルタ素材と
     を有する、香味吸引物品用フィルタ。
  12.  請求項11に記載の香味吸引物品用フィルタを含む非燃焼加熱型香味吸引物品。
  13.  請求項11に記載の香味吸引物品用フィルタを含む燃焼型香味吸引物品。
  14.  請求項11に記載の香味吸引物品用フィルタを含む非燃焼非加熱型香味吸引物品。
PCT/JP2021/045181 2020-12-17 2021-12-08 香味吸引物品のためのフィルタ用カプセル、香味吸引物品用フィルタ、加熱型香味吸引物品、燃焼型香味吸引物品、及び、非燃焼非加熱型香味吸引物品 WO2022131104A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022569915A JPWO2022131104A1 (ja) 2020-12-17 2021-12-08
EP21906467.2A EP4265130A1 (en) 2020-12-17 2021-12-08 Filter capsule for flavor inhalation article, filter for flavor inhalation article, heating-type flavor inhalation article, combustible-type flavor inhalation article, and non-combustible, non-heating-type flavor inhalation article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020208959 2020-12-17
JP2020-208959 2020-12-17

Publications (1)

Publication Number Publication Date
WO2022131104A1 true WO2022131104A1 (ja) 2022-06-23

Family

ID=82059102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/045181 WO2022131104A1 (ja) 2020-12-17 2021-12-08 香味吸引物品のためのフィルタ用カプセル、香味吸引物品用フィルタ、加熱型香味吸引物品、燃焼型香味吸引物品、及び、非燃焼非加熱型香味吸引物品

Country Status (3)

Country Link
EP (1) EP4265130A1 (ja)
JP (1) JPWO2022131104A1 (ja)
WO (1) WO2022131104A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62198378A (ja) * 1986-02-25 1987-09-02 高津 和夫 フイルタ−とフイルタ−付き煙草
JP2001178376A (ja) * 1999-12-24 2001-07-03 Sankyo:Kk ソフトカプセル並びにソフトカプセルの製造方法
JP2004351007A (ja) * 2003-05-30 2004-12-16 Sankyo:Kk 付着防止性を有するソフトカプセルの製造方法並びにこの方法によって製造された付着防止性を有するソフトカプセル
WO2014156839A1 (ja) * 2013-03-26 2014-10-02 日本たばこ産業株式会社 液体を封入したカプセルを搭載したフィルタ及びこのフィルタを備えた喫煙物品
WO2014171433A1 (ja) 2013-04-15 2014-10-23 三生医薬株式会社 崩壊可能なカプセル及びその製造方法並びに崩壊可能なカプセルを含む喫煙器具
WO2019130500A1 (ja) 2017-12-27 2019-07-04 日本たばこ産業株式会社 喫煙物品
JP2019527539A (ja) * 2016-07-11 2019-10-03 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム 疎水性カプセル

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62198378A (ja) * 1986-02-25 1987-09-02 高津 和夫 フイルタ−とフイルタ−付き煙草
JP2001178376A (ja) * 1999-12-24 2001-07-03 Sankyo:Kk ソフトカプセル並びにソフトカプセルの製造方法
JP2004351007A (ja) * 2003-05-30 2004-12-16 Sankyo:Kk 付着防止性を有するソフトカプセルの製造方法並びにこの方法によって製造された付着防止性を有するソフトカプセル
WO2014156839A1 (ja) * 2013-03-26 2014-10-02 日本たばこ産業株式会社 液体を封入したカプセルを搭載したフィルタ及びこのフィルタを備えた喫煙物品
WO2014171433A1 (ja) 2013-04-15 2014-10-23 三生医薬株式会社 崩壊可能なカプセル及びその製造方法並びに崩壊可能なカプセルを含む喫煙器具
JP2019527539A (ja) * 2016-07-11 2019-10-03 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム 疎水性カプセル
WO2019130500A1 (ja) 2017-12-27 2019-07-04 日本たばこ産業株式会社 喫煙物品

Also Published As

Publication number Publication date
EP4265130A1 (en) 2023-10-25
JPWO2022131104A1 (ja) 2022-06-23

Similar Documents

Publication Publication Date Title
US11849756B2 (en) Hydrophobic capsule
RU2688390C1 (ru) Курительное изделие, имеющее фильтр, содержащий капсулу
MX2007009357A (es) Capsula de sabor para une entrega de sabor mejorada en cigarros.
CN111163655A (zh) 可生成气溶胶的产品
TW201347691A (zh) 香煙及包裝構件
WO2013173469A1 (en) Method and compositions to deliver variable quantities of flavor from filtered cigarettes
JP2015156806A (ja) シガレット
US20230217989A1 (en) Article for use in a non-combustible aerosol provision system
WO2022131104A1 (ja) 香味吸引物品のためのフィルタ用カプセル、香味吸引物品用フィルタ、加熱型香味吸引物品、燃焼型香味吸引物品、及び、非燃焼非加熱型香味吸引物品
JP2015107135A (ja) シガレット
US20230217991A1 (en) Article for use in a non-combustible aerosol provision system
US20230232892A1 (en) Article for use in a non-combustible aerosol provision system
JP2023529209A (ja) 送出システム用部品および送出システム用部品の製造方法および製造装置
WO2021215490A1 (ja) 非燃焼加熱式たばこ及び電気加熱式たばこ製品
US20230292822A1 (en) A component for a delivery system
TW201433270A (zh) 香煙
RU2800046C2 (ru) Курительное изделие, имеющее фильтр, содержащий капсулу
KR20240021965A (ko) 비가연성 에어로졸 제공 시스템에서 사용하기 위한 물품
WO2023111525A1 (en) Aerosol-generating compositions
WO2022263842A1 (en) Article for use in a non-combustible aerosol provision system
CA3222669A1 (en) Component for an article and an article for use in a non-combustible aerosol provision system
JP2023533790A (ja) エアロゾル供給システムに使用するための物品
CA3222915A1 (en) Article for use in a non-combustible aerosol provision system
KR20240013233A (ko) 비가연성 에어로졸 제공 시스템에서 사용하기 위한 물품
CN118139541A (zh) 用于非燃烧气溶胶供给系统的制品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21906467

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022569915

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021906467

Country of ref document: EP

Effective date: 20230717