WO2022130909A1 - 赤外線撮像レンズ及び赤外線カメラ - Google Patents

赤外線撮像レンズ及び赤外線カメラ Download PDF

Info

Publication number
WO2022130909A1
WO2022130909A1 PCT/JP2021/042751 JP2021042751W WO2022130909A1 WO 2022130909 A1 WO2022130909 A1 WO 2022130909A1 JP 2021042751 W JP2021042751 W JP 2021042751W WO 2022130909 A1 WO2022130909 A1 WO 2022130909A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
infrared
infrared imaging
image pickup
imaging lens
Prior art date
Application number
PCT/JP2021/042751
Other languages
English (en)
French (fr)
Inventor
佳雅 松下
史雄 佐藤
信男 堀
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to CN202180083831.8A priority Critical patent/CN116745676A/zh
Priority to US18/256,263 priority patent/US20240019668A1/en
Priority to EP21906272.6A priority patent/EP4266105A1/en
Priority to JP2022569809A priority patent/JPWO2022130909A1/ja
Publication of WO2022130909A1 publication Critical patent/WO2022130909A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/008Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras designed for infrared light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/14Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0035Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having three lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4205Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant
    • G02B27/4211Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant correcting chromatic aberrations
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4205Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant
    • G02B27/4216Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant correcting geometrical aberrations

Definitions

  • the present invention relates to an infrared image pickup lens and an infrared camera.
  • Infrared cameras that shoot subjects in the far-infrared region, especially in the wavelength region of the 10 ⁇ m band, which is suitable for biological detection, are applied to surveillance cameras, security cameras, in-vehicle night vision, and the like. Infrared imaging lenses applied to these infrared cameras are known.
  • an infrared imaging lens that is used in such a far-infrared region, has excellent resolution, and can be used as a standard lens.
  • an infrared image pickup lens having an excellent resolution that can correspond to an image sensor having a pixel pitch of about a wavelength.
  • One aspect of the present invention focuses on the above-mentioned problems, and realizes an infrared imaging lens that can be used as a standard lens and can be used as an image sensor having a pixel pitch of about a wavelength and has excellent resolution. The purpose.
  • one aspect of the present invention is an infrared imaging lens in which a plurality of lenses are arranged, and each of the plurality of lenses has a refractive index of 2.8 at a wavelength of 10 ⁇ m. It is made of glass of ⁇ 4.0, has a spatial frequency of 41.7 cycles / mm, and has a configuration in which a modulation transfer function having a wavelength range of 7-14 ⁇ m satisfies 0.17 or more in an image circle.
  • another aspect of the present invention is an infrared image pickup lens in which a plurality of lenses are arranged, and each of the plurality of lenses has a refractive index of 2 at a wavelength of 10 ⁇ m. It is made of 8.8 to 4.0 glass and has a structure in which the diameter of the image circle is 0.7 to 1.3 times the focal length.
  • an infrared image pickup lens that can be used as a standard lens and can be used for an image sensor having a pixel pitch of about a wavelength and has excellent resolution.
  • FIG. 3 is an aberration diagram showing spherical aberration, astigmatism, and distortion of the infrared image pickup lens according to the numerical embodiment 1 of the present invention. It is an aberration diagram which shows the coma of the infrared image pickup lens which concerns on the numerical example 1 of this invention. It is a graph which shows the image height dependence of the relative illuminance of the infrared image pickup lens which concerns on the numerical example 1 of this invention.
  • the infrared image pickup lens 1 is a lens system that forms an image of a subject on an image surface S of an image sensor or the like corresponding to a wavelength region of far infrared rays.
  • FIG. 1 is a cross-sectional view taken along an optical axis showing the configuration of a main part of the infrared image pickup lens 1.
  • FIG. 2 is an optical path diagram showing a cross-sectional view of a main part of the infrared image pickup lens 1 together with an optical path.
  • the infrared imaging lens 1 is configured by arranging a first lens L1, a second lens L2, and a third lens L3 in order from the object side to the image plane S side. At the time of focusing, the first lens L1 to the third lens L3 uniformly move in the optical axis direction.
  • the first lens L1, the second lens L2, and the third lens L3 are each made of glass having a refractive index of 2.8 to 4.0 at a wavelength of 10 ⁇ m. More specifically, the first lens L1, the second lens L2, and the third lens L3 are made of chalcogenide glass having a refractive index of 2.8 to 4.0 at a wavelength of 10 ⁇ m. The first lens L1, the second lens L2, and the third lens L3 may all be made of the same glass material.
  • a parallel flat plate P is arranged between the third lens L3 and the image plane S.
  • the parallel flat plate P is an optical window loaded on the image plane S side by hermetic sealing, and silicon, hypoxic silicon, or germanium is used. The material and thickness can be determined by what kind of image sensor is used.
  • the effective diameter of the object-side surface (first surface) of the first lens L1 corresponds to the aperture stop of the infrared image pickup lens 1.
  • the surfaces of the first lens L1, the second lens L2, the third lens L3, and the parallel flat plate P are coated with an anti-reflection (AR) coating.
  • AR anti-reflection
  • Appropriate known techniques can be applied to the antireflection coating in such a far infrared region.
  • the chalcogenide glass preferably contains 20 to 90% tellurium (Te) in mol% and has an Abbe number of 100 or more at a wavelength of 10 ⁇ m.
  • the definition of Abbe number in the present specification is described in the numerical examples described later.
  • the chalcogenide glass preferably contains at least one of germanium (Ge) 0 to 50% or gallium (Ga) 0 to 50% in mol%.
  • a chalcogenide glass having a high refractive index in the far infrared region which is a glass having a refractive index of 2.8 to 4.0 at a wavelength of 10 ⁇ m, was developed by the present applicant (see International Publication WO2020 / 10571A1). .. More specifically, the refractive index of the present glass material at a wavelength of 10 ⁇ m is in the range of 2.74 to 3.92.
  • the refractive index at a wavelength of 10 ⁇ m is preferably 2.74 to 3.92, 2.8 to 3.8, and particularly preferably 2.9 to 3.7. If the index of refraction is too low, the focal length tends to be too long.
  • the Abbe number (V10) of the chalcogenide glass is 100 or more, 120 or more, 150 or more, 180 or more, and particularly 220 or more.
  • the definition of Abbe number (V10) will be described later. If the Abbe number is too low, chromatic aberration tends to increase.
  • the upper limit of the Abbe number is not particularly limited, but is actually 350 or less.
  • This glass material has extremely low light absorption over a wide wavelength range in the far infrared region, such as a wavelength of at least 7 to 14 ⁇ m.
  • this glass material is a chalcogenide, it has a feature that light absorption is small even in a region having a wavelength exceeding 10 ⁇ m.
  • "infrared absorption edge wavelength” and “internal transmittance” can be used as an index showing that the light transmittance is excellent in the far infrared region.
  • the infrared absorption edge wavelength means the absorption edge wavelength in the far infrared region having a wavelength of 8 ⁇ m or more, and is defined as a wavelength at which the light transmittance is 20% at a material thickness of 2 mm.
  • the internal transmittance means the transmittance inside the material and does not include the reflection loss on the surface of the material.
  • the infrared absorption edge wavelength of the chalcogenide glass as the glass material constituting the first lens L1, the second lens L2, and the third lens is 18 ⁇ m or more.
  • the chalcogenide glass also transmits infrared rays having a wavelength exceeding 10 ⁇ m, and has good transmittance over a wavelength range of at least 7 to 14 ⁇ m.
  • the internal transmittance of the chalcogenide glass at a thickness of 2 mm is 90% or more at a wavelength of 10 ⁇ m.
  • this glass material is glass, and it is possible to form a lens having an aspherical surface by press molding. Therefore, it is easy to mass-produce lenses using this glass material.
  • the glass transition temperature of the glass material is as low as 200 ° C. or less, and press molding is easier.
  • aberration is suppressed by using at least one of the lenses as an aspherical lens.
  • the aspherical surface includes a diffraction surface.
  • the chalcogenide glass it is also possible to form a lens having a surface having a particularly complicated shape such as a diffractive surface. Therefore, in the infrared image pickup lens 1, by using the chalcogenide glass and using at least one of the lens surfaces as a diffraction surface, aberrations can be satisfactorily suppressed over a wide range of wavelengths of 7 to 14 ⁇ m. Become.
  • the diameter ⁇ s of the image circle is equivalent to the focal length f of the infrared image pickup lens 1. That is, the infrared image pickup lens 1 is a standard lens. More specifically, the diameter ⁇ s of the image circle is in the range of 0.7 to 1.3 times the focal length f. in short, 0.7 ⁇ ⁇ s / f ⁇ 1.3 Satisfy the relational expression of. Alternatively, the fact that the infrared image pickup lens 1 is a standard lens may be defined by the fact that the half angle of view of the infrared image pickup lens 1 is 21 to 36 °.
  • the modulation transfer function (MTF: Modulation Transfer Function) at a spatial frequency of 41.7 cycles / mm is 0.17 (17%) or more in such an image circle.
  • MTF Modulation Transfer Function
  • the miniaturization of image sensors in the far infrared region has progressed, and the pixel pitch has reached the narrow pitch limit of about the wavelength.
  • a sensor having a pixel pitch of 12 ⁇ m is commercially available.
  • the spatial frequency of 41.7 cycles / mm corresponds to the Nyquist frequency of an image sensor with a pixel pitch of 12 ⁇ m.
  • the infrared image pickup lens 1 is a standard lens compatible with a far-infrared camera to which a miniaturized image sensor is applied in a wavelength region of about 7 to 14 ⁇ m.
  • an image sensor of 640 ⁇ 480 pixels (VGA: Video Graphics Array) or 640 ⁇ 512 pixels (VGA +) has been developed.
  • the effective diagonal length of these image sensors is about 9.8 mm. Therefore, the diameter ⁇ s of the image circle of the infrared image pickup lens 1 is about 9.8 mm or more corresponding to this. Therefore, the focal length f of the infrared image pickup lens 1 is in the range of 7.8 to 11.8 mm from the relationship between the diameter ⁇ s of the image circle and the focal length f described above.
  • the infrared image pickup lens 1 of the present embodiment is an infrared image pickup lens configured by arranging a plurality of lenses, and each of the plurality of lenses has a refractive index of 2.8 to 4.0 at a wavelength of 10 ⁇ m. It consists of glass. Therefore, in the infrared image pickup lens 1, at least one of a plurality of lenses can be an aspherical lens.
  • a standard lens with a wide wavelength range of 7 to 14 ⁇ m, a small F-number of about 1, and excellent resolution, which could not be realized in the past, is realized.
  • a standard lens having an MTF of 0.17 or more at a spatial frequency of 41.7 cycles / mm in a wavelength range of 7 to 14 ⁇ m and having very excellent characteristics is realized in the image circle.
  • the MTF can be set to 0.50 or more at the spatial frequency corresponding to 1/2 of the Nyquist frequency of 41.7 cycles / mm. This indicates that the MTF is good not only in the spatial frequency corresponding to the Nyquist frequency but also in the entire range from the spatial frequency 0 cycles / mm to the Nyquist frequency.
  • the relative illuminance on the image plane can be 40% or more in the image circle. This indicates that the peripheral illumination is well secured.
  • each lens ⁇ Details of the configuration of each lens> Further, in the infrared image pickup lens 1 of the present embodiment, the details of each part can be configured as follows.
  • the first lens L1 has a positive refractive power and has a meniscus shape with a convex surface facing the object side.
  • the first lens L1 can be an aspherical lens.
  • the surface on the object side (first surface) can be a spherical surface, and the surface on the image surface S side (second surface) can be an aspherical surface.
  • the effective diameter of the surface (first surface) of the first lens L1 on the object side is the aperture stop of the infrared imaging lens 1.
  • the lens in the subsequent stage becomes larger.
  • the outer diameter and volume of the infrared image pickup lens 1 become large. Therefore, the first lens L1 may have a meniscus shape with a convex surface facing the object side, and the power of the first lens L1 may be limited as follows.
  • the focal length f1 of the first lens L1 is set in the range of 1.0 to 2.9 times the focal length f of the infrared imaging lens 1. in short, 1.0 ⁇ f1 / f ⁇ 2.9 It is good to satisfy the relational expression of.
  • the second lens L2 has a positive refractive power and has a meniscus shape with a convex surface facing the image plane S side.
  • the second lens L2 is an aspherical lens, the surface on the object side (third surface) is an aspherical surface, and the surface on the image surface S side (fourth surface) can be a diffraction surface.
  • the third lens L3 has a positive refractive power and has a meniscus shape with a convex surface facing the image plane S side.
  • the third lens L3 is an aspherical lens, the surface on the object side (fifth surface) can be spherical, and the surface on the image plane S side (sixth surface) can be aspherical.
  • the infrared imaging lens 1 includes the first lens L1, the second lens L2, and the third lens, and all of the first lens L1, the second lens L2, and the third lens have a positive refractive index. It is good to have.
  • the infrared image pickup lens 1 may be configured so that the power of the third lens L3 on the image plane side is the largest.
  • both the second lens L2 and the third lens L3 have a meniscus shape with a convex surface facing the image plane S side, so that an increase in the Petzval sum can be suppressed, curvature of field is suppressed, and flatness is improved. You can keep it. Further, it is particularly preferable that the third lens L3, the first lens L1 and the second lens L2 are in descending order of power strength.
  • Astigmatism occurs when the infrared image pickup lens 1 is configured so that the third lens L3 on the image plane side has the largest power and the third lens L3 has a meniscus shape with a convex surface facing the image plane S side. Is reduced.
  • At least one of the first lens L1, the second lens L2, and the third lens is an aspherical lens. This makes it possible to reduce spherical aberration and astigmatism of the infrared image pickup lens 1. It is particularly preferable that all of the first lens L1, the second lens L2 and the third lens are aspherical lenses.
  • the surface of the second lens L2 on the image plane S side (fourth plane) or the plane of the third lens L3 on the object side (fifth plane) is a diffraction plane. This makes it possible to generate negative dispersion and reduce chromatic aberration of magnification.
  • the F number is 1.0 to 1 in order to realize an excellent resolution corresponding to a pixel pitch equivalent to a wavelength of about 7 to 14 ⁇ m targeted by the infrared image pickup lens 1. It is preferably within the range of .2. Further, by setting the range of such an F number, a bright standard lens used in an infrared region having a wavelength of about 7 to 14 ⁇ m is realized.
  • the focal length f3 of the third lens L3 is configured to be about the same as the focal length f of the infrared image pickup lens 1.
  • the focal length f3 is preferably in the range of 0.8 to 1.2 times the focal length f. in short, 0.8 ⁇ f3 / f ⁇ 1.2 It is good to satisfy the relational expression of. By configuring so as to satisfy this relational expression, good resolution can be obtained over a wide range of image circles.
  • an image sensor used in the infrared region having a wavelength of about 7 to 14 ⁇ m the entire area of an image sensor having a wide detection surface, a pixel pitch of about 12 ⁇ m, a 640 ⁇ 480 pixel (VGA) or 640 ⁇ 512 pixel (VGA +) class image sensor. It becomes possible to obtain a good resolution.
  • the focal length f3 of the third lens L3 is about the same as the focal length f of the infrared imaging lens 1 means that the contribution of the first lens L1 and the second lens L2 to the focal length f of the entire system is very small. It represents that.
  • the entire surface of such a wide detection surface is covered. An infrared imaging lens that can obtain good resolution is realized.
  • the focal length f3 of the third lens L3 may be in the range of 0.9 to 1.2 times the focal length f of the infrared imaging lens, that is, 0.9 ⁇ f3 / f ⁇ 1.2 It is more preferable that the first lens L1, the second lens L2, and the third lens L3 are configured so as to satisfy the relational expression of.
  • the total lens length L of the infrared image pickup lens is within the range of 1.0 to 2.5 times the focal length f of the infrared image pickup lens. in short, 1.0 ⁇ L / f ⁇ 2.5 It is good to satisfy the relational expression of.
  • the total length of the lens is the actual distance along the optical axis from the end of the lens on the object side to the image plane S within the effective diameter.
  • the total lens length L of the infrared imaging lens may be in the range of 1.1 to 2.3 times the focal length f of the infrared imaging lens, that is, 1.1 ⁇ L / f ⁇ 2.3 It is more preferable that the first lens L1, the second lens L2, and the third lens L3 are configured so as to satisfy the relational expression of. With this configuration, a compact standard lens can be realized.
  • the focal length f3 of the third lens L3 is set to be about the same as the focal length f of the infrared imaging lens 1, and the total length L of the lens is not made too large.
  • the back focus BF is preferably 0.5 times or more the focal length f of the infrared image pickup lens 1. in short, 0.5 ⁇ BF / f It is good to satisfy the relational expression of. More preferably, the back focus BF may be 0.65 times or more the focal length f of the infrared imaging lens 1, that is, 0.65 ⁇ BF / f It is more preferable that the first lens L1, the second lens L2, and the third lens L3 are configured so as to satisfy the relational expression of. With this configuration, it is possible to secure a sufficient back focus and realize a compact standard lens.
  • the infrared image pickup lens 1 of the present embodiment is configured so that the focal length of the infrared image pickup lens is specifically within the range of 7 to 12 mm. With this configuration, it is possible to realize an infrared imaging lens, which is a compact standard lens that can be widely used for consumer use, while improving various characteristics such as aberration characteristics, resolution, and peripheral illumination. ..
  • the infrared image pickup lens 1 of the present embodiment is configured so that the total lens length of the infrared image pickup lens is specifically 30 mm or less. With this configuration, it is possible to realize an infrared imaging lens, which is a compact standard lens that can be widely used for consumer use, while improving various characteristics such as aberration characteristics, resolution, and peripheral illumination. ..
  • the infrared camera of the present disclosure includes the above-mentioned infrared image pickup lens 1 and an image sensor corresponding to an infrared region including at least one wavelength in the range of 7 to 14 ⁇ m.
  • the image sensor is arranged so that the image pickup surface is at the image plane S position of the infrared image pickup lens 1.
  • the pixel pitch of the image sensor is 7 to 14 ⁇ m, which is about the wavelength of infrared rays, because it has the performance suitable for the resolution of the infrared image pickup lens 1.
  • the pixel pitch is preferably 9 to 12 ⁇ m.
  • the diagonal length of the image sensor is preferably 7 to 11 mm from the viewpoint of efficiently using the image circle diameter ⁇ s of the infrared image pickup lens 1.
  • the infrared camera of the present disclosure can be configured even with an image sensor having a diagonal length smaller than this.
  • Example 1 A numerical example of the infrared image pickup lens 1 is shown.
  • the cross-sectional view of the infrared image pickup lens according to the numerical embodiment 1 is as shown in FIG.
  • the unit of length is (mm).
  • the * (asterisk) after the face number indicates that it is an aspherical surface.
  • the basic lens data, aspherical surface data, diffraction surface data, and various data are shown below.
  • aspherical shape is as follows: h: Height from the optical axis r: Curvature radius at the apex ⁇ : Conical constant An: nth-order non-curved surface coefficient (n: even number)
  • Z Distance from a point on the aspherical surface to the tangent plane of the aspherical vertex at h
  • the definition of the diffractive surface is as follows: ⁇ : Phase difference function P 1 , P 2 : Phase coefficient Z dif : Optical path function Z DOE : Diffraction surface sag amount ⁇ : Design center wavelength (10 ⁇ m)
  • P 1 , P 2 Phase coefficient Z dif :
  • Z DOE Diffraction
  • Silicon (Si) is used for the parallel flat plate P.
  • the surface (fourth surface) on the image plane S side of the second lens L2 is a diffraction plane provided with a sag on a spherical surface.
  • the depth of the sag is in the range corresponding to the design center wavelength ⁇ from 0 (see the definition formula of Z DOE ).
  • the back focus of 6.95 mm is the actual distance.
  • the focal length f2 of the second lens L2 is 37.87 mm.
  • the focal length f3 of the third lens L3 is 9.96 mm. Therefore, the power of the third lens L3 is the strongest, and then the power of the first lens L1 is strong.
  • the maximum image height on the image plane S is 4.92 mm, and therefore the diameter ⁇ s of the image circle is 9.84 mm.
  • the half angle of view is 29.8 °, which is within the range of 21 to 36 °, which can be said to be a standard lens.
  • the infrared imaging lens 1 is compact with a total length of 20.9 mm from the first surface to the image surface and a maximum effective diameter of 14.8 mm on the optical path. Further, the infrared image pickup lens 1 has a three-lens configuration and can be made lightweight. Coupled with the fact that each lens can be manufactured by press molding, the infrared imaging lens 1 can be manufactured at a low cost that can be applied to consumer applications.
  • FIG. 3 is an aberration diagram of the infrared image pickup lens 1.
  • FIG. 3 shows spherical aberration, astigmatism, and distortion. In each, graphs are shown for each wavelength in the range of 7-14 ⁇ m.
  • FIG. 4 is an aberration diagram showing coma aberration at each image height Y from 0 mm to a maximum image height of 4.92 mm separately in the tangential (meridional) direction and the sagittal (radial) direction.
  • various aberrations are satisfactorily corrected over a wide wavelength region of 7 to 14 ⁇ m.
  • FIG. 5 is a graph showing the relative illuminance of the infrared image pickup lens 1 of the numerical embodiment 1 with respect to the image height Y.
  • the relative illuminance refers to the ratio of the illuminance to the region on the optical axis (the central region of the image plane) on the image plane S. As shown in FIG. 5, even at the maximum image height of 4.92 mm, a relative illuminance of 0.68 and a sufficient peripheral illumination are obtained.
  • the image height Y corresponding to the center of the left and right edges of the imaging surface is 3.84 mm, and the relative illuminance there is 0.80. Is. In that case, the image height Y corresponding to the center of the upper and lower ends of the image pickup surface is 3.07 mm, and the relative illuminance there is 0.87.
  • FIG. 6 is a graph showing the spatial frequency dependence of the MTF in the wavelength range of 7 to 14 ⁇ m.
  • the Nyquist frequency f N of the image sensor having a pixel pitch of 12 ⁇ m is 41.7 cycles / mm, which is shown in FIG.
  • the half value f N / 2 (20.85 cycles / mm) is also shown in the figure.
  • the MTF at each image height Y secures 0.24 or more, which is sufficiently higher than 0.17.
  • the image height Y is 0 mm, that is, the MTF is 0.43 at the center of the image, and the resolution is good.
  • the MTF at each image height Y secures 0.56 or more, which is sufficiently higher than 0.50.
  • good resolution corresponding to an image sensor having a narrow pitch of about a wavelength is obtained over the entire surface in the image circle.
  • FIG. 7 is a graph showing the change of MTF in the wavelength range of 7 to 14 ⁇ m with respect to the focal movement.
  • the infrared image pickup lens 1 of the numerical embodiment 1 can cover a wavelength range of 7 to 14 ⁇ m and has a good resolution sufficiently corresponding to an image sensor having a pixel pitch of about 12 ⁇ m. Further, the infrared image pickup lens 1 of the numerical embodiment 1 has an F number of 1.0, which is bright and compact. As described above, according to the present embodiment, it is possible to realize an infrared image pickup lens that is compact and has excellent characteristics, which has never been seen before.
  • the focal length f3 of the third lens L3 is set to be about the same as the focal length f of the infrared imaging lens.
  • the infrared image pickup lens 2 is an image pickup lens having an F number of 1.0, which is optimized to image infrared rays in a wavelength range of 7.5 to 13.5 ⁇ m well.
  • the design center wavelength is 10 ⁇ m.
  • the basic lens data, aspherical surface data, diffraction surface data, and various data are shown below.
  • chalcogenide glass having a refractive index N10 at a wavelength of 10 ⁇ m of 3.465 is used.
  • Silicon (Si) is used for the parallel flat plate P.
  • the surface (fifth surface) of the third lens L3 on the object side is a diffraction surface provided with a sag on a spherical surface.
  • the sag depth ranges from 0 to the design center wavelength (see Z DOE definition formula).
  • the back focus of 6.98 mm is the actual distance.
  • the focal length f2 of the second lens L2 is 39.15 mm.
  • the focal length f3 of the third lens L3 is 9.88 mm. Therefore, the power of the third lens L3 is the strongest, and then the power of the first lens L1 is strong.
  • the focal length f3 of the third lens L3 is about the same as the focal length f of the infrared imaging lens.
  • the maximum image height on the image plane S is 4.92 mm, and therefore the diameter ⁇ s of the image circle is 9.84 mm.
  • the half angle of view is 29.9 °, which is within the range of 21 to 36 °, which can be said to be a standard lens.
  • the infrared image pickup lens 2 is compact with a total lens length L from the first surface to the image surface of 20.6 mm and a maximum effective diameter on the optical path of 14.5 mm.
  • the total length L of the lens is not excessively large with respect to the focal length f.
  • the infrared imaging lens 2 has a three-lens configuration and can be made lightweight. Coupled with the fact that each lens can be manufactured by press molding, the infrared imaging lens 2 can be manufactured at a low cost that can be applied to consumer applications.
  • FIG. 9 is an aberration diagram of the infrared image pickup lens 2.
  • FIG. 9 shows spherical aberration, astigmatism, and distortion. In each, graphs are shown for each wavelength in the range 7.5-13.5 ⁇ m.
  • FIG. 10 is an aberration diagram showing coma aberration at each image height Y from 0 mm to a maximum image height of 4.92 mm separately in the tangential (meridional) direction and the sagittal (radial) direction.
  • various aberrations are satisfactorily corrected over a wide wavelength region of 7.5 to 13.5 ⁇ m.
  • FIG. 11 is a graph showing the relative illuminance of the infrared image pickup lens 2 of the numerical embodiment 2 with respect to the image height Y. As shown in FIG. 11, even at the maximum image height of 4.92 mm, a relative illuminance of 0.69 and a sufficient peripheral illumination are obtained.
  • the image height Y corresponding to the center of the left and right edges of the imaging surface is 3.84 mm, and the relative illuminance there is 0.81. Is. In that case, the image height Y corresponding to the center of the upper and lower ends of the image pickup surface is 3.07 mm, and the relative illuminance there is 0.87.
  • FIG. 12 is a graph showing the spatial frequency dependence of the MTF in the wavelength range of 7.5 to 13.5 ⁇ m.
  • the MTF at each image height Y secures 0.30 or more, which is a simple average of the tangential direction and the sagittal direction, which is sufficiently higher than 0.17.
  • the image height Y is 0 mm, that is, the MTF is 0.45 at the center of the image, and the resolution is good.
  • the MTF at each image height Y secures a simple average of 0.60 or more in the tangential direction and the sagittal direction, and is sufficiently higher than 0.50.
  • good resolution corresponding to an image sensor having a narrow pitch of about a wavelength is obtained over the entire surface in the image circle.
  • FIG. 13 is a graph showing the change of MTF in the wavelength range of 7.5 to 13.5 ⁇ m with respect to the focal movement.
  • the infrared image pickup lens 2 of the numerical embodiment 2 can cover a wavelength range of 7.5 to 13.5 ⁇ m and has a good resolution sufficiently corresponding to an image sensor having a pixel pitch of about 12 ⁇ m. Further, the infrared image pickup lens 2 of the numerical embodiment 2 has an F number of 1.0, which is bright and compact. As described above, according to the numerical embodiment 2, it is possible to realize an infrared image pickup lens that is compact and has excellent characteristics, which has never been seen before.
  • the infrared image pickup lens 3 according to the numerical embodiment 3 is an image pickup lens of F number 1.2 optimized for good image formation of infrared rays in a wavelength range of 7 to 14 ⁇ m.
  • the design center wavelength is 10 ⁇ m.
  • the basic lens data, aspherical surface data, diffraction surface data, and various data are shown below.
  • chalcogenide glass having a refractive index N10 at a wavelength of 10 ⁇ m of 3.465 is used.
  • Silicon (Si) is used for the parallel flat plate P.
  • the surface (fifth surface) of the third lens L3 on the object side is a diffraction surface provided with a sag on a spherical surface.
  • the sag depth ranges from 0 to the design center wavelength (see Z DOE definition formula).
  • the back focus of 7.08 mm is the actual distance.
  • the focal length f2 of the second lens L2 is 44.44 mm.
  • the focal length f3 of the third lens L3 is 9.77 mm. Therefore, the power of the third lens L3 is the strongest, and then the power of the first lens L1 is strong.
  • the maximum image height on the image plane S is 4.92 mm, and therefore the diameter ⁇ s of the image circle is 9.84 mm.
  • the half angle of view is 29.9 °, which is within the range of 21 to 36 °, which can be said to be a standard lens.
  • the infrared image pickup lens 3 is compact with a total lens length L from the first surface to the image surface S of 20.6 mm and a maximum effective diameter on the optical path of 14.5 mm.
  • the total length L of the lens is not excessively large with respect to the focal length f.
  • the infrared imaging lens 3 has a three-lens configuration and can be made lightweight. Coupled with the fact that each lens can be manufactured by press molding, the infrared imaging lens 3 can be manufactured at a low cost that can be applied to consumer applications.
  • FIG. 15 is an aberration diagram of the infrared image pickup lens 3.
  • FIG. 15 shows spherical aberration, astigmatism, and distortion. In each, graphs are shown for each wavelength in the range of 7-14 ⁇ m.
  • 16 is an aberration diagram showing coma aberration at each image height Y from 0 mm to a maximum image height of 4.92 mm separately in the tangential (meridional) direction and the sagittal (radial) direction.
  • various aberrations are satisfactorily corrected over a wide wavelength region of 7 to 14 ⁇ m.
  • FIG. 17 is a graph showing the relative illuminance of the infrared image pickup lens 3 of the numerical embodiment 3 with respect to the image height Y. As shown in FIG. 17, even at the maximum image height of 4.92 mm, a relative illuminance of 0.68 and a sufficient peripheral illumination are obtained.
  • the image height Y corresponding to the center of the left and right edges of the imaging surface is 3.84 mm, and the relative illuminance there is 0.80. Is. In that case, the image height Y corresponding to the center of the upper and lower ends of the image pickup surface is 3.07 mm, and the relative illuminance there is 0.87.
  • FIG. 18 is a graph showing the spatial frequency dependence of the MTF in the wavelength range of 8 to 14 ⁇ m.
  • the MTF at each image height Y secures 0.21 or more, which is a simple average of the tangential direction and the sagittal direction, which is sufficiently higher than 0.17.
  • the image height Y is 0 mm, that is, the MTF is 0.36 at the center of the image, and the resolution is good.
  • the MTF at each image height Y secures 0.55 or more as a simple average in the tangential direction and the sagittal direction, and is sufficiently higher than 0.50.
  • the infrared image pickup lens 3 according to the numerical embodiment 3 a good resolution is obtained as an infrared image pickup lens of F number 1.2, which can correspond to an image sensor having a narrow pitch of about a wavelength over the entire surface in the image circle. Has been done.
  • FIG. 19 is a graph showing the change of MTF in the wavelength range of 7 to 14 ⁇ m with respect to the focal movement.
  • the infrared image pickup lens 3 of the numerical example 3 is designed to have an F number of 1.2, which is larger than that of the infrared image pickup lens of the numerical example 1, and a deeper depth of focus can be obtained.
  • the infrared image pickup lens 3 of the numerical embodiment 3 can cover a wavelength range of 7 to 14 ⁇ m and has a good resolution sufficiently corresponding to an image sensor having a pixel pitch of about 12 ⁇ m. Further, the infrared image pickup lens 3 of the numerical embodiment 3 has an F number of 1.2, which is bright and compact. As described above, according to the numerical embodiment 3, it is possible to realize an infrared image pickup lens that is compact and has excellent characteristics, which has never been seen before.
  • aspects 1 of the present invention is an infrared image pickup lens in which a plurality of lenses are arranged, and each of the plurality of lenses is made of glass having a refractive index of 2.8 to 4.0 at a wavelength of 10 ⁇ m.
  • the diameter of the image circle is 0.7 to 1.3 times the focal length. According to the above configuration, it is possible to realize an infrared image pickup lens which is a standard lens and has an excellent resolution, which can correspond to an image sensor having a pixel pitch of about a wavelength.
  • the infrared image pickup lens according to the second aspect of the present invention has a configuration in which the modulation transfer function having a wavelength range of 7 to 14 ⁇ m at a spatial frequency of 41.7 cycles / mm satisfies 0.17 or more in the image circle in the above aspect 1. You may be prepared. According to the above configuration, the relationship between the pixel pitch of about the wavelength and the resolution is more specifically limited.
  • Aspect 3 of the present invention is an infrared imaging lens in which a plurality of lenses are arranged, and each of the plurality of lenses is made of glass having a refractive index of 2.8 to 4.0 at a wavelength of 10 ⁇ m.
  • a modulation transfer function having a wavelength range of 7 to 14 ⁇ m at a spatial frequency of 41.7 cycles / mm is configured to satisfy 0.17 or more in the image circle. According to the above configuration, it is possible to realize an infrared image pickup lens which is a standard lens having an excellent resolution and corresponding to an image sensor having a pixel pitch of about a wavelength.
  • the infrared imaging lens according to the fourth aspect of the present invention has a configuration in which the first lens arranged on the most object side has a positive power and has a meniscus shape convex to the object side in the above aspects 1 to 3. You may. According to the above configuration, it is possible to realize an infrared imaging lens having excellent aberration characteristics.
  • the focal length f1 of the first lens and the focal length f of the infrared image pickup lens are set. 1.0 ⁇ f1 / f ⁇ 2.9 It may have a configuration that satisfies the relational expression of. According to the above configuration, the outer diameter and volume of the infrared imaging lens can be made compact.
  • the infrared imaging lens according to the sixth aspect of the present invention may have a configuration in which the effective diameter of the surface of the first lens on the object side is the aperture stop in the above aspect 4 or 5. According to the above configuration, vignetting of the peripheral luminous flux is reduced and the amount of peripheral light can be improved.
  • the first lens, the second lens, and the third lens are arranged in order from the object side to the image plane side in the above aspects 4 to 6. It may have a configuration. According to the above configuration, the configuration of the infrared imaging lens can be made compact and lightweight while maintaining high resolution.
  • the infrared imaging lens according to the eighth aspect of the present invention may have a configuration in which the second lens and the third lens both have a positive power in the above aspect 7. According to the above configuration, it is possible to realize an infrared imaging lens having excellent aberration characteristics.
  • the third lens has the strongest power among the first lens, the second lens, and the third lens, and the third lens is the third lens. It may have a structure having a convex meniscus shape on the image plane side. According to the above configuration, astigmatism is reduced.
  • the infrared imaging lens according to the tenth aspect of the present invention may have a configuration in which the second lens has a meniscus shape convex on the image plane side in the above aspects 7 to 9. According to the above configuration, an increase in the Petzval sum can be suppressed, and curvature of field is suppressed.
  • At least one of the image plane side surface of the second lens and the object side surface of the third lens is a diffraction surface in the above aspects 7 to 10. It may have a configuration. According to the above configuration, it is possible to reduce chromatic aberration of magnification.
  • the focal length f3 of the third lens and the focal length f of the infrared image pickup lens are set. 0.8 ⁇ f3 / f ⁇ 1.2 It may have a configuration that satisfies the relational expression of. According to the above configuration, good resolution can be obtained over a wide image circle area.
  • the infrared image pickup lens according to the thirteenth aspect of the present invention may have a configuration in which the half angle of view is 21 to 36 ° in the above aspects 1 to 12. According to the above configuration, the infrared imaging lens can have a preferable angle of view as a standard lens.
  • the modulation transfer function having a wavelength range of 7 to 14 ⁇ m at a spatial frequency of 20.85 cycles / mm satisfies 0.50 or more in the image circle. It may have a configuration. According to the above configuration, it is possible to realize an infrared image pickup lens having a good MTF over the entire range from a spatial frequency of 0 cycles / mm to 41.7 cycles / mm corresponding to a target Nyquist frequency.
  • the infrared image pickup lens according to the fifteenth aspect of the present invention may have a configuration in which the relative illuminance on the image plane satisfies 40% or more in the image circle in the above aspects 1 to 14. According to the above configuration, it is possible to realize an infrared image pickup lens in which the amount of peripheral light is sufficiently secured.
  • the infrared image pickup lens according to the 16th aspect of the present invention may have a configuration in which the glass is chalcogenide glass in the above aspects 1 to 15. According to the above configuration, an infrared image pickup lens can be configured by using a lens having an aspherical surface including a diffraction surface, and an image pickup lens having particularly excellent aberration characteristics and resolution can be manufactured.
  • the infrared imaging lens according to the 17th aspect of the present invention has a configuration in the 16th aspect, wherein the chalcogenide glass has a thickness of 2 mm and a light transmittance of 20% and an infrared absorption edge wavelength of 18 ⁇ m or more. good. According to the above configuration, it becomes possible to configure an infrared image pickup lens having very small light absorption in a target wavelength range.
  • the infrared image pickup lens according to the aspect 18 of the present invention may have a configuration in which the F number is 1.0 to 1.2 in the above aspects 1 to 17. According to the above configuration, a bright standard lens can be configured. Alternatively, according to the above configuration, a standard lens having excellent resolution can be realized.
  • the infrared image pickup lens according to the aspect 19 of the present invention may have a configuration in which the focal length of the infrared image pickup lens is 7 to 12 mm in the above aspects 1 to 18. According to the above configuration, it becomes possible to configure an infrared imaging lens that is compact and has excellent characteristics such as resolution and brightness. Alternatively, according to the above configuration, it becomes possible to construct a low-cost infrared image pickup lens which is excellent in various characteristics and can be used for consumer use.
  • the infrared image pickup lens according to the aspect 20 of the present invention may have a configuration in which the total length of the lens is 30 mm or less in the above aspects 1 to 19. According to the above configuration, it becomes possible to configure an infrared imaging lens that is compact and has excellent characteristics such as resolution and brightness. Alternatively, according to the above configuration, it becomes possible to construct a low-cost infrared image pickup lens which is excellent in various characteristics and can be used for consumer use.
  • the infrared camera according to aspect 21 of the present invention includes the infrared image pickup lens according to any one of embodiments 1 to 20 and an infrared image sensor. According to the above configuration, it is possible to realize an infrared camera that is compact and has excellent characteristics such as resolution and brightness. Alternatively, according to the above configuration, it is possible to realize a low-cost infrared camera that has excellent various characteristics and can be used for various purposes for consumer use.
  • the infrared imaging lens is configured by arranging three lenses, but the application of the present invention is not limited to this, and a plurality of lenses other than 3 are arranged and configured. May be done.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Geometry (AREA)
  • Lenses (AREA)

Abstract

解像度に優れた、標準レンズを実現する。 赤外線撮像レンズ(1)は、それぞれが波長10μmにおける屈折率が2.8~4.0のガラスからなる複数のレンズ(L1~L3)を配置して構成され、イメージサークルの径が、焦点距離の0.7~1.3倍である。

Description

赤外線撮像レンズ及び赤外線カメラ
 本発明は赤外線撮像レンズ及び赤外線カメラに関する。
 遠赤外領域、特に生体検知に適した10μm帯の波長領域の赤外線で被写体を撮影する赤外線カメラが、監視カメラや防犯カメラ、車載用ナイトビジョン等に応用されている。これらの赤外線カメラに適用される赤外線撮像レンズが知られている。
国際公開公報WO2016/027786A1 日本国特開2011-128538号公報 日本国特開昭62-109014号公報
 このような遠赤外領域で使用される、解像度に優れた、標準レンズとして使用可能な赤外線撮像レンズが求められている。特に、波長程度の画素ピッチを備えたイメージセンサに対応できる優れた解像度を有する赤外線撮像レンズの実現が求められている。
 本発明の一態様は、上記課題に着目したものであり、波長程度の画素ピッチを備えたイメージセンサに対応でき、優れた解像度を有する、標準レンズとして使用可能な赤外線撮像レンズを実現することを目的とする。
 上記の課題を解決するために、本発明の一態様は、複数のレンズを配置して構成される赤外線撮像レンズであって、前記複数のレンズは、それぞれが波長10μmにおける屈折率が2.8~4.0のガラスからなり、空間周波数41.7cycles/mmでの、波長範囲7~14μmの変調伝達関数が、イメージサークル内において0.17以上を満たす構成を備えている。
 上記の課題を解決するために、本発明の別の一態様は、複数のレンズを配置して構成される赤外線撮像レンズであって、前記複数のレンズは、それぞれが波長10μmにおける屈折率が2.8~4.0のガラスからなり、イメージサークルの径が、焦点距離の0.7~1.3倍である構成を備えている。
 本発明の上記態様によれば、波長程度の画素ピッチを備えたイメージセンサに対応でき、優れた解像度を有する、標準レンズとして使用可能な赤外線撮像レンズを実現することができる。
本発明の実施形態に係る赤外線撮像レンズの、主要部の構成を示す断面図である。 本発明の実施形態に係る赤外線撮像レンズの光路図である。 本発明の数値実施例1に係る赤外線撮像レンズの、球面収差、非点収差、ディストーションを示す収差図である。 本発明の数値実施例1に係る赤外線撮像レンズの、コマ収差を示す収差図である。 本発明の数値実施例1に係る赤外線撮像レンズの、相対照度の像高依存性を示すグラフである。 本発明の数値実施例1に係る赤外線撮像レンズの、MTFの空間周波数依存性を示すグラフである。 本発明の数値実施例1に係る赤外線撮像レンズの、MTFの焦点移動依存性を示すグラフである。 本発明の数値実施例2に係る赤外線撮像レンズの光路図である。 本発明の数値実施例2に係る赤外線撮像レンズの、球面収差、非点収差、ディストーションを示す収差図である。 本発明の数値実施例2に係る赤外線撮像レンズの、コマ収差を示す収差図である。 本発明の数値実施例2に係る赤外線撮像レンズの、相対照度の像高依存性を示すグラフである。 本発明の数値実施例2に係る赤外線撮像レンズの、MTFの空間周波数依存性を示すグラフである。 本発明の数値実施例2に係る赤外線撮像レンズの、MTFの焦点移動依存性を示すグラフである。 本発明の数値実施例3に係る赤外線撮像レンズの光路図である。 本発明の数値実施例3に係る赤外線撮像レンズの、球面収差、非点収差、ディストーションを示す収差図である。 本発明の数値実施例3に係る赤外線撮像レンズの、コマ収差を示す収差図である。 本発明の数値実施例3に係る赤外線撮像レンズの、相対照度の像高依存性を示すグラフである。 本発明の数値実施例3に係る赤外線撮像レンズの、MTFの空間周波数依存性を示すグラフである。 本発明の数値実施例3に係る赤外線撮像レンズの、MTFの焦点移動依存性を示すグラフである。
 〔実施形態〕
 <赤外線撮像レンズの概要>
 実施形態に係る赤外線撮像レンズ1は、遠赤外の波長領域に対応した、イメージセンサ等の像面Sに被写体の像を結像するレンズ系である。図1は、赤外線撮像レンズ1の主要部の構成を示す、光軸に沿った断面図である。図2は、赤外線撮像レンズ1の主要部の断面図に、光路を併せて示した光路図である。
 赤外線撮像レンズ1は、物体側から像面S側に向かって順に、第1レンズL1、第2レンズL2、第3レンズL3が配置されて構成される。フォーカシングの際には、第1レンズL1から第3レンズL3までが、一律に光軸方向に移動する。
 第1レンズL1、第2レンズL2、及び、第3レンズL3は、それぞれが波長10μmにおける屈折率が2.8~4.0のガラスからなる。より具体的には、第1レンズL1、第2レンズL2、及び、第3レンズL3は、波長10μmにおける屈折率が2.8~4.0のカルコゲナイドガラスからなる。第1レンズL1、第2レンズL2、及び、第3レンズL3のいずれもが同一の硝材からなっていてもよい。
 図1及び図2に示されるように、第3レンズL3と像面Sとの間には、平行平板Pが配置されている。平行平板Pは像面S側にハーメチックシーリングで装荷される光学ウィンドーであり、シリコン、低酸素シリコンまたはゲルマニウムが使用される。材質や厚みは、どのようなイメージセンサを採用するかによって決めることができる。
 図1に記号APで示されているように、第1レンズL1の物体側の面(第1面)の有効径が、赤外線撮像レンズ1の開口絞りに相当する。第1レンズL1、第2レンズL2、第3レンズL3、及び、平行平板Pの表面には、反射防止(AR:Anti-Reflection)コーティングが施される。このような遠赤外領域における反射防止コーティングには適宜の公知技術が適用され得る。
 <各レンズの硝材>
 特に、上記カルコゲナイドガラスは、モル%で、テルル(Te)20~90%を含有し、波長10μmにおけるアッベ数が100以上であるとよい。なお、本明細書におけるアッベ数の定義は、後述の数値実施例に記載される。更に、上記カルコゲナイドガラスは、モル%で、ゲルマニウム(Ge)0~50%、あるいは、ガリウム(Ga)0~50%の少なくともいずれかを含有することが好ましい。
 波長10μmにおける屈折率が2.8~4.0のガラスである、このような遠赤外領域において屈折率の高いカルコゲナイドガラスは、本出願人によって開発された(国際公開公報WO2020/105719A1参照)。本硝材の波長10μmにおける屈折率としては、より具体的には2.74~3.92の範囲が実現されている。例えば、波長10μmにおける屈折率が、2.74~3.92、2.8~3.8、特に2.9~3.7であることが好ましい。屈折率が低すぎると、焦点距離が長くなりすぎやすい。
 また、カルコゲナイドガラスのアッベ数(V10)が100以上、120以上、150以上、180以上、特に220以上であることが好ましい。アッベ数(V10)の定義については後述する。アッベ数が低すぎると、色収差が大きくなりやすい。なお、アッベ数の上限は特に限定されないが、現実的には350以下である。
 本硝材は、少なくとも波長7~14μmといった、遠赤外領域の広い波長範囲に亘って光吸収が極めて小さい。特に本硝材は、カルコゲナイドであるにも係わらず、波長10μmを超える領域においても光吸収が小さいという特徴を持つ。カルコゲナイドガラスにおいて、遠赤外領域で光透過性が優れていることを示す指標として、「赤外吸収端波長」と「内部透過率」を用いることができる。
 ここで赤外吸収端波長とは、波長8μm以上の遠赤外領域における吸収端波長をいい、材料の厚み2mmにおける光透過率が20%となる波長で定義される。なお、内部透過率とは材料内部での透過率をいい、材料表面での反射損失は含まない。第1レンズL1、第2レンズL2、及び第3レンズを構成する硝材としてのカルコゲナイドガラスは、赤外吸収端波長が18μm以上である。
 従って、当該カルコゲナイドガラスは、波長10μmを超えるような赤外線をも透過し、少なくとも波長7~14μmの範囲に亘って透過率が良好である。また当該カルコゲナイドガラスの厚さ2mmでの内部透過率は、波長10μmにおいて90%以上である。
 更には、本硝材はガラスであって、プレス成型により、非球面を備えるレンズの成形が可能である。またそのため本硝材を用いたレンズは多量生産が容易である。好ましくは、硝材のガラス転移温度が200℃以下と低く、プレス成型がより容易であるとよい。赤外線撮像レンズ1では、少なくともいずれかのレンズを非球面レンズとすることにより、収差が抑制される。
 非球面レンズを適用し得ない場合、収差を抑制するための赤外線撮像レンズの構成は、レンズ枚数が増加したものとなり、重量が増大し、大型化してしまう。またそのため高コストとなり民生向けに適さない撮像レンズとなる。なお、本明細書において、非球面とは回折面を含む。
 また当該カルコゲナイドガラスでは、回折面のような、特に複雑な形状の面を有するレンズを成形することも同様に可能となる。よって、赤外線撮像レンズ1では、当該カルコゲナイドガラスを用いて少なくともいずれかのレンズの面を回折面とすることで、波長7~14μmの広い範囲に亘って良好に収差を抑制することができるようになる。
 遠赤外領域を透過する材料として用いられている、シリコン(Si)、ゲルマニウム(Ge)、硫化亜鉛(ZnS)、セレン化亜鉛(ZnSe)のような結晶系の材料では、プレス成型が不可能である。そのため、複雑な形状を有する非球面レンズを大量生産することが困難である。よって民生用の低コストの非球面レンズをこれら結晶系の材料で実現することは困難である。
 <像面に関する事項>
 赤外線撮像レンズ1の像面Sにおいて、イメージサークルの径φsは、赤外線撮像レンズ1の焦点距離fと同等である。すなわち赤外線撮像レンズ1は標準レンズである。より具体的には、イメージサークルの径φsは、焦点距離fの0.7~1.3倍の範囲である。つまり、
  0.7≦φs/f≦1.3
の関係式を満たす。あるいは、赤外線撮像レンズ1が標準レンズであることは、赤外線撮像レンズ1の半画角が21~36°であることによって定義されてもよい。
 赤外線撮像レンズ1では、このようなイメージサークル内において、空間周波数41.7cycles/mmでの変調伝達関数(MTF:Modulation Transfer Function)が、0.17(17%)以上である。ここで、空間周波数41.7cycles/mmに着目する理由について、以下に説明する。
 遠赤外領域のイメージセンサの小型化が進展し、画素ピッチが波長程度の狭ピッチ限界に達するようになった。波長7~14μm程度の遠赤外領域のイメージセンサとしては、画素ピッチ12μmのものが市販されるようになっている。空間周波数41.7cycles/mmは画素ピッチ12μmのイメージセンサのナイキスト周波数に対応する。
 また、イメージサークル内においてMTFが0.17以上であることは、イメージサークル内の全領域において十分な解像度が得られていることを示す。つまり、赤外線撮像レンズ1は、波長7~14μm程度の波長領域の、小型化されたイメージセンサが適用された遠赤外線カメラに対応できる標準レンズである。
 上記イメージセンサとして、640×480画素(VGA:Video Graphics Array)、あるいは、640×512画素(VGA+)のイメージセンサが開発されている。これらイメージセンサの有効対角長は9.8mm程度である。よって、赤外線撮像レンズ1のイメージサークルの径φsは、これに対応する9.8mm程度かそれ以上となる。そのため、上述のイメージサークルの径φsと焦点距離fとの関係より、赤外線撮像レンズ1の焦点距離fは、7.8~11.8mmの範囲にある。
 本実施形態の赤外線撮像レンズ1は、複数のレンズを配置して構成される赤外線撮像レンズであって、前記複数のレンズは、それぞれが波長10μmにおける屈折率が2.8~4.0の上記ガラスからなる。よって、赤外線撮像レンズ1では、複数のレンズの少なくともいずれかを非球面レンズとすることができる。
 そのため、従来実現し得なかった、波長7~14μmの広い波長範囲に対応し、Fナンバーが1程度に小さく、解像度に優れた標準レンズが実現される。特に解像度について、イメージサークル内において、波長範囲7~14μmの空間周波数41.7cycles/mmでのMTFが0.17以上の、非常に優れた特性を持つ標準レンズが実現される。また、少なくとも7~14μmの広い波長範囲に亘って、レンズの硝材による光吸収が小さい標準レンズを実現することができる。よって、Fナンバーが1程度と小さいことと相まって、明るい撮像レンズが実現できる。
 更に本実施形態の赤外線撮像レンズ1では、上記ナイキスト周波数41.7cycles/mmの1/2に対応する空間周波数において、MTFが0.50以上とすることができる。このことは、上記ナイキスト周波数に対応する空間周波数のみに限られず、空間周波数0cycles/mmから上記ナイキスト周波数までの、全域に亘ってMTFが良好であることを示す。
 更に本実施形態の赤外線撮像レンズ1では、像面における相対照度が、イメージサークル内において40%以上とすることができる。このことは、周辺光量が良好に確保されていることを示す。
 <各レンズの構成の詳細>
 更に、本実施形態の赤外線撮像レンズ1は、各部の詳細を以下のように構成することが可能である。
 第1レンズL1は、正の屈折力を有し、物体側に凸面を向けたメニスカス形状を備える。第1レンズL1は非球面レンズとすることができる。その物体側の面(第1面)は球面であり、像面S側の面(第2面)は非球面とすることができる。
 上述のように、第1レンズL1の物体側の面(第1面)の有効径を赤外線撮像レンズ1の開口絞りとしている。この場合、後段のレンズが大きくなっていくこととなる。すると、赤外線撮像レンズ1の外径と体積が大きくなってしまう。そのため、第1レンズL1を物体側に凸面を向けたメニスカス形状とするとともに、第1レンズL1のパワーに次の制限を付するとよい。
 第1レンズL1の焦点距離f1を、赤外線撮像レンズ1の焦点距離fの1.0~2.9倍の範囲にする。つまり、
  1.0≦f1/f≦2.9
の関係式を満たすようにするとよい。
 このように構成することで、開口絞りをレンズ間に挿入するよりも赤外線撮像レンズ1の外径と体積を小さくすることが可能となる。また、第1レンズL1の物体側の面(第1面)の有効径を赤外線撮像レンズ1の開口絞りとし、本関係式を満たすようにすることで、周辺光束のケラレが軽減し、周辺光量が向上する。
 第2レンズL2は、正の屈折力を有し、像面S側に凸面を向けたメニスカス形状を備える。第2レンズL2は非球面レンズであり、その物体側の面(第3面)は非球面であり、像面S側の面(第4面)は回折面とすることができる。
 第3レンズL3は、正の屈折力を有し、像面S側に凸面を向けたメニスカス形状を備える。第3レンズL3は非球面レンズであり、その物体側の面(第5面)は球面であり、像面S側の面(第6面)は非球面とすることができる。
 以上のように、赤外線撮像レンズ1は、第1レンズL1、第2レンズL2及び第3レンズが配置されてなり、第1レンズL1、第2レンズL2及び第3レンズの全てが正の屈折率を持つとよい。中でも最も像面側にある第3レンズL3のパワーが最も大きくなるように赤外線撮像レンズ1を構成するとよい。
 そうして、第2レンズL2及び第3レンズL3が共に、像面S側に凸面を向けたメニスカス形状を有することにより、ペッツバール和の増大を抑制でき、像面湾曲が抑制され、平面性を保つようにできる。また、パワーの強さが、大きい順に、第3レンズL3、第1レンズL1、第2レンズL2であると特に好ましい。
 最も像面側にある第3レンズL3のパワーが最も大きく、第3レンズL3が像面S側に凸面を向けたメニスカス形状を有するように赤外線撮像レンズ1が構成されることで、非点収差が軽減される。
 また、上述の通り、第1レンズL1、第2レンズL2及び第3レンズの少なくともいずれかが非球面レンズであるとよい。このことにより、赤外線撮像レンズ1の球面収差や非点収差を軽減することが可能となる。第1レンズL1、第2レンズL2及び第3レンズのいずれもが非球面レンズであることが特に好ましい。
 更には、第2レンズL2の像面S側の面(第4面)または第3レンズL3の物体側の面(第5面)を回折面とすることが好ましい。これにより、負の分散を発生させて倍率色収差を低減させることが可能となる。
 <その他好ましい態様>
 本実施形態の赤外線撮像レンズ1では、赤外線撮像レンズ1が対象とする7~14μm程度の波長と同程度の画素ピッチに対応できる優れた解像度を実現するために、Fナンバーが1.0~1.2の範囲内であることが好ましい。またこのようなFナンバーの範囲とすることで、7~14μm程度の波長の赤外領域で用いられる明るい標準レンズが実現される。
 本実施形態の赤外線撮像レンズ1では、第3レンズL3の焦点距離f3が赤外線撮像レンズ1の焦点距離fと同程度であるように構成することが望ましい。具体的には、焦点距離f3は、焦点距離fの0.8~1.2倍の範囲であるとよい。つまり、
  0.8≦f3/f≦1.2
の関係式を満たすようにするとよい。この関係式を満たすように構成することで、広いイメージサークルの範囲に亘って、良好な解像度を得ることができる。すなわち、7~14μm程度の波長の赤外領域で用いられるイメージセンサとしては検出面が広い、画素ピッチ12μm程度、640×480画素(VGA)や640×512画素(VGA+)クラスのイメージセンサの全域に亘って良好な解像度を得ることができるようになる。
 第3レンズL3の焦点距離f3が赤外線撮像レンズ1の焦点距離fと同程度であるということは、第1レンズL1及び第2レンズL2の、全系の焦点距離fへの寄与が非常に小さいことを表している。第3レンズL3のみが焦点距離fに大きく寄与するようにし、第1レンズL1及び第2レンズL2は主に収差除去に貢献するように構成することにより、このように広い検出面の全面に亘って良好な解像度が得られる赤外線撮像レンズが実現される。
 より好ましくは、第3レンズL3の焦点距離f3は、赤外線撮像レンズの焦点距離fの0.9~1.2倍の範囲とするとよく、つまり、
  0.9≦f3/f≦1.2
の関係式を満たすように、第1レンズL1、第2レンズL2及び第3レンズL3が構成されているとより好ましい。
 更に、本実施形態の赤外線撮像レンズ1では、赤外線撮像レンズのレンズ全長Lが、赤外線撮像レンズの焦点距離fの、1.0~2.5倍の範囲内であることが好ましい。つまり、
  1.0≦L/f≦2.5
の関係式を満たすようにするとよい。ここで、レンズ全長とは、最も物体側のレンズの、有効径内での物体側の端部から、像面Sまでの、光軸に沿った実距離である。
 より好ましくは、赤外線撮像レンズのレンズ全長Lが、赤外線撮像レンズの焦点距離fの、1.1~2.3倍の範囲とするとよく、つまり、
  1.1≦L/f≦2.3
の関係式を満たすように、第1レンズL1、第2レンズL2及び第3レンズL3が構成されているとより好ましい。このように構成することで、コンパクトな標準レンズを実現することができる。
 このように、第3レンズL3の焦点距離f3が赤外線撮像レンズ1の焦点距離fと同程度であるようにしつつ、レンズ全長Lを焦点距離fより大きくしすぎないように構成する。このように構成することで、収差特性、解像度、周辺光量等の諸特性に優れ、かつコンパクトな、標準レンズである赤外線撮像レンズを実現することができる。
 本実施形態の赤外線撮像レンズ1では、バックフォーカスBFを、赤外線撮像レンズ1の焦点距離fの0.5倍以上とすることが好ましい。つまり、
  0.5≦BF/f
の関係式を満たすようにするとよい。より好ましくはバックフォーカスBFを、赤外線撮像レンズ1の焦点距離fの0.65倍以上とするとよく、つまり、
  0.65≦BF/f
の関係式を満たすように、第1レンズL1、第2レンズL2及び第3レンズL3が構成されているとより好ましい。このように構成することで、余裕のあるバックフォーカスを確保し、かつコンパクトな標準レンズを実現することができる。
 本実施形態の赤外線撮像レンズ1は、赤外線撮像レンズの焦点距離が、具体的には7~12mmの範囲内であるように構成されることが望ましい。このように構成されることで、収差特性、解像度、周辺光量等の諸特性を優れたものとしつつ、広く民生用に利用可能なコンパクトな、標準レンズである赤外線撮像レンズを実現することができる。
 また、本実施形態の赤外線撮像レンズ1は、赤外線撮像レンズのレンズ全長が、具体的には30mm以下であるように構成されることが望ましい。このように構成されることで、収差特性、解像度、周辺光量等の諸特性を優れたものとしつつ、広く民生用に利用可能なコンパクトな、標準レンズである赤外線撮像レンズを実現することができる。
 <赤外線カメラの構成>
 本開示の赤外線カメラは、上述の赤外線撮像レンズ1と、7~14μmの範囲のいずれかの波長を少なくとも含む赤外線領域に対応する、イメージセンサとを備える。イメージセンサは、撮像面が赤外線撮像レンズ1の像面S位置になるように配置される。
 イメージセンサの画素ピッチは、7~14μmと、赤外線の波長程度であることが、赤外線撮像レンズ1の解像度にあった性能を有している点から好ましい。特に、画素ピッチは9~12μmであることが好ましい。イメージセンサの対角長は、7~11mmであることが、赤外線撮像レンズ1のイメージサークル径φsを効率的に利用する点からは好ましい。しかしながら対角長がこれよりも小さいイメージセンサであっても本開示の赤外線カメラを構成できることは言うまでもない。
 <数値実施例1>
 赤外線撮像レンズ1の数値実施例を示す。数値実施例1に係る赤外線撮像レンズの断面図は、図1に示された通りである。数値実施例1において、rは曲率半径、dは光軸上の面間の距離、EDは有効径(直径)を表す。長さの単位は(mm)である。面番号の数字の後の*(アスタリスク)は非球面であることを表す。以下に、基本レンズデータ、非球面データ、回折面データ、各種データを示す。
Figure JPOXMLDOC01-appb-T000001
 屈折率及びアッベ数V10の定義は以下の通りである:
  N8:波長8μmにおける屈折率
  N10:波長10μmにおける屈折率
  N12:波長12μmにおける屈折率
  V10=(N10-1)/(N8-N12)
Figure JPOXMLDOC01-appb-T000002
 非球面形状の定義は以下の通りである:
Figure JPOXMLDOC01-appb-M000003
  h:光軸からの高さ
  r:頂点における曲率半径
  κ:円錐定数
  An:n次の非曲面係数(n:偶数)
  Z:hにおける非球面上の点から非球面頂点の接平面までの距離
Figure JPOXMLDOC01-appb-T000004
 回折面の定義は以下の通りである:
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
  Φ:位相差関数
  P,P:位相係数
  Zdif:光路関数
  ZDOE:回折面のサグ量
  λ:設計中心波長(10μmとする)
Figure JPOXMLDOC01-appb-T000008
 第1レンズL1、第2レンズL2、第3レンズL3には、波長10μmにおける屈折率N10が、3.465であるカルコゲナイドガラスを用いている。平行平板Pには、シリコン(Si)を用いている。第2レンズL2の像面S側の面(第4面)は、球面上にサグが設けられた回折面である。サグの深さは0から設計中心波長λまでに相当する範囲である(ZDOEの定義式参照)。バックフォーカス6.95mmは、実距離である。
 第1レンズL1の焦点距離f1は、24.35mmである。よって、赤外線撮像レンズ1の焦点距離fとの比は、
  f1/f=2.7
である。第2レンズL2の焦点距離f2は、37.87mmである。第3レンズL3の焦点距離f3は、9.96mmである。よって、第3レンズL3のパワーが最も強く、次いで、第1レンズL1のパワーが強いように構成されている。
 像面Sでの最大像高は、4.92mmであり、よって、イメージサークルの径φsは9.84mmである。赤外線撮像レンズ1のイメージサークルの径φsと焦点距離fの比は、
  φs/f=1.09
である。すなわち、赤外線撮像レンズ1は標準レンズである。また、半画角29.8°であり、標準レンズといえる21~36°の範囲内である。
 赤外線撮像レンズ1は、第1面から像面までの全長が20.9mm、光路上の最大有効径が、14.8mmとコンパクトである。また、赤外線撮像レンズ1は、3枚レンズ構成であり軽量にできる。各レンズがプレス成型で製造できることと相まって、赤外線撮像レンズ1は、民生用途に適用し得る低コストで製造できる。
 数値実施例1の赤外線撮像レンズ1の諸性能を図3から図7に示す。図3は、赤外線撮像レンズ1の収差図である。図3は、球面収差、非点収差、ディストーションを示す。それぞれにおいて、7~14μmの範囲の各波長に対するグラフが示されている。図4は、0mmから最大像高4.92mmまでの各像高Yにおけるコマ収差を、タンジェンシャル(メリジオナル)方向とサジタル(ラジアル)方向に分けて示す収差図である。図3及び図4に示されるように、数値実施例1に係る赤外線撮像レンズ1では、7~14μmの広い波長領域に亘って諸収差が良好に補正されている。
 図5は、数値実施例1の赤外線撮像レンズ1の、像高Yに対する相対照度を示したグラフである。ここで相対照度とは、像面Sにおいて光軸上領域(像面中央領域)に対する、照度の比をいう。図5に示されるように、最大像高4.92mmにおいても、相対照度0.68と、十分な周辺光量が得られている。
 640×512画素(VGA+)、有効対角長9.84mmのイメージセンサを用いる場合には、撮像面左右端中央に相当する像高Yは3.84mmであり、そこでの相対照度は0.80である。またその場合の撮像面上下端中央に相当する像高Yは3.07mmであり、そこでの相対照度は0.87である。
 図6は、波長範囲7~14μmのMTFの空間周波数依存性を示したグラフである。上述の通り画素ピッチ12μmのイメージセンサのナイキスト周波数fは41.7cycles/mmであり、図6中に示されている。またその半値f/2(20.85cycles/mm)も、図中に示されている。
 空間周波数41.7cycles/mmにおいて、各像高YでのMTFが、0.17を十分に上回る0.24以上を確保している。このとき像高Yが0mm、すなわち像中央において、MTFが0.43と解像度が良好である。また、空間周波数20.85cycles/mmにおいて、各像高YでのMTFは、0.56以上を確保し、0.50を十分に上回る。数値実施例1に係る赤外線撮像レンズ1では、イメージサークル内の全面に亘って、波長程度の狭ピッチのイメージセンサに対応できる良好な解像度が得られている。
 図7は、焦点移動に対する波長範囲7~14μmのMTFの変化を示したグラフである。以上のように数値実施例1の赤外線撮像レンズ1は、波長範囲7~14μmをカバーでき、画素ピッチ12μm程度のイメージセンサに十分対応する良好な解像度を有する。更に数値実施例1の赤外線撮像レンズ1は、Fナンバーが1.0と明るくコンパクトである。このように本実施形態によれば、従来に無い、コンパクトかつ優れた特性の赤外線撮像レンズが実現できる。
 数値実施例1において、第3レンズL3の焦点距離f3と、赤外線撮像レンズの焦点距離fの比は、
  f3/f=1.1
である。このように第3レンズL3の焦点距離f3は赤外線撮像レンズの焦点距離fと同程度とされている。
 数値実施例1において、赤外線撮像レンズのレンズ全長Lと、赤外線撮像レンズの焦点距離fの比は、
  L/f=2.3
であり、レンズ全長Lが焦点距離fに対して過度に大きくならないようにされている。
 数値実施例1において、バックフォーカスBFと、赤外線撮像レンズの焦点距離fの比は、
  BF/f=0.77
であり、十分なバックフォーカスが確保されている。
 <数値実施例2>
 赤外線撮像レンズの別の数値実施例を示す。なお、説明の便宜上、上記実施例にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。数値実施例2に係る赤外線撮像レンズ2の断面は、図8の光路図に示される。
 数値実施例2に係る赤外線撮像レンズ2は、7.5~13.5μmの波長範囲の赤外線を良好に結像するように最適化された、Fナンバーが1.0の撮像レンズである。設計中心波長は10μmである。以下に、基本レンズデータ、非球面データ、回折面データ、各種データを示す。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 第1レンズL1、第2レンズL2、第3レンズL3には、波長10μmにおける屈折率N10が、3.465であるカルコゲナイドガラスを用いている。平行平板Pには、シリコン(Si)を用いている。第3レンズL3の物体側の面(第5面)は、球面上にサグが設けられた回折面である。サグの深さは0から設計中心波長までに相当する範囲である(ZDOEの定義式参照)。バックフォーカス6.98mmは、実距離である。
 第1レンズL1の焦点距離f1は、24.60mmである。よって、赤外線撮像レンズ2の焦点距離fとの比は、
  f1/f=2.7
である。第2レンズL2の焦点距離f2は、39.15mmである。第3レンズL3の焦点距離f3は、9.88mmである。よって、第3レンズL3のパワーが最も強く、次いで、第1レンズL1のパワーが強いように構成されている。第3レンズL3の焦点距離f3の赤外線撮像レンズの焦点距離fとの比は、
  f3/f=1.1
である。第3レンズL3の焦点距離f3は赤外線撮像レンズの焦点距離fと同程度とされている。
 像面Sでの最大像高は、4.92mmであり、よって、イメージサークルの径φsは9.84mmである。赤外線撮像レンズ2のイメージサークルの径φsと焦点距離fの比は、
  φs/f=1.09
である。すなわち、赤外線撮像レンズ2は標準レンズである。また、半画角29.9°であり、標準レンズといえる21~36°の範囲内である。
 赤外線撮像レンズ2は、第1面から像面までのレンズ全長Lが20.6mm、光路上の最大有効径が、14.5mmとコンパクトである。赤外線撮像レンズのレンズ全長Lと、赤外線撮像レンズの焦点距離fの比は、
  L/f=2.3
であり、レンズ全長Lは焦点距離fに対して過度に大きくならないようにされている。
 また、赤外線撮像レンズ2は、3枚レンズ構成であり軽量にできる。各レンズがプレス成型で製造できることと相まって、赤外線撮像レンズ2は、民生用途に適用し得る低コストで製造できる。
 数値実施例2において、バックフォーカスBFと、赤外線撮像レンズの焦点距離fの比は、
  BF/f=0.77
であり、十分なバックフォーカスが確保されている。
 数値実施例2の赤外線撮像レンズ2の諸性能を図9から図13に示す。図9は、赤外線撮像レンズ2の収差図である。図9は、球面収差、非点収差、ディストーションを示す。それぞれにおいて、7.5~13.5μmの範囲の各波長に対するグラフが示されている。図10は、0mmから最大像高4.92mmまでの各像高Yにおけるコマ収差を、タンジェンシャル(メリジオナル)方向とサジタル(ラジアル)方向に分けて示す収差図である。図9及び図10に示されるように、数値実施例2に係る赤外線撮像レンズ2では、7.5~13.5μmの広い波長領域に亘って諸収差が良好に補正されている。
 図11は、数値実施例2の赤外線撮像レンズ2の、像高Yに対する相対照度を示したグラフである。図11に示されるように、最大像高4.92mmにおいても、相対照度0.69と、十分な周辺光量が得られている。
 640×512画素(VGA+)、有効対角長9.84mmのイメージセンサを用いる場合には、撮像面左右端中央に相当する像高Yは3.84mmであり、そこでの相対照度は0.81である。またその場合の撮像面上下端中央に相当する像高Yは3.07mmであり、そこでの相対照度は0.87である。
 図12は、波長範囲7.5~13.5μmのMTFの空間周波数依存性を示したグラフである。画素ピッチ12μmに相当する空間周波数41.7cycles/mmにおいて、各像高YでのMTFが、タンジェンシャル方向とサジタル方向との単純平均で、0.17を十分に上回る0.30以上を確保している。このとき像高Yが0mm、すなわち像中央において、MTFが0.45と解像度が良好である。
 また、空間周波数20.85cycles/mmにおいて、各像高YでのMTFは、タンジェンシャル方向とサジタル方向との単純平均で、0.60以上を確保し、0.50を十分に上回る。数値実施例2に係る赤外線撮像レンズ2では、イメージサークル内の全面に亘って、波長程度の狭ピッチのイメージセンサに対応できる良好な解像度が得られている。
 図13は、焦点移動に対する波長範囲7.5~13.5μmのMTFの変化を示したグラフである。以上のように数値実施例2の赤外線撮像レンズ2は、波長範囲7.5~13.5μmをカバーでき、画素ピッチ12μm程度のイメージセンサに十分対応する良好な解像度を有する。更に数値実施例2の赤外線撮像レンズ2は、Fナンバーが1.0と明るくコンパクトである。このように数値実施例2によれば、従来に無い、コンパクトかつ優れた特性の赤外線撮像レンズが実現できる。
 <数値実施例3>
 数値実施例3に係る赤外線撮像レンズ3の断面は、図14の光路図に示される。数値実施例3に係る赤外線撮像レンズ3は、7~14μmの波長範囲の赤外線を良好に結像するように最適化されたFナンバー1.2の撮像レンズである。設計中心波長は10μmである。以下に、基本レンズデータ、非球面データ、回折面データ、各種データを示す。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
 第1レンズL1、第2レンズL2、第3レンズL3には、波長10μmにおける屈折率N10が、3.465であるカルコゲナイドガラスを用いている。平行平板Pには、シリコン(Si)を用いている。第3レンズL3の物体側の面(第5面)は、球面上にサグが設けられた回折面である。サグの深さは0から設計中心波長までに相当する範囲である(ZDOEの定義式参照)。バックフォーカス7.08mmは、実距離である。
 第1レンズL1の焦点距離f1は、24.16mmである。よって、赤外線撮像レンズ3の焦点距離fとの比は、
  f1/f=2.7
である。第2レンズL2の焦点距離f2は、44.44mmである。第3レンズL3の焦点距離f3は、9.77mmである。よって、第3レンズL3のパワーが最も強く、次いで、第1レンズL1のパワーが強いように構成されている。第3レンズL3の焦点距離f3の赤外線撮像レンズ3の焦点距離fとの比は、
  f3/f=1.1
である。
 像面Sでの最大像高は、4.92mmであり、よって、イメージサークルの径φsは9.84mmである。赤外線撮像レンズ3のイメージサークルの径φsと焦点距離fの比は、
  φs/f=1.09
である。すなわち、赤外線撮像レンズ3は標準レンズである。また、半画角29.9°であり、標準レンズといえる21~36°の範囲内である。
 赤外線撮像レンズ3は、第1面から像面Sまでのレンズ全長Lが20.6mm、光路上の最大有効径が、14.5mmとコンパクトである。赤外線撮像レンズのレンズ全長Lと、赤外線撮像レンズの焦点距離fの比は、
  L/f=2.3
であり、レンズ全長Lは焦点距離fに対して過度に大きくならないようにされている。
 また、赤外線撮像レンズ3は、3枚レンズ構成であり軽量にできる。各レンズがプレス成型で製造できることと相まって、赤外線撮像レンズ3は、民生用途に適用し得る低コストで製造できる。
 数値実施例3において、バックフォーカスBFと、赤外線撮像レンズの焦点距離fの比は、
  BF/f=0.79
であり、十分なバックフォーカスが確保されている。
 
 数値実施例3の赤外線撮像レンズ3の諸性能を図15から図19に示す。図15は、赤外線撮像レンズ3の収差図である。図15は、球面収差、非点収差、ディストーションを示す。それぞれにおいて、7~14μmの範囲の各波長に対するグラフが示されている。図16は、0mmから最大像高4.92mmまでの各像高Yにおけるコマ収差を、タンジェンシャル(メリジオナル)方向とサジタル(ラジアル)方向に分けて示す収差図である。図15及び図16に示されるように、数値実施例3に係る赤外線撮像レンズ3では、7~14μmの広い波長領域に亘って諸収差が良好に補正されている。
 図17は、数値実施例3の赤外線撮像レンズ3の、像高Yに対する相対照度を示したグラフである。図17に示されるように、最大像高4.92mmにおいても、相対照度0.68と、十分な周辺光量が得られている。
 640×512画素(VGA+)、有効対角長9.84mmのイメージセンサを用いる場合には、撮像面左右端中央に相当する像高Yは3.84mmであり、そこでの相対照度は0.80である。またその場合の撮像面上下端中央に相当する像高Yは3.07mmであり、そこでの相対照度は0.87である。
 図18は、波長範囲8~14μmのMTFの空間周波数依存性を示したグラフである。画素ピッチ12μmに相当する空間周波数41.7cycles/mmにおいて、各像高YでのMTFが、タンジェンシャル方向とサジタル方向との単純平均で、0.17を十分に上回る0.21以上を確保している。このとき像高Yが0mm、すなわち像中央において、MTFが0.36と解像度が良好である。
 また、空間周波数20.85cycles/mmにおいて、各像高YでのMTFは、タンジェンシャル方向とサジタル方向との単純平均で、0.55以上を確保し、0.50を十分に上回る。数値実施例3に係る赤外線撮像レンズ3では、イメージサークル内の全面に亘って、波長程度の狭ピッチのイメージセンサに対応できる、Fナンバー1.2の赤外撮像レンズとしては良好な解像度が得られている。
 図19は、焦点移動に対する波長範囲7~14μmのMTFの変化を示したグラフである。数値実施例3の赤外線撮像レンズ3は、Fナンバーが1.2と数値実施例1の赤外線撮像レンズよりも大きい設計であり、より深い焦点深度が得られる。
 以上のように数値実施例3の赤外線撮像レンズ3は、波長範囲7~14μmをカバーでき、画素ピッチ12μm程度のイメージセンサに十分対応する良好な解像度を有する。更に数値実施例3の赤外線撮像レンズ3は、Fナンバーが1.2と明るくコンパクトである。このように数値実施例3によれば、従来に無い、コンパクトかつ優れた特性の赤外線撮像レンズが実現できる。
 〔まとめ〕
 本発明の態様1は、複数のレンズを配置して構成される赤外線撮像レンズであって、前記複数のレンズは、それぞれが波長10μmにおける屈折率が2.8~4.0のガラスからなり、イメージサークルの径が、焦点距離の0.7~1.3倍である構成を備えている。上記構成によれば、波長程度の画素ピッチを備えたイメージセンサに対応できる、優れた解像度を有する、標準レンズである赤外線撮像レンズを実現することができる。
 本発明の態様2に係る赤外線撮像レンズは、上記態様1において、空間周波数41.7cycles/mmでの、波長範囲7~14μmの変調伝達関数が、イメージサークル内において0.17以上を満たす構成を備えていてもよい。上記構成によれば、波長程度の画素ピッチであることと解像度との関係が、より具体的に限定される。
 本発明の態様3は、複数のレンズを配置して構成される赤外線撮像レンズであって、前記複数のレンズは、それぞれが波長10μmにおける屈折率が2.8~4.0のガラスからなり、空間周波数41.7cycles/mmでの、波長範囲7~14μmの変調伝達関数が、イメージサークル内において0.17以上を満たす構成を備えている。上記構成によれば、波長程度の画素ピッチを備えたイメージセンサに対応できる、優れた解像度を有する、標準レンズである赤外線撮像レンズを実現することができる。
 本発明の態様4に係る赤外線撮像レンズは、上記態様1から3において、最も物体側に配置された第1レンズは、正のパワーを持ち、物体側に凸のメニスカス形状である構成を備えていてもよい。上記構成によれば、収差特性に優れた赤外線撮像レンズを実現することができる。
 本発明の態様5に係る赤外線撮像レンズは、上記態様4において、前記第1レンズの焦点距離f1と、前記赤外線撮像レンズの焦点距離fとが、
 1.0≦f1/f≦2.9
の関係式を満たす構成を備えていてもよい。上記構成によれば、赤外線撮像レンズの外径と体積をコンパクトにすることができる。
 本発明の態様6に係る赤外線撮像レンズは、上記態様4または5において、前記第1レンズの物体側の面の有効径を開口絞りとする構成を備えていてもよい。上記構成によれば、周辺光束のケラレが軽減し、周辺光量が向上できるようになる。
 本発明の態様7に係る赤外線撮像レンズは、上記態様4から6において、物体側から像面側に向かって順に、前記第1レンズと、第2レンズと、第3レンズと、が配置される構成を備えていてもよい。上記構成によれば、高い解像度を保ちつつ、赤外線撮像レンズの構成をコンパクトかつ軽量にすることができる。
 本発明の態様8に係る赤外線撮像レンズは、上記態様7において、前記第2レンズ、及び前記第3レンズは、いずれも正のパワーを持つ構成を備えていてもよい。上記構成によれば、収差特性に優れた赤外線撮像レンズを実現することができる。
 本発明の態様9に係る赤外線撮像レンズは、上記態様8において、前記第1レンズ、前記第2レンズ、前記第3レンズのうち、前記第3レンズのパワーが最も強く、前記第3レンズは、像面側に凸のメニスカス形状である構成を備えていてもよい。上記構成によれば、非点収差が軽減される。
 本発明の態様10に係る赤外線撮像レンズは、上記態様7から9において、前記第2レンズは像面側に凸のメニスカス形状である構成を備えていてもよい。上記構成によれば、ペッツバール和の増大を抑制でき、像面湾曲が抑制される。
 本発明の態様11に係る赤外線撮像レンズは、上記態様7から10において、前記第2レンズの像面側の面と、前記第3レンズの物体側の面の、少なくともいずれかが回折面である構成を備えていてもよい。上記構成によれば、倍率色収差を軽減することが可能となる。
 本発明の態様12に係る赤外線撮像レンズは、上記態様7から10において、前記第3レンズの焦点距離f3と、前記赤外線撮像レンズの焦点距離fとが、
 0.8≦f3/f≦1.2
の関係式を満たす構成を備えていてもよい。上記構成によれば、広いイメージサークルの領域に亘って、良好な解像度を得ることができる。
 本発明の態様13に係る赤外線撮像レンズは、上記態様1から12において、半画角が21~36°である構成を備えていてもよい。上記構成によれば、赤外線撮像レンズが、標準レンズとして好ましい画角を有することができるようになる。
 本発明の態様14に係る赤外線撮像レンズは、上記態様1から13において、空間周波数20.85cycles/mmでの、波長範囲7~14μmの変調伝達関数が、イメージサークル内において0.50以上を満たす構成を備えていてもよい。上記構成によれば、空間周波数0cycles/mmから目標とするナイキスト周波数に相当する41.7cycles/mmまでの、全域に亘ってMTFが良好である赤外線撮像レンズを実現することができる。
 本発明の態様15に係る赤外線撮像レンズは、上記態様1から14において、像面における相対照度が、イメージサークル内において40%以上を満たす構成を備えていてもよい。上記構成によれば、周辺光量が十分確保された赤外線撮像レンズを実現することができる。
 本発明の態様16に係る赤外線撮像レンズは、上記態様1から15において、前記ガラスが、カルコゲナイドガラスである構成を備えていてもよい。上記構成によれば、回折面を含めた非球面を有するレンズを用いて赤外線撮像レンズを構成できるようになり、特に優れた収差特性、解像度を有する撮像レンズを製造することができるようになる。
 本発明の態様17に係る赤外線撮像レンズは、上記態様16において、前記カルコゲナイドガラスは、厚み2mmでの光透過率が20%となる赤外吸収端波長が18μm以上である構成を備えていてもよい。上記構成によれば、対象とする波長の範囲において、光吸収が非常に小さい赤外線撮像レンズを構成できるようになる。
 本発明の態様18に係る赤外線撮像レンズは、上記態様1から17において、Fナンバーが1.0~1.2である構成を備えていてもよい。上記構成によれば、明るい標準レンズを構成できるようになる。あるいは、上記構成によれば、解像度に優れた標準レンズを実現できるようになる。
 本発明の態様19に係る赤外線撮像レンズは、上記態様1から18において、前記赤外線撮像レンズの焦点距離が7~12mmである構成を備えていてもよい。上記構成によれば、コンパクトでかつ解像度、明るさ等の諸特性に優れた赤外線撮像レンズを構成できるようになる。あるいは、上記構成によれば、諸特性に優れ、民生用として利用可能な低コストの赤外線撮像レンズを構成できるようになる。
 本発明の態様20に係る赤外線撮像レンズは、上記態様1から19において、レンズ全長が30mm以下である構成を備えていてもよい。上記構成によれば、コンパクトでかつ解像度、明るさ等の諸特性に優れた赤外線撮像レンズを構成できるようになる。あるいは、上記構成によれば、諸特性に優れ、民生用として利用可能な低コストの赤外線撮像レンズを構成できるようになる。
 本発明の態様21に係る赤外線カメラは、記態様1から20のいずれかの赤外線撮像レンズと、赤外線イメージセンサと、を備える。上記構成によれば、コンパクトでかつ解像度、明るさ等の諸特性に優れた赤外線カメラを実現できる。あるいは、上記構成によれば、諸特性に優れ、民生用として様々な用途で利用可能な低コストの赤外線カメラを実現できる。
 本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、明細書中にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、明細書中にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
 実施形態において赤外線撮像レンズは、3枚のレンズが配置されて構成される例が示されたが、本発明の適用はこれに限られるものでなく、3以外の複数のレンズが配置されて構成されてもよい。
 1、2、3 赤外線撮像レンズ
 L1 第1レンズ
 L2 第2レンズ
 L3 第3レンズ
 P 平行平板
 S 像面

Claims (21)

  1.  複数のレンズを配置して構成される赤外線撮像レンズであって、
     前記複数のレンズは、それぞれが波長10μmにおける屈折率が2.8~4.0のガラスからなり、
     イメージサークルの径が、焦点距離の0.7~1.3倍である、赤外線撮像レンズ。
  2.  空間周波数41.7cycles/mmでの、波長範囲7~14μmの変調伝達関数が、イメージサークル内において0.17以上を満たす、請求項1に記載の赤外線撮像レンズ。
  3.  複数のレンズを配置して構成される赤外線撮像レンズであって、
     前記複数のレンズは、それぞれが波長10μmにおける屈折率が2.8~4.0のガラスからなり、
     空間周波数41.7cycles/mmでの、波長範囲7~14μmの変調伝達関数が、イメージサークル内において0.17以上を満たす、赤外線撮像レンズ。
  4.  最も物体側に配置された第1レンズは、正のパワーを持ち、物体側に凸のメニスカス形状である、請求項1から3のいずれか1項に記載の赤外線撮像レンズ。
  5.  前記第1レンズの焦点距離f1と、前記赤外線撮像レンズの焦点距離fとが、
     1.0≦f1/f≦2.9
    の関係式を満たす、請求項4に記載の赤外線撮像レンズ。
  6.  前記第1レンズの物体側の面の有効径を開口絞りとする、請求項4または5に記載の赤外線撮像レンズ。
  7.  物体側から像面側に向かって順に、
     前記第1レンズと、
     第2レンズと、
     第3レンズと、が配置される、請求項4から6のいずれか1項に記載の赤外線撮像レンズ。
  8.  前記第2レンズ、及び前記第3レンズは、いずれも正のパワーを持つ、請求項7に記載の赤外線撮像レンズ。
  9.  前記第1レンズ、前記第2レンズ、前記第3レンズのうち、前記第3レンズのパワーが最も強く、前記第3レンズは、像面側に凸のメニスカス形状である、請求項8に記載の赤外線撮像レンズ。
  10.  前記第2レンズは像面側に凸のメニスカス形状である、請求項7から9のいずれか1項に記載の赤外線撮像レンズ。
  11.  前記第2レンズの像面側の面と、前記第3レンズの物体側の面の、少なくともいずれかが回折面である、請求項7から10のいずれか1項に記載の赤外線撮像レンズ。
  12.  前記第3レンズの焦点距離f3と、前記赤外線撮像レンズの焦点距離fとが、
     0.8≦f3/f≦1.2
    の関係式を満たす、請求項7から11のいずれか1項に記載の赤外線撮像レンズ。
  13.  半画角が21~36°である、請求項1から12のいずれか1項に記載の赤外線撮像レンズ。
  14.  空間周波数20.85cycles/mmでの、波長範囲7~14μmの変調伝達関数が、イメージサークル内において0.50以上を満たす、請求項1から13のいずれか1項に赤外線撮像レンズ。
  15.  像面における相対照度が、イメージサークル内において40%以上を満たす、請求項1から14のいずれか1項に記載の赤外線撮像レンズ。
  16.  前記ガラスが、カルコゲナイドガラスである、請求項1から15のいずれか1項に記載の赤外線撮像レンズ。
  17.  前記カルコゲナイドガラスは、厚み2mmでの光透過率が20%となる赤外吸収端波長が18μm以上である、請求項16に記載の赤外線撮像レンズ。
  18.  Fナンバーが1.0~1.2である、請求項1から17のいずれか1項に記載の赤外線撮像レンズ。
  19.  前記赤外線撮像レンズの焦点距離が7~12mmである、請求項1から18のいずれか1項に記載の赤外線撮像レンズ。
  20.  レンズ全長が30mm以下である、請求項1から19のいずれか1項に記載の赤外線撮像レンズ。
  21.  請求項1から20のいずれか1項に記載の赤外線撮像レンズと、赤外線イメージセンサと、を備えた、赤外線カメラ。
PCT/JP2021/042751 2020-12-16 2021-11-22 赤外線撮像レンズ及び赤外線カメラ WO2022130909A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180083831.8A CN116745676A (zh) 2020-12-16 2021-11-22 红外线摄像镜头及红外线摄像机
US18/256,263 US20240019668A1 (en) 2020-12-16 2021-11-22 Infrared imaging lens and infrared camera
EP21906272.6A EP4266105A1 (en) 2020-12-16 2021-11-22 Infrared imaging lens and infrared camera
JP2022569809A JPWO2022130909A1 (ja) 2020-12-16 2021-11-22

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-208736 2020-12-16
JP2020208736 2020-12-16

Publications (1)

Publication Number Publication Date
WO2022130909A1 true WO2022130909A1 (ja) 2022-06-23

Family

ID=82059076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/042751 WO2022130909A1 (ja) 2020-12-16 2021-11-22 赤外線撮像レンズ及び赤外線カメラ

Country Status (5)

Country Link
US (1) US20240019668A1 (ja)
EP (1) EP4266105A1 (ja)
JP (1) JPWO2022130909A1 (ja)
CN (1) CN116745676A (ja)
WO (1) WO2022130909A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62109014A (ja) 1985-11-08 1987-05-20 Ricoh Co Ltd 赤外線用レンズ
JP2007241032A (ja) * 2006-03-10 2007-09-20 Sumitomo Electric Ind Ltd 赤外線レンズ及び赤外線カメラ
JP2009063942A (ja) * 2007-09-10 2009-03-26 Sumitomo Electric Ind Ltd 遠赤外線カメラ用レンズ、レンズユニット及び撮像装置
JP2011128538A (ja) 2009-12-21 2011-06-30 Fujifilm Corp 赤外線用結像レンズおよび撮像装置
WO2016027786A1 (ja) 2014-08-20 2016-02-25 コニカミノルタ株式会社 遠赤外線レンズ,撮像光学装置及びデジタル機器
JP2019048752A (ja) * 2017-09-12 2019-03-28 日本電気硝子株式会社 カルコゲナイドガラス材
WO2020105719A1 (ja) 2018-11-21 2020-05-28 日本電気硝子株式会社 カルコゲナイドガラスレンズ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62109014A (ja) 1985-11-08 1987-05-20 Ricoh Co Ltd 赤外線用レンズ
JP2007241032A (ja) * 2006-03-10 2007-09-20 Sumitomo Electric Ind Ltd 赤外線レンズ及び赤外線カメラ
JP2009063942A (ja) * 2007-09-10 2009-03-26 Sumitomo Electric Ind Ltd 遠赤外線カメラ用レンズ、レンズユニット及び撮像装置
JP2011128538A (ja) 2009-12-21 2011-06-30 Fujifilm Corp 赤外線用結像レンズおよび撮像装置
WO2016027786A1 (ja) 2014-08-20 2016-02-25 コニカミノルタ株式会社 遠赤外線レンズ,撮像光学装置及びデジタル機器
JP2019048752A (ja) * 2017-09-12 2019-03-28 日本電気硝子株式会社 カルコゲナイドガラス材
WO2020105719A1 (ja) 2018-11-21 2020-05-28 日本電気硝子株式会社 カルコゲナイドガラスレンズ

Also Published As

Publication number Publication date
CN116745676A (zh) 2023-09-12
JPWO2022130909A1 (ja) 2022-06-23
US20240019668A1 (en) 2024-01-18
EP4266105A1 (en) 2023-10-25

Similar Documents

Publication Publication Date Title
US8384996B2 (en) Double image pickup optical system and image pickup apparatus provided therewith
JP5906859B2 (ja) 赤外線用光学系
KR101671451B1 (ko) 촬영 렌즈 광학계
JP2007219520A (ja) 超小型撮像光学系
CN107656356B (zh) 光学成像系统
CN108267838B (zh) 光学成像系统
JP2006162829A (ja) 広角撮像レンズ及び撮像装置
CN110441893B (zh) 光学成像系统
CN113791489B (zh) 光学镜头
CN110568590A (zh) 一种星光级光学镜头及其成像方法
CN115494623B (zh) 光学镜头
CN210465835U (zh) 大光圈长波长红外线热成像镜头
CN114415350B (zh) 光学镜头
JP2001033689A (ja) 明るく広角な赤外線レンズ
CN115128771A (zh) 光学镜头
US9477068B2 (en) Imaging lens and imaging apparatus
CN210742599U (zh) 一种星光级光学镜头
CN114051590A (zh) 摄像透镜以及摄像装置
WO2022130909A1 (ja) 赤外線撮像レンズ及び赤外線カメラ
US9036279B2 (en) Imaging lens and imaging apparatus
CN114740599B (zh) 光学系统、摄像模组和电子设备
CN113253431B (zh) 红外共焦镜头及成像设备
CN110196486A (zh) 一种75mm衍射面红外长波光学无热化镜头及成像方法
WO2023008148A1 (ja) 赤外線撮像レンズ
CN114002819A (zh) 一种大孔径高清昼夜两用定焦光学镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21906272

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022569809

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18256263

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180083831.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021906272

Country of ref document: EP

Effective date: 20230717