WO2022130651A1 - 薄板状単結晶製造装置および薄板状単結晶製造方法 - Google Patents

薄板状単結晶製造装置および薄板状単結晶製造方法 Download PDF

Info

Publication number
WO2022130651A1
WO2022130651A1 PCT/JP2021/005139 JP2021005139W WO2022130651A1 WO 2022130651 A1 WO2022130651 A1 WO 2022130651A1 JP 2021005139 W JP2021005139 W JP 2021005139W WO 2022130651 A1 WO2022130651 A1 WO 2022130651A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin plate
single crystal
shaped
shaped single
raw material
Prior art date
Application number
PCT/JP2021/005139
Other languages
English (en)
French (fr)
Inventor
勇 進藤
Original Assignee
株式会社クリスタルシステム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021002285A external-priority patent/JP2022094878A/ja
Application filed by 株式会社クリスタルシステム filed Critical 株式会社クリスタルシステム
Priority to EP21794699.5A priority Critical patent/EP4265827A1/en
Priority to US17/610,890 priority patent/US11939696B2/en
Priority to KR1020217037208A priority patent/KR20230118717A/ko
Priority to CN202180003335.7A priority patent/CN114945712A/zh
Publication of WO2022130651A1 publication Critical patent/WO2022130651A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/14Heating of the melt or the crystallised materials
    • C30B15/16Heating of the melt or the crystallised materials by irradiation or electric discharge
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/002Continuous growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/10Crucibles or containers for supporting the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/30Mechanisms for rotating or moving either the melt or the crystal
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
    • C30B35/002Crucibles or containers

Definitions

  • the present invention relates to a thin plate-shaped single crystal manufacturing apparatus and a thin plate-shaped single crystal manufacturing method capable of continuously manufacturing a thin plate-shaped single crystal having a thickness of about several hundred ⁇ m.
  • semiconductor silicon crystals are the main substrate material.
  • the general-purpose size of the substrate is 155 mm square and about 0.3 mm thick, and this general-purpose size silicon crystal substrate is treated to enable high-efficiency solar power generation, and electrodes for extracting the generated power are attached.
  • the product is called a "cell”, and the product in which a large number of these cells are arranged in a plane is called a "module”. This module is installed according to the usage environment and used as a solar power generation device.
  • HIT type collecting all the electrodes that take out the generated electricity on the back side, and removing the electrodes from the front side.
  • phosphorus must be added homogeneously in the optimum composition.
  • the first method is a one-way solidification method in which the raw material is melted in a large quartz crucible and solidified from the bottom to the top, and the obtained large crystal mass is cut into a general-purpose size to manufacture a crystal substrate. How to do it.
  • the crystal mass produced by this method is a P-type polycrystal to which boron is added, and in principle, this one-way solidification method produces an N-type single crystal substrate necessary for the highly efficient solar cell described above. Can't be done.
  • the second method is to melt the raw material in a quartz pot, immerse the seed single crystal in the obtained melt, and pull it upward while thickening it.
  • This is a method of manufacturing a general-purpose size single crystal substrate by cutting a round bar-shaped single crystal.
  • the manufacturing cost of the single crystal rod obtained by the pulling method increases as the diameter of the single crystal rod increases.
  • a single crystal rod having a diameter of about 250 mm is required to obtain a general-purpose size substrate, but in order to reduce the manufacturing cost, a single crystal rod having a diameter of about 200 mm is used to manufacture a general-purpose size substrate. Therefore, the shape is such that the four corners of the square are missing, and the efficiency is naturally lower than that of an accurate square product.
  • the second problem of the pull-up method is that the concentration of phosphorus added to make it N-type cannot be homogenized.
  • the phosphorus concentration in the melt melted by adding phosphorus to the raw material silicon is uniform, but the phosphorus concentration in the portion initially solidified as a single crystal is lower than the phosphorus concentration in the melt. This phenomenon is called a "distribution phenomenon", and the ratio of the phosphorus concentration in the melt to the phosphorus concentration in the solidified product is called the "partition coefficient".
  • the partition coefficient of phosphorus is about 0.35, so the phosphorus concentration in the first solidified part is thin and the difference remains in the melt. Therefore, as the solidification progresses, the phosphorus concentration in the melt increases, and the phosphorus concentration in the solidified product also increases according to the partition coefficient. Therefore, the optimum composition portion is limited to a part of the obtained single crystal.
  • the concentration of phosphorus becomes too high and it cannot be used for solar cells. Therefore, the production work of the single crystal is stopped, the atmosphere in the production furnace is maintained in the inert gas atmosphere, the product is taken out while maintaining the raw material melt temperature, and the residual raw material melt is replenished with new granular raw materials.
  • a manufacturing method is adopted in which the original raw material melt composition is restored and the production of the second single crystal is restarted.
  • the quartz crucible that holds the raw material melt is consumed, so the number of times of repeated use is 2 times, or even if a specially prepared high quality quartz crucible is used, it is limited to 3 times at most. be.
  • the first method is to insert a jig called a die (DIE) in which a slit is provided in the raw material melt melted in the rutsubo, and to make the raw material melt that comes out from the slit of the die (DIE) to the upper part by surface tension.
  • DIE die
  • the second method is a method named ESR (Edge Stabilized Ribbon) method, which uses a string instead of the above-mentioned die (DIE).
  • ESR Electronic Stabilized Ribbon
  • DIE above-mentioned die
  • the third method is a method named Dendritic web (dendritic cloth) growth method.
  • Dendrites dendritic crystals
  • This method is a method for producing thin plate-like crystals by utilizing the properties of this dendrite (dendritic crystal).
  • This method is a method that does not use jigs or strings like the EFG method and ESR method, and it is said that a single crystal can be grown if the growth is optimally controlled.
  • a single crystal cannot be produced unless the first dendrite (dendritic crystal) is made into a single crystal.
  • the first dendrite dendritic crystal
  • Silicon monoxide (SiO) produced by the reaction is mixed as a solid solution in the silicon crystal that is the product, and is a major factor in the deterioration of the performance as a single crystal. Therefore, in order to produce a high-quality single crystal, a production method that does not require the use of a quartz crucible is desirable.
  • the raw material rods that can be used in the high frequency floating zone melting method are specially prepared and highly precise products, and such raw material rods are expensive, the supply amount is limited, and low cost is expected. Not suitable for use. Furthermore, it is extremely difficult to produce a thin plate-shaped single crystal by this high-frequency floating zone melting method, and there is no report that it was produced.
  • a method using infrared rays is known.
  • an infrared floating zone melting method is known in which a raw material powder is processed into a rod shape, which is locally heated to melt and solidify to produce a single crystal rod. ..
  • the melt formed by heating with infrared rays is held on the raw material rod by the surface tension of the melt itself, and the raw material is continuously melted and solidified.
  • a method of irradiating infrared rays from a horizontal direction has been conventionally adopted.
  • a single crystal having a large diameter cannot be produced by this horizontal irradiation method.
  • a top melting method that enables the production of single crystals with a large diameter by irradiating the upper surface of a single crystal with a large diameter placed at the bottom with infrared rays to melt it and dropping the raw material melt that melted the raw material onto it.
  • the diameter of the single crystal that can be produced is not limited in principle, and the range of application is dramatically expanded.
  • ferroelectric materials such as lithium niobate and lithium tantalate
  • phosphor materials such as lutetium silicate and gadolinium silicate
  • oxide materials such as yttrium aluminum garnet and gadolinium gallium garnet, which are laser materials, are used.
  • a round bar-shaped single crystal is manufactured by a pulling method, and this is cut into a thin plate-shaped single crystal having a thickness of about 0.3 mm and used for manufacturing various devices.
  • contamination of the crucible material into the product is unavoidable, and in principle, the concentration of the useful additive in the product cannot be homogenized due to the above-mentioned distribution phenomenon. This causes inconvenience in manufacturing high quality devices.
  • the present invention has been made in view of such circumstances, and a thin plate-shaped single crystal having an optimum composition and a homogeneous additive concentration and a thickness of about several hundred ⁇ m can be continuously produced at low cost. It is an object of the present invention to provide a thin plate-shaped single crystal manufacturing apparatus and a thin plate-shaped single crystal manufacturing method capable of manufacturing with high accuracy.
  • the present invention has been invented in order to solve the above-mentioned problems in the prior art.
  • the thin plate-shaped single crystal manufacturing apparatus of the present invention An infrared irradiation means for irradiating the upper side surface of a raw material mass for producing a thin plate-shaped single crystal (hereinafter, also referred to as a raw material mass) with infrared rays to melt the surface of the upper side surface.
  • An elevating means for immersing the lower side surface of the thin plate-shaped seed single crystal in the melt obtained by melting by the infrared irradiation means and obtaining the surface of the upper side surface, and pulling the thin plate-shaped seed single crystal upward from the soaked state.
  • the additive concentration is uniform with the optimum composition, and a thin plate-shaped single crystal having a thickness of about several hundred ⁇ m can be continuously high at low cost. Can be manufactured with precision. Furthermore, a thin plate-like single crystal having a homogeneous composition of a so-called mismatched melting substance such as a decomposition-melting substance or a solid solution substance can be produced with high accuracy.
  • the infrared ray emitted from the infrared irradiation means is a laser beam.
  • the laser beam can accurately heat a predetermined range of the raw material mass, so that the melt does not spill from the upper side surface of the raw material mass, and the melt (melt pool) is surely collected. Can continue to form.
  • the thin plate-shaped single crystal manufacturing apparatus of the present invention is used.
  • the shape of the irradiation area of the laser beam is a hollow square shape elongated in the horizontal direction.
  • the peripheral region excluding the central portion of the upper side surface of the raw material mass for producing a thin plate-shaped single crystal is characterized by irradiating a laser beam so as to form the hollow square-shaped irradiation region.
  • the central portion of the upper side surface of the raw material mass can be irradiated.
  • the peripheral region to be removed is melted first, and the central portion not exposed to the laser beam is melted by heat conduction from the melt in the peripheral region previously melted.
  • the temperature in the central part can be controlled lower than the temperature in the peripheral region.
  • a linear laser beam may be irradiated from all sides.
  • the laser beam may be applied to the upper side surface of the raw material mass from an obliquely upper direction or from directly above to a vertical direction, but the heat conduction characteristics of the single crystal material and the thin plate-like single to be produced are used. It is preferable that the irradiation angle can be adjusted to the optimum angle according to the thickness of the crystal.
  • the elevating means It is a winding means for continuously winding the manufactured thin plate-shaped single crystal into a roll shape.
  • the winding means A winding shaft that continuously winds the thin plate-shaped single crystal, and A rotating means for rotating the winding shaft and Equipped with It is characterized in that the thin plate-shaped seed single crystal is suspended from the winding shaft.
  • the winding means is configured in this way, the continuously manufactured thin plate-shaped single crystal can be reliably wound around the winding shaft, and the device will not be unnecessarily large. Further, since the produced thin plate-shaped single crystal is in the form of a roll, it can be easily transported at the time of shipment, and the handleability can be improved.
  • the thin plate-shaped single crystal manufacturing apparatus of the present invention is used.
  • the thin plate-shaped seed single crystal It is characterized in that it is suspended from the winding shaft via a plurality of thin wires.
  • the thin plate-shaped single crystal manufacturing apparatus of the present invention is used.
  • the thickness of the part where the thin wire is attached is The size is preferably equal to or less than the thickness of the thin plate-shaped single crystal to be produced.
  • the thin plate-shaped single crystal if the thickness of the portion to which the thin wire is attached is set to a size equal to or less than the thickness of the manufactured thin plate-shaped single crystal, the thin plate-shaped single crystal is formed on the winding shaft. It is possible to surely prevent the surface of the thin plate-shaped single crystal from coming into contact with the fine wire and causing damage when the thin plate-shaped single crystal is wound.
  • the thin plate-shaped single crystal manufacturing apparatus of the present invention is used. On the upper side surface of the raw material mass for producing a thin plate-shaped single crystal, It is characterized in that a required amount of a liquid phase composition that coexists in equilibrium with the composition of the thin plate-shaped single crystal to be produced is first arranged.
  • the thin plate-shaped single crystal having a homogeneous and optimum composition can be continuously produced. Can be manufactured to.
  • the thin plate-shaped single crystal manufacturing apparatus of the present invention is used. Between the elevating means and the raw material mass for producing a thin plate-shaped single crystal, It is characterized in that an anti-sway member for preventing the continuously manufactured thin plate-shaped single crystal from shaking is provided.
  • the anti-sway member is arranged in this way, it is possible to prevent the manufactured thin plate-shaped single crystal from swinging too much from side to side. Therefore, the growth position can be kept within a predetermined range without causing deviation, and a high-quality thin plate-shaped single crystal can be continuously and stably produced.
  • the thin plate-shaped single crystal manufacturing apparatus of the present invention is used. Between the elevating means and the raw material mass for producing a thin plate-shaped single crystal, It is preferable that a shielding member is provided so as to prevent the radiant heat generated from the melt from reaching the continuously produced thin plate-shaped single crystal.
  • the thin plate-shaped single crystal solidifies while being pulled up from the melt, but when the radiant heat emitted from the melt reaches the manufactured thin plate-shaped single crystal, the production speed of the thin plate-shaped single crystal can be accelerated. It will be difficult. Therefore, by providing the shielding member, it becomes difficult for the radiant heat of the melt to reach the produced thin plate-shaped single crystal, and the production efficiency of the thin plate-shaped single crystal can be improved.
  • the thin plate-shaped single crystal manufacturing apparatus of the present invention is used.
  • the raw material mass for producing a thin plate-shaped single crystal is characterized in that it is a substantially rectangular parallelepiped. With such a shape, a melt (melt pool) can be continuously provided on the surface of the upper side surface of the raw material mass by irradiation with infrared rays.
  • the size of the upper side surface of the raw material mass for producing the thin plate-shaped single crystal shall be set to be several mm or more larger in both the thickness direction and the lateral direction than the size of the lower side surface of the thin plate-shaped seed single crystal. It is characterized by.
  • the size of the raw material mass and the thin plate-shaped seed single crystal is set in this way, the entire lower surface of the thin plate-shaped seed single crystal can be immersed in the melt, and the thin plate-shaped single crystal of a desired size can be continuously arranged. Can be manufactured as a target.
  • the thin plate-shaped single crystal manufacturing apparatus of the present invention is used.
  • the position of the mounting table (especially the position in the vertical direction) can be controlled in this way, the initial position is maintained even if the liquid level position of the melt of the raw material mass is lowered due to the pulling up of the thin plate-shaped single crystal.
  • the position of the raw material mass can be raised as described above, and the liquid level position can always be controlled to the same position. Therefore, it suffices to always fix the infrared irradiation position at the same position, and a thin plate-shaped single crystal can be continuously produced stably and with good yield.
  • the irradiation intensity of the laser beam does not change even if the liquid level position of the melt of the raw material mass is lowered. It is not necessary to control the position to keep the liquid level position of the mass melt constant.
  • the elevating means It is characterized in that the lower side surface of the thin plate-shaped seed single crystal is immersed in the center of the melt on the upper side surface of the raw material mass for producing a thin plate-shaped single crystal melted by the infrared irradiation means.
  • the central part of the melt is a part where the melt is continuously accumulated, and if the lower side surface of the thin plate-shaped seed single crystal is immersed in this center, the thin plate-shaped seed single crystal is continuously pulled upward by an elevating means. It is possible to produce a thin plate-shaped single crystal.
  • the thin plate-shaped single crystal manufacturing apparatus of the present invention is used.
  • a preheating means for preheating the raw material mass for producing a thin plate-shaped single crystal is provided.
  • the thin plate-shaped single crystal manufacturing apparatus of the present invention is used. At least the raw material mass for producing a thin plate-shaped single crystal is arranged in the chamber. It is preferable that the elevating means is arranged on the upper part of the chamber. If the raw material mass is arranged in the chamber in this way, a thin plate-shaped single crystal can be produced in an atmosphere that matches the single crystal material.
  • the chamber is provided with a gas introduction device that fills the inside of the chamber with an atmospheric gas containing an additive.
  • the inside of the chamber can be made to have an atmosphere that matches the characteristics of the material of the thin plate-shaped single crystal to be manufactured, whereby the additive concentration is the optimum composition and the uniform high quality.
  • a thin plate-shaped single crystal can be produced.
  • the elevating means It is characterized in that a plurality of them are provided on the upper part of the raw material block for producing a thin plate-shaped single crystal.
  • the thin plate-shaped single crystals are compared with the case where one elevating means is used.
  • the manufacturing efficiency of the product can be significantly improved.
  • the thickness of the thin plate-shaped seed single crystal is preferably in the range of 300 ⁇ m to 500 ⁇ m. With such a thickness, it is possible to continuously produce a high-purity thin plate-shaped single crystal and wind it up to achieve a longer length.
  • the thickness of the thin plate-shaped single crystal is preferably in the range of 100 ⁇ m to 3000 ⁇ m.
  • the thickness of the thin plate-shaped single crystal to be produced can be produced in the range of 100 ⁇ m to 3000 ⁇ m, but it is preferably in the range of 100 ⁇ m to 500 ⁇ m when it is assumed that the single crystal is wound by a winding means. .. However, it can be adjusted to be thinner than 100 ⁇ m or thicker than 500 ⁇ m by adjusting the melt temperature and the pulling speed.
  • the thickness of the thin plate-shaped single crystal is preferably in the range of 200 ⁇ m to 400 ⁇ m.
  • the method for producing a thin plate-shaped single crystal of the present invention is: A melting step of irradiating the upper side surface of the raw material mass for producing a thin plate-shaped single crystal with infrared rays via an infrared irradiation means to melt the surface of the upper side surface of the raw material mass for producing a thin plate-shaped single crystal.
  • the lower side surface of the thin plate-shaped single crystal is dipped in the melt obtained on the surface of the upper side surface of the raw material mass for producing the thin plate-shaped single crystal via an elevating means, and the thin plate-shaped single crystal is used.
  • the method for producing a thin plate-shaped single crystal of the present invention is: In the melting step, The infrared ray emitted from the infrared irradiation means is a laser beam.
  • the method for producing a thin plate-shaped single crystal of the present invention is: In the melting step, The shape of the irradiation area of the laser beam is a hollow square shape elongated in the horizontal direction.
  • the peripheral region excluding the central portion of the upper side surface of the raw material mass for producing a thin plate-shaped single crystal is characterized by irradiating a laser beam so as to form the hollow square-shaped irradiation region.
  • the central portion of the upper side surface of the raw material mass is irradiated.
  • the peripheral region to be removed is melted first, and the central portion not exposed to the laser beam is melted by heat conduction from the melt in the peripheral region previously melted.
  • the temperature of the central portion can be controlled to be lower than the temperature of the peripheral region.
  • the contradictory actions of melting the raw material mass and solidifying from the melt can be continued stably and with good controllability. That is, by having such a temperature distribution in the melt pool on the upper side surface of the raw material mass, the thin plate-shaped single crystal can be stably and continuously grown from the central portion.
  • the laser beam may be applied to the upper side surface of the raw material mass from an obliquely upper direction or from directly above to a vertical direction, but it depends on the thermal conductivity and thickness of the thin plate-shaped single crystal material. Therefore, it is preferable to adjust the irradiation angle to the optimum angle. For materials with high thermal conductivity, the irradiation angle of the laser beam should be controlled to a large horizontal angle, and for materials with low thermal conductivity, the irradiation angle of the laser beam should be controlled to be small. Is preferable.
  • the method for producing a thin plate-shaped single crystal of the present invention is: After the continuous manufacturing process A winding process in which the continuously manufactured thin plate-shaped single crystal is wound into a roll, and It is characterized by further having. If the winding step is provided in this way, the continuously produced thin plate-shaped single crystal can be reliably wound into a roll shape, and the thin plate-shaped single crystal can be efficiently produced.
  • the method for producing a thin plate-shaped single crystal of the present invention is: In the melting step, When the thin plate-shaped single crystal to be produced is a decomposition-melting substance, the composition of the liquid phase (this is called a solvent phase) that coexists in equilibrium with the composition is first prepared in a required amount to produce the thin plate-like single crystal. It is characterized in that it is placed on the upper side surface of the raw material mass.
  • the method for producing a thin plate-shaped single crystal of the present invention is: In the melting step, When the thin plate-shaped single crystal to be produced is a solid solution substance containing an additive, a composition of a liquid phase (this is called a solvent phase) that coexists in equilibrium with the composition is first provided in a required amount in the thin plate-like shape. It is characterized in that it is arranged on the upper side surface of a raw material mass for single crystal production.
  • the thin plate-shaped single crystal is first solidified from the solvent phase formed on the upper side surface of the raw material mass, the amount of the solvent phase is reduced and the composition is reduced in the number of crystal components. Therefore, below the solvent phase, the ultimate intensity of the laser beam increases and the temperature rises, so that the raw material mass melts.
  • the thin plate-shaped single crystal having a homogeneous and optimum composition is placed first.
  • the method for producing a thin plate-shaped single crystal of the present invention is: In the growing process, It is characterized in that the lower side surface of the thin plate-shaped seed single crystal is immersed in the center of the melt on the surface of the upper side surface of the raw material mass for producing the melted thin plate-shaped single crystal.
  • the central part of the melt is a part where the melt is continuously accumulated, and if the lower side surface of the thin plate-shaped seed single crystal is immersed in this center, the thin plate-shaped seed single crystal is continuously pulled upward by an elevating means. It is possible to produce a thin plate-shaped single crystal.
  • the surface of the upper side surface of the raw material mass for thin plate-shaped single crystal manufacturing is melted with infrared rays to form a melt, and the melt is formed in the melt.
  • a thin plate-shaped single crystal with an optimum composition and homogeneity and a thickness of about several hundred ⁇ m can be produced at low cost and continuously with high accuracy. Can be manufactured.
  • FIG. 1 is a schematic view of a thin plate-shaped single crystal manufacturing apparatus according to the first embodiment of the present invention.
  • FIG. 2 is a diagram showing the shape of the irradiation area of the laser beam emitted from the infrared irradiation means.
  • FIG. 3 is a conceptual diagram of a raw material block for manufacturing a thin plate-shaped single crystal in the thin plate-shaped single crystal manufacturing apparatus of the present invention as viewed from the upper side surface side.
  • FIG. 4 is another schematic view of the thin plate-shaped single crystal manufacturing apparatus according to the first embodiment of the present invention.
  • FIG. 1 is a schematic view of a thin plate-shaped single crystal manufacturing apparatus according to the first embodiment of the present invention.
  • FIG. 2 is a diagram showing the shape of the irradiation area of the laser beam emitted from the infrared irradiation means.
  • FIG. 3 is a conceptual diagram of a raw material block for manufacturing a thin plate-shaped single crystal in the thin plate-shaped single crystal manufacturing
  • FIG. 5 is a diagram for explaining a state of a melt (melt pool) formed on the upper side surface of a raw material mass for manufacturing a thin plate-shaped single crystal in the thin plate-shaped single crystal manufacturing apparatus shown in FIG.
  • FIG. 6 is a diagram for explaining a state of a melt (melt pool) formed on the upper side surface of a raw material mass for manufacturing a thin plate-shaped single crystal in the thin plate-shaped single crystal manufacturing apparatus shown in FIG.
  • FIG. 7 is a schematic perspective view for explaining the states of the raw material mass for producing a thin plate-shaped single crystal, the thin plate-shaped seed single crystal, and the thin plate-shaped single crystal.
  • FIG. 8 is a schematic view of the thin plate-shaped single crystal manufacturing apparatus according to the second embodiment of the present invention.
  • FIG. 9 is a schematic view of another thin plate-shaped single crystal manufacturing apparatus according to the second embodiment of the present invention.
  • FIG. 10 is a schematic view of a thin plate-shaped single crystal manufacturing apparatus according to a third embodiment of the present invention.
  • FIG. 11 is an enlarged view of a main part of the thin plate-shaped single crystal manufacturing apparatus shown in FIG.
  • FIG. 12 is a schematic view showing each step of the thin plate-shaped single crystal manufacturing method of the present invention.
  • FIG. 13 is a schematic view showing each step of the thin plate-shaped single crystal manufacturing method of the present invention.
  • thin plate-shaped single crystal manufacturing apparatus and the thin plate-shaped single crystal manufacturing method of the present invention will be described in more detail with reference to the drawings.
  • thin plate-shaped single crystal manufacturing apparatus and the thin plate-shaped single crystal manufacturing method of the present invention thin plate-shaped single crystals having an optimum composition and a uniform thickness and a thickness of about several hundred ⁇ m can be continuously produced at low cost. It is for manufacturing with high precision.
  • the thin plate-shaped single crystal manufacturing apparatus 10 first has a raw material mass for manufacturing a thin plate-shaped single crystal on a mounting table 82 arranged below in the chamber 80. (Hereinafter, also referred to as a raw material mass) 12 is provided.
  • the raw material mass 12 has a substantially rectangular parallelepiped shape, and is, for example, a plate-like body such as a book.
  • an infrared irradiation means 20 for irradiating the upper side surface 14 of the raw material mass 12 of the substantially rectangular parallelepiped with infrared rays 16 to melt the surface of the upper side surface 14 is provided on the upper side of the chamber 80.
  • the infrared ray 16 emitted from the infrared irradiation means 20 is preferably laser light 16a.
  • the shape of the irradiation area of the laser beam 16a is a hollow square shape elongated in the horizontal direction (vertical direction in FIG. 2), and as shown in FIG. 3, the upper side surface 14 of the raw material mass 12 It is preferable to irradiate the peripheral region excluding the central portion of the above with the laser beam 16a aligned so as to form the horizontally elongated hollow square irradiation region.
  • the laser light 16a emitted from the infrared irradiation means 20 is incident into the chamber 80 from the window 22 provided on the side of the chamber 80, and is on the raw material mass 12 via the reflector 24 in the chamber 80. It is preferable to irradiate the peripheral region excluding the central portion of the side surface 14. At this time, even if the laser beam 16a irradiates the upper side surface 14 of the raw material mass 12 from an obliquely upward direction as shown in FIG. 1, the upper side surface 14 of the raw material mass 12 is as shown in FIG.
  • the irradiation may be performed in the vertical direction from directly above, but the irradiation angle is controlled to the optimum angle by matching the thermal conductivity of the single crystal material and the thickness of the thin plate-shaped single crystal 40 to be manufactured.
  • the peripheral region excluding the central portion of the upper side surface 14 of the raw material mass 12 is melted before the central portion, and the central portion not exposed to the laser beam 16a is the melt 18 in the peripheral region previously melted. It will be melted by heat conduction from.
  • the temperature of the central portion can be controlled to be lower than the temperature of the peripheral region, and by having such a temperature distribution in the melt 18 (melt pool) on the upper side surface 14 of the raw material mass 12, this center
  • the thin plate-shaped single crystal 40 can be stably and continuously grown from the portion.
  • a preheating means 70 for preheating the raw material mass 12 is provided around the raw material mass 12, and the infrared irradiation means 20 provides an upper side surface of the raw material mass 12.
  • the infrared irradiation means 20 Before melting the surface of 14, it is preferable to heat the raw material mass 12 to near the melting point in advance. If it is heated in advance in this way, the irradiation amount of the infrared ray 16 by the infrared irradiation means 20 can be significantly reduced, and by finely adjusting the position and the irradiation amount, the melt 18 (melt pool) can be used. The range of can be fine-tuned.
  • the lower side surface 34 of the thin plate-shaped seed single crystal 32 is immersed in the melt 18 obtained by being melted by the infrared irradiation means 20 and obtained on the surface of the upper side surface 14 of the raw material mass 12.
  • the elevating means 30 for pulling up the thin plate-shaped seed single crystal 32 from the soaked state is provided.
  • the elevating means 30 is not particularly limited, but for example, the winding means 50 for continuously winding the manufactured thin plate-shaped single crystal 40 into a roll shape is preferable. As a specific configuration, it has a winding shaft 36 for continuously winding the manufactured thin plate-shaped single crystal 40, and a rotating means 38 for rotating the winding shaft 36.
  • the size of the lower side surface 34 of the thin plate-shaped seed single crystal 32 is set to be one size smaller than the upper side surface 14 of the raw material mass 12.
  • the size of the upper side surface 14 of the raw material mass 12 is several mm in both the thickness direction and the lateral direction than the size of the lower side surface 34 of the thin plate-shaped seed single crystal 32.
  • it is set large. That is, the size is set so that the lower side surface 34 of the thin plate-shaped seed single crystal 32 can be completely immersed in the melt 18.
  • the thickness of the thin plate-shaped single crystal 40 to be produced can be adjusted by the melt temperature, the pulling speed of the thin plate-shaped seed single crystal 32, etc. in a steady state, and should be, for example, a thickness of about 100 ⁇ m to over 3000 ⁇ m. Can be done. However, if the thickness of the thin plate-shaped single crystal 40 exceeds 500 ⁇ m, the winding means 50 becomes large. Therefore, if the thickness exceeds 500 ⁇ m, the thin plate-shaped single crystal 40 can be pulled upward without being wound into a product. In particular, in the case of producing a silicon thin plate-shaped single crystal for a solar cell, the thickness of the thin plate-shaped single crystal 40 is preferably in the range of 200 ⁇ m to 400 ⁇ m.
  • melt temperature There is a correlation between the melt temperature and the pull-up speed. That is, when the melt temperature is high, the amount of cooling required for the growth of the thin plate-shaped single crystal 40 increases, so that the pulling speed is slowed down, and when the melt temperature is low, the pulling speed of the thin plate-shaped single crystal 40 is increased.
  • the productivity of the thin plate-shaped single crystal 40 can be increased by accelerating. However, if the pulling speed is too fast, so-called "cell growth" tends to occur and the crystal characteristics of the thin plate-shaped single crystal 40 deteriorate. Therefore, it is preferable to adjust the pulling speed as appropriate.
  • the thickness of the thin plate-shaped seed single crystal 32 immersed in the melt 18 may be, for example, about 300 ⁇ m to 500 ⁇ m. With the thin plate-shaped single crystal 32 having such a thickness, the thin plate-shaped single crystal 40 having a desired thickness can be continuously produced by adjusting the melt temperature and the pulling speed, which is preferable.
  • the thickness of the thin plate-shaped single crystal 40 and the thickness of the thin plate-shaped seed single crystal 32 are shown differently, which are shown in the figure of the thin plate-shaped single crystal 40 and the thin plate-shaped seed. It is intentionally made so that the single crystal 32 can be distinguished, and does not particularly limit the relationship between the thicknesses of the two.
  • the thin plate-shaped seed single crystal 32 (three in FIG. 7) on the winding shaft 36 of the winding means 50 via a thin wire 52 that is strong against heat and has high strength.
  • the thin plate-shaped seed single crystal 32 if the thickness of the portion to which the thin wire 52 is attached is set to be equal to or less than the thickness of the thin plate-shaped seed single crystal 32, the thin plate-shaped single crystal 40 is wound around the winding shaft 36. It is possible to reliably prevent the surface of the thin plate-shaped single crystal 40 from coming into contact with the fine wire 52 and causing damage.
  • the method of attaching the thin wire 52 to the thin plate-shaped seed single crystal 32 is not particularly limited, but for example, several through holes for connecting the thin wire 52 are provided at the end of the thin plate-shaped seed single crystal 32, and the through holes are provided.
  • the thin wire 52 is connected to the thin plate-shaped seed single crystal 32 by providing concave grooves on both sides of the thin plate-shaped seed single crystal 32, the fine wire 52 fits in the concave groove and is formed from the thin plate-shaped seed single crystal 32. It is also good to prevent the thin wire 52 from protruding outward. By doing so, when the thin plate-shaped single crystal 40 is wound up, it is possible to reliably prevent the surface of the thin plate-shaped single crystal 40 from coming into contact with the fine wire 52 and causing damage.
  • the thin plate-shaped single crystal 40 continuously manufactured between the elevating means 30 and the raw material mass 12 is prevented from shaking so that the growth position does not shift. It is possible to provide an anti-sway member 60 that stays within a predetermined range, and a shielding member 62 that shields the radiant heat generated from the melt 18 so that it does not easily reach the continuously manufactured thin plate-shaped single crystal 40. preferable.
  • the anti-sway member 60 By providing the anti-sway member 60, it is possible to prevent the manufactured thin plate-shaped single crystal 40 from swinging excessively to the left and right and causing the growth position to shift, and it is possible to continuously manufacture the high-quality thin plate-shaped single crystal 40. can.
  • the production speed of the thin plate-shaped single crystal 40 can be increased. That is, the method of melting the raw material and solidifying it as a single crystal is called a melt method, and the growth rate of the single crystal in this melt method is the latent heat of crystallization released when the crystal solidifies into the melt. It is accelerated by efficiently exhausting heat by heat conduction in the contacting single crystal.
  • the shielding member 62 is provided so as not to block the optical path of the infrared ray 16 (laser light 16a), the amount of radiant heat reaching the thin plate-shaped single crystal 40 is reduced, and the temperature of the thin plate-shaped single crystal 40 is not raised. Therefore, the latent heat of crystallization can be efficiently exhausted, and the production efficiency of the thin plate-shaped single crystal 40 can be improved.
  • the thin plate-shaped single crystal 40 can be continuously produced by using the thin plate-shaped single crystal manufacturing apparatus 10, but when the thin plate-shaped single crystal 40 is continuously produced, the raw material mass is produced.
  • the amount of melt 18 obtained on the surface of the upper side surface 14 of the 12 is reduced, and the position of the upper side surface 14 is lowered. If this happens, it is necessary to control the infrared irradiation position by the infrared irradiation means 20 so as to be a desired position.
  • the mounting table 82 on which the raw material mass 12 is placed is provided with a position controlling means 84 for controlling the vertical position of the mounting table 82.
  • the mounting table 82 can be provided.
  • the position of the melt 18 on the upper side surface 14 of the raw material mass 12 can be kept at the same position as the initial position, and the liquid level position of the melt 18 can always be the same position.
  • the thin plate-shaped single crystal 40 can be continuously manufactured with a stable yield and good yield.
  • the thin plate-shaped single crystal manufacturing apparatus 10 shown in FIGS. 4 and 6. Since the temperature of the melt 18 does not change even if the position of the upper side surface 14 of the raw material mass 12 changes, it is not necessary to control the position of the upper side surface 14 of the raw material mass 12.
  • the raw material mass 12 used in the above-mentioned thin plate-shaped single crystal manufacturing apparatus 10 is a raw material mass 12 having the composition of the material of the thin plate-shaped single crystal 40 to be manufactured.
  • the material of the thin plate-shaped single crystal 40 is a decomposition-melting substance, even if the raw material mass 12 is melted and solidified as it is by the main thin plate-shaped single crystal manufacturing apparatus 10, the target thin plate-shaped single crystal is obtained. You can't get 40.
  • the composition of the liquid phase that coexists in equilibrium with the composition of the material of the thin plate-shaped single crystal 40 produced there is placed on the upper side surface 14 of the raw material mass 12 by the amount of the liquid phase, and this is first melted. In this way, the dissolved solvent is placed on the upper side surface 14 of the raw material mass 12.
  • the thin plate-shaped single crystal 40 When the thin plate-shaped single crystal 40 is produced in this way, the same amount of the raw material mass 12 solidified as the single crystal is melted, so that the amount and composition of the solvent do not change from the beginning to the end, and apparently the solvent phase. Seems to be moving while melting the raw material mass 12 and precipitating a single crystal.
  • This scheme is called the "solvent transfer method".
  • the thin plate-shaped single crystal 40 obtained by the present thin plate-shaped single crystal manufacturing apparatus 10 is a decomposition-melting substance or a solid solution substance containing an additive, the concentration of the additive in the obtained thin plate-shaped single crystal 40 is made uniform. It is important to use this "solvent transfer method".
  • the thin plate-shaped single crystal manufacturing apparatus 10 shown in FIGS. 8 and 9 basically has the same configuration as the thin plate-shaped single crystal manufacturing apparatus 10 of the first embodiment shown in FIGS. 1 to 7, and thus has the same configuration.
  • the components are designated by the same reference number, detailed description thereof will be omitted, and differences will be described.
  • the thin plate-shaped single crystal manufacturing apparatus 10 is a gas introduction apparatus in which the inside of the chamber 80 is filled with an atmospheric gas containing an additive in the chamber 80. It differs from the thin plate-shaped single crystal manufacturing apparatus 10 in the first embodiment in that 90 is provided.
  • the gas introduction device 90 is provided on the upper side of the chamber 80, and the atmospheric gas is introduced from the gas introduction device 90 into the chamber 80 via the introduction pipe 92. Further, a discharge pipe 94 is provided on the lower side of the chamber 80 so that the atmospheric gas can be discharged from the discharge pipe 94 to the outside of the chamber 80.
  • the inside of the chamber 80 can be maintained in a state of being filled with an atmospheric gas suitable for producing the thin plate-shaped single crystal 40, and the thin plate-shaped single crystal 40 having a uniform additive concentration and high quality can be continuously produced. Can be manufactured.
  • the atmosphere gas may be prepared according to the characteristics of the material of the thin plate-shaped single crystal 40 to be produced. For example, in the case of producing a thin plate-shaped single crystal of N-type silicon, phosphine (PH 3 ) is used as the atmosphere gas. It is preferable to introduce high-purity argon gas contained in the optimum concentration into the chamber 80.
  • a reflector 24 or the like for guiding (laser light 16a) to the upper side surface 14 of the raw material mass 12 is covered with a cover member 42, and atmospheric gas is positively introduced into the cover member 42 from the gas introduction device 90. It is also good to do so.
  • the atmospheric gas is introduced into the cover member 42 in this way, it is possible to prevent the evaporation generated from the melt 18 from adhering to the window 22, the reflector 24, and the like, and the additive concentration is uniform. It is possible to continuously produce a high-quality thin plate-shaped single crystal 40 with a stable yield and good yield.
  • the thin plate-shaped single crystal manufacturing apparatus 10 shown in FIGS. 10 and 11 basically has the same configuration as the thin plate-shaped single crystal manufacturing apparatus 10 of the first embodiment shown in FIGS. 1 to 7, and thus has the same configuration.
  • the components are designated by the same reference number, detailed description thereof will be omitted, and differences will be described.
  • the thin plate-shaped single crystal manufacturing apparatus 10 As shown in FIGS. 10 and 11, the thin plate-shaped single crystal manufacturing apparatus 10 according to the third embodiment of the present invention is provided with a plurality of elevating means 30 (two in FIG. 10) above the raw material mass 12. In that respect, it is different from the thin plate-shaped single crystal manufacturing apparatus 10 in the first embodiment.
  • two elevating means 30 are provided side by side on the upper side of the chamber 80, and thin plate-shaped seed single crystals 32, 32 are provided in the melt 18 on the upper side surface 14 of the raw material mass 12.
  • the thin plate-shaped single crystals 40 and 40 can be manufactured, respectively, by immersing the crystals and pulling them upward by the elevating means 30 and 30 (winding means 50 and 50), respectively. If a plurality of the elevating means 30 are provided on the upper part of the raw material mass 12 in this way, the production efficiency of the thin plate-shaped single crystal 40 can be significantly improved as compared with the case where the elevating means 30 is one.
  • the raw material lump 12 is placed on the mounting table 82 in the chamber 80 to seal the inside of the chamber 80, and the raw material lump 12 is placed on the upper portion of the upper side surface of the raw material lump 12 in the length direction of the raw material lump 12.
  • the thin plate-shaped seed single crystal 32 is arranged so that the extending directions of the thin plate-shaped seed single crystal 32 and the thin plate-shaped seed single crystal 32 coincide with each other.
  • the thin plate-shaped seed single crystal 32 is suspended from the winding shaft 36 of the winding means 50 via a thin wire 52.
  • the atmosphere is evacuated through an exhaust pipe (not shown), and an atmosphere gas matching the characteristics of the material of the thin plate-shaped single crystal 40 to be manufactured is a gas introduction device (not shown). Is introduced into the chamber 80 via.
  • the temperature of the raw material mass 12 is raised to near the melting point by the preheating means 70.
  • the upper side surface 14 of the raw material mass 12 is irradiated with infrared rays 16 (laser light 16a) via the infrared irradiation means 20, and the surface of the upper side surface 14 is melted.
  • the shape of the irradiation area of the infrared ray 16 (laser light 16a) is a hollow square shape elongated in the horizontal direction, and the peripheral region excluding the central portion of the upper side surface 14 of the raw material mass 12 is irradiated with the hollow square shape elongated in the horizontal direction.
  • the laser beam 16a is matched and irradiated so as to form a region.
  • the peripheral region excluding the central portion of the upper side surface 14 of the raw material mass 12 is melted before the central portion, and the central portion not exposed to the laser beam 16a is the melt 18 in the peripheral region previously melted. It is melted by heat conduction from.
  • the thin plate-shaped seed single crystal 32 was placed at the center of the melt 18 obtained on the upper side surface 14 of the raw material mass 12 via the elevating means 30 (winding means 50).
  • the lower side surface 34 is immersed, and the growth of the single crystal is started from the lower side surface 34 of the thin plate-shaped seed single crystal 32.
  • the thin plate-shaped seed single crystal 32 is pulled upward via the elevating means 30 (winding means 50) to continuously produce the thin plate-shaped single crystal 40.
  • the position of the mounting table 82 is moved upward via the position control means 84 with the continuous production of the thin plate-shaped single crystal 40.
  • the irradiation amount of the infrared ray 16 (laser light 16a) by the infrared irradiation means 20 is increased to raise the temperature of the melt 18, and the thin plate-shaped single crystal 40 is separated from the melt 18.
  • the thin plate-shaped single crystal 40 is completed. The production of 40 is completed.
  • Example 1 Using the thin plate-shaped single crystal manufacturing apparatus 10 of the present invention, a thin plate-shaped single crystal 40 of N-type silicon to which phosphorus was added was manufactured.
  • a cubic raw material mass 12 having a width of 400 mm, a thickness of 50 mm, and a height of 500 mm was used.
  • the thin plate-shaped seed single crystal 32 a silicon thin plate-shaped seed single crystal 32 having a (111) plane, a width of 350 mm, a thickness of 0.3 mm, and a height of 100 mm was used. Silicon has a property that a flat surface called a facet tends to appear in the (111) plane direction, and this flat surface is used as the plate surface of the thin plate-shaped seed single crystal 32.
  • the thin plate-shaped seed single crystal 32 was previously attached to the winding shaft 36 of the winding means 50 via three thin wires 52.
  • the raw material mass 12 was placed on the mounting table 82 in the chamber 80, and the chamber 80 was closed to create a vacuum state inside.
  • an atmospheric gas was introduced into the chamber 80.
  • the atmosphere gas high-purity argon gas was used, and a gas to which a required amount of phosphine (PH 3 ) gas was added in order to add phosphorus was used.
  • the raw material mass 12 is first heated to near the melting point by the preheating means 70, and after confirming the heating, the width 20 mm and the length 396 mm are formed in the peripheral region excluding the central portion and the outermost peripheral portion of the upper side surface 14 of the raw material mass 12.
  • the laser beam is emitted from the left and right at an angle of 60 degrees from the horizontal direction at a distance of 2 mm from the end portion, and at the same time, both ends of the raw material mass 12 in the length direction are on the center line of the raw material mass 12 and have a width of 6 mm at a distance of 2 mm from the end.
  • the laser beam 16a having the shape of the irradiation area perpendicular to the horizontal direction was irradiated at an angle of 60 degrees from the horizontal direction.
  • the shape of the irradiation area is a hollow square shape that is elongated in the horizontal direction as a whole. As a result, the entire area of the upper side surface 14 was melted.
  • the lower side surface 34 of the above-mentioned silicon thin plate-shaped seed single crystal 32 is immersed in the center of the melt 18 obtained by rotating the winding shaft 36 of the winding means 50 and melting the thin plate-shaped seed single crystal 32. While growing the thin plate-shaped single crystal 40 from the lower side surface 34, this time, the winding shaft 36 is rotated in the opposite direction, the thin plate-shaped seed single crystal 32 is pulled upward, and the thin plate-shaped single crystal is pulled up on the winding shaft 36 at the upper part. 40 was continuously wound into a roll to produce a long thin plate-shaped single crystal 40 having a length of more than 10 m.
  • the thin plate-shaped seed single crystal 32 is set on the winding shaft 36 of the winding means 50 by a carbon fiber fine wire 52 having a diameter of about 0.05 mm, and the rotating means 38 determines the rotation direction and rotation speed of the winding shaft 36. By controlling, the thin plate-shaped seed single crystal 32 was moved in the vertical direction.
  • the thin plate-shaped single crystal 32 is pulled upward, the thickness of the manufactured thin plate-shaped single crystal 40 is confirmed with a camera, and the thickness is adjusted to 0 while adjusting the pulling speed and the irradiation intensity of the laser beam 16a.
  • the winding shaft 36 was rotated under a control of 3 mm, and the thin plate-shaped single crystal 40 was continuously wound around the winding shaft 36.
  • the liquid level position of the melt 18 of the raw material mass 12 is lowered, so that the position of the mounting table 82 on which the raw material mass 12 is placed is controlled so as to maintain the initial position. It is controlled to a predetermined position via the means 84 so that the liquid level position of the melt 18 of the raw material mass 12 is always the same as the initial position.
  • a thin plate-shaped single crystal 40 having a length of more than 10 m, a thickness of 0.3 mm, and a width of 383 to 386 mm manufactured in this manner is subjected to secondary ion mass spectrometry (SIMS) method.
  • SIMS secondary ion mass spectrometry
  • the thin plate-shaped single crystal manufacturing apparatus 10 of the present invention described above and the thin plate-shaped single crystal manufacturing apparatus using the thin plate-shaped single crystal manufacturing apparatus 10 will be described.
  • the most important factor that enabled the continuous and stable production of the thin plate-shaped single crystal 40 by the thin plate-shaped single crystal manufacturing apparatus 10 and the thin plate-shaped single crystal manufacturing method of the present invention was the melting of the raw material mass 12 and the obtained. The point is that the single crystallization from the melt 18 can be controlled independently of each other.
  • the portion where crystallization is performed (central portion of the melt 18) is not directly irradiated with the laser beam 16a, and the portion other than the portion where crystallization is performed (the central portion of the melt 18 is excluded).
  • the peripheral region is irradiated with laser light 16a to melt the upper side surface 14 of the raw material mass 12, and the heat of the melt 18 is conducted to the portion where crystallization is performed (the central portion of the melt 18) to be above.
  • the melt 18 is also formed in the center of the side surface 14.
  • the temperature of the portion where crystallization is performed (central portion of the melt 18) is higher than the temperature of the portion melted by being irradiated with the laser beam 16a (peripheral region excluding the central portion of the melt 18). Is also low, facilitating crystallization.
  • the heat of the melt 18 is transferred to the lower side surface 34 of the soaked thin plate-shaped seed single crystal 32.
  • the temperature drops and crystallization progresses rapidly. If left for a while, the amount of heat that escapes through the thin plate-shaped seed single crystal 32 becomes a steady state, and the part that has solidified rapidly by then gradually melts due to the heat from the surrounding melt 18 and becomes a steady state. ..
  • the thin plate-shaped seed single crystal 32 When the thin plate-shaped seed single crystal 32 is pulled upward in this state, the thin plate-shaped seed single crystal 32 moves to the low temperature portion, so that crystallization proceeds on the lower side surface 34 in contact with the melt 18.
  • the pulling speed of the thin plate-shaped seed single crystal 32 is increased and crystallization cannot catch up, the thickness of the produced thin plate-shaped single crystal 40 becomes thin, and when the pulling speed is slowed down, crystallization proceeds, so that the thin plate-shaped single crystal 40 The thickness of is increased.
  • the temperature of the melt 18 is controlled to be low, crystallization becomes easy and the thickness of the thin plate-shaped single crystal 40 becomes thick. Therefore, even if the pulling speed is increased, the thin plate-shaped single crystal 40 having a predetermined thickness is continuously formed. Can be manufactured.
  • the production efficiency of the thin plate-shaped single crystal 40 can be increased, but if the pulling speed is too high, the possibility of cell growth increases.
  • the concentration of phosphorus which is an additive, fluctuates greatly locally, and the characteristics as a single crystal deteriorate. Therefore, it is important to continuously produce the thin plate-shaped single crystal 40 by increasing the pulling speed as much as possible while suppressing the occurrence of cell growth.
  • the present invention has made it possible for the first time to produce a high-quality thin plate-shaped single crystal 40 having a homogeneous composition even for so-called inconsistent melting substances such as decomposition-melting substances and solid solution single crystals.
  • the thin plate-shaped single crystal 40 having a homogeneous composition of such a disagreement-melting substance has been considered impossible to produce by a conventional method.
  • a required amount of the solvent phase component is placed on the upper side surface 14 of the raw material mass 12 and then irradiated with infrared rays 16 to melt the solvent to form a solvent solution. Then, the solvent transfer method was applied by simultaneously proceeding with the production of the single crystal from the solvent and the dissolution of the raw material mass 12 in the solvent, so that the thin plate-shaped single crystal 40 having a homogeneous composition could be produced.
  • the present invention is not limited to the above embodiment.
  • the first to third embodiments are described separately, but the thin plate-shaped single crystal manufacturing apparatus 10 of the present invention may be obtained by combining them. Is. That is, for example, a thin plate-shaped single crystal manufacturing apparatus 10 in which the first embodiment is combined with the second embodiment and the third embodiment may be used.
  • the infrared irradiation means 20 is provided so as to irradiate each side of the square shape in parallel is taken as an example, but the present invention is not limited to this. Only one infrared irradiation means 20 may be used.
  • the laser beam 16a can be irradiated so as to form a horizontally elongated hollow quadrangular irradiation region that matches the peripheral region excluding the central portion of the upper side surface 14 of the raw material mass 12, the elongated hollow quadrangular shape is formed.
  • the irradiation area may be formed by a plurality of laser beams 16a, and the number and the cross-sectional shape of the laser beams 16a irradiated from one infrared irradiation means 20 are not limited.
  • the upper side surface 14 of the raw material mass 12 is irradiated with the laser beam 16a having a U-shaped cross section from each of the left and right sides, and the two laser beams 16a and 16a having a U-shaped cross section have a hollow rectangular cross-sectional shape elongated in the horizontal direction.
  • An irradiation area may be formed, or a hollow square-shaped irradiation area elongated in the horizontal direction may be formed by four laser beams having a rod-shaped cross section.
  • the thickness of the thin plate-shaped single crystal 40 to be manufactured is described as about 100 ⁇ m to 3000 ⁇ m, it can be manufactured in principle even if the thickness is larger than this, for example, 5000 ⁇ m or more.
  • the thickness is not limited to the above range.
  • the thickness of the thin plate-shaped seed single crystal 32 immersed in the melt 18 is also described as, for example, about 300 ⁇ m to 500 ⁇ m, but even if the thickness is outside this range, the thin plate is in principle.
  • the state single crystal 40 can be produced, and the thickness is not limited to the above range.
  • the thin plate-shaped single crystal manufacturing apparatus 10 and the thin plate-shaped single crystal manufacturing method of the present invention can be variously modified without departing from the object of the present invention.
  • Thin plate-shaped single crystal manufacturing equipment 12 Raw material mass for manufacturing thin plate-shaped single crystal (raw material mass) 14 Upper side surface 16 Infrared 16a Laser light 18 Melt 20 Infrared irradiation means 22 Window 24 Reflector 30 Elevating means 32 Thin plate-shaped seed single crystal 34 Lower side surface 36 Winding shaft 38 Rotating means 40 Thin plate-shaped single crystal 42 Cover member 50 rolls Taking means 52 Fine wire 54 Supply means 56 Supply pipe 60 Anti-sway member 62 Shielding member 70 Preheating means 80 Chamber 82 Mounting table 84 Position control means 90 Gas introduction device 92 Introduction pipe 94 Discharge pipe

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

[課題]分解融解物質や固溶体物質の単結晶の他に調和融解物質であっても添加剤濃度が最適組成で均質であり、厚さが数百μm程度の薄板状の単結晶を、低コストでしかも連続して高精度に製造することのできる薄板状単結晶製造装置および薄板状単結晶製造方法を提供する。 [解決手段]薄板状単結晶製造用原料塊の上側面に対して赤外線を照射し、前記上側面の表面を融解する赤外線照射手段と、前記赤外線照射手段にて融解され、前記上側面の表面に得られた融液中に薄板状種子単結晶の下側面を浸すとともに、浸した状態から前記薄板状種子単結晶を上方に引き上げる昇降手段と、を備え、前記赤外線照射手段によって薄板状単結晶製造用原料塊の上側面の表面に得られた融液中に、前記昇降手段を介して薄板状種子単結晶の前記下側面を浸すことで、浸された薄板状種子単結晶の前記下側面から単結晶の育成が開始され、さらに前記昇降手段を介して薄板状種子単結晶を上方に引き上げることで、連続的に薄板状単結晶が製造されるよう構成されている。

Description

薄板状単結晶製造装置および薄板状単結晶製造方法
 本発明は、厚さが数百μm程度の薄板状の単結晶を連続して製造することのできる薄板状単結晶製造装置および薄板状単結晶製造方法に関する。
 近年、化石燃料から再生可能エネルギーへの転換が叫ばれ、石油を消費する発電方式から太陽光を利用する太陽電池を用いての発電方式への転換が世界的規模で進んでいる。しかしながら依然として太陽光発電の発電コストは他の発電方式と比べて高く、高効率で安価な太陽電池の開発が望まれている。
 太陽電池を構成する基板材料としては、半導体シリコン結晶、アモルファスシリコン、化合物半導体結晶など様々な材料が知られ、それぞれに開発が進められている。中でも半導体シリコン結晶は、主要な基板材料である。基板の汎用サイズとしては、155mm角で厚さ0.3mm程度であり、この汎用サイズのシリコン結晶基板に、高効率に太陽光発電を可能にする処理を施し、発電した電力を取り出す電極を取り付けた製品を「セル」と呼び、このセルを面状に多数並べた製品を「モジュール」と呼ぶ。このモジュールを使用環境に合わせて設置し太陽光発電装置として使用している。
 太陽電池の発電コストの削減には、セルの主要な構成部品であり、半導体シリコン結晶から成る基板の性能向上と、基板材料の製造コストを現状よりも削減することのできる新たな製造方法の開発が重要である。
 ところで、太陽電池として高効率な発電を達成できるとされている太陽電池セルの構造として、リンを添加したN型シリコン単結晶板を両側からアモルファスシリコン層で挟むことで、利用可能な太陽光の波長範囲を拡大したHIT(Heterojunction with Intrinsic Thin-layer)型と呼ばれる方式がある。
 このHIT型と呼ばれる方式を採用し、かつ発電した電気を取り出す電極を全て裏側に集め、表側からは電極を排除したバックコンタクト型の併用方式が、最も高効率を達成できるとされている。ここで使用されるN型シリコン単結晶基板中では、リンは最適組成で均質に添加されていなければならない。
 現在の主要な汎用太陽電池用シリコン結晶基板の製造方法には、二つの方法がある。一つ目の方法は、大型の石英製ルツボ中で原料を融解させ、下方から上方に凝固させる一方向凝固法であり、得られた大型の結晶塊を汎用サイズに切断して結晶基板を製造する方法である。
 しかしながら、この方法で製造された結晶塊は、ホウ素を添加したP型多結晶であり、この一方向凝固法では原理的に前述した高効率な太陽電池用として必要なN型単結晶基板を製造することはできない。
 二つ目の方法は、石英ルツボ中で原料を融解し、得られた融液に種子単結晶を浸して太らせながら上方に引上げる、いわゆる引上法によって丸棒状単結晶を製造し、製造された丸棒状の単結晶を切断加工して、汎用サイズの単結晶基板を製造する方法である。
 この引上法には二つの大きな課題がある。一つ目の課題は製造単価が高額になってしまうことである。
 引上法で得られる単結晶棒の製造コストは、単結晶棒の直径が大きくなるほどに増大する。汎用サイズの基板を得るには直径250mm程度の単結晶棒が必要であるが、製造コストを削減するために直径200mm程度の単結晶棒を使用して汎用サイズの基板を製造している。したがって四角の四隅が欠けた形状となっており、正確な四角形状の品よりも当然のことながら効率は低くなってしまっている。
 引上法の二つ目の課題は、N型にするために添加したリンの含有濃度を均質化できないことである。原料シリコンにリンを添加して融解した融液中のリン濃度は均質であるが、単結晶として最初に固化した部分のリン濃度は、融液中のリン濃度よりも低くなっている。この現象を「分配現象」と呼び、融液中のリン濃度と固化物中のリン濃度の比を「分配係数」と呼ぶ。
 シリコンの場合、リンの分配係数は0.35程度とされているので、最初に固化した部分のリン濃度は薄く差分は融液中に残る。このため、固化が進むにつれて融液中のリン濃度は濃くなり、それに伴って固化物中のリン濃度も分配係数にしたがって濃くなる。したがって、最適組成部分は得られた単結晶中の一部分に限定される。
 しかも最初にルツボ中で融解した原料の半分程度が固化した段階で、リンの濃度が濃くなり過ぎてしまい、太陽電池用としては使えない。したがって単結晶の製造作業を停止して、製造炉内の雰囲気を不活性ガス雰囲気に維持し、原料融液温度を維持したまま製品を取り出し、残留原料融液に新たな粒状原料を補給して当初の原料融液組成に戻し、2本目の単結晶の製造を再開するという製造方法を採用している。
 この製造方法では、原料融液を保持する石英ルツボの消耗が発生するので、繰り返しの使用回数は2回、もしくは特別に調製した高品質石英ルツボを使用したとしてもせいぜい3回繰り返すのが限度である。
 この製造方法が何よりも問題なのは、製品中のリンの濃度を均質にできないことにある。最適組成品のみで太陽電池用セルを製造することにより高効率を達成できるが、最適組成品は歩留まりが低いので価格は高額となってしまい、発電コストの上昇に直結する。
 そこで最適組成品よりもリン濃度が薄過ぎるもの、およびリン濃度が濃過ぎるものを使用してコスト削減を図ると、当然のことながらモジュールの発電効率が劣化してしまう。
 上記の他にも太陽電池用のシリコン単結晶基板の製造コストを削減する方法の開発は、これまでにも精力的に行われて来ている。大型の結晶塊を切断して薄板単結晶を製造するよりも、初めから所定の厚さの薄板単結晶を製造し、これを所定のサイズに切断する方が、切断ロスや生産コストを低減できる可能性が高いのは無論である。
 これまでに報告されているシリコン薄板状結晶の製造方法には3種類の方法がある。
 第1の方法は、ルツボ中で融解した原料融液にスリットを設けたダイ(DIE)と呼ばれる治具を挿入し、ダイ(DIE)のスリットから表面張力で上部に出てくる原料融液に、薄板状種子単結晶を浸して固化させながら上方に引上げ、薄板状単結晶を製造する方法で、EFG(Edge defined Film-fed Growth)法と呼ばれている。
 この製造方法は、米国を中心に精力的に開発が進められて来ているが、太陽電池用シリコン基板製造用としては未だに実用化されていない。この理由としては、安定して長時間の使用に耐え得る治具の素材が見つからないこと、原料融液の固化の際の温度制御が困難であり、大型化が困難であることなどが挙げられている。
 第2の方法は、ESR(Edge Stabilized Ribbon)法と命名された方法で、上記したダイ(DIE)の代わりに紐を使用する方法である。このESR法では、最初に紐を原料融液の表面に浸して横方向に貼り、少し上に持ち上げると表面張力で紐に付随して持ち上げられた原料融液が固化し薄板状結晶となる。
 紐の両サイドにも紐を繋げこれらを一緒に上方に引上げると、固化した薄板状結晶も一緒に成長しながら上方に引上げられる。ただし、この方法では最初に紐に持ち上げられて固化した部分は「多結晶」であり、付随して成長する薄板も「多結晶」であって、「単結晶」にはならない。
 第3の方法は、Dendritic web(樹枝状布)  growth methodと命名された方法である。デンドライト(樹枝状結晶)は、成長速度がある速度に達すると熱伝導性の高い方位方向に優先的に成長する性質を有する。この方法は、このデンドライト(樹枝状結晶)の性質を利用して、薄板状結晶を製造する方法である。
 この方法は、EFG法やESR法のように治具や紐を使わない方法であり、成長を最適に制御すれば単結晶を成長させることもできるとされている。しかしながら、現実には最初のデンドライト(樹枝状結晶)を単一にしない限り単結晶の製造はできないので、この方法により大型で長尺な薄板状単結晶を継続的に成長させた実例は無く、工業的な生産には至っていない。
 他方、上述したように、これまでに報告されている薄板状結晶の製造方法は、いずれもシリコン融液を石英ルツボ中に保持して結晶を製造する方法である。これらの製造方法のように、石英ルツボ中で原料シリコンを融解させると、式1のように、シリコン融液と石英とが反応して一酸化ケイ素(SiO)が発生する。
Figure JPOXMLDOC01-appb-M000001
 反応によって生成した一酸化ケイ素(SiO)は、製品であるシリコン結晶中に固溶体として混入し、単結晶としての性能劣化の主要な要因となる。したがって、高品質な単結晶を製造するには、石英ルツボを使用する必要の無い製造方法が望ましい。
 現在、ルツボを使用せずシリコン単結晶を製造する方法として、高周波誘導加熱を用いて原料棒を融解、固化させて単結晶を製造する高周波浮遊帯域溶融法が実用化されている(例えば特許文献1)。この高周波浮遊帯域溶融法により、製品中に一酸化ケイ素(SiO)を含有しない高純度な単結晶が得られる。
 しかしながら、高周波浮遊帯域溶融法に使用可能な原料棒は、特別に調製された高緻密な製品であり、このような原料棒は高価でしかも供給量が限定され、低コストが期待される太陽電池用としては不向きである。さらにこの高周波浮遊帯域溶融法では、薄板状単結晶の製造は極めて困難であり、製造されたという報告も見られない。
 ルツボを使用せず高純度な単結晶を製造する他の方法として、赤外線を使用する方法が知られている。赤外線を使用して単結晶を製造する方法としては、原料粉末を棒状に加工し、これを局部加熱して融解、固化させて単結晶棒を製造する、赤外線浮遊帯域溶融法が知られている。
 この赤外線浮遊帯域溶融法は、赤外線の加熱によって形成される融液を、融液自身の表面張力で原料棒に保持させ、原料の融解と固化とを継続させている。
 なお、この赤外線浮遊帯域溶融法では、従来は赤外線を水平方向から照射する方式が採用されてきている。しかしながらこの水平方向からの照射方式では原理的に直径が大きな単結晶を製造することはできない。
 そこで下部に配置した直径が大きな種子単結晶の上面に赤外線を照射して融解し、ここに原料を融解した原料融液を滴下し、直径が大きな単結晶を製造可能とする上面融解法が開発された。この上面融解法により、製造可能な単結晶の直径には原理的に制限が無くなったので、その適用範囲が劇的に拡大した。
 他方、現在の産業用の単結晶の材料としては、上述した太陽電池用の材料以外にも強誘電体材料であるニオブ酸リチウムやタンタル酸リチウム、蛍光体材料であるケイ酸ルテチウムやケイ酸ガドリニウム、レーザ材料であるイットリウムアルミニウムガーネットやガドリニウムガリウムガーネットなど多くの酸化物材料が用いられている。
 これらの酸化物材料は、引上法で丸棒状単結晶を製造し、これを厚さ0.3mm程度の薄板状単結晶に切断加工して、各種のデバイス製造に利用している。しかしながら、引上法ではルツボ材からの製品中への汚染が避けられず、しかも前述した分配現象により原理的に有用添加物の製品中での濃度を均質化できない。このため高品質デバイス製造に不都合が発生している。
 したがって、丸棒状単結晶を製造してから薄板状単結晶に切断加工して利用するよりも、初めから最適組成で所定の厚さの薄板状単結晶を製造して利用する方が、はるかに低コストで高性能品を製造可能である。
特許第5279727号公報
 しかしながら、これまでの薄板状単結晶製造方法における研究開発の成果は十分では無く、薄板状単結晶を製造し産業用に利用している例は、わずかにEFG法によるサファイア単結晶板や酸化ガリウム単結晶板の製造等が知られている程度である。
 本発明は、このような実情に鑑みなされたものであって、添加剤濃度が最適組成で均質であり、厚さが数百μm程度の薄板状の単結晶を、低コストでしかも連続して高精度に製造することのできる薄板状単結晶製造装置および薄板状単結晶製造方法を提供することを目的とする。
 本発明は、前述した従来技術における課題を解決するために発明されたものであって、
 本発明の薄板状単結晶製造装置は、
 薄板状単結晶製造用原料塊(以下、原料塊とも称する)の上側面に対して赤外線を照射し、前記上側面の表面を融解する赤外線照射手段と、
 前記赤外線照射手段にて融解され、前記上側面の表面に得られた融液中に薄板状種子単結晶の下側面を浸すとともに、浸した状態から前記薄板状種子単結晶を上方に引き上げる昇降手段と、
 を備え、
 前記赤外線照射手段によって薄板状単結晶製造用原料塊の上側面の表面に得られた融液中に、前記昇降手段を介して薄板状種子単結晶の前記下側面を浸すことで、浸された薄板状種子単結晶の前記下側面から単結晶の育成が開始され、さらに前記昇降手段を介して薄板状種子単結晶を上方に引き上げることで、連続的に薄板状単結晶が製造されるよう構成されていることを特徴とする。
 このように構成されていれば、装置を構成する部材が少なく、添加剤濃度が最適組成で均質であり、厚さが数百μm程度の薄板状単結晶を、低コストでしかも連続して高精度に製造することができる。さらには分解融解物質や固溶体物質など、いわゆる不一致融解物質の均質組成薄板状単結晶を高精度に製造することができる。
 また、本発明の薄板状単結晶製造装置は、
 前記赤外線照射手段から照射される赤外線が、レーザ光であることを特徴とする。
 このようにレーザ光であれば、原料塊の所定の範囲を正確に加熱することができるため、融液が原料塊の上側面からこぼれ落ちてしまうことなく、融液(融液溜まり)を確実に形成し続けることができる。
 また、本発明の薄板状単結晶製造装置は、
 前記レーザ光の照射域の形状が水平方向に細長い中空四角形状であり、
 前記薄板状単結晶製造用原料塊の上側面の中心部を除く周縁領域に対し、前記中空四角形状の照射域を形成するようにレーザ光が照射されることを特徴とする。
 このように中空四角形状の照射域を形成するようにレーザ光を、原料塊の上側面の中心部を除く周縁領域に対して合致するように照射すれば、原料塊の上側面の中心部を除く周縁領域が先に融解され、レーザ光の当たっていない中心部は、先に融解された周縁領域の融液からの熱伝導により融解されることとなる。
 したがって中心部の温度を、周縁領域の温度よりも低く制御することができる。なお、レーザ光の中空四角形状の照射域を形成する方法としては、例えば直線状のレーザ光を四方から照射しても良い。
 さらにレーザ光は、原料塊の上側面に対して、斜め上方の方向から照射しても、真上から垂直方向に照射しても良いが、単結晶材料の熱伝導特性、製造する薄板状単結晶の厚さに応じて、照射角度を最適角度に調整可能であることが好ましい。
 ところで、原料塊を融解して連続的に薄板状単結晶を製造するには、原料塊の融解と、薄板状単結晶としての固化とを、同時進行で継続させる必要がある。しかしながら原料塊の融解には加熱が必要であり、薄板状単結晶の固化には融液の冷却が必要である。
 したがって、薄板状単結晶の安定的な製造を可能にするためには、「加熱」と「冷却」の相反する行為を、制御性良く安定的に継続させることが必須である。上記した中空四角形状のレーザ光を原料塊に照射することにより、これを実現することができる。
 すなわち、このような温度分布を原料塊の上側面の融液溜まりに持たせることで、この中心部から薄板状単結晶の成長を安定して連続的に行うことができる。
 また、本発明の薄板状単結晶製造装置は、
 前記昇降手段が、
 製造された前記薄板状単結晶を連続してロール状に巻き取る巻き取り手段であり、
 前記巻き取り手段が、
 前記薄板状単結晶を連続して巻き取る巻装軸と、
 前記巻装軸を回動させる回動手段と、
 を備え、
 前記巻装軸に前記薄板状種子単結晶が吊り下げられるよう構成されていることを特徴とする。
 このように巻き取り手段が構成されていれば、連続的に製造された薄板状単結晶を確実に巻装軸に巻き取ることができ、装置を必要以上に大型化させることがない。さらに製造された薄板状単結晶はロール状であるため出荷の際に容易に搬送することができ、取扱い性を高めることができる。
 また、本発明の薄板状単結晶製造装置は、
 前記薄板状種子単結晶が、
 複数の細線を介して前記巻装軸に吊り下げられていることを特徴とする。
 このように薄板状種子単結晶の吊り下げを、熱に強くまた高強度な細線で行えば、連続的に製造された薄板状単結晶を確実に巻装軸に巻き取ることができる。
 また、本発明の薄板状単結晶製造装置は、
 前記薄板状種子単結晶において、
 前記細線が取り付けられた部分の厚さが、
 製造される前記薄板状単結晶の厚さ以下の大きさであることが好ましい。
 このように、薄板状種子単結晶において、細線を取り付けた部分の厚さが、製造される薄板状単結晶の厚さ以下の大きさに設定されていれば、巻装軸に薄板状単結晶を巻き取る際に、薄板状単結晶の表面が細線に接触して破損が生ずることを確実に防止することができる。
 また、本発明の薄板状単結晶製造装置は、
 前記薄板状単結晶製造用原料塊の上側面には、
 製造される前記薄板状単結晶の組成と平衡共存する液相の組成物が必要量、最初に配置されていることを特徴とする。
 このように、製造される薄板状単結晶の組成と平衡共存する液相の組成物を必要量、最初から原料塊の上側面に配置すれば、均質で最適組成の薄板状単結晶を連続的に製造することができる。
 また、本発明の薄板状単結晶製造装置は、
 前記昇降手段と前記薄板状単結晶製造用原料塊の間に、
 連続的に製造される前記薄板状単結晶の揺れを防止する揺れ止め部材が配設されていることを特徴とする。
 このように揺れ止め部材が配設されていれば、製造された薄板状単結晶が、左右に振れ過ぎることを抑制できる。したがって成長位置がズレを生ずることなく所定の範囲内に留めることができ、高品質な薄板状単結晶を連続的かつ安定的に製造することができる。
 また、本発明の薄板状単結晶製造装置は、
 前記昇降手段と前記薄板状単結晶製造用原料塊の間に、
 前記融液から発せられる輻射熱を、連続的に製造される前記薄板状単結晶に届き難いように遮蔽する遮蔽部材が設けられていることが好ましい。
 薄板状単結晶は、融液から引き上げられながら固化していくが、融液から発せられた輻射熱が製造された薄板状単結晶に届いてしまうと、薄板状単結晶の製造速度を速めることが困難となる。したがって遮蔽部材を設けることで、融液の輻射熱が製造された薄板状単結晶に届き難くなり、薄板状単結晶の製造効率を高めることができる。
 また、本発明の薄板状単結晶製造装置は、
 前記薄板状単結晶製造用原料塊が、略直方体であることを特徴とする。
 このような形状であれば、原料塊の上側面の表面に、赤外線の照射によって融液(融液溜まり)を継続的に設けることができる。
 また、本発明の薄板状単結晶製造装置は、
 前記薄板状単結晶製造用原料塊の上側面の大きさは、前記薄板状種子単結晶の下側面の大きさよりも厚さ方向および横方向のいずれにおいても数mm以上、大きく設定されていることを特徴とする。
 このように原料塊と薄板状種子単結晶の大きさが設定されていれば、融液中に薄板状種子単結晶の下側面を全て浸すことができ、所望のサイズの薄板状単結晶を連続的に製造することができる。
 また、本発明の薄板状単結晶製造装置は、
 前記薄板状単結晶製造用原料塊を載置する載置台と、
 前記載置台の位置を所定位置となるように位置制御する位置制御手段と、
 を備えることを特徴とする。
 このように載置台の位置(特に上下方向の位置)を制御できるようにすれば、薄板状単結晶の引上げに伴って原料塊の融液の液面位置が下がっても、当初の位置を保つように原料塊の位置を上げることができ、常に液面位置を同じ位置に制御することができる。したがって、常に赤外線の照射位置を同じ位置に固定すれば良くなり、薄板状単結晶を安定的かつ歩留まり良く連続的に製造することができる。
 なお、平行に進むレーザ光を、原料塊の上側面に対して垂直方向から照射する場合には、原料塊の融液の液面位置が下がってもレーザ光の照射強度は変わらないので、原料塊の融液の液面位置を一定に維持する位置制御をしなくても良い。
 また、本発明の薄板状単結晶製造装置は、
 前記昇降手段が、
 前記赤外線照射手段によって融解された薄板状単結晶製造用原料塊の上側面の融液の中心部に、前記薄板状種子単結晶の前記下側面を浸すよう構成されていることを特徴とする。
 融液の中心部は、継続的に融液が溜まる部位であり、この中心部に薄板状種子単結晶の下側面を浸せば、薄板状種子単結晶を昇降手段で上方へ引き上げることにより、連続的に薄板状単結晶を製造することができる。
 また、本発明の薄板状単結晶製造装置は、
 前記薄板状単結晶製造用原料塊の周囲には、
 前記薄板状単結晶製造用原料塊を予め加熱する予熱手段が設けられていることを特徴とする。
 このように原料塊を予め融点近傍まで加熱すれば、赤外線照射手段による赤外線の照射量を削減することが可能となり、同時に調整精度を高めることで、融液溜まりの範囲を微調整することができる。したがって、連続的に薄板状単結晶を安定的かつ高精度に製造することができる。
 また、本発明の薄板状単結晶製造装置は、
 少なくとも前記薄板状単結晶製造用原料塊がチャンバー内に配設され、
 前記チャンバーの上部に前記昇降手段が配設されていることが好ましい。
 このようにチャンバー内に原料塊が配設されていれば、単結晶材料に合致した雰囲気下で薄板状単結晶を製造することができる。
 また、本発明の薄板状単結晶製造装置は、
 前記チャンバー内を、添加剤を含んだ雰囲気ガスで満たすガス導入装置を備えることを特徴とする。
 このようにガス導入装置を備えていれば、チャンバー内を、製造される薄板状単結晶の材料の特性に合わせた雰囲気とすることができ、これにより添加剤濃度が最適組成で均質な高品質薄板状単結晶を製造することができる。
 また、本発明の薄板状単結晶製造装置は、
 前記昇降手段が、
 前記薄板状単結晶製造用原料塊の上部に複数設けられていることを特徴とする。
 このように構成されていれば、例えば一つの融液溜まりに複数の薄板状種子単結晶を並べて浸し、それぞれ昇降手段で上部に引き上げることで、昇降手段が一つの場合と比べて薄板状単結晶の製造効率を格段に向上させることができる。
 また、本発明の薄板状単結晶製造装置は、
 前記薄板状種子単結晶の厚さが、300μm~500μmの範囲内であることが好ましい。
 このような厚さであれば、高純度な薄板状単結晶を連続的に製造し、巻き取ることにより長尺化を達成することができる。
 また、本発明の薄板状単結晶製造装置は、
 前記薄板状単結晶の厚さが、100μm~3000μmの範囲内であることが好ましい。
 製造される薄板状単結晶の厚さは、100μm~3000μmの範囲内で製造可能であるが、巻き取り手段で巻き取ることを想定した場合には、100μm~500μmの範囲内であることが好ましい。しかしながら、融液温度と引上速度を調整することにより100μmよりも薄く、または500μmよりも厚く調節することもできる。
 ただし、500μmよりも厚い薄板状単結晶の場合には、巻き取り手段の巻装軸に薄板状単結晶を巻き取った際の径が大型化する。この場合には、巻き取らずに上方に引上げて製品化することも可能である。特に太陽電池用シリコン薄板状単結晶を製造する場合、薄板状単結晶の厚さは200μm~400μmの範囲内であることが好ましい。
 また、本発明の薄板状単結晶製造方法は、
 赤外線照射手段を介して、薄板状単結晶製造用原料塊の上側面に赤外線を照射し、前記薄板状単結晶製造用原料塊の上側面の表面を融解する融解工程と、
 前記融解工程にて、前記薄板状単結晶製造用原料塊の上側面の表面に得られた融液中に、昇降手段を介して薄板状種子単結晶の下側面を浸し、前記薄板状種子単結晶の前記下側面から単結晶の育成を開始させる育成工程と、
 前記育成工程にて、単結晶の育成が開始された前記薄板状種子単結晶を上方に引き上げ、連続的に薄板状単結晶を製造する連続製造工程と、
 を少なくとも有することを特徴とする。
 このような製造方法であれば、添加剤濃度が最適組成で均質であり、厚さが数百μm程度の薄板状単結晶を、低コストでしかも連続して高精度に製造することができる。
 また、本発明の薄板状単結晶製造方法は、
 前記融解工程において、
 前記赤外線照射手段から照射される赤外線が、レーザ光であることを特徴とする。
 このようにレーザ光であれば、原料塊の所定の範囲を、所要の形状で正確に加熱することができるため、融液が原料塊の上側面からこぼれ落ちてしまうことなく、融液溜まりを確実に形成し続けることができる。
 また、本発明の薄板状単結晶製造方法は、
 前記融解工程において、
 前記レーザ光の照射域の形状が水平方向に細長い中空四角形状であり、
 前記薄板状単結晶製造用原料塊の上側面の中心部を除く周縁領域に対し、前記中空四角形状の照射域を形成するようにレーザ光が照射されることを特徴とする。
 このように中空四角形状の照射域を形成するように、レーザ光を原料塊の上側面の中心部を除く周縁領域に対して合致するように照射すれば、原料塊の上側面の中心部を除く周縁領域が先に融解され、レーザ光の当たっていない中心部は、先に融解された周縁領域の融液からの熱伝導により融解されることとなる。
 したがって中心部の温度を、周縁領域の温度よりも低く制御することができる。これにより原料塊の融解と融液からの固化と言う相反する行為を、安定的に制御性良く継続することができる。
 すなわち、このような温度分布を原料塊の上側面の融液溜まりに持たせることで、この中心部から薄板状単結晶の成長を安定して連続的に行うことができる。
 さらにレーザ光は、原料塊の上側面に対して、斜め上方の方向から照射しても、真上から垂直方向に照射しても良いが、薄板状単結晶材料の熱伝導率、厚みに応じて、照射角度を最適角度に調整することが好ましい。熱伝導率が高い材料の場合、レーザ光の照射角度は水平方向からの角度を大きく制御し、熱伝導率が低い材料の場合、レーザ光の照射角度は水平方向からの角度を小さく制御することが好ましい。
 また、本発明の薄板状単結晶製造方法は、
 前記連続製造工程の後、
 連続的に製造された前記薄板状単結晶を、ロール状に巻き取る巻き取り工程と、
 をさらに有することを特徴とする。
 このように巻き取り工程を有していれば、連続的に製造された薄板状単結晶を確実にロール状に巻き取ることができ、効率的に薄板状単結晶を製造することができる。
 また、本発明の薄板状単結晶製造方法は、
 前記融解工程において、
 製造される前記薄板状単結晶が分解融解物質である場合には、その組成と平衡共存する液相(これを溶媒相と呼ぶ)の組成物を、最初に必要量、前記薄板状単結晶製造用原料塊の上側面に配置しておくことを特徴とする。
 さらに、本発明の薄板状単結晶製造方法は、
 前記融解工程において、
 製造される前記薄板状単結晶が添加剤を含む固溶体物質である場合には、その組成と平衡共存する液相(これを溶媒相と呼ぶ)の組成物を、最初に必要量、前記薄板状単結晶製造用原料塊の上側面に配置しておくことを特徴とする。
 これにより最初に原料塊の上側面に形成される溶媒相から薄板状単結晶が固化すると、溶媒相の量は減り、組成は結晶成分が少なくなる。そこで溶媒相の下側ではレーザ光の到達強度が上がり、温度が上がるので、原料塊の融解が進む。
 これにより結晶化と原料塊の融解が同時に進むので、得られた製品(薄板状単結晶)中の添加剤濃度は原料塊中の添加剤濃度と同一となり均質となる。このスキームは「溶媒移動法」と呼ばれ、融液法で均質組成の単結晶製品を製造可能とする唯一の手段である。
 このように、製造される薄板状単結晶の組成と平衡共存する液相の組成物を必要量、原料塊の上側面に初めに配置しておくことにより、均質で最適組成の薄板状単結晶を連続的に製造することができる。
 また、本発明の薄板状単結晶製造方法は、
 前記育成工程において、
 前記融解された薄板状単結晶製造用原料塊の上側面の表面の融液の中心部に、前記薄板状種子単結晶の前記下側面を浸すことを特徴とする。
 融液の中心部は、継続的に融液が溜まる部位であり、この中心部に薄板状種子単結晶の下側面を浸せば、薄板状種子単結晶を昇降手段で上方へ引き上げることにより、連続的に薄板状単結晶を製造することができる。
 本発明の薄板状単結晶製造装置および薄板状単結晶製造方法によれば、薄板状単結晶製造用原料塊の上側面の表面を赤外線で融解して融液を形成し、この融液内に薄板状種子単結晶を浸して上方に引き上げることで、添加剤濃度が最適組成で均質であり、厚さが数百μm程度の薄板状の単結晶を、低コストでしかも連続して高精度に製造することができる。
図1は、本発明の第1の実施形態における薄板状単結晶製造装置の概略図である。 図2は、赤外線照射手段から照射されるレーザ光の照射域の形状を示した図である。 図3は、本発明の薄板状単結晶製造装置において、薄板状単結晶製造用原料塊を上側面側から見た状態の概念図である。 図4は、本発明の第1の実施形態における薄板状単結晶製造装置の他の概略図である。 図5は、図1に示した薄板状単結晶製造装置において、薄板状単結晶製造用原料塊の上側面に形成された融液(融液溜まり)の状態を説明するための図である。 図6は、図4に示した薄板状単結晶製造装置において、薄板状単結晶製造用原料塊の上側面に形成された融液(融液溜まり)の状態を説明するための図である。 図7は、薄板状単結晶製造用原料塊と薄板状種子単結晶と薄板状単結晶の状態を説明するための概略斜視図である。 図8は、本発明の第2の実施形態における薄板状単結晶製造装置の概略図である。 図9は、本発明の第2の実施形態における別の薄板状単結晶製造装置の概略図である。 図10は、本発明の第3の実施形態における薄板状単結晶製造装置の概略図である。 図11は、図10に示した薄板状単結晶製造装置の要部拡大図である。 図12は、本発明の薄板状単結晶製造方法の各工程を示す概略図である。 図13は、本発明の薄板状単結晶製造方法の各工程を示す概略図である。
 以下、本発明の薄板状単結晶製造装置および薄板状単結晶製造方法について、図面に基づきより詳細に説明する。
 本発明の薄板状単結晶製造装置および薄板状単結晶製造方法は、添加剤濃度が最適組成で均質であり、厚さが数百μm程度の薄板状の単結晶を、低コストでしかも連続して高精度に製造するためのものである。
<薄板状単結晶製造装置10>
[第1の実施形態]
 本発明の第1の実施形態における薄板状単結晶製造装置10は、図1に示したように、まずチャンバー80内の下方に配設された載置台82上に薄板状単結晶製造用原料塊(以下、原料塊とも称する)12が設けられている。この原料塊12は、略直方体をしており、例えば本のような板状体である。
 また、チャンバー80の上部側方には、この略直方体の原料塊12の上側面14に対して赤外線16を照射し、上側面14の表面を融解する赤外線照射手段20を備えている。
 なお赤外線照射手段20から照射される赤外線16は、レーザ光16aであることが好ましい。
 すなわち、図2に示したように、レーザ光16aの照射域の形状を水平方向(図2では上下方向)に細長い中空四角形状とし、図3に示したように、原料塊12の上側面14の中心部を除く周縁領域に、この水平方向に細長い中空四角形状の照射域を形成するようにレーザ光16aを合致させて照射することが好ましい。
 ここで、赤外線照射手段20から照射されるレーザ光16aは、チャンバー80の側部に設けられた窓22からチャンバー80内に入射され、チャンバー80内の反射鏡24を介して原料塊12の上側面14の中心部を除く周縁領域に照射されるようにすることが好ましい。この時、レーザ光16aは、図1に示したように原料塊12の上側面14に対して、斜め上方の方向から照射しても、図4に示したように原料塊12の上側面14に対して、真上から垂直方向に照射しても良いが、単結晶材料の熱伝導率および製造する薄板状単結晶40の厚さなどに合致させて、照射角度を最適角度に制御する。
 これにより、原料塊12の上側面14の中心部を除く周縁領域が、中心部よりも先に融解され、レーザ光16aの当たっていない中心部は、先に融解された周縁領域の融液18からの熱伝導により融解されることとなる。
 したがって中心部の温度を、周縁領域の温度よりも低く制御することができ、このような温度分布を原料塊12の上側面14の融液18(融液溜まり)に持たせることで、この中心部から薄板状単結晶40の成長を安定して連続的に行うことができる。
 すなわち、図5および図6に示したように、原料塊12の上側面14の中心部を除く周縁領域にレーザ光16aを照射することで、周縁領域の方が、深くまで融液18が形成され、中心部は周縁領域よりも浅く低い温度の融液18が形成されることとなる。
 なお原料塊12の周囲には、図1,図3,図4に示したように、原料塊12を予め加熱する予熱手段70が設けられており、赤外線照射手段20で原料塊12の上側面14の表面を融解する前に、原料塊12を予め融点近傍まで加熱しておくことが好ましい。このように予め加熱しておけば、あとは赤外線照射手段20による赤外線16の照射量を大幅に低減することができ、位置や照射量を微調整することで、融液18(融液溜まり)の範囲を微調整することができる。
 一方、チャンバー80の上方には、赤外線照射手段20にて融解され、原料塊12の上側面14の表面に得られた融液18中に、薄板状種子単結晶32の下側面34を浸すとともに、浸した状態から薄板状種子単結晶32を上方に引き上げる昇降手段30が設けられている。
 昇降手段30としては特に限定されるものではないが、例えば製造された薄板状単結晶40を連続してロール状に巻き取る巻き取り手段50であることが好ましい。具体的な構成としては、製造された薄板状単結晶40を連続して巻き取る巻装軸36と、巻装軸36を回動させる回動手段38とを有するものである。
 ここで薄板状種子単結晶32の下側面34の大きさは、原料塊12の上側面14よりも一回り小さく設定されている。例えば具体的な両者の大きさの関係として、薄板状種子単結晶32の下側面34の大きさよりも原料塊12の上側面14の大きさは厚さ方向および横方向のいずれにおいてもそれぞれ数mm以上、大きく設定されている。すなわち、融液18中に薄板状種子単結晶32の下側面34を全て浸すことができる大きさに設定されている。
 そして、赤外線照射手段20によって原料塊12の上側面14の表面に得られた融液18の中心部に、図7に示したように、昇降手段30を介して薄板状種子単結晶32の下側面34を浸すことで、浸された薄板状種子単結晶32の下側面34から単結晶の育成が開始され、さらに昇降手段30を介して薄板状種子単結晶32を上方に引き上げることで、連続的に薄板状単結晶40が製造されるようになる。
 製造される薄板状単結晶40の厚さは、定常状態では融液温度、および薄板状種子単結晶32の引上速度などにより調整可能であり、例えば100μm~3000μmを超える程度の厚さとすることができる。ただし、薄板状単結晶40の厚さが500μmを超えると巻き取り手段50が大型化してしまうので、500μmを超える場合には巻き取らずに上方に引上げて製品とすることもできる。特に太陽電池用シリコン薄板状単結晶を製造する場合、薄板状単結晶40の厚さは200μm~400μmの範囲内であることが好ましい。
 なお、融液温度と引上速度との間には相関関係がある。すなわち、融液温度が高い場合には薄板状単結晶40の成長に必要な冷却量が増えるので、引上速度を遅くし、融液温度が低い場合には薄板状単結晶40の引上速度を速めることで、薄板状単結晶40の生産性を高めることができる。ただし、引上速度が速すぎるといわゆる「セル成長」が発生し易くなり、薄板状単結晶40の結晶特性が劣化するので、適宜引上速度を調整することが好ましい。
 なお、融液18に浸される薄板状種子単結晶32の厚さとしては、例えば300μm~500μm程度の厚さとすれば良い。このような厚さの薄板状種子単結晶32であれば、融液温度および引上速度を調節することにより所望の厚さの薄板状単結晶40を連続的に製造することができ好ましい。
 また図1および図4中では、薄板状単結晶40の厚さと薄板状種子単結晶32の厚さを異ならせて図示しているが、これは図中で薄板状単結晶40と薄板状種子単結晶32の区別がつくように敢えてしたものであって、特に両者の厚さの関係を限定するものではないものである。
 なおこのとき巻き取り手段50の巻装軸36に、薄板状種子単結晶32を複数(図7では3本)の、熱に強く高強度な細線52を介して吊り下げておくことが好ましい。特に薄板状種子単結晶32において、細線52が取り付けられた部位の厚さを、薄板状種子単結晶32の厚さ以下とすれば、巻装軸36に薄板状単結晶40を巻き取る際に、薄板状単結晶40の表面が細線52に接触して破損が生ずることを確実に防止することができる。
 薄板状種子単結晶32に細線52を取り付ける方法としては特に限定されるものではないが、例えば薄板状種子単結晶32の端部に細線52を結びつけるための貫通穴を数カ所設けるとともに、この貫通穴とつながるように凹溝を薄板状種子単結晶32の両面に設け、薄板状種子単結晶32に細線52を結び付けた際に、この凹溝内に細線52が嵌り、薄板状種子単結晶32よりも外方に細線52が出っ張らないようにすると良い。このようにすることにより、薄板状単結晶40を巻き取る際に、薄板状単結晶40の表面が細線52に接触して破損が生ずることを確実に防止することができる。
 また、本薄板状単結晶製造装置10においては、昇降手段30と原料塊12の間に、連続的に製造される薄板状単結晶40の揺れを防止し、成長位置がズレを生じないように所定の範囲内に留める揺れ止め部材60と、融液18から発せられる輻射熱を、連続的に製造される薄板状単結晶40に届き難いように遮蔽する遮蔽部材62と、を設けておくことが好ましい。
 揺れ止め部材60を設けることで、製造された薄板状単結晶40が、左右に振れ過ぎ成長位置がズレを生ずることを抑制でき、高品質な薄板状単結晶40を連続的に製造することができる。
 また遮蔽部材62を設けることで、薄板状単結晶40の製造速度を速めることができる。すなわち、原料を融解し、単結晶として固化させる方法は融液法と呼ばれるが、この融液法における単結晶の成長速度は、結晶が固化する際に放出される結晶化潜熱を、融液に接触している単結晶中の熱伝導によって効率良く排熱することで速められる。
 したがって、例えば赤外線16(レーザ光16a)の光路を遮らないように遮蔽部材62を設ければ、薄板状単結晶40への輻射熱の到達量を減らし、薄板状単結晶40の温度を上げないことにより結晶化潜熱を効率良く排熱でき、薄板状単結晶40の製造効率を高めることができる。
 このように、本薄板状単結晶製造装置10を用いることで、連続的に薄板状単結晶40を製造することができるが、薄板状単結晶40を連続して製造していくと、原料塊12の上側面14の表面に得られた融液18が減り、上側面14の位置が下がってしまうこととなる。このようになってしまうと赤外線照射手段20による赤外線の照射位置を、所望の位置となるように制御する必要がある。
 本実施形態においては、赤外線16の照射位置を制御する代わりに、原料塊12を載置する載置台82に、載置台82の上下方向の位置を制御する位置制御手段84を備えている。
 このよう位置制御手段84を備えることで、連続的に製造された薄板状単結晶40の引上げに伴って、原料塊12の上側面14の融液18の位置が下がっても、載置台82を上げて原料塊12の上側面14の融液18の位置を当初の位置と同位置に保つことができ、常に融液18の液面位置を同じ位置にすることができる。
 したがって、常に同じ位置に赤外線16が照射されるようにすれば良く、薄板状単結晶40を安定的に歩留まり良く連続的に製造することができる。ここで図4および図6に示した薄板状単結晶製造装置10のように、原料塊12の上側面14に対し、レーザ光16aを原料塊12の真上から垂直に照射する場合には、原料塊12の上側面14の位置が変動しても融液18の温度は変わらないので、原料塊12の上側面14の位置制御をしなくても良い。
 なお、上述した薄板状単結晶製造装置10に用いられる原料塊12は、製造される薄板状単結晶40の材料の組成の原料塊12である。ただし、薄板状単結晶40の材料が分解融解物質である場合には、この原料塊12を、本薄板状単結晶製造装置10でそのまま融解して固化させても、目的とする薄板状単結晶40を得ることはできない。
 そこで製造される薄板状単結晶40の材料の組成と平衡共存する液相の組成物を、液相の量だけ原料塊12の上側面14に載せておき、最初にこれを融解する。このようにすると原料塊12の上側面14に溶けている溶媒が載っている状態となる。
 このようにしてから薄板状単結晶40を製造すると、単結晶として固化したのと同量の原料塊12が融解するため、溶媒の量と組成は最初から最後まで変わらず、見かけ上、溶媒相が原料塊12を溶かしつつ単結晶を析出しながら移動している様子に見える。
 このスキームを「溶媒移動法」と呼ぶ。本薄板状単結晶製造装置10によって得られる薄板状単結晶40が分解融解物質である場合や添加剤を含む固溶体物質である場合、得られる薄板状単結晶40中の添加剤濃度を均質にするには、この「溶媒移動法」を用いることが重要である。
[第2の実施形態]
 次に本発明の薄板状単結晶製造装置10の第2の実施形態について説明する。
 図8および図9は、本発明の第2の実施形態における薄板状単結晶製造装置10である。
 図8および図9に示した薄板状単結晶製造装置10は、基本的には図1~図7に示した第1の実施形態の薄板状単結晶製造装置10と同じ構成であるので、同じ構成部材には、同じ参照番号を付してその詳細な説明を省略し、相違点について説明する。
 本発明の第2の実施形態における薄板状単結晶製造装置10は、図8および図9に示したように、チャンバー80において、チャンバー80内を、添加剤を含んだ雰囲気ガスで満たすガス導入装置90が備えられている点で、第1の実施形態における薄板状単結晶製造装置10と異なっている。
 ガス導入装置90は、チャンバー80の上部側方に設けられ、ガス導入装置90から導入管92を介してチャンバー80内に、雰囲気ガスが導入されるようになっている。またチャンバー80の下方側方には、排出管94が設けられ、この排出管94からチャンバー80外に雰囲気ガスを排出できるようになっている。
 これにより、チャンバー80内は、薄板状単結晶40の製造に適した雰囲気ガスで満たされた状態を維持することができ、添加剤濃度が均質で高品質な薄板状単結晶40を連続的に製造することができる。
 なお雰囲気ガスは、製造される薄板状単結晶40の材料の特性に合わせて用意すれば良く、例えばN型シリコンの薄板状単結晶を製造する場合には、雰囲気ガスとしてホスフィン(PH3)を最適濃度に含有する高純度アルゴンガスをチャンバー80内に導入することが好ましい。
 また、図9に示したように、例えば赤外線照射手段20から照射された赤外線16(レーザ光16a)をチャンバー80内に導光するための窓22や、チャンバー80内に導光された赤外線16(レーザ光16a)を原料塊12の上側面14に導光するための反射鏡24などをカバー部材42で覆い、積極的にこのカバー部材42内にガス導入装置90から雰囲気ガスが導入されるようにしても良いものである。
 このようにカバー部材42内に雰囲気ガスが導入されれば、窓22,反射鏡24などに、融液18から生ずる蒸発物が付着してしまうことを防止することができ、添加剤濃度が均質で高品質な薄板状単結晶40を安定的に歩留まり良く連続的に製造することができる。
[第3の実施形態]
 次に本発明の薄板状単結晶製造装置10の第3の実施形態について説明する。
 図10および図11は、本発明の第3の実施形態における薄板状単結晶製造装置10である。
 図10および図11に示した薄板状単結晶製造装置10は、基本的には図1~図7に示した第1の実施形態の薄板状単結晶製造装置10と同じ構成であるので、同じ構成部材には、同じ参照番号を付してその詳細な説明を省略し、相違点について説明する。
 本発明の第3の実施形態における薄板状単結晶製造装置10は、図10および図11に示したように、昇降手段30が、原料塊12の上部に複数(図10では2つ)設けられている点で、第1の実施形態における薄板状単結晶製造装置10と異なっている。
 具体的には、昇降手段30(巻き取り手段50)がチャンバー80の上部に左右に2つ並べて設けられており、原料塊12の上側面14の融液18に薄板状種子単結晶32,32を浸し、これをそれぞれに昇降手段30,30(巻き取り手段50,50)で上方に引き上げることで、薄板状単結晶40,40をそれぞれ製造することができるようになっている。
 このように昇降手段30が原料塊12の上部に複数設けられていれば、昇降手段30が一つの場合と比べ、薄板状単結晶40の製造効率を格段に向上させることができる。
<薄板状単結晶製造方法>
 次に、本発明の薄板状単結晶製造装置10を用いた薄板状単結晶製造方法について説明する。
 まず図12(a)に示したように、チャンバー80内の載置台82に原料塊12を載せてチャンバー80内を密閉し、原料塊12の上側面の上部に、原料塊12の長さ方向と薄板状種子単結晶32の延設方向が一致するように薄板状種子単結晶32を配設する。薄板状種子単結晶32は、細線52を介して巻き取り手段50の巻装軸36から吊り下げられている。
 なお、チャンバー80内は、排気管(図示せず)を介して雰囲気が真空排気され、製造される薄板状単結晶40の材料の特性に合わせた雰囲気ガスが、ガス導入装置(図示せず)を介してチャンバー80内に導入される。
 次いで、予熱手段70によって原料塊12の温度を融点近傍まで上げておく。次いで図12(b)に示したように、赤外線照射手段20を介して原料塊12の上側面14に対して赤外線16(レーザ光16a)を照射し、上側面14の表面を融解する。
 赤外線16(レーザ光16a)の照射域の形状は、水平方向に細長い中空四角形状であり、原料塊12の上側面14の中心部を除く周縁領域に、この水平方向に細長い中空四角形状の照射域を形成するようにレーザ光16aを合致させて照射する。
 これにより、原料塊12の上側面14の中心部を除く周縁領域が、中心部よりも先に融解され、レーザ光16aの当たっていない中心部は、先に融解された周縁領域の融液18からの熱伝導により融解される。
 次いで図12(c)に示したように、原料塊12の上側面14に得られた融液18の中心部に、昇降手段30(巻き取り手段50)を介して、薄板状種子単結晶32の下側面34を浸し、薄板状種子単結晶32の下側面34から単結晶の育成を開始させる。
 次いで図13(a)に示したように、昇降手段30(巻き取り手段50)を介して薄板状種子単結晶32を上方に引上げ、薄板状単結晶40を連続的に製造する。
 次いで図13(b)に示したように、薄板状単結晶40の連続的な製造に伴って、載置台82の位置を、位置制御手段84を介して上方に移動させる。これにより、引上げに伴って原料塊12の融液18の位置が下がっても、当初の位置を保つように原料塊12の位置を位置制御し、常に融液18の液面位置を同じ位置とする。
 ここで図4および図6に示した薄板状単結晶製造装置10のように、原料塊12の上側面14に対し、レーザ光16aを原料塊12の真上から垂直に照射する場合には、原料塊12の上側面14の位置が変動しても融液18の温度は変わらないので、原料塊12の上側面14の位置を一定の位置に制御しなくても良い。
 最後に図13(c)に示したように、赤外線照射手段20による赤外線16(レーザ光16a)の照射量を増やして融液18の温度を上げ薄板状単結晶40を融液18から切り離し、昇降手段30(巻き取り手段50)により連続的に製造された薄板状単結晶40の巻き取りを終え、赤外線照射手段20による赤外線16(レーザ光16a)の照射を終えれば、薄板状単結晶40の製造が完了となる。
[実施例1]
 本発明の薄板状単結晶製造装置10を用いて、リンを添加したN型シリコンの薄板状単結晶40を製造した。
 なお原料塊12として、幅400mm、厚み50mm、高さ500mmの立方体状の原料塊12を用いた。
 一方、薄板状種子単結晶32として、(111)面を有する幅350mm、厚み0.3mm、高さ100mmのシリコンの薄板状種子単結晶32を用いた。シリコンは(111)面方向にファセットと呼ばれる平坦状の面が現れやすい性質があり、この平坦状の面を、薄板状種子単結晶32の板面とした。薄板状種子単結晶32は、予め3本の細線52を介して巻き取り手段50の巻装軸36に取り付けた。
 まず、チャンバー80内の載置台82上にこの原料塊12を載せ、チャンバー80を閉じて内部の雰囲気を真空状態とした。
 次いでチャンバー80内に、雰囲気ガスを導入した。雰囲気ガスとしては、高純度アルゴンガスを使用し、リンを添加するためにホスフィン(PH3)ガスを必要量添加したものを用いた。
 この原料塊12を、まずは予熱手段70で融点近傍まで加熱し、加熱を確認したら、この原料塊12の上側面14の中心部および最周縁部を除く周縁領域に、幅20mm、長さ396mmのレーザ光を左右からそれぞれ水平方向からの角度60度で終端部から2mm離して照射し、同時に原料塊12の長さ方向の両端部には原料塊12の中心線上、端から2mm離して幅6mmの直角な照射域形状を有するレーザ光16aを水平方向から60度の角度でそれぞれ照射した。照射域の形状は全体的には水平方向に細長い中空四角形状となっている。これにより上側面14の全域を融解した。
 巻き取り手段50の巻装軸36を回転させ、融解して得られた融液18の中心部に、上記したシリコンの薄板状種子単結晶32の下側面34を浸し、薄板状種子単結晶32の下側面34から薄板状単結晶40を成長させながら、今度は巻装軸36を逆方向に回転させ、薄板状種子単結晶32を上方に引上げ、上部で巻装軸36に薄板状単結晶40を連続的にロール状に巻き取り、長さ10mを超える長尺の薄板状単結晶40を製造した。
 なお、薄板状種子単結晶32は、直径0.05mm程度のカーボンファイバー細線52で巻き取り手段50の巻装軸36にセットされ、回動手段38で巻装軸36の回転方向や回転速度を制御することで、薄板状種子単結晶32を上下方向に移動させた。
 融液18の中心部に薄板状種子単結晶32が浸されると、直ぐに結晶化が始まり、薄板状種子単結晶32の浸された部分は厚くなるものの、このまま放置すると厚くなった部分が融解して薄くなることを確認した。
 この状態で、薄板状種子単結晶32を上方に引き上げ、製造された薄板状単結晶40の厚さをカメラで確認し、引上げ速度とレーザ光16aの照射強度を調整しながら厚さを0.3mmに制御して巻装軸36を回転させ、連続的に薄板状単結晶40を巻装軸36に巻き取った。
 なお、薄板状種子単結晶32の引上げ速度を遅くすると、薄板状単結晶40の厚さが厚くなり、引上げ速度を速めると薄板状単結晶40の厚さが薄くなることを確認した。毎分30mmの速度で厚さ0.3mmの薄板状単結晶40が連続して引き上がるように融液温度を調節した。
 ここで薄板状単結晶40の引上げに伴い、原料塊12の融液18の液面位置が下がるので、当初の位置を保つように原料塊12を載せている載置台82の位置を、位置制御手段84を介して所定の位置に制御し、常に原料塊12の融液18の液面位置を当初の位置と同じ位置となるようにしている。
 このようにして製造された10mを超える長尺で、厚さが0.3mm、幅が383~386mmの薄板状単結晶40を、二次イオン質量分析(SIMS:Secondary Ion Mass Spectrometry)法を用いて確認したところ、添加剤であるリンの濃度が最適組成で均質であり、高品質であることが確認され、本発明の薄板状単結晶製造装置10および薄板状単結晶製造方法の優位性が確認できた。
 次に上述した本発明の薄板状単結晶製造装置10およびこの薄板状単結晶製造装置10を用いた薄板状単結晶製造方法のまとめについて説明する。
 本発明の薄板状単結晶製造装置10および薄板状単結晶製造方法によって、薄板状単結晶40を連続して安定的に製造できるようにした最も大きな要因は、原料塊12の融解と、得られた融液18からの単結晶化とを、それぞれ独立して概ね制御できるようにした点である。
 すなわち、原料塊12を融解して融液18を得るには加熱が必要であるが、融液18を固化させて結晶化させるには冷却が必要であり、両者は相反している。
 そこで本発明では、結晶化が行われる部分(融液18の中心部)には直接、レーザ光16aを照射せず、結晶化が行われる部分以外の部分(融液18の中心部を除いた周縁領域)にレーザ光16aを照射して、原料塊12の上側面14を融解し、融液18の熱を、結晶化が行われる部分(融液18の中心部)に伝導させて、上側面14の中心部にも融液18を形成させる構成とした。
 これにより、結晶化が行われる部分(融液18の中心部)の温度は、レーザ光16aの照射を受けて融解している部分(融液18の中心部を除いた周縁領域)の温度よりも低くなり、結晶化を容易にしている。
 融液18の中心部に、薄板状種子単結晶32を浸すと、融液18の熱が、浸された薄板状種子単結晶32の下側面34に伝わるので、下側面34に接する融液の温度は低くなり、結晶化が急激に進む。しばらく放置しておくと、薄板状種子単結晶32を伝わって逃げる熱量は定常状態になり、それまでに急激に固化した部位は周囲の融液18からの熱により次第に融解し、定常状態になる。
 この状態で薄板状種子単結晶32を上方に引上げると、薄板状種子単結晶32は低温部に移動することになるので、融液18と接している下側面34では、結晶化が進む。
 薄板状種子単結晶32の引上速度を速め、結晶化が追い付かなくなると、製造された薄板状単結晶40の厚みは薄くなり、引上速度を遅くすると結晶化が進むので薄板状単結晶40の厚みが増す。
 そこで融液18の温度を低めに制御すれば結晶化が容易となり、薄板状単結晶40の厚みが厚くなるので、引上速度を速めても所定の厚みの薄板状単結晶40を連続的に製造することができる。
 なお、引上速度を速めれば、薄板状単結晶40の製造効率を高めることができるが、あまり早くし過ぎるとセル成長が発生する可能性が高まる。セル成長が発生すると、局部的に添加剤であるリンの濃度が大きく変動し、単結晶としての特性が劣化する。したがって、セル成長の発生を抑止しながら、できるだけ引上速度を速めて薄板状単結晶40を連続的に製造することが重要である。
 さらには本発明によって分解融解物質や固溶体単結晶などいわゆる不一致融解物質についても均質組成で高品質な薄板状単結晶40の製造を始めて可能にした。このような不一致融解物質の均質組成の薄板状単結晶40は、従来法では製造が不可能とされてきたものである。
 すなわち、原料を融解して融液を形成させ、これを固化して単結晶を製造するいわゆる融液法でこれらの不一致融解物質の均質組成単結晶を製造するためには、目的組成の原料塊12を製造しておき、目的組成物質と平衡共存する溶媒組成の溶媒を用いて原料塊12の溶解と、溶媒からの単結晶の析出を同時進行で進めるいわゆる溶媒移動法を適用する以外に原理的に方法が無い。
 本発明においては原料塊12の上側面14に溶媒相成分を必要量配置してから赤外線16を照射して融解し、溶媒溶液を形成させる。そして溶媒からの単結晶の製造と溶媒への原料塊12の溶解を同時進行させることにより溶媒移動法を適用し、均質組成の薄板状単結晶40を製造可能とした。
 以上、本発明の薄板状単結晶製造装置10およびこの薄板状単結晶製造装置10を使用した薄板状単結晶製造方法について説明したが、本発明は上記実施形態に限定されないものである。
 例えば、上記した薄板状単結晶製造装置10では、第1の実施形態から第3の実施形態までを別々に記載したが、これを組み合わせて本発明の薄板状単結晶製造装置10としても良いものである。すなわち例えば第1の実施形態に、第2の実施形態と第3の実施形態を組み合わせて成る、薄板状単結晶製造装置10としても良いものである。
 さらに上記した薄板状単結晶製造装置10では、赤外線照射手段20を四角形状のそれぞれの辺に平行に照射できるように設けた場合を例にしているが、これに限定されるものではなく、一つの赤外線照射手段20のみとしても良いものである。
 また、原料塊12の上側面14の中心部を除く周縁領域に合致する、水平方向に細長い中空四角形状の照射域を形成できるようにレーザ光16aを照射することができれば、この細長い中空四角形状の照射域を複数のレーザ光16aで形成しても良く、数や一つの赤外線照射手段20から照射されるレーザ光16aの断面形状が限定されるものではないものである。
 すなわち、断面コ字状のレーザ光16aを左右それぞれから原料塊12の上側面14に照射し、2つの断面コ字状のレーザ光16a,16aで、水平方向に細長い中空四角形状の断面形状の照射域を形成したり、断面棒形状の4つのレーザ光で、水平方向に細長い中空四角形状の照射域を形成させても良いものである。
 さらに、製造される薄板状単結晶40の厚さとしては、100μm~3000μm程度の厚さとして記載したが、これ以上の例えば5000μm以上の厚さであっても原理的に製造可能であって、厚さが上記の範囲に限定されるものではないものである。
 また、融液18に浸される薄板状種子単結晶32の厚さについても、例えば300μm~500μm程度の厚さとして記載したが、こちらもこの範囲外の厚さであっても原理的に薄板状単結晶40を製造可能であって、厚さが上記の範囲に限定されるものではないものである。
 このように本発明の薄板状単結晶製造装置10および薄板状単結晶製造方法は、本発明の目的を逸脱しない範囲で種々の変更が可能なものである。
10 薄板状単結晶製造装置
12 薄板状単結晶製造用原料塊(原料塊)
14 上側面
16 赤外線
16a レーザ光
18 融液
20 赤外線照射手段
22 窓
24 反射鏡
30 昇降手段
32 薄板状種子単結晶
34 下側面
36 巻装軸
38 回動手段
40 薄板状単結晶
42 カバー部材
50 巻き取り手段
52 細線
54 供給手段
56 供給管
60 揺れ止め部材
62 遮蔽部材
70 予熱手段
80 チャンバー
82 載置台
84 位置制御手段
90 ガス導入装置
92 導入管
94 排出管

Claims (25)

  1.  薄板状単結晶製造用原料塊の上側面に対して赤外線を照射し、前記上側面の表面を融解する赤外線照射手段と、
     前記赤外線照射手段にて融解され、前記上側面の表面に得られた融液中に薄板状種子単結晶の下側面を浸すとともに、浸した状態から前記薄板状種子単結晶を上方に引き上げる昇降手段と、
     を備え、
     前記赤外線照射手段によって薄板状単結晶製造用原料塊の上側面の表面に得られた融液中に、前記昇降手段を介して薄板状種子単結晶の前記下側面を浸すことで、浸された薄板状種子単結晶の前記下側面から単結晶の育成が開始され、さらに前記昇降手段を介して薄板状種子単結晶を上方に引き上げることで、連続的に薄板状単結晶が製造されるよう構成されていることを特徴とする薄板状単結晶製造装置。
  2.  前記赤外線照射手段から照射される赤外線が、レーザ光であることを特徴とする請求項1に記載の薄板状単結晶製造装置。
  3.  前記レーザ光の照射域の形状が水平方向に細長い中空四角形状であり、
     前記薄板状単結晶製造用原料塊の上側面の中心部を除く周縁領域に対し、前記中空四角形状の照射域を形成するようにレーザ光が照射されることを特徴とする請求項2に記載の薄板状単結晶製造装置。
  4.  前記昇降手段が、
     製造された前記薄板状単結晶を連続してロール状に巻き取る巻き取り手段であり、
     前記巻き取り手段が、
     前記薄板状単結晶を連続して巻き取る巻装軸と、
     前記巻装軸を回動させる回動手段と、
     を備え、
     前記巻装軸に前記薄板状種子単結晶が吊り下げられるよう構成されていることを特徴とする請求項1~3のいずれか一項に記載の薄板状単結晶製造装置。
  5.  前記薄板状種子単結晶が、
     複数の細線を介して前記巻装軸に吊り下げられていることを特徴とする請求項4に記載の薄板状単結晶製造装置。
  6.  前記薄板状種子単結晶において、
     前記細線が取り付けられた部分の厚さが、
     製造される前記薄板状単結晶の厚さ以下の大きさであることを特徴とする請求項5に記載の薄板状単結晶製造装置。
  7.  前記薄板状単結晶製造用原料塊の上側面には、
     製造される前記薄板状単結晶の組成と平衡共存する液相の組成物が必要量、最初に配置されていることを特徴とする請求項1~6のいずれか一項に記載の薄板状単結晶製造装置。
  8.  前記昇降手段と前記薄板状単結晶製造用原料塊の間に、
     連続的に製造される前記薄板状単結晶の揺れを防止する揺れ止め部材が配設されていることを特徴とする請求項1~7のいずれか一項に記載の薄板状単結晶製造装置。
  9.  前記昇降手段と前記薄板状単結晶製造用原料塊の間に、
     前記融液から発せられる輻射熱を、連続的に製造される前記薄板状単結晶に届き難いように遮蔽する遮蔽部材が設けられていることを特徴とする請求項1~8のいずれか一項に記載の薄板状単結晶製造装置。
  10.  前記薄板状単結晶製造用原料塊が、略直方体であることを特徴とする請求項1~9のいずれか一項に記載の薄板状単結晶製造装置。
  11.  前記薄板状単結晶製造用原料塊の上側面の大きさは、前記薄板状種子単結晶の下側面の大きさよりも厚さ方向および横方向のいずれにおいても数mm以上、大きく設定されていることを特徴とする請求項1~10のいずれか一項に記載の薄板状単結晶製造装置。
  12.  前記薄板状単結晶製造用原料塊を載置する載置台と、
     前記載置台の位置を所定位置となるように位置制御する位置制御手段と、
     を備えることを特徴とする請求項1~11のいずれか一項に記載の薄板状単結晶製造装置。
  13.  前記昇降手段が、
     前記赤外線照射手段によって融解された薄板状単結晶製造用原料塊の上側面の融液の中心部に、前記薄板状種子単結晶の前記下側面を浸すよう構成されていることを特徴とする請求項1~12のいずれか一項に記載の薄板状単結晶製造装置。
  14.  前記薄板状単結晶製造用原料塊の周囲には、
     前記薄板状単結晶製造用原料塊を予め加熱する予熱手段が設けられていることを特徴とする請求項1~13のいずれか一項に記載の薄板状単結晶製造装置。
  15.  少なくとも前記薄板状単結晶製造用原料塊がチャンバー内に配設され、
     前記チャンバーの上部に前記昇降手段が配設されていることを特徴とする請求項1~14のいずれか一項に記載の薄板状単結晶製造装置。
  16.  前記チャンバー内を、添加剤を含んだ雰囲気ガスで満たすガス導入装置を備えることを特徴とする請求項15に記載の薄板状単結晶製造装置。
  17.  前記昇降手段が、
     前記薄板状単結晶製造用原料塊の上部に複数設けられていることを特徴とする請求項1~16のいずれか一項に記載の薄板状単結晶製造装置。
  18.  前記薄板状種子単結晶の厚さが、300μm~500μmの範囲内であることを特徴とする請求項1~17のいずれか一項に記載の薄板状単結晶製造装置。
  19.  赤外線照射手段を介して、薄板状単結晶製造用原料塊の上側面に赤外線を照射し、前記薄板状単結晶製造用原料塊の上側面の表面を融解する融解工程と、
     前記融解工程にて、前記薄板状単結晶製造用原料塊の上側面の表面に得られた融液中に、昇降手段を介して薄板状種子単結晶の下側面を浸し、前記薄板状種子単結晶の前記下側面から単結晶の育成を開始させる育成工程と、
     前記育成工程にて、単結晶の育成が開始された前記薄板状種子単結晶を上方に引き上げ、連続的に薄板状単結晶を製造する連続製造工程と、
     を少なくとも有することを特徴とする薄板状単結晶製造方法。
  20.  前記融解工程において、
     前記赤外線照射手段から照射される赤外線が、レーザ光であることを特徴とする請求項19に記載の薄板状単結晶製造方法。
  21.  前記融解工程において、
     前記レーザ光の照射域の形状が水平方向に細長い中空四角形状であり、
     前記薄板状単結晶製造用原料塊の上側面の中心部を除く周縁領域に対し、前記中空四角形状の照射域を形成するようにレーザ光が照射されることを特徴とする請求項20に記載の薄板状単結晶製造方法。
  22.  前記連続製造工程の後、
     連続的に製造された前記薄板状単結晶を、ロール状に巻き取る巻き取り工程と、
     をさらに有することを特徴とする請求項19~21のいずれか一項に記載の薄板状単結晶製造方法。
  23.  前記融解工程において、
     製造される前記薄板状単結晶が分解融解物質である場合には、その組成と平衡共存する液相の組成物を、最初に必要量、前記薄板状単結晶製造用原料塊の上側面に配置しておくことを特徴とする請求項19~22のいずれか一項に記載の薄板状単結晶製造方法。
  24.  前記融解工程において、
     製造される前記薄板状単結晶が添加剤を含む固溶体物質である場合には、その組成と平衡共存する液相の組成物を、最初に必要量、前記薄板状単結晶製造用原料塊の上側面に配置しておくことを特徴とする請求項19~22のいずれか一項に記載の薄板状単結晶製造方法。
  25.  前記育成工程において、
     前記融解された薄板状単結晶製造用原料塊の上側面の表面の融液の中心部に、前記薄板状種子単結晶の前記下側面を浸すことを特徴とする請求項19~24のいずれか一項に記載の薄板状単結晶製造方法。
PCT/JP2021/005139 2020-12-15 2021-02-12 薄板状単結晶製造装置および薄板状単結晶製造方法 WO2022130651A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21794699.5A EP4265827A1 (en) 2020-12-15 2021-02-12 Thin plate-shaped monocrystal production device and thin plate-shaped monocrystal production method
US17/610,890 US11939696B2 (en) 2020-12-15 2021-02-12 Thin plate-shaped single-crystal production equipment and thin plate-shaped single-crystal production method
KR1020217037208A KR20230118717A (ko) 2020-12-15 2021-02-12 박판상 단결정 제조 장치 및 박판상 단결정 제조 방법
CN202180003335.7A CN114945712A (zh) 2020-12-15 2021-02-12 薄板状单晶制造装置及薄板状单晶制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-207337 2020-12-15
JP2020207337 2020-12-15
JP2021-002285 2021-01-08
JP2021002285A JP2022094878A (ja) 2020-12-15 2021-01-08 薄板状単結晶製造装置および薄板状単結晶製造方法

Publications (1)

Publication Number Publication Date
WO2022130651A1 true WO2022130651A1 (ja) 2022-06-23

Family

ID=82059330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/005139 WO2022130651A1 (ja) 2020-12-15 2021-02-12 薄板状単結晶製造装置および薄板状単結晶製造方法

Country Status (6)

Country Link
US (1) US11939696B2 (ja)
EP (1) EP4265827A1 (ja)
KR (1) KR20230118717A (ja)
CN (1) CN114945712A (ja)
TW (1) TW202225500A (ja)
WO (1) WO2022130651A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05294791A (ja) * 1992-04-21 1993-11-09 Fuji Electric Co Ltd 多結晶基板の製造方法および製造装置
WO2009081811A1 (ja) * 2007-12-25 2009-07-02 Crystal Systems Corporation 浮遊帯域溶融装置
JP2016147800A (ja) * 2015-01-29 2016-08-18 国立大学法人山梨大学 浮遊帯域溶融法およびこれを用いた装置
JP2018516829A (ja) * 2015-03-25 2018-06-28 シャスタ・クリスタルズ・インコーポレーテッドShasta Crystals, Incorporated レーザ溶融ペデスタル成長法を用いて細径結晶ファイバを作製するための装置および方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4650541A (en) * 1984-09-12 1987-03-17 The United States Of America As Represented By The United States Department Of Energy Apparatus and method for the horizontal, crucible-free growth of silicon sheet crystals
US5122504A (en) * 1990-02-27 1992-06-16 The Board Of Trustees Of The Leland Stanford Junior University Superconducting ribbon process using laser heating
US7449065B1 (en) * 2006-12-02 2008-11-11 Ohio Aerospace Institute Method for the growth of large low-defect single crystals
US8227082B2 (en) * 2007-09-26 2012-07-24 Ut-Battelle, Llc Faceted ceramic fibers, tapes or ribbons and epitaxial devices therefrom

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05294791A (ja) * 1992-04-21 1993-11-09 Fuji Electric Co Ltd 多結晶基板の製造方法および製造装置
WO2009081811A1 (ja) * 2007-12-25 2009-07-02 Crystal Systems Corporation 浮遊帯域溶融装置
JP5279727B2 (ja) 2007-12-25 2013-09-04 株式会社クリスタルシステム 浮遊帯域溶融装置
JP2016147800A (ja) * 2015-01-29 2016-08-18 国立大学法人山梨大学 浮遊帯域溶融法およびこれを用いた装置
JP2018516829A (ja) * 2015-03-25 2018-06-28 シャスタ・クリスタルズ・インコーポレーテッドShasta Crystals, Incorporated レーザ溶融ペデスタル成長法を用いて細径結晶ファイバを作製するための装置および方法

Also Published As

Publication number Publication date
KR20230118717A (ko) 2023-08-14
EP4265827A1 (en) 2023-10-25
TW202225500A (zh) 2022-07-01
US11939696B2 (en) 2024-03-26
CN114945712A (zh) 2022-08-26
US20220411957A1 (en) 2022-12-29

Similar Documents

Publication Publication Date Title
US4594229A (en) Apparatus for melt growth of crystalline semiconductor sheets
EP2322697B1 (en) Doped low temperature phase bab2o4 single crystal the manufacturing method thereof and wave changing elements therefrom
US8450704B2 (en) Phonon-enhanced crystal growth and lattice healing
US11127867B2 (en) Monocrystalline germanium wafers, method for preparing the same, method for preparing ingots and use of monocrystalline wafers
CN110202419B (zh) 锗单晶片、其制法、晶棒的制法及单晶片的用途
Bell et al. Growth of silicon sheets for photovoltaic applications
WO2022130651A1 (ja) 薄板状単結晶製造装置および薄板状単結晶製造方法
US7537659B2 (en) Method of obtaining a CdTe or CdZnTe single crystal and the single crystal thus obtained
JP2022094878A (ja) 薄板状単結晶製造装置および薄板状単結晶製造方法
Arivanandhan et al. Bulk growth of InGaSb alloy semiconductor under terrestrial conditions: a preliminary study for microgravity experiments at ISS
Gaspar et al. Silicon growth technologies for PV applications
US20240352614A1 (en) Thin Plate-Shaped Single-Crystal Production Equipment and Thin Plate-Shaped Single-Crystal Production Method
EP4386115A1 (en) Thin plate-shaped monocrystal production device and thin plate-shaped monocrystal production method
JP4723082B2 (ja) Gaドープシリコン単結晶の製造方法
JP2008063194A (ja) Siバルク多結晶の作製方法
JP6628668B2 (ja) 化合物半導体多結晶、化合物半導体単結晶の製造方法、ならびに化合物半導体多結晶の製造方法
Di Sabatino et al. Crystallization processes for photovoltaic silicon ingots: Status and perspectives
CN117684265A (zh) 一种在硅衬底上生长的竖立钙钛矿片层及其制备方法和应用
RU2341594C2 (ru) Способ выращивания монокристалла теллурида кадмия
KR20200109451A (ko) 실리콘 웨이퍼 제조 방법
CN115852481A (zh) 一种生长面积和厚度可控的钙钛矿单晶厚膜的方法
Kamaruddin et al. THE EFFECT OF THERMAL TO THE DIAMETER OF Nd: YAG CRYSTAL DURING GROWTH PROCESS
Ciszek Silicon crystal growth for photovoltaics
CN111962137A (zh) 一种维持ZnTe晶体稳定性的方法
JP2000264618A (ja) 板状シリコン多結晶の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21794699

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021794699

Country of ref document: EP

Effective date: 20230717