WO2022130983A1 - Electric power conversion device and elevator control panel - Google Patents

Electric power conversion device and elevator control panel Download PDF

Info

Publication number
WO2022130983A1
WO2022130983A1 PCT/JP2021/044123 JP2021044123W WO2022130983A1 WO 2022130983 A1 WO2022130983 A1 WO 2022130983A1 JP 2021044123 W JP2021044123 W JP 2021044123W WO 2022130983 A1 WO2022130983 A1 WO 2022130983A1
Authority
WO
WIPO (PCT)
Prior art keywords
power conversion
conductor
conductor unit
terminal
semiconductor module
Prior art date
Application number
PCT/JP2021/044123
Other languages
French (fr)
Japanese (ja)
Inventor
翔太 佐藤
雄太 高橋
淳史 細川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022569844A priority Critical patent/JPWO2022130983A1/ja
Priority to CN202180082823.1A priority patent/CN116568622A/en
Publication of WO2022130983A1 publication Critical patent/WO2022130983A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/34Details, e.g. call counting devices, data transmission from car to control system, devices giving information to the control system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • This disclosure relates to a power conversion device and an elevator control panel.
  • the power semiconductor element is, for example, a semiconductor element corresponding to a high voltage and a large current such as an insulated gate type bipolar transistor (IGBT: Insulated Gate Bipolar Transistor).
  • IGBT Insulated Gate Bipolar Transistor
  • a plurality of power semiconductor elements may be connected in parallel by a plurality of conductors.
  • IGBT Insulated Gate Bipolar Transistor
  • the inductances of the plurality of conductors are different, it is difficult to pass a uniform current through the plurality of power semiconductor devices.
  • the current value of the current flowing through each of the plurality of power semiconductor elements is different, there is a high possibility that thermal destruction will occur in the power semiconductor element through which a large current flows.
  • the manufacturing cost of the power conversion device may increase.
  • the life may be biased among a plurality of power semiconductor devices.
  • the three-phase power conversion device (power conversion device) described in Japanese Patent No. 5557891 includes a plurality of first semiconductor elements (first semiconductor module) and a plurality of second semiconductor elements (second semiconductor).
  • a module a first AC bus bar (first conductor unit), a second AC bus bar (second conductor unit), and an AC output terminal (first terminal).
  • the AC output terminals are arranged at positions symmetrical with respect to each of the first bus bar and the second bus bar.
  • Each of the first AC bus bar and the second AC bus bar has a shape symmetrical with respect to the AC output terminal.
  • Each of the plurality of first semiconductor elements is connected to the first AC bus bar at a position symmetrical with respect to the AC output terminal.
  • Each of the plurality of second semiconductor elements is connected to the second AC bus bar at a position symmetrical with respect to the AC output terminal. Therefore, the inductance from the AC output terminal to the plurality of first semiconductor elements and the inductance from the AC output terminal to the plurality of second semiconductor elements are equal.
  • the first terminal AC output terminal
  • the first conductor unit first AC bus bar
  • the second conductor unit second AC bus bar
  • the present disclosure has been made in view of the above problems, and an object thereof is to make the inductance from the first terminal to the first semiconductor module equal to the inductance from the first terminal to the second semiconductor module, and the first terminal. It is an object of the present invention to provide a power conversion device and an elevator control panel that can suppress the limitation of the position where the module is arranged.
  • the power conversion device of the present disclosure includes a first terminal, a first connection portion, a first power conversion circuit, and a second power conversion circuit.
  • the first connection portion is connected to the first terminal.
  • the first power conversion circuit includes a first conductor unit and a first semiconductor module.
  • the first conductor unit is connected to the first connecting portion.
  • the first semiconductor module is connected to the first connection portion via the first conductor unit.
  • the second power conversion circuit includes a second conductor unit and a second semiconductor module.
  • the second conductor unit is connected to the first connecting portion.
  • the second semiconductor module is connected to the first connection portion via the second conductor unit.
  • the first semiconductor module and the second semiconductor module are electrically connected in parallel to the first terminal.
  • the difference between the inductance of the first conductor unit and the inductance of the second conductor unit is the inductance from the position where the first terminal of the first connection part is connected to the position where the first conductor unit is connected and the inductance of the first connection part. It is equal to the difference from the inductance from the position where the first terminal is connected to the position where the second conductor unit is connected.
  • the second conductor unit of the second power conversion circuit is connected to the first connection portion on the side opposite to the first terminal with respect to the first power conversion circuit.
  • the difference between the inductance of the first conductor unit and the inductance of the second conductor unit is that the first conductor unit is connected from the first position to which the first terminal of the first connection portion is connected. It is equal to the difference between the inductance to the second position and the inductance from the first position to which the first terminal of the first connection portion is connected to the third position to which the second conductor unit is connected. Therefore, the inductance of the first terminal to the first semiconductor module can be made equal to the inductance of the first terminal to the second semiconductor module. Further, the second conductor unit of the second power conversion circuit is connected to the first connection portion on the side opposite to the first terminal with respect to the first power conversion circuit. Therefore, the first terminal can be arranged at a position asymmetric with respect to the first semiconductor module of the first power conversion circuit and the second semiconductor module of the second power conversion circuit. Therefore, it is possible to prevent the position where the first terminal is arranged from being restricted.
  • FIG. 1st connection part side shows the structure of the power conversion apparatus which concerns on Embodiment 1. It is a perspective view schematically showing the structure of the 1st connection part and the 2nd connection part of the power conversion apparatus which concerns on Embodiment 1.
  • FIG. 1st power conversion circuit side shows the structure of the power conversion apparatus which concerns on Embodiment 1.
  • the 1st conductor unit side shows the structure of the 1st power conversion circuit of the power conversion apparatus which concerns on Embodiment 1.
  • the 1st semiconductor module side shows the structure of the 1st power conversion circuit of the power conversion apparatus which concerns on Embodiment 1.
  • FIG. 6 is a cross-sectional view taken along the line VII-VII of FIG. It is a front view schematically showing the structure of the 3rd conductor unit of the 1st power conversion circuit of the power conversion apparatus which concerns on Embodiment 1.
  • FIG. It is a bottom view schematically showing the structure of the 3rd conductor unit of the 1st power conversion circuit of the power conversion apparatus which concerns on Embodiment 1.
  • FIG. It is a perspective view seen from the 2nd conductor unit side which shows the structure of the 2nd power conversion circuit of the power conversion apparatus which concerns on Embodiment 1.
  • FIG. 1 It is a perspective view seen from the 2nd semiconductor module side which shows the structure of the 2nd power conversion circuit of the power conversion apparatus which concerns on Embodiment 1. It is a front view schematically showing the structure of the 2nd conductor unit of the 2nd power conversion circuit of the power conversion apparatus which concerns on Embodiment 1.
  • FIG. It is sectional drawing along the XIII-XIII line of FIG.
  • FIG. It is a front view schematically showing the structure of the 4th conductor unit of the 2nd power conversion circuit of the power conversion apparatus which concerns on Embodiment 1.
  • FIG. It is a bottom view schematically showing the structure of the 4th conductor unit of the 2nd power conversion circuit of the power conversion apparatus which concerns on Embodiment 1.
  • FIG. 1 It is a circuit diagram which shows schematic the structure of the power conversion apparatus which concerns on Embodiment 1.
  • FIG. It is a perspective view which shows schematic structure of the cooler of the power conversion apparatus which concerns on Embodiment 1.
  • FIG. It is a perspective view schematically showing the structure of the power conversion apparatus which concerns on Embodiment 2.
  • FIG. It is a perspective view seen from the 5th conductor unit side which shows the structure of the 3rd power conversion circuit of the power conversion apparatus which concerns on Embodiment 2.
  • It is a perspective view seen from the 5th semiconductor module side which schematically shows the structure of the 3rd power conversion circuit of the power conversion apparatus which concerns on Embodiment 2.
  • FIG. 1 It is a perspective view which shows schematic structure of the cooler of the power conversion apparatus which concerns on Embodiment 1.
  • FIG. It is a perspective view schematically showing the structure of the power conversion apparatus which concerns on Embodiment 2.
  • FIG. It is a perspective view seen from the 5th conductor unit side which shows the structure
  • FIG. 22 is a cross-sectional view taken along the line XXIII-XXIII of FIG. 22. It is a top view schematically showing the structure of the 6th conductor unit of the 3rd power conversion circuit of the power conversion apparatus which concerns on Embodiment 2. FIG. It is a bottom view schematically showing the structure of the 6th conductor unit of the 3rd power conversion circuit of the power conversion apparatus which concerns on Embodiment 2.
  • FIG. 8 is a cross-sectional view taken along the line XXX-XXX of FIG. 28. It is a perspective view schematically showing the structure of the power conversion apparatus which concerns on Embodiment 4.
  • FIG. FIG. 8 is a cross-sectional view taken along the line XXX-XXX of FIG. 28. It is a perspective view schematically showing the structure of the power conversion apparatus which concerns on Embodiment 4.
  • FIG. 3 is a cross-sectional view taken along the line XXXII-XXXII of FIG. 31. It is a rear view which shows schematic the structure of the power conversion apparatus which concerns on Embodiment 4.
  • FIG. It is a perspective view schematically showing the structure of the power conversion apparatus which concerns on the modification of Embodiment 4.
  • Embodiment 1 The configuration of the power conversion device 100 according to the first embodiment will be described with reference to FIGS. 1 to 17.
  • the power conversion device 100 according to the present embodiment is configured as a three-phase power conversion device. Further, as will be described later, the three-phase power conversion device is applied to an elevator control panel used in an elevator.
  • the power conversion device 100 includes a first terminal T1, a first connection portion C1, a first power conversion circuit 11, and a second power conversion circuit 12.
  • the power conversion device 100 includes a second terminal T2, a second connection portion C2, a first capacitor board 61, a second capacitor board 62, and a first capacitor. It further includes a bus bar 71, a second condenser bus bar 72, and a cooler 8.
  • the first terminal T1 is configured as an input terminal.
  • the second terminal T2 is arranged on the side opposite to the first terminal T1 with respect to the second power conversion circuit 12.
  • the second terminal T2 is configured as an output terminal.
  • the first connection unit C1 is connected to the first terminal T1, the first power conversion circuit 11, and the second power conversion circuit 12.
  • the first connection portion C1 is a common current path of the first power conversion circuit 11 and the second power conversion circuit 12.
  • the first connection portion C1 is configured to supply the three-phase alternating current supplied from the main power supply PW to the first power conversion circuit 11 and the second power conversion circuit 12 via the reactor R and the first terminal T1. There is.
  • the second connection portion C2 is connected to the second terminal T2, the first power conversion circuit 11, and the second power conversion circuit 12.
  • the second connection portion C2 is a common current path of the first power conversion circuit 11 and the second power conversion circuit 12.
  • the second connection portion C2 is configured to supply the current converted by the first power conversion circuit 11 and the second power conversion circuit 12 to the prime mover M via the second terminal T2.
  • the prime mover M is, for example, a motor.
  • the first connection portion C1 and the second connection portion C2 are, for example, bus bars.
  • Each of the first connection portion C1 and the second connection portion C2 has a plate shape. Therefore, the first connection portion C1 and the second connection portion C2 can be manufactured by simple machining.
  • each of the first connecting portion C1 and the second connecting portion C2 is composed of one member.
  • each of the first connecting portion C1 and the second connecting portion C2 may be divided into a plurality of conductors.
  • the material of the first connection portion C1 and the second connection portion C2 is a metal having high electric conductivity such as copper (Cu) and aluminum (Al).
  • the first connection portion C1 is provided with a first through hole TH1, a second through hole TH2, and a third through hole TH3.
  • the second connection portion C2 is provided with a fourth through hole TH4, a fifth through hole TH5, and a sixth through hole TH6.
  • the first connection portion C1 is connected to the first terminal T1 by inserting the first terminal T1 into the first through hole TH1.
  • the first connection portion C1 is fixed to the first power conversion circuit 11 by the first fixture F1 inserted into the second through hole TH2.
  • the first connection portion C1 is fixed to the second power conversion circuit 12 by the second fixture F2 inserted into the third through hole TH3.
  • the second connection portion C2 is connected to the second terminal T2 by inserting the second terminal T2 into the fourth through hole TH4.
  • the second connection portion C2 is fixed to the first power conversion circuit 11 by the third fixture F3 inserted into the fifth through hole TH5.
  • the second connection portion C2 is fixed to the second power conversion circuit 12 by the fourth fixture F4 inserted into the sixth through hole TH6.
  • the first fixture F1 to the fourth fixture F4 are configured as terminals.
  • the first fixing tool F1 to the fourth fixing tool F4 are, for example, screws.
  • the first power conversion circuit 11 and the second power conversion circuit 12 are electrically connected in parallel to the first terminal T1 and the second terminal T2.
  • the first power conversion circuit 11 and the second power conversion circuit 12 are arranged so as to face each other at intervals.
  • the first power conversion circuit 11 includes a first semiconductor module 21, a first conductor unit 31, and a first insulating layer 41.
  • the second power conversion circuit 12 includes a second semiconductor module 22, a second conductor unit 32, and a second insulating layer 42. Since each of the first semiconductor module 21 and the second semiconductor module 22 is arranged on the opposite side of the cooler 8 from each of the first conductor unit 31 and the second conductor unit 32, FIG. 1 It cannot be seen from the viewpoint of.
  • the second semiconductor module 22 may have a configuration common to that of the first semiconductor module 21.
  • the second insulating layer 42 may have a structure common to that of the first insulating layer 41. That is, the second power conversion circuit 12 may have the same configuration as the first power conversion circuit 11 except for the configuration of the second conductor unit 32.
  • the first semiconductor module 21 and the second semiconductor module 22 are electrically connected in parallel to the first terminal T1. Further, the first semiconductor module 21 and the second semiconductor module 22 are electrically connected in parallel to the second terminal T2. The detailed configuration of the first semiconductor module 21 and the second semiconductor module 22 will be described later.
  • the first semiconductor module 21 is connected to the first connecting portion C1 via the first conductor unit 31.
  • the second semiconductor module 22 is connected to the first connecting portion C1 via the second conductor unit 32.
  • the first conductor unit 31 is connected to the first connecting portion C1.
  • the first conductor unit 31 is connected to the first terminal T1 via the first connecting portion C1.
  • the first conductor unit 31 is fixed to the first connection portion C1 by the first fixture F1.
  • the second conductor unit 32 is connected to the first connecting portion C1.
  • the second conductor unit 32 is connected to the first terminal T1 via the first connecting portion C1.
  • the second conductor unit 32 is fixed to the first connection portion C1 by the second fixture F2.
  • the second conductor unit 32 of the second power conversion circuit 12 is connected to the first connection portion C1 on the side opposite to the first terminal T1 with respect to the first power conversion circuit 11. Therefore, the length from the first position P1 to which the first terminal T1 of the first connecting portion C1 is connected to the third position P3 to which the second conductor unit 32 is connected is the first terminal of the first connecting portion C1. It is longer than the distance from the first position P1 to which T1 is connected to the second position P2 to which the first conductor unit 31 is connected. Further, the first conductor unit 31 and the second conductor unit 32 are arranged at positions asymmetric with respect to the first terminal T1.
  • the first position P1 to which the first terminal T1 of the first connection portion C1 is connected is the first of the outer edges of the first through hole TH1. 2 The position closest to the through hole TH2. Further, the second position P2 to which the first conductor unit 31 of the first connecting portion C1 is connected is the position closest to the first through hole TH1 among the outer edges of the second through hole TH2. Further, the third position P3 to which the second conductor unit 32 of the first connecting portion C1 is connected is the portion of the outer edge of the third through hole TH3 that is closest to the first through hole TH1.
  • the second conductor unit 32 is connected to the first connection portion C1 on the downstream side of the current from the first power conversion circuit 11. Therefore, the inductance from the first position P1 to which the first terminal T1 of the first connecting portion C1 is connected to the third position P3 to which the second conductor unit 32 is connected is the first terminal T1 of the first connecting portion C1. Is larger than the inductance from the connected position to the second position P2 to which the first conductor unit 31 is connected.
  • the first terminal T1 is an input terminal
  • the current flowing through the first power conversion circuit 11 and the second power conversion circuit from the first position P1 to the second position P2 of the first connection portion C1.
  • the current flowing through 12 is superimposed. Only the current flowing through the second power conversion circuit 12 flows from the second position P2 to the third position P3.
  • the inductance of the first conductor unit 31 becomes larger than the inductance of the second conductor unit 32, so that the inductance of the first connection portion C1 from the first position P1 to the third position P3 and the first connection are made.
  • the difference from the inductance from the first position P1 to the second position P2 of the portion C1 is reduced. That is, the difference between the inductance of the first conductor unit 31 and the inductance of the second conductor unit 32 is that the first conductor unit 31 is connected from the first position P1 to which the first terminal T1 of the first connection portion C1 is connected.
  • the fact that the difference between the two inductances is equal also means that the two inductances are deviated by an error within a range of ⁇ 10%.
  • the length of the first conductor unit 31 is longer than the length of the second conductor unit 32, so that the length from the first position P1 to the third position P3 of the first connecting portion C1 and the first one.
  • the difference from the length of the connecting portion C1 from the first position P1 to the second position P2 is reduced. That is, the difference between the length of the first conductor unit 31 and the length of the second conductor unit 32 is that the first conductor unit 31 is connected from the first position P1 to which the first terminal T1 of the first connecting portion C1 is connected.
  • the fact that the difference between the two lengths is equal also means that the two lengths are deviated by an error within a range of ⁇ 10%.
  • the first power conversion circuit 11 further includes a third semiconductor module 23, a third conductor unit 33, and a third insulating layer 43. ..
  • the second power conversion circuit 12 further includes a fourth semiconductor module 24, a fourth conductor unit 34, and a fourth insulating layer 44.
  • the third semiconductor module 23 is connected to the first semiconductor module 21 via the first capacitor substrate 61.
  • the fourth semiconductor module 24 is connected to the second semiconductor module 22 via the second capacitor substrate 62.
  • the third semiconductor module 23 and the fourth semiconductor module 24 are electrically connected in parallel to the first terminal T1.
  • the third semiconductor module 23 and the fourth semiconductor module 24 are electrically connected in parallel to the second terminal T2.
  • the third conductor unit 33 is connected to the first conductor unit 31 via the first semiconductor module 21.
  • the third conductor unit 33 is connected to the first conductor unit 31 via the third semiconductor module 23, the first capacitor substrate 61, and the first semiconductor module 21.
  • the third conductor unit 33 is connected to the second connecting portion C2.
  • the third conductor unit 33 is connected to the second terminal T2 via the second connecting portion C2.
  • the third conductor unit 33 is fixed to the second connection portion C2 by the third fixture F3.
  • the fourth conductor unit 34 is connected to the second conductor unit 32 via the second semiconductor module 22.
  • the fourth conductor unit 34 is connected to the second conductor unit 32 via the fourth semiconductor module 24, the second capacitor board 62, and the second semiconductor module 22.
  • the fourth conductor unit 34 is connected to the second connecting portion C2.
  • the fourth conductor unit 34 is connected to the second terminal T2 via the second connecting portion C2.
  • the fourth conductor unit 34 is fixed to the second connection portion C2 by the fourth fixture F4.
  • the third conductor unit 33 of the first power conversion circuit 11 is connected to the second connection portion C2 on the side opposite to the second terminal T2 with respect to the second power conversion circuit 12.
  • the third conductor unit 33 is connected to the second connection portion C2 on the upstream side of the current from the fourth power conversion circuit 14.
  • the inductance from the 4th position P4 to which the 2nd terminal T2 of the 2nd connecting portion C2 is connected to the 5th position P5 to which the 3rd conductor unit 33 is connected is connected to the 2nd terminal T2 of the 2nd connecting portion C2. It is larger than the inductance from the 4th position P4 to the 6th position P6 to which the 4th conductor unit 34 is connected.
  • the fourth position P4 to which the second terminal T2 of the second connecting portion C2 is connected is the first of the outer edges of the fourth through hole TH4. 5 The position closest to the through hole TH5. Further, the fifth position P5 to which the third conductor unit 33 of the second connecting portion C2 is connected is the position closest to the fourth through hole TH4 among the outer edges of the fifth through hole TH5. Further, the sixth position P6 to which the fourth conductor unit 34 of the second connecting portion C2 is connected is the position closest to the fourth through hole TH4 among the outer edges of the sixth through hole TH6.
  • the inductance of the 4th conductor unit 34 becomes larger than the inductance of the 3rd conductor unit 33, so that the inductance from the 4th position P4 to the 5th position P5 of the 2nd connection portion C2 and the 2nd connection are made.
  • the difference from the inductance from the fourth position P4 to the sixth position P6 of the portion C2 is reduced. That is, the difference between the inductance of the third conductor unit 33 and the inductance of the fourth conductor unit 34 is that the third conductor unit 33 is connected from the fourth position P4 to which the second terminal T2 of the second connecting portion C2 is connected.
  • the length from the fourth position P4 to the fifth position P5 of the second connection portion C2 is the length from the fourth position P4 to the sixth position P6 of the second connection portion C2. Longer than the length up to.
  • the length of the fourth conductor unit 34 is longer than the length of the third conductor unit 33, so that the length from the fourth position P4 to the fifth position P5 of the second connecting portion C2 and the second The difference from the length of the connecting portion C2 from the fourth position P4 to the sixth position P6 is reduced.
  • the difference between the length of the third conductor unit 33 and the length of the fourth conductor unit 34 is that the third conductor unit 33 is connected from the fourth position P4 to which the second terminal T2 of the second connecting portion C2 is connected. It is equal to the difference between the length up to the fifth position P5 and the length from the fourth position P4 to which the second terminal T2 of the second connection portion C2 is connected to the sixth position P6 to which the fourth conductor unit 34 is connected.
  • the first conductor unit 31 is fixed to the cooler 8 via the first insulating layer 41.
  • the second conductor unit 32 is fixed to the cooler 8 via the second insulating layer 42.
  • the third conductor unit 33 is fixed to the cooler 8 via the third insulating layer 43.
  • the fourth conductor unit 34 is fixed to the cooler 8 via the fourth insulating layer 44.
  • the material of the first insulating layer 41, the second insulating layer 42, the third insulating layer 43, and the fourth insulating layer 44 is, for example, a material having a polyphenylene sulfide (PPS) resin as a base material.
  • PPS polyphenylene sulfide
  • the thermal conductivity of the materials of the first insulating layer 41, the second insulating layer 42, the third insulating layer 43, and the fourth insulating layer 44 is, for example, 1 W / mK or more and 5 W / mK or less.
  • each of the first insulating layer 41, the second insulating layer 42, the third insulating layer 43, and the fourth insulating layer 44 has a first conductor unit 31, a second conductor unit 32, a third conductor unit 33, and a fourth conductor.
  • Each of the units 34 has an insulating performance capable of electrically insulating from the cooler 8.
  • each of the first insulating layer 41, the second insulating layer 42, the third insulating path and the fourth insulating layer 44, the first conductor unit 31, the second conductor unit 32, the third conductor unit 33 and the fourth conductor A thermal paste, a heat dissipation sheet, an adhesive, or the like may be inserted between each of the units 34. As a result, the contact thermal resistance is reduced, so that the heat dissipation is improved.
  • the first capacitor board 61 and the second capacitor board 62 are configured as, for example, smoothing capacitors.
  • the first capacitor board 61 and the second capacitor board 62 include, for example, a printed circuit board and a plurality of electrolytic capacitors mounted in parallel on the printed circuit board.
  • the first capacitor substrate 61 is fixed to the first semiconductor module 21 and the third semiconductor module 23, for example, by screwing. As a result, the first capacitor substrate 61 is electrically connected to the first semiconductor module 21 and the third semiconductor module 23.
  • the second capacitor board 62 is fixed to the second semiconductor module 22 and the fourth semiconductor module 24, for example, by screwing. As a result, the second capacitor substrate 62 is electrically connected to the second semiconductor module 22 and the fourth semiconductor module 24.
  • Each of the first capacitor board 61 and the second capacitor board 62 includes a positive terminal and a negative terminal which are DC terminals for connecting to each other.
  • the first capacitor bus bar 71 connects the positive terminal of the first capacitor board 61 and the positive terminal of the second capacitor board 62.
  • the second capacitor bus bar 72 connects the negative terminal of the first capacitor board 61 and the negative terminal of the second capacitor board 62.
  • the fan F is configured to cool the cooler 8.
  • a wind tunnel FT is provided on the side of the fan F.
  • the wind tunnel FT is configured to guide the gas sucked or discharged by the fan F to the side opposite to the fan F. As a result, the first power conversion circuit 11 and the second power conversion circuit 12 can be cooled.
  • the cooler 8 includes a first cooling plate 811 and a second cooling plate 821. As shown in FIGS. 1 and 3, the first semiconductor module 21, the third semiconductor module 23, the first conductor unit 31, and the third conductor unit 33 are fixed to the first cooling plate 811 of the cooler 8. There is. A second semiconductor module 22, a fourth semiconductor module 24, a second conductor unit 32, and a fourth conductor unit 34 are fixed to the second cooling plate 821 of the cooler 8.
  • thermal paste or a heat dissipation sheet may be inserted between the cooler 8 and the first semiconductor module 21, the second semiconductor module 22, the third semiconductor module 23, and the fourth semiconductor module 24.
  • the first semiconductor module 21, the second semiconductor module 22, the third semiconductor module 23, and the fourth semiconductor module 24 are fixed to the cooler 8 by sandwiching a thermal paste or a heat dissipation sheet (not shown).
  • the first conductor unit 31 to the fourth conductor unit 34 are unitized.
  • a conductor unit when a conductor unit is unitized, it means that the conductor unit is composed of a combination of a plurality of conductors. As will be described later, the plurality of conductors may be linear, curved, or bent.
  • the first conductor unit 31 of the first power conversion circuit 11 includes a plurality of first linear conductor portions 311, a plurality of first curved conductor portions 312, and a first bent conductor. It has a portion 313 and a first back conductor portion 314.
  • the plurality of first linear conductor portions 311 are, for example, I-shaped.
  • the plurality of first curved conductor portions 312 are longer than the plurality of first linear conductor portions 311.
  • the plurality of first curved conductor portions 312 are, for example, U-shaped.
  • the first connecting portion C1 is connected to the first bent conductor portion 313.
  • the first bent conductor portion 313 is, for example, L-shaped.
  • the number of the plurality of first linear conductor portions 311 and the number of the plurality of first curved conductor portions 312 are the same.
  • the number of the plurality of first linear conductor portions 311 and the number of the plurality of first curved conductor portions 312 may be different.
  • the first back conductor portion 314 is arranged so as to sandwich the cooler 8.
  • the first back conductor portion 314 is directly connected to the first semiconductor module 21.
  • the current flows in a meandering manner through the plurality of first curved conductor portions 312 and the plurality of first linear conductor portions 311.
  • the plurality of first linear conductor portions 311 and the plurality of first curved conductor portions 312 are detachable from each other.
  • the plurality of first linear conductor portions 311, the plurality of first curved conductor portions 312, the first bent conductor portion 313, and the first back surface conductor portion 314 are a plurality of first screws S1. Detachable from each other.
  • the first insulating layer 41 is provided with a plurality of through holes through which each of the plurality of first screws S1 can penetrate.
  • the first conductor unit 31 is fixed to the cooler 8 by a plurality of first screws S1.
  • the first insulating layer 41 is fixed to the cooler 8 by a plurality of first insulating screws SS1.
  • the third conductor unit 33 of the first power conversion circuit 11 has a plurality of third conductor portions 331, a third bent conductor portion 333, and a third back conductor portion 334.
  • the plurality of third conductor portions 331 are, for example, I-shaped (straight line).
  • a second connecting portion C2 is connected to the third bent portion.
  • the third bent conductor portion 333 is, for example, L-shaped.
  • the third back conductor portion 334 is arranged so as to sandwich the cooler 8.
  • the third back conductor portion 334 is directly connected to the third semiconductor module 23.
  • the plurality of third conductor portions 331 are detachable from each other.
  • the third conductor portion 331, the third bent conductor portion 333, and the third back surface conductor portion 334 are detachable from each other by a plurality of third screws S3.
  • the third insulating layer 43 is provided with a plurality of through holes through which each of the plurality of third screws S3 can penetrate.
  • the third conductor unit 33 is fixed to the cooler 8 by a plurality of third screws S3.
  • the third insulating layer 43 is fixed to the cooler 8 by a plurality of third insulating screws SS3.
  • the second conductor unit 32 has a plurality of second conductor portions 321, a second bent conductor portion 323, and a second back surface conductor portion 324.
  • the plurality of second conductor portions 321 are, for example, I-shaped (straight line).
  • a first connecting portion C1 is connected to the second bent portion.
  • the second bent conductor portion 323 is, for example, L-shaped.
  • the second back conductor portion 324 is arranged so as to sandwich the cooler 8.
  • the second back conductor portion 324 is directly connected to the second semiconductor module 22.
  • the number of the second conductor units 32 included in the second conductor unit 32 may be one.
  • the plurality of second conductor portions 321 are removable from each other.
  • the second conductor portion 321 and the second bent conductor portion 323 and the second back surface conductor portion 324 are detachable from each other by a plurality of second screws S2.
  • the second insulating layer 42 is provided with a plurality of through holes through which each of the plurality of second screws S2 can penetrate.
  • the second conductor unit 32 is fixed to the cooler 8 by a plurality of second screws S2.
  • the second insulating layer 42 is fixed to the cooler 8 by a plurality of second insulating screws SS2.
  • the fourth conductor unit 34 includes a plurality of fourth linear conductor portions 341, a plurality of fourth curved conductor portions 342, a fourth bent conductor portion 343, and a fourth back surface conductor portion 344. And have.
  • the plurality of fourth linear conductor portions 341 are, for example, I-shaped.
  • the plurality of fourth curved conductor portions 342 are longer than the plurality of fourth linear conductor portions 341.
  • the plurality of fourth curved conductor portions 342 are, for example, U-shaped.
  • a second connecting portion C2 is connected to the fourth bent conductor portion 343.
  • the fourth bent conductor portion 343 is, for example, L-shaped.
  • the fourth back conductor portion 344 is arranged so as to sandwich the cooler 8.
  • the fourth back conductor portion 344 is directly connected to the fourth semiconductor module 24.
  • the plurality of fourth linear conductor portions 341 and the plurality of fourth curved conductor portions 342 are removable from each other.
  • the plurality of fourth linear conductor portions 341, the plurality of fourth curved conductor portions 342, the fourth bent conductor portion 343, and the fourth back surface conductor portion 344 are a plurality of fourth screws S4. Detachable from each other.
  • the fourth insulating layer 44 is provided with a plurality of through holes through which each of the plurality of fourth screws S4 can penetrate.
  • the fourth conductor unit 34 is fixed to the cooler 8 by a plurality of fourth screws S4.
  • the fourth insulating layer 44 is fixed to the cooler 8 by a plurality of fourth insulating screws SS4.
  • the materials of the first conductor unit 31, the second conductor unit 32, the third conductor unit 33, and the fourth conductor unit 34 have a metal having high electric conductivity as a base material. is doing.
  • the material of the first conductor unit 31, the second conductor unit 32, the third conductor unit 33, and the fourth conductor unit 34 is, for example, copper (Cu) or aluminum (Al).
  • the thickness of the first conductor unit 31, the second conductor unit 32, the third conductor unit 33, and the fourth conductor unit 34 is, for example, 3.0 mm. Desirably, the thickness of each of the first conductor unit 31, the second conductor unit 32, the third conductor unit 33, and the fourth conductor unit 34 is uniform.
  • the widths of the first conductor unit 31, the second conductor unit 32, the third conductor unit 33, and the fourth conductor unit 34 are uniform.
  • the first conductor unit 31, the second conductor unit 32, the third conductor unit 33, and the fourth conductor unit 34 are composed of plate-shaped members.
  • the configuration of the power conversion device 100 according to the first embodiment as a three-phase power change device will be described in detail mainly with reference to FIGS. 1, 3, 6, 8, 12, and 14. ..
  • the power conversion device 100 is configured as a three-phase power conversion circuit, the power conversion device 100 is electrically connected to each of the R phase, the S phase, and the T phase. Further, the power conversion device 100 is electrically connected to each of the U phase, the V phase, and the W phase. Each of the R phase, the S phase and the T phase is electrically connected to each of the U phase, the V phase and the W phase via the power conversion device 100.
  • the first terminal T1 includes an R-phase first terminal portion T1R, an S-phase first terminal portion T1S, and a T-phase first terminal portion T1T.
  • Each of the R phase first terminal portion T1R, the S phase first terminal portion T1S, and the T phase first terminal portion T1T is electrically connected to each of the R phase, the S phase, and the T phase.
  • the second terminal T2 includes a U-phase second terminal portion T2U, a V-phase second terminal portion T2V, and a W-phase second terminal portion T2W.
  • Each of the U-phase second terminal portion T2U, the V-phase second terminal portion T2V, and the W-phase second terminal portion T2W is electrically connected to each of the U-phase, V-phase, and W-phase.
  • the first connection portion C1 includes an R phase first connection portion C1R, an S phase first connection portion C1S, and a T phase first connection portion C1T.
  • Each of the R-phase first connection portion C1R, the S-phase first connection portion C1S, and the T-phase first connection portion C1T is connected to each of the R-phase first terminal portion T1R and the S-phase first terminal portion T1S, respectively. ..
  • the R-phase first connection portion C1R, the S-phase first connection portion C1S, and the T-phase first connection portion C1T have the same shape.
  • the second connection portion C2 includes a U-phase second connection portion C2U, a V-phase second connection portion C2V, and a W-phase second connection portion C2W.
  • Each of the U-phase second connection portion C2U, the V-phase second connection portion C2V, and the W-phase second connection portion C2W is connected to each of the U-phase second terminal portion T2U and the V-phase second terminal portion T2V, respectively. ..
  • the U-phase second connection portion C2U, the V-phase second connection portion C2V, and the W-phase second connection portion C2W have the same shape as each other.
  • the first conductor unit 31 of the first power conversion circuit 11 includes an R-phase first conductor unit portion 31R, an S-phase first conductor unit portion 31S, and a T-phase first conductor unit portion 31T.
  • Each of the R-phase first conductor unit portion 31R, the S-phase first conductor unit portion 31S, and the T-phase first conductor unit portion 31T has an R-phase first connection portion C1R, an S-phase first connection portion C1S, and a T-phase first. It is connected to each of the connection portions C1T.
  • each of the R-phase first conductor unit portion 31R, the S-phase first conductor unit portion 31S, and the T-phase first conductor unit portion 31T has the above-mentioned plurality of first linear conductor portions 311. It has a plurality of first curved conductor portions 312, a first bent conductor portion 313, and a first back surface conductor portion 314. A plurality of first linear conductor portions 311 and a plurality of first curved conductor portions 312 of the R phase first conductor unit portion 31R, a plurality of first linear conductor portions 311 and a plurality of firsts of the S phase first conductor unit portion 31S.
  • Each of the plurality of first linear conductor portions 311 and the plurality of first curved conductor portions 312 of the one curved conductor portion 312 and the T-phase first conductor unit portion 31T has the same shape as each other.
  • the first semiconductor module 21 of the first power conversion circuit 11 includes an R-phase first semiconductor module section 21R, an S-phase first semiconductor module section 21S, and a T-phase first semiconductor module section 21T. I'm out.
  • Each of the R-phase first semiconductor module section 21R, the S-phase first semiconductor module section 21S, and the T-phase first semiconductor module section 21T has an R-phase first conductor unit section 31R, an S-phase first conductor unit section 31S, and a T-phase. It is connected to each of the first conductor unit portions 31T.
  • the third conductor unit 33 of the first power conversion circuit 11 includes a U-phase third conductor unit 33U, a V-phase third conductor unit 33V, and a W-phase third conductor unit 33W.
  • Each of the U-phase third conductor unit 33U, the V-phase third conductor unit 33V, and the W-phase third conductor unit 33W has a U-phase second connection portion C2U, a V-phase second connection portion C2V, and a W-phase second. It is connected to each of the connection portions C2W.
  • each of the U-phase third conductor unit 33U, the V-phase third conductor unit 33V, and the W-phase third conductor unit 33W has the above-mentioned plurality of third conductor units 331 and the first. It has three bent conductor portions 333 and a third back surface conductor portion 334.
  • the third semiconductor module 23 of the first power conversion circuit 11 includes a U-phase third semiconductor module section 23U, a V-phase third semiconductor module section 23V, and a W-phase third semiconductor module section 23W. I'm out.
  • Each of the U-phase third semiconductor module section 23U, the V-phase third semiconductor module section 23V, and the W-phase third semiconductor module section 23W is connected to the R-phase first semiconductor module section 21R and the S-phase first via the first capacitor substrate 61. 1 It is connected to each of the semiconductor module section 21S and the T-phase first semiconductor module section 21T.
  • Each of the U-phase third semiconductor module section 23U, the V-phase third semiconductor module section 23V, and the W-phase third semiconductor module section 23W is the U-phase third conductor unit section 33U, the V-phase third conductor unit section 33V, and the W-phase. It is connected to each of the third conductor unit portions 33W.
  • the second conductor unit 32 of the second power conversion circuit 12 includes an R-phase second conductor unit unit 32R, an S-phase second conductor unit unit 32S, and a T-phase second conductor unit unit 32T.
  • Each of the R-phase second conductor unit portion 32R, the S-phase second conductor unit portion 32S, and the T-phase second conductor unit portion 32T has an R-phase first connection portion C1R, an S-phase first connection portion C1S, and a T-phase first. It is connected to each of the connection portions C1T.
  • the second semiconductor module 22 of the second power conversion circuit 12 includes an R-phase second semiconductor module unit 22R, an S-phase second semiconductor module unit 22S, and a T-phase second semiconductor module unit 22T.
  • Each of the R-phase second semiconductor module unit 22R, the S-phase second semiconductor module unit 22S, and the T-phase second semiconductor module unit 22T has an R-phase second conductor unit unit 32R, an S-phase second conductor unit unit 32S, and a T-phase. It is connected to each of the second conductor unit portions 32T.
  • each of the R-phase second conductor unit portion 32R, the S-phase second conductor unit portion 32S, and the T-phase second conductor unit portion 32T has the above-mentioned plurality of second conductor portions 321 and the first. It has two bent conductor portions 323 and a second back surface conductor portion 324.
  • the fourth conductor unit 34 of the second power conversion circuit 12 includes a U-phase fourth conductor unit portion 34U, a V-phase fourth conductor unit portion 34V, and a W-phase fourth conductor unit portion 34W.
  • Each of the U-phase 4th conductor unit portion 34U, the V-phase 4th conductor unit portion 34V, and the W-phase 4th conductor unit portion 34W has a U-phase second connection portion C2U, a V-phase second connection portion C2V, and a W-phase second. It is connected to each of the connection portions C2W.
  • each of the U-phase fourth conductor unit portion 34U, the V-phase fourth conductor unit portion 34V, and the W-phase fourth conductor unit portion 34W has the above-mentioned plurality of fourth linear conductor portions 341. It has a plurality of fourth curved conductor portions 342, a fourth bent conductor portion 343, and a fourth back surface conductor portion 344.
  • Each of the plurality of fourth linear conductor portions 341 and the plurality of fourth curved conductor portions 342 of the four curved conductor portion 342 and the W phase fourth conductor unit portion 34W has the same shape as each other.
  • the fourth semiconductor module 24 of the second power conversion circuit 12 includes a U-phase fourth semiconductor module section 24U, a V-phase fourth semiconductor module section 24V, and a W-phase fourth semiconductor module section 24W. I'm out.
  • Each of the U-phase 4th semiconductor module section 24U, the V-phase 4th semiconductor module section 24V, and the W-phase 4th semiconductor module section 24W is connected to the R-phase second semiconductor module section 22R and the S-phase second via the second capacitor substrate 62. It is connected to each of the two semiconductor module portions 22S and the T-phase second semiconductor module portion 22T.
  • the U-phase 4th semiconductor module unit 24U, the V-phase 4th semiconductor module unit 24V, and the W-phase 4th semiconductor module unit 24W are each U-phase 4th conductor unit unit 34U, V-phase 4th conductor unit unit 34V, and W-phase. It is connected to each of the fourth conductor unit portions 34W.
  • the power conversion device 100 is configured as a parallel circuit of the first power conversion circuit 11 and the second power conversion circuit 12.
  • the power conversion device 100 is configured as a so-called multi-parallel circuit in which semiconductor elements electrically connected in parallel are further electrically connected in parallel. ..
  • the first power conversion circuit 11 and the second power conversion circuit 12 are connected in parallel to the first terminal T1 and the second terminal T2.
  • the R-phase first semiconductor module unit 21R of the first power conversion circuit 11 has two semiconductor elements SC connected in parallel to the first terminal T1.
  • the R-phase second semiconductor module unit 22R has two semiconductor elements SC connected in parallel to the first terminal T1.
  • the R-phase first semiconductor module unit 21R and the R-phase second semiconductor module unit 22R are connected in parallel to the first terminal T1.
  • the S-phase first semiconductor module unit 21S has two semiconductor elements SC connected in parallel to the first terminal T1.
  • the S-phase second semiconductor module unit 22S has two semiconductor elements SC connected in parallel to the first terminal T1.
  • the S-phase first semiconductor module unit 21S and the S-phase second semiconductor module unit 22S are connected in parallel to the first terminal T1.
  • the T-phase first semiconductor module unit 21T has two semiconductor elements SC connected in parallel to the first terminal T1.
  • the T-phase second semiconductor module unit 22T has two semiconductor elements SC connected in parallel to the first terminal T1.
  • the T-phase first semiconductor module unit 21T and the T-phase second semiconductor module unit 22T are connected in parallel to the first terminal T1.
  • the U-phase third semiconductor module unit 23U has two semiconductor elements SC connected in parallel to the second terminal T2.
  • the U-phase fourth semiconductor module unit 24U has two semiconductor elements SC connected in parallel to the second terminal T2.
  • the U-phase third semiconductor module unit 23U and the U-phase fourth semiconductor module unit 24U are connected in parallel to the second terminal T2.
  • the V-phase third semiconductor module unit 23V has two semiconductor elements SC connected in parallel to the second terminal T2.
  • the V-phase fourth semiconductor module unit 24V has two semiconductor elements SC connected in parallel to the second terminal T2.
  • the V-phase third semiconductor module unit 23V and the V-phase fourth semiconductor module unit 24V are connected in parallel to the second terminal T2.
  • the W-phase third semiconductor module unit 23W has two semiconductor elements SC connected in parallel to the second terminal T2.
  • the W-phase fourth semiconductor module unit 24W has two semiconductor elements SC connected in parallel to the second terminal T2.
  • the W-phase third semiconductor module unit 23W and the W-phase fourth semiconductor module unit 24W are connected in parallel to the second terminal T2.
  • the plurality of semiconductor element SCs of the first semiconductor module 21 and the second semiconductor module 22 according to the present embodiment are multi-parallelized.
  • the power conversion device 100 is configured to receive a three-phase alternating current from the main power supply PW.
  • the three-phase alternating current flows through the reactor R to the power converter 100.
  • the three-phase alternating current flows through each of the first power conversion circuit 11 and the second power conversion circuit 12.
  • the waveform of the three-phase alternating current divided by each of the first power conversion circuit 11 and the second power conversion circuit 12 is converted.
  • the three-phase AC current is converted into a direct current by each semiconductor element SC of the R-phase first semiconductor module section 21R, the S-phase first semiconductor module section 21S, and the T-phase first semiconductor module section 21T.
  • each semiconductor element SC of the R-phase first semiconductor module section 21R, the S-phase first semiconductor module section 21S, and the T-phase first semiconductor module section 21T is configured as a converter circuit. Further, the direct current is converted into an alternating current by each semiconductor element SC of the U-phase third semiconductor module unit 23U, the V-phase third semiconductor module unit 23V, and the W-phase third semiconductor module unit 23W. That is, each semiconductor element SC of the U-phase third semiconductor module section 23U, the V-phase third semiconductor module section 23V, and the W-phase third semiconductor module section 23W is configured as an inverter circuit. The currents converted by each of the first power conversion circuit 11 and the second power conversion circuit 12 merge. The combined current flows through the motor M.
  • the cooler 8 further includes a plurality of first cooling pipes 812, a plurality of second cooling pipes 822, a plurality of first cooling fins 813 and a plurality of second cooling fins 823.
  • the plurality of first cooling pipes 812 are partially embedded in the first cooling plate 811.
  • Each of the plurality of first cooling pipes 812 projects from the inside to the outside of the first cooling plate 811.
  • Each of the plurality of second cooling pipes 822 is partially embedded in the second cooling plate.
  • Each of the plurality of second cooling pipes 822 projects from the inside of the second cooling plate 821 to the outside. Therefore, the heat transferred to the first cooling plate 811 and the second cooling plate 821 is efficiently transported by the plurality of first cooling pipes 812 and the second cooling pipe 822.
  • Each of the plurality of first cooling pipes 812 and the plurality of second cooling pipes 822 is configured as a heat pipe.
  • the inside of each of the plurality of first cooling pipes 812 and the plurality of second cooling pipes 822 is configured so that the refrigerant can flow.
  • the plurality of first cooling pipes 812 are configured to discharge the refrigerant from the third semiconductor module 23 side toward the first semiconductor module 21 side.
  • the plurality of second cooling pipes 822 are configured to discharge the refrigerant from the fourth semiconductor module 24 side toward the second semiconductor module 22 side.
  • the calorific value of the third semiconductor module 23 and the fourth semiconductor module 24 configured as the inverter is larger than the calorific value of the first semiconductor module 21 and the second semiconductor module 22 configured as the converter. Since the semiconductor module having a large calorific value is arranged on the upstream side of the cooling pipe, the semiconductor module having a large calorific value can be efficiently cooled by the refrigerant. Therefore, the cooler 8 can be miniaturized. Further, the number of the plurality of first cooling pipes 812 and the second cooling pipes 822 can be reduced. Therefore, the power conversion device 100 can be miniaturized and the manufacturing cost can be reduced.
  • Each of the plurality of first cooling fins 813 is fixed to the plurality of first cooling pipes 812 so as to intersect the plurality of first cooling pipes 812.
  • Each of the plurality of first cooling fins 813 is thermally connected to the first cooling plate 811.
  • Each of the plurality of second cooling fins 823 is fixed to the plurality of second cooling pipes 822 so as to intersect the plurality of second cooling pipes 822.
  • Each of the plurality of second cooling fins 823 is thermally connected to the second cooling plate 821.
  • Each of the plurality of first cooling fins 813 and the plurality of second cooling fins 823 are configured as heat radiation fins.
  • Each of the plurality of first cooling fins 813 and the plurality of second cooling fins 823 are arranged inside the wind tunnel FT (see FIG. 5).
  • the material of the first cooling plate 811, the second cooling plate 821, the plurality of first cooling pipes 812, the plurality of second cooling pipes 822, the plurality of first cooling fins 813 and the plurality of second cooling fins 823 is, for example, aluminum. (Al).
  • the difference between the inductance of the first conductor unit 31 and the inductance of the second conductor unit 32 is the first to which the first terminal T1 of the first connecting portion C1 is connected.
  • the third position to which the second conductor unit 32 is connected from the first position P1 to which the inductance from the position P1 to the second position P2 to which the first conductor unit 31 is connected and the first terminal T1 of the first connection portion C1 are connected. Equal to the difference from the inductance up to position P3. Therefore, the inductance of the first terminal T1 to the first semiconductor module 21 and the inductance of the first terminal T1 to the second semiconductor module 22 can be made equal.
  • the second conductor unit 32 of the second power conversion circuit 12 is connected to the first connection portion C1 on the side opposite to the first terminal T1 with respect to the first power conversion circuit 11.
  • the first terminal T1 can be arranged at a position asymmetric with respect to the first semiconductor module 21 of the first power conversion circuit 11 and the second semiconductor module 22 of the second power conversion circuit 12. Therefore, the first terminal T1 does not have to be arranged at a position symmetrical with respect to the first semiconductor module 21 of the first power conversion circuit 11 and the second semiconductor module 22 of the second power conversion circuit 12. Therefore, it is possible to prevent the position where the first terminal T1 is arranged from being restricted.
  • the operation and effect of the power conversion device 100 according to the present embodiment will be described in detail as compared with the power conversion device according to the comparative example.
  • the first terminal is arranged at a position symmetrical with respect to the first power conversion circuit and the second power conversion circuit.
  • the power conversion device according to the comparative example includes the first semiconductor element to the fourth semiconductor element which are multi-parallelized as in the power conversion device 100 according to the present embodiment.
  • the first semiconductor element and the second semiconductor element of the first semiconductor module are electrically connected in parallel with each other.
  • the third semiconductor element and the fourth semiconductor element of the second semiconductor module are electrically connected in parallel with each other.
  • the first terminal in order to make the inductances from the first terminal to the first semiconductor element to the fourth semiconductor element equal, is the first semiconductor element and the second semiconductor element of the first semiconductor module. It should be placed in a position symmetrical to the relative. Further, it is necessary to arrange the first terminal at a position symmetrical with respect to the first semiconductor element and the second semiconductor element of the second semiconductor module. Further, it is necessary to arrange the first terminal at a position symmetrical with respect to the first semiconductor element of the first semiconductor module and the first semiconductor element of the second semiconductor module. Further, it is necessary to arrange the first terminal at a position symmetrical with respect to the second semiconductor element of the first semiconductor module and the second semiconductor element of the second semiconductor module.
  • the first terminal is arranged at a position symmetric with respect to the first power conversion circuit and the second power conversion circuit, the first terminal is multiplex symmetric with respect to each of the first semiconductor element to the fourth semiconductor element. Need to be placed in. Therefore, the position where the first terminal is arranged is limited.
  • the second conductor unit 32 of the second power conversion circuit 12 has the first terminal T1 with respect to the first power conversion circuit 11. Is connected to the first connection portion C1 on the opposite side, so that the first terminal T1 is asymmetric with respect to the first semiconductor module 21 of the first power conversion circuit 11 and the second semiconductor module 22 of the second power conversion circuit 12. Can be placed in any position. Therefore, the first terminal T1 can be arranged at a position asymmetrical with respect to the plurality of semiconductor elements. Therefore, it is possible to prevent the position where the first terminal T1 is arranged from being restricted.
  • the difference between the length of the first conductor unit 31 and the length of the second conductor unit 32 is from the first position P1 to which the first terminal T1 of the first connecting portion C1 is connected. From the length to the second position P2 to which the first conductor unit 31 is connected and from the first position P1 to which the first terminal T1 of the first connection portion C1 is connected to the third position P3 to which the second conductor unit 32 is connected. Is equal to the difference from the length of. Therefore, by adjusting the lengths of the first conductor unit 31 and the second conductor unit 32, the inductance of the first terminal T1 to the first semiconductor module 21 and the inductance from the first terminal T1 to the second semiconductor module 22 can be obtained. Can be equal.
  • the inductance of the first terminal T1 to the first semiconductor module 21 and the inductance of the first terminal T1 to the second semiconductor module 22 can be easily equalized. Further, the impedance of the first terminal T1 to the first semiconductor module 21 and the impedance of the first terminal T1 to the second semiconductor module 22 can be easily equalized.
  • the first conductor unit 31 can be composed of a plurality of first linear conductor portions 311 and a plurality of first curved conductor portions 312 which are detachable from each other. Therefore, it is easier to change the inductance and length of the first conductor unit 31 than when the first conductor unit 31 is composed of a single member. Therefore, the design of the first conductor unit 31 becomes easy. In addition, the productivity of the first conductor unit 31 is improved.
  • the plurality of second conductor portions 321 are removable from each other. Therefore, the second conductor unit 32 can be configured by a plurality of second conductor portions 321 that can be attached to and detached from each other. Therefore, it is easier to change the inductance and length of the second conductor unit 32 than when the second conductor unit 32 is composed of a single member. Therefore, the design of the second conductor unit 32 becomes easy. In addition, the productivity of the second conductor unit 32 is improved.
  • the first semiconductor module 21 and the first conductor unit 31 are fixed to the first cooling plate 811 of the cooler 8. Therefore, the first semiconductor module 21 and the first conductor unit 31 can be cooled by the first cooling plate 811.
  • the second semiconductor module 22 and the second conductor unit 32 are fixed to the second cooling plate 821 of the cooler 8. Therefore, the second semiconductor module 22 and the second conductor unit 32 can be cooled by the second cooling plate 821.
  • the second terminal T2 is arranged on the side opposite to the first terminal T1 with respect to the second power conversion circuit 12. Therefore, the second terminal T2 can be arranged at a position asymmetric with respect to the first semiconductor module 21 of the first power conversion circuit 11 and the second semiconductor module 22 of the second power conversion circuit 12. Therefore, the second terminal T2 does not have to be arranged at a position symmetrical with respect to the first semiconductor module 21 of the first power conversion circuit 11 and the second semiconductor module 22 of the second power conversion circuit 12. Therefore, it is possible to prevent the position where the second terminal T2 is arranged from being restricted.
  • the difference between the inductance of the third conductor unit 33 and the inductance of the fourth conductor unit 34 is the fifth position to which the third conductor unit 33 is connected from the fourth position P4 to which the second terminal T2 of the second connecting portion C2 is connected. It is equal to the difference between the inductance up to the position P5 and the inductance from the 4th position P4 to which the 2nd terminal T2 of the 2nd connection portion C2 is connected to the 6th position P6 to which the 4th conductor unit 34 is connected. Therefore, the inductance of the second terminal T2 to the third semiconductor module 23 can be made equal to the inductance of the second terminal T2 to the fourth semiconductor module 24.
  • the inductance of the first terminal T1 to the first semiconductor module 21 and the inductance of the first terminal T1 to the second semiconductor module 22 can be made equal, the current value of the current flowing through the first semiconductor module 21 and the second semiconductor The current value of the current flowing through the module 22 can be equalized. As a result, abnormal heat generation of the first semiconductor module 21 and the second semiconductor module 22 can be suppressed. Further, it is possible to prevent the first semiconductor module 21 and the second semiconductor module 22 from becoming hot. Therefore, it is possible to prevent the product life of the power conversion device 100 from being shortened. Further, since it is possible to suppress excessive heat generation of the first semiconductor module 21 and the second semiconductor module 22, the cooler 8 can be miniaturized.
  • the first semiconductor module 21 and the first conductor unit 31 are fixed to the first cooling plate 811 of the cooler 8. Further, the second semiconductor module 22 and the second conductor unit 32 are fixed to the second cooling plate 821 of the cooler 8. Therefore, it is not necessary to provide a gap between each of the first conductor unit 31 and the second conductor unit 32 and each of the first cooling plate 811 and the second cooling plate 821.
  • the first conductor unit 31 and the second conductor unit 32 are provided.
  • Each of the above greatly blocks the air passage of the cooling gas flowing by the fan F. Therefore, the pressure loss of the cooling gas increases. Therefore, it is necessary to increase the fan F for sufficient cooling.
  • the first terminal T1 is arranged at a position symmetrical with respect to the first semiconductor module 21 of the first power conversion circuit 11 and the second semiconductor module 22 of the second power conversion circuit 12. Since it is not necessary, the first terminal T1 can be arranged on the side of the first power conversion circuit 11 and the second power conversion circuit 12.
  • the power conversion device 100 can be increased in size.
  • the main power supply The PW can also be arranged on the side of the first power conversion circuit 11 and the second power conversion circuit 12. Therefore, it is possible to suppress the increase in size of the power conversion device 100.
  • Embodiment 2 Next, the configuration of the power conversion device 100 according to the second embodiment will be described with reference to FIGS. 18 to 26.
  • the second embodiment has the same configuration and operation and effect as the first embodiment, unless otherwise specified. Therefore, the same components as those in the first embodiment are designated by the same reference numerals, and the description thereof will not be repeated.
  • the power conversion device 100 according to the present embodiment further includes a third power conversion circuit 13 and a third capacitor board 63.
  • the power conversion device 100 according to the present embodiment is different from the power conversion device 100 according to the first embodiment in that it has a capacity expanded by the third power conversion circuit 13.
  • the first power conversion circuit 11, the second power conversion circuit 12, and the third power conversion circuit 13 include the first power conversion circuit 11, the third power conversion circuit 13, and the third power conversion circuit 13 from the first terminal T1 side toward the second terminal T2 side.
  • the second power conversion circuit 12 is arranged in this order.
  • the third power conversion circuit 13 is arranged between the first power conversion circuit 11 and the second power conversion circuit 12.
  • the third power conversion circuit 13 is connected to the first connection portion C1 between the first power conversion circuit 11 and the second power conversion circuit 12.
  • the first power conversion circuit 11, the second power conversion circuit 12, and the third power conversion circuit 13 are electrically connected in parallel to the first terminal T1 and the second terminal T2.
  • the third power conversion circuit 13 includes the fifth semiconductor module 25, the sixth semiconductor module 26, the fifth conductor unit 35, the sixth conductor unit 36, and the fifth insulation. It includes a layer 45 and a sixth insulating layer 46.
  • the fifth conductor unit 35 is connected to the first connecting portion C1.
  • the sixth conductor unit 36 is connected to the second connecting portion C2.
  • the fifth semiconductor module 25 is connected to the first connection portion C1 via the fifth conductor unit 35.
  • the fifth semiconductor module 25 is electrically connected to the first terminal T1 in parallel with the first semiconductor module 21 and the second semiconductor module 22.
  • the sixth semiconductor module 26 is connected to the fifth semiconductor module 25 via the third capacitor substrate 63.
  • the sixth semiconductor module 26 is connected to the second connecting portion C2 via the sixth conductor unit 36.
  • the sixth semiconductor module 26 is electrically connected to the second terminal T2 in parallel with the third semiconductor module 23 and the fourth semiconductor module 24.
  • the first semiconductor module 21 to the sixth semiconductor module 26 may be configured by a common semiconductor module.
  • the first insulating layer 41 to the sixth insulating layer 46 may be composed of a common insulating layer. Therefore, as shown in FIGS. 4, 10 and 19, the first power conversion circuit 11, the second power conversion circuit 12, and the third power conversion circuit are the first conductor unit 31 to the sixth conductor unit 36. Except for the configuration, it may have a common structure.
  • a seventh through hole TH7 is further provided in the first connection portion C1 according to the present embodiment.
  • the second connection portion C2 is further provided with an eighth through hole TH8.
  • the first connection portion C1 is fixed to the third power conversion circuit 13 by the fifth fixture F5 inserted into the seventh through hole TH7.
  • the second connection portion C2 is fixed to the third power conversion circuit 13 by the sixth fixture F6 inserted into the eighth through hole TH8.
  • the third power conversion circuit 13 When the first terminal T1 is an input terminal, the third power conversion circuit 13 has a first connection portion C1 on the downstream side of the current from the first power conversion circuit 11 and on the upstream side of the current from the second power conversion circuit 12. It is connected to the. Therefore, the length from the first position P1 to which the first terminal T1 of the first connecting portion C1 is connected to the seventh position P7 to which the fifth conductor unit 35 is connected is the first position of the first connecting portion C1. It is longer than the distance from P1 to the second position P2. Further, the length of the first connection portion C1 from the first position P1 to the third position P3 is longer than the distance from the first position P1 to the seventh position P7 of the first connection portion C1.
  • the seventh position P7 to which the fifth conductor unit 35 of the first connecting portion C1 is connected is the first penetration of the outer edge of the seventh through hole TH7. It is the position closest to the hole TH1.
  • the inductance of the first connection portion C1 from the first position P1 to the seventh position P7 is larger than the inductance of the first connection portion C1 from the first position P1 to the second position P2.
  • the inductance of the first connection portion C1 from the first position P1 to the third position P3 is larger than the inductance of the first connection portion C1 from the first position P1 to the seventh position P7.
  • the inductance of the first conductor unit 31 becomes larger than the inductance of the fifth conductor unit 35, so that the inductance of the first connection portion C1 from the first position P1 to the seventh position P7 and the first connection are made.
  • the difference from the inductance from the first position P1 to the second position P2 of the portion C1 is reduced. That is, the difference between the inductance of the first conductor unit 31 and the inductance of the fifth conductor unit 35 is that the first conductor unit 31 is connected from the first position P1 to which the first terminal T1 of the first connection portion C1 is connected. It is equal to the difference between the inductance up to the second position P2 and the inductance from the first position P1 to which the first terminal T1 of the first connection portion C1 is connected to the seventh position P7 to which the fifth conductor unit 35 is connected.
  • the inductance of the fifth conductor unit 35 becomes larger than the inductance of the second conductor unit 32, the inductance from the first position P1 to the third position P3 of the first connecting portion C1 and the first of the first connecting portion C1.
  • the difference from the inductance from the 1st position P1 to the 7th position P7 is reduced. That is, the difference between the inductance of the second conductor unit 32 and the inductance of the fifth conductor unit 35 is the third position where the second conductor unit 32 is connected from the position where the first terminal T1 of the first connecting portion C1 is connected. It is equal to the difference between the inductance up to P3 and the inductance from the position where the first terminal T1 of the first connection portion C1 is connected to the seventh position P7 to which the fifth conductor unit 35 is connected.
  • the length of the fifth conductor unit 35 is longer than the length of the first conductor unit 31, so that the first positions P1 to the seventh of the first connecting portion C1
  • the difference between the length to the position P7 and the length from the first position P1 to the second position P2 of the first connecting portion C1 is reduced. That is, the difference between the length of the first conductor unit 31 and the length of the fifth conductor unit 35 is that the first conductor unit 31 is connected from the first position P1 to which the first terminal T1 of the first connecting portion C1 is connected. It is equal to the difference between the length to the second position P2 and the length from the first position P1 to which the first terminal T1 of the first connecting portion C1 is connected to the position to which the fifth conductor unit 35 is connected.
  • the length of the second conductor unit 32 is longer than the length of the fifth conductor unit 35, the length of the first connecting portion C1 from the first position P1 to the third position P3 and the length of the first connecting portion C1.
  • the difference from the length from the first position P1 to the seventh position P7 is reduced. That is, the difference between the length of the second conductor unit 32 and the length of the fifth conductor unit 35 is the third position where the second conductor unit 32 is connected from the position where the first terminal T1 of the first connecting portion C1 is connected. It is equal to the difference between the length up to P3 and the length from the position where the first terminal T1 of the first connecting portion C1 is connected to the position where the fifth conductor unit 35 is connected.
  • the lengths of the first capacitor bus bar 71 and the second capacitor bus 72 are longer than when the power conversion device 100 does not include the third power conversion circuit 13 (see FIG. 1). Further, the output of the power conversion device 100 is, for example, 1.5 times larger than that in the case where the power conversion device 100 does not include the third power conversion circuit 13 (see FIG. 1). Therefore, the thickness and width of the first condenser bus bar 71 and the second condenser bus bar 72 are increased by that amount.
  • the fifth conductor unit 35 includes a plurality of fifth linear conductor portions 351 and a plurality of fifth curved conductor portions 352, a fifth bent conductor portion 353, and a fifth back conductor portion 354. And have.
  • the plurality of fifth linear conductor portions 351 are, for example, I-shaped.
  • the plurality of fifth curved conductor portions 352 is longer than the plurality of fifth linear conductor portions 351.
  • the plurality of fifth curved conductor portions 352 are, for example, U-shaped.
  • the first connecting portion C1 is connected to the fifth bent conductor portion 353.
  • the fifth bent conductor portion 353 is, for example, L-shaped.
  • the fifth back conductor portion 354 is arranged so as to sandwich the cooler 8.
  • the fifth back conductor portion 354 is directly connected to the fifth semiconductor module 25. In the fifth conductor unit 35, the current flows in a meandering manner through the plurality of fifth curved conductor portions 352 and the plurality of fifth linear conductor portions 351.
  • the plurality of fifth linear conductor portions 351 and the plurality of fifth curved conductor portions 352 are removable from each other.
  • the plurality of fifth linear conductor portions 351 and the plurality of fifth curved conductor portions 352, the fifth bent conductor portion 353, and the fifth back surface conductor portion 354 are a plurality of fifth screws S5. Detachable from each other.
  • the fifth insulating layer 45 is provided with a plurality of through holes through which each of the plurality of fifth screws S5 can penetrate. The fifth insulating layer 45 is fixed to the cooler 8 by the fifth insulating screw SS5.
  • the sixth conductor unit 36 includes a plurality of sixth linear conductor portions 361, a plurality of sixth curved conductor portions 362, a sixth bent conductor portion 363, and a sixth back conductor portion 364. And have.
  • the plurality of sixth linear conductor portions 361 are, for example, I-shaped.
  • the plurality of sixth curved conductor portions 362 are longer than the plurality of sixth linear conductor portions 361.
  • the plurality of sixth curved conductor portions 362 are, for example, U-shaped.
  • a second connecting portion C2 is connected to the sixth bent conductor portion 363.
  • the sixth bent conductor portion 363 is, for example, L-shaped.
  • the sixth back conductor portion 364 is arranged so as to sandwich the cooler 8.
  • the sixth back conductor portion 364 is directly connected to the sixth semiconductor module 26. In the sixth conductor unit 36, the current flows in a meandering manner through the plurality of sixth curved conductor portions 362 and the plurality of sixth linear conductor portions 361.
  • the plurality of sixth linear conductor portions 361 and the plurality of sixth curved conductor portions 362 are removable from each other.
  • the plurality of sixth linear conductor portions 361, the plurality of sixth curved conductor portions 362, the sixth bent conductor portion 363, and the sixth back surface conductor portion 364 are a plurality of sixth screws S6. Detachable from each other.
  • the sixth insulating layer 46 is provided with a plurality of through holes through which each of the plurality of sixth screws S6 can penetrate. The sixth insulating layer 46 is fixed to the cooler 8 by the sixth insulating screw SS6.
  • the fifth semiconductor module 25 includes an R-phase fifth semiconductor module section 25R, an S-phase fifth semiconductor module section 25S, and a T-phase fifth semiconductor module section 25T.
  • Each of the R-phase fifth semiconductor module unit 25R, the S-phase fifth semiconductor module unit 25S, and the T-phase fifth semiconductor module unit 25T is electrically connected to each of the R-phase, S-phase, and T-phase, respectively. ..
  • Each of the R-phase fifth semiconductor module unit 25R, the S-phase fifth semiconductor module unit 25S, and the T-phase fifth semiconductor module unit 25T has two semiconductor elements SC electrically connected in parallel.
  • the sixth semiconductor module 26 includes a U-phase sixth semiconductor module section 26U, a V-phase sixth semiconductor module section 26V, and a W-phase sixth semiconductor module section 26W.
  • Each of the U-phase 6th semiconductor module section 26U, the V-phase 6th semiconductor module section 26V, and the W-phase 6th semiconductor module section 26W is electrically connected to each of the U-phase, V-phase, and W-phase, respectively. ..
  • Each of the U-phase 6th semiconductor module unit 26U, the V-phase 6th semiconductor module unit 26V, and the W-phase 6th semiconductor module unit 26W has two semiconductor element SCs electrically connected in parallel.
  • Each of the U-phase 6th semiconductor module section 26U, the V-phase 6th semiconductor module section 26V, and the W-phase 6th semiconductor module section 26W is connected to the R-phase 5th semiconductor module section 25R and the S-phase second via the third capacitor substrate 63. It is electrically connected to the 5th semiconductor module section 25S and the T-phase 5th semiconductor module section 25T.
  • the power conversion device 100 may further include the fourth power conversion circuit. That is, the power conversion device 100 may include four or more power conversion circuits.
  • the power conversion device 100 includes a third power conversion circuit 13. Therefore, the capacity of the power conversion device 100 can be increased by the third power conversion circuit 13 as compared with the case where the power conversion device 100 does not include the third power conversion circuit 13. For example, in a product having a wide output band such as an elevator, it is required to increase the capacity of the power conversion device 100. In the present embodiment, the capacity of the power conversion device 100 used for an elevator or the like can be increased. Therefore, the expandability of the product lineup using the power conversion device 100 according to the present embodiment is improved.
  • the power conversion device 100 is individually commercialized in order to improve the expandability of the lineup, the number of processes such as design work and production control will increase. Therefore, the manufacturing cost of the product increases.
  • the improvement of the expandability of the lineup is, for example, support for a wide range of capacities.
  • the first semiconductor module 21 to the sixth semiconductor module 26 of the power conversion circuit 13 are configured by a common semiconductor module.
  • the first insulating layer 41 to the fourth insulating layer 44 are composed of a common insulating layer. That is, as shown in FIGS. 4, 10 and 19, the first power conversion circuit 11 to the third power conversion circuit 13 have a common configuration except for the first conductor unit 31 to the sixth conductor unit 36. is doing.
  • the design of the power conversion device 100 can be changed only by changing the first connection portion C1, the second connection portion C2, and the first conductor unit 31 to the sixth conductor unit 36 of the power conversion circuit. Therefore, it is possible to reduce the increase in processes such as design work and production control. Therefore, it is possible to improve the expandability of the lineup and reduce the manufacturing cost at the same time. That is, it is possible to achieve both an increase in capacity and a reduction in manufacturing cost.
  • the first connection portion C1 and the second connection portion C2 are connected to the first power conversion circuit 11 and the second power conversion circuit 12 by the first fixture F1 to the sixth fixture F6 which are screws. It is fixed. Further, the first condenser bus bar 71 and the second condenser bus bar 72 are fixed to the first power conversion circuit 11 to the third power conversion circuit 13 by screws. Therefore, the first power conversion circuit 11 to the third power conversion circuit 13 are separated from the first connection portion C1, the second connection portion C2, the first capacitor bus bar 71, and the second capacitor bus bar 72 only by removing the plurality of screws. Can be removed. Therefore, the interchangeability of the first power conversion circuit 11 to the third power conversion circuit 13 is improved.
  • the power conversion device 100 has consumables such as a semiconductor element and a capacitor. Therefore, replacement work may be carried out. Since the interchangeability of the first power conversion circuit 11 to the third power conversion circuit 13 is improved, the exchangeability of consumables is also improved. Further, since the screw heads of the plurality of screws are oriented in the same direction, the workability of the replacement work is improved. As a result, the working time of the replacement work can be reduced. Further, even when the number of power conversion circuits is increased, if the number of a plurality of screws is increased, the first connection portion C1, the second connection portion C2, the first capacitor bus bar 71, and the second capacitor bus bar 72 are other members. It is not necessary to use. Therefore, multi-parallelization is possible while maintaining improved workability.
  • Embodiment 3 the configuration of the elevator control panel 200 according to the third embodiment will be described with reference to FIGS. 27 to 30.
  • the third embodiment has the same configuration and operation and effect as the second embodiment. Therefore, the same components as those in the second embodiment are designated by the same reference numerals, and the description thereof will not be repeated.
  • the elevator control panel 200 is arranged in the machine room MR. Further, the elevator control panel 200 is required to be miniaturized.
  • the elevator control panel 200 is configured to receive three-phase alternating current supplied from the main power supply PW of the building in which the elevator 300 is installed. Further, the elevator control panel 200 can form a current having a power waveform for driving the elevator hoist HM.
  • the elevator 300 includes an elevator control panel 200, a wiring W, a prime mover M, a car 301, a weight 302, and a wire rope 303.
  • the elevator control panel 200 is an elevator control panel for controlling the hoisting machine HM of the elevator 300.
  • the hoist HM includes a motor M (see FIG. 1).
  • the elevator control panel 200 is installed in, for example, a machine room of a building or a facility.
  • the height of the elevator control panel 200 is, for example, 2 m.
  • the width of the elevator control panel 200 is, for example, 1 m.
  • the depth of the elevator control panel 200 is, for example, 0.5 m.
  • the basket 301 and the weight 302 are connected to both ends of the wire rope 303, respectively.
  • the wire rope 303 is connected to the hoisting machine HM.
  • the hoisting machine HM is configured to raise and lower the car 301 by winding the wire rope 303.
  • the elevator control panel 200 includes a power conversion device 100 and wiring W.
  • the wiring W includes the first wiring portion W1 to the seventh wiring portion W7.
  • the elevator control panel 200 according to the present embodiment includes a reactor R, a first terminal block TS1, a second terminal block TS2, a housing 91, a support plate 92, a first control board 931 and a second control board 932, and a third control. It further includes a substrate 933, an electromagnetic contactor 94 and a noise filter 95.
  • the first wiring unit W1 to the seventh wiring unit W7 are not shown.
  • the first control board 931 to the third control board 933 and the support plate 92 are not shown.
  • the door of the elevator control panel 200 is not shown for convenience of explanation.
  • the housing 91 and the support plate 92 are made of, for example, sheet metal.
  • the first control board 931 and the second control board 932 and the second control board 932 are configured to control the first power conversion circuit 11, the second power conversion circuit 12, and the third power conversion circuit 13, respectively.
  • the first terminal T1 of the power conversion device 100 is electrically connected to the hoisting machine HM of the elevator 300.
  • the first terminal T1 of the power conversion device 100 is connected to the wiring W.
  • the power conversion device 100 is electrically connected to the hoisting machine HM of the elevator 300 via the wiring W.
  • the first wiring portion W1 to the seventh wiring portion W7 of the wiring W may be a cable or a bus bar.
  • the second terminal T2 is connected to the second wiring portion W2.
  • the first terminal block TS1 is connected to the main power supply PW by the third wiring unit W3. Further, the first terminal block TS1 is connected to the reactor R by the fourth wiring portion W4.
  • the reactor R is connected to the magnetic contactor 94 by the fifth wiring portion W5.
  • the reactor R is configured to suppress the noise component generated in the current power conversion device 100 from flowing out to the main power supply PW.
  • the electromagnetic contactor 94 is connected to the power conversion device 100 by the first wiring unit W1.
  • the magnetic contactor 94 is configured to temporarily cut off the power supply from the main power supply PW to the power conversion device 100.
  • the noise filter 95 is connected to the power conversion device 100 by the second wiring unit W2.
  • the noise filter 95 is connected to the second terminal block TS2 by the seventh wiring unit W7.
  • the noise filter 95 is configured to remove noise in the power waveform output from the power conversion device 100.
  • the first wiring unit W1 is connected to the first terminal block TS1 from the bottom side of the elevator control panel 200.
  • the second wiring portion W2 is connected to the second terminal T2 from the bottom side of the elevator control panel 200.
  • the first wiring portion W1 and the second wiring portion W2 are arranged so as to sandwich the reactor R.
  • the first wiring portion W1 is arranged on the first terminal block TS1 side with respect to the reactor R.
  • the second wiring portion W2 is arranged on the second terminal block TS2 side with respect to the reactor R.
  • the power conversion device 100, the first terminal block TS1, the second terminal block TS2, the noise filter 95, the reactor R, the electromagnetic contactor 94, and the support plate 92 are arranged inside the housing 91. ing.
  • the power conversion device 100 and the support plate 92 are arranged on the upper side in the internal space of the housing 91.
  • the first terminal block TS1, the second terminal block TS2, the noise filter 95, the reactor R, and the electromagnetic contactor 94 are mounted on the lower side in the internal space of the housing 91.
  • the first control board 931 and the second control board 932 and the third control board 933 are arranged on the front side of the power conversion device 100.
  • the first control board 931 and the second control board 932 and the third control board 933 are attached to the support plate 92.
  • the elevator control panel 200 includes the power conversion device 100 according to any one of the first and second embodiments. Therefore, it is possible to prevent the position of the first terminal T1 from being restricted. Therefore, it is possible to suppress the limitation of the position of the first wiring portion W1 connected to the first terminal T1. As a result, it is possible to prevent the first wiring portion W1 from being connected to the first terminal T1 at a position where the first wiring portion W1 bends. That is, it is possible to prevent the first wiring portion W1 from being greatly bent. Therefore, it is possible to prevent the wiring path of the elevator control panel 200 from being significantly bent. As a result, the space in which the wiring of the elevator control panel 200 is arranged can be miniaturized, so that the elevator control panel 200 can be miniaturized. In addition, the manufacturing cost of the elevator control panel 200 can be reduced.
  • Embodiment 4 the configuration of the power conversion device 100 according to the fourth embodiment will be described with reference to FIGS. 31 to 33. Unless otherwise specified, the fourth embodiment has the same configuration and operation and effect as the first embodiment. Therefore, the same components as those in the first embodiment are designated by the same reference numerals, and the description thereof will not be repeated.
  • the power conversion device 100 further includes a cooling device 80.
  • the cooling device 80 includes a first cooling unit 83 and a second cooling unit 84.
  • the number of the plurality of fans F is the same as the number of the plurality of cooling units.
  • Each of the plurality of fans F is arranged so as to cool the first cooling unit 83 and the second cooling unit 84, respectively.
  • the first cooling unit 83 has a first front plate 831, a first facing plate 832, a first side plate 833, and a plurality of first fins 834.
  • the first semiconductor module 21 is fixed to the first front plate 831.
  • the first facing plate 832 faces the first front plate 831.
  • the first side plate 833 and the plurality of first fins 834 connect the first facing plate 832 to the first front plate 831.
  • the first side plate 833 and the first fin 834 are adjacent to the first front plate 831 and the first facing plate 832.
  • the first side plate 833 and the plurality of first fins 834 are sandwiched between the first front plate 831 and the first facing plate 832.
  • the first side plate 833 may have the same shape as each of the plurality of first fins 834.
  • the plurality of first linear conductor portions 311 and the plurality of first curved conductor portions 312 are fixed to the first facing plate 832 and the first side plate 833.
  • the plurality of first linear conductor portions 311 and the plurality of first curved conductor portions 312 are fixed to the first facing plate 832 and the first side plate 833 via the first insulating layer 41.
  • the plurality of first linear conductor portions 311 and the plurality of first curved conductor portions 312 are fixed to the first cooling unit 83 over the first facing plate 832 and the first side plate 833.
  • the second cooling unit 84 has a second front plate 841, a second facing plate 842, a second side plate 843, and a plurality of second fins 844.
  • the second semiconductor module 22 is fixed to the second front plate 841.
  • the second facing plate 842 faces the second front plate 841.
  • the second side plate 843 and the plurality of second fins 844 connect the second facing plate 842 to the second front plate 841.
  • the second side plate 843 and the second fin 844 are adjacent to the second front plate 841 and the second facing plate 842.
  • the second side plate 843 and the plurality of second fins 844 are sandwiched between the second front plate 841 and the second facing plate 842.
  • the second side plate 843 may have the same shape as each of the plurality of second fins 844.
  • the plurality of second conductor portions 321 are fixed to the second facing plate 842 and the second side plate 843.
  • the plurality of second conductor portions 321 are fixed to the second facing plate 842 and the second side plate 843 via the second insulating layer.
  • the plurality of second conductor portions 321 are fixed to the second cooling unit 84 over the second facing plate 842 and the second side plate 843.
  • the first side plate 833, the plurality of first fins 834, the second side plate 843 and the plurality of second fins 844 may be manufactured, for example, by extrusion processing.
  • the first side plate 833, the plurality of first fins 834, the second side plate 843, and the plurality of second fins 844 are made of, for example, aluminum (Al). As a result, the cooling device 80 can be manufactured at low cost.
  • the plurality of fans F are connected to the lower end of the cooling device 80.
  • the plurality of fans F can forcibly remove the heat of the cooling device 80 by flowing air from the lower side between the plurality of fins of the cooling device 80 (first fin 834 and second fin 844). That is, the plurality of fans F can cool the cooling device 80 by forced air cooling. Thereby, it is possible to reduce the vertical dimension of the power conversion device 100 as compared with the first embodiment.
  • the cooling device 80 further includes the third cooling unit 85 and the fourth cooling unit 86.
  • the power conversion device 100 includes a first power conversion circuit 11, a second power conversion circuit 12, a third power conversion circuit 13, a fourth power conversion circuit 14, and a first semiconductor module 21 (see FIG. 32). It includes a second semiconductor module 22 (see FIG. 32), a third semiconductor module (not shown), and a fourth semiconductor module (not shown).
  • the first power conversion circuit 11, the first semiconductor module 21 (see FIG. 32), and the first cooling unit 83 constitute the first power conversion unit U1.
  • the second power conversion circuit 12, the second semiconductor module 22 (see FIG. 32), and the second cooling unit 84 constitute the second power conversion unit U2.
  • the third power conversion circuit 13, the third semiconductor module (not shown), and the third cooling unit 85 constitute the third power conversion unit U3.
  • the fourth power conversion circuit 14, the fourth semiconductor module (not shown), and the fourth cooling unit 86 constitute the fourth power conversion unit U4.
  • the first power conversion unit U1, the second power conversion unit U2, the third power conversion unit U3, and the fourth power conversion unit U4 are electrically connected in parallel.
  • the first power conversion unit U1 and the third power conversion unit U3 are arranged in the vertical direction.
  • the vertical direction is the direction in which air flows by the fan F.
  • the second power conversion unit U2 and the fourth power conversion unit U4 are arranged in the vertical direction.
  • the second power conversion unit U2 and the fourth power conversion unit U4 are arranged in the horizontal direction so as to intersect the first power conversion unit U1 and the third power conversion unit U3 in the vertical direction. That is, the four power conversion units are arranged in a 2 ⁇ 2 matrix.
  • the matrix is not limited to 2 ⁇ 2, and may be N ⁇ N (N is a natural number of 2 or more).
  • the plurality of first linear conductor portions 311 and the plurality of first curved conductor portions 312 are the first facing plate 832 and the first. It is fixed to the side plate 833, and the plurality of second conductor portions 321 are fixed to the second facing plate 842 and the second side plate 843. Therefore, the plurality of first linear conductor portions 311 and the plurality of first curved conductor portions 312 are fixed to the two surfaces of the first cooling unit 83, and the plurality of second conductor portions 321 are second-cooled. It is fixed to the two sides of the unit 84.
  • the area where the first conductor unit 31 is fixed to the first cooling unit 83 can be larger than that when the first conductor unit 31 is fixed to only one surface of the first cooling unit. .. Further, the area where the second conductor unit 32 is fixed to the second cooling unit 84 can be made larger than the case where the second conductor unit 32 is fixed to only one surface of the second cooling unit. .. Therefore, it becomes easy to adjust the lengths of the first conductor unit 31 and the second conductor unit 32 on the fixed surface. In other words, the adjustment white of the first conductor unit 31 and the second conductor unit 32 can be increased. This makes it possible to improve the degree of freedom in designing the power conversion device 100 for adjusting the inductance.
  • the first power conversion unit U1 and the third power conversion unit U3 are arranged in the vertical direction, and the second power conversion unit U2 and the fourth power conversion unit U4 are arranged in the vertical direction. Therefore, by allowing air to flow in the vertical direction by the fan F, the configuration of the air passage through which the air flows can be simplified in the vertical direction, and space can be saved in the horizontal direction. Further, the number of fans F can be reduced as compared with the case where a plurality of power conversion units are not arranged in the vertical direction.

Abstract

In the present invention, the difference between the inductance of a first conductor unit (31) and the inductance of a second conductor unit (32) is equivalent to the difference between the inductance from the position in a first connection part (C1) at which a first terminal (T1) is connected to the position at which the first conductor unit (31) is connected and the inductance from the position in the first connection part (C1) at which the first terminal (T1) is connected to the position at which the second conductor unit (32) is connected. The second conductor unit (32) of a second electric power conversion circuit (12) is connected to the first connection part (C1) on the side of a first electric power conversion circuit (11) that is opposite from the first terminal (T1).

Description

電力変換装置およびエレベータ制御盤Power converter and elevator control panel
 本開示は、電力変換装置およびエレベータ制御盤に関するものである。 This disclosure relates to a power conversion device and an elevator control panel.
 従来、パワー半導体素子と呼ばれる半導体素子がある。パワー半導体素子とは、例えば、絶縁ゲート型バイポーラトランジスタ(IGBT:Insulated Gate Bipolar Transistor)等の高電圧および大電流に対応した半導体素子である。電力変換装置において複数のパワー半導体素子は、複数の導体によってそれぞれ並列に接続されることがある。複数の導体の各々のインダクタンスがそれぞれ異なる場合には、複数のパワー半導体素子に均一な電流を流すことは、難しい。複数のパワー半導体素子の各々に流れる電流の電流値が異なる場合、大きな電流が流れるパワー半導体素子に熱破壊が生じる可能性が高くなる。一方、パワー半導体素子の熱破壊を抑制するためには、パワー半導体素子の特性を選択する必要がある。また、必要以上に大電力容量のパワー半導体素子を用いる必要がある。このため、電力変換装置の製造コストが増加することがある。また、複数のパワー半導体素子の間において寿命の偏りが生じることがある。 Conventionally, there is a semiconductor element called a power semiconductor element. The power semiconductor element is, for example, a semiconductor element corresponding to a high voltage and a large current such as an insulated gate type bipolar transistor (IGBT: Insulated Gate Bipolar Transistor). In a power conversion device, a plurality of power semiconductor elements may be connected in parallel by a plurality of conductors. When the inductances of the plurality of conductors are different, it is difficult to pass a uniform current through the plurality of power semiconductor devices. When the current value of the current flowing through each of the plurality of power semiconductor elements is different, there is a high possibility that thermal destruction will occur in the power semiconductor element through which a large current flows. On the other hand, in order to suppress thermal destruction of a power semiconductor element, it is necessary to select the characteristics of the power semiconductor element. Further, it is necessary to use a power semiconductor element having a larger power capacity than necessary. Therefore, the manufacturing cost of the power conversion device may increase. In addition, the life may be biased among a plurality of power semiconductor devices.
 特許第5557891号公報(特許文献1)に記載の三相電力変換装置(電力変換装置)は、複数の第1の半導体素子(第1半導体モジュール)、複数の第2の半導体素子(第2半導体モジュール)、第1の交流ブスバー(第1導体ユニット)、第2の交流ブスバー(第2導体ユニット)および交流出力端子(第1端子)を備えている。交流出力端子は、第1のブスバーおよび第2のブスバーの各々に対して対称な位置に配置されている。第1の交流ブスバーおよび第2の交流ブスバーの各々は、交流出力端子に対して対称な形状を有している。複数の第1半導体素子の各々は、交流出力端子に対して対称な位置において第1の交流ブスバーに接続されている。複数の第2半導体素子の各々は、交流出力端子に対して対称な位置において第2の交流ブスバーに接続されている。このため、交流出力端子から複数の第1半導体素子までのインダクタンスおよび交流出力端子から複数の第2半導体素子までのインダクタンスが等しい。 The three-phase power conversion device (power conversion device) described in Japanese Patent No. 5557891 (Patent Document 1) includes a plurality of first semiconductor elements (first semiconductor module) and a plurality of second semiconductor elements (second semiconductor). A module), a first AC bus bar (first conductor unit), a second AC bus bar (second conductor unit), and an AC output terminal (first terminal). The AC output terminals are arranged at positions symmetrical with respect to each of the first bus bar and the second bus bar. Each of the first AC bus bar and the second AC bus bar has a shape symmetrical with respect to the AC output terminal. Each of the plurality of first semiconductor elements is connected to the first AC bus bar at a position symmetrical with respect to the AC output terminal. Each of the plurality of second semiconductor elements is connected to the second AC bus bar at a position symmetrical with respect to the AC output terminal. Therefore, the inductance from the AC output terminal to the plurality of first semiconductor elements and the inductance from the AC output terminal to the plurality of second semiconductor elements are equal.
特許第5557891号公報Japanese Patent No. 5557891
 しかしながら、上記公報に記載の電力変換装置(三相電力変換装置)では、第1端子(交流出力端子)が第1導体ユニット(第1の交流ブスバー)および第2導体ユニット(第2の交流ブスバー)の各々に対して対称な位置に配置されるため、第1端子が配置される位置が制限される。 However, in the power conversion device (three-phase power conversion device) described in the above publication, the first terminal (AC output terminal) is the first conductor unit (first AC bus bar) and the second conductor unit (second AC bus bar). ) Are arranged symmetrically with respect to each of them, so that the position where the first terminal is arranged is limited.
 本開示は上記課題に鑑みてなされたものであり、その目的は、第1端子から第1半導体モジュールまでのインダクタンスと第1端子から第2半導体モジュールまでのインダクタンスとを等しくでき、かつ第1端子が配置される位置が制限されることを抑制することができる電力変換装置およびエレベータ制御盤を提供することである。 The present disclosure has been made in view of the above problems, and an object thereof is to make the inductance from the first terminal to the first semiconductor module equal to the inductance from the first terminal to the second semiconductor module, and the first terminal. It is an object of the present invention to provide a power conversion device and an elevator control panel that can suppress the limitation of the position where the module is arranged.
 本開示の電力変換装置は、第1端子と、第1接続部と、第1電力変換回路と、第2電力変換回路とを備えている。第1接続部は、第1端子に接続されている。第1電力変換回路は、第1導体ユニットと、第1半導体モジュールとを含んでいる。第1導体ユニットは、第1接続部に接続されている。第1半導体モジュールは、第1導体ユニットを介して第1接続部に接続されている。第2電力変換回路は、第2導体ユニットと、第2半導体モジュールとを含んでいる。第2導体ユニットは、第1接続部に接続されている。第2半導体モジュールは、第2導体ユニットを介して第1接続部に接続されている。第1半導体モジュールおよび第2半導体モジュールは、第1端子に対して電気的に並列に接続されている。第1導体ユニットのインダクタンスと第2導体ユニットのインダクタンスとの差は、第1接続部の第1端子が接続された位置から第1導体ユニットが接続された位置までのインダクタンスと第1接続部の第1端子が接続された位置から第2導体ユニットが接続された位置までのインダクタンスとの差に等しい。第2電力変換回路の第2導体ユニットは、第1電力変換回路に対して第1端子とは反対側において第1接続部に接続されている。 The power conversion device of the present disclosure includes a first terminal, a first connection portion, a first power conversion circuit, and a second power conversion circuit. The first connection portion is connected to the first terminal. The first power conversion circuit includes a first conductor unit and a first semiconductor module. The first conductor unit is connected to the first connecting portion. The first semiconductor module is connected to the first connection portion via the first conductor unit. The second power conversion circuit includes a second conductor unit and a second semiconductor module. The second conductor unit is connected to the first connecting portion. The second semiconductor module is connected to the first connection portion via the second conductor unit. The first semiconductor module and the second semiconductor module are electrically connected in parallel to the first terminal. The difference between the inductance of the first conductor unit and the inductance of the second conductor unit is the inductance from the position where the first terminal of the first connection part is connected to the position where the first conductor unit is connected and the inductance of the first connection part. It is equal to the difference from the inductance from the position where the first terminal is connected to the position where the second conductor unit is connected. The second conductor unit of the second power conversion circuit is connected to the first connection portion on the side opposite to the first terminal with respect to the first power conversion circuit.
 本開示の電力変換装置によれば、第1導体ユニットのインダクタンスと第2導体ユニットのインダクタンスとの差は、第1接続部の第1端子が接続された第1位置から第1導体ユニットが接続された第2位置までのインダクタンスと第1接続部の第1端子が接続された第1位置から第2導体ユニットが接続された第3位置までのインダクタンスとの差に等しい。このため、第1端子から第1半導体モジュールのインダクタンスと第1端子から第2半導体モジュールまでのインダクタンスとを等しくすることができる。また、第2電力変換回路の第2導体ユニットは、第1電力変換回路に対して第1端子とは反対側において第1接続部に接続されている。このため、第1端子を第1電力変換回路の第1半導体モジュールおよび第2電力変換回路の第2半導体モジュールに対して非対称な位置に配置することができる。したがって、第1端子が配置される位置が制限されることを抑制することができる。 According to the power conversion device of the present disclosure, the difference between the inductance of the first conductor unit and the inductance of the second conductor unit is that the first conductor unit is connected from the first position to which the first terminal of the first connection portion is connected. It is equal to the difference between the inductance to the second position and the inductance from the first position to which the first terminal of the first connection portion is connected to the third position to which the second conductor unit is connected. Therefore, the inductance of the first terminal to the first semiconductor module can be made equal to the inductance of the first terminal to the second semiconductor module. Further, the second conductor unit of the second power conversion circuit is connected to the first connection portion on the side opposite to the first terminal with respect to the first power conversion circuit. Therefore, the first terminal can be arranged at a position asymmetric with respect to the first semiconductor module of the first power conversion circuit and the second semiconductor module of the second power conversion circuit. Therefore, it is possible to prevent the position where the first terminal is arranged from being restricted.
実施の形態1に係る電力変換装置の構成を概略的に示す第1接続部側から見た斜視図である。It is a perspective view seen from the 1st connection part side which shows the structure of the power conversion apparatus which concerns on Embodiment 1. 実施の形態1に係る電力変換装置の第1接続部および第2接続部の構成を概略的に示す斜視図である。It is a perspective view schematically showing the structure of the 1st connection part and the 2nd connection part of the power conversion apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る電力変換装置の構成を概略的に示す第1電力変換回路側から見た斜視図である。It is a perspective view seen from the 1st power conversion circuit side which shows the structure of the power conversion apparatus which concerns on Embodiment 1. 実施の形態1に係る電力変換装置の第1電力変換回路の構成を概略的に示す第1導体ユニット側から見た斜視図である。It is a perspective view seen from the 1st conductor unit side which shows the structure of the 1st power conversion circuit of the power conversion apparatus which concerns on Embodiment 1. 実施の形態1に係る電力変換装置の第1電力変換回路の構成を概略的に示す第1半導体モジュール側から見た斜視図である。It is a perspective view seen from the 1st semiconductor module side which shows the structure of the 1st power conversion circuit of the power conversion apparatus which concerns on Embodiment 1. 実施の形態1に係る電力変換装置の第1電力変換回路の第1導体ユニットの構成を概略的に示す正面図である。It is a front view schematically showing the structure of the 1st conductor unit of the 1st power conversion circuit of the 1st power conversion apparatus which concerns on Embodiment 1. FIG. 図6のVII-VII線に沿った断面図である。6 is a cross-sectional view taken along the line VII-VII of FIG. 実施の形態1に係る電力変換装置の第1電力変換回路の第3導体ユニットの構成を概略的に示す正面図である。It is a front view schematically showing the structure of the 3rd conductor unit of the 1st power conversion circuit of the power conversion apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る電力変換装置の第1電力変換回路の第3導体ユニットの構成を概略的に示す下面図である。It is a bottom view schematically showing the structure of the 3rd conductor unit of the 1st power conversion circuit of the power conversion apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る電力変換装置の第2電力変換回路の構成を概略的に示す第2導体ユニット側から見た斜視図である。It is a perspective view seen from the 2nd conductor unit side which shows the structure of the 2nd power conversion circuit of the power conversion apparatus which concerns on Embodiment 1. 実施の形態1に係る電力変換装置の第2電力変換回路の構成を概略的に示す第2半導体モジュール側から見た斜視図である。It is a perspective view seen from the 2nd semiconductor module side which shows the structure of the 2nd power conversion circuit of the power conversion apparatus which concerns on Embodiment 1. 実施の形態1に係る電力変換装置の第2電力変換回路の第2導体ユニットの構成を概略的に示す正面図である。It is a front view schematically showing the structure of the 2nd conductor unit of the 2nd power conversion circuit of the power conversion apparatus which concerns on Embodiment 1. FIG. 図12のXIII-XIII線に沿った断面図である。It is sectional drawing along the XIII-XIII line of FIG. 実施の形態1に係る電力変換装置の第2電力変換回路の第4導体ユニットの構成を概略的に示す正面図である。It is a front view schematically showing the structure of the 4th conductor unit of the 2nd power conversion circuit of the power conversion apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る電力変換装置の第2電力変換回路の第4導体ユニットの構成を概略的に示す下面図である。It is a bottom view schematically showing the structure of the 4th conductor unit of the 2nd power conversion circuit of the power conversion apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る電力変換装置の構成を概略的に示す回路図である。It is a circuit diagram which shows schematic the structure of the power conversion apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る電力変換装置の冷却器の構成を概略的に示す斜視図である。It is a perspective view which shows schematic structure of the cooler of the power conversion apparatus which concerns on Embodiment 1. FIG. 実施の形態2に係る電力変換装置の構成を概略的に示す斜視図である。It is a perspective view schematically showing the structure of the power conversion apparatus which concerns on Embodiment 2. FIG. 実施の形態2に係る電力変換装置の第3電力変換回路の構成を概略的に示す第5導体ユニット側から見た斜視図である。It is a perspective view seen from the 5th conductor unit side which shows the structure of the 3rd power conversion circuit of the power conversion apparatus which concerns on Embodiment 2. 実施の形態2に係る電力変換装置の第3電力変換回路の構成を概略的に示す第5半導体モジュール側から見た斜視図である。It is a perspective view seen from the 5th semiconductor module side which schematically shows the structure of the 3rd power conversion circuit of the power conversion apparatus which concerns on Embodiment 2. FIG. 実施の形態2に係る電力変換装置の第1接続部および第2接続部の構成を概略的に示す斜視図である。It is a perspective view schematically showing the structure of the 1st connection part and the 2nd connection part of the power conversion apparatus which concerns on Embodiment 2. FIG. 実施の形態2に係る電力変換装置の第3電力変換回路の第5導体ユニットの構成を概略的に示す正面図である。It is a front view schematically showing the structure of the 5th conductor unit of the 3rd power conversion circuit of the power conversion apparatus which concerns on Embodiment 2. FIG. 図22のXXIII-XXIII線に沿った断面図である。22 is a cross-sectional view taken along the line XXIII-XXIII of FIG. 22. 実施の形態2に係る電力変換装置の第3電力変換回路の第6導体ユニットの構成を概略的に示す平面図である。It is a top view schematically showing the structure of the 6th conductor unit of the 3rd power conversion circuit of the power conversion apparatus which concerns on Embodiment 2. FIG. 実施の形態2に係る電力変換装置の第3電力変換回路の第6導体ユニットの構成を概略的に示す下面図である。It is a bottom view schematically showing the structure of the 6th conductor unit of the 3rd power conversion circuit of the power conversion apparatus which concerns on Embodiment 2. FIG. 実施の形態2に係る電力変換装置の構成を概略的に示す回路図である。It is a circuit diagram which shows schematic the structure of the power conversion apparatus which concerns on Embodiment 2. 実施の形態3に係るエレベータの構成を概略的に示す断面図である。It is sectional drawing which shows schematic the structure of the elevator which concerns on Embodiment 3. FIG. 実施の形態3に係るエレベータ制御盤の構成を概略的に示し、第1配線部等が図示されていない正面図である。It is a front view which shows schematically the structure of the elevator control panel which concerns on Embodiment 3, and does not show the 1st wiring part and the like. 実施の形態3に係るエレベータ制御盤の構成を概略的に示し、第1制御基板および支持板等が図示されていない正面図である。The configuration of the elevator control panel according to the third embodiment is schematically shown, and the first control board, the support plate, and the like are not shown in the front view. 図28のXXX-XXX線に沿った断面図である。FIG. 8 is a cross-sectional view taken along the line XXX-XXX of FIG. 28. 実施の形態4に係る電力変換装置の構成を概略的に示す斜視図である。It is a perspective view schematically showing the structure of the power conversion apparatus which concerns on Embodiment 4. FIG. 図31のXXXII-XXXII線に沿った断面図である。FIG. 3 is a cross-sectional view taken along the line XXXII-XXXII of FIG. 31. 実施の形態4に係る電力変換装置の構成を概略的に示す背面図である。It is a rear view which shows schematic the structure of the power conversion apparatus which concerns on Embodiment 4. FIG. 実施の形態4の変形例に係る電力変換装置の構成を概略的に示す斜視図である。It is a perspective view schematically showing the structure of the power conversion apparatus which concerns on the modification of Embodiment 4.
 以下、実施の形態について図に基づいて説明する。なお、以下では、同一または相当する部分に同一の符号を付すものとし、重複する説明は繰り返さない。 Hereinafter, embodiments will be described with reference to the figures. In the following, the same or corresponding parts will be designated by the same reference numerals, and duplicate explanations will not be repeated.
 実施の形態1.
 図1~図17を用いて、実施の形態1に係る電力変換装置100の構成を説明する。本実施の形態に係る電力変換装置100は、三相電力変換装置として構成されている。また、後述されるように、三相電力変換装置は、エレベータにおいて用いられるエレベータ制御盤に適用される。電力変換装置100は、第1端子T1と、第1接続部C1と、第1電力変換回路11と、第2電力変換回路12とを含んでいる。
Embodiment 1.
The configuration of the power conversion device 100 according to the first embodiment will be described with reference to FIGS. 1 to 17. The power conversion device 100 according to the present embodiment is configured as a three-phase power conversion device. Further, as will be described later, the three-phase power conversion device is applied to an elevator control panel used in an elevator. The power conversion device 100 includes a first terminal T1, a first connection portion C1, a first power conversion circuit 11, and a second power conversion circuit 12.
 図1に示されるように、本実施の形態に係る電力変換装置100は、第2端子T2と、第2接続部C2と、第1コンデンサ基板61と、第2コンデンサ基板62と、第1コンデンサブスバー71と、第2コンデンサブスバー72と、冷却器8とをさらに含んでいる。 As shown in FIG. 1, the power conversion device 100 according to the present embodiment includes a second terminal T2, a second connection portion C2, a first capacitor board 61, a second capacitor board 62, and a first capacitor. It further includes a bus bar 71, a second condenser bus bar 72, and a cooler 8.
 本実施の形態において、第1端子T1は、入力端子として構成されている。第2端子T2は、第2電力変換回路12に対して第1端子T1とは反対側に配置されている。第2端子T2は、出力端子として構成されている。 In the present embodiment, the first terminal T1 is configured as an input terminal. The second terminal T2 is arranged on the side opposite to the first terminal T1 with respect to the second power conversion circuit 12. The second terminal T2 is configured as an output terminal.
 第1接続部C1は、第1端子T1、第1電力変換回路11および第2電力変換回路12に接続されている。第1接続部C1は、第1電力変換回路11および第2電力変換回路12の共通の電流経路である。第1接続部C1は、主電源PWから供給された三相交流電流をリアクトルRおよび第1端子T1を介して第1電力変換回路11および第2電力変換回路12に供給するように構成されている。 The first connection unit C1 is connected to the first terminal T1, the first power conversion circuit 11, and the second power conversion circuit 12. The first connection portion C1 is a common current path of the first power conversion circuit 11 and the second power conversion circuit 12. The first connection portion C1 is configured to supply the three-phase alternating current supplied from the main power supply PW to the first power conversion circuit 11 and the second power conversion circuit 12 via the reactor R and the first terminal T1. There is.
 第2接続部C2は、第2端子T2、第1電力変換回路11および第2電力変換回路12に接続されている。第2接続部C2は、第1電力変換回路11および第2電力変換回路12の共通の電流経路である。第2接続部C2は、第1電力変換回路11および第2電力変換回路12によって変換された電流を第2端子T2を介して原動機Mに供給するように構成されている。原動機Mは、例えば、モーターである。 The second connection portion C2 is connected to the second terminal T2, the first power conversion circuit 11, and the second power conversion circuit 12. The second connection portion C2 is a common current path of the first power conversion circuit 11 and the second power conversion circuit 12. The second connection portion C2 is configured to supply the current converted by the first power conversion circuit 11 and the second power conversion circuit 12 to the prime mover M via the second terminal T2. The prime mover M is, for example, a motor.
 本実施の形態において、第1接続部C1および第2接続部C2は、例えば、ブスバーである。第1接続部C1および第2接続部C2の各々は、板状である。このため、第1接続部C1および第2接続部C2は、簡単な機械加工によって製造可能である。図1では、第1接続部C1および第2接続部C2の各々は、1つの部材からなっている。図示されないが、第1接続部C1および第2接続部C2の各々は、複数の導体に分割されていてもよい。第1接続部C1および第2接続部C2の材料は、例えば、銅(Cu)およびアルミニウム(Al)等の高い電気伝導率を有する金属である。 In the present embodiment, the first connection portion C1 and the second connection portion C2 are, for example, bus bars. Each of the first connection portion C1 and the second connection portion C2 has a plate shape. Therefore, the first connection portion C1 and the second connection portion C2 can be manufactured by simple machining. In FIG. 1, each of the first connecting portion C1 and the second connecting portion C2 is composed of one member. Although not shown, each of the first connecting portion C1 and the second connecting portion C2 may be divided into a plurality of conductors. The material of the first connection portion C1 and the second connection portion C2 is a metal having high electric conductivity such as copper (Cu) and aluminum (Al).
 より詳細には、図2に示されるように、第1接続部C1には、第1貫通孔TH1、第2貫通孔TH2および第3貫通孔TH3が設けられている。第2接続部C2には、第4貫通孔TH4、第5貫通孔TH5および第6貫通孔TH6が設けられている。 More specifically, as shown in FIG. 2, the first connection portion C1 is provided with a first through hole TH1, a second through hole TH2, and a third through hole TH3. The second connection portion C2 is provided with a fourth through hole TH4, a fifth through hole TH5, and a sixth through hole TH6.
 図1および図2に示されるように、第1接続部C1は、第1端子T1が第1貫通孔TH1に挿入されることで第1端子T1に接続されている。第1接続部C1は、第2貫通孔TH2に挿入された第1固定具F1によって第1電力変換回路11に固定されている。第1接続部C1は、第3貫通孔TH3に挿入された第2固定具F2によって第2電力変換回路12に固定されている。 As shown in FIGS. 1 and 2, the first connection portion C1 is connected to the first terminal T1 by inserting the first terminal T1 into the first through hole TH1. The first connection portion C1 is fixed to the first power conversion circuit 11 by the first fixture F1 inserted into the second through hole TH2. The first connection portion C1 is fixed to the second power conversion circuit 12 by the second fixture F2 inserted into the third through hole TH3.
 第2接続部C2は、第2端子T2が第4貫通孔TH4に挿入されることで第2端子T2に接続されている。第2接続部C2は、第5貫通孔TH5に挿入された第3固定具F3によって第1電力変換回路11に固定されている。第2接続部C2は、第6貫通孔TH6に挿入された第4固定具F4によって第2電力変換回路12に固定されている。第1固定具F1~第4固定具F4は、端子として構成されている。第1固定具F1~第4固定具F4は、例えば、ねじである。 The second connection portion C2 is connected to the second terminal T2 by inserting the second terminal T2 into the fourth through hole TH4. The second connection portion C2 is fixed to the first power conversion circuit 11 by the third fixture F3 inserted into the fifth through hole TH5. The second connection portion C2 is fixed to the second power conversion circuit 12 by the fourth fixture F4 inserted into the sixth through hole TH6. The first fixture F1 to the fourth fixture F4 are configured as terminals. The first fixing tool F1 to the fourth fixing tool F4 are, for example, screws.
 第1電力変換回路11および第2電力変換回路12は、第1端子T1および第2端子T2に対して電気的に並列に接続されている。第1電力変換回路11および第2電力変換回路12は、間隔を空けて互いに向かい合うように配置されている。 The first power conversion circuit 11 and the second power conversion circuit 12 are electrically connected in parallel to the first terminal T1 and the second terminal T2. The first power conversion circuit 11 and the second power conversion circuit 12 are arranged so as to face each other at intervals.
 図1および図3に示されるように、第1電力変換回路11は、第1半導体モジュール21と、第1導体ユニット31と、第1絶縁層41とを含んでいる。第2電力変換回路12は、第2半導体モジュール22と、第2導体ユニット32と、第2絶縁層42とを含んでいる。なお、第1半導体モジュール21および第2半導体モジュール22の各々は、冷却器8に対して第1導体ユニット31および第2導体ユニット32の各々とはそれぞれ反対側に配置されているため、図1の視点からは見えない。 As shown in FIGS. 1 and 3, the first power conversion circuit 11 includes a first semiconductor module 21, a first conductor unit 31, and a first insulating layer 41. The second power conversion circuit 12 includes a second semiconductor module 22, a second conductor unit 32, and a second insulating layer 42. Since each of the first semiconductor module 21 and the second semiconductor module 22 is arranged on the opposite side of the cooler 8 from each of the first conductor unit 31 and the second conductor unit 32, FIG. 1 It cannot be seen from the viewpoint of.
 図3に示されるように、第2半導体モジュール22は、第1半導体モジュール21と共通の構成を有していてもよい。また、第2絶縁層42は、第1絶縁層41と共通の構成を有していてもよい。すなわち、第2電力変換回路12は、第2導体ユニット32の構成を除いて、第1電力変換回路11と共通の構成を有していてもよい。 As shown in FIG. 3, the second semiconductor module 22 may have a configuration common to that of the first semiconductor module 21. Further, the second insulating layer 42 may have a structure common to that of the first insulating layer 41. That is, the second power conversion circuit 12 may have the same configuration as the first power conversion circuit 11 except for the configuration of the second conductor unit 32.
 第1半導体モジュール21および第2半導体モジュール22は、第1端子T1に対して電気的に並列に接続されている。また、第1半導体モジュール21および第2半導体モジュール22は、第2端子T2に対して電気的に並列に接続されている。第1半導体モジュール21および第2半導体モジュール22の詳細な構成は後述される。第1半導体モジュール21は、第1導体ユニット31を介して第1接続部C1に接続されている。第2半導体モジュール22は、第2導体ユニット32を介して第1接続部C1に接続されている。 The first semiconductor module 21 and the second semiconductor module 22 are electrically connected in parallel to the first terminal T1. Further, the first semiconductor module 21 and the second semiconductor module 22 are electrically connected in parallel to the second terminal T2. The detailed configuration of the first semiconductor module 21 and the second semiconductor module 22 will be described later. The first semiconductor module 21 is connected to the first connecting portion C1 via the first conductor unit 31. The second semiconductor module 22 is connected to the first connecting portion C1 via the second conductor unit 32.
 図1に示されるように、第1導体ユニット31は、第1接続部C1に接続されている。第1導体ユニット31は、第1接続部C1を介して第1端子T1に接続されている。第1導体ユニット31は、第1固定具F1によって第1接続部C1に固定されている。 As shown in FIG. 1, the first conductor unit 31 is connected to the first connecting portion C1. The first conductor unit 31 is connected to the first terminal T1 via the first connecting portion C1. The first conductor unit 31 is fixed to the first connection portion C1 by the first fixture F1.
 第2導体ユニット32は、第1接続部C1に接続されている。第2導体ユニット32は、第1接続部C1を介して第1端子T1に接続されている。第2導体ユニット32は、第2固定具F2によって第1接続部C1に固定されている。 The second conductor unit 32 is connected to the first connecting portion C1. The second conductor unit 32 is connected to the first terminal T1 via the first connecting portion C1. The second conductor unit 32 is fixed to the first connection portion C1 by the second fixture F2.
 第2電力変換回路12の第2導体ユニット32は、第1電力変換回路11に対して第1端子T1とは反対側において第1接続部C1に接続されている。このため、第1接続部C1の第1端子T1が接続された第1位置P1から第2導体ユニット32が接続された第3位置P3までの長さは、第1接続部C1の第1端子T1が接続された第1位置P1から第1導体ユニット31が接続された第2位置P2までの距離よりも長い。また、第1導体ユニット31および第2導体ユニット32は、第1端子T1に対して非対称な位置に配置されている。 The second conductor unit 32 of the second power conversion circuit 12 is connected to the first connection portion C1 on the side opposite to the first terminal T1 with respect to the first power conversion circuit 11. Therefore, the length from the first position P1 to which the first terminal T1 of the first connecting portion C1 is connected to the third position P3 to which the second conductor unit 32 is connected is the first terminal of the first connecting portion C1. It is longer than the distance from the first position P1 to which T1 is connected to the second position P2 to which the first conductor unit 31 is connected. Further, the first conductor unit 31 and the second conductor unit 32 are arranged at positions asymmetric with respect to the first terminal T1.
 なお、図1および図2に示されるように、本実施の形態において、第1接続部C1の第1端子T1が接続された第1位置P1とは、第1貫通孔TH1の外縁のうち第2貫通孔TH2に最も近い位置である。また、第1接続部C1の第1導体ユニット31が接続された第2位置P2とは、第2貫通孔TH2の外縁のうち第1貫通孔TH1に最も近い位置である。また、第1接続部C1の第2導体ユニット32が接続された第3位置P3とは、第3貫通孔TH3の外縁のうち第1貫通孔TH1に最も近い部分である。 As shown in FIGS. 1 and 2, in the present embodiment, the first position P1 to which the first terminal T1 of the first connection portion C1 is connected is the first of the outer edges of the first through hole TH1. 2 The position closest to the through hole TH2. Further, the second position P2 to which the first conductor unit 31 of the first connecting portion C1 is connected is the position closest to the first through hole TH1 among the outer edges of the second through hole TH2. Further, the third position P3 to which the second conductor unit 32 of the first connecting portion C1 is connected is the portion of the outer edge of the third through hole TH3 that is closest to the first through hole TH1.
 図1に示されるように、第1端子T1が入力端子である場合、第2導体ユニット32は、第1電力変換回路11よりも電流の下流側において第1接続部C1に接続されている。このため、第1接続部C1の第1端子T1が接続された第1位置P1から第2導体ユニット32が接続された第3位置P3までのインダクタンスは、第1接続部C1の第1端子T1が接続された位置から第1導体ユニット31が接続された第2位置P2までのインダクタンスよりも大きい。 As shown in FIG. 1, when the first terminal T1 is an input terminal, the second conductor unit 32 is connected to the first connection portion C1 on the downstream side of the current from the first power conversion circuit 11. Therefore, the inductance from the first position P1 to which the first terminal T1 of the first connecting portion C1 is connected to the third position P3 to which the second conductor unit 32 is connected is the first terminal T1 of the first connecting portion C1. Is larger than the inductance from the connected position to the second position P2 to which the first conductor unit 31 is connected.
 具体的には、第1端子T1が入力端子である場合、第1接続部C1の第1位置P1から第2位置P2までには、第1電力変換回路11に流れる電流および第2電力変換回路12に流れる電流が重畳されている。第2位置P2から第3位置P3までには、第2電力変換回路12に流れる電流のみが流れている。 Specifically, when the first terminal T1 is an input terminal, the current flowing through the first power conversion circuit 11 and the second power conversion circuit from the first position P1 to the second position P2 of the first connection portion C1. The current flowing through 12 is superimposed. Only the current flowing through the second power conversion circuit 12 flows from the second position P2 to the third position P3.
 本実施の形態では、第1導体ユニット31のインダクタンスが第2導体ユニット32のインダクタンスよりも大きくなることで、第1接続部C1の第1位置P1から第3位置P3までのインダクタンスと第1接続部C1の第1位置P1から第2位置P2までのインダクタンスとの差が低減される。すなわち、第1導体ユニット31のインダクタンスと第2導体ユニット32のインダクタンスとの差は、第1接続部C1の第1端子T1が接続された第1位置P1から第1導体ユニット31が接続された第2位置P2までのインダクタンスと第1接続部C1の第1端子T1が接続された第1位置P1から第2導体ユニット32が接続された第3位置P3までのインダクタンスとの差に等しい。なお、本実施の形態において、2つのインダクタンスの差が等しいとは、2つのインダクタンスが±10%の範囲内において誤差によってずれていることも意味している。 In the present embodiment, the inductance of the first conductor unit 31 becomes larger than the inductance of the second conductor unit 32, so that the inductance of the first connection portion C1 from the first position P1 to the third position P3 and the first connection are made. The difference from the inductance from the first position P1 to the second position P2 of the portion C1 is reduced. That is, the difference between the inductance of the first conductor unit 31 and the inductance of the second conductor unit 32 is that the first conductor unit 31 is connected from the first position P1 to which the first terminal T1 of the first connection portion C1 is connected. It is equal to the difference between the inductance to the second position P2 and the inductance from the first position P1 to which the first terminal T1 of the first connecting portion C1 is connected to the third position P3 to which the second conductor unit 32 is connected. In the present embodiment, the fact that the difference between the two inductances is equal also means that the two inductances are deviated by an error within a range of ± 10%.
 本実施の形態では、第1導体ユニット31の長さが第2導体ユニット32の長さよりも長くなることで、第1接続部C1の第1位置P1から第3位置P3までの長さと第1接続部C1の第1位置P1から第2位置P2までの長さとの差が低減される。すなわち、第1導体ユニット31の長さと第2導体ユニット32の長さとの差は、第1接続部C1の第1端子T1が接続された第1位置P1から第1導体ユニット31が接続された第2位置P2までの長さと第1接続部C1の第1端子T1が接続された第1位置P1から第2導体ユニット32が接続された第3位置P3までの長さとの差に等しい。なお、本実施の形態において、2つの長さの差が等しいとは、2つの長さが±10%の範囲内において誤差によってずれていることも意味している。 In the present embodiment, the length of the first conductor unit 31 is longer than the length of the second conductor unit 32, so that the length from the first position P1 to the third position P3 of the first connecting portion C1 and the first one. The difference from the length of the connecting portion C1 from the first position P1 to the second position P2 is reduced. That is, the difference between the length of the first conductor unit 31 and the length of the second conductor unit 32 is that the first conductor unit 31 is connected from the first position P1 to which the first terminal T1 of the first connecting portion C1 is connected. It is equal to the difference between the length to the second position P2 and the length from the first position P1 to which the first terminal T1 of the first connecting portion C1 is connected to the third position P3 to which the second conductor unit 32 is connected. In the present embodiment, the fact that the difference between the two lengths is equal also means that the two lengths are deviated by an error within a range of ± 10%.
 図1および図3に示されるように、本実施の形態において、第1電力変換回路11は、第3半導体モジュール23と、第3導体ユニット33と、第3絶縁層43とをさらに含んでいる。第2電力変換回路12は、第4半導体モジュール24と、第4導体ユニット34と、第4絶縁層44とをさらに含んでいる。 As shown in FIGS. 1 and 3, in the present embodiment, the first power conversion circuit 11 further includes a third semiconductor module 23, a third conductor unit 33, and a third insulating layer 43. .. The second power conversion circuit 12 further includes a fourth semiconductor module 24, a fourth conductor unit 34, and a fourth insulating layer 44.
 第3半導体モジュール23は、第1コンデンサ基板61を介して第1半導体モジュール21に接続されている。第4半導体モジュール24は、第2コンデンサ基板62を介して第2半導体モジュール22に接続されている。第3半導体モジュール23および第4半導体モジュール24は、第1端子T1に対して電気的に並列に接続されている。第3半導体モジュール23および第4半導体モジュール24は、第2端子T2に対して電気的に並列に接続されている。 The third semiconductor module 23 is connected to the first semiconductor module 21 via the first capacitor substrate 61. The fourth semiconductor module 24 is connected to the second semiconductor module 22 via the second capacitor substrate 62. The third semiconductor module 23 and the fourth semiconductor module 24 are electrically connected in parallel to the first terminal T1. The third semiconductor module 23 and the fourth semiconductor module 24 are electrically connected in parallel to the second terminal T2.
 第3導体ユニット33は、第1半導体モジュール21を介して第1導体ユニット31に接続されている。第3導体ユニット33は、第3半導体モジュール23、第1コンデンサ基板61および第1半導体モジュール21を介して第1導体ユニット31に接続されている。 The third conductor unit 33 is connected to the first conductor unit 31 via the first semiconductor module 21. The third conductor unit 33 is connected to the first conductor unit 31 via the third semiconductor module 23, the first capacitor substrate 61, and the first semiconductor module 21.
 第3導体ユニット33は、第2接続部C2に接続されている。第3導体ユニット33は、第2接続部C2を介して第2端子T2に接続されている。第3導体ユニット33は、第3固定具F3によって第2接続部C2に固定されている。 The third conductor unit 33 is connected to the second connecting portion C2. The third conductor unit 33 is connected to the second terminal T2 via the second connecting portion C2. The third conductor unit 33 is fixed to the second connection portion C2 by the third fixture F3.
 第4導体ユニット34は、第2半導体モジュール22を介して第2導体ユニット32に接続されている。第4導体ユニット34は、第4半導体モジュール24、第2コンデンサ基板62および第2半導体モジュール22を介して第2導体ユニット32に接続されている。 The fourth conductor unit 34 is connected to the second conductor unit 32 via the second semiconductor module 22. The fourth conductor unit 34 is connected to the second conductor unit 32 via the fourth semiconductor module 24, the second capacitor board 62, and the second semiconductor module 22.
 第4導体ユニット34は、第2接続部C2に接続されている。第4導体ユニット34は、第2接続部C2を介して第2端子T2に接続されている。第4導体ユニット34は、第4固定具F4によって第2接続部C2に固定されている。 The fourth conductor unit 34 is connected to the second connecting portion C2. The fourth conductor unit 34 is connected to the second terminal T2 via the second connecting portion C2. The fourth conductor unit 34 is fixed to the second connection portion C2 by the fourth fixture F4.
 第1電力変換回路11の第3導体ユニット33は、第2電力変換回路12に対して第2端子T2とは反対側で第2接続部C2に接続されている。第1端子T1が入力端子である場合、第3導体ユニット33は、第4電力変換回路14よりも電流の上流側において第2接続部C2に接続されている。 The third conductor unit 33 of the first power conversion circuit 11 is connected to the second connection portion C2 on the side opposite to the second terminal T2 with respect to the second power conversion circuit 12. When the first terminal T1 is an input terminal, the third conductor unit 33 is connected to the second connection portion C2 on the upstream side of the current from the fourth power conversion circuit 14.
 第2接続部C2の第2端子T2が接続された第4位置P4から第3導体ユニット33が接続された第5位置P5までのインダクタンスは、第2接続部C2の第2端子T2が接続された第4位置P4から第4導体ユニット34が接続された第6位置P6までのインダクタンスよりも大きい。 The inductance from the 4th position P4 to which the 2nd terminal T2 of the 2nd connecting portion C2 is connected to the 5th position P5 to which the 3rd conductor unit 33 is connected is connected to the 2nd terminal T2 of the 2nd connecting portion C2. It is larger than the inductance from the 4th position P4 to the 6th position P6 to which the 4th conductor unit 34 is connected.
 なお、図1および図2に示されるように、本実施の形態において、第2接続部C2の第2端子T2が接続された第4位置P4とは、第4貫通孔TH4の外縁のうち第5貫通孔TH5に最も近い位置である。また、第2接続部C2の第3導体ユニット33が接続された第5位置P5とは、第5貫通孔TH5の外縁のうち第4貫通孔TH4に最も近い位置である。また、第2接続部C2の第4導体ユニット34が接続された第6位置P6とは、第6貫通孔TH6の外縁のうち第4貫通孔TH4に最も近い位置である。 As shown in FIGS. 1 and 2, in the present embodiment, the fourth position P4 to which the second terminal T2 of the second connecting portion C2 is connected is the first of the outer edges of the fourth through hole TH4. 5 The position closest to the through hole TH5. Further, the fifth position P5 to which the third conductor unit 33 of the second connecting portion C2 is connected is the position closest to the fourth through hole TH4 among the outer edges of the fifth through hole TH5. Further, the sixth position P6 to which the fourth conductor unit 34 of the second connecting portion C2 is connected is the position closest to the fourth through hole TH4 among the outer edges of the sixth through hole TH6.
 本実施の形態では、第4導体ユニット34のインダクタンスが第3導体ユニット33のインダクタンスよりも大きくなることで、第2接続部C2の第4位置P4から第5位置P5までのインダクタンスと第2接続部C2の第4位置P4から第6位置P6までのインダクタンスとの差が低減される。すなわち、第3導体ユニット33のインダクタンスと第4導体ユニット34のインダクタンスとの差は、第2接続部C2の第2端子T2が接続された第4位置P4から第3導体ユニット33が接続された第5位置P5までのインダクタンスと第2接続部C2の第2端子T2が接続された第4位置P4から第4導体ユニット34が接続された第6位置P6までのインダクタンスとの差に等しい。 In the present embodiment, the inductance of the 4th conductor unit 34 becomes larger than the inductance of the 3rd conductor unit 33, so that the inductance from the 4th position P4 to the 5th position P5 of the 2nd connection portion C2 and the 2nd connection are made. The difference from the inductance from the fourth position P4 to the sixth position P6 of the portion C2 is reduced. That is, the difference between the inductance of the third conductor unit 33 and the inductance of the fourth conductor unit 34 is that the third conductor unit 33 is connected from the fourth position P4 to which the second terminal T2 of the second connecting portion C2 is connected. It is equal to the difference between the inductance up to the 5th position P5 and the inductance from the 4th position P4 to which the 2nd terminal T2 of the 2nd connection portion C2 is connected to the 6th position P6 to which the 4th conductor unit 34 is connected.
 図1に示されるように、本実施の形態において、第2接続部C2の第4位置P4から第5位置P5までの長さは、第2接続部C2の第4位置P4から第6位置P6までの長さよりも長い。本実施の形態では、第4導体ユニット34の長さが第3導体ユニット33の長さよりも長くなることで、第2接続部C2の第4位置P4から第5位置P5までの長さと第2接続部C2の第4位置P4から第6位置P6までの長さとの差が低減される。すなわち、第3導体ユニット33の長さと第4導体ユニット34の長さとの差は、第2接続部C2の第2端子T2が接続された第4位置P4から第3導体ユニット33が接続された第5位置P5までの長さと第2接続部C2の第2端子T2が接続された第4位置P4から第4導体ユニット34が接続された第6位置P6までの長さとの差に等しい。 As shown in FIG. 1, in the present embodiment, the length from the fourth position P4 to the fifth position P5 of the second connection portion C2 is the length from the fourth position P4 to the sixth position P6 of the second connection portion C2. Longer than the length up to. In the present embodiment, the length of the fourth conductor unit 34 is longer than the length of the third conductor unit 33, so that the length from the fourth position P4 to the fifth position P5 of the second connecting portion C2 and the second The difference from the length of the connecting portion C2 from the fourth position P4 to the sixth position P6 is reduced. That is, the difference between the length of the third conductor unit 33 and the length of the fourth conductor unit 34 is that the third conductor unit 33 is connected from the fourth position P4 to which the second terminal T2 of the second connecting portion C2 is connected. It is equal to the difference between the length up to the fifth position P5 and the length from the fourth position P4 to which the second terminal T2 of the second connection portion C2 is connected to the sixth position P6 to which the fourth conductor unit 34 is connected.
 第1導体ユニット31は、第1絶縁層41を介して冷却器8に固定されている。第2導体ユニット32は、第2絶縁層42を介して冷却器8に固定されている。第3導体ユニット33は、第3絶縁層43を介して冷却器8に固定されている。第4導体ユニット34は、第4絶縁層44を介して冷却器8に固定されている。 The first conductor unit 31 is fixed to the cooler 8 via the first insulating layer 41. The second conductor unit 32 is fixed to the cooler 8 via the second insulating layer 42. The third conductor unit 33 is fixed to the cooler 8 via the third insulating layer 43. The fourth conductor unit 34 is fixed to the cooler 8 via the fourth insulating layer 44.
 第1絶縁層41、第2絶縁層42、第3絶縁層43および第4絶縁層44の材料は、例えば、ポリフェニレンサルファイド(PPS:Poly Phenylene Sulfide)樹脂を母材として有する材料である。第1絶縁層41、第2絶縁層42、第3絶縁層43および第4絶縁層44の材料の熱伝導率は、例えば、1W/mK以上5W/mK以下である。また、第1絶縁層41、第2絶縁層42、第3絶縁層43および第4絶縁層44の各々は、第1導体ユニット31、第2導体ユニット32、第3導体ユニット33および第4導体ユニット34の各々を冷却器8に対して電気的に絶縁可能な絶縁性能を有している。 The material of the first insulating layer 41, the second insulating layer 42, the third insulating layer 43, and the fourth insulating layer 44 is, for example, a material having a polyphenylene sulfide (PPS) resin as a base material. The thermal conductivity of the materials of the first insulating layer 41, the second insulating layer 42, the third insulating layer 43, and the fourth insulating layer 44 is, for example, 1 W / mK or more and 5 W / mK or less. Further, each of the first insulating layer 41, the second insulating layer 42, the third insulating layer 43, and the fourth insulating layer 44 has a first conductor unit 31, a second conductor unit 32, a third conductor unit 33, and a fourth conductor. Each of the units 34 has an insulating performance capable of electrically insulating from the cooler 8.
 図示されないが、第1絶縁層41、第2絶縁層42、第3絶縁道および第4絶縁層44の各々と第1導体ユニット31、第2導体ユニット32、第3導体ユニット33および第4導体ユニット34の各々との間には、放熱グリス、放熱シートまたは接着剤等が挿入されていてもよい。これにより、接触熱抵抗が低減するため、放熱性が向上する。 Although not shown, each of the first insulating layer 41, the second insulating layer 42, the third insulating path and the fourth insulating layer 44, the first conductor unit 31, the second conductor unit 32, the third conductor unit 33 and the fourth conductor A thermal paste, a heat dissipation sheet, an adhesive, or the like may be inserted between each of the units 34. As a result, the contact thermal resistance is reduced, so that the heat dissipation is improved.
 第1コンデンサ基板61および第2コンデンサ基板62は、例えば、平滑コンデンサとして構成されている。第1コンデンサ基板61および第2コンデンサ基板62は、例えば、プリント基板と、プリント基板に並列に実装された複数の電解コンデンサとを含んでいる。第1コンデンサ基板61は、第1半導体モジュール21および第3半導体モジュール23に例えば、ねじ止めによって固定されている。これにより、第1コンデンサ基板61は、第1半導体モジュール21および第3半導体モジュール23に電気的に接続されている。第2コンデンサ基板62は、第2半導体モジュール22および第4半導体モジュール24に例えば、ねじ止めによって固定されている。これにより、第2コンデンサ基板62は、第2半導体モジュール22および第4半導体モジュール24に電気的に接続されている。 The first capacitor board 61 and the second capacitor board 62 are configured as, for example, smoothing capacitors. The first capacitor board 61 and the second capacitor board 62 include, for example, a printed circuit board and a plurality of electrolytic capacitors mounted in parallel on the printed circuit board. The first capacitor substrate 61 is fixed to the first semiconductor module 21 and the third semiconductor module 23, for example, by screwing. As a result, the first capacitor substrate 61 is electrically connected to the first semiconductor module 21 and the third semiconductor module 23. The second capacitor board 62 is fixed to the second semiconductor module 22 and the fourth semiconductor module 24, for example, by screwing. As a result, the second capacitor substrate 62 is electrically connected to the second semiconductor module 22 and the fourth semiconductor module 24.
 第1コンデンサ基板61および第2コンデンサ基板62の各々は、互いを接続するための直流端子であるプラス端子およびマイナス端子を含んでいる。第1コンデンサブスバー71は、第1コンデンサ基板61のプラス端子と第2コンデンサ基板62のプラス端子とを接続している。第2コンデンサブスバー72は、第1コンデンサ基板61のマイナス端子と第2コンデンサ基板62のマイナス端子とを接続している。これにより、第1電力変換回路11および第2電力変換回路12の間の電荷の偏りが平準化される。 Each of the first capacitor board 61 and the second capacitor board 62 includes a positive terminal and a negative terminal which are DC terminals for connecting to each other. The first capacitor bus bar 71 connects the positive terminal of the first capacitor board 61 and the positive terminal of the second capacitor board 62. The second capacitor bus bar 72 connects the negative terminal of the first capacitor board 61 and the negative terminal of the second capacitor board 62. As a result, the charge bias between the first power conversion circuit 11 and the second power conversion circuit 12 is leveled.
 ファンFは、冷却器8を冷却するように構成されている。ファンFの側方には、風洞FTが設けられている。風洞FTは、ファンFが吸引または吐出した気体をファンFとは反対側に導くように構成されている。これにより、第1電力変換回路11および第2電力変換回路12を冷却することができる。 The fan F is configured to cool the cooler 8. A wind tunnel FT is provided on the side of the fan F. The wind tunnel FT is configured to guide the gas sucked or discharged by the fan F to the side opposite to the fan F. As a result, the first power conversion circuit 11 and the second power conversion circuit 12 can be cooled.
 冷却器8は、第1冷却板811と、第2冷却板821とを含んでいる。図1および図3に示されるように、冷却器8の第1冷却板811には、第1半導体モジュール21、第3半導体モジュール23、第1導体ユニット31および第3導体ユニット33が固定されている。冷却器8の第2冷却板821には、第2半導体モジュール22、第4半導体モジュール24、第2導体ユニット32および第4導体ユニット34が固定されている。 The cooler 8 includes a first cooling plate 811 and a second cooling plate 821. As shown in FIGS. 1 and 3, the first semiconductor module 21, the third semiconductor module 23, the first conductor unit 31, and the third conductor unit 33 are fixed to the first cooling plate 811 of the cooler 8. There is. A second semiconductor module 22, a fourth semiconductor module 24, a second conductor unit 32, and a fourth conductor unit 34 are fixed to the second cooling plate 821 of the cooler 8.
 図示されないが、冷却器8と第1半導体モジュール21、第2半導体モジュール22、第3半導体モジュール23および第4半導体モジュール24との間には、放熱グリスまたは放熱シートが挿入されていてもよい。第1半導体モジュール21、第2半導体モジュール22、第3半導体モジュール23および第4半導体モジュール24は、図示されない放熱グリスまたは放熱シートを挟み込んで冷却器8にねじ止めによって固定されている。 Although not shown, thermal paste or a heat dissipation sheet may be inserted between the cooler 8 and the first semiconductor module 21, the second semiconductor module 22, the third semiconductor module 23, and the fourth semiconductor module 24. The first semiconductor module 21, the second semiconductor module 22, the third semiconductor module 23, and the fourth semiconductor module 24 are fixed to the cooler 8 by sandwiching a thermal paste or a heat dissipation sheet (not shown).
 次に、図4~図15を用いて、実施の形態1に係る第1導体ユニット31~第4導体ユニット34の構成を詳細に説明する。本実施の形態において、第1導体ユニット31~第4導体ユニット34は、ユニット化されている。導体ユニットがユニット化されているとは、導体ユニットが複数の導体が組み合わせられることで構成されていることを意味する。複数の導体は、後述されるように、直線状であってもよいし、湾曲していてもよいし、屈曲していてもよい。 Next, the configurations of the first conductor unit 31 to the fourth conductor unit 34 according to the first embodiment will be described in detail with reference to FIGS. 4 to 15. In the present embodiment, the first conductor unit 31 to the fourth conductor unit 34 are unitized. When a conductor unit is unitized, it means that the conductor unit is composed of a combination of a plurality of conductors. As will be described later, the plurality of conductors may be linear, curved, or bent.
 図4~図7に示されるように、第1電力変換回路11の第1導体ユニット31は、複数の第1直線状導体部311と、複数の第1湾曲導体部312と、第1屈曲導体部313と、第1背面導体部314とを有している。複数の第1直線状導体部311は、例えば、I字状である。複数の第1湾曲導体部312は、複数の第1直線状導体部311よりも長い。複数の第1湾曲導体部312は、例えば、U字状である。第1屈曲導体部313には、第1接続部C1が接続されている。第1屈曲導体部313は、例えば、L字状である。図6では複数の第1直線状導体部311の数と複数の第1湾曲導体部312の数は、同じである。複数の第1直線状導体部311の数と複数の第1湾曲導体部312の数は異なっていてもよい。図7に示されるように、第1背面導体部314は、冷却器8を挟み込むように配置されている。第1背面導体部314は、第1半導体モジュール21に直接接続されている。第1導体ユニット31において、電流は、複数の第1湾曲導体部312および複数の第1直線状導体部311を蛇行するように流れる。 As shown in FIGS. 4 to 7, the first conductor unit 31 of the first power conversion circuit 11 includes a plurality of first linear conductor portions 311, a plurality of first curved conductor portions 312, and a first bent conductor. It has a portion 313 and a first back conductor portion 314. The plurality of first linear conductor portions 311 are, for example, I-shaped. The plurality of first curved conductor portions 312 are longer than the plurality of first linear conductor portions 311. The plurality of first curved conductor portions 312 are, for example, U-shaped. The first connecting portion C1 is connected to the first bent conductor portion 313. The first bent conductor portion 313 is, for example, L-shaped. In FIG. 6, the number of the plurality of first linear conductor portions 311 and the number of the plurality of first curved conductor portions 312 are the same. The number of the plurality of first linear conductor portions 311 and the number of the plurality of first curved conductor portions 312 may be different. As shown in FIG. 7, the first back conductor portion 314 is arranged so as to sandwich the cooler 8. The first back conductor portion 314 is directly connected to the first semiconductor module 21. In the first conductor unit 31, the current flows in a meandering manner through the plurality of first curved conductor portions 312 and the plurality of first linear conductor portions 311.
 図6に示されるように、複数の第1直線状導体部311および複数の第1湾曲導体部312は、互いに脱着可能である。本実施の形態では、複数の第1直線状導体部311と、複数の第1湾曲導体部312と、第1屈曲導体部313と、第1背面導体部314とは、複数の第1ねじS1によって互いに脱着可能である。図示されないが、第1絶縁層41には、複数の第1ねじS1の各々がそれぞれ貫通可能な複数の貫通孔が設けられている。第1導体ユニット31は、複数の第1ねじS1によって冷却器8に固定されている。第1絶縁層41は、複数の第1絶縁用ねじSS1によって冷却器8に固定されている。 As shown in FIG. 6, the plurality of first linear conductor portions 311 and the plurality of first curved conductor portions 312 are detachable from each other. In the present embodiment, the plurality of first linear conductor portions 311, the plurality of first curved conductor portions 312, the first bent conductor portion 313, and the first back surface conductor portion 314 are a plurality of first screws S1. Detachable from each other. Although not shown, the first insulating layer 41 is provided with a plurality of through holes through which each of the plurality of first screws S1 can penetrate. The first conductor unit 31 is fixed to the cooler 8 by a plurality of first screws S1. The first insulating layer 41 is fixed to the cooler 8 by a plurality of first insulating screws SS1.
 図8に示されるように、第1電力変換回路11の第3導体ユニット33は、複数の第3導体部331と、第3屈曲導体部333と、第3背面導体部334とを有している。複数の第3導体部331は、例えば、I字状(直線状)である。第3屈曲部には、第2接続部C2が接続されている。第3屈曲導体部333は、例えば、L字状である。図9に示されるように、第3背面導体部334は、冷却器8を挟み込むように配置されている。第3背面導体部334は、第3半導体モジュール23に直接接続されている。 As shown in FIG. 8, the third conductor unit 33 of the first power conversion circuit 11 has a plurality of third conductor portions 331, a third bent conductor portion 333, and a third back conductor portion 334. There is. The plurality of third conductor portions 331 are, for example, I-shaped (straight line). A second connecting portion C2 is connected to the third bent portion. The third bent conductor portion 333 is, for example, L-shaped. As shown in FIG. 9, the third back conductor portion 334 is arranged so as to sandwich the cooler 8. The third back conductor portion 334 is directly connected to the third semiconductor module 23.
 図8に示されるように、複数の第3導体部331は、互いに着脱可能である。本実施の形態では、第3導体部331と、第3屈曲導体部333と、第3背面導体部334とは、複数の第3ねじS3によって互いに脱着可能である。図示されないが、第3絶縁層43には、複数の第3ねじS3の各々がそれぞれ貫通可能な複数の貫通孔が設けられている。第3導体ユニット33は、複数の第3ねじS3によって冷却器8に固定されている。第3絶縁層43は、複数の第3絶縁用ねじSS3によって冷却器8に固定されている。 As shown in FIG. 8, the plurality of third conductor portions 331 are detachable from each other. In the present embodiment, the third conductor portion 331, the third bent conductor portion 333, and the third back surface conductor portion 334 are detachable from each other by a plurality of third screws S3. Although not shown, the third insulating layer 43 is provided with a plurality of through holes through which each of the plurality of third screws S3 can penetrate. The third conductor unit 33 is fixed to the cooler 8 by a plurality of third screws S3. The third insulating layer 43 is fixed to the cooler 8 by a plurality of third insulating screws SS3.
 図10~図13に示されるように、第2導体ユニット32は、複数の第2導体部321と、第2屈曲導体部323と、第2背面導体部324とを有している。複数の第2導体部321は、例えば、I字状(直線状)である。第2屈曲部には、第1接続部C1が接続されている。第2屈曲導体部323は、例えば、L字状である。図13に示されるように、第2背面導体部324は、冷却器8を挟み込むように配置されている。第2背面導体部324は、第2半導体モジュール22に直接接続されている。なお、図示されないが、第2導体ユニット32が含む第2導体ユニット32の数は1つであってもよい。 As shown in FIGS. 10 to 13, the second conductor unit 32 has a plurality of second conductor portions 321, a second bent conductor portion 323, and a second back surface conductor portion 324. The plurality of second conductor portions 321 are, for example, I-shaped (straight line). A first connecting portion C1 is connected to the second bent portion. The second bent conductor portion 323 is, for example, L-shaped. As shown in FIG. 13, the second back conductor portion 324 is arranged so as to sandwich the cooler 8. The second back conductor portion 324 is directly connected to the second semiconductor module 22. Although not shown, the number of the second conductor units 32 included in the second conductor unit 32 may be one.
 図12に示されるように、複数の第2導体部321は、互いに着脱可能である。本実施の形態では、第2導体部321と、第2屈曲導体部323と、第2背面導体部324とは、複数の第2ねじS2によって互いに脱着可能である。図示されないが、第2絶縁層42には、複数の第2ねじS2の各々がそれぞれ貫通可能な複数の貫通孔が設けられている。第2導体ユニット32は、複数の第2ねじS2によって冷却器8に固定されている。第2絶縁層42は、複数の第2絶縁用ねじSS2によって冷却器8に固定されている。 As shown in FIG. 12, the plurality of second conductor portions 321 are removable from each other. In the present embodiment, the second conductor portion 321 and the second bent conductor portion 323 and the second back surface conductor portion 324 are detachable from each other by a plurality of second screws S2. Although not shown, the second insulating layer 42 is provided with a plurality of through holes through which each of the plurality of second screws S2 can penetrate. The second conductor unit 32 is fixed to the cooler 8 by a plurality of second screws S2. The second insulating layer 42 is fixed to the cooler 8 by a plurality of second insulating screws SS2.
 図14に示されるように、第4導体ユニット34は、複数の第4直線状導体部341と、複数の第4湾曲導体部342と、第4屈曲導体部343と、第4背面導体部344とを有している。複数の第4直線状導体部341は、例えば、I字状である。複数の第4湾曲導体部342は、複数の第4直線状導体部341よりも長い。複数の第4湾曲導体部342は、例えば、U字状である。第4屈曲導体部343には、第2接続部C2が接続されている。第4屈曲導体部343は、例えば、L字状である。図15に示されるように、第4背面導体部344は、冷却器8を挟み込むように配置されている。第4背面導体部344は、第4半導体モジュール24に直接接続されている。 As shown in FIG. 14, the fourth conductor unit 34 includes a plurality of fourth linear conductor portions 341, a plurality of fourth curved conductor portions 342, a fourth bent conductor portion 343, and a fourth back surface conductor portion 344. And have. The plurality of fourth linear conductor portions 341 are, for example, I-shaped. The plurality of fourth curved conductor portions 342 are longer than the plurality of fourth linear conductor portions 341. The plurality of fourth curved conductor portions 342 are, for example, U-shaped. A second connecting portion C2 is connected to the fourth bent conductor portion 343. The fourth bent conductor portion 343 is, for example, L-shaped. As shown in FIG. 15, the fourth back conductor portion 344 is arranged so as to sandwich the cooler 8. The fourth back conductor portion 344 is directly connected to the fourth semiconductor module 24.
 図14に示されるように、複数の第4直線状導体部341および複数の第4湾曲導体部342は、互いに脱着可能である。本実施の形態では、複数の第4直線状導体部341と、複数の第4湾曲導体部342と、第4屈曲導体部343と、第4背面導体部344とは、複数の第4ねじS4によって互いに脱着可能である。図示されないが、第4絶縁層44には、複数の第4ねじS4の各々がそれぞれ貫通可能な複数の貫通孔が設けられている。第4導体ユニット34は、複数の第4ねじS4によって冷却器8に固定されている。第4絶縁層44は、複数の第4絶縁用ねじSS4によって冷却器8に固定されている。 As shown in FIG. 14, the plurality of fourth linear conductor portions 341 and the plurality of fourth curved conductor portions 342 are removable from each other. In the present embodiment, the plurality of fourth linear conductor portions 341, the plurality of fourth curved conductor portions 342, the fourth bent conductor portion 343, and the fourth back surface conductor portion 344 are a plurality of fourth screws S4. Detachable from each other. Although not shown, the fourth insulating layer 44 is provided with a plurality of through holes through which each of the plurality of fourth screws S4 can penetrate. The fourth conductor unit 34 is fixed to the cooler 8 by a plurality of fourth screws S4. The fourth insulating layer 44 is fixed to the cooler 8 by a plurality of fourth insulating screws SS4.
 図4および図10に示されるように、第1導体ユニット31、第2導体ユニット32、第3導体ユニット33および第4導体ユニット34の材料は、高い電気伝導度を有する金属を母材として有している。第1導体ユニット31、第2導体ユニット32、第3導体ユニット33および第4導体ユニット34の材料は、例えば、銅(Cu)またはアルミニウム(Al)である。第1導体ユニット31、第2導体ユニット32、第3導体ユニット33および第4導体ユニット34の厚みは、例えば、3.0mmである。望ましくは、第1導体ユニット31、第2導体ユニット32、第3導体ユニット33および第4導体ユニット34の各々の厚みは、均一である。望ましくは、第1導体ユニット31、第2導体ユニット32、第3導体ユニット33および第4導体ユニット34の各々の幅は、均一である。第1導体ユニット31、第2導体ユニット32、第3導体ユニット33および第4導体ユニット34は、板状の部材によって構成されている。 As shown in FIGS. 4 and 10, the materials of the first conductor unit 31, the second conductor unit 32, the third conductor unit 33, and the fourth conductor unit 34 have a metal having high electric conductivity as a base material. is doing. The material of the first conductor unit 31, the second conductor unit 32, the third conductor unit 33, and the fourth conductor unit 34 is, for example, copper (Cu) or aluminum (Al). The thickness of the first conductor unit 31, the second conductor unit 32, the third conductor unit 33, and the fourth conductor unit 34 is, for example, 3.0 mm. Desirably, the thickness of each of the first conductor unit 31, the second conductor unit 32, the third conductor unit 33, and the fourth conductor unit 34 is uniform. Desirably, the widths of the first conductor unit 31, the second conductor unit 32, the third conductor unit 33, and the fourth conductor unit 34 are uniform. The first conductor unit 31, the second conductor unit 32, the third conductor unit 33, and the fourth conductor unit 34 are composed of plate-shaped members.
 次に、主に図1、図3、図6、図8、図12および図14を用いて、実施の形態1に係る電力変換装置100の三相電力変化装置としての構成を詳細に説明する。 Next, the configuration of the power conversion device 100 according to the first embodiment as a three-phase power change device will be described in detail mainly with reference to FIGS. 1, 3, 6, 8, 12, and 14. ..
 本実施の形態において、電力変換装置100が三相電力変換回路として構成されているため、電力変換装置100は、R相、S相およびT相の各々に電気的に接続されている。また、電力変換装置100は、U相、V相およびW相の各々に電気的に接続されている。R相、S相およびT相の各々は、電力変換装置100を介してU相、V相およびW相の各々にそれぞれ電気的に接続されている。 In the present embodiment, since the power conversion device 100 is configured as a three-phase power conversion circuit, the power conversion device 100 is electrically connected to each of the R phase, the S phase, and the T phase. Further, the power conversion device 100 is electrically connected to each of the U phase, the V phase, and the W phase. Each of the R phase, the S phase and the T phase is electrically connected to each of the U phase, the V phase and the W phase via the power conversion device 100.
 図1に示されるように、第1端子T1は、R相第1端子部T1R、S相第1端子部T1SおよびT相第1端子部T1Tを含んでいる。R相第1端子部T1R、S相第1端子部T1SおよびT相第1端子部T1Tの各々は、R相、S相およびT相の各々にそれぞれ電気的に接続されている。 As shown in FIG. 1, the first terminal T1 includes an R-phase first terminal portion T1R, an S-phase first terminal portion T1S, and a T-phase first terminal portion T1T. Each of the R phase first terminal portion T1R, the S phase first terminal portion T1S, and the T phase first terminal portion T1T is electrically connected to each of the R phase, the S phase, and the T phase.
 第2端子T2は、U相第2端子部T2U、V相第2端子部T2VおよびW相第2端子部T2Wを含んでいる。U相第2端子部T2U、V相第2端子部T2VおよびW相第2端子部T2Wの各々は、U相、V相およびW相の各々にそれぞれ電気的に接続されている。 The second terminal T2 includes a U-phase second terminal portion T2U, a V-phase second terminal portion T2V, and a W-phase second terminal portion T2W. Each of the U-phase second terminal portion T2U, the V-phase second terminal portion T2V, and the W-phase second terminal portion T2W is electrically connected to each of the U-phase, V-phase, and W-phase.
 第1接続部C1は、R相第1接続部分C1R、S相第1接続部分C1SおよびT相第1接続部分C1Tを含んでいる。R相第1接続部分C1R、S相第1接続部分C1SおよびT相第1接続部分C1Tの各々は、R相第1端子部T1R、S相第1端子部T1Sの各々にそれぞれ接続されている。R相第1接続部分C1R、S相第1接続部分C1SおよびT相第1接続部分C1Tは、互いに同じ形状を有している。 The first connection portion C1 includes an R phase first connection portion C1R, an S phase first connection portion C1S, and a T phase first connection portion C1T. Each of the R-phase first connection portion C1R, the S-phase first connection portion C1S, and the T-phase first connection portion C1T is connected to each of the R-phase first terminal portion T1R and the S-phase first terminal portion T1S, respectively. .. The R-phase first connection portion C1R, the S-phase first connection portion C1S, and the T-phase first connection portion C1T have the same shape.
 第2接続部C2は、U相第2接続部分C2U、V相第2接続部分C2VおよびW相第2接続部分C2Wを含んでいる。U相第2接続部分C2U、V相第2接続部分C2VおよびW相第2接続部分C2Wの各々は、U相第2端子部T2U、V相第2端子部T2Vの各々にそれぞれ接続されている。U相第2接続部分C2U、V相第2接続部分C2VおよびW相第2接続部分C2Wは、互いに同じ形状を有している。 The second connection portion C2 includes a U-phase second connection portion C2U, a V-phase second connection portion C2V, and a W-phase second connection portion C2W. Each of the U-phase second connection portion C2U, the V-phase second connection portion C2V, and the W-phase second connection portion C2W is connected to each of the U-phase second terminal portion T2U and the V-phase second terminal portion T2V, respectively. .. The U-phase second connection portion C2U, the V-phase second connection portion C2V, and the W-phase second connection portion C2W have the same shape as each other.
 第1電力変換回路11の第1導体ユニット31は、R相第1導体ユニット部31R、S相第1導体ユニット部31SおよびT相第1導体ユニット部31Tを含んでいる。R相第1導体ユニット部31R、S相第1導体ユニット部31SおよびT相第1導体ユニット部31Tの各々は、R相第1接続部分C1R、S相第1接続部分C1SおよびT相第1接続部分C1Tの各々にそれぞれ接続されている。 The first conductor unit 31 of the first power conversion circuit 11 includes an R-phase first conductor unit portion 31R, an S-phase first conductor unit portion 31S, and a T-phase first conductor unit portion 31T. Each of the R-phase first conductor unit portion 31R, the S-phase first conductor unit portion 31S, and the T-phase first conductor unit portion 31T has an R-phase first connection portion C1R, an S-phase first connection portion C1S, and a T-phase first. It is connected to each of the connection portions C1T.
 図6に示されるように、R相第1導体ユニット部31R、S相第1導体ユニット部31SおよびT相第1導体ユニット部31Tの各々は、上述の複数の第1直線状導体部311と、複数の第1湾曲導体部312と、第1屈曲導体部313と、第1背面導体部314とを有している。R相第1導体ユニット部31Rの複数の第1直線状導体部311および複数の第1湾曲導体部312、S相第1導体ユニット部31Sの複数の第1直線状導体部311および複数の第1湾曲導体部312ならびにT相第1導体ユニット部31Tの複数の第1直線状導体部311および複数の第1湾曲導体部312の各々は、互いに同じ形状を有している。 As shown in FIG. 6, each of the R-phase first conductor unit portion 31R, the S-phase first conductor unit portion 31S, and the T-phase first conductor unit portion 31T has the above-mentioned plurality of first linear conductor portions 311. It has a plurality of first curved conductor portions 312, a first bent conductor portion 313, and a first back surface conductor portion 314. A plurality of first linear conductor portions 311 and a plurality of first curved conductor portions 312 of the R phase first conductor unit portion 31R, a plurality of first linear conductor portions 311 and a plurality of firsts of the S phase first conductor unit portion 31S. Each of the plurality of first linear conductor portions 311 and the plurality of first curved conductor portions 312 of the one curved conductor portion 312 and the T-phase first conductor unit portion 31T has the same shape as each other.
 図3に示されるように、第1電力変換回路11の第1半導体モジュール21は、R相第1半導体モジュール部21R、S相第1半導体モジュール部21SおよびT相第1半導体モジュール部21Tを含んでいる。R相第1半導体モジュール部21R、S相第1半導体モジュール部21SおよびT相第1半導体モジュール部21Tの各々は、R相第1導体ユニット部31R、S相第1導体ユニット部31SおよびT相第1導体ユニット部31Tの各々にそれぞれ接続されている。 As shown in FIG. 3, the first semiconductor module 21 of the first power conversion circuit 11 includes an R-phase first semiconductor module section 21R, an S-phase first semiconductor module section 21S, and a T-phase first semiconductor module section 21T. I'm out. Each of the R-phase first semiconductor module section 21R, the S-phase first semiconductor module section 21S, and the T-phase first semiconductor module section 21T has an R-phase first conductor unit section 31R, an S-phase first conductor unit section 31S, and a T-phase. It is connected to each of the first conductor unit portions 31T.
 第1電力変換回路11の第3導体ユニット33は、U相第3導体ユニット部33U、V相第3導体ユニット部33VおよびW相第3導体ユニット部33Wを含んでいる。U相第3導体ユニット部33U、V相第3導体ユニット部33VおよびW相第3導体ユニット部33Wの各々は、U相第2接続部分C2U、V相第2接続部分C2VおよびW相第2接続部分C2Wの各々にそれぞれ接続されている。 The third conductor unit 33 of the first power conversion circuit 11 includes a U-phase third conductor unit 33U, a V-phase third conductor unit 33V, and a W-phase third conductor unit 33W. Each of the U-phase third conductor unit 33U, the V-phase third conductor unit 33V, and the W-phase third conductor unit 33W has a U-phase second connection portion C2U, a V-phase second connection portion C2V, and a W-phase second. It is connected to each of the connection portions C2W.
 図8に示されるように、U相第3導体ユニット部33U、V相第3導体ユニット部33VおよびW相第3導体ユニット部33Wの各々は、上述の複数の第3導体部331と、第3屈曲導体部333と、第3背面導体部334とを有している。 As shown in FIG. 8, each of the U-phase third conductor unit 33U, the V-phase third conductor unit 33V, and the W-phase third conductor unit 33W has the above-mentioned plurality of third conductor units 331 and the first. It has three bent conductor portions 333 and a third back surface conductor portion 334.
 図3に示されるように、第1電力変換回路11の第3半導体モジュール23は、U相第3半導体モジュール部23U、V相第3半導体モジュール部23VおよびW相第3半導体モジュール部23Wを含んでいる。U相第3半導体モジュール部23U、V相第3半導体モジュール部23VおよびW相第3半導体モジュール部23Wの各々は、第1コンデンサ基板61を介してR相第1半導体モジュール部21R、S相第1半導体モジュール部21SおよびT相第1半導体モジュール部21Tの各々に接続されている。U相第3半導体モジュール部23U、V相第3半導体モジュール部23VおよびW相第3半導体モジュール部23Wの各々は、U相第3導体ユニット部33U、V相第3導体ユニット部33VおよびW相第3導体ユニット部33Wの各々にそれぞれ接続されている。 As shown in FIG. 3, the third semiconductor module 23 of the first power conversion circuit 11 includes a U-phase third semiconductor module section 23U, a V-phase third semiconductor module section 23V, and a W-phase third semiconductor module section 23W. I'm out. Each of the U-phase third semiconductor module section 23U, the V-phase third semiconductor module section 23V, and the W-phase third semiconductor module section 23W is connected to the R-phase first semiconductor module section 21R and the S-phase first via the first capacitor substrate 61. 1 It is connected to each of the semiconductor module section 21S and the T-phase first semiconductor module section 21T. Each of the U-phase third semiconductor module section 23U, the V-phase third semiconductor module section 23V, and the W-phase third semiconductor module section 23W is the U-phase third conductor unit section 33U, the V-phase third conductor unit section 33V, and the W-phase. It is connected to each of the third conductor unit portions 33W.
 第2電力変換回路12の第2導体ユニット32は、R相第2導体ユニット部32R、S相第2導体ユニット部32SおよびT相第2導体ユニット部32Tを含んでいる。R相第2導体ユニット部32R、S相第2導体ユニット部32SおよびT相第2導体ユニット部32Tの各々は、R相第1接続部分C1R、S相第1接続部分C1SおよびT相第1接続部分C1Tの各々にそれぞれ接続されている。 The second conductor unit 32 of the second power conversion circuit 12 includes an R-phase second conductor unit unit 32R, an S-phase second conductor unit unit 32S, and a T-phase second conductor unit unit 32T. Each of the R-phase second conductor unit portion 32R, the S-phase second conductor unit portion 32S, and the T-phase second conductor unit portion 32T has an R-phase first connection portion C1R, an S-phase first connection portion C1S, and a T-phase first. It is connected to each of the connection portions C1T.
 第2電力変換回路12の第2半導体モジュール22は、R相第2半導体モジュール部22R、S相第2半導体モジュール部22SおよびT相第2半導体モジュール部22Tを含んでいる。R相第2半導体モジュール部22R、S相第2半導体モジュール部22SおよびT相第2半導体モジュール部22Tの各々は、R相第2導体ユニット部32R、S相第2導体ユニット部32SおよびT相第2導体ユニット部32Tの各々にそれぞれ接続されている。 The second semiconductor module 22 of the second power conversion circuit 12 includes an R-phase second semiconductor module unit 22R, an S-phase second semiconductor module unit 22S, and a T-phase second semiconductor module unit 22T. Each of the R-phase second semiconductor module unit 22R, the S-phase second semiconductor module unit 22S, and the T-phase second semiconductor module unit 22T has an R-phase second conductor unit unit 32R, an S-phase second conductor unit unit 32S, and a T-phase. It is connected to each of the second conductor unit portions 32T.
 図12に示されるように、R相第2導体ユニット部32R、S相第2導体ユニット部32SおよびT相第2導体ユニット部32Tの各々は、上述の複数の第2導体部321と、第2屈曲導体部323と、第2背面導体部324とを有している。 As shown in FIG. 12, each of the R-phase second conductor unit portion 32R, the S-phase second conductor unit portion 32S, and the T-phase second conductor unit portion 32T has the above-mentioned plurality of second conductor portions 321 and the first. It has two bent conductor portions 323 and a second back surface conductor portion 324.
 第2電力変換回路12の第4導体ユニット34は、U相第4導体ユニット部34U、V相第4導体ユニット部34VおよびW相第4導体ユニット部34Wを含んでいる。U相第4導体ユニット部34U、V相第4導体ユニット部34VおよびW相第4導体ユニット部34Wの各々は、U相第2接続部分C2U、V相第2接続部分C2VおよびW相第2接続部分C2Wの各々にそれぞれ接続されている。 The fourth conductor unit 34 of the second power conversion circuit 12 includes a U-phase fourth conductor unit portion 34U, a V-phase fourth conductor unit portion 34V, and a W-phase fourth conductor unit portion 34W. Each of the U-phase 4th conductor unit portion 34U, the V-phase 4th conductor unit portion 34V, and the W-phase 4th conductor unit portion 34W has a U-phase second connection portion C2U, a V-phase second connection portion C2V, and a W-phase second. It is connected to each of the connection portions C2W.
 図14に示されるように、U相第4導体ユニット部34U、V相第4導体ユニット部34VおよびW相第4導体ユニット部34Wの各々は、上述の複数の第4直線状導体部341と、複数の第4湾曲導体部342と、第4屈曲導体部343と、第4背面導体部344とを有している。U相第4導体ユニット部34Uの複数の第4直線状導体部341および複数の第4湾曲導体部342、V相第4導体ユニット部34Vの複数の第4直線状導体部341および複数の第4湾曲導体部342ならびにW相第4導体ユニット部34Wの複数の第4直線状導体部341および複数の第4湾曲導体部342の各々は、互いに同じ形状を有している。 As shown in FIG. 14, each of the U-phase fourth conductor unit portion 34U, the V-phase fourth conductor unit portion 34V, and the W-phase fourth conductor unit portion 34W has the above-mentioned plurality of fourth linear conductor portions 341. It has a plurality of fourth curved conductor portions 342, a fourth bent conductor portion 343, and a fourth back surface conductor portion 344. A plurality of fourth linear conductor portions 341 and a plurality of fourth curved conductor portions 342 of the U-phase fourth conductor unit portion 34U, a plurality of fourth linear conductor portions 341 and a plurality of firsts of the V-phase fourth conductor unit portion 34V. Each of the plurality of fourth linear conductor portions 341 and the plurality of fourth curved conductor portions 342 of the four curved conductor portion 342 and the W phase fourth conductor unit portion 34W has the same shape as each other.
 図3に示されるように、第2電力変換回路12の第4半導体モジュール24は、U相第4半導体モジュール部24U、V相第4半導体モジュール部24VおよびW相第4半導体モジュール部24Wを含んでいる。U相第4半導体モジュール部24U、V相第4半導体モジュール部24VおよびW相第4半導体モジュール部24Wの各々は、第2コンデンサ基板62を介してR相第2半導体モジュール部22R、S相第2半導体モジュール部22SおよびT相第2半導体モジュール部22Tの各々に接続されている。U相第4半導体モジュール部24U、V相第4半導体モジュール部24VおよびW相第4半導体モジュール部24Wの各々は、U相第4導体ユニット部34U、V相第4導体ユニット部34VおよびW相第4導体ユニット部34Wの各々にそれぞれ接続されている。 As shown in FIG. 3, the fourth semiconductor module 24 of the second power conversion circuit 12 includes a U-phase fourth semiconductor module section 24U, a V-phase fourth semiconductor module section 24V, and a W-phase fourth semiconductor module section 24W. I'm out. Each of the U-phase 4th semiconductor module section 24U, the V-phase 4th semiconductor module section 24V, and the W-phase 4th semiconductor module section 24W is connected to the R-phase second semiconductor module section 22R and the S-phase second via the second capacitor substrate 62. It is connected to each of the two semiconductor module portions 22S and the T-phase second semiconductor module portion 22T. The U-phase 4th semiconductor module unit 24U, the V-phase 4th semiconductor module unit 24V, and the W-phase 4th semiconductor module unit 24W are each U-phase 4th conductor unit unit 34U, V-phase 4th conductor unit unit 34V, and W-phase. It is connected to each of the fourth conductor unit portions 34W.
 次に、図1および図16を用いて、実施の形態1に係る電力変換装置100の回路の構成および動作を説明する。電力変換装置100は、第1電力変換回路11および第2電力変換回路12の並列回路として構成されている。 Next, the configuration and operation of the circuit of the power conversion device 100 according to the first embodiment will be described with reference to FIGS. 1 and 16. The power conversion device 100 is configured as a parallel circuit of the first power conversion circuit 11 and the second power conversion circuit 12.
 図1に示されるように、本実施の形態に係る電力変換装置100は、並列に電気的に接続された半導体素子がさらに並列に電気的に接続されたいわゆる多並列の回路として構成されている。第1電力変換回路11および第2電力変換回路12は、第1端子T1および第2端子T2に対して並列に接続されている。 As shown in FIG. 1, the power conversion device 100 according to the present embodiment is configured as a so-called multi-parallel circuit in which semiconductor elements electrically connected in parallel are further electrically connected in parallel. .. The first power conversion circuit 11 and the second power conversion circuit 12 are connected in parallel to the first terminal T1 and the second terminal T2.
 図16に示されるように、第1電力変換回路11のR相第1半導体モジュール部21Rは、第1端子T1に対して並列に接続された2つの半導体素子SCを有している。R相第2半導体モジュール部22Rは、第1端子T1に対して並列に接続された2つの半導体素子SCを有している。R相第1半導体モジュール部21RおよびR相第2半導体モジュール部22Rは、第1端子T1に対して並列に接続されている。 As shown in FIG. 16, the R-phase first semiconductor module unit 21R of the first power conversion circuit 11 has two semiconductor elements SC connected in parallel to the first terminal T1. The R-phase second semiconductor module unit 22R has two semiconductor elements SC connected in parallel to the first terminal T1. The R-phase first semiconductor module unit 21R and the R-phase second semiconductor module unit 22R are connected in parallel to the first terminal T1.
 S相第1半導体モジュール部21Sは、第1端子T1に対して並列に接続された2つの半導体素子SCを有している。S相第2半導体モジュール部22Sは、第1端子T1に対して並列に接続された2つの半導体素子SCを有している。S相第1半導体モジュール部21SおよびS相第2半導体モジュール部22Sは、第1端子T1に対して並列に接続されている。 The S-phase first semiconductor module unit 21S has two semiconductor elements SC connected in parallel to the first terminal T1. The S-phase second semiconductor module unit 22S has two semiconductor elements SC connected in parallel to the first terminal T1. The S-phase first semiconductor module unit 21S and the S-phase second semiconductor module unit 22S are connected in parallel to the first terminal T1.
 T相第1半導体モジュール部21Tは、第1端子T1に対して並列に接続された2つの半導体素子SCを有している。T相第2半導体モジュール部22Tは、第1端子T1に対して並列に接続された2つの半導体素子SCを有している。T相第1半導体モジュール部21TおよびT相第2半導体モジュール部22Tは、第1端子T1に対して並列に接続されている。 The T-phase first semiconductor module unit 21T has two semiconductor elements SC connected in parallel to the first terminal T1. The T-phase second semiconductor module unit 22T has two semiconductor elements SC connected in parallel to the first terminal T1. The T-phase first semiconductor module unit 21T and the T-phase second semiconductor module unit 22T are connected in parallel to the first terminal T1.
 U相第3半導体モジュール部23Uは、第2端子T2に対して並列に接続された2つの半導体素子SCを有している。U相第4半導体モジュール部24Uは、第2端子T2に対して並列に接続された2つの半導体素子SCを有している。U相第3半導体モジュール部23UおよびU相第4半導体モジュール部24Uは、第2端子T2に対して並列に接続されている。 The U-phase third semiconductor module unit 23U has two semiconductor elements SC connected in parallel to the second terminal T2. The U-phase fourth semiconductor module unit 24U has two semiconductor elements SC connected in parallel to the second terminal T2. The U-phase third semiconductor module unit 23U and the U-phase fourth semiconductor module unit 24U are connected in parallel to the second terminal T2.
 V相第3半導体モジュール部23Vは、第2端子T2に対して並列に接続された2つの半導体素子SCを有している。V相第4半導体モジュール部24Vは、第2端子T2に対して並列に接続された2つの半導体素子SCを有している。V相第3半導体モジュール部23VおよびV相第4半導体モジュール部24Vは、第2端子T2に対して並列に接続されている。 The V-phase third semiconductor module unit 23V has two semiconductor elements SC connected in parallel to the second terminal T2. The V-phase fourth semiconductor module unit 24V has two semiconductor elements SC connected in parallel to the second terminal T2. The V-phase third semiconductor module unit 23V and the V-phase fourth semiconductor module unit 24V are connected in parallel to the second terminal T2.
 W相第3半導体モジュール部23Wは、第2端子T2に対して並列に接続された2つの半導体素子SCを有している。W相第4半導体モジュール部24Wは、第2端子T2に対して並列に接続された2つの半導体素子SCを有している。W相第3半導体モジュール部23WおよびW相第4半導体モジュール部24Wは、第2端子T2に対して並列に接続されている。 The W-phase third semiconductor module unit 23W has two semiconductor elements SC connected in parallel to the second terminal T2. The W-phase fourth semiconductor module unit 24W has two semiconductor elements SC connected in parallel to the second terminal T2. The W-phase third semiconductor module unit 23W and the W-phase fourth semiconductor module unit 24W are connected in parallel to the second terminal T2.
 以上より、本実施の形態に係る第1半導体モジュール21および第2半導体モジュール22の各々の複数の半導体素子SCは、多並列化されている。 From the above, the plurality of semiconductor element SCs of the first semiconductor module 21 and the second semiconductor module 22 according to the present embodiment are multi-parallelized.
 電力変換装置100は、主電源PWから三相交流電流を受けるように構成されている。三相交流電流は、リアクトルRを通って電力変換装置100に流れる。三相交流電流は、第1電力変換回路11および第2電力変換回路12の各々に流れる。第1電力変換回路11および第2電力変換回路12の各々によって分流された三相交流電流の波形は、変換される。三相交流電流は、R相第1半導体モジュール部21R、S相第1半導体モジュール部21SおよびT相第1半導体モジュール部21Tの各々の半導体素子SCによって、直流電流に変換される。すなわち、R相第1半導体モジュール部21R、S相第1半導体モジュール部21SおよびT相第1半導体モジュール部21Tの各々の半導体素子SCは、コンバータ回路として構成されている。また、直流電流は、U相第3半導体モジュール部23U、V相第3半導体モジュール部23VおよびW相第3半導体モジュール部23Wの各々の半導体素子SCによって交流電流に変換される。すなわち、U相第3半導体モジュール部23U、V相第3半導体モジュール部23VおよびW相第3半導体モジュール部23Wの各々の半導体素子SCは、インバータ回路として構成されている。第1電力変換回路11および第2電力変換回路12の各々によって変換された電流は、合流する。合流した電流は、原動機Mに流れる。 The power conversion device 100 is configured to receive a three-phase alternating current from the main power supply PW. The three-phase alternating current flows through the reactor R to the power converter 100. The three-phase alternating current flows through each of the first power conversion circuit 11 and the second power conversion circuit 12. The waveform of the three-phase alternating current divided by each of the first power conversion circuit 11 and the second power conversion circuit 12 is converted. The three-phase AC current is converted into a direct current by each semiconductor element SC of the R-phase first semiconductor module section 21R, the S-phase first semiconductor module section 21S, and the T-phase first semiconductor module section 21T. That is, each semiconductor element SC of the R-phase first semiconductor module section 21R, the S-phase first semiconductor module section 21S, and the T-phase first semiconductor module section 21T is configured as a converter circuit. Further, the direct current is converted into an alternating current by each semiconductor element SC of the U-phase third semiconductor module unit 23U, the V-phase third semiconductor module unit 23V, and the W-phase third semiconductor module unit 23W. That is, each semiconductor element SC of the U-phase third semiconductor module section 23U, the V-phase third semiconductor module section 23V, and the W-phase third semiconductor module section 23W is configured as an inverter circuit. The currents converted by each of the first power conversion circuit 11 and the second power conversion circuit 12 merge. The combined current flows through the motor M.
 次に、図1および図17を用いて、実施の形態1に係る冷却器8の構成を詳細に説明する。なお、図17では、説明の便宜のため、電力変換装置100の第1電力変換回路11および第2電力変換回路12等は図示されていない。図17に示されるように、冷却器8は、複数の第1冷却パイプ812、複数の第2冷却パイプ822、複数の第1冷却フィン813および複数の第2冷却フィン823をさらに含んでいる。複数の第1冷却パイプ812は、第1冷却板811に部分的に埋め込まれている。複数の第1冷却パイプ812の各々は、第1冷却板811の内部から外部に突出している。複数の第2冷却パイプ822の各々は、第2冷却板に部分的に埋め込まれている。複数の第2冷却パイプ822の各々は、第2冷却板821の内部から外部に突出している。このため、第1冷却板811および第2冷却板821に伝わった熱は、複数の第1冷却パイプ812および第2冷却パイプ822によって効率良く輸送される。複数の第1冷却パイプ812および複数の第2冷却パイプ822の各々は、ヒートパイプとして構成されている。複数の第1冷却パイプ812および複数の第2冷却パイプ822の各々の内部は、冷媒が流動可能に構成されている。 Next, the configuration of the cooler 8 according to the first embodiment will be described in detail with reference to FIGS. 1 and 17. In FIG. 17, for convenience of explanation, the first power conversion circuit 11 and the second power conversion circuit 12 of the power conversion device 100 are not shown. As shown in FIG. 17, the cooler 8 further includes a plurality of first cooling pipes 812, a plurality of second cooling pipes 822, a plurality of first cooling fins 813 and a plurality of second cooling fins 823. The plurality of first cooling pipes 812 are partially embedded in the first cooling plate 811. Each of the plurality of first cooling pipes 812 projects from the inside to the outside of the first cooling plate 811. Each of the plurality of second cooling pipes 822 is partially embedded in the second cooling plate. Each of the plurality of second cooling pipes 822 projects from the inside of the second cooling plate 821 to the outside. Therefore, the heat transferred to the first cooling plate 811 and the second cooling plate 821 is efficiently transported by the plurality of first cooling pipes 812 and the second cooling pipe 822. Each of the plurality of first cooling pipes 812 and the plurality of second cooling pipes 822 is configured as a heat pipe. The inside of each of the plurality of first cooling pipes 812 and the plurality of second cooling pipes 822 is configured so that the refrigerant can flow.
 図1および図17に示されるように、複数の第1冷却パイプ812は、冷媒を第3半導体モジュール23側から第1半導体モジュール21側に向かって吐出するように構成されている。複数の第2冷却パイプ822は、冷媒を第4半導体モジュール24側から第2半導体モジュール22側に向かって吐出するように構成されている。本実施の形態において、インバータとして構成された第3半導体モジュール23および第4半導体モジュール24の発熱量は、コンバータとして構成された第1半導体モジュール21および第2半導体モジュール22の発熱量よりも大きい。大きい発熱量を有する半導体モジュールが冷却パイプの上流側に配置されているため、大きい発熱量を有する半導体モジュールを冷媒によって効率良く冷却することができる。このため、冷却器8を小型化できる。また、複数の第1冷却パイプ812および第2冷却パイプ822の数を低減することができる。よって、電力変換装置100を小型化でき、製造コストを低減できる。 As shown in FIGS. 1 and 17, the plurality of first cooling pipes 812 are configured to discharge the refrigerant from the third semiconductor module 23 side toward the first semiconductor module 21 side. The plurality of second cooling pipes 822 are configured to discharge the refrigerant from the fourth semiconductor module 24 side toward the second semiconductor module 22 side. In the present embodiment, the calorific value of the third semiconductor module 23 and the fourth semiconductor module 24 configured as the inverter is larger than the calorific value of the first semiconductor module 21 and the second semiconductor module 22 configured as the converter. Since the semiconductor module having a large calorific value is arranged on the upstream side of the cooling pipe, the semiconductor module having a large calorific value can be efficiently cooled by the refrigerant. Therefore, the cooler 8 can be miniaturized. Further, the number of the plurality of first cooling pipes 812 and the second cooling pipes 822 can be reduced. Therefore, the power conversion device 100 can be miniaturized and the manufacturing cost can be reduced.
 複数の第1冷却フィン813の各々は、複数の第1冷却パイプ812に交差するように複数の第1冷却パイプ812に固定されている。複数の第1冷却フィン813の各々は、第1冷却板811に熱的に接続されている。複数の第2冷却フィン823の各々は、複数の第2冷却パイプ822に交差するように複数の第2冷却パイプ822に固定されている。複数の第2冷却フィン823の各々は、第2冷却板821に熱的に接続されている。複数の第1冷却フィン813および複数の第2冷却フィン823の各々は、放熱フィンとして構成されている。複数の第1冷却フィン813および複数の第2冷却フィン823の各々は、風洞FT(図5参照)の内部に配置されている。 Each of the plurality of first cooling fins 813 is fixed to the plurality of first cooling pipes 812 so as to intersect the plurality of first cooling pipes 812. Each of the plurality of first cooling fins 813 is thermally connected to the first cooling plate 811. Each of the plurality of second cooling fins 823 is fixed to the plurality of second cooling pipes 822 so as to intersect the plurality of second cooling pipes 822. Each of the plurality of second cooling fins 823 is thermally connected to the second cooling plate 821. Each of the plurality of first cooling fins 813 and the plurality of second cooling fins 823 are configured as heat radiation fins. Each of the plurality of first cooling fins 813 and the plurality of second cooling fins 823 are arranged inside the wind tunnel FT (see FIG. 5).
 第1冷却板811、第2冷却板821、複数の第1冷却パイプ812、複数の第2冷却パイプ822、複数の第1冷却フィン813および複数の第2冷却フィン823の材料は、例えば、アルミニウム(Al)である。 The material of the first cooling plate 811, the second cooling plate 821, the plurality of first cooling pipes 812, the plurality of second cooling pipes 822, the plurality of first cooling fins 813 and the plurality of second cooling fins 823 is, for example, aluminum. (Al).
 続いて、本実施の形態の作用効果を説明する。
 実施の形態1に係る電力変換装置100によれば、第1導体ユニット31のインダクタンスと第2導体ユニット32のインダクタンスとの差は、第1接続部C1の第1端子T1が接続された第1位置P1から第1導体ユニット31が接続された第2位置P2までのインダクタンスと第1接続部C1の第1端子T1が接続された第1位置P1から第2導体ユニット32が接続された第3位置P3までのインダクタンスとの差に等しい。このため、第1端子T1から第1半導体モジュール21のインダクタンスと第1端子T1から第2半導体モジュール22までのインダクタンスとを等しくすることができる。
Subsequently, the action and effect of the present embodiment will be described.
According to the power conversion device 100 according to the first embodiment, the difference between the inductance of the first conductor unit 31 and the inductance of the second conductor unit 32 is the first to which the first terminal T1 of the first connecting portion C1 is connected. The third position to which the second conductor unit 32 is connected from the first position P1 to which the inductance from the position P1 to the second position P2 to which the first conductor unit 31 is connected and the first terminal T1 of the first connection portion C1 are connected. Equal to the difference from the inductance up to position P3. Therefore, the inductance of the first terminal T1 to the first semiconductor module 21 and the inductance of the first terminal T1 to the second semiconductor module 22 can be made equal.
 図1および図3に示されるように、第2電力変換回路12の第2導体ユニット32は、第1電力変換回路11に対して第1端子T1とは反対側において第1接続部C1に接続されている。このため、第1端子T1を第1電力変換回路11の第1半導体モジュール21および第2電力変換回路12の第2半導体モジュール22に対して非対称な位置に配置することができる。よって、第1端子T1を第1電力変換回路11の第1半導体モジュール21および第2電力変換回路12の第2半導体モジュール22に対して対称な位置に配置しなくてもよい。したがって、第1端子T1が配置される位置が制限されることを抑制することができる。 As shown in FIGS. 1 and 3, the second conductor unit 32 of the second power conversion circuit 12 is connected to the first connection portion C1 on the side opposite to the first terminal T1 with respect to the first power conversion circuit 11. Has been done. Therefore, the first terminal T1 can be arranged at a position asymmetric with respect to the first semiconductor module 21 of the first power conversion circuit 11 and the second semiconductor module 22 of the second power conversion circuit 12. Therefore, the first terminal T1 does not have to be arranged at a position symmetrical with respect to the first semiconductor module 21 of the first power conversion circuit 11 and the second semiconductor module 22 of the second power conversion circuit 12. Therefore, it is possible to prevent the position where the first terminal T1 is arranged from being restricted.
 比較例に係る電力変換装置と比較して、本実施の形態に係る電力変換装置100による作用効果を詳細に説明する。比較例に係る電力変換装置では、第1端子は第1電力変換回路および第2電力変換回路に対して対称な位置に配置されている。比較例に係る電力変換装置は、本実施の形態に係る電力変換装置100と同様に多並列化された第1半導体素子~第4半導体素子を含んでいる。第1半導体モジュールの第1半導体素子および第2半導体素子は、互いに電気的に並列に接続されている。また、第2半導体モジュールの第3半導体素子および第4半導体素子は、互いに電気的に並列に接続されている。 The operation and effect of the power conversion device 100 according to the present embodiment will be described in detail as compared with the power conversion device according to the comparative example. In the power conversion device according to the comparative example, the first terminal is arranged at a position symmetrical with respect to the first power conversion circuit and the second power conversion circuit. The power conversion device according to the comparative example includes the first semiconductor element to the fourth semiconductor element which are multi-parallelized as in the power conversion device 100 according to the present embodiment. The first semiconductor element and the second semiconductor element of the first semiconductor module are electrically connected in parallel with each other. Further, the third semiconductor element and the fourth semiconductor element of the second semiconductor module are electrically connected in parallel with each other.
 比較例に係る電力変換装置では、第1端子から第1半導体素子~第4半導体素子までのインダクタンスを等しくするためには、第1端子を第1半導体モジュールの第1半導体素子および第2半導体素子に対して対称な位置に配置する必要がある。また、第1端子を第2半導体モジュールの第1半導体素子および第2半導体素子に対して対称な位置に配置する必要がある。また、第1端子を第1半導体モジュールの第1半導体素子および第2半導体モジュールの第1半導体素子に対して対称な位置に配置する必要がある。また、第1端子を第1半導体モジュールの第2半導体素子および第2半導体モジュールの第2半導体素子に対して対称な位置に配置する必要がある。すなわち、仮に第1端子を第1電力変換回路および第2電力変換回路に対して対称な位置に配置する場合、第1端子を第1半導体素子~第4半導体素子の各々に対して多重に対称に配置する必要がある。したがって、第1端子が配置される位置は、制限される。 In the power conversion device according to the comparative example, in order to make the inductances from the first terminal to the first semiconductor element to the fourth semiconductor element equal, the first terminal is the first semiconductor element and the second semiconductor element of the first semiconductor module. It should be placed in a position symmetrical to the relative. Further, it is necessary to arrange the first terminal at a position symmetrical with respect to the first semiconductor element and the second semiconductor element of the second semiconductor module. Further, it is necessary to arrange the first terminal at a position symmetrical with respect to the first semiconductor element of the first semiconductor module and the first semiconductor element of the second semiconductor module. Further, it is necessary to arrange the first terminal at a position symmetrical with respect to the second semiconductor element of the first semiconductor module and the second semiconductor element of the second semiconductor module. That is, if the first terminal is arranged at a position symmetric with respect to the first power conversion circuit and the second power conversion circuit, the first terminal is multiplex symmetric with respect to each of the first semiconductor element to the fourth semiconductor element. Need to be placed in. Therefore, the position where the first terminal is arranged is limited.
 これに対して、本実施の形態では、図1および図3に示されるように、第2電力変換回路12の第2導体ユニット32は、第1電力変換回路11に対して第1端子T1とは反対側において第1接続部C1に接続されているため、第1端子T1を第1電力変換回路11の第1半導体モジュール21および第2電力変換回路12の第2半導体モジュール22に対して非対称な位置に配置することができる。よって、第1端子T1を複数の半導体素子に対して非対称な位置に配置することができる。したがって、第1端子T1が配置される位置が制限されることを抑制することができる。 On the other hand, in the present embodiment, as shown in FIGS. 1 and 3, the second conductor unit 32 of the second power conversion circuit 12 has the first terminal T1 with respect to the first power conversion circuit 11. Is connected to the first connection portion C1 on the opposite side, so that the first terminal T1 is asymmetric with respect to the first semiconductor module 21 of the first power conversion circuit 11 and the second semiconductor module 22 of the second power conversion circuit 12. Can be placed in any position. Therefore, the first terminal T1 can be arranged at a position asymmetrical with respect to the plurality of semiconductor elements. Therefore, it is possible to prevent the position where the first terminal T1 is arranged from being restricted.
 図1および図3に示されるように、第1導体ユニット31の長さと第2導体ユニット32の長さとの差は、第1接続部C1の第1端子T1が接続された第1位置P1から第1導体ユニット31が接続された第2位置P2までの長さと第1接続部C1の第1端子T1が接続された第1位置P1から第2導体ユニット32が接続された第3位置P3までの長さとの差に等しい。このため、第1導体ユニット31および第2導体ユニット32の長さを調整することによって、第1端子T1から第1半導体モジュール21のインダクタンスと第1端子T1から第2半導体モジュール22までのインダクタンスとを等しくすることができる。よって、第1端子T1から第1半導体モジュール21のインダクタンスと第1端子T1から第2半導体モジュール22までのインダクタンスとを容易に等しくすることができる。また、第1端子T1から第1半導体モジュール21のインピーダンスと第1端子T1から第2半導体モジュール22までのインピーダンスとを容易に等しくすることができる。 As shown in FIGS. 1 and 3, the difference between the length of the first conductor unit 31 and the length of the second conductor unit 32 is from the first position P1 to which the first terminal T1 of the first connecting portion C1 is connected. From the length to the second position P2 to which the first conductor unit 31 is connected and from the first position P1 to which the first terminal T1 of the first connection portion C1 is connected to the third position P3 to which the second conductor unit 32 is connected. Is equal to the difference from the length of. Therefore, by adjusting the lengths of the first conductor unit 31 and the second conductor unit 32, the inductance of the first terminal T1 to the first semiconductor module 21 and the inductance from the first terminal T1 to the second semiconductor module 22 can be obtained. Can be equal. Therefore, the inductance of the first terminal T1 to the first semiconductor module 21 and the inductance of the first terminal T1 to the second semiconductor module 22 can be easily equalized. Further, the impedance of the first terminal T1 to the first semiconductor module 21 and the impedance of the first terminal T1 to the second semiconductor module 22 can be easily equalized.
 図6に示されるように、複数の第1直線状導体部311および複数の第1湾曲導体部312は、互いに脱着可能である。このため、第1導体ユニット31を互いに着脱可能な複数の第1直線状導体部311および複数の第1湾曲導体部312によって構成することができる。よって、第1導体ユニット31が単一の部材からなる場合よりも第1導体ユニット31のインダクタンスおよび長さを変更しやすい。したがって、第1導体ユニット31の設計が容易になる。また、第1導体ユニット31の生産性が向上する。 As shown in FIG. 6, the plurality of first linear conductor portions 311 and the plurality of first curved conductor portions 312 are detachable from each other. Therefore, the first conductor unit 31 can be composed of a plurality of first linear conductor portions 311 and a plurality of first curved conductor portions 312 which are detachable from each other. Therefore, it is easier to change the inductance and length of the first conductor unit 31 than when the first conductor unit 31 is composed of a single member. Therefore, the design of the first conductor unit 31 becomes easy. In addition, the productivity of the first conductor unit 31 is improved.
 図8に示されるように、複数の第2導体部321は、互いに着脱可能である。このため、第2導体ユニット32を互いに着脱可能な複数の第2導体部321によって構成することができる。よって、第2導体ユニット32が単一の部材からなる場合よりも第2導体ユニット32のインダクタンスおよび長さを変更しやすい。したがって、第2導体ユニット32の設計が容易になる。また、第2導体ユニット32の生産性が向上する。 As shown in FIG. 8, the plurality of second conductor portions 321 are removable from each other. Therefore, the second conductor unit 32 can be configured by a plurality of second conductor portions 321 that can be attached to and detached from each other. Therefore, it is easier to change the inductance and length of the second conductor unit 32 than when the second conductor unit 32 is composed of a single member. Therefore, the design of the second conductor unit 32 becomes easy. In addition, the productivity of the second conductor unit 32 is improved.
 図3に示されるように、冷却器8の第1冷却板811には、第1半導体モジュール21および第1導体ユニット31が固定されている。このため、第1半導体モジュール21および第1導体ユニット31を第1冷却板811によって冷却することができる。 As shown in FIG. 3, the first semiconductor module 21 and the first conductor unit 31 are fixed to the first cooling plate 811 of the cooler 8. Therefore, the first semiconductor module 21 and the first conductor unit 31 can be cooled by the first cooling plate 811.
 図3に示されるように、冷却器8の第2冷却板821には、第2半導体モジュール22および第2導体ユニット32が固定されている。このため、第2半導体モジュール22および第2導体ユニット32を第2冷却板821によって冷却することができる。 As shown in FIG. 3, the second semiconductor module 22 and the second conductor unit 32 are fixed to the second cooling plate 821 of the cooler 8. Therefore, the second semiconductor module 22 and the second conductor unit 32 can be cooled by the second cooling plate 821.
 図1および図3に示されるように、第2端子T2は、第2電力変換回路12に対して第1端子T1とは反対側に配置されている。このため、第2端子T2を第1電力変換回路11の第1半導体モジュール21および第2電力変換回路12の第2半導体モジュール22に対して非対称な位置に配置することができる。よって、第2端子T2を第1電力変換回路11の第1半導体モジュール21および第2電力変換回路12の第2半導体モジュール22に対して対称な位置に配置しなくてもよい。したがって、第2端子T2が配置される位置が制限されることを抑制することができる。 As shown in FIGS. 1 and 3, the second terminal T2 is arranged on the side opposite to the first terminal T1 with respect to the second power conversion circuit 12. Therefore, the second terminal T2 can be arranged at a position asymmetric with respect to the first semiconductor module 21 of the first power conversion circuit 11 and the second semiconductor module 22 of the second power conversion circuit 12. Therefore, the second terminal T2 does not have to be arranged at a position symmetrical with respect to the first semiconductor module 21 of the first power conversion circuit 11 and the second semiconductor module 22 of the second power conversion circuit 12. Therefore, it is possible to prevent the position where the second terminal T2 is arranged from being restricted.
 第3導体ユニット33のインダクタンスと第4導体ユニット34のインダクタンスとの差は、第2接続部C2の第2端子T2が接続された第4位置P4から第3導体ユニット33が接続された第5位置P5までのインダクタンスと第2接続部C2の第2端子T2が接続された第4位置P4から第4導体ユニット34が接続された第6位置P6までのインダクタンスとの差に等しい。このため、第2端子T2から第3半導体モジュール23のインダクタンスと第2端子T2から第4半導体モジュール24までのインダクタンスとを等しくすることができる。 The difference between the inductance of the third conductor unit 33 and the inductance of the fourth conductor unit 34 is the fifth position to which the third conductor unit 33 is connected from the fourth position P4 to which the second terminal T2 of the second connecting portion C2 is connected. It is equal to the difference between the inductance up to the position P5 and the inductance from the 4th position P4 to which the 2nd terminal T2 of the 2nd connection portion C2 is connected to the 6th position P6 to which the 4th conductor unit 34 is connected. Therefore, the inductance of the second terminal T2 to the third semiconductor module 23 can be made equal to the inductance of the second terminal T2 to the fourth semiconductor module 24.
 第1端子T1から第1半導体モジュール21のインダクタンスと第1端子T1から第2半導体モジュール22までのインダクタンスとを等しくすることができるため、第1半導体モジュール21に流れる電流の電流値と第2半導体モジュール22に流れる電流の電流値とを等しくすることができる。これにより、第1半導体モジュール21および第2半導体モジュール22の異常発熱を抑制することができる。また、第1半導体モジュール21および第2半導体モジュール22が高温になることを抑制することができる。よって、電力変換装置100の製品寿命が短くなることを抑制することができる。また、第1半導体モジュール21および第2半導体モジュール22が過剰に発熱することを抑制することができるため、冷却器8を小型化できる。 Since the inductance of the first terminal T1 to the first semiconductor module 21 and the inductance of the first terminal T1 to the second semiconductor module 22 can be made equal, the current value of the current flowing through the first semiconductor module 21 and the second semiconductor The current value of the current flowing through the module 22 can be equalized. As a result, abnormal heat generation of the first semiconductor module 21 and the second semiconductor module 22 can be suppressed. Further, it is possible to prevent the first semiconductor module 21 and the second semiconductor module 22 from becoming hot. Therefore, it is possible to prevent the product life of the power conversion device 100 from being shortened. Further, since it is possible to suppress excessive heat generation of the first semiconductor module 21 and the second semiconductor module 22, the cooler 8 can be miniaturized.
 図1および図3に示されるように、冷却器8の第1冷却板811には、第1半導体モジュール21および第1導体ユニット31が固定されている。また、冷却器8の第2冷却板821には、第2半導体モジュール22および第2導体ユニット32が固定されている。このため、第1導体ユニット31および第2導体ユニット32の各々と第1冷却板811および第2冷却板821の各々との間にそれぞれ空隙を設けなくてもよい。 As shown in FIGS. 1 and 3, the first semiconductor module 21 and the first conductor unit 31 are fixed to the first cooling plate 811 of the cooler 8. Further, the second semiconductor module 22 and the second conductor unit 32 are fixed to the second cooling plate 821 of the cooler 8. Therefore, it is not necessary to provide a gap between each of the first conductor unit 31 and the second conductor unit 32 and each of the first cooling plate 811 and the second cooling plate 821.
 仮に第1導体ユニット31および第2導体ユニット32の各々と第1冷却板811および第2冷却板821の各々との間にそれぞれ空隙が設けられる場合、第1導体ユニット31および第2導体ユニット32の各々はファンFによって流動する冷却気体の風路を大きく遮る。このため、冷却気体の圧力損失が増加する。よって、十分な冷却のためにファンFを大きくする必要がある。 If a gap is provided between each of the first conductor unit 31 and the second conductor unit 32 and each of the first cooling plate 811 and the second cooling plate 821, the first conductor unit 31 and the second conductor unit 32 are provided. Each of the above greatly blocks the air passage of the cooling gas flowing by the fan F. Therefore, the pressure loss of the cooling gas increases. Therefore, it is necessary to increase the fan F for sufficient cooling.
 これに対して、本実施の形態では、図1に示されるように、第1導体ユニット31および第2導体ユニット32の各々と第1冷却板811および第2冷却板821の各々との間にそれぞれ空隙を設けなくてもよい。このため、冷却気体の圧力損失の増加を抑制することができる。したがって、ファンFの大型化を抑制することができる。 On the other hand, in the present embodiment, as shown in FIG. 1, between each of the first conductor unit 31 and the second conductor unit 32 and each of the first cooling plate 811 and the second cooling plate 821. It is not necessary to provide a gap for each. Therefore, it is possible to suppress an increase in the pressure loss of the cooling gas. Therefore, it is possible to suppress the increase in size of the fan F.
 図1および図3に示されるように、第1端子T1を第1電力変換回路11の第1半導体モジュール21および第2電力変換回路12の第2半導体モジュール22に対して対称な位置に配置しなくてもよいため、第1端子T1を第1電力変換回路11および第2電力変換回路12の側方に配置することができる。 As shown in FIGS. 1 and 3, the first terminal T1 is arranged at a position symmetrical with respect to the first semiconductor module 21 of the first power conversion circuit 11 and the second semiconductor module 22 of the second power conversion circuit 12. Since it is not necessary, the first terminal T1 can be arranged on the side of the first power conversion circuit 11 and the second power conversion circuit 12.
 仮に第1端子T1が第1電力変換回路11および第2電力変換回路12の正面にせり出すように配置されている場合、主電源PWも第1電力変換回路11および第2電力変換回路12の正面に配置される。このため、電力変換装置100が大型化し得る。 If the first terminal T1 is arranged so as to protrude in front of the first power conversion circuit 11 and the second power conversion circuit 12, the main power supply PW is also in front of the first power conversion circuit 11 and the second power conversion circuit 12. Placed in. Therefore, the power conversion device 100 can be increased in size.
 これに対して、本実施の形態では、図1に示されるように、第1端子T1を第1電力変換回路11および第2電力変換回路12の側方に配置することができるため、主電源PWも第1電力変換回路11および第2電力変換回路12の側方に配置することができる。したがって、電力変換装置100の大型化を抑制することができる。 On the other hand, in the present embodiment, as shown in FIG. 1, since the first terminal T1 can be arranged on the side of the first power conversion circuit 11 and the second power conversion circuit 12, the main power supply The PW can also be arranged on the side of the first power conversion circuit 11 and the second power conversion circuit 12. Therefore, it is possible to suppress the increase in size of the power conversion device 100.
 実施の形態2.
 次に、図18~図26を用いて、実施の形態2に係る電力変換装置100の構成を説明する。実施の形態2は、特に説明しない限り、上記の実施の形態1と同一の構成および作用効果を有している。したがって、上記の実施の形態1と同一の構成には同一の符号を付し、説明を繰り返さない。
Embodiment 2.
Next, the configuration of the power conversion device 100 according to the second embodiment will be described with reference to FIGS. 18 to 26. The second embodiment has the same configuration and operation and effect as the first embodiment, unless otherwise specified. Therefore, the same components as those in the first embodiment are designated by the same reference numerals, and the description thereof will not be repeated.
 図18に示されるように、本実施の形態に係る電力変換装置100は、第3電力変換回路13と、第3コンデンサ基板63とをさらに含んでいる。本実施の形態に係る電力変換装置100は、第3電力変換回路13によって拡張された容量を有している点で実施の形態1に係る電力変換装置100とは異なっている。第1電力変換回路11、第2電力変換回路12および第3電力変換回路13は、第1端子T1側から第2端子T2側に向かって第1電力変換回路11、第3電力変換回路13および第2電力変換回路12の順に並べられている。 As shown in FIG. 18, the power conversion device 100 according to the present embodiment further includes a third power conversion circuit 13 and a third capacitor board 63. The power conversion device 100 according to the present embodiment is different from the power conversion device 100 according to the first embodiment in that it has a capacity expanded by the third power conversion circuit 13. The first power conversion circuit 11, the second power conversion circuit 12, and the third power conversion circuit 13 include the first power conversion circuit 11, the third power conversion circuit 13, and the third power conversion circuit 13 from the first terminal T1 side toward the second terminal T2 side. The second power conversion circuit 12 is arranged in this order.
 第3電力変換回路13は、第1電力変換回路11および第2電力変換回路12の間に配置されている。第3電力変換回路13は、第1電力変換回路11および第2電力変換回路12の間において第1接続部C1に接続されている。第1電力変換回路11、第2電力変換回路12および第3電力変換回路13は、第1端子T1および第2端子T2に対して電気的に並列に接続されている。 The third power conversion circuit 13 is arranged between the first power conversion circuit 11 and the second power conversion circuit 12. The third power conversion circuit 13 is connected to the first connection portion C1 between the first power conversion circuit 11 and the second power conversion circuit 12. The first power conversion circuit 11, the second power conversion circuit 12, and the third power conversion circuit 13 are electrically connected in parallel to the first terminal T1 and the second terminal T2.
 図19および図20に示されるように、第3電力変換回路13は、第5半導体モジュール25と、第6半導体モジュール26と、第5導体ユニット35と、第6導体ユニット36と、第5絶縁層45と、第6絶縁層46とを含んでいる。 As shown in FIGS. 19 and 20, the third power conversion circuit 13 includes the fifth semiconductor module 25, the sixth semiconductor module 26, the fifth conductor unit 35, the sixth conductor unit 36, and the fifth insulation. It includes a layer 45 and a sixth insulating layer 46.
 図18に示されるように、第5導体ユニット35は、第1接続部C1に接続されている。第6導体ユニット36は、第2接続部C2に接続されている。 As shown in FIG. 18, the fifth conductor unit 35 is connected to the first connecting portion C1. The sixth conductor unit 36 is connected to the second connecting portion C2.
 図18および図20に示されるように、第5半導体モジュール25は、第5導体ユニット35を介して第1接続部C1に接続されている。第5半導体モジュール25は、第1端子T1に対して第1半導体モジュール21および第2半導体モジュール22と電気的に並列に接続されている。 As shown in FIGS. 18 and 20, the fifth semiconductor module 25 is connected to the first connection portion C1 via the fifth conductor unit 35. The fifth semiconductor module 25 is electrically connected to the first terminal T1 in parallel with the first semiconductor module 21 and the second semiconductor module 22.
 第6半導体モジュール26は、第3コンデンサ基板63を介して第5半導体モジュール25に接続されている。第6半導体モジュール26は、第6導体ユニット36を介して第2接続部C2に接続されている。第6半導体モジュール26は、第2端子T2に対して第3半導体モジュール23および第4半導体モジュール24と電気的に並列に接続されている。 The sixth semiconductor module 26 is connected to the fifth semiconductor module 25 via the third capacitor substrate 63. The sixth semiconductor module 26 is connected to the second connecting portion C2 via the sixth conductor unit 36. The sixth semiconductor module 26 is electrically connected to the second terminal T2 in parallel with the third semiconductor module 23 and the fourth semiconductor module 24.
 第1半導体モジュール21~第6半導体モジュール26は、共通の半導体モジュールによって構成されていてもよい。第1絶縁層41~第6絶縁層46は、共通の絶縁層によって構成されていてもよい。このため、図4、図10および図19に示されるように、第1電力変換回路11、第2電力変換回路12および第3電力変換回路は、第1導体ユニット31~第6導体ユニット36の構成を除いて、共通の構造を有していてもよい。 The first semiconductor module 21 to the sixth semiconductor module 26 may be configured by a common semiconductor module. The first insulating layer 41 to the sixth insulating layer 46 may be composed of a common insulating layer. Therefore, as shown in FIGS. 4, 10 and 19, the first power conversion circuit 11, the second power conversion circuit 12, and the third power conversion circuit are the first conductor unit 31 to the sixth conductor unit 36. Except for the configuration, it may have a common structure.
 図21に示されるように、本実施の形態に係る第1接続部C1には、第7貫通孔TH7がさらに設けられている。第2接続部C2には、第8貫通孔TH8がさらに設けられている。 As shown in FIG. 21, a seventh through hole TH7 is further provided in the first connection portion C1 according to the present embodiment. The second connection portion C2 is further provided with an eighth through hole TH8.
 図18および図21に示されるように、第1接続部C1は、第7貫通孔TH7に挿入された第5固定具F5によって第3電力変換回路13に固定されている。第2接続部C2は、第8貫通孔TH8に挿入された第6固定具F6によって第3電力変換回路13に固定されている。 As shown in FIGS. 18 and 21, the first connection portion C1 is fixed to the third power conversion circuit 13 by the fifth fixture F5 inserted into the seventh through hole TH7. The second connection portion C2 is fixed to the third power conversion circuit 13 by the sixth fixture F6 inserted into the eighth through hole TH8.
 第1端子T1が入力端子である場合、第3電力変換回路13は、第1電力変換回路11よりも電流の下流側かつ第2電力変換回路12よりも電流の上流側で第1接続部C1に接続されている。このため、第1接続部C1の第1端子T1が接続された第1位置P1から第5導体ユニット35が接続された第7位置P7までの長さは、第1接続部C1の第1位置P1から第2位置P2までの距離よりも長い。また、第1接続部C1の第1位置P1から第3位置P3までの長さは、第1接続部C1の第1位置P1から第7位置P7までの距離よりも長い。 When the first terminal T1 is an input terminal, the third power conversion circuit 13 has a first connection portion C1 on the downstream side of the current from the first power conversion circuit 11 and on the upstream side of the current from the second power conversion circuit 12. It is connected to the. Therefore, the length from the first position P1 to which the first terminal T1 of the first connecting portion C1 is connected to the seventh position P7 to which the fifth conductor unit 35 is connected is the first position of the first connecting portion C1. It is longer than the distance from P1 to the second position P2. Further, the length of the first connection portion C1 from the first position P1 to the third position P3 is longer than the distance from the first position P1 to the seventh position P7 of the first connection portion C1.
 なお、図21に示されるように、本実施の形態において、第1接続部C1の第5導体ユニット35が接続された第7位置P7とは、第7貫通孔TH7の外縁のうち第1貫通孔TH1に最も近い位置である。 As shown in FIG. 21, in the present embodiment, the seventh position P7 to which the fifth conductor unit 35 of the first connecting portion C1 is connected is the first penetration of the outer edge of the seventh through hole TH7. It is the position closest to the hole TH1.
 第1接続部C1の第1位置P1から第7位置P7までのインダクタンスは、第1接続部C1の第1位置P1から第2位置P2までのインダクタンスよりも大きい。第1接続部C1の第1位置P1から第3位置P3までのインダクタンスは、第1接続部C1の第1位置P1から第7位置P7までのインダクタンスよりも大きい。 The inductance of the first connection portion C1 from the first position P1 to the seventh position P7 is larger than the inductance of the first connection portion C1 from the first position P1 to the second position P2. The inductance of the first connection portion C1 from the first position P1 to the third position P3 is larger than the inductance of the first connection portion C1 from the first position P1 to the seventh position P7.
 本実施の形態では、第1導体ユニット31のインダクタンスが第5導体ユニット35のインダクタンスよりも大きくなることで、第1接続部C1の第1位置P1から第7位置P7までのインダクタンスと第1接続部C1の第1位置P1から第2位置P2までのインダクタンスとの差が低減される。すなわち、第1導体ユニット31のインダクタンスと第5導体ユニット35のインダクタンスとの差は、第1接続部C1の第1端子T1が接続された第1位置P1から第1導体ユニット31が接続された第2位置P2までのインダクタンスと第1接続部C1の第1端子T1が接続された第1位置P1から第5導体ユニット35が接続された第7位置P7までのインダクタンスとの差に等しい。 In the present embodiment, the inductance of the first conductor unit 31 becomes larger than the inductance of the fifth conductor unit 35, so that the inductance of the first connection portion C1 from the first position P1 to the seventh position P7 and the first connection are made. The difference from the inductance from the first position P1 to the second position P2 of the portion C1 is reduced. That is, the difference between the inductance of the first conductor unit 31 and the inductance of the fifth conductor unit 35 is that the first conductor unit 31 is connected from the first position P1 to which the first terminal T1 of the first connection portion C1 is connected. It is equal to the difference between the inductance up to the second position P2 and the inductance from the first position P1 to which the first terminal T1 of the first connection portion C1 is connected to the seventh position P7 to which the fifth conductor unit 35 is connected.
 また、第5導体ユニット35のインダクタンスが第2導体ユニット32のインダクタンスよりも大きくなることで、第1接続部C1の第1位置P1から第3位置P3までのインダクタンスと第1接続部C1の第1位置P1から第7位置P7までのインダクタンスとの差が低減される。すなわち、第2導体ユニット32のインダクタンスと第5導体ユニット35のインダクタンスとの差は、第1接続部C1の第1端子T1が接続された位置から第2導体ユニット32が接続された第3位置P3までのインダクタンスと第1接続部C1の第1端子T1が接続された位置から第5導体ユニット35が接続された第7位置P7までのインダクタンスとの差に等しい。 Further, since the inductance of the fifth conductor unit 35 becomes larger than the inductance of the second conductor unit 32, the inductance from the first position P1 to the third position P3 of the first connecting portion C1 and the first of the first connecting portion C1. The difference from the inductance from the 1st position P1 to the 7th position P7 is reduced. That is, the difference between the inductance of the second conductor unit 32 and the inductance of the fifth conductor unit 35 is the third position where the second conductor unit 32 is connected from the position where the first terminal T1 of the first connecting portion C1 is connected. It is equal to the difference between the inductance up to P3 and the inductance from the position where the first terminal T1 of the first connection portion C1 is connected to the seventh position P7 to which the fifth conductor unit 35 is connected.
 図18に示されるように、本実施の形態では、第5導体ユニット35の長さが第1導体ユニット31の長さよりも長くなることで、第1接続部C1の第1位置P1から第7位置P7までの長さと第1接続部C1の第1位置P1から第2位置P2までの長さとの差が低減される。すなわち、第1導体ユニット31の長さと第5導体ユニット35の長さとの差は、第1接続部C1の第1端子T1が接続された第1位置P1から第1導体ユニット31が接続された第2位置P2までの長さと第1接続部C1の第1端子T1が接続された第1位置P1から第5導体ユニット35が接続された位置までの長さとの差に等しい。 As shown in FIG. 18, in the present embodiment, the length of the fifth conductor unit 35 is longer than the length of the first conductor unit 31, so that the first positions P1 to the seventh of the first connecting portion C1 The difference between the length to the position P7 and the length from the first position P1 to the second position P2 of the first connecting portion C1 is reduced. That is, the difference between the length of the first conductor unit 31 and the length of the fifth conductor unit 35 is that the first conductor unit 31 is connected from the first position P1 to which the first terminal T1 of the first connecting portion C1 is connected. It is equal to the difference between the length to the second position P2 and the length from the first position P1 to which the first terminal T1 of the first connecting portion C1 is connected to the position to which the fifth conductor unit 35 is connected.
 また、第2導体ユニット32の長さが第5導体ユニット35の長さよりも長くなることで、第1接続部C1の第1位置P1から第3位置P3までの長さと第1接続部C1の第1位置P1から第7位置P7までの長さとの差が低減される。すなわち、第2導体ユニット32の長さと第5導体ユニット35の長さとの差は、第1接続部C1の第1端子T1が接続された位置から第2導体ユニット32が接続された第3位置P3までの長さと第1接続部C1の第1端子T1が接続された位置から第5導体ユニット35が接続された位置までの長さとの差に等しい。 Further, since the length of the second conductor unit 32 is longer than the length of the fifth conductor unit 35, the length of the first connecting portion C1 from the first position P1 to the third position P3 and the length of the first connecting portion C1. The difference from the length from the first position P1 to the seventh position P7 is reduced. That is, the difference between the length of the second conductor unit 32 and the length of the fifth conductor unit 35 is the third position where the second conductor unit 32 is connected from the position where the first terminal T1 of the first connecting portion C1 is connected. It is equal to the difference between the length up to P3 and the length from the position where the first terminal T1 of the first connecting portion C1 is connected to the position where the fifth conductor unit 35 is connected.
 第1コンデンサブスバー71および第2コンデンサブスバー72の長さは、電力変換装置100が第3電力変換回路13を含まない場合(図1参照)よりも長い。また、電力変換装置100が第3電力変換回路13を含まない場合(図1参照)よりも電力変換装置100の出力が例えば、1.5倍大きい。このため、その分だけ第1コンデンサブスバー71および第2コンデンサブスバー72の厚みおよび幅が大きい。 The lengths of the first capacitor bus bar 71 and the second capacitor bus 72 are longer than when the power conversion device 100 does not include the third power conversion circuit 13 (see FIG. 1). Further, the output of the power conversion device 100 is, for example, 1.5 times larger than that in the case where the power conversion device 100 does not include the third power conversion circuit 13 (see FIG. 1). Therefore, the thickness and width of the first condenser bus bar 71 and the second condenser bus bar 72 are increased by that amount.
 図22に示されるように、第5導体ユニット35は、複数の第5直線状導体部351と、複数の第5湾曲導体部352と、第5屈曲導体部353と、第5背面導体部354とを有している。複数の第5直線状導体部351は、例えば、I字状である。複数の第5湾曲導体部352は、複数の第5直線状導体部351よりも長い。複数の第5湾曲導体部352は、例えば、U字状である。第5屈曲導体部353には、第1接続部C1が接続されている。第5屈曲導体部353は、例えば、L字状である。図23に示されるように、第5背面導体部354は、冷却器8を挟み込むように配置されている。第5背面導体部354は、第5半導体モジュール25に直接接続されている。第5導体ユニット35において、電流は、複数の第5湾曲導体部352および複数の第5直線状導体部351を蛇行するように流れる。 As shown in FIG. 22, the fifth conductor unit 35 includes a plurality of fifth linear conductor portions 351 and a plurality of fifth curved conductor portions 352, a fifth bent conductor portion 353, and a fifth back conductor portion 354. And have. The plurality of fifth linear conductor portions 351 are, for example, I-shaped. The plurality of fifth curved conductor portions 352 is longer than the plurality of fifth linear conductor portions 351. The plurality of fifth curved conductor portions 352 are, for example, U-shaped. The first connecting portion C1 is connected to the fifth bent conductor portion 353. The fifth bent conductor portion 353 is, for example, L-shaped. As shown in FIG. 23, the fifth back conductor portion 354 is arranged so as to sandwich the cooler 8. The fifth back conductor portion 354 is directly connected to the fifth semiconductor module 25. In the fifth conductor unit 35, the current flows in a meandering manner through the plurality of fifth curved conductor portions 352 and the plurality of fifth linear conductor portions 351.
 図22に示されるように、複数の第5直線状導体部351および複数の第5湾曲導体部352は、互いに脱着可能である。本実施の形態では、複数の第5直線状導体部351と、複数の第5湾曲導体部352と、第5屈曲導体部353と、第5背面導体部354とは、複数の第5ねじS5によって互いに脱着可能である。図示されないが、第5絶縁層45には、複数の第5ねじS5の各々がそれぞれ貫通可能な複数の貫通孔が設けられている。第5絶縁層45は、第5絶縁用ねじSS5によって冷却器8に固定されている。 As shown in FIG. 22, the plurality of fifth linear conductor portions 351 and the plurality of fifth curved conductor portions 352 are removable from each other. In the present embodiment, the plurality of fifth linear conductor portions 351 and the plurality of fifth curved conductor portions 352, the fifth bent conductor portion 353, and the fifth back surface conductor portion 354 are a plurality of fifth screws S5. Detachable from each other. Although not shown, the fifth insulating layer 45 is provided with a plurality of through holes through which each of the plurality of fifth screws S5 can penetrate. The fifth insulating layer 45 is fixed to the cooler 8 by the fifth insulating screw SS5.
 図24に示されるように、第6導体ユニット36は、複数の第6直線状導体部361と、複数の第6湾曲導体部362と、第6屈曲導体部363と、第6背面導体部364とを有している。複数の第6直線状導体部361は、例えば、I字状である。複数の第6湾曲導体部362は、複数の第6直線状導体部361よりも長い。複数の第6湾曲導体部362は、例えば、U字状である。第6屈曲導体部363には、第2接続部C2が接続されている。第6屈曲導体部363は、例えば、L字状である。図25に示されるように、第6背面導体部364は、冷却器8を挟み込むように配置されている。第6背面導体部364は、第6半導体モジュール26に直接接続されている。第6導体ユニット36において、電流は、複数の第6湾曲導体部362および複数の第6直線状導体部361を蛇行するように流れる。 As shown in FIG. 24, the sixth conductor unit 36 includes a plurality of sixth linear conductor portions 361, a plurality of sixth curved conductor portions 362, a sixth bent conductor portion 363, and a sixth back conductor portion 364. And have. The plurality of sixth linear conductor portions 361 are, for example, I-shaped. The plurality of sixth curved conductor portions 362 are longer than the plurality of sixth linear conductor portions 361. The plurality of sixth curved conductor portions 362 are, for example, U-shaped. A second connecting portion C2 is connected to the sixth bent conductor portion 363. The sixth bent conductor portion 363 is, for example, L-shaped. As shown in FIG. 25, the sixth back conductor portion 364 is arranged so as to sandwich the cooler 8. The sixth back conductor portion 364 is directly connected to the sixth semiconductor module 26. In the sixth conductor unit 36, the current flows in a meandering manner through the plurality of sixth curved conductor portions 362 and the plurality of sixth linear conductor portions 361.
 図24に示されるように、複数の第6直線状導体部361および複数の第6湾曲導体部362は、互いに脱着可能である。本実施の形態では、複数の第6直線状導体部361と、複数の第6湾曲導体部362と、第6屈曲導体部363と、第6背面導体部364とは、複数の第6ねじS6によって互いに脱着可能である。図示されないが、第6絶縁層46には、複数の第6ねじS6の各々がそれぞれ貫通可能な複数の貫通孔が設けられている。第6絶縁層46は、第6絶縁用ねじSS6によって冷却器8に固定されている。 As shown in FIG. 24, the plurality of sixth linear conductor portions 361 and the plurality of sixth curved conductor portions 362 are removable from each other. In the present embodiment, the plurality of sixth linear conductor portions 361, the plurality of sixth curved conductor portions 362, the sixth bent conductor portion 363, and the sixth back surface conductor portion 364 are a plurality of sixth screws S6. Detachable from each other. Although not shown, the sixth insulating layer 46 is provided with a plurality of through holes through which each of the plurality of sixth screws S6 can penetrate. The sixth insulating layer 46 is fixed to the cooler 8 by the sixth insulating screw SS6.
 図26に示されるように、第5半導体モジュール25は、R相第5半導体モジュール部25R、S相第5半導体モジュール部25SおよびT相第5半導体モジュール部25Tを含んでいる。R相第5半導体モジュール部25R、S相第5半導体モジュール部25SおよびT相第5半導体モジュール部25Tの各々は、それぞれR相、S相およびT相の各々にそれぞれ電気的に接続されている。R相第5半導体モジュール部25R、S相第5半導体モジュール部25SおよびT相第5半導体モジュール部25Tの各々は、並列に電気的に接続された2つの半導体素子SCを有している。 As shown in FIG. 26, the fifth semiconductor module 25 includes an R-phase fifth semiconductor module section 25R, an S-phase fifth semiconductor module section 25S, and a T-phase fifth semiconductor module section 25T. Each of the R-phase fifth semiconductor module unit 25R, the S-phase fifth semiconductor module unit 25S, and the T-phase fifth semiconductor module unit 25T is electrically connected to each of the R-phase, S-phase, and T-phase, respectively. .. Each of the R-phase fifth semiconductor module unit 25R, the S-phase fifth semiconductor module unit 25S, and the T-phase fifth semiconductor module unit 25T has two semiconductor elements SC electrically connected in parallel.
 第6半導体モジュール26は、U相第6半導体モジュール部26U、V相第6半導体モジュール部26VおよびW相第6半導体モジュール部26Wを含んでいる。U相第6半導体モジュール部26U、V相第6半導体モジュール部26VおよびW相第6半導体モジュール部26Wの各々は、それぞれU相、V相およびW相の各々にそれぞれ電気的に接続されている。U相第6半導体モジュール部26U、V相第6半導体モジュール部26VおよびW相第6半導体モジュール部26Wの各々は、並列に電気的に接続された2つの半導体素子SCを有している。U相第6半導体モジュール部26U、V相第6半導体モジュール部26VおよびW相第6半導体モジュール部26Wの各々は、第3コンデンサ基板63を介してR相第5半導体モジュール部25R、S相第5半導体モジュール部25SおよびT相第5半導体モジュール部25Tに電気的に接続されている。 The sixth semiconductor module 26 includes a U-phase sixth semiconductor module section 26U, a V-phase sixth semiconductor module section 26V, and a W-phase sixth semiconductor module section 26W. Each of the U-phase 6th semiconductor module section 26U, the V-phase 6th semiconductor module section 26V, and the W-phase 6th semiconductor module section 26W is electrically connected to each of the U-phase, V-phase, and W-phase, respectively. .. Each of the U-phase 6th semiconductor module unit 26U, the V-phase 6th semiconductor module unit 26V, and the W-phase 6th semiconductor module unit 26W has two semiconductor element SCs electrically connected in parallel. Each of the U-phase 6th semiconductor module section 26U, the V-phase 6th semiconductor module section 26V, and the W-phase 6th semiconductor module section 26W is connected to the R-phase 5th semiconductor module section 25R and the S-phase second via the third capacitor substrate 63. It is electrically connected to the 5th semiconductor module section 25S and the T-phase 5th semiconductor module section 25T.
 なお、本実施の形態において電力変換装置100が第3電力変換回路13を含んでいる場合について説明されたが、電力変換装置100は第4電力変換回路をさらに含んでいてもよい。すなわち、電力変換装置100は、4つ以上の電力変換回路を含んでいてもよい。 Although the case where the power conversion device 100 includes the third power conversion circuit 13 in the present embodiment has been described, the power conversion device 100 may further include the fourth power conversion circuit. That is, the power conversion device 100 may include four or more power conversion circuits.
 続いて、本実施の形態の作用効果を説明する。
 実施の形態2に係る電力変換装置100によれば、図18に示されるように、電力変換装置100は、第3電力変換回路13を含んでいる。このため、電力変換装置100が第3電力変換回路13を含んでいない場合よりも、第3電力変換回路13によって電力変換装置100の容量を大きくすることができる。例えば、エレベータ等の幅広い出力帯を有する製品では、電力変換装置100の容量を大きくすることが求められている。本実施の形態では、エレベータ等に用いられる電力変換装置100の容量を大きくすることができる。したがって、本実施の形態に係る電力変換装置100を用いた製品のラインナップの拡張性が向上する。
Subsequently, the action and effect of the present embodiment will be described.
According to the power conversion device 100 according to the second embodiment, as shown in FIG. 18, the power conversion device 100 includes a third power conversion circuit 13. Therefore, the capacity of the power conversion device 100 can be increased by the third power conversion circuit 13 as compared with the case where the power conversion device 100 does not include the third power conversion circuit 13. For example, in a product having a wide output band such as an elevator, it is required to increase the capacity of the power conversion device 100. In the present embodiment, the capacity of the power conversion device 100 used for an elevator or the like can be increased. Therefore, the expandability of the product lineup using the power conversion device 100 according to the present embodiment is improved.
 仮に、ラインナップの拡張性の向上のために電力変換装置100を個別に製品化した場合、設計作業および生産管理等の工程が増加する。このため、製品の製造コストが増加する。なお、ラインナップの拡張性の向上とは、例えば、幅広い容量への対応等である。 If the power conversion device 100 is individually commercialized in order to improve the expandability of the lineup, the number of processes such as design work and production control will increase. Therefore, the manufacturing cost of the product increases. The improvement of the expandability of the lineup is, for example, support for a wide range of capacities.
 これに対して、本実施の形態に係る電力変換装置100では、図1、図3、図18および図20に示されるように、第1電力変換回路11、第2電力変換回路12および第3電力変換回路13の第1半導体モジュール21~第6半導体モジュール26は、共通の半導体モジュールによって構成されている。また、第1絶縁層41~第4絶縁層44は、共通の絶縁層によって構成されている。すなわち、図4、10および図19に示されるように、第1電力変換回路11~第3電力変換回路13は、第1導体ユニット31~第6導体ユニット36を除いて、共通の構成を有している。このため、電力変換回路の第1接続部C1、第2接続部C2および第1導体ユニット31~第6導体ユニット36を変更するだけで、電力変換装置100の設計を変更することができる。よって、設計作業および生産管理等の工程が増加することを低減することができる。したがって、ラインナップの拡張性の向上と製造コストの低減とを両立することができる。すなわち、容量の増加と製造コストの低減とを両立することができる。 On the other hand, in the power conversion device 100 according to the present embodiment, as shown in FIGS. 1, 3, 18, and 20, the first power conversion circuit 11, the second power conversion circuit 12, and the third power conversion circuit 12 and the third. The first semiconductor module 21 to the sixth semiconductor module 26 of the power conversion circuit 13 are configured by a common semiconductor module. Further, the first insulating layer 41 to the fourth insulating layer 44 are composed of a common insulating layer. That is, as shown in FIGS. 4, 10 and 19, the first power conversion circuit 11 to the third power conversion circuit 13 have a common configuration except for the first conductor unit 31 to the sixth conductor unit 36. is doing. Therefore, the design of the power conversion device 100 can be changed only by changing the first connection portion C1, the second connection portion C2, and the first conductor unit 31 to the sixth conductor unit 36 of the power conversion circuit. Therefore, it is possible to reduce the increase in processes such as design work and production control. Therefore, it is possible to improve the expandability of the lineup and reduce the manufacturing cost at the same time. That is, it is possible to achieve both an increase in capacity and a reduction in manufacturing cost.
 図18に示されるように、第1接続部C1および第2接続部C2は、ねじである第1固定具F1~第6固定具F6によって第1電力変換回路11および第2電力変換回路12に固定されている。また、第1コンデンサブスバー71および第2コンデンサブスバー72は、ねじによって第1電力変換回路11~第3電力変換回路13に固定されている。このため、複数のねじの取り外しのみよって、第1電力変換回路11~第3電力変換回路13を第1接続部C1、第2接続部C2、第1コンデンサブスバー71および第2コンデンサブスバー72から個別に取り外すことができる。よって、第1電力変換回路11~第3電力変換回路13の交換性が向上する。また、本実施の形態では、電力変換装置100は、半導体素子およびコンデンサ等の消耗品を有している。このため、交換作業を実施する場合がある。第1電力変換回路11~第3電力変換回路13の交換性が向上するため、消耗品の交換性も向上する。また、複数のねじのねじ頭の各々は、同じ向きを向いているため、交換作業の作業性が向上する。これにより、交換作業の作業時間を低減することができる。また、電力変換回路の数を増やした場合でも、複数のねじの数を増やせば、第1接続部C1、第2接続部C2、第1コンデンサブスバー71および第2コンデンサブスバー72とは他の部材を用いなくてもよい。このため、向上した作業性を維持したまま多並列化が可能である。 As shown in FIG. 18, the first connection portion C1 and the second connection portion C2 are connected to the first power conversion circuit 11 and the second power conversion circuit 12 by the first fixture F1 to the sixth fixture F6 which are screws. It is fixed. Further, the first condenser bus bar 71 and the second condenser bus bar 72 are fixed to the first power conversion circuit 11 to the third power conversion circuit 13 by screws. Therefore, the first power conversion circuit 11 to the third power conversion circuit 13 are separated from the first connection portion C1, the second connection portion C2, the first capacitor bus bar 71, and the second capacitor bus bar 72 only by removing the plurality of screws. Can be removed. Therefore, the interchangeability of the first power conversion circuit 11 to the third power conversion circuit 13 is improved. Further, in the present embodiment, the power conversion device 100 has consumables such as a semiconductor element and a capacitor. Therefore, replacement work may be carried out. Since the interchangeability of the first power conversion circuit 11 to the third power conversion circuit 13 is improved, the exchangeability of consumables is also improved. Further, since the screw heads of the plurality of screws are oriented in the same direction, the workability of the replacement work is improved. As a result, the working time of the replacement work can be reduced. Further, even when the number of power conversion circuits is increased, if the number of a plurality of screws is increased, the first connection portion C1, the second connection portion C2, the first capacitor bus bar 71, and the second capacitor bus bar 72 are other members. It is not necessary to use. Therefore, multi-parallelization is possible while maintaining improved workability.
 実施の形態3.
 次に、図27~図30を用いて、実施の形態3に係るエレベータ制御盤200の構成を説明する。実施の形態3は、特に説明しない限り、上記の実施の形態2と同一の構成および作用効果を有している。したがって、上記の実施の形態2と同一の構成には同一の符号を付し、説明を繰り返さない。
Embodiment 3.
Next, the configuration of the elevator control panel 200 according to the third embodiment will be described with reference to FIGS. 27 to 30. Unless otherwise specified, the third embodiment has the same configuration and operation and effect as the second embodiment. Therefore, the same components as those in the second embodiment are designated by the same reference numerals, and the description thereof will not be repeated.
 図20に示されるように、エレベータ制御盤200は、機械室MR内に配置される。また、エレベータ制御盤200は、小型化が求められている。エレベータ制御盤200は、エレベータ300が設置された建物の主電源PWから供給される三相交流を受電するように構成されている。また、エレベータ制御盤200は、エレベータの巻上機HMを駆動するための電力波形を有する電流を形成することができる。 As shown in FIG. 20, the elevator control panel 200 is arranged in the machine room MR. Further, the elevator control panel 200 is required to be miniaturized. The elevator control panel 200 is configured to receive three-phase alternating current supplied from the main power supply PW of the building in which the elevator 300 is installed. Further, the elevator control panel 200 can form a current having a power waveform for driving the elevator hoist HM.
 エレベータ300は、エレベータ制御盤200、配線W、原動機M、かご301、おもり302およびワイヤーロープ303を含んでいる。エレベータ制御盤200は、エレベータ300の巻上機HMを制御するためのエレベータ制御盤である。巻上機HMは、原動機M(図1参照)を含んでいる。エレベータ制御盤200は、例えば、ビルおよび施設の機械室等に設置されている。エレベータ制御盤200の高さは、例えば、2mである。エレベータ制御盤200の横幅は、例えば、1mである。エレベータ制御盤200の奥行は、例えば、0.5mである。 The elevator 300 includes an elevator control panel 200, a wiring W, a prime mover M, a car 301, a weight 302, and a wire rope 303. The elevator control panel 200 is an elevator control panel for controlling the hoisting machine HM of the elevator 300. The hoist HM includes a motor M (see FIG. 1). The elevator control panel 200 is installed in, for example, a machine room of a building or a facility. The height of the elevator control panel 200 is, for example, 2 m. The width of the elevator control panel 200 is, for example, 1 m. The depth of the elevator control panel 200 is, for example, 0.5 m.
 かご301およびおもり302は、ワイヤーロープ303の両端にそれぞれ接続されている。ワイヤーロープ303は、巻上機HMに接続されている。巻上機HMは、ワイヤーロープ303を巻くことによって、かご301を昇降させるように構成されている。 The basket 301 and the weight 302 are connected to both ends of the wire rope 303, respectively. The wire rope 303 is connected to the hoisting machine HM. The hoisting machine HM is configured to raise and lower the car 301 by winding the wire rope 303.
 図28および図29に示されるように、本実施の形態に係るエレベータ制御盤200は、電力変換装置100と、配線Wとを含んでいる。配線Wは、第1配線部W1~第7配線部W7を含んでいる。本実施の形態に係るエレベータ制御盤200は、リアクトルR、第1端子台TS1、第2端子台TS2、筐体91、支持板92、第1制御基板931、第2制御基板932、第3制御基板933、電磁接触器94およびノイズフィルタ95をさらに含んでいる。図28では、説明の便宜のため、第1配線部W1~第7配線部W7が図示されていない。また、図29では、説明の便宜のため、第1制御基板931~第3制御基板933および支持板92が図示されていない。なお、図28および図29では、説明の便宜のため、エレベータ制御盤200の扉は図示されていない。 As shown in FIGS. 28 and 29, the elevator control panel 200 according to the present embodiment includes a power conversion device 100 and wiring W. The wiring W includes the first wiring portion W1 to the seventh wiring portion W7. The elevator control panel 200 according to the present embodiment includes a reactor R, a first terminal block TS1, a second terminal block TS2, a housing 91, a support plate 92, a first control board 931 and a second control board 932, and a third control. It further includes a substrate 933, an electromagnetic contactor 94 and a noise filter 95. In FIG. 28, for convenience of explanation, the first wiring unit W1 to the seventh wiring unit W7 are not shown. Further, in FIG. 29, for convenience of explanation, the first control board 931 to the third control board 933 and the support plate 92 are not shown. In FIGS. 28 and 29, the door of the elevator control panel 200 is not shown for convenience of explanation.
 図28に示されるように、筐体91および支持板92は、例えば、板金によって構成されている。第1制御基板931、第2制御基板932および第2制御基板932は、それぞれ第1電力変換回路11、第2電力変換回路12および第3電力変換回路13を制御するように構成されている。 As shown in FIG. 28, the housing 91 and the support plate 92 are made of, for example, sheet metal. The first control board 931 and the second control board 932 and the second control board 932 are configured to control the first power conversion circuit 11, the second power conversion circuit 12, and the third power conversion circuit 13, respectively.
 図27および図29に示されるように、電力変換装置100の第1端子T1は、エレベータ300の巻上機HMに電気的に接続されている。電力変換装置100の第1端子T1は、配線Wに接続されている。電力変換装置100は、配線Wを介してエレベータ300の巻上機HMに電気的に接続されている。配線Wの第1配線部W1~第7配線部W7は、ケーブルであってもよいし、ブスバーであってもよい。第2端子T2は、第2配線部W2に接続されている。第1端子台TS1は、第3配線部W3によって主電源PWに接続されている。また、第1端子台TS1は、第4配線部W4によってリアクトルRに接続されている。 As shown in FIGS. 27 and 29, the first terminal T1 of the power conversion device 100 is electrically connected to the hoisting machine HM of the elevator 300. The first terminal T1 of the power conversion device 100 is connected to the wiring W. The power conversion device 100 is electrically connected to the hoisting machine HM of the elevator 300 via the wiring W. The first wiring portion W1 to the seventh wiring portion W7 of the wiring W may be a cable or a bus bar. The second terminal T2 is connected to the second wiring portion W2. The first terminal block TS1 is connected to the main power supply PW by the third wiring unit W3. Further, the first terminal block TS1 is connected to the reactor R by the fourth wiring portion W4.
 リアクトルRは、第5配線部W5によって電磁接触器94に接続されている。リアクトルRは、電流の電力変換装置100において発生するノイズ成分が主電源PWに流出することを抑制するように構成されている。 The reactor R is connected to the magnetic contactor 94 by the fifth wiring portion W5. The reactor R is configured to suppress the noise component generated in the current power conversion device 100 from flowing out to the main power supply PW.
 電磁接触器94は、第1配線部W1によって電力変換装置100に接続されている。電磁接触器94は、主電源PWから電力変換装置100への電力供給を一時的に遮断するように構成されている。 The electromagnetic contactor 94 is connected to the power conversion device 100 by the first wiring unit W1. The magnetic contactor 94 is configured to temporarily cut off the power supply from the main power supply PW to the power conversion device 100.
 ノイズフィルタ95は、第2配線部W2によって電力変換装置100に接続されている。ノイズフィルタ95は、第7配線部W7によって第2端子台TS2に接続されている。ノイズフィルタ95は、電力変換装置100から出力された電力波形のノイズを除去するように構成されている。 The noise filter 95 is connected to the power conversion device 100 by the second wiring unit W2. The noise filter 95 is connected to the second terminal block TS2 by the seventh wiring unit W7. The noise filter 95 is configured to remove noise in the power waveform output from the power conversion device 100.
 第1配線部W1は、エレベータ制御盤200の底部側から第1端子台TS1に接続されている。第2配線部W2は、エレベータ制御盤200の底部側から第2端子T2に接続されている。第1配線部W1および第2配線部W2は、リアクトルRを挟み込むように配置されている。本実施の形態において、第1配線部W1は、リアクトルRに対して第1端子台TS1側に配置されている。また、第2配線部W2は、リアクトルRに対して第2端子台TS2側に配置されている。 The first wiring unit W1 is connected to the first terminal block TS1 from the bottom side of the elevator control panel 200. The second wiring portion W2 is connected to the second terminal T2 from the bottom side of the elevator control panel 200. The first wiring portion W1 and the second wiring portion W2 are arranged so as to sandwich the reactor R. In the present embodiment, the first wiring portion W1 is arranged on the first terminal block TS1 side with respect to the reactor R. Further, the second wiring portion W2 is arranged on the second terminal block TS2 side with respect to the reactor R.
 図30に示されるように、電力変換装置100、第1端子台TS1、第2端子台TS2、ノイズフィルタ95、リアクトルR、電磁接触器94および支持板92は、筐体91の内部に配置されている。電力変換装置100および支持板92は、筐体91の内部空間内の上側に配置されている。第1端子台TS1、第2端子台TS2、ノイズフィルタ95、リアクトルRおよび電磁接触器94は、筐体91の内部空間内の下側に実装されている。第1制御基板931、第2制御基板932および第3制御基板933は、電力変換装置100よりも手前側に配置されている。第1制御基板931、第2制御基板932および第3制御基板933は、支持板92に取り付けられている。 As shown in FIG. 30, the power conversion device 100, the first terminal block TS1, the second terminal block TS2, the noise filter 95, the reactor R, the electromagnetic contactor 94, and the support plate 92 are arranged inside the housing 91. ing. The power conversion device 100 and the support plate 92 are arranged on the upper side in the internal space of the housing 91. The first terminal block TS1, the second terminal block TS2, the noise filter 95, the reactor R, and the electromagnetic contactor 94 are mounted on the lower side in the internal space of the housing 91. The first control board 931 and the second control board 932 and the third control board 933 are arranged on the front side of the power conversion device 100. The first control board 931 and the second control board 932 and the third control board 933 are attached to the support plate 92.
 続いて、本実施の形態の作用効果を説明する。
 本実施の形態に係るエレベータ制御盤200によれば、図29に示されるように、エレベータ制御盤200は、実施の形態1および2のいずれかに係る電力変換装置100を含んでいる。このため、第1端子T1の位置が制限されることを抑制することができる。よって、第1端子T1に接続される第1配線部W1の位置が制限されることも抑制することができる。これにより、第1配線部W1が屈曲するような位置において第1配線部W1が第1端子T1に接続されることを抑制することができる。すなわち、第1配線部W1が大きく屈曲することを抑制することができる。したがって、エレベータ制御盤200の配線経路が大きく屈曲することを抑制することができる。これにより、エレベータ制御盤200の配線が配置される空間を小型化することができるため、エレベータ制御盤200を小型化することができる。また、エレベータ制御盤200の製造コストを低減することができる。
Subsequently, the action and effect of the present embodiment will be described.
According to the elevator control panel 200 according to the present embodiment, as shown in FIG. 29, the elevator control panel 200 includes the power conversion device 100 according to any one of the first and second embodiments. Therefore, it is possible to prevent the position of the first terminal T1 from being restricted. Therefore, it is possible to suppress the limitation of the position of the first wiring portion W1 connected to the first terminal T1. As a result, it is possible to prevent the first wiring portion W1 from being connected to the first terminal T1 at a position where the first wiring portion W1 bends. That is, it is possible to prevent the first wiring portion W1 from being greatly bent. Therefore, it is possible to prevent the wiring path of the elevator control panel 200 from being significantly bent. As a result, the space in which the wiring of the elevator control panel 200 is arranged can be miniaturized, so that the elevator control panel 200 can be miniaturized. In addition, the manufacturing cost of the elevator control panel 200 can be reduced.
 実施の形態4.
 次に、図31~図33を用いて、実施の形態4に係る電力変換装置100の構成を説明する。実施の形態4は、特に説明しない限り、上記の実施の形態1と同一の構成および作用効果を有している。したがって、上記の実施の形態1と同一の構成には同一の符号を付し、説明を繰り返さない。
Embodiment 4.
Next, the configuration of the power conversion device 100 according to the fourth embodiment will be described with reference to FIGS. 31 to 33. Unless otherwise specified, the fourth embodiment has the same configuration and operation and effect as the first embodiment. Therefore, the same components as those in the first embodiment are designated by the same reference numerals, and the description thereof will not be repeated.
 図31に示されるように、実施の形態4に係る電力変換装置100は、冷却装置80をさらに含んでいる。冷却装置80は、第1冷却ユニット83と、第2冷却ユニット84とを含んでいる。複数のファンFの数は、複数の冷却ユニットの数と同じである。複数のファンFの各々は、第1冷却ユニット83および第2冷却ユニット84をそれぞれ冷却するように配置されている。 As shown in FIG. 31, the power conversion device 100 according to the fourth embodiment further includes a cooling device 80. The cooling device 80 includes a first cooling unit 83 and a second cooling unit 84. The number of the plurality of fans F is the same as the number of the plurality of cooling units. Each of the plurality of fans F is arranged so as to cool the first cooling unit 83 and the second cooling unit 84, respectively.
 図32に示されるように、第1冷却ユニット83は、第1正面板831と、第1対向板832と、第1側板833と、複数の第1フィン834とを有している。第1正面板831には、第1半導体モジュール21が固定されている。第1対向板832は、第1正面板831に対向している。第1側板833および複数の第1フィン834は、第1対向板832を第1正面板831に接続している。第1側板833および第1フィン834は、第1正面板831および第1対向板832に隣接している。第1側板833および複数の第1フィン834は、第1正面板831および第1対向板832に挟み込まれている。第1側板833は、複数の第1フィン834の各々と同じ形状を有していてもよい。 As shown in FIG. 32, the first cooling unit 83 has a first front plate 831, a first facing plate 832, a first side plate 833, and a plurality of first fins 834. The first semiconductor module 21 is fixed to the first front plate 831. The first facing plate 832 faces the first front plate 831. The first side plate 833 and the plurality of first fins 834 connect the first facing plate 832 to the first front plate 831. The first side plate 833 and the first fin 834 are adjacent to the first front plate 831 and the first facing plate 832. The first side plate 833 and the plurality of first fins 834 are sandwiched between the first front plate 831 and the first facing plate 832. The first side plate 833 may have the same shape as each of the plurality of first fins 834.
 複数の第1直線状導体部311および複数の第1湾曲導体部312は、第1対向板832および第1側板833に固定されている。複数の第1直線状導体部311および複数の第1湾曲導体部312は、第1対向板832および第1側板833に第1絶縁層41を介して固定されている。複数の第1直線状導体部311および複数の第1湾曲導体部312は、第1対向板832および第1側板833にわたって第1冷却ユニット83に固定されている。 The plurality of first linear conductor portions 311 and the plurality of first curved conductor portions 312 are fixed to the first facing plate 832 and the first side plate 833. The plurality of first linear conductor portions 311 and the plurality of first curved conductor portions 312 are fixed to the first facing plate 832 and the first side plate 833 via the first insulating layer 41. The plurality of first linear conductor portions 311 and the plurality of first curved conductor portions 312 are fixed to the first cooling unit 83 over the first facing plate 832 and the first side plate 833.
 第2冷却ユニット84は、第2正面板841と、第2対向板842と、第2側板843と、複数の第2フィン844とを有している。第2正面板841には、第2半導体モジュール22が固定されている。第2対向板842は、第2正面板841に対向している。第2側板843および複数の第2フィン844は、第2対向板842を第2正面板841に接続している。第2側板843および第2フィン844は、第2正面板841および第2対向板842に隣接している。第2側板843および複数の第2フィン844は、第2正面板841および第2対向板842に挟み込まれている。第2側板843は、複数の第2フィン844の各々と同じ形状を有していてもよい。 The second cooling unit 84 has a second front plate 841, a second facing plate 842, a second side plate 843, and a plurality of second fins 844. The second semiconductor module 22 is fixed to the second front plate 841. The second facing plate 842 faces the second front plate 841. The second side plate 843 and the plurality of second fins 844 connect the second facing plate 842 to the second front plate 841. The second side plate 843 and the second fin 844 are adjacent to the second front plate 841 and the second facing plate 842. The second side plate 843 and the plurality of second fins 844 are sandwiched between the second front plate 841 and the second facing plate 842. The second side plate 843 may have the same shape as each of the plurality of second fins 844.
 複数の第2導体部321は、第2対向板842および第2側板843に固定されている。複数の第2導体部321は、第2対向板842および第2側板843に第2絶縁層を介して固定されている。複数の第2導体部321は、第2対向板842および第2側板843にわたって第2冷却ユニット84に固定されている。 The plurality of second conductor portions 321 are fixed to the second facing plate 842 and the second side plate 843. The plurality of second conductor portions 321 are fixed to the second facing plate 842 and the second side plate 843 via the second insulating layer. The plurality of second conductor portions 321 are fixed to the second cooling unit 84 over the second facing plate 842 and the second side plate 843.
 第1側板833、複数の第1フィン834、第2側板843および複数の第2フィン844は、例えば、押出加工によって製造されてもよい。第1側板833、複数の第1フィン834、第2側板843および複数の第2フィン844は、例えば、アルミニウム(Al)によって構成されている。これにより、冷却装置80を安価に製造することができる。 The first side plate 833, the plurality of first fins 834, the second side plate 843 and the plurality of second fins 844 may be manufactured, for example, by extrusion processing. The first side plate 833, the plurality of first fins 834, the second side plate 843, and the plurality of second fins 844 are made of, for example, aluminum (Al). As a result, the cooling device 80 can be manufactured at low cost.
 図31および図33に示されるように、複数のファンFは、冷却装置80の下端に接続されている。複数のファンFは、冷却装置80の複数のフィン同士(第1フィン834および第2フィン844)の間に下側から空気を流すことによって冷却装置80の熱を強制的に取り除くことができる。すなわち、複数のファンFは、冷却装置80を強制空冷によって冷却することができる。これにより、実施の形態1と比較して電力変換装置100の縦方向の寸法を小さくすることが可能である。 As shown in FIGS. 31 and 33, the plurality of fans F are connected to the lower end of the cooling device 80. The plurality of fans F can forcibly remove the heat of the cooling device 80 by flowing air from the lower side between the plurality of fins of the cooling device 80 (first fin 834 and second fin 844). That is, the plurality of fans F can cool the cooling device 80 by forced air cooling. Thereby, it is possible to reduce the vertical dimension of the power conversion device 100 as compared with the first embodiment.
 次に、図34を用いて、実施の形態4の変形例に係る電力変換装置100の構成を説明する。 Next, the configuration of the power conversion device 100 according to the modified example of the fourth embodiment will be described with reference to FIG. 34.
 図34に示されるように、実施の形態4の変形例に係る電力変換装置100では、冷却装置80は、第3冷却ユニット85および第4冷却ユニット86をさらに含んでいる。電力変換装置100は、第1電力変換回路11と、第2電力変換回路12と、第3電力変換回路13と、第4電力変換回路14と、第1半導体モジュール21(図32参照)と、第2半導体モジュール22(図32参照)と、第3半導体モジュール(図示なし)と、第4半導体モジュール(図示なし)とを含んでいる。 As shown in FIG. 34, in the power conversion device 100 according to the modification of the fourth embodiment, the cooling device 80 further includes the third cooling unit 85 and the fourth cooling unit 86. The power conversion device 100 includes a first power conversion circuit 11, a second power conversion circuit 12, a third power conversion circuit 13, a fourth power conversion circuit 14, and a first semiconductor module 21 (see FIG. 32). It includes a second semiconductor module 22 (see FIG. 32), a third semiconductor module (not shown), and a fourth semiconductor module (not shown).
 第1電力変換回路11、第1半導体モジュール21(図32参照)および第1冷却ユニット83は、第1電力変換ユニットU1を構成している。第2電力変換回路12、第2半導体モジュール22(図32参照)および第2冷却ユニット84は、第2電力変換ユニットU2を構成している。第3電力変換回路13、第3半導体モジュール(図示なし)および第3冷却ユニット85は、第3電力変換ユニットU3を構成している。第4電力変換回路14、第4半導体モジュール(図示なし)および第4冷却ユニット86は、第4電力変換ユニットU4を構成している。 The first power conversion circuit 11, the first semiconductor module 21 (see FIG. 32), and the first cooling unit 83 constitute the first power conversion unit U1. The second power conversion circuit 12, the second semiconductor module 22 (see FIG. 32), and the second cooling unit 84 constitute the second power conversion unit U2. The third power conversion circuit 13, the third semiconductor module (not shown), and the third cooling unit 85 constitute the third power conversion unit U3. The fourth power conversion circuit 14, the fourth semiconductor module (not shown), and the fourth cooling unit 86 constitute the fourth power conversion unit U4.
 第1電力変換ユニットU1、第2電力変換ユニットU2、第3電力変換ユニットU3および第4電力変換ユニットU4は、並列に電気的に接続されている。本実施の形態では、第1電力変換ユニットU1および第3電力変換ユニットU3は、縦方向に並んでいる。縦方向は、ファンFによって空気が流れる方向である。第2電力変換ユニットU2および第4電力変換ユニットU4は、縦方向に並んでいる。第2電力変換ユニットU2および第4電力変換ユニットU4は、第1電力変換ユニットU1および第3電力変換ユニットU3に対して縦方向に交差する横方向に配置されている。すなわち、4つの電力変換ユニットが2×2のマトリックスで配置されている。マトリックスは、2×2に限られず、N×N(Nは2以上の自然数)であってもよい。なお、各導体ユニットの長さが調整されることで、各電力変換回路のインダクタンスが調整される。これにより、各電力変換回路における電流の偏りが抑制される。 The first power conversion unit U1, the second power conversion unit U2, the third power conversion unit U3, and the fourth power conversion unit U4 are electrically connected in parallel. In the present embodiment, the first power conversion unit U1 and the third power conversion unit U3 are arranged in the vertical direction. The vertical direction is the direction in which air flows by the fan F. The second power conversion unit U2 and the fourth power conversion unit U4 are arranged in the vertical direction. The second power conversion unit U2 and the fourth power conversion unit U4 are arranged in the horizontal direction so as to intersect the first power conversion unit U1 and the third power conversion unit U3 in the vertical direction. That is, the four power conversion units are arranged in a 2 × 2 matrix. The matrix is not limited to 2 × 2, and may be N × N (N is a natural number of 2 or more). By adjusting the length of each conductor unit, the inductance of each power conversion circuit is adjusted. As a result, the bias of the current in each power conversion circuit is suppressed.
 続いて、本実施の形態の作用効果を説明する。
 実施の形態4に係る電力変換装置100によれば、図32に示されるように、複数の第1直線状導体部311および複数の第1湾曲導体部312は、第1対向板832および第1側板833に固定されており、複数の第2導体部321は、第2対向板842および第2側板843に固定されている。このため、複数の第1直線状導体部311および複数の第1湾曲導体部312は、第1冷却ユニット83の2つの面に固定されており、複数の第2導体部321は、第2冷却ユニット84の2つの面に固定されている。よって、第1導体ユニット31が第1冷却ユニットの1つの面にのみ固定されている場合よりも、第1導体ユニット31が第1冷却ユニット83に対して固定される面積を大きくすることができる。また、第2導体ユニット32が第2冷却ユニットの1つの面にのみ固定されている場合よりも、第2導体ユニット32が第2冷却ユニット84に対して固定される面積を大きくすることができる。したがって、固定された面において第1導体ユニット31および第2導体ユニット32の長さを調整することが容易になる。言い換えると、第1導体ユニット31および第2導体ユニット32の調整シロを大きくすることができる。これにより、インダクタンスを調整するための電力変換装置100の設計の自由度を向上させることができる。
Subsequently, the action and effect of the present embodiment will be described.
According to the power conversion device 100 according to the fourth embodiment, as shown in FIG. 32, the plurality of first linear conductor portions 311 and the plurality of first curved conductor portions 312 are the first facing plate 832 and the first. It is fixed to the side plate 833, and the plurality of second conductor portions 321 are fixed to the second facing plate 842 and the second side plate 843. Therefore, the plurality of first linear conductor portions 311 and the plurality of first curved conductor portions 312 are fixed to the two surfaces of the first cooling unit 83, and the plurality of second conductor portions 321 are second-cooled. It is fixed to the two sides of the unit 84. Therefore, the area where the first conductor unit 31 is fixed to the first cooling unit 83 can be larger than that when the first conductor unit 31 is fixed to only one surface of the first cooling unit. .. Further, the area where the second conductor unit 32 is fixed to the second cooling unit 84 can be made larger than the case where the second conductor unit 32 is fixed to only one surface of the second cooling unit. .. Therefore, it becomes easy to adjust the lengths of the first conductor unit 31 and the second conductor unit 32 on the fixed surface. In other words, the adjustment white of the first conductor unit 31 and the second conductor unit 32 can be increased. This makes it possible to improve the degree of freedom in designing the power conversion device 100 for adjusting the inductance.
 第1電力変換ユニットU1および第3電力変換ユニットU3が縦方向に配置されており、第2電力変換ユニットU2および第4電力変換ユニットU4が縦方向に配置されている。このため、ファンFによって空気を縦方向に流すことで、空気が流れる風路の構成を縦方向において簡易化することができるとともに、横方向において省スペース化が可能となる。また、複数の電力変換ユニットが縦方向に並べられていない場合よりも、ファンFの数を減らすことができる。 The first power conversion unit U1 and the third power conversion unit U3 are arranged in the vertical direction, and the second power conversion unit U2 and the fourth power conversion unit U4 are arranged in the vertical direction. Therefore, by allowing air to flow in the vertical direction by the fan F, the configuration of the air passage through which the air flows can be simplified in the vertical direction, and space can be saved in the horizontal direction. Further, the number of fans F can be reduced as compared with the case where a plurality of power conversion units are not arranged in the vertical direction.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered to be exemplary in all respects and not restrictive. The scope of this disclosure is set forth by the claims rather than the description above and is intended to include all modifications within the meaning and scope of the claims.
 11 第1電力変換回路、12 第2電力変換回路、13 第3電力変換回路、21 第1半導体モジュール、22 第2半導体モジュール、23 第3半導体モジュール、24 第4半導体モジュール、25 第5半導体モジュール、31 第1導体ユニット、32 第2導体ユニット、33 第3導体ユニット、34 第4導体ユニット、35 第5導体ユニット、100 電力変換装置、200 エレベータ制御盤、311 第1直線状導体部、312 第1湾曲導体部、321 第2導体部、811 第1冷却板、821 第2冷却板、C1 第1接続部、C2 第2接続部、T1 第1端子、T2 第2端子、W 配線。 11 1st power conversion circuit, 12 2nd power conversion circuit, 13 3rd power conversion circuit, 21 1st semiconductor module, 22 2nd semiconductor module, 23 3rd semiconductor module, 24 4th semiconductor module, 25 5th semiconductor module , 31 1st conductor unit, 32 2nd conductor unit, 33 3rd conductor unit, 34 4th conductor unit, 35 5th conductor unit, 100 power converter, 200 elevator control panel, 311 1st linear conductor part, 312 1st curved conductor part, 321 2nd conductor part, 811 1st cooling plate, 821 2nd cooling plate, C1 1st connection part, C2 2nd connection part, T1 1st terminal, T2 2nd terminal, W wiring.

Claims (9)

  1.  第1端子と、
     前記第1端子に接続された第1接続部と、
     前記第1接続部に接続された第1導体ユニットと、前記第1導体ユニットを介して前記第1接続部に接続された第1半導体モジュールとを含む第1電力変換回路と、
     前記第1接続部に接続された第2導体ユニットと、前記第2導体ユニットを介して前記第1接続部に接続された第2半導体モジュールとを含む第2電力変換回路とを備え、
     前記第1半導体モジュールおよび前記第2半導体モジュールは、前記第1端子に対して電気的に並列に接続されており、
     前記第1導体ユニットのインダクタンスと前記第2導体ユニットのインダクタンスとの差は、前記第1接続部の前記第1端子が接続された位置から前記第1導体ユニットが接続された位置までのインダクタンスと前記第1接続部の前記第1端子が接続された位置から前記第2導体ユニットが接続された位置までのインダクタンスとの差に等しく、
     前記第2電力変換回路の前記第2導体ユニットは、前記第1電力変換回路に対して前記第1端子とは反対側において前記第1接続部に接続されている、電力変換装置。
    1st terminal and
    The first connection part connected to the first terminal and
    A first power conversion circuit including a first conductor unit connected to the first connecting portion and a first semiconductor module connected to the first connecting portion via the first conductor unit.
    A second power conversion circuit including a second conductor unit connected to the first connecting portion and a second semiconductor module connected to the first connecting portion via the second conductor unit is provided.
    The first semiconductor module and the second semiconductor module are electrically connected in parallel to the first terminal.
    The difference between the inductance of the first conductor unit and the inductance of the second conductor unit is the inductance from the position where the first terminal of the first connection portion is connected to the position where the first conductor unit is connected. Equal to the difference from the inductance from the position where the first terminal of the first connection portion is connected to the position where the second conductor unit is connected.
    The second conductor unit of the second power conversion circuit is a power conversion device connected to the first connection portion on the side opposite to the first terminal with respect to the first power conversion circuit.
  2.  前記第1導体ユニットの長さと前記第2導体ユニットの長さとの差は、前記第1接続部の前記第1端子が接続された位置から前記第1導体ユニットが接続された位置までの長さと前記第1接続部の前記第1端子が接続された位置から前記第2導体ユニットが接続された位置までの長さとの差に等しい、請求項1に記載の電力変換装置。 The difference between the length of the first conductor unit and the length of the second conductor unit is the length from the position where the first terminal of the first connection portion is connected to the position where the first conductor unit is connected. The power conversion device according to claim 1, which is equal to the difference in length from the position where the first terminal of the first connection portion is connected to the position where the second conductor unit is connected.
  3.  前記第1導体ユニットは、複数の第1直線状導体部と、前記複数の第1直線状導体部よりも長い複数の第1湾曲導体部とを有し、
     前記第2導体ユニットは、複数の第2導体部を有し、
     前記複数の第1直線状導体部および前記複数の第1湾曲導体部は、互いに脱着可能であり、
     前記複数の第2導体部は、互いに着脱可能である、請求項1または2に記載の電力変換装置。
    The first conductor unit has a plurality of first linear conductor portions and a plurality of first curved conductor portions longer than the plurality of first linear conductor portions.
    The second conductor unit has a plurality of second conductor portions, and has a plurality of second conductor portions.
    The plurality of first linear conductor portions and the plurality of first curved conductor portions are removable from each other.
    The power conversion device according to claim 1 or 2, wherein the plurality of second conductor portions are detachable from each other.
  4.  第1冷却ユニットと、第2冷却ユニットとを含む冷却装置をさらに備え、
     前記第1冷却ユニットは、前記第1半導体モジュールが固定された第1正面板、前記第1正面板に対向する第1対向板および前記第1対向板を前記第1正面板に接続する第1側板を有し、
     前記第2冷却ユニットは、前記第2半導体モジュールが固定された第2正面板、前記第2正面板に対向する第2対向板および前記第2対向板を前記第2正面板に接続する第2側板を有し、
     前記複数の第1直線状導体部および前記複数の第1湾曲導体部は、前記第1対向板および前記第1側板に固定されており、
     前記複数の第2導体部は、前記第2対向板および前記第2側板に固定されている、請求項3に記載の電力変換装置。
    Further equipped with a cooling device including a first cooling unit and a second cooling unit,
    The first cooling unit is a first front plate to which the first semiconductor module is fixed, a first facing plate facing the first front plate, and a first connecting the first facing plate to the first front plate. Has a side plate,
    The second cooling unit connects the second front plate to which the second semiconductor module is fixed, the second facing plate facing the second front plate, and the second facing plate to the second front plate. Has a side plate,
    The plurality of first linear conductor portions and the plurality of first curved conductor portions are fixed to the first facing plate and the first side plate.
    The power conversion device according to claim 3, wherein the plurality of second conductor portions are fixed to the second facing plate and the second side plate.
  5.  第1冷却板と、第2冷却板とを含む冷却器をさらに備え、
     前記冷却器の前記第1冷却板には、前記第1導体ユニットおよび前記第1半導体モジュールが固定されており、
     前記冷却器の前記第2冷却板には、前記第2導体ユニットおよび前記第2半導体モジュールが固定されている、請求項1~3のいずれか1項に記載の電力変換装置。
    Further equipped with a cooler including a first cooling plate and a second cooling plate,
    The first conductor unit and the first semiconductor module are fixed to the first cooling plate of the cooler.
    The power conversion device according to any one of claims 1 to 3, wherein the second conductor unit and the second semiconductor module are fixed to the second cooling plate of the cooler.
  6.  前記第2電力変換回路に対して前記第1端子とは反対側に配置された第2端子と、
     前記第2端子に接続された第2接続部とをさらに備え、
     前記第1電力変換回路は、前記第1半導体モジュールを介して前記第1導体ユニットに接続されかつ前記第2接続部に接続された第3導体ユニットを含み、
     前記第2電力変換回路は、前記第2半導体モジュールを介して前記第2導体ユニットに接続されかつ前記第2接続部に接続された第4導体ユニットを含み、
     前記第3導体ユニットのインダクタンスと前記第4導体ユニットのインダクタンスとの差は、前記第2接続部の前記第2端子が接続された位置から前記第3導体ユニットが接続された位置までのインダクタンスと前記第2接続部の前記第2端子が接続された位置から前記第4導体ユニットが接続された位置までのインダクタンスとの差に等しく、
     前記第1電力変換回路の前記第3導体ユニットは、前記第2電力変換回路に対して前記第2端子とは反対側で前記第2接続部に接続されている、請求項1~5のいずれか1項に記載の電力変換装置。
    A second terminal arranged on the side opposite to the first terminal with respect to the second power conversion circuit,
    Further provided with a second connection portion connected to the second terminal,
    The first power conversion circuit includes a third conductor unit connected to the first conductor unit and connected to the second connection portion via the first semiconductor module.
    The second power conversion circuit includes a fourth conductor unit connected to and connected to the second conductor unit via the second semiconductor module.
    The difference between the inductance of the third conductor unit and the inductance of the fourth conductor unit is the inductance from the position where the second terminal of the second connection portion is connected to the position where the third conductor unit is connected. Equal to the difference from the inductance from the position where the second terminal of the second connection portion is connected to the position where the fourth conductor unit is connected.
    Any of claims 1 to 5, wherein the third conductor unit of the first power conversion circuit is connected to the second connection portion on the side opposite to the second terminal with respect to the second power conversion circuit. The power conversion device according to item 1.
  7.  前記第3導体ユニットの長さと前記第4導体ユニットの長さとの差は、前記第2接続部の前記第2端子が接続された位置から前記第3導体ユニットが接続された位置までの長さと前記第2接続部の前記第2端子が接続された位置から前記第4導体ユニットが接続された位置までの長さとの差に等しい、請求項6に記載の電力変換装置。 The difference between the length of the third conductor unit and the length of the fourth conductor unit is the length from the position where the second terminal of the second connection portion is connected to the position where the third conductor unit is connected. The power conversion device according to claim 6, which is equal to the difference in length from the position where the second terminal is connected to the position where the fourth conductor unit is connected.
  8.  前記第1電力変換回路および前記第2電力変換回路の間において前記第1接続部に接続された第3電力変換回路をさらに備え、
     前記第3電力変換回路は、前記第1接続部に接続された第5導体ユニットと、前記第5導体ユニットを介して前記第1接続部に接続された第5半導体モジュールとを含み、
     前記第5半導体モジュールは、前記第1端子に対して前記第1半導体モジュールおよび前記第2半導体モジュールと電気的に並列に接続されており、
     前記第1導体ユニットのインダクタンスと前記第5導体ユニットのインダクタンスとの差は、前記第1接続部の前記第1端子が接続された位置から前記第1導体ユニットが接続された位置までのインダクタンスと前記第1接続部の前記第1端子が接続された位置から前記第5導体ユニットが接続された位置までのインダクタンスとの差に等しく、
     前記第2導体ユニットのインダクタンスと前記第5導体ユニットのインダクタンスとの差は、前記第1接続部の前記第1端子が接続された位置から前記第2導体ユニットが接続された位置までのインダクタンスと前記第1接続部の前記第1端子が接続された位置から前記第5導体ユニットが接続された位置までのインダクタンスとの差に等しい、請求項1~7のいずれか1項に記載の電力変換装置。
    A third power conversion circuit connected to the first connection portion between the first power conversion circuit and the second power conversion circuit is further provided.
    The third power conversion circuit includes a fifth conductor unit connected to the first connection portion and a fifth semiconductor module connected to the first connection portion via the fifth conductor unit.
    The fifth semiconductor module is electrically connected to the first terminal in parallel with the first semiconductor module and the second semiconductor module.
    The difference between the inductance of the first conductor unit and the inductance of the fifth conductor unit is the inductance from the position where the first terminal of the first connection portion is connected to the position where the first conductor unit is connected. Equal to the difference from the inductance from the position where the first terminal of the first connection portion is connected to the position where the fifth conductor unit is connected.
    The difference between the inductance of the second conductor unit and the inductance of the fifth conductor unit is the inductance from the position where the first terminal of the first connection portion is connected to the position where the second conductor unit is connected. The power conversion according to any one of claims 1 to 7, which is equal to the difference from the inductance from the position where the first terminal of the first connection portion is connected to the position where the fifth conductor unit is connected. Device.
  9.  エレベータの巻上機を制御するためのエレベータ制御盤であって、
     請求項1~8のいずれか1項に記載の前記電力変換装置を備え、
     前記電力変換装置の前記第1端子は、前記エレベータの前記巻上機に電気的に接続されている、エレベータ制御盤。
    It is an elevator control panel for controlling the elevator hoisting machine.
    The power conversion device according to any one of claims 1 to 8 is provided.
    The first terminal of the power conversion device is an elevator control panel that is electrically connected to the hoisting machine of the elevator.
PCT/JP2021/044123 2020-12-15 2021-12-01 Electric power conversion device and elevator control panel WO2022130983A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022569844A JPWO2022130983A1 (en) 2020-12-15 2021-12-01
CN202180082823.1A CN116568622A (en) 2020-12-15 2021-12-01 Power conversion device and elevator control panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020207723 2020-12-15
JP2020-207723 2020-12-15

Publications (1)

Publication Number Publication Date
WO2022130983A1 true WO2022130983A1 (en) 2022-06-23

Family

ID=82057562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/044123 WO2022130983A1 (en) 2020-12-15 2021-12-01 Electric power conversion device and elevator control panel

Country Status (3)

Country Link
JP (1) JPWO2022130983A1 (en)
CN (1) CN116568622A (en)
WO (1) WO2022130983A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013042663A (en) * 2012-11-30 2013-02-28 Hitachi Ltd Three-phase power conversion apparatus
JP2019009923A (en) * 2017-06-26 2019-01-17 東芝三菱電機産業システム株式会社 Electric power conversion system
JP2020171153A (en) * 2019-04-04 2020-10-15 富士電機株式会社 Power conversion device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013042663A (en) * 2012-11-30 2013-02-28 Hitachi Ltd Three-phase power conversion apparatus
JP2019009923A (en) * 2017-06-26 2019-01-17 東芝三菱電機産業システム株式会社 Electric power conversion system
JP2020171153A (en) * 2019-04-04 2020-10-15 富士電機株式会社 Power conversion device

Also Published As

Publication number Publication date
JPWO2022130983A1 (en) 2022-06-23
CN116568622A (en) 2023-08-08

Similar Documents

Publication Publication Date Title
US6822850B2 (en) Laminated bus bar for use with a power conversion configuration
US6885553B2 (en) Bus bar assembly for use with a compact power conversion assembly
US6721181B1 (en) Elongated heat sink for use in converter assemblies
US8436244B2 (en) Laminated bus bar
US7068507B2 (en) Compact liquid converter assembly
US9523529B2 (en) Refrigeration apparatus
US8687357B2 (en) Electric power converter
JP5586866B2 (en) Power converter
EP3327919B1 (en) Inverter apparatus
EP1863156A1 (en) Power converter cooling structure
US10701842B2 (en) Power converter having water passages for cooling power modules
US6956742B2 (en) Compact liquid converter assembly
CN114649279A (en) Wide bandgap semiconductor double-sided heat dissipation module packaging structure based on conductive metal strip
CA2653207A1 (en) Power converter
US10727157B2 (en) Electrical power conversion device
WO2022130983A1 (en) Electric power conversion device and elevator control panel
US10594204B2 (en) Circuit board, active filter device, and air conditioner
JP3651406B2 (en) Power converter
US20040060689A1 (en) Compact liquid cooled heat sink
JP5803684B2 (en) Power converter
CN209993589U (en) IGBT radiator of miniwatt converter
WO2022149438A1 (en) Power conversion device
JP5802798B2 (en) Power converter
JP6674398B2 (en) Wiring structure of power converter and control line
TW202233049A (en) Power electronics system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21906346

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022569844

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180082823.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21906346

Country of ref document: EP

Kind code of ref document: A1