WO2022130557A1 - Winding nozzle and winding machine - Google Patents

Winding nozzle and winding machine Download PDF

Info

Publication number
WO2022130557A1
WO2022130557A1 PCT/JP2020/047095 JP2020047095W WO2022130557A1 WO 2022130557 A1 WO2022130557 A1 WO 2022130557A1 JP 2020047095 W JP2020047095 W JP 2020047095W WO 2022130557 A1 WO2022130557 A1 WO 2022130557A1
Authority
WO
WIPO (PCT)
Prior art keywords
winding
nozzle
end surface
tip
iron core
Prior art date
Application number
PCT/JP2020/047095
Other languages
French (fr)
Japanese (ja)
Inventor
計憲 足達
雄哉 横手
裕史 庄子
義和 藤末
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN202080106660.1A priority Critical patent/CN116458044A/en
Priority to JP2022569416A priority patent/JP7378645B2/en
Priority to PCT/JP2020/047095 priority patent/WO2022130557A1/en
Publication of WO2022130557A1 publication Critical patent/WO2022130557A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/08Forming windings by laying conductors into or around core parts
    • H02K15/095Forming windings by laying conductors into or around core parts by laying conductors around salient poles

Definitions

  • the present disclosure relates to a winding nozzle and a winding machine for manufacturing a coil, and particularly to a shape of a nozzle for feeding a winding.
  • a coil used for a stator of an electric motor is manufactured by winding a winding around an iron core constituting the stator.
  • a winding machine is used to manufacture the coil.
  • the winding machine has a nozzle for supplying windings and a nozzle holding portion for holding the nozzles.
  • the winding is unwound from a nozzle attached to a nozzle holding portion that moves in the horizontal direction, and the winding is wound around the iron core.
  • the nozzle is moved so that the tip of the nozzle orbits around the iron core around the iron core, and the winding is wound around the iron core to form a coil.
  • the nozzle has, for example, a cylindrical shape, and has a fixed side end surface fixed to the nozzle holding portion and a tip surface on the side from which the winding is pulled out. Further, the nozzle has a winding through portion formed so that the winding passes from the fixed side end surface to the tip surface (see, for example, Patent Document 1).
  • the winding through portion according to one embodiment described in Patent Document 1 is a winding insertion groove formed in a groove shape on the side surface of the nozzle body.
  • the wire insertion groove extends along the axial direction of the nozzle from the fixed side end surface to the tip surface.
  • the winding through portion has a groove shape
  • the winding is always pulled while the winding machine is winding the stator, so that the winding is disconnected from the winding insertion groove. There is no such thing.
  • the winding machine is paused and restarted, the winding may come out of the winding insertion hole.
  • the iron core of the stator is provided with an insulator having an insulating property.
  • the crossover wiring connecting the teeth of the stator is fixed, or terminals and the like are arranged. If the winding thread is groove-shaped, the winding may come off the winding insertion hole when the winding is entwined with the insulator or when the crossover wiring is passed between the teeth. If the winding is disengaged from the winding insertion hole, the winding operation cannot be continued, so the winding machine must be stopped and the worker must reinsert the winding into the winding insertion hole. rice field.
  • Patent Document 1 also proposes an embodiment in which the winding through portion is composed of a winding insertion hole having a through hole shape penetrating from the fixed side end surface to the tip surface.
  • the winding is inserted into the winding threading portion from the fixed side end surface of the nozzle, passes through the winding threading portion, and is drawn out from the tip surface.
  • the nozzle disclosed in Patent Document 1 has a winding threading portion formed so that the winding can pass through. Further, as described above, the winding threading portion is formed in a groove shape or a through hole shape.
  • the winding through portion has a through hole shape
  • the winding through portion has a through hole shape
  • the bending angle of the winding when the winding is inserted into the winding insertion hole is larger than that in the case of the groove shape. Therefore, the winding is not smoothly inserted into the winding insertion hole, and a large tensile load is applied to the winding. That is, there is a problem that the winding is strongly pulled during the winding operation of the winding machine, and the elongation rate of the winding increases.
  • the elongation rate of the winding increased, the electric resistance of the coil composed of the winding increased, and the load of the electric motor increased.
  • the tip surface of the nozzle has an R shape, and the drawn winding is bent along the R shape.
  • the R shape is large, the elongation rate of the winding does not increase because an excessive force is not applied to the winding. Therefore, in Patent Document 1, when the winding through portion has a through hole shape, the winding insertion hole is formed at a position deviated from the central axis of the nozzle for the purpose of increasing the R shape. As a result, the inner wall of the nozzle on the side where the winding insertion hole is provided becomes thin, the strength becomes insufficient, and it is not suitable for winding with a strong tension.
  • the present disclosure has been made to solve such a problem, prevent the winding from coming off the nozzle during the winding operation or other operation of the winding machine, and secure the strength of the nozzle. Further, it is an object of the present invention to provide a winding nozzle and a winding machine capable of reducing the elongation rate of the winding.
  • the winding nozzle according to the present disclosure is used in a winding machine in which a winding is wound around an iron core to form a coil, has a columnar outer shape, and the winding is pulled out from a tip surface to move around the iron core.
  • a winding nozzle that moves and winds the winding around the iron core, at a first end surface that is a fixed side end surface attached to a nozzle holding portion of the winding machine, and at the tip surface from which the winding is pulled out.
  • a second end face, a winding threading portion extending in the longitudinal direction of the winding nozzle from the first end face to the second end face so that the winding passes from the first end face to the second end face, and the said.
  • the second end surface is provided with a groove-shaped tip groove portion that communicates with the winding through portion, and the tip groove portion is the second end surface from the first side surface constituting the outer periphery of the winding nozzle.
  • the outer circumference of the winding nozzle is formed and extends to the second side surface facing the first side surface, and the winding through portion is arranged so as to be inclined with respect to the central axis extending in the longitudinal direction of the winding nozzle.
  • the direction in which the winding through portion is inclined with respect to the central axis is the direction opposite to the extending direction of the tip groove portion.
  • the winding machine includes at least one winding nozzle, a nozzle holding portion for holding the winding nozzle, and a drive unit for horizontally moving the nozzle holding portion. ..
  • the winding is prevented from coming off from the nozzle during the winding operation or other operation in the winding machine, and the strength of the nozzle is ensured. Further, the elongation rate of the winding can be reduced.
  • FIG. It is a schematic diagram which shows the whole structure of the winding machine 100 which concerns on Embodiment 1.
  • FIG. It is a top view which shows an example of the structure of the stator 10 used for an electric motor or the like. It is a side view of the stator 10 shown in FIG. It is a figure which shows an example of the state in which the stator 10 is mounted. It is a perspective view which shows the winding nozzle 50 when the coil 2 is formed in the iron core 1 by the winding machine 100 which concerns on Embodiment 1.
  • FIG. FIG. 5 is a plan view of FIG. It is a top view which shows the movement of the winding nozzle 50 when the crossover wire 3A is passed to the iron core 1 by the winding machine 100 which concerns on Embodiment 1.
  • FIG. 1 It is a perspective view of the winding nozzle 50 of the winding machine 100 which concerns on Embodiment 1.
  • FIG. 2 is a perspective view of the winding nozzle 50 of the winding machine 100 which concerns on Embodiment 1.
  • FIG. It is a partially enlarged perspective view which shows the tip surface 56 of the winding nozzle 50 of the winding machine 100 which concerns on Embodiment 1.
  • FIG. It is (a) sectional view and (b) side view which shows the structure of the winding nozzle 50 of the winding machine 100 which concerns on Embodiment 1.
  • FIG. It is a schematic diagram of the state in which the winding 3 is wound around the tooth 1a of the iron core 1 in the winding machine 100 according to the first embodiment. It is explanatory drawing of the cross-sectional structure of the iron core 1 in which the coil 2 was formed by the winding machine 100 which concerns on Embodiment 1.
  • FIG. As a comparative example of the winding nozzle 50 of the winding machine 100 according to the first embodiment, it is explanatory drawing which shows the structure of the winding nozzle 150 described in Patent Document 1.
  • FIG. 1 is a schematic view showing the overall structure of the winding machine 100 according to the first embodiment.
  • FIG. 2 is a plan view showing an example of the structure of the stator 10 used in an electric motor or the like.
  • FIG. 3 is a side view of the stator 10 shown in FIG. FIG. 3 shows the side surface of one iron core 1 constituting the stator 10.
  • the winding machine 100 is, for example, a device for forming the coil 2 constituting the stator 10 of the electric motor 20 (see FIG. 4).
  • the winding machine 100 forms the coil 2 by winding the winding 3 around the iron core 1 constituting the stator 10.
  • the iron core 1 has a teeth 1a and a slot surface 1b.
  • the iron core 1 is schematically represented, and the iron core 1 is not limited to the shape shown in FIG.
  • the stator 10 is formed by arranging a plurality of iron cores 1 in an annular shape.
  • the number of iron cores 1 may be any number, and is appropriately determined depending on the specifications and applications of the motor 20 and the like.
  • each iron core 1 includes a U-side insulator 4 and an L-side insulator 5.
  • the U-side insulator 4 and the L-side insulator 5 are integrally molded with the iron core 1, or are configured by attaching a separately molded one to the iron core 1.
  • the U-side insulator 4 and the L-side insulator 5 are composed of insulating members and have insulating properties.
  • a crossover 3A (see FIG. 7) connecting the coils 2 is fixed to the U-side insulator 4 and the L-side insulator 5, or terminals (not shown) or the like are arranged.
  • the stator 10 is formed as follows. First, as shown in FIG. 5, which will be described later, in a state where a plurality of iron cores 1 are linearly connected, the winding machine 100 winds the winding wire 3 around the slot surface 1b of each iron core 1 to form the coil 2. To. After the coil 2 is formed on the slot surface 1b of each iron core 1, a plurality of linearly connected iron cores 1 are formed into an annular shape, and among the plurality of connected iron cores 1, the iron cores 1 located at both ends are joined by welding or the like. By doing so, the annular stator 10 shown in FIG. 2 is formed.
  • FIG. 4 is a diagram showing an example of a state in which the stator 10 is mounted.
  • the stator 10 is built in, for example, the electric motor 20.
  • the electric motor 20 is composed of a stator 10 and a rotor 11.
  • the stator 10 is formed by arranging a plurality of iron cores 1 in an annular shape, so that a tubular portion is formed on the inner peripheral side of each iron core 1.
  • the rotor 11 is arranged in the cylindrical portion of the stator 10.
  • the rotor 11 has a cylindrical shape and is fixed to the rotating shaft 12.
  • the rotor 11 is rotationally driven by the rotation of the rotating shaft 12.
  • FIG. 4 shows an example in which the motor 20 is mounted on a compressor 200 used for an outdoor unit of an air conditioner (not shown).
  • the electric motor 20 is arranged in the housing 200a of the compressor 200.
  • a compression mechanism 200b is provided at the bottom of the housing 200a.
  • the compression mechanism 200b compresses the refrigerant sucked from the suction port 200c of the compressor 200, and discharges the compressed refrigerant from the discharge port 200d of the compressor 200.
  • the compression mechanism 200b is driven by the electric motor 20.
  • electric power is supplied to the coil 2 from the wiring connected to the stator 10, and the rotor 11 is rotationally driven by the magnetic field generated by the coil 2 and the iron core 1.
  • the winding machine 100 includes a nozzle holding portion 61 to which a winding nozzle 50 is attached, a drive unit 60 that moves the nozzle holding portion 61 in the horizontal direction, and a pair that guides the winding 3. It is equipped with a pulley 62. Further, the winding machine 100 includes a tensioner portion 63 for adjusting the tension of the winding 3, and a winding bobbin 64 in which the winding 3 is stored.
  • the nozzle holding portion 61 is horizontally moved by the drive unit 60 in the X and Z directions of FIG. 1, as schematically indicated by the arrow 90.
  • the X direction is the width direction corresponding to the left-right direction of the paper surface
  • the Z direction is the depth direction orthogonal to the X direction.
  • the Y direction is a vertical direction orthogonal to the X direction and the Z direction.
  • the X and Z directions are, for example, the horizontal direction
  • the Y direction is, for example, the vertical direction.
  • the winding 3 is pulled out from the winding bobbin 64, is guided by a pair of pulleys 62 through the tensioner portion 63, and is passed through the nozzle holding portion 61.
  • the winding 3 that has passed through the nozzle holding portion 61 is drawn out from the tip end portion of the winding nozzle 50 through the winding nozzle 50 held by the nozzle holding portion 61.
  • the tip of the winding 3 is fixed to the iron core 1, and the winding 3 is wound around the slot surface 1b of the teeth 1a.
  • the winding machine 100 includes a control device 80, and the control device 80 controls at least a mechanism for rotating the drive unit 60, the tensioner unit 63, and the winding nozzle 50.
  • the control device 80 is composed of a processing circuit.
  • the processing circuit is composed of dedicated hardware or a processor.
  • the dedicated hardware is, for example, an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array).
  • the processor executes a program stored in memory.
  • the control device 80 has a storage unit (not shown).
  • the storage unit is composed of a memory.
  • the memory is a non-volatile or volatile semiconductor memory such as RAM (RandomAccessMemory), ROM (ReadOnlyMemory), flash memory, EPROM (ErasableProgrammableROM), or a disk such as a magnetic disk, flexible disk, or optical disk. be.
  • FIG. 5 is a perspective view showing a winding nozzle 50 when the coil 2 is formed on the iron core 1 by the winding machine 100 according to the first embodiment.
  • FIG. 6 is a plan view of FIG.
  • the winding 3 is wound around each core 1 in a state where the stator 10 is unfolded so that the cores 1 of the stator 10 are arranged in a straight line.
  • the coil 2 is formed.
  • the winding nozzle 50 has a cylindrical shape, and is provided with a winding through portion 51 through which the winding 3 passes.
  • the winding machine 100 is provided with three winding nozzles 50. As shown in FIG.
  • the winding machine 100 simultaneously moves the three winding nozzles 50 to simultaneously wind the winding 3 on the slot surface 1b of the teeth 1a of the three iron cores 1 from the first to the third from the right. Wrap it.
  • the winding nozzle 50 is arranged so that the direction in which the winding 3 is passed, that is, the axial direction of the winding nozzle 50 is orthogonal to the plane on which the stator 10 is developed.
  • the winding nozzle 50 moves along the locus t shown in FIG. That is, the winding nozzle 50 moves around the teeth 1a so as to draw a substantially rectangular shape, and winds the winding 3 around the teeth 1a.
  • the winding nozzle 50 is installed so as to be rotatable about the central axis A of the winding nozzle 50 in the direction of the rotation direction r in FIG.
  • the locus t shown in FIG. 6 is an example, and the winding nozzle 50 may move around the teeth 1a so as to draw another shape.
  • the rotation direction r may be in the opposite direction (that is, clockwise).
  • FIG. 7 is a plan view showing the movement of the winding nozzle 50 when passing the crossover 3A to the iron core 1 by the winding machine 100 according to the first embodiment.
  • the winding machine 100 winds the winding 3 around the teeth 1a of the three iron cores 1 at the same time. That is, in the first embodiment, first, as shown in FIG. 6, the winding 3 is simultaneously wound around the teeth 1a of the three iron cores 1 from the first to the third from the right to form the coil 2. Next, as shown in FIG. 7, the positions of the three winding nozzles 50 are moved, and the winding 3 is simultaneously wound around the teeth 1a of the three iron cores 1 from the fourth to the sixth from the right to wind the coil 2. Form.
  • the winding machine 100 groups the three iron cores 1 into one group, and forms the coils 2 in order for each group in the direction of the arrow D1 in FIG. 7.
  • the crossover 3A is passed between the groups without cutting the winding 3, and the coil 2 of the next group is formed. Wind the winding 3 around the teeth 1a.
  • the crossover 3A is the winding 3 passed between the teeth 1a included in each of the two adjacent groups. In the example of FIG. 7, the crossover 3A is passed from the teeth 1a of the first iron core 1 from the right to the teeth 1a of the fourth iron core 1 from the right.
  • crossover 3A is passed from the teeth 1a of the second iron core 1 from the right to the teeth 1a of the fifth iron core 1 from the right, and the sixth from the teeth 1a of the third iron core 1 from the right.
  • a crossover 3A is passed to the teeth 1a of the iron core 1 of the above.
  • FIG. 8 and 9 are perspective views of the winding nozzle 50 of the winding machine 100 according to the first embodiment.
  • FIG. 10 is a partially enlarged perspective view showing the tip surface 56 of the winding nozzle 50 of the winding machine 100 according to the first embodiment.
  • FIG. 10 shows a state in which the tip surface 56 is viewed from the lower side of FIGS. 8 and 9.
  • the tip opening portion 70 shown in FIGS. 8 and 9 is shown by a broken line.
  • FIG. 11 is a cross-sectional view (a) and a side view (b) showing the configuration of the winding nozzle 50 of the winding machine 100 according to the first embodiment.
  • FIG. 11B shows the tip surface 56.
  • the configuration of the winding nozzle 50 will be described with reference to FIGS. 8 to 11.
  • the winding nozzle 50 has a cylindrical shape. As shown in FIG. 11A, the winding nozzle 50 is provided with a winding threading portion 51 for passing the winding 3.
  • the winding through portion 51 is composed of a through hole portion 71 having a through hole shape and a tip open portion 70 formed in an open state by opening to the outside.
  • One end of the winding nozzle 50 is a fixed side end surface 55 (first end surface) fixed to the nozzle holding portion 61 of the winding machine 100 shown in FIG.
  • the winding 3 is inserted into the winding through portion 51 from the winding insertion port 55a provided on the fixed side end surface 55.
  • the other end of the winding nozzle 50 is a tip surface 56 (second end surface).
  • the winding 3 that has passed through the winding through portion 51 is pulled out from the winding supply portion 56a of the tip surface 56 and used for winding operation to the teeth 1a.
  • the shape of the winding nozzle 50 is not limited to the cylindrical shape, and any other shape may be taken as long as the winding 3 is passed from the fixed side end surface 55 to the tip surface 56. Is also good. That is, the winding nozzle 50 may have, for example, an elliptical column shape having an elliptical bottom surface, or a polygonal column shape having a polygonal bottom surface.
  • the fixed side end surface 55 of the winding nozzle 50 is held and fixed by the nozzle holding portion 61. Further, the winding machine 100 passes the winding 3 through the winding through portion 51 from the fixed side end surface 55 of the winding nozzle 50 to the tip surface 56, and the winding supply portion of the tip surface 56 of the winding nozzle 50. Pull out the winding 3 from 56a. Then, as shown in FIG. 6, the winding machine 100 moves the winding nozzle 50 around the teeth 1a of the iron core 1, so that the winding 3 is drawn out from the winding supply portion 56a of the tip surface 56. Wrap around the teeth 1a.
  • the winding nozzle 50 is provided with a winding through portion 51 extending in the longitudinal direction of a cylindrical shape.
  • the winding threading portion 51 extends from the fixed side end surface 55 to the tip surface 56 in the longitudinal direction (axial direction) of the winding nozzle 50 so that the winding 3 passes from the fixed side end surface 55 to the tip surface 56. ..
  • the winding through portion 51 has a through hole portion 71 having a through hole shape and a tip open portion 70 formed in an open state.
  • the through hole portion 71 is composed of a through hole that penetrates from the winding insertion port 55a provided on the fixed side end surface 55 to the tip opening portion 70 formed on the side surface 50a of the winding nozzle 50.
  • the winding insertion port 55a provided on the fixed side end surface 55 is arranged at the central portion of the fixed side end surface 55 as shown in FIGS. 8 and 11 (a). That is, as shown in FIG. 11A, the winding insertion port 55a is provided on the central axis A of the winding nozzle 50 at the fixed side end surface 55 of the winding nozzle 50.
  • the winding insertion port 55a does not necessarily have to be arranged on the central axis A of the winding nozzle 50. That is, the winding insertion port 55a may be slightly shifted from the central axis A of the winding nozzle 50. However, in that case, the winding insertion port 55a is shifted from the central axis A of the winding nozzle 50 so that the inner wall surface 51a of the winding through portion 51 does not become thin.
  • side surface 50a-1 the upper side surface portion in FIG. 11A
  • side surface 50a-2 the lower side surface portion is referred to as “side surface”. It will be called "50a-2”.
  • the through hole portion 71 of the winding through portion 51 is provided so as to be inclined with respect to the central axis A of the winding nozzle 50. More specifically, the longitudinal direction of the inner wall surface 51a of the winding threading portion 51 is inclined by an angle ⁇ with respect to the central axis A of the winding nozzle 50.
  • the through hole 71 of the winding threading portion 51 extends from the winding insertion port 55a to the tip opening portion 70.
  • the through hole portion 71 has an inner wall surface 51a.
  • the tip opening portion 70 is formed on the side surface 50a-2 of the winding nozzle 50 as shown in FIG. 11A. As shown in FIGS. 8 and 9, the tip opening portion 70 has a rectangular opening portion 70a. As described above, the end portion of the winding threading portion 51 on the tip end surface 56 side is the tip opening portion 70.
  • the tip opening portion 70 is not provided with the inner wall surface 51a of the winding through portion 51, and is in a state of being open to the outside.
  • a winding supply portion 56a is provided on the tip surface 56 of the winding nozzle 50.
  • the winding supply portion 56a has a groove-shaped tip groove portion 52 and a winding supply port 53.
  • the tip groove portion 52 is a groove formed on the tip surface 56.
  • the tip groove portion 52 extends from the side surface 50a-2 (first side surface) toward the side surface 50a-1 (second side surface) along the radial direction of the winding nozzle 50. Therefore, the extending direction of the tip groove portion 52 is the direction of the arrow D2 in FIG. 11 (b). That is, in the paper surface of FIG. 11B, the direction is from bottom to top.
  • the extending direction of the tip groove portion 52 is orthogonal to the central axis A of the winding nozzle 50. Further, both ends of the tip groove portion 52 in the extending direction are opened on the side surfaces 50a-1 and 50a-2 of the winding nozzle 50 main body. The end of the tip groove 52 on the side surface 50a-1 side is a winding supply port 53 from which the winding 3 is pulled out.
  • the winding threading portion 51 is inclined with respect to the central axis A of the winding nozzle 50.
  • the direction in which the winding threading portion 51 is inclined is the direction of arrow D3 in FIG. 11 (a). That is, in the paper surface of FIG. 11B, the direction is from top to bottom.
  • the winding threading portion 51 is inclined in the direction from the side surface 50a-1 (second side surface) to the side surface 50a-2 (first side surface). In this way, the winding threading portion 51 is inclined in the direction opposite to the extending direction of the tip groove portion 52.
  • the winding threading portion 51 and the tip groove portion 52 communicate with each other. That is, the winding through portion 51 and the tip groove portion 52 are connected and formed so as to form a path for one winding 3.
  • the first intersection 57 which is a portion where the inner wall surface 51a of the winding through portion 51 and the inner wall surface 52a of the tip groove portion 52 intersect, is formed from a curved surface, and the inner wall surface 51a is formed. And the inner wall surface 52a are connected so as to be a continuous surface.
  • the first intersection 57 has an arc shape in the cross section shown in FIG. 11 (a), but may have another curved shape, and is cut when the windings 3 come into contact with each other. It is desirable to have a smooth curve so that it does not occur.
  • the second intersection 58 which is a portion where the inner wall surface 52a of the tip groove 52 and the side surface 50a-1 of the winding nozzle 50 intersect, is formed from a curved surface and has an inner surface.
  • the wall surface 52a and the side surface 50a-1 are connected so as to form a continuous surface. That is, all the ridge lines formed by the intersection of the inner wall surface 52a and the side surface 50a-1 are formed of curved surfaces.
  • the second intersection 58 has an arc shape in FIG. 11 (b), but may have another curved shape so that cutting does not occur when the windings 3 come into contact with each other. It is desirable to have a smooth curve.
  • the length s is the length from the first intersection 57 to the winding supply port 53 of the tip groove 52.
  • the portion of this length s is hereinafter referred to as a portion S.
  • the longer the length s of the portion S the more gently the winding 3 can bend along the first intersection 57.
  • the shorter the length s of the portion S the sharper the winding 3 will bend along the first intersection 57.
  • the through hole portion 71 of the winding through portion 51 is inclined and the winding through portion 51 is provided.
  • a tip opening portion 70 is provided at the tip.
  • the tip opening portion 70 is opened at the side surface 50a-2 of the winding nozzle 50.
  • the third intersection 59 where the inner wall surface 51a of the winding threading portion 51 and the fixed side end surface 55 intersect is formed from a curved surface, and the inner wall surface 51a and the fixed side are formed. It is connected so that the end surface 55 and the end surface 55 are continuous surfaces.
  • the third intersection 59 has an arc shape in the cross section of FIG. 11A, but may have another curved shape, and is a smooth curve so that cutting does not occur when the windings 3 come into contact with each other. It is desirable to be composed of.
  • FIG. 12 and 13 are explanatory views showing a state in which the winding 3 is passed through the winding nozzle 50 of the winding machine 100 according to the first embodiment.
  • FIG. 14 is a schematic view of a winding machine 100 according to the first embodiment in a state where the winding 3 is wound around the teeth 1a of the iron core 1.
  • the winding nozzle 50 is formed in a groove shape on the winding through portion 51 formed so that the winding 3 passes from the fixed side end surface 55 to the tip surface 56 and the tip surface 56.
  • the tip groove portion 52 is provided.
  • the winding 3 enters the winding through portion 51 from the fixed side end surface 55 of the winding nozzle 50 through each portion of the winding machine 100, and reaches the tip surface 56 along the winding through portion 51.
  • the winding wire 3 reaching the tip surface 56 is formed along the curved surface of the first intersection 57, which is the intersection of the winding threading portion 51 and the tip groove portion 52 of the winding nozzle 50. It is bent toward the side surface 50a-1 of the winding nozzle 50.
  • the side surface 50a-1 is a surface opposite to the side surface 50a-2 in which the tip opening portion 70 is formed. That is, the side surface 50a-1 and the side surface 50a-2 are arranged so as to face each other.
  • the angle formed by the inner wall surface 51a of the winding threading portion 51 and the inner wall surface 52a of the tip groove portion 52 is an angle ⁇ .
  • the angle ⁇ is an acute angle smaller than 90 °. Therefore, at the first intersection 57, the winding 3 is bent by an angle ⁇ .
  • the winding wire 3 bent by an angle ⁇ toward the side surface 50a-1 side along the curved surface of the first intersection 57 advances along the tip groove portion 52. After that, it intersects the longitudinal direction of the winding nozzle 50 and the extending direction of the tip groove 52 along the curved surface of the second intersection 58, which is the intersection of the tip groove 52 and the side surface 50a of the winding nozzle 50. Pulled out in the direction.
  • the angle formed by the inner wall surface 52a of the tip groove portion 52 and the tangent line of the curved surface of the second intersection 58 is an angle ⁇ .
  • the angle ⁇ is, for example, an obtuse angle larger than 90 °. Therefore, at the second intersection 58, the winding 3 is bent by an angle ⁇ .
  • the size of the angle ⁇ is not particularly limited. That is, the angle ⁇ may be 90 ° or less than 90 °.
  • the winding threading portion 51 is arranged so as to be inclined with respect to the central axis A of the winding nozzle 50.
  • the shape of the R curved surface of the first intersection 57 becomes larger and the radius R of the R curved surface becomes larger than in the case where the winding threading portion 51 is not tilted.
  • the first embodiment has a structure in which the radius R or the curvature of the first intersection 57 can be made as large as possible with respect to the diameter of the winding nozzle 50. In this way, when the R curved surface shape of the first intersection 57 becomes large, an unreasonable force is not applied to the winding 3, and the tensile load of the winding 3 becomes small, so that the elongation rate of the winding 3 increases. Can be prevented.
  • the tip opening portion 70 opened by the side surface 50a-2 of the winding nozzle 50 main body is provided at the end of the winding threading portion 51 on the tip surface 56 side.
  • the tip opening portion 70 does not have an inner wall surface 51a and is in an open state to the outside. Therefore, the movement of the winding wire 3 passing through the tip opening portion 70 is not suppressed by the inner wall surface 51a. As a result, no unreasonable force is applied to the winding 3 passing through the tip opening portion 70, and the winding 3 is not strongly pulled, so that it is possible to further prevent an increase in the elongation rate of the winding 3. ..
  • the winding nozzle 50 orbits around the teeth 1a and winds the winding 3 around the slot surface 1b.
  • the portion wound around the slot surface 1b is referred to as a winding portion 3a
  • the portion located between the winding portion 3a and the tip groove portion 52 is referred to as a winding drawing portion 3b.
  • the extending direction indicated by the arrow D2 of the tip groove portion 52 is directed so as to form an angle ⁇ with respect to the winding drawing portion 3b of the winding 3. Therefore, the winding 3 is bent along the second intersection 58 at the portion drawn out from the tip groove portion 52.
  • the winding 3 is drawn out while being pressed against the curved surface of the second intersection 58 at the winding supply port 53 of the tip groove portion 52 of the winding nozzle 50.
  • the winding 3 is warped with respect to the slot surface 1b of the teeth 1a due to the curved surface of the second intersection 58. That is, the winding lead-out portion 3b is warped so as to be convex toward the slot surface 1b.
  • the control device 80 controls the horizontal position and the rotation angle of the winding nozzle 50 so that the angle ⁇ becomes a constant value.
  • the winding nozzle 50 is controlled by the control device 80 so that the horizontal position fluctuates and the rotation angle becomes constant. Therefore, the winding 3 is wound while being wound around the teeth 1a while receiving a force so as to always warp with respect to the slot surface 1b.
  • FIG. 15 is an explanatory view of the cross-sectional structure of the iron core 1 in which the coil 2 is formed by the winding machine 100 according to the first embodiment.
  • arrow 80 indicates, for example, the X direction of FIG. 1
  • arrow 81 indicates, for example, the Y direction of FIG.
  • the cross section shown in FIG. 15 shows a cross section when one of the iron cores 1 of the stator 10 is cut in a plane parallel to the figure shown in FIG.
  • the winding 3 during the winding operation is warped in a bow shape by the winding nozzle 50, and the apex 3c warped in the bow shape faces the slot surface 1b side.
  • FIG. 14 shows a cross section when one of the iron cores 1 of the stator 10 is cut in a plane parallel to the figure shown in FIG.
  • the winding 3 during the winding operation is warped in a bow shape by the winding nozzle 50, and the apex 3c warped in the bow shape faces the slot surface 1b side.
  • the winding 3 extends in the direction perpendicular to the slot surface 1b, the gap w between the slot surface 1b and the first layer of the coil 2 is reduced, and further. Since the gap is reduced even in the second and subsequent layers, the coil 2 is wound in the winding direction. As described above, when the gap w between the slot surface 1b and the winding 3 and the gap between the windings 3 are reduced, more windings 3 can be wound around the slot surface 1b by that amount, so that the winding space is occupied. There is an advantage that the rate becomes high and the output of the electric motor 20 becomes large. Further, since the winding 3 forming the coil 2 is warped so as to be convex toward the slot surface 1b, it is possible to suppress the coil 2 from winding and swelling due to the rigidity of the winding 3. ..
  • FIG. 16 is an explanatory diagram showing the configuration of the winding nozzle 150 described in Patent Document 1 as a comparative example of the winding nozzle 50 of the winding machine 100 according to the first embodiment.
  • 16 (a) is a side view showing the fixed side end surface 155 of the winding nozzle 150
  • FIG. 16 (c) is a side view showing the tip surface 156 of the winding nozzle 150.
  • FIG. 16B is a cross-sectional view of the winding nozzle 150.
  • 17 and 18 are explanatory views schematically showing the winding 3 in a state of being passed through the winding nozzle 150 of the comparative example of FIG.
  • the winding through portion 151 of the winding nozzle 150 of the comparative example is composed of a through hole.
  • the winding threading portion 151 is a through hole extending from the fixed side end surface 155 to the tip end surface 156.
  • the winding threading portion 151 communicates with the tip groove portion 152 formed on the tip surface 156.
  • the winding threading portion 151 is arranged in parallel with the central axis A of the cylindrical winding nozzle 150. However, as shown in FIG. 16B, the winding threading portion 151 is not arranged on the central axis A, but is arranged at a position shifted from the central axis A.
  • part S the part is referred to as "part S".
  • the radius of curvature R increases, the length s of the portion S becomes longer, and the curve forming the portion S becomes gentle. This principle will be described below with reference to FIG. FIG. 19 is an explanatory diagram showing the relationship between the radius of curvature and the speed of the curve.
  • a point displaced from a point P on a certain curve L along the curve L by a length s is defined as a point Q.
  • the part S of the length s is regarded as an arc
  • the center of the circle is the point C
  • each PCQ is ⁇ a
  • the relationship between the radius R of the circle and the length s is expressed by the following equation (1). ..
  • is the pi.
  • the thickness of the inner wall portion 151a of the winding through portion 151 of the comparative example is thin.
  • the strength is insufficient and it is not suitable for winding operation with a strong tension.
  • the wall thickness of the portion to which the strongest force is applied during the winding operation is increased. That is, in the first embodiment, the wall thickness of the inner wall surface 51a near the winding insertion port 55a and the vicinity of the winding supply port 53 is increased. Therefore, sufficient strength can be secured, and it is possible to handle winding operation with a strong tension.
  • the winding through portion 151 has the inner wall portion 151a over the entire length in the longitudinal direction, the movement of the winding 3 is restricted by the inner wall portion 151a, and the winding 3 is wound. A pulling load is applied to the wire 3.
  • the radius of curvature R of the first intersection 157 that bends the winding 3 by the angle ⁇ 1 is smaller, the R curved surface shape of the first intersection 157 becomes smaller. When the R curved surface shape becomes small, an unreasonable force is applied to the winding 3 and the winding 3 is strongly pulled, so that the elongation rate of the winding 3 increases.
  • the winding threading portion 51 is arranged so as to be inclined with respect to the central axis A.
  • the length s shown in FIG. 11 is further longer than the length s of the comparative example of FIG. Therefore, in the first embodiment, the radius R of the R curved surface shape of the first intersection 57 that bends the winding 3 by the angle ⁇ becomes large, and the R curved surface shape of the first intersection 57 becomes loose. Further, as is clear when comparing FIGS.
  • the angle ⁇ of the first intersection 57 of the first embodiment of the present application is smaller than the angle ⁇ 1 of the first intersection 157 of the comparative example of FIG. ..
  • the angle ⁇ 1 is approximately 90 °.
  • the tip opening portion 70 opened on the side surface 50a of the winding nozzle 50 main body is provided on the tip surface 56 side of the winding nozzle 50.
  • the tip open portion 70 does not have an inner wall surface 51a in the opening 70a and is in an open state. Therefore, no unreasonable force is applied to the winding wire 3 passing through the tip opening portion 70, and the winding wire 3 is not strongly pulled, so that it is possible to further prevent an increase in the elongation rate of the winding wire 3. Further, as described above, the longer the length s of the portion S, the looser the shape of the R curved surface of the first intersection 57.
  • the winding threading portion 51 is inclined and the tip opening portion 70 is provided, so that the length s is made as long as possible with respect to the diameter of the winding nozzle 50. Therefore, in the first embodiment, a structure in which the winding 3 is least subjected to a tensile load is realized.
  • the winding insertion port 155a is deviated from the central axis A and arranged eccentrically. Therefore, when inserting the winding 3 from the winding insertion port 155a into the winding through portion 151, it is necessary to insert the winding 3 in a bent and deformed state as shown in FIG. As a result, an unreasonable force is applied to the winding 3, and the elongation rate of the winding 3 increases.
  • the winding insertion port 55a is arranged on the central axis A. Therefore, when the winding 3 is inserted from the winding insertion port 55a into the winding through portion 51, as shown in FIG.
  • the winding threading portion 51 is arranged so as to be inclined with respect to the central axis A of the winding nozzle 50.
  • the shape of the R curved surface of the first intersection 57 becomes larger and the radius R of the R curved surface becomes larger than in the case where the winding threading portion 51 is not tilted.
  • the first embodiment has a structure in which the radius R or the curvature of the first intersection 57 can be made as large as possible with respect to the diameter of the winding nozzle 50.
  • the tip opening portion 70 opened by the side surface 50a-2 of the winding nozzle 50 main body is provided at the end of the winding threading portion 51 on the tip surface 56 side.
  • the tip opening portion 70 does not have an inner wall surface 51a and is in an open state to the outside. Therefore, the movement of the winding wire 3 passing through the tip opening portion 70 is not suppressed by the inner wall surface 51a. As a result, no unreasonable force is applied to the winding 3 passing through the tip opening portion 70, and the winding 3 is not strongly pulled, so that it is possible to further prevent an increase in the elongation rate of the winding 3. ..
  • the winding through portion 51 has a through hole portion 71 formed from the through hole.
  • the through hole portion 71 has an inner wall surface 51a. Therefore, since the winding 3 is covered with the inner wall surface 51a in the through hole portion 71, the winding 3 does not separate from the winding nozzle 50. As a result, the winding is performed during the winding operation of the winding 3 of the winding machine 100, the wiring operation of the crossover wire 3A, and the entanglement operation of the winding 3 with the U-side insulator 4 and the L-side insulator 5. 3 can be prevented from coming off the winding nozzle 50.
  • the winding threading portion 51 is arranged so as to be inclined with respect to the central axis A of the winding nozzle 50. Further, the winding insertion port 55a is arranged in the central portion of the fixed side end surface 55. Further, the inclination direction of the winding threading portion 51 is opposite to the extending direction of the tip groove portion 52. As a result, the inner wall surface 51a of the winding nozzle 50 is thickened in the vicinity of the winding insertion port 55a into which the winding 3 is inserted and in the vicinity of the winding supply port 53 from which the winding 3 is pulled out. This ensures the strength of the winding nozzle 50.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

This winding nozzle is used in a winding machine for winding a winding onto an iron core to form a coil. The winding nozzle has a columnar outer shape, and a winding is drawn out from a distal end surface of the winding nozzle and moved around the periphery of the iron core so that the winding is wound onto the iron core. The winding nozzle comprises: a first end surface which is a fixed-side end surface attached to a nozzle retaining part of the winding machine; a second end surface which is a distal end surface from which the winding is drawn out; a winding passing part that extends in the longitudinal direction of the winding nozzle from the first end surface to the second end surface so that the winding passes from the first end surface over to the second end surface; and a distal end groove part that is formed in a groove shape in the second end surface in communication with the winding passing part. The distal end groove part extends from a first side surface which constitutes the outer periphery of the winding nozzle to a second side surface which constitutes the outer periphery of the winding nozzle and opposes the first side surface. The winding passing part is disposed so as to be inclined with respect to a center axis extending in the longitudinal direction of the winding nozzle, and the direction in which the winding passing part is inclined with respect to the center axis is opposite to the direction in which the distal end groove part extends.

Description

巻線ノズル及び巻線機Winding nozzle and winding machine
 本開示は、コイルを製造するための巻線ノズル及び巻線機に関し、特に巻線を繰り出すノズルの形状に関する。 The present disclosure relates to a winding nozzle and a winding machine for manufacturing a coil, and particularly to a shape of a nozzle for feeding a winding.
 従来、電動機の固定子等に用いられるコイルは、固定子を構成する鉄心に巻線を巻き付けることで製造される。コイルの製造には、巻線機が使用される。巻線機は、巻線を供給するノズルと、ノズルを保持するノズル保持部とを有している。巻線機において、鉄心に巻線を巻き付ける際には、水平方向に移動するノズル保持部に取り付けられたノズルから巻線が繰り出されて、鉄心に巻線が巻き回されていく。巻線機は、鉄心を中心として鉄心の周囲をノズルの先端が周回するようにノズルを移動させて、鉄心に巻線を巻き付けてコイルを形成する。 Conventionally, a coil used for a stator of an electric motor is manufactured by winding a winding around an iron core constituting the stator. A winding machine is used to manufacture the coil. The winding machine has a nozzle for supplying windings and a nozzle holding portion for holding the nozzles. In a winding machine, when winding a winding around an iron core, the winding is unwound from a nozzle attached to a nozzle holding portion that moves in the horizontal direction, and the winding is wound around the iron core. In the winding machine, the nozzle is moved so that the tip of the nozzle orbits around the iron core around the iron core, and the winding is wound around the iron core to form a coil.
 ノズルは例えば円柱形状を有し、ノズル保持部に固定される固定側端面と、巻線が引き出される側の先端面とを有している。また、ノズルは、固定側端面から先端面にわたって巻線が通るように形成された巻線通し部を有している(例えば、特許文献1参照)。 The nozzle has, for example, a cylindrical shape, and has a fixed side end surface fixed to the nozzle holding portion and a tip surface on the side from which the winding is pulled out. Further, the nozzle has a winding through portion formed so that the winding passes from the fixed side end surface to the tip surface (see, for example, Patent Document 1).
 特許文献1に記載の1つの実施形態に係る巻線通し部は、ノズル本体の側面に溝形状に形成された巻線挿通溝である。電線挿通溝は、固定側端面から先端面までノズルの軸方向に沿って延びている。 The winding through portion according to one embodiment described in Patent Document 1 is a winding insertion groove formed in a groove shape on the side surface of the nozzle body. The wire insertion groove extends along the axial direction of the nozzle from the fixed side end surface to the tip surface.
 巻線通し部が溝形状の場合、巻線機が固定子に対して巻線を行っている間は、巻線が常時引っ張られている状態であるため、巻線が巻線挿通溝から外れることはない。しかしながら、巻線機が一時停止して再起動したときに、巻線が巻線挿通孔から外れることがある。また、固定子の鉄心には、絶縁性を有するインシュレータが設けられている。インシュレータには、固定子のティース間を繋ぐ渡り配線が固定されたり、あるいは、端子等が配置される。巻線通し部が溝形状の場合、インシュレータに巻線を絡げる際、又は、ティース間に渡り配線を渡す際に、巻線が巻線挿通孔から外れることがある。巻線が巻線挿通孔から外れた場合、巻線動作を継続することはできないため、いったん、巻線機を停止させて、作業員が巻線を巻線挿通孔に挿入し直す必要があった。 When the winding through portion has a groove shape, the winding is always pulled while the winding machine is winding the stator, so that the winding is disconnected from the winding insertion groove. There is no such thing. However, when the winding machine is paused and restarted, the winding may come out of the winding insertion hole. Further, the iron core of the stator is provided with an insulator having an insulating property. In the insulator, the crossover wiring connecting the teeth of the stator is fixed, or terminals and the like are arranged. If the winding thread is groove-shaped, the winding may come off the winding insertion hole when the winding is entwined with the insulator or when the crossover wiring is passed between the teeth. If the winding is disengaged from the winding insertion hole, the winding operation cannot be continued, so the winding machine must be stopped and the worker must reinsert the winding into the winding insertion hole. rice field.
 そのため、特許文献1では、巻線通し部が、固定側端面から先端面まで貫通する貫通孔形状の巻線挿通孔から構成されている実施形態も提案している。いずれの実施形態においても、巻線は、ノズルの固定側端面から巻線通し部に挿入され、巻線通し部を通って、先端面から引き出される。 Therefore, Patent Document 1 also proposes an embodiment in which the winding through portion is composed of a winding insertion hole having a through hole shape penetrating from the fixed side end surface to the tip surface. In either embodiment, the winding is inserted into the winding threading portion from the fixed side end surface of the nozzle, passes through the winding threading portion, and is drawn out from the tip surface.
国際公開第2020/065853号International Publication No. 2020/065853
 特許文献1に開示されているノズルは、上述したように、巻線が通るように形成された巻線通し部を有している。また、巻線通し部は、上述したように、溝形状、又は、貫通孔形状に形成されている。 As described above, the nozzle disclosed in Patent Document 1 has a winding threading portion formed so that the winding can pass through. Further, as described above, the winding threading portion is formed in a groove shape or a through hole shape.
 巻線通し部が溝形状の場合、巻線機の再起動時、インシュレータへの巻線の絡げ動作時、あるいは、ティース間の渡り線形成時に、巻線がノズルから外れてしまうという課題があった。 When the winding thread is groove-shaped, there is a problem that the winding comes off from the nozzle when the winding machine is restarted, when the winding is entwined with the insulator, or when a crossover between teeth is formed. there were.
 一方、巻線通し部が貫通孔形状の場合、巻線がノズルから外れることはない。しかしながら、巻線通し部が貫通孔形状の場合、溝形状の場合と比較して、巻線を巻線挿通孔に挿入する際の巻線の曲げ角度が大きくなる。そのため、巻線が巻線挿通孔にスムーズに挿入されず、巻線に大きな引っ張り負荷がかかる。すなわち、巻線機での巻線動作時に、巻線が強く引っ張られ、巻線の伸び率が上昇してしまうという課題があった。巻線の伸び率が上昇した場合、巻線から構成されたコイルの電気抵抗が増加し、ひいては、電動機の負荷が増加してしまっていた。 On the other hand, if the winding through portion has a through hole shape, the winding will not come off from the nozzle. However, when the winding through portion has a through hole shape, the bending angle of the winding when the winding is inserted into the winding insertion hole is larger than that in the case of the groove shape. Therefore, the winding is not smoothly inserted into the winding insertion hole, and a large tensile load is applied to the winding. That is, there is a problem that the winding is strongly pulled during the winding operation of the winding machine, and the elongation rate of the winding increases. When the elongation rate of the winding increased, the electric resistance of the coil composed of the winding increased, and the load of the electric motor increased.
 また、特許文献1では、ノズルの先端面がR形状を有しており、引き出された巻線は当該R形状に沿って曲げられる。R形状が大きい場合、巻線に無理な力が加わらないため、巻線の伸び率が上昇しない。そのため、特許文献1では、巻線通し部が貫通孔形状の場合に、R形状を大きくする目的で、巻線挿通孔をノズルの中心軸からずれた位置に形成している。その結果、巻線挿通孔が設けられている側のノズルの内壁が薄肉となり、強度不足となり、強いテンションでの巻線には不向きであった。 Further, in Patent Document 1, the tip surface of the nozzle has an R shape, and the drawn winding is bent along the R shape. When the R shape is large, the elongation rate of the winding does not increase because an excessive force is not applied to the winding. Therefore, in Patent Document 1, when the winding through portion has a through hole shape, the winding insertion hole is formed at a position deviated from the central axis of the nozzle for the purpose of increasing the R shape. As a result, the inner wall of the nozzle on the side where the winding insertion hole is provided becomes thin, the strength becomes insufficient, and it is not suitable for winding with a strong tension.
 本開示は、かかる課題を解決するためになされたものであり、巻線機での巻線動作中又は他の動作中に巻線がノズルから外れることを防止し、また、ノズルの強度を確保し、さらに、巻線の伸び率の低減を図ることが可能な、巻線ノズル及び巻線機を提供することを目的とする。 The present disclosure has been made to solve such a problem, prevent the winding from coming off the nozzle during the winding operation or other operation of the winding machine, and secure the strength of the nozzle. Further, it is an object of the present invention to provide a winding nozzle and a winding machine capable of reducing the elongation rate of the winding.
 本開示に係る巻線ノズルは、鉄心に巻線を巻き付けてコイルを形成する巻線機で用いられ、柱状の外形形状を有し、先端面から前記巻線が引き出され、前記鉄心の周囲を移動して、前記巻線を前記鉄心に巻き付ける巻線ノズルであって、前記巻線機のノズル保持部に取り付けられる固定側端面である第1端面と、前記巻線が引き出される前記先端面である第2端面と、前記第1端面から前記第2端面にわたって巻線が通るように、前記第1端面から前記第2端面まで前記巻線ノズルの長手方向に延びた巻線通し部と、前記巻線通し部と連通して前記第2端面に溝状に形成された先端溝部とを備え、前記先端溝部は、前記第2端面において、前記巻線ノズルの外周を構成する第1側面から前記巻線ノズルの外周を構成し前記第1側面に対向する第2側面まで延設され、前記巻線通し部は、前記巻線ノズルの長手方向に延びる中心軸に対して傾斜して配置され、前記巻線通し部の前記中心軸に対して傾斜する方向は、前記先端溝部の延設方向と反対方向である。 The winding nozzle according to the present disclosure is used in a winding machine in which a winding is wound around an iron core to form a coil, has a columnar outer shape, and the winding is pulled out from a tip surface to move around the iron core. A winding nozzle that moves and winds the winding around the iron core, at a first end surface that is a fixed side end surface attached to a nozzle holding portion of the winding machine, and at the tip surface from which the winding is pulled out. A second end face, a winding threading portion extending in the longitudinal direction of the winding nozzle from the first end face to the second end face so that the winding passes from the first end face to the second end face, and the said. The second end surface is provided with a groove-shaped tip groove portion that communicates with the winding through portion, and the tip groove portion is the second end surface from the first side surface constituting the outer periphery of the winding nozzle. The outer circumference of the winding nozzle is formed and extends to the second side surface facing the first side surface, and the winding through portion is arranged so as to be inclined with respect to the central axis extending in the longitudinal direction of the winding nozzle. The direction in which the winding through portion is inclined with respect to the central axis is the direction opposite to the extending direction of the tip groove portion.
 本開示に係る巻線機は、少なくとも1つの上記の巻線ノズルと、前記巻線ノズルを保持するノズル保持部と、前記ノズル保持部を水平方向に移動させる駆動ユニットとを備えたものである。 The winding machine according to the present disclosure includes at least one winding nozzle, a nozzle holding portion for holding the winding nozzle, and a drive unit for horizontally moving the nozzle holding portion. ..
 本開示に係る巻線ノズル及び巻線機によれば、巻線機での巻線動作中又は他の動作中に巻線がノズルから外れることを防止し、また、ノズルの強度を確保し、さらに、巻線の伸び率の低減を図ることができる。 According to the winding nozzle and the winding machine according to the present disclosure, the winding is prevented from coming off from the nozzle during the winding operation or other operation in the winding machine, and the strength of the nozzle is ensured. Further, the elongation rate of the winding can be reduced.
実施の形態1に係る巻線機100の全体構造を示す模式図である。It is a schematic diagram which shows the whole structure of the winding machine 100 which concerns on Embodiment 1. FIG. 電動機等に使用される固定子10の構造の一例を示す平面図である。It is a top view which shows an example of the structure of the stator 10 used for an electric motor or the like. 図2に示した固定子10の側面図である。It is a side view of the stator 10 shown in FIG. 固定子10が実装された状態の一例を示す図である。It is a figure which shows an example of the state in which the stator 10 is mounted. 実施の形態1に係る巻線機100により鉄心1にコイル2を形成する際の巻線ノズル50を示す斜視図である。It is a perspective view which shows the winding nozzle 50 when the coil 2 is formed in the iron core 1 by the winding machine 100 which concerns on Embodiment 1. FIG. 図5の平面図である。FIG. 5 is a plan view of FIG. 実施の形態1に係る巻線機100により鉄心1に渡り線3Aを渡す際の巻線ノズル50の動きを示す平面図である。It is a top view which shows the movement of the winding nozzle 50 when the crossover wire 3A is passed to the iron core 1 by the winding machine 100 which concerns on Embodiment 1. FIG. 実施の形態1に係る巻線機100の巻線ノズル50の斜視図である。It is a perspective view of the winding nozzle 50 of the winding machine 100 which concerns on Embodiment 1. FIG. 実施の形態1に係る巻線機100の巻線ノズル50の斜視図である。It is a perspective view of the winding nozzle 50 of the winding machine 100 which concerns on Embodiment 1. FIG. 実施の形態1に係る巻線機100の巻線ノズル50の先端面56を示す部分拡大斜視図である。It is a partially enlarged perspective view which shows the tip surface 56 of the winding nozzle 50 of the winding machine 100 which concerns on Embodiment 1. FIG. 実施の形態1に係る巻線機100の巻線ノズル50の構成を示す(a)断面図及び(b)側面図である。It is (a) sectional view and (b) side view which shows the structure of the winding nozzle 50 of the winding machine 100 which concerns on Embodiment 1. FIG. 実施の形態1に係る巻線機100の巻線ノズル50に巻線3を通した状態を示す説明図である。It is explanatory drawing which shows the state which passed the winding | winding 3 through the winding nozzle 50 of the winding machine 100 which concerns on Embodiment 1. FIG. 実施の形態1に係る巻線機100の巻線ノズル50に巻線3を通した状態を示す説明図である。It is explanatory drawing which shows the state which passed the winding | winding 3 through the winding nozzle 50 of the winding machine 100 which concerns on Embodiment 1. FIG. 実施の形態1に係る巻線機100において鉄心1のティース1aに巻線3を巻き付けている状態の模式図である。It is a schematic diagram of the state in which the winding 3 is wound around the tooth 1a of the iron core 1 in the winding machine 100 according to the first embodiment. 実施の形態1に係る巻線機100によりコイル2が形成された鉄心1の断面構造の説明図である。It is explanatory drawing of the cross-sectional structure of the iron core 1 in which the coil 2 was formed by the winding machine 100 which concerns on Embodiment 1. FIG. 実施の形態1に係る巻線機100の巻線ノズル50の比較例として、特許文献1に記載の巻線ノズル150の構成を示す説明図である。As a comparative example of the winding nozzle 50 of the winding machine 100 according to the first embodiment, it is explanatory drawing which shows the structure of the winding nozzle 150 described in Patent Document 1. FIG. 図16の比較例の巻線ノズル150に通した状態の巻線3を模式的に示す説明図である。It is explanatory drawing which shows typically the winding | winding 3 in the state which passed through the winding nozzle 150 of the comparative example of FIG. 図16の比較例の巻線ノズル150に通した状態の巻線3を模式的に示す説明図である。It is explanatory drawing which shows typically the winding | winding 3 in the state which passed through the winding nozzle 150 of the comparative example of FIG. 曲率半径と曲線の緩急との関係を示す説明図である。It is explanatory drawing which shows the relationship between the radius of curvature and the slowness of a curve.
 以下、本開示に係る巻線ノズル及び巻線機の実施の形態について図面を参照して説明する。本開示は、以下の実施の形態に限定されるものではなく、本開示の主旨を逸脱しない範囲で種々に変形することが可能である。また、本開示は、以下の実施の形態およびその変形例に示す構成のうち、組み合わせ可能な構成のあらゆる組み合わせを含むものである。また、各図において、同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。なお、各図面では、各構成部材の相対的な寸法関係または形状等が実際のものとは異なる場合がある。 Hereinafter, embodiments of the winding nozzle and winding machine according to the present disclosure will be described with reference to the drawings. The present disclosure is not limited to the following embodiments, and can be variously modified without departing from the gist of the present disclosure. In addition, the present disclosure includes all combinations of configurations that can be combined among the configurations shown in the following embodiments and modifications thereof. Further, in each figure, those having the same reference numerals are the same or equivalent thereof, which are common to the whole text of the specification. In each drawing, the relative dimensional relationship or shape of each component may differ from the actual one.
 実施の形態1.
 図1は、実施の形態1に係る巻線機100の全体構造を示す模式図である。図2は、電動機等に使用される固定子10の構造の一例を示す平面図である。図3は、図2に示した固定子10の側面図である。図3は、固定子10を構成する1つの鉄心1の側面を示している。巻線機100は、例えば電動機20(図4参照)の固定子10を構成するコイル2を形成するための装置である。巻線機100は、固定子10を構成する鉄心1に巻線3を巻き付けることでコイル2を形成する。
Embodiment 1.
FIG. 1 is a schematic view showing the overall structure of the winding machine 100 according to the first embodiment. FIG. 2 is a plan view showing an example of the structure of the stator 10 used in an electric motor or the like. FIG. 3 is a side view of the stator 10 shown in FIG. FIG. 3 shows the side surface of one iron core 1 constituting the stator 10. The winding machine 100 is, for example, a device for forming the coil 2 constituting the stator 10 of the electric motor 20 (see FIG. 4). The winding machine 100 forms the coil 2 by winding the winding 3 around the iron core 1 constituting the stator 10.
 図1に示すように、鉄心1は、ティース1aとスロット面1bとを有している。但し、図1においては、鉄心1は模式的に表してあり、鉄心1は図1に示す形状に限定されるものではない。図2に示されるように、固定子10は、複数個の鉄心1を円環状に並べて形成される。鉄心1の個数は、任意の個数でよく、電動機20の仕様及び用途等により適宜決定される。各鉄心1は、図3に示すように、U側インシュレータ4及びL側インシュレータ5を備えている。U側インシュレータ4及びL側インシュレータ5は、鉄心1に一体に成形されるか、又は、別途成形されたものを鉄心1に取り付けて構成される。U側インシュレータ4及びL側インシュレータ5は、絶縁部材から構成されており、絶縁性を有している。U側インシュレータ4及びL側インシュレータ5には、各コイル2間を繋ぐ渡り線3A(図7参照)が固定され、又は、端子(図示せず)等が配置される。 As shown in FIG. 1, the iron core 1 has a teeth 1a and a slot surface 1b. However, in FIG. 1, the iron core 1 is schematically represented, and the iron core 1 is not limited to the shape shown in FIG. As shown in FIG. 2, the stator 10 is formed by arranging a plurality of iron cores 1 in an annular shape. The number of iron cores 1 may be any number, and is appropriately determined depending on the specifications and applications of the motor 20 and the like. As shown in FIG. 3, each iron core 1 includes a U-side insulator 4 and an L-side insulator 5. The U-side insulator 4 and the L-side insulator 5 are integrally molded with the iron core 1, or are configured by attaching a separately molded one to the iron core 1. The U-side insulator 4 and the L-side insulator 5 are composed of insulating members and have insulating properties. A crossover 3A (see FIG. 7) connecting the coils 2 is fixed to the U-side insulator 4 and the L-side insulator 5, or terminals (not shown) or the like are arranged.
 固定子10は、次のようにして形成される。まず、後述する図5に示すように、鉄心1を直線状に複数接続した状態で、巻線機100により、各鉄心1のスロット面1bに巻線3が巻き付けられて、コイル2が形成される。各鉄心1のスロット面1bにコイル2が形成された後に、直線状に接続した複数の鉄心1を円環状にし、複数接続された鉄心1のうち両端に位置する鉄心1同士を溶接等により接合することにより、図2に示す円環状の固定子10が形成される。 The stator 10 is formed as follows. First, as shown in FIG. 5, which will be described later, in a state where a plurality of iron cores 1 are linearly connected, the winding machine 100 winds the winding wire 3 around the slot surface 1b of each iron core 1 to form the coil 2. To. After the coil 2 is formed on the slot surface 1b of each iron core 1, a plurality of linearly connected iron cores 1 are formed into an annular shape, and among the plurality of connected iron cores 1, the iron cores 1 located at both ends are joined by welding or the like. By doing so, the annular stator 10 shown in FIG. 2 is formed.
 図4は、固定子10が実装された状態の一例を示す図である。固定子10は、例えば電動機20に内蔵される。電動機20は、固定子10と回転子11とから構成されている。固定子10は、上述したように、複数の鉄心1が円環状に並べられて形成されているため、各鉄心1の内周側には、筒状部が形成されている。回転子11は、固定子10の筒状部に配置される。回転子11は、円柱形状を有し、回転軸12に固定されている。回転子11は、回転軸12が回転されることにより、回転駆動される。図4は、電動機20が、空調機(図示せず)の室外ユニットなどに用いられる圧縮機200に搭載された例を示している。電動機20は、圧縮機200の筐体200a内に配置されている。筐体200aの下部には、圧縮機構200bが設けられている。圧縮機構200bは、圧縮機200の吸入口200cから吸入された冷媒を圧縮して、圧縮機200の吐出口200dから圧縮した冷媒を吐出する。圧縮機構200bは、電動機20により駆動される。電動機20は、固定子10に接続された配線からコイル2に電力が供給され、コイル2と鉄心1とにより発生する磁界により回転子11を回転駆動する。 FIG. 4 is a diagram showing an example of a state in which the stator 10 is mounted. The stator 10 is built in, for example, the electric motor 20. The electric motor 20 is composed of a stator 10 and a rotor 11. As described above, the stator 10 is formed by arranging a plurality of iron cores 1 in an annular shape, so that a tubular portion is formed on the inner peripheral side of each iron core 1. The rotor 11 is arranged in the cylindrical portion of the stator 10. The rotor 11 has a cylindrical shape and is fixed to the rotating shaft 12. The rotor 11 is rotationally driven by the rotation of the rotating shaft 12. FIG. 4 shows an example in which the motor 20 is mounted on a compressor 200 used for an outdoor unit of an air conditioner (not shown). The electric motor 20 is arranged in the housing 200a of the compressor 200. A compression mechanism 200b is provided at the bottom of the housing 200a. The compression mechanism 200b compresses the refrigerant sucked from the suction port 200c of the compressor 200, and discharges the compressed refrigerant from the discharge port 200d of the compressor 200. The compression mechanism 200b is driven by the electric motor 20. In the electric motor 20, electric power is supplied to the coil 2 from the wiring connected to the stator 10, and the rotor 11 is rotationally driven by the magnetic field generated by the coil 2 and the iron core 1.
 図1に示すように、巻線機100は、巻線ノズル50が取り付けられたノズル保持部61と、ノズル保持部61を水平方向に移動させる駆動ユニット60と、巻線3を案内する1対の滑車62とを備えている。さらに、巻線機100は、巻線3の張力を調整するテンショナ部63と、巻線3が蓄えられている巻線ボビン64とを備えている。 As shown in FIG. 1, the winding machine 100 includes a nozzle holding portion 61 to which a winding nozzle 50 is attached, a drive unit 60 that moves the nozzle holding portion 61 in the horizontal direction, and a pair that guides the winding 3. It is equipped with a pulley 62. Further, the winding machine 100 includes a tensioner portion 63 for adjusting the tension of the winding 3, and a winding bobbin 64 in which the winding 3 is stored.
 ノズル保持部61は、駆動ユニット60により、矢印90で模式的に示されるように、図1のX方向及びZ方向に水平移動する。X方向は紙面の左右方向に対応した幅方向であり、Z方向は、X方向に直交する奥行き方向である。Y方向は、X方向及びZ方向に直交する垂直方向である。X方向及びZ方向は例えば水平方向であり、Y方向は例えば鉛直方向である。 The nozzle holding portion 61 is horizontally moved by the drive unit 60 in the X and Z directions of FIG. 1, as schematically indicated by the arrow 90. The X direction is the width direction corresponding to the left-right direction of the paper surface, and the Z direction is the depth direction orthogonal to the X direction. The Y direction is a vertical direction orthogonal to the X direction and the Z direction. The X and Z directions are, for example, the horizontal direction, and the Y direction is, for example, the vertical direction.
 巻線3は、巻線ボビン64から引き出され、テンショナ部63を通って、1対の滑車62により案内され、ノズル保持部61内を通される。ノズル保持部61を通った巻線3は、ノズル保持部61によって保持されている巻線ノズル50を通って、巻線ノズル50の先端部から引き出される。巻線3の先端は、鉄心1に固定されており、巻線3は、ティース1aのスロット面1bに巻き付けられる。また、巻線機100は、制御装置80を備え、制御装置80は、少なくとも、駆動ユニット60、テンショナ部63、及び、巻線ノズル50を自転させる機構を制御する。 The winding 3 is pulled out from the winding bobbin 64, is guided by a pair of pulleys 62 through the tensioner portion 63, and is passed through the nozzle holding portion 61. The winding 3 that has passed through the nozzle holding portion 61 is drawn out from the tip end portion of the winding nozzle 50 through the winding nozzle 50 held by the nozzle holding portion 61. The tip of the winding 3 is fixed to the iron core 1, and the winding 3 is wound around the slot surface 1b of the teeth 1a. Further, the winding machine 100 includes a control device 80, and the control device 80 controls at least a mechanism for rotating the drive unit 60, the tensioner unit 63, and the winding nozzle 50.
 ここで、制御装置80のハードウェア構成について説明する。制御装置80は処理回路から構成される。処理回路は、専用のハードウェア、または、プロセッサから構成される。専用のハードウェアは、例えば、ASIC(Application Specific Integrated Circuit)またはFPGA(Field Programmable Gate Array)などである。プロセッサは、メモリに記憶されるプログラムを実行する。制御装置80は、記憶部(図示せず)を有している。記憶部はメモリから構成される。メモリは、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)などの不揮発性または揮発性の半導体メモリ、もしくは、磁気ディスク、フレキシブルディスク、光ディスクなどのディスクである。 Here, the hardware configuration of the control device 80 will be described. The control device 80 is composed of a processing circuit. The processing circuit is composed of dedicated hardware or a processor. The dedicated hardware is, for example, an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array). The processor executes a program stored in memory. The control device 80 has a storage unit (not shown). The storage unit is composed of a memory. The memory is a non-volatile or volatile semiconductor memory such as RAM (RandomAccessMemory), ROM (ReadOnlyMemory), flash memory, EPROM (ErasableProgrammableROM), or a disk such as a magnetic disk, flexible disk, or optical disk. be.
 図5は、実施の形態1に係る巻線機100により鉄心1にコイル2を形成する際の巻線ノズル50を示す斜視図である。図6は、図5の平面図である。実施の形態1においては、図5及び図6に示すように、固定子10の各鉄心1が直線状に並ぶように固定子10を展開した状態で、巻線3が各鉄心1に巻き付けられてコイル2が形成される。巻線ノズル50は、図5に示すように、円柱形状を有し、内部に巻線3が通る巻線通し部51が設けられている。実施の形態1においては、巻線機100に、3つの巻線ノズル50が設けられている。巻線機100は、図6に示すように、3つの巻線ノズル50を同時に動かして、右から1番目から3番目までの3つの鉄心1のティース1aのスロット面1bに同時に巻線3を巻き付ける。巻線ノズル50は、図5に示すように、巻線3が通される方向、つまり巻線ノズル50の軸方向を、固定子10を展開した面に対して直交させるように配置される。巻線ノズル50は、図6に示される軌跡tに沿って移動する。つまり、巻線ノズル50は、ティース1aの周りを略矩形を描くように移動し、ティース1aに巻線3を巻き付ける。また、巻線ノズル50は、図6の自転方向rの向きに、巻線ノズル50の中心軸Aを軸として自転可能に設置されている。なお、図6に示された軌跡tは、一例であり、その他の形状を描くようにティース1aの周りを巻線ノズル50が移動してもよい。また、自転方向rは、図6では反時計回りの例が示されているが、逆向き(すなわち、時計回り)であっても良い。 FIG. 5 is a perspective view showing a winding nozzle 50 when the coil 2 is formed on the iron core 1 by the winding machine 100 according to the first embodiment. FIG. 6 is a plan view of FIG. In the first embodiment, as shown in FIGS. 5 and 6, the winding 3 is wound around each core 1 in a state where the stator 10 is unfolded so that the cores 1 of the stator 10 are arranged in a straight line. The coil 2 is formed. As shown in FIG. 5, the winding nozzle 50 has a cylindrical shape, and is provided with a winding through portion 51 through which the winding 3 passes. In the first embodiment, the winding machine 100 is provided with three winding nozzles 50. As shown in FIG. 6, the winding machine 100 simultaneously moves the three winding nozzles 50 to simultaneously wind the winding 3 on the slot surface 1b of the teeth 1a of the three iron cores 1 from the first to the third from the right. Wrap it. As shown in FIG. 5, the winding nozzle 50 is arranged so that the direction in which the winding 3 is passed, that is, the axial direction of the winding nozzle 50 is orthogonal to the plane on which the stator 10 is developed. The winding nozzle 50 moves along the locus t shown in FIG. That is, the winding nozzle 50 moves around the teeth 1a so as to draw a substantially rectangular shape, and winds the winding 3 around the teeth 1a. Further, the winding nozzle 50 is installed so as to be rotatable about the central axis A of the winding nozzle 50 in the direction of the rotation direction r in FIG. The locus t shown in FIG. 6 is an example, and the winding nozzle 50 may move around the teeth 1a so as to draw another shape. Further, although the example of the counterclockwise direction is shown in FIG. 6, the rotation direction r may be in the opposite direction (that is, clockwise).
 図7は、実施の形態1に係る巻線機100により鉄心1に渡り線3Aを渡す際の巻線ノズル50の動きを示す平面図である。図5及び図6を用いて説明したように、実施の形態1では、巻線機100が、3つの鉄心1のティース1aに同時に巻線3を巻き付ける。すなわち、実施の形態1では、まず、図6に示すように、右から1番目から3番目までの3つの鉄心1のティース1aに同時に巻線3が巻き付けてコイル2を形成する。次に、図7に示すように、3つの巻線ノズル50の位置を移動させて、右から4番目から6番目までの3つの鉄心1のティース1aに同時に巻線3が巻き付けてコイル2を形成する。このように、巻線機100は、3つの鉄心1を1つのグループにして、図7の矢印D1の方向に、グループごとにコイル2を順に形成していく。このとき、1つのグループのコイル2が形成されて、次のグループのコイル2の形成に移行する際に、巻線3を切らずに、グループ間に渡り線3Aを渡して、次のグループのティース1aに巻線3を巻き付ける。このように、渡り線3Aとは、隣接する2つのグループのそれぞれに含まれるティース1a間に渡される巻線3のことである。図7の例では、右から1番目の鉄心1のティース1aから、右から4番目の鉄心1のティース1aに、渡り線3Aが渡されている。同様に、右から2番目の鉄心1のティース1aから、右から5番目の鉄心1のティース1aに、渡り線3Aが渡され、右から3番目の鉄心1のティース1aから、右から6番目の鉄心1のティース1aに、渡り線3Aが渡されている。 FIG. 7 is a plan view showing the movement of the winding nozzle 50 when passing the crossover 3A to the iron core 1 by the winding machine 100 according to the first embodiment. As described with reference to FIGS. 5 and 6, in the first embodiment, the winding machine 100 winds the winding 3 around the teeth 1a of the three iron cores 1 at the same time. That is, in the first embodiment, first, as shown in FIG. 6, the winding 3 is simultaneously wound around the teeth 1a of the three iron cores 1 from the first to the third from the right to form the coil 2. Next, as shown in FIG. 7, the positions of the three winding nozzles 50 are moved, and the winding 3 is simultaneously wound around the teeth 1a of the three iron cores 1 from the fourth to the sixth from the right to wind the coil 2. Form. In this way, the winding machine 100 groups the three iron cores 1 into one group, and forms the coils 2 in order for each group in the direction of the arrow D1 in FIG. 7. At this time, when the coil 2 of one group is formed and the process shifts to the formation of the coil 2 of the next group, the crossover 3A is passed between the groups without cutting the winding 3, and the coil 2 of the next group is formed. Wind the winding 3 around the teeth 1a. As described above, the crossover 3A is the winding 3 passed between the teeth 1a included in each of the two adjacent groups. In the example of FIG. 7, the crossover 3A is passed from the teeth 1a of the first iron core 1 from the right to the teeth 1a of the fourth iron core 1 from the right. Similarly, the crossover 3A is passed from the teeth 1a of the second iron core 1 from the right to the teeth 1a of the fifth iron core 1 from the right, and the sixth from the teeth 1a of the third iron core 1 from the right. A crossover 3A is passed to the teeth 1a of the iron core 1 of the above.
 図8及び図9は、実施の形態1に係る巻線機100の巻線ノズル50の斜視図である。図10は、実施の形態1に係る巻線機100の巻線ノズル50の先端面56を示す部分拡大斜視図である。図10は、図8及び図9の下側から先端面56を見た状態を示している。図10では、説明のため、図8及び図9に示す先端開放部70を破線で示している。図11は、実施の形態1に係る巻線機100の巻線ノズル50の構成を示す(a)断面図及び(b)側面図である。図11(b)は、先端面56を示している。以下、図8~図11を用いて、巻線ノズル50の構成について説明する。 8 and 9 are perspective views of the winding nozzle 50 of the winding machine 100 according to the first embodiment. FIG. 10 is a partially enlarged perspective view showing the tip surface 56 of the winding nozzle 50 of the winding machine 100 according to the first embodiment. FIG. 10 shows a state in which the tip surface 56 is viewed from the lower side of FIGS. 8 and 9. In FIG. 10, for the sake of explanation, the tip opening portion 70 shown in FIGS. 8 and 9 is shown by a broken line. FIG. 11 is a cross-sectional view (a) and a side view (b) showing the configuration of the winding nozzle 50 of the winding machine 100 according to the first embodiment. FIG. 11B shows the tip surface 56. Hereinafter, the configuration of the winding nozzle 50 will be described with reference to FIGS. 8 to 11.
 図8~図11に示すように、実施の形態1において、巻線ノズル50は、円柱形状を有している。巻線ノズル50には、図11(a)に示すように、巻線3を通すための巻線通し部51が設けられている。巻線通し部51は、貫通孔形状を有する貫通孔部71と、外部に対して開口して開放状態に形成された先端開放部70とから構成されている。 As shown in FIGS. 8 to 11, in the first embodiment, the winding nozzle 50 has a cylindrical shape. As shown in FIG. 11A, the winding nozzle 50 is provided with a winding threading portion 51 for passing the winding 3. The winding through portion 51 is composed of a through hole portion 71 having a through hole shape and a tip open portion 70 formed in an open state by opening to the outside.
 巻線ノズル50の一端は、図1に示した巻線機100のノズル保持部61に固定される固定側端面55(第1端面)である。巻線3は、固定側端面55に設けられた巻線挿入口55aから巻線通し部51内に挿入される。また、巻線ノズル50の他端は、先端面56(第2端面)である。巻線通し部51を通った巻線3は、先端面56の巻線供給部56aから引き出されてティース1aへの巻線動作に使用される。なお、巻線ノズル50の形状は、円柱形状だけに限定されるものではなく、固定側端面55から先端面56に亘って巻線3が通される構造であれば、その他の形状を取っても良い。すなわち、巻線ノズル50は、例えば、楕円形を底面とする楕円柱形状、又は、多角形を底面とする多角柱形状などであってもよい。 One end of the winding nozzle 50 is a fixed side end surface 55 (first end surface) fixed to the nozzle holding portion 61 of the winding machine 100 shown in FIG. The winding 3 is inserted into the winding through portion 51 from the winding insertion port 55a provided on the fixed side end surface 55. The other end of the winding nozzle 50 is a tip surface 56 (second end surface). The winding 3 that has passed through the winding through portion 51 is pulled out from the winding supply portion 56a of the tip surface 56 and used for winding operation to the teeth 1a. The shape of the winding nozzle 50 is not limited to the cylindrical shape, and any other shape may be taken as long as the winding 3 is passed from the fixed side end surface 55 to the tip surface 56. Is also good. That is, the winding nozzle 50 may have, for example, an elliptical column shape having an elliptical bottom surface, or a polygonal column shape having a polygonal bottom surface.
 図1に示した巻線機100は、巻線ノズル50の固定側端面55をノズル保持部61で保持して固定する。また、巻線機100は、巻線ノズル50の固定側端面55から先端面56に亘って巻線通し部51内に巻線3を通し、巻線ノズル50の先端面56の巻線供給部56aから巻線3を引き出す。そして、巻線機100は、図6に示したように、巻線ノズル50を鉄心1のティース1aの周りで移動させることにより、先端面56の巻線供給部56aから引き出された巻線3をティース1aに巻き付ける。 In the winding machine 100 shown in FIG. 1, the fixed side end surface 55 of the winding nozzle 50 is held and fixed by the nozzle holding portion 61. Further, the winding machine 100 passes the winding 3 through the winding through portion 51 from the fixed side end surface 55 of the winding nozzle 50 to the tip surface 56, and the winding supply portion of the tip surface 56 of the winding nozzle 50. Pull out the winding 3 from 56a. Then, as shown in FIG. 6, the winding machine 100 moves the winding nozzle 50 around the teeth 1a of the iron core 1, so that the winding 3 is drawn out from the winding supply portion 56a of the tip surface 56. Wrap around the teeth 1a.
 巻線ノズル50には、図11(a)に示すように、円柱形状の長手方向に延びた巻線通し部51が設けられている。巻線通し部51は、固定側端面55から先端面56にわたって巻線3が通るように、固定側端面55から先端面56まで巻線ノズル50の長手方向(軸方向)に向かって延びている。巻線通し部51は、貫通孔形状を有する貫通孔部71と、開放状態に形成された先端開放部70とを有している。貫通孔部71は、固定側端面55に設けられた巻線挿入口55aから、巻線ノズル50の側面50aに形成された先端開放部70までを貫通する貫通孔で構成されている。 As shown in FIG. 11A, the winding nozzle 50 is provided with a winding through portion 51 extending in the longitudinal direction of a cylindrical shape. The winding threading portion 51 extends from the fixed side end surface 55 to the tip surface 56 in the longitudinal direction (axial direction) of the winding nozzle 50 so that the winding 3 passes from the fixed side end surface 55 to the tip surface 56. .. The winding through portion 51 has a through hole portion 71 having a through hole shape and a tip open portion 70 formed in an open state. The through hole portion 71 is composed of a through hole that penetrates from the winding insertion port 55a provided on the fixed side end surface 55 to the tip opening portion 70 formed on the side surface 50a of the winding nozzle 50.
 固定側端面55に設けられた巻線挿入口55aは、図8及び図11(a)に示すように、固定側端面55の中心部分に配置されている。すなわち、巻線挿入口55aは、図11(a)に示すように、巻線ノズル50の固定側端面55において、巻線ノズル50の中心軸A上に設けられている。なお、巻線挿入口55aは、必ずしも、巻線ノズル50の中心軸A上に配置されていなくてもよい。すなわち、巻線挿入口55aは、巻線ノズル50の中心軸Aから多少シフトされていてもよい。但し、その場合には、巻線通し部51の内壁面51aが薄肉とならない程度に、巻線挿入口55aを巻線ノズル50の中心軸Aからシフトさせる。 The winding insertion port 55a provided on the fixed side end surface 55 is arranged at the central portion of the fixed side end surface 55 as shown in FIGS. 8 and 11 (a). That is, as shown in FIG. 11A, the winding insertion port 55a is provided on the central axis A of the winding nozzle 50 at the fixed side end surface 55 of the winding nozzle 50. The winding insertion port 55a does not necessarily have to be arranged on the central axis A of the winding nozzle 50. That is, the winding insertion port 55a may be slightly shifted from the central axis A of the winding nozzle 50. However, in that case, the winding insertion port 55a is shifted from the central axis A of the winding nozzle 50 so that the inner wall surface 51a of the winding through portion 51 does not become thin.
 以下では、説明のため、巻線ノズル50本体の外周を構成する側面50aのうち、図11(a)における上側の側面部分を「側面50a-1」と呼び、下側の側面部分を「側面50a-2」と呼ぶこととする。 In the following, for the sake of explanation, of the side surfaces 50a constituting the outer periphery of the winding nozzle 50 main body, the upper side surface portion in FIG. 11A is referred to as “side surface 50a-1”, and the lower side surface portion is referred to as “side surface”. It will be called "50a-2".
 巻線通し部51の貫通孔部71は、図11(a)に示すように、巻線ノズル50の中心軸Aに対して傾斜して設けられている。さらに詳細に言えば、巻線通し部51の内壁面51aの長手方向は、巻線ノズル50の中心軸Aに対して、角度αだけ傾斜している。 As shown in FIG. 11A, the through hole portion 71 of the winding through portion 51 is provided so as to be inclined with respect to the central axis A of the winding nozzle 50. More specifically, the longitudinal direction of the inner wall surface 51a of the winding threading portion 51 is inclined by an angle α with respect to the central axis A of the winding nozzle 50.
 巻線通し部51の貫通孔部71は、巻線挿入口55aから先端開放部70まで延設されている。貫通孔部71は、内壁面51aを有している。一方、先端開放部70は、図11(a)に示すように、巻線ノズル50の側面50a-2に形成されている。先端開放部70は、図8及び図9に示すように、矩形形状の開口部70aを有している。このように、巻線通し部51の先端面56側の端部は、先端開放部70になっている。先端開放部70は、巻線通し部51の内壁面51aが設けられておらず、外部に対して開放された状態となっている。 The through hole 71 of the winding threading portion 51 extends from the winding insertion port 55a to the tip opening portion 70. The through hole portion 71 has an inner wall surface 51a. On the other hand, the tip opening portion 70 is formed on the side surface 50a-2 of the winding nozzle 50 as shown in FIG. 11A. As shown in FIGS. 8 and 9, the tip opening portion 70 has a rectangular opening portion 70a. As described above, the end portion of the winding threading portion 51 on the tip end surface 56 side is the tip opening portion 70. The tip opening portion 70 is not provided with the inner wall surface 51a of the winding through portion 51, and is in a state of being open to the outside.
 巻線ノズル50の先端面56には、図11(a)に示すように、巻線供給部56aが設けられている。巻線供給部56aは、溝状に形成された先端溝部52と、巻線供給口53とを有している。先端溝部52は、先端面56に形成された溝である。先端溝部52は、側面50a-2(第1側面)から側面50a-1(第2側面)に向かって、巻線ノズル50の径方向に沿って延設されている。従って、先端溝部52の延設方向は、図11(b)の矢印D2の方向である。すなわち、図11(b)の紙面において、下から上に向かう方向である。先端溝部52の延設方向は、巻線ノズル50の中心軸Aに対して直交している。また、先端溝部52の延設方向の両端は、巻線ノズル50本体の側面50a-1及び50a-2において開口している。先端溝部52の側面50a-1側の端部は、巻線3が引き出される巻線供給口53になっている。なお、上述したように、巻線通し部51は、巻線ノズル50の中心軸Aに対して傾斜している。巻線通し部51の傾斜する方向は、図11(a)の矢印D3の方向である。すなわち、図11(b)の紙面において、上から下に向かう方向である。すなわち、巻線通し部51は、側面50a-1(第2側面)から側面50a-2(第1側面)に向かう方向に傾斜している。このように、巻線通し部51は、先端溝部52の延設方向と反対方向に傾斜している。 As shown in FIG. 11A, a winding supply portion 56a is provided on the tip surface 56 of the winding nozzle 50. The winding supply portion 56a has a groove-shaped tip groove portion 52 and a winding supply port 53. The tip groove portion 52 is a groove formed on the tip surface 56. The tip groove portion 52 extends from the side surface 50a-2 (first side surface) toward the side surface 50a-1 (second side surface) along the radial direction of the winding nozzle 50. Therefore, the extending direction of the tip groove portion 52 is the direction of the arrow D2 in FIG. 11 (b). That is, in the paper surface of FIG. 11B, the direction is from bottom to top. The extending direction of the tip groove portion 52 is orthogonal to the central axis A of the winding nozzle 50. Further, both ends of the tip groove portion 52 in the extending direction are opened on the side surfaces 50a-1 and 50a-2 of the winding nozzle 50 main body. The end of the tip groove 52 on the side surface 50a-1 side is a winding supply port 53 from which the winding 3 is pulled out. As described above, the winding threading portion 51 is inclined with respect to the central axis A of the winding nozzle 50. The direction in which the winding threading portion 51 is inclined is the direction of arrow D3 in FIG. 11 (a). That is, in the paper surface of FIG. 11B, the direction is from top to bottom. That is, the winding threading portion 51 is inclined in the direction from the side surface 50a-1 (second side surface) to the side surface 50a-2 (first side surface). In this way, the winding threading portion 51 is inclined in the direction opposite to the extending direction of the tip groove portion 52.
 巻線通し部51と先端溝部52とは、互いに連通している。つまり、巻線通し部51と先端溝部52とは接続されて1本の巻線3の通り道となるように形成されている。図11(a)に示すように、巻線通し部51の内壁面51aと先端溝部52の内壁面52aとが交わる部分である第1交差部57は、曲面から形成されており、内壁面51aと内壁面52aとを連続した面となるように接続している。実施の形態1において、第1交差部57は、図11(a)に示す断面において円弧形状になっているが、その他の曲線形状であっても良く、巻線3が接触したときに切断が生じないように滑らかな曲線で構成されることが望ましい。 The winding threading portion 51 and the tip groove portion 52 communicate with each other. That is, the winding through portion 51 and the tip groove portion 52 are connected and formed so as to form a path for one winding 3. As shown in FIG. 11A, the first intersection 57, which is a portion where the inner wall surface 51a of the winding through portion 51 and the inner wall surface 52a of the tip groove portion 52 intersect, is formed from a curved surface, and the inner wall surface 51a is formed. And the inner wall surface 52a are connected so as to be a continuous surface. In the first embodiment, the first intersection 57 has an arc shape in the cross section shown in FIG. 11 (a), but may have another curved shape, and is cut when the windings 3 come into contact with each other. It is desirable to have a smooth curve so that it does not occur.
 また、図11(b)に示すように、先端溝部52の内壁面52aと巻線ノズル50の側面50a-1とが交わる部分である第2交差部58は、曲面から形成されており、内壁面52aと側面50a-1とが連続した面となるように接続している。つまり、内壁面52aと側面50a-1とが交わって出来る稜線は、全て曲面で形成されている。実施の形態1において、第2交差部58は、図11(b)において円弧形状になっているが、その他の曲線形状であっても良く、巻線3が接触したときに切断が生じないように滑らかな曲線で構成されることが望ましい。 Further, as shown in FIG. 11B, the second intersection 58, which is a portion where the inner wall surface 52a of the tip groove 52 and the side surface 50a-1 of the winding nozzle 50 intersect, is formed from a curved surface and has an inner surface. The wall surface 52a and the side surface 50a-1 are connected so as to form a continuous surface. That is, all the ridge lines formed by the intersection of the inner wall surface 52a and the side surface 50a-1 are formed of curved surfaces. In the first embodiment, the second intersection 58 has an arc shape in FIG. 11 (b), but may have another curved shape so that cutting does not occur when the windings 3 come into contact with each other. It is desirable to have a smooth curve.
 なお、図11(a)において、長さsは、第1交差部57から先端溝部52の巻線供給口53までの長さである。この長さsの部分を、以下では、部分Sと呼ぶ。部分Sの長さsが長いほど、巻線3は第1交差部57に沿って緩やかに曲がることができる。逆に、部分Sの長さsが短いほど、巻線3は第1交差部57に沿って急カーブで曲がることになる。この原理については、図19を用いて後述する。そのため、実施の形態1では、長さsを巻線ノズル50の径に対して出来るだけ長くするために、巻線通し部51の貫通孔部71を傾斜させ、且つ、巻線通し部51の先端に先端開放部70を設けている。先端開放部70は、巻線ノズル50の側面50a-2で開口している。当該構成により、長さsは、巻線ノズル50の径に対して最大限長くなっている。 In FIG. 11A, the length s is the length from the first intersection 57 to the winding supply port 53 of the tip groove 52. The portion of this length s is hereinafter referred to as a portion S. The longer the length s of the portion S, the more gently the winding 3 can bend along the first intersection 57. Conversely, the shorter the length s of the portion S, the sharper the winding 3 will bend along the first intersection 57. This principle will be described later with reference to FIG. Therefore, in the first embodiment, in order to make the length s as long as possible with respect to the diameter of the winding nozzle 50, the through hole portion 71 of the winding through portion 51 is inclined and the winding through portion 51 is provided. A tip opening portion 70 is provided at the tip. The tip opening portion 70 is opened at the side surface 50a-2 of the winding nozzle 50. With this configuration, the length s is as long as possible with respect to the diameter of the winding nozzle 50.
 また、図11(a)に示されるように、巻線通し部51の内壁面51aと固定側端面55とが交わる第3交差部59は、曲面から形成されており、内壁面51aと固定側端面55とが連続した面となるように接続している。第3交差部59は、図11(a)の断面において円弧形状になっているが、その他の曲線形状であっても良く、巻線3が接触したときに切断が生じないように滑らかな曲線で構成されることが望ましい。 Further, as shown in FIG. 11A, the third intersection 59 where the inner wall surface 51a of the winding threading portion 51 and the fixed side end surface 55 intersect is formed from a curved surface, and the inner wall surface 51a and the fixed side are formed. It is connected so that the end surface 55 and the end surface 55 are continuous surfaces. The third intersection 59 has an arc shape in the cross section of FIG. 11A, but may have another curved shape, and is a smooth curve so that cutting does not occur when the windings 3 come into contact with each other. It is desirable to be composed of.
 図12及び図13は、実施の形態1に係る巻線機100の巻線ノズル50に巻線3を通した状態を示す説明図である。図14は、実施の形態1に係る巻線機100において鉄心1のティース1aに巻線3を巻き付けている状態の模式図である。図12に示されるように、巻線ノズル50は、固定側端面55から先端面56わたって巻線3が通るように形成された巻線通し部51と、先端面56に溝状に形成された先端溝部52と、を備えている。巻線3は、巻線機100の各部を通して巻線ノズル50の固定側端面55から、巻線通し部51に入り、巻線通し部51に沿って、先端面56に至る。 12 and 13 are explanatory views showing a state in which the winding 3 is passed through the winding nozzle 50 of the winding machine 100 according to the first embodiment. FIG. 14 is a schematic view of a winding machine 100 according to the first embodiment in a state where the winding 3 is wound around the teeth 1a of the iron core 1. As shown in FIG. 12, the winding nozzle 50 is formed in a groove shape on the winding through portion 51 formed so that the winding 3 passes from the fixed side end surface 55 to the tip surface 56 and the tip surface 56. The tip groove portion 52 is provided. The winding 3 enters the winding through portion 51 from the fixed side end surface 55 of the winding nozzle 50 through each portion of the winding machine 100, and reaches the tip surface 56 along the winding through portion 51.
 先端面56に至った巻線3は、図12に示すように、巻線ノズル50の巻線通し部51と先端溝部52との交わった部分である第1交差部57の曲面に沿って、巻線ノズル50の側面50a-1側に曲げられる。側面50a-1は、先端開放部70が形成されている側面50a-2に対して反対側の面である。すなわち、側面50a-1と側面50a-2とは対向して配置されている。第1交差部57において、巻線通し部51の内壁面51aと先端溝部52の内壁面52aとが成す角度は、角度βである。角度βは、90°より小さい鋭角である。従って、第1交差部57において、巻線3は角度βだけ曲げられる。 As shown in FIG. 12, the winding wire 3 reaching the tip surface 56 is formed along the curved surface of the first intersection 57, which is the intersection of the winding threading portion 51 and the tip groove portion 52 of the winding nozzle 50. It is bent toward the side surface 50a-1 of the winding nozzle 50. The side surface 50a-1 is a surface opposite to the side surface 50a-2 in which the tip opening portion 70 is formed. That is, the side surface 50a-1 and the side surface 50a-2 are arranged so as to face each other. At the first intersection 57, the angle formed by the inner wall surface 51a of the winding threading portion 51 and the inner wall surface 52a of the tip groove portion 52 is an angle β. The angle β is an acute angle smaller than 90 °. Therefore, at the first intersection 57, the winding 3 is bent by an angle β.
 第1交差部57の曲面に沿って側面50a-1側に向かって角度βだけ曲げられた巻線3は、図13に示すように、先端溝部52に沿って進む。その後、先端溝部52と巻線ノズル50の側面50aとが交わった部分である第2交差部58の曲面に沿って、巻線ノズル50の長手方向及び先端溝部52の延設方向に対し交差する方向に引き出される。先端溝部52の内壁面52aと、第2交差部58の曲面の接線とが成す角度は、角度γである。角度γは、例えば90°より大きい鈍角である。従って、第2交差部58において、巻線3は角度γだけ曲げられる。なお、角度γの大きさは特に限定されない。すなわち、角度γは、90°でもよく、あるいは、90°未満でもよい。 As shown in FIG. 13, the winding wire 3 bent by an angle β toward the side surface 50a-1 side along the curved surface of the first intersection 57 advances along the tip groove portion 52. After that, it intersects the longitudinal direction of the winding nozzle 50 and the extending direction of the tip groove 52 along the curved surface of the second intersection 58, which is the intersection of the tip groove 52 and the side surface 50a of the winding nozzle 50. Pulled out in the direction. The angle formed by the inner wall surface 52a of the tip groove portion 52 and the tangent line of the curved surface of the second intersection 58 is an angle γ. The angle γ is, for example, an obtuse angle larger than 90 °. Therefore, at the second intersection 58, the winding 3 is bent by an angle γ. The size of the angle γ is not particularly limited. That is, the angle γ may be 90 ° or less than 90 °.
 実施の形態1では、巻線通し部51を、巻線ノズル50の中心軸Aに対して傾斜させて配置している。これにより、巻線通し部51を傾斜させない場合と比較して、第1交差部57のR曲面形状が大きくなり、R曲面の半径Rが大きくなる。実施の形態1は、第1交差部57の半径R又は曲率が、巻線ノズル50の直径に対して最大限大きくできる構造である。このように、第1交差部57のR曲面形状が大きくなると、巻線3に無理な力が加わらず、巻線3の引っ張り負荷が小さくなるので、巻線3の伸び率が上昇することを防止することができる。 In the first embodiment, the winding threading portion 51 is arranged so as to be inclined with respect to the central axis A of the winding nozzle 50. As a result, the shape of the R curved surface of the first intersection 57 becomes larger and the radius R of the R curved surface becomes larger than in the case where the winding threading portion 51 is not tilted. The first embodiment has a structure in which the radius R or the curvature of the first intersection 57 can be made as large as possible with respect to the diameter of the winding nozzle 50. In this way, when the R curved surface shape of the first intersection 57 becomes large, an unreasonable force is not applied to the winding 3, and the tensile load of the winding 3 becomes small, so that the elongation rate of the winding 3 increases. Can be prevented.
 さらに、実施の形態1では、巻線通し部51の先端面56側の端部に、巻線ノズル50本体の側面50a-2で開口している先端開放部70を設けている。先端開放部70は、内壁面51aを有しておらず、外部に対して開放状態である。そのため、先端開放部70を通る巻線3の動きは、内壁面51aによって抑制されない。その結果、先端開放部70を通る巻線3には、無理な力が一切加わることがなく、巻線3が強く引っ張られないため、巻線3の伸び率の上昇をさらに防止することができる。 Further, in the first embodiment, the tip opening portion 70 opened by the side surface 50a-2 of the winding nozzle 50 main body is provided at the end of the winding threading portion 51 on the tip surface 56 side. The tip opening portion 70 does not have an inner wall surface 51a and is in an open state to the outside. Therefore, the movement of the winding wire 3 passing through the tip opening portion 70 is not suppressed by the inner wall surface 51a. As a result, no unreasonable force is applied to the winding 3 passing through the tip opening portion 70, and the winding 3 is not strongly pulled, so that it is possible to further prevent an increase in the elongation rate of the winding 3. ..
 図14に示されるように、巻線ノズル50は、ティース1aの周囲を周回し、巻線3をスロット面1bに巻き付ける。ここで、巻線3のうち、スロット面1bに巻き付けられている部分を巻き付け部3aと呼び、巻き付け部3aから先端溝部52までの間に位置する部分を巻線引き出し部3bと呼ぶ。このとき、先端溝部52の矢印D2で示される延設方向は、巻線3の巻線引き出し部3bに対し、角度θを成すように向けられている。そのため、巻線3は、先端溝部52から引き出される部分で第2交差部58に沿って曲げられる。 As shown in FIG. 14, the winding nozzle 50 orbits around the teeth 1a and winds the winding 3 around the slot surface 1b. Here, of the winding 3, the portion wound around the slot surface 1b is referred to as a winding portion 3a, and the portion located between the winding portion 3a and the tip groove portion 52 is referred to as a winding drawing portion 3b. At this time, the extending direction indicated by the arrow D2 of the tip groove portion 52 is directed so as to form an angle θ with respect to the winding drawing portion 3b of the winding 3. Therefore, the winding 3 is bent along the second intersection 58 at the portion drawn out from the tip groove portion 52.
 巻線3は、巻線ノズル50の先端溝部52の巻線供給口53で、第2交差部58の曲面に押し付けられながら引き出される。これにより、巻線3は、第2交差部58の曲面により、ティース1aのスロット面1bに対して反りが生じる。つまり、巻線引き出し部3bは、スロット面1bに向かって凸になるように反りが生じている。巻線ノズル50は、先端溝部52と巻線引き出し部3bとの間の角度θを一定に維持したまま、ティース1aの周りを周回することが望ましい。そのため、制御装置80は、角度θが一定の値になるように、巻線ノズル50の水平方向位置及び自転角度を制御する。これにより、巻線ノズル50は、水平方向位置が変動するとともに、自転角度を角度θが一定となるように制御装置80により制御される。そのため、巻線3は、ティース1aに巻き付けられている間に常にスロット面1bに対して反るように力を受けながら巻き付けられている。 The winding 3 is drawn out while being pressed against the curved surface of the second intersection 58 at the winding supply port 53 of the tip groove portion 52 of the winding nozzle 50. As a result, the winding 3 is warped with respect to the slot surface 1b of the teeth 1a due to the curved surface of the second intersection 58. That is, the winding lead-out portion 3b is warped so as to be convex toward the slot surface 1b. It is desirable that the winding nozzle 50 orbits around the teeth 1a while maintaining a constant angle θ between the tip groove portion 52 and the winding drawing portion 3b. Therefore, the control device 80 controls the horizontal position and the rotation angle of the winding nozzle 50 so that the angle θ becomes a constant value. As a result, the winding nozzle 50 is controlled by the control device 80 so that the horizontal position fluctuates and the rotation angle becomes constant. Therefore, the winding 3 is wound while being wound around the teeth 1a while receiving a force so as to always warp with respect to the slot surface 1b.
 図15は、実施の形態1に係る巻線機100によりコイル2が形成された鉄心1の断面構造の説明図である。図15において、矢印80は例えば図1のX方向を示し、矢印81は例えば図1のY方向を示す。図15に示された断面は、固定子10の鉄心1のうちの1つを、図2に示される図と平行な面で切断した場合の断面を示している。図14に示すように、巻線動作中の巻線3は、巻線ノズル50によって弓なりに反っており、その弓なりに反った頂点3cがスロット面1b側に向いている。一方、図15に示すように、巻線3は、スロット面1bに対して垂直方向に沿って延びているため、スロット面1bとコイル2の1層目との隙間wが低減され、さらに、2層目以降も隙間が低減されるため、コイル2が巻き締まる方向で巻かれる。このように、スロット面1bと巻線3との隙間w、及び、巻線3間の隙間が低減されると、その分だけ、スロット面1bに巻線3を多く巻けるので、巻線占積率が高くなり、電動機20の出力が大きくなるという利点がある。さらに、コイル2を形成する巻線3は、スロット面1bの方向に向かって凸になるように反りが生じているため、巻線3の剛性によりコイル2が巻き膨らむことを抑制することができる。 FIG. 15 is an explanatory view of the cross-sectional structure of the iron core 1 in which the coil 2 is formed by the winding machine 100 according to the first embodiment. In FIG. 15, arrow 80 indicates, for example, the X direction of FIG. 1, and arrow 81 indicates, for example, the Y direction of FIG. The cross section shown in FIG. 15 shows a cross section when one of the iron cores 1 of the stator 10 is cut in a plane parallel to the figure shown in FIG. As shown in FIG. 14, the winding 3 during the winding operation is warped in a bow shape by the winding nozzle 50, and the apex 3c warped in the bow shape faces the slot surface 1b side. On the other hand, as shown in FIG. 15, since the winding 3 extends in the direction perpendicular to the slot surface 1b, the gap w between the slot surface 1b and the first layer of the coil 2 is reduced, and further. Since the gap is reduced even in the second and subsequent layers, the coil 2 is wound in the winding direction. As described above, when the gap w between the slot surface 1b and the winding 3 and the gap between the windings 3 are reduced, more windings 3 can be wound around the slot surface 1b by that amount, so that the winding space is occupied. There is an advantage that the rate becomes high and the output of the electric motor 20 becomes large. Further, since the winding 3 forming the coil 2 is warped so as to be convex toward the slot surface 1b, it is possible to suppress the coil 2 from winding and swelling due to the rigidity of the winding 3. ..
 図16は、実施の形態1に係る巻線機100の巻線ノズル50の比較例として、特許文献1に記載の巻線ノズル150の構成を示す説明図である。図16(a)は、巻線ノズル150の固定側端面155を示す側面図であり、図16(c)は、巻線ノズル150の先端面156を示す側面図である。また、図16(b)は、巻線ノズル150の断面図である。図17及び図18は、図16の比較例の巻線ノズル150に通した状態の巻線3を模式的に示す説明図である。 FIG. 16 is an explanatory diagram showing the configuration of the winding nozzle 150 described in Patent Document 1 as a comparative example of the winding nozzle 50 of the winding machine 100 according to the first embodiment. 16 (a) is a side view showing the fixed side end surface 155 of the winding nozzle 150, and FIG. 16 (c) is a side view showing the tip surface 156 of the winding nozzle 150. Further, FIG. 16B is a cross-sectional view of the winding nozzle 150. 17 and 18 are explanatory views schematically showing the winding 3 in a state of being passed through the winding nozzle 150 of the comparative example of FIG.
 図16~図18は、比較例の巻線ノズル150の巻線通し部151が貫通孔から構成されている場合を示している。巻線通し部151は、固定側端面155から先端面156まで延びた貫通孔である。巻線通し部151は、先端面156に形成された先端溝部152と連通している。巻線通し部151は、円柱形状の巻線ノズル150の中心軸Aと平行に配置されている。ただし、巻線通し部151は、図16(b)に示すように、中心軸A上には配置されておらず、中心軸Aからシフトされた位置に配置されている。その理由は、図17に示す長さsを長くすることで、その部分の曲率半径Rを大きくするためである。以下では、その部分を「部分S」と呼ぶ。曲率半径Rが大きくなると、部分Sの長さsが長くなり、部分Sを形成する曲線がなだらかになる。この原理について、図19を用いて以下に説明する。図19は、曲率半径と曲線の緩急との関係を示す説明図である。 16 to 18 show a case where the winding through portion 151 of the winding nozzle 150 of the comparative example is composed of a through hole. The winding threading portion 151 is a through hole extending from the fixed side end surface 155 to the tip end surface 156. The winding threading portion 151 communicates with the tip groove portion 152 formed on the tip surface 156. The winding threading portion 151 is arranged in parallel with the central axis A of the cylindrical winding nozzle 150. However, as shown in FIG. 16B, the winding threading portion 151 is not arranged on the central axis A, but is arranged at a position shifted from the central axis A. The reason is that the radius of curvature R of the portion is increased by increasing the length s shown in FIG. Hereinafter, the part is referred to as "part S". As the radius of curvature R increases, the length s of the portion S becomes longer, and the curve forming the portion S becomes gentle. This principle will be described below with reference to FIG. FIG. 19 is an explanatory diagram showing the relationship between the radius of curvature and the speed of the curve.
 一般に、曲線上の任意の点付近の曲線の微少部分は、その点での曲率半径を半径とする円で近似できることが知られている。図19(b)の点Vと点Wとを比較すると分かるように、点Vのように、曲率半径が大きいと、曲線の曲がり具合が緩く、点Wのように、曲率半径が小さいと、曲線の曲がり具合がきつくなる(点W参照)。 In general, it is known that a minute part of a curve near an arbitrary point on the curve can be approximated by a circle whose radius is the radius of curvature at that point. As can be seen by comparing the point V and the point W in FIG. 19B, when the radius of curvature is large like the point V, the curve is loosely curved, and when the radius of curvature is small like the point W, The curvature of the curve becomes tight (see point W).
 図19(a)において、或る曲線L上の点Pから曲線Lに沿って長さsだけ変位した点を点Qとする。長さsの部分Sを円弧とみなし、その円の中心を点Cとし、各PCQをΔaとすると、円の半径Rと長さsとの関係は、以下の式(1)で表される。ここで、πは円周率である。 In FIG. 19A, a point displaced from a point P on a certain curve L along the curve L by a length s is defined as a point Q. Assuming that the part S of the length s is regarded as an arc, the center of the circle is the point C, and each PCQ is Δa, the relationship between the radius R of the circle and the length s is expressed by the following equation (1). .. Here, π is the pi.
  s=2πR×(Δa/360°)     (1) S = 2πR × (Δa / 360 °) (1)
 π=180°であるので、式(1)を整理すると、以下の式(2)が得られる。 Since π = 180 °, the following equation (2) can be obtained by rearranging the equation (1).
  R=s/Δa    (2) R = s / Δa (2)
 すなわち、角度Δaが一定の場合、半径Rは、長さsに比例して大きくなる。この原理を図17に当てはめると、角度β1が一定の場合、長さsを長くすれば、部分Sの半径Rは大きくなり、部分Sの曲線の曲がり具合が緩くなる。巻線通し部151が中心軸A上に配置されている場合と比較して、図17の比較例のように巻線通し部151が中心軸Aからずれている場合の方が、長さsは当然長くなる。そのため、比較例においては、部分Sの曲線部分を緩やかにするために、巻線通し部151を中心軸Aからずらして配置している。 That is, when the angle Δa is constant, the radius R increases in proportion to the length s. Applying this principle to FIG. 17, when the angle β1 is constant, if the length s is lengthened, the radius R of the portion S becomes larger and the curve of the portion S becomes less curved. Compared with the case where the winding threading portion 151 is arranged on the central axis A, the case where the winding threading portion 151 is deviated from the central axis A as in the comparative example of FIG. 17 has a length s. Will naturally be longer. Therefore, in the comparative example, in order to make the curved portion of the portion S gentle, the winding threading portion 151 is arranged so as to be offset from the central axis A.
 その結果、比較例の巻線通し部151の内壁部151aの厚さは、薄肉となっている。内壁部151aが薄肉の場合、強度不足となり、強いテンションでの巻線動作には不向きである。これに対して、実施の形態1では、図11(a)に示すように、巻線動作中に最も強い力が加わる部分の肉厚を厚くしている。すなわち、実施の形態1では、巻線挿入口55a付近及び巻線供給口53付近の内壁面51aの肉厚を厚くしている。そのため、十分な強度が確保でき、強いテンションでの巻線動作にも対応可能である。 As a result, the thickness of the inner wall portion 151a of the winding through portion 151 of the comparative example is thin. When the inner wall portion 151a is thin, the strength is insufficient and it is not suitable for winding operation with a strong tension. On the other hand, in the first embodiment, as shown in FIG. 11A, the wall thickness of the portion to which the strongest force is applied during the winding operation is increased. That is, in the first embodiment, the wall thickness of the inner wall surface 51a near the winding insertion port 55a and the vicinity of the winding supply port 53 is increased. Therefore, sufficient strength can be secured, and it is possible to handle winding operation with a strong tension.
 また、図17に示すように、比較例では、巻線通し部151が内壁部151aを長手方向の全長に亘って有しているため、内壁部151aによって巻線3の動きが制限され、巻線3に引っ張り負荷がかかる。また、実施の形態1と比較すると、巻線3を角度β1だけ曲げる第1交差部157の曲率半径Rが小さいため、第1交差部157のR曲面形状が小さくなる。R曲面形状が小さくなると、巻線3に無理な力が加わり、巻線3が強く引っ張られることで、巻線3の伸び率が上昇する。巻線3の伸び率が上昇すると、巻線3の電気抵抗が増加し、ひいては、電動機20の電気抵抗が増加してしまう。これに対して、実施の形態1では、巻線通し部51を中心軸Aに対して傾斜させて配置している。これにより、図11に示す長さsが、図17の比較例の長さsよりもさらに長くなっている。そのため、実施の形態1では、巻線3を角度βだけ曲げる第1交差部57のR曲面形状の半径Rが大きくなり、第1交差部57のR曲面形状が緩くなる。さらに、図17と図12とを比較すると明らかなように、本願の実施の形態1の第1交差部57の角度βは、図17の比較例の第1交差部157の角度β1よりも小さい。ここで、角度β1は、略90°である。上記式(2)から、半径Rと角度Δaとが反比例関係にあることは明らかであるため、角度βが小さいほど、半径Rが大きくなることがわかる。このように、第1交差部57の角度を小さくすると、その分だけ、第1交差部57のR曲面形状が大きくなる。R曲面形状が大きくなると、巻線3に無理な力が加わらず、巻線3の伸び率が上昇することを防止することができる。 Further, as shown in FIG. 17, in the comparative example, since the winding through portion 151 has the inner wall portion 151a over the entire length in the longitudinal direction, the movement of the winding 3 is restricted by the inner wall portion 151a, and the winding 3 is wound. A pulling load is applied to the wire 3. Further, as compared with the first embodiment, since the radius of curvature R of the first intersection 157 that bends the winding 3 by the angle β1 is smaller, the R curved surface shape of the first intersection 157 becomes smaller. When the R curved surface shape becomes small, an unreasonable force is applied to the winding 3 and the winding 3 is strongly pulled, so that the elongation rate of the winding 3 increases. When the elongation rate of the winding 3 increases, the electric resistance of the winding 3 increases, which in turn increases the electric resistance of the electric motor 20. On the other hand, in the first embodiment, the winding threading portion 51 is arranged so as to be inclined with respect to the central axis A. As a result, the length s shown in FIG. 11 is further longer than the length s of the comparative example of FIG. Therefore, in the first embodiment, the radius R of the R curved surface shape of the first intersection 57 that bends the winding 3 by the angle β becomes large, and the R curved surface shape of the first intersection 57 becomes loose. Further, as is clear when comparing FIGS. 17 and 12, the angle β of the first intersection 57 of the first embodiment of the present application is smaller than the angle β1 of the first intersection 157 of the comparative example of FIG. .. Here, the angle β1 is approximately 90 °. From the above equation (2), it is clear that the radius R and the angle Δa have an inverse proportional relationship, so that it can be seen that the smaller the angle β, the larger the radius R. As described above, when the angle of the first intersection 57 is reduced, the R curved surface shape of the first intersection 57 is increased by that amount. When the R curved surface shape becomes large, it is possible to prevent the elongation rate of the winding 3 from increasing without applying an unreasonable force to the winding 3.
 さらに、実施の形態1では、巻線ノズル50の先端面56側に、巻線ノズル50本体の側面50aで開口している先端開放部70を設けている。先端開放部70は、開口部70aにおいては内壁面51aを有しておらず、開放状態である。そのため、先端開放部70を通る巻線3には、無理な力が一切加わることがなく、巻線3が強く引っ張られないため、巻線3の伸び率の上昇をさらに防止することができる。また、上述したように、部分Sの長さsが長いほど、第1交差部57のR曲面形状が緩くなる。実施の形態1では、巻線通し部51を傾斜させ、且つ、先端開放部70を設けたことで、巻線ノズル50の直径に対して、長さsを最大限長くしている。そのため、実施の形態1では、巻線3に最も引っ張り負荷がかからない構造を実現させている。 Further, in the first embodiment, the tip opening portion 70 opened on the side surface 50a of the winding nozzle 50 main body is provided on the tip surface 56 side of the winding nozzle 50. The tip open portion 70 does not have an inner wall surface 51a in the opening 70a and is in an open state. Therefore, no unreasonable force is applied to the winding wire 3 passing through the tip opening portion 70, and the winding wire 3 is not strongly pulled, so that it is possible to further prevent an increase in the elongation rate of the winding wire 3. Further, as described above, the longer the length s of the portion S, the looser the shape of the R curved surface of the first intersection 57. In the first embodiment, the winding threading portion 51 is inclined and the tip opening portion 70 is provided, so that the length s is made as long as possible with respect to the diameter of the winding nozzle 50. Therefore, in the first embodiment, a structure in which the winding 3 is least subjected to a tensile load is realized.
 また、図17に示すように、比較例では、巻線挿入口155aが中心軸Aからずれて偏心して配置されている。そのため、巻線挿入口155aから巻線通し部151に巻線3を挿入する際に、図17に示すように、巻線3を曲げて変形させた状態で挿入する必要がある。これにより、巻線3に無理な力が加わり、巻線3の伸び率が上昇する。これに対して、実施の形態1では、図12に示すように、巻線挿入口55aが中心軸A上に配置されている。そのため、巻線挿入口55aから巻線通し部51に巻線3を挿入する際に、図12に示すように、巻線3を変形させる必要がないため、巻線3に無理な力が加わらず、巻線3の伸び率の上昇を防止することができる。また、実施の形態1では、巻線通し部51を傾斜して配置しているため、巻線3がスムーズに通り、巻線動作時の巻線引っ張り負荷が小さい。 Further, as shown in FIG. 17, in the comparative example, the winding insertion port 155a is deviated from the central axis A and arranged eccentrically. Therefore, when inserting the winding 3 from the winding insertion port 155a into the winding through portion 151, it is necessary to insert the winding 3 in a bent and deformed state as shown in FIG. As a result, an unreasonable force is applied to the winding 3, and the elongation rate of the winding 3 increases. On the other hand, in the first embodiment, as shown in FIG. 12, the winding insertion port 55a is arranged on the central axis A. Therefore, when the winding 3 is inserted from the winding insertion port 55a into the winding through portion 51, as shown in FIG. 12, it is not necessary to deform the winding 3, so that an unreasonable force is applied to the winding 3. However, it is possible to prevent an increase in the elongation rate of the winding 3. Further, in the first embodiment, since the winding threading portion 51 is arranged in an inclined manner, the winding 3 passes smoothly and the winding pulling load during the winding operation is small.
 以上のように、実施の形態1では、巻線通し部51を、巻線ノズル50の中心軸Aに対して傾斜させて配置している。これにより、巻線通し部51を傾斜させない場合と比較して、第1交差部57のR曲面形状が大きくなり、R曲面の半径Rが大きくなる。実施の形態1は、第1交差部57の半径R又は曲率が、巻線ノズル50の直径に対して最大限大きくできる構造である。このように、第1交差部57のR曲面形状が大きくなると、巻線3に無理な力が加わらず、巻線3の引っ張り負荷が小さくなるので、巻線3の伸び率が上昇することを防止することができる。 As described above, in the first embodiment, the winding threading portion 51 is arranged so as to be inclined with respect to the central axis A of the winding nozzle 50. As a result, the shape of the R curved surface of the first intersection 57 becomes larger and the radius R of the R curved surface becomes larger than in the case where the winding threading portion 51 is not tilted. The first embodiment has a structure in which the radius R or the curvature of the first intersection 57 can be made as large as possible with respect to the diameter of the winding nozzle 50. In this way, when the R curved surface shape of the first intersection 57 becomes large, an unreasonable force is not applied to the winding 3, and the tensile load of the winding 3 becomes small, so that the elongation rate of the winding 3 increases. Can be prevented.
 さらに、実施の形態1では、巻線通し部51の先端面56側の端部に、巻線ノズル50本体の側面50a-2で開口している先端開放部70を設けている。先端開放部70は、内壁面51aを有しておらず、外部に対して開放状態である。そのため、先端開放部70を通る巻線3の動きは、内壁面51aによって抑制されない。その結果、先端開放部70を通る巻線3には、無理な力が一切加わることがなく、巻線3が強く引っ張られないため、巻線3の伸び率の上昇をさらに防止することができる。 Further, in the first embodiment, the tip opening portion 70 opened by the side surface 50a-2 of the winding nozzle 50 main body is provided at the end of the winding threading portion 51 on the tip surface 56 side. The tip opening portion 70 does not have an inner wall surface 51a and is in an open state to the outside. Therefore, the movement of the winding wire 3 passing through the tip opening portion 70 is not suppressed by the inner wall surface 51a. As a result, no unreasonable force is applied to the winding 3 passing through the tip opening portion 70, and the winding 3 is not strongly pulled, so that it is possible to further prevent an increase in the elongation rate of the winding 3. ..
 また、実施の形態1では、巻線通し部51が、貫通孔から形成された貫通孔部71を有している。貫通孔部71は、内壁面51aを有している。そのため、巻線3は、貫通孔部71においては、内壁面51aによって周囲が覆われているため、巻線ノズル50から離脱することはない。これにより、巻線機100の巻線3の巻線動作中、渡り線3Aの配線動作中、及び、U側インシュレータ4及びL側インシュレータ5への巻線3の絡げ動作中に、巻線3が巻線ノズル50から外れることを防止することができる。 Further, in the first embodiment, the winding through portion 51 has a through hole portion 71 formed from the through hole. The through hole portion 71 has an inner wall surface 51a. Therefore, since the winding 3 is covered with the inner wall surface 51a in the through hole portion 71, the winding 3 does not separate from the winding nozzle 50. As a result, the winding is performed during the winding operation of the winding 3 of the winding machine 100, the wiring operation of the crossover wire 3A, and the entanglement operation of the winding 3 with the U-side insulator 4 and the L-side insulator 5. 3 can be prevented from coming off the winding nozzle 50.
 実施の形態1では、巻線通し部51を、巻線ノズル50の中心軸Aに対して傾斜させて配置している。また、巻線挿入口55aを、固定側端面55の中央部分に配置している。また、巻線通し部51の傾斜方向を、先端溝部52の延設方向と反対方向にしている。これにより、巻線3が挿入される巻線挿入口55a付近、及び、巻線3が引き出される巻線供給口53付近では、巻線ノズル50の内壁面51aが肉厚になっている。これにより、巻線ノズル50の強度が確保される。 In the first embodiment, the winding threading portion 51 is arranged so as to be inclined with respect to the central axis A of the winding nozzle 50. Further, the winding insertion port 55a is arranged in the central portion of the fixed side end surface 55. Further, the inclination direction of the winding threading portion 51 is opposite to the extending direction of the tip groove portion 52. As a result, the inner wall surface 51a of the winding nozzle 50 is thickened in the vicinity of the winding insertion port 55a into which the winding 3 is inserted and in the vicinity of the winding supply port 53 from which the winding 3 is pulled out. This ensures the strength of the winding nozzle 50.
 1 鉄心、1a ティース、1b スロット面、2 コイル、3 巻線、3A 渡り線、3a 巻き付け部、3b 巻線引き出し部、3c 頂点、4 U側インシュレータ、5 L側インシュレータ、10 固定子、11 回転子、12 回転軸、20 電動機、50 巻線ノズル、50a 側面、50a-1 側面、50a-2 側面、51 巻線通し部、51a 内壁面、52 先端溝部、52a 内壁面、53 巻線供給口、55 固定側端面、55a 巻線挿入口、56 先端面、56a 巻線供給部、57 第1交差部、58 第2交差部、59 第3交差部、60 駆動ユニット、61 ノズル保持部、62 滑車、63 テンショナ部、64 巻線ボビン、70 先端開放部、70a 開口部、71 貫通孔部、80 制御装置、90 矢印、100 巻線機、150 巻線ノズル、151 巻線通し部、151a 内壁部、155 固定側端面、155a 巻線挿入口、156 先端面、157 第1交差部、158 第2交差部、200 圧縮機、200a 筐体、200b 圧縮機構、200c 吸入口、200d 吐出口、A 中心軸、D1 矢印、D2 矢印、D3 矢印。 1 iron core, 1a teeth, 1b slot surface, 2 coil, 3 winding, 3A crossover wire, 3a winding part, 3b winding drawer part, 3c apex, 4U side insulator, 5L side insulator, 10 stator, 11 rotation Child, 12 rotating shaft, 20 electric motor, 50 winding nozzle, 50a side surface, 50a-1 side surface, 50a-2 side surface, 51 winding threading part, 51a inner wall surface, 52 tip groove part, 52a inner wall surface, 53 winding supply port , 55 Fixed side end face, 55a winding insertion port, 56 tip surface, 56a winding supply part, 57 1st intersection, 58 2nd intersection, 59 3rd intersection, 60 drive unit, 61 nozzle holding part, 62 Coil, 63 tensioner, 64 winding bobbin, 70 tip opening, 70a opening, 71 through hole, 80 control device, 90 arrow, 100 winding machine, 150 winding nozzle, 151 winding through part, 151a inner wall Part, 155 fixed side end face, 155a winding insertion port, 156 tip surface, 157 first intersection, 158 second intersection, 200 compressor, 200a housing, 200b compression mechanism, 200c suction port, 200d discharge port, A Central axis, D1 arrow, D2 arrow, D3 arrow.

Claims (11)

  1.  鉄心に巻線を巻き付けてコイルを形成する巻線機で用いられ、柱状の外形形状を有し、先端面から前記巻線が引き出され、前記鉄心の周囲を移動して、前記巻線を前記鉄心に巻き付ける巻線ノズルであって、
     前記巻線機のノズル保持部に取り付けられる固定側端面である第1端面と、
     前記巻線が引き出される前記先端面である第2端面と、
     前記第1端面から前記第2端面にわたって巻線が通るように、前記第1端面から前記第2端面まで前記巻線ノズルの長手方向に延びた巻線通し部と、
     前記巻線通し部と連通して前記第2端面に溝状に形成された先端溝部と
     を備え、
     前記先端溝部は、前記第2端面において、前記巻線ノズルの外周を構成する第1側面から前記巻線ノズルの外周を構成し前記第1側面に対向する第2側面まで延設され、
     前記巻線通し部は、前記巻線ノズルの長手方向に延びる中心軸に対して傾斜して配置され、
     前記巻線通し部の前記中心軸に対して傾斜する方向は、前記先端溝部の延設方向と反対方向である、
     巻線ノズル。
    Used in a winding machine that winds a winding around an iron core to form a coil, it has a columnar outer shape, the winding is pulled out from the tip surface, and moves around the iron core to roll the winding. A winding nozzle that winds around an iron core
    The first end face, which is the fixed side end face attached to the nozzle holding portion of the winding machine, and
    The second end surface, which is the tip surface from which the winding is pulled out,
    A winding threading portion extending in the longitudinal direction of the winding nozzle from the first end surface to the second end surface so that the winding passes from the first end surface to the second end surface.
    It is provided with a tip groove portion formed in a groove shape on the second end surface so as to communicate with the winding through portion.
    The tip groove portion extends from the first side surface constituting the outer periphery of the winding nozzle to the second side surface forming the outer periphery of the winding nozzle and facing the first side surface on the second end surface.
    The winding threading portion is arranged so as to be inclined with respect to a central axis extending in the longitudinal direction of the winding nozzle.
    The direction in which the winding through portion is inclined with respect to the central axis is opposite to the extending direction of the tip groove portion.
    Winding nozzle.
  2.  前記巻線通し部は、前記巻線通し部の前記第2端面側の端部に設けられ、前記先端溝部と連通する先端開放部を有し、
     前記先端開放部は、前記巻線ノズルの前記第1側面で開口されている、
     請求項1に記載の巻線ノズル。
    The winding threading portion is provided at the end portion of the winding threading portion on the second end surface side, and has a tip opening portion that communicates with the tip groove portion.
    The tip opening portion is opened on the first side surface of the winding nozzle.
    The winding nozzle according to claim 1.
  3.  前記巻線通し部は、前記第1端面から前記先端開放部までを貫通する貫通孔で形成された貫通孔部を有している、
     請求項2に記載の巻線ノズル。
    The winding through portion has a through hole portion formed by a through hole penetrating from the first end surface to the tip opening portion.
    The winding nozzle according to claim 2.
  4.  前記巻線通し部の前記第1端面側の端部には、前記巻線を挿入する巻線挿入口が設けられ、
     前記巻線挿入口は、前記巻線ノズルの前記第1端面において前記中心軸上に配置されている、
     請求項1~3のいずれか1項に記載の巻線ノズル。
    A winding insertion port for inserting the winding is provided at the end of the winding through portion on the first end surface side.
    The winding insertion port is arranged on the central axis at the first end surface of the winding nozzle.
    The winding nozzle according to any one of claims 1 to 3.
  5.  前記巻線通し部の内壁面と前記先端溝部の内壁面とが交わる第1交差部は、
     曲面による連続した面で接続されている、
     請求項1~4のいずれか1項に記載の巻線ノズル。
    The first intersection where the inner wall surface of the winding through portion and the inner wall surface of the tip groove portion intersect is
    Connected by a continuous surface with a curved surface,
    The winding nozzle according to any one of claims 1 to 4.
  6.  前記第1端面から前記第2端面までの間に配置されている前記巻線ノズルの前記第1側面と前記先端溝部の内壁面とが交わる第2交差部は、
     曲面による連続した面で接続されている、
     請求項1~5のいずれか1項に記載の巻線ノズル。
    The second intersection where the first side surface of the winding nozzle arranged between the first end surface and the second end surface intersects with the inner wall surface of the tip groove portion is
    Connected by a continuous surface with a curved surface,
    The winding nozzle according to any one of claims 1 to 5.
  7.  前記第1端面と前記巻線通し部の内壁面とが交わる第3交差部は、
     曲面による連続した面で接続されている、
     請求項1~6のいずれか1項に記載の巻線ノズル。
    The third intersection where the first end surface and the inner wall surface of the winding threading portion intersect is
    Connected by a continuous surface with a curved surface,
    The winding nozzle according to any one of claims 1 to 6.
  8.  少なくとも1つの請求項1~7のいずれか1項に記載の巻線ノズルと、
     前記巻線ノズルを保持するノズル保持部と、
     前記ノズル保持部を水平方向に移動させる駆動ユニットと
     を備えた、巻線機。
    The winding nozzle according to any one of claims 1 to 7.
    A nozzle holding portion that holds the winding nozzle and
    A winding machine provided with a drive unit that moves the nozzle holding portion in the horizontal direction.
  9.  前記巻線ノズルは、
     当該巻線ノズルの前記中心軸を軸にして自転可能に前記ノズル保持部に保持される、
     請求項8に記載の巻線機。
    The winding nozzle is
    The winding nozzle is held on the nozzle holding portion so as to rotate around the central axis of the winding nozzle.
    The winding machine according to claim 8.
  10.  前記巻線ノズルの水平方向位置及び前記巻線ノズルの前記中心軸を軸とする自転角度を制御する制御装置をさらに備え、
     制御装置は、
     前記巻線のうち前記巻線ノズルの前記先端溝部から前記鉄心のティースに巻き付けられた巻き付け部までの間の部分を巻線引き出し部としたときに、
     前記巻線引き出し部と前記先端溝部の延設方向とが成す角度が一定の値となるように、前記水平方向位置及び前記自転角度を制御する、
     請求項9に記載の巻線機。
    Further provided with a control device for controlling the horizontal position of the winding nozzle and the rotation angle around the central axis of the winding nozzle.
    The control device is
    When the portion of the winding between the tip groove portion of the winding nozzle and the winding portion wound around the tooth of the iron core is used as the winding drawer portion.
    The horizontal position and the rotation angle are controlled so that the angle formed by the winding lead-out portion and the extension direction of the tip groove portion becomes a constant value.
    The winding machine according to claim 9.
  11.  少なくとも1つの前記巻線ノズルは、
     複数の巻線ノズルから構成され、
     前記複数の巻線ノズルは、
     同時に動くように構成されている、
     請求項8~10のいずれか1項に記載の巻線機。
    At least one of the winding nozzles
    Consists of multiple winding nozzles
    The plurality of winding nozzles
    It is configured to move at the same time,
    The winding machine according to any one of claims 8 to 10.
PCT/JP2020/047095 2020-12-17 2020-12-17 Winding nozzle and winding machine WO2022130557A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080106660.1A CN116458044A (en) 2020-12-17 2020-12-17 Wire winding mouth and wire winding machine
JP2022569416A JP7378645B2 (en) 2020-12-17 2020-12-17 Winding nozzle and winding machine
PCT/JP2020/047095 WO2022130557A1 (en) 2020-12-17 2020-12-17 Winding nozzle and winding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/047095 WO2022130557A1 (en) 2020-12-17 2020-12-17 Winding nozzle and winding machine

Publications (1)

Publication Number Publication Date
WO2022130557A1 true WO2022130557A1 (en) 2022-06-23

Family

ID=82059261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047095 WO2022130557A1 (en) 2020-12-17 2020-12-17 Winding nozzle and winding machine

Country Status (3)

Country Link
JP (1) JP7378645B2 (en)
CN (1) CN116458044A (en)
WO (1) WO2022130557A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11156436A (en) * 1997-11-28 1999-06-15 Nittoku Eng Co Ltd Winder
JP2004523190A (en) * 2000-10-16 2004-07-29 グロウブ モーターズ,インコーポレイテッド Dynamo electric stator winding device
JP2008270309A (en) * 2007-04-17 2008-11-06 Citizen Electronics Co Ltd Coil winding nozzle and process for manufacturing small-sized coil using coil winding nozzle
EP2957023B1 (en) * 2013-02-15 2017-03-29 SMZ Wickel- und Montagetechnik AG Nozzle suspension and winding device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11156436A (en) * 1997-11-28 1999-06-15 Nittoku Eng Co Ltd Winder
JP2004523190A (en) * 2000-10-16 2004-07-29 グロウブ モーターズ,インコーポレイテッド Dynamo electric stator winding device
JP2008270309A (en) * 2007-04-17 2008-11-06 Citizen Electronics Co Ltd Coil winding nozzle and process for manufacturing small-sized coil using coil winding nozzle
EP2957023B1 (en) * 2013-02-15 2017-03-29 SMZ Wickel- und Montagetechnik AG Nozzle suspension and winding device

Also Published As

Publication number Publication date
CN116458044A (en) 2023-07-18
JPWO2022130557A1 (en) 2022-06-23
JP7378645B2 (en) 2023-11-13

Similar Documents

Publication Publication Date Title
US20080136286A1 (en) Concentrated winding coil and method of manufacturing same
JP7008836B2 (en) Winding nozzle and winding machine
JP2005229703A (en) Insulator for stator core, and winding method for stator core
CN102570640A (en) Stator core and motor
US20160035479A1 (en) Automatic winding machine, air core coil, and winding method of the same
WO2022130557A1 (en) Winding nozzle and winding machine
JP2007043840A (en) Motor and its manufacturing process
US7872391B2 (en) Stator core
KR20190032093A (en) motor coil winding apparatus to array multi coil and its method
JPH11194243A (en) Method and device for manufacturing sz slot type optical fiber cable
JP2006254524A (en) Winding method of stator of motor, and stator of the motor
WO2019163072A1 (en) Winding device
KR100701460B1 (en) Disk comprised of a Winder
JPH10233331A (en) Bank winding method for ignition coil
CN1222478A (en) Winding apparatus
JP5456375B2 (en) Electric motor
JP2010180023A (en) Thread deslackening device, and textile machinery equipped therewith
TWI386528B (en) Yarn tensioning device
ES2349618T3 (en) THREAD PROCESS OF THREAD AND THREAD COIL.
WO2022137383A1 (en) Winding machine
JP3839365B2 (en) Armature manufacturing method
JP4134258B1 (en) Spool for grooved bonding wire
JP4462757B2 (en) SZ twisted tape slot type optical cable and manufacturing method thereof
KR100321658B1 (en) A method of bank winding of an engine igniting
WO2017159115A1 (en) Stator and conductor-wire winding method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20965945

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022569416

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202080106660.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20965945

Country of ref document: EP

Kind code of ref document: A1