WO2022127906A1 - 资源配置方法、装置、网络节点和存储介质 - Google Patents

资源配置方法、装置、网络节点和存储介质 Download PDF

Info

Publication number
WO2022127906A1
WO2022127906A1 PCT/CN2021/139153 CN2021139153W WO2022127906A1 WO 2022127906 A1 WO2022127906 A1 WO 2022127906A1 CN 2021139153 W CN2021139153 W CN 2021139153W WO 2022127906 A1 WO2022127906 A1 WO 2022127906A1
Authority
WO
WIPO (PCT)
Prior art keywords
iab node
frequency domain
node
working bandwidth
domain resource
Prior art date
Application number
PCT/CN2021/139153
Other languages
English (en)
French (fr)
Inventor
彭淑燕
刘进华
王欢
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2022127906A1 publication Critical patent/WO2022127906A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to the field of communication technologies, and in particular, to a resource configuration method, device, network node and storage medium.
  • an integrated access backhaul (IAB) system is introduced, wherein an IAB node in the IAB system includes a distribution unit (Distributed Unit, DU) and mobile terminal (Mobile Termination, MT) two parts of the function.
  • DU Distribution Unit
  • MT Mobile Termination
  • the resources of the IAB nodes are configured in units of IAB nodes, for example, when configuring frequency domain resources, configure the corresponding carriers for the IAB nodes. It can be seen that the effect of configuring resources for the IAB node is relatively poor at present.
  • the embodiments of the present application provide a resource configuration method, device, network node, and storage medium, which can solve the problem that the configuration effect of configuring resources for an IAB node is relatively poor.
  • an embodiment of the present application provides a resource configuration method, including:
  • the frequency domain resource information is used to indicate at least one of the following:
  • an embodiment of the present application provides a resource configuration method, including:
  • the target node configures the frequency domain resource information for the self-backhaul IAB node
  • the frequency domain resource information is used to indicate at least one of the following:
  • the target node is the centralized control unit CU or the parent node of the IAB node.
  • an embodiment of the present application provides a resource configuration device, including:
  • the acquisition module is used for the IAB node to acquire frequency domain resource information
  • the frequency domain resource information is used to indicate at least one of the following:
  • an embodiment of the present application provides a resource configuration device, including:
  • a configuration module used to configure frequency domain resource information for the self-backhaul IAB node
  • the frequency domain resource information is used to indicate at least one of the following:
  • the target node includes the apparatus, and the target node is the centralized control unit CU or the parent node of the IAB node.
  • an embodiment of the present application provides a network node, where the network node is an IAB node, including: a memory, a processor, and a program or instruction stored on the memory and executable on the processor, so When the program or instruction is executed by the processor, the steps in the resource configuration method on the IAB node side provided by the embodiment of the present application are implemented.
  • an embodiment of the present application provides a network node, where the network node is a target node, including: a memory, a processor, and a program or instruction stored in the memory and executable on the processor, so When the program or instruction is executed by the processor, the steps in the resource configuration method on the target node side provided by the embodiment of the present application are implemented.
  • an embodiment of the present application provides a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the IAB node side provided by the embodiment of the present application is implemented.
  • a chip in an eighth aspect, includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a program or an instruction to implement the IAB node provided by the embodiments of the present application.
  • a computer program product is provided, the computer program product is stored in a non-transitory storage medium, and the computer program product is executed by at least one processor to implement the IAB node side provided by the embodiments of the present application.
  • a tenth aspect provides a communication device configured to perform steps in the method for configuring resources on the IAB node side provided by the embodiments of the present application, or to perform the steps in the method for configuring resources on the target node side provided by the embodiments of the present application .
  • the IAB node acquires frequency domain resource information; wherein, the frequency domain resource information is used to indicate at least one of the following: the working bandwidth of the mobile terminal MT of the IAB node; and a guard interval.
  • the working bandwidth and the guard interval can be configured separately for the MT, thereby improving the accuracy of resource configuration and further improving the configuration effect of configuring resources for the IAB node.
  • FIG. 1 shows a schematic diagram of a wireless communication system to which an embodiment of the present application can be applied
  • FIG. 2 is a block diagram of another wireless communication system to which the embodiments of the present application can be applied;
  • FIG. 3 is a flowchart of a resource configuration method provided by an embodiment of the present application.
  • FIG. 5 is a structural diagram of a resource configuration apparatus provided by an embodiment of the present application.
  • FIG. 6 is a structural diagram of another resource configuration apparatus provided by an embodiment of the present application.
  • FIG. 7 is a structural diagram of a network node provided by an embodiment of the present application.
  • first, second and the like in the description and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and "first”, “second” distinguishes Usually it is a class, and the number of objects is not limited.
  • the first object may be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the associated objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies.
  • NR New Radio
  • NR terminology is used in most of the following description, although these techniques are also applicable to applications other than NR system applications, such as 6th generation ( 6th Generation, 6G) communication system.
  • FIG. 1 shows a schematic diagram of a wireless communication system to which an embodiment of the present application can be applied.
  • the wireless communication system includes a terminal 11 , an IAB node (IAB node) 12 , a parent IAB node (parent IAB node) 13 and a centralized control unit (Centralized Unit, CU) 14 .
  • IAB node IAB node
  • parent IAB node parent IAB node
  • CU Centralized Unit
  • the IAB node 12 can rely on the MT to find the parent IAB node 13 and establish a wireless connection with the DU of the parent IAB node 13.
  • the wireless connection is called the backhaul link of the IAB node 12 and becomes the parent IAB Access link for node 13.
  • the IAB node 12 turns on its DU function, and the DU provides cell services, that is, the DU can provide access services for the terminal 11 . All DUs of IAB nodes can be connected to CU14.
  • the CU may configure the DU of the IAB node through the F1 control plane interface (F1-C) (F1 application process protocol (F1-AP)) protocol.
  • the CU can configure the MT of the IAB node through the radio resource control (Radio Resource Control, RRC) protocol.
  • the CU14 may be a host node (Donor IAB node) or a separate network node, and may specifically include: CU-control plane (control plane, CP) and CU-user plane (user plane, UP).
  • FIG. 1 only uses the terminal 11 , the IAB node 12 , the parent IAB node 13 , and the CU 14 for illustration. In practical applications, the embodiment of the present application does not limit the number of IAB nodes.
  • the terminal 11 may also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital computer Assistant (Personal Digital Assistant, PDA), handheld computer, netbook, ultra-mobile personal computer (UMPC), mobile Internet Device (Mobile Internet Device, MID) or vehicle terminal (Vehicle User Equipment, VUE), pedestrians Terminal (Pedestrian User Equipment, PUE), reduced capability terminal (reduced capability User Equipment, RedCap UE) and other terminal-side devices, where RedCap UE can include: wearable devices, industrial sensors, video surveillance equipment, etc. Wearable devices include: wristbands , headphones, glasses, etc. It should be noted that, the embodiment of the present application does not limit the specific type of the terminal 11 .
  • FIG. 3 is a flowchart of a resource configuration method provided by an embodiment of the present application. As shown in FIG. 3, the method includes the following steps:
  • Step 301 the IAB node obtains frequency domain resource information
  • the frequency domain resource information is used to indicate at least one of the following:
  • the above-mentioned IAB acquiring the frequency domain resource information may be receiving the frequency domain resource information configured by the parent node or the CU, or may be acquiring pre-defined frequency domain resource information.
  • At least one of the foregoing working bandwidth and guard interval may be an implicit or explicit indication of the foregoing frequency domain resource information.
  • the guard interval may be a guard interval between the DU of the IAB node and the working bandwidth of the MT.
  • the working bandwidth of the MT may include: the size of the frequency domain resource and/or the location of the frequency domain resource.
  • the guard interval may include: the size of the frequency domain resource and/or the location of the frequency domain resource.
  • the above steps can be used to configure the working bandwidth and guard interval separately for the MT, thereby improving the accuracy of resource configuration and further improving the configuration effect of configuring resources for the IAB node.
  • the frequency domain resource information includes at least one of the following:
  • the first frequency domain resource information configured by the parent node for the IAB node
  • Second frequency domain resource information configured by the centralized control unit CU for the IAB node
  • the above-mentioned parent node may be the previous hop of the above-mentioned IAB node, or may be the node of the above-mentioned N hops of the above-mentioned IAB node, where N is an integer greater than 1, that is, other IAB nodes may exist between the parent node and the above-mentioned IAB node .
  • the above-mentioned parent node may configure the frequency domain resource information through a medium access control element (Medium access control control element, MAC CE) or downlink control information (Downlink Control Information, DCI) signaling, or may transmit the RRC signaling of the CU Configure frequency domain resource information.
  • a medium access control element Medium access control control element, MAC CE
  • DCI Downlink Control Information
  • the above CU can configure frequency domain resource information through F1-C or RRC signaling, or backhaul adaptation protocol control packet data unit (Backhaul Adaptation Protocol control packet data unit, BAP control PDU).
  • backhaul adaptation protocol control packet data unit Backhaul Adaptation Protocol control packet data unit, BAP control PDU.
  • the resources of the guard frequency domain interval of the MT and DU of the IAB node can also be defined by agreement.
  • At least one of the working bandwidth and the guard interval can be configured for the IAB in various ways.
  • the frequency domain resource information is frequency domain resource information determined in the at least two items according to the first signaling.
  • the above-mentioned first signaling may be additional indication signaling other than the above-mentioned frequency domain resource information, for example: one piece of signaling configures the above-mentioned frequency domain resource information, and another piece of signaling indicates one of the at least two items.
  • the instruction use one of the above at least two items, for example: the instruction uses the frequency domain resource information predefined by the parent node, the CU or the protocol to determine the working bandwidth and guard interval of the MT, such as 1 bit or 2 bits for indication.
  • the guard interval is related to at least one of the following:
  • the power spectral density of at least one of the DU and MT of the IAB node
  • the beam index of at least one of the DU and MT of the IAB node
  • the cell type of the serving cell is the cell type of the serving cell
  • the cell group type of the serving cell is the cell group type of the serving cell
  • the duplex mode of the guard interval and the IAB node may be that the guard interval can be determined according to the duplex mode of the IAB node, for example, different duplex modes can be configured with different guard intervals.
  • the CU in the frequency division multiplexing (FDM) multiplexing mode, the CU can configure at least one of the following for the above-mentioned IAB node:
  • MT TX and DU TX can mean that MT TX and DU TX are running simultaneously
  • MT RX and DU RX can mean that MT RX and DU RX are running at the same time
  • MT TX and DU RX can mean that MT TX and DU RX are running at the same time
  • MT RX and DU RX are running at the same time
  • TX can mean simultaneous MT RX and DU TX.
  • the guard interval between the MT and the DU is the corresponding guard bandwidth x (x is 1 or 2 or 3 or 4).
  • the above-mentioned guard interval is related to the transmit power of at least one of DU and MT of the IAB node, and the maximum or minimum value of the guard interval may be configured according to the transmit power of at least one of DU and MT.
  • the above guard interval may be related to the power spectral density of at least one of the DU and MT of the IAB node, and the maximum or minimum bandwidth of the guard interval may be configured according to the power spectral density of at least one of the DU and the MT.
  • the above guard interval is related to the beam direction of at least one of the DU and MT of the IAB node, and the maximum or minimum bandwidth of the guard interval may be configured according to the beam direction of at least one of the DU and MT of the IAB node.
  • the above guard interval may be related to the beam index of at least one of the DU and MT of the IAB node, and the maximum or minimum value of the guard interval may be configured according to the beam index of at least one of the DU and MT of the IAB node.
  • the above-mentioned serving cell may be the serving cell of the MT, and the above-mentioned cell type may be a primary cell or a secondary cell.
  • the above guard interval is related to the primary cell or the secondary cell of the MT serving cell, such as the primary cell for the MT and the primary cell for the MT. Different guard intervals may be configured in the two different cases that the serving cell of the MT is a secondary cell. Of course, in some embodiments, a related guard interval may also be configured.
  • the above-mentioned cell group type can be a primary cell group (Master Cell Group, MCG) or a secondary cell group (Secondary Cell Group, SCI), for example: the above guard interval is related to the serving cell of the MT belonging to the MCG or SCI, such as for the serving cell of the MT.
  • MCG Master Cell Group
  • SCI Secondary Cell Group
  • the above guard interval is related to the relative position of the working bandwidth of the MT and the available frequency domain resources of the DU.
  • the above guard interval may be configured according to the relative position.
  • the working bandwidth of the MT and the available frequency domain resources of the DU are located at different locations.
  • the frequency domain isolation between carriers can also be counted as part of the guard interval.
  • the above-mentioned guard interval may be related to the configuration of the dual-connection mode.
  • the IAB node is configured with a corresponding guard interval according to the mode configuration. For example, different dual-connection modes are configured with different guard intervals.
  • the above-mentioned frequency domain range may be the working frequency band of the IAB node.
  • different guard intervals are configured according to the working frequency band of the IAB node being the FR1 frequency band or FR2.
  • the above-mentioned FR1 is a Sub6GHz frequency band, that is, a low-frequency frequency band
  • FR2 is a millimeter wave (mmWave) frequency band, that is, a high-frequency frequency band.
  • mmWave millimeter wave
  • an appropriate guard interval can be configured for the IAB node according to the above at least one item, so as to improve the working performance of the IAB node.
  • the method further includes:
  • the IAB node reports expected information to the parent node or the CU, where the expected information is used for the configuration of the guard interval.
  • the above-mentioned expectation information is used for the configuration of the guard interval, and the parent node or the CU can configure the guard interval for the above-mentioned IAB node with reference to the above-mentioned expectation information, so that the parent node or the CU guarantees the guard interval between the IAB node MT and the DU, and reaches the IAB node.
  • the desired information includes at least one of the following:
  • the guard bandwidth, the multiplexing mode, the duplex mode, the reference time of the desired information, and the effective time of the desired information are provided.
  • the guard bandwidth can be the guard interval expected by the IAB node, and can also report parameter information of the guard bandwidth, such as duplex mode, transmit power, power spectral density, beam information and other parameter information related to the guard interval.
  • the above-mentioned multiplexing mode may be the multiplexing mode under FDM, for example: may include the following modes:
  • (DU)TX&(MT)TX can indicate that the transmission of DU in the frequency domain range A and the transmission of MT in the working bandwidth B are performed simultaneously;
  • (DU)RX&(MT)RX can indicate that the DU is received in the frequency domain range A and the MT is received in the working bandwidth B at the same time;
  • (DU)TX&(MT)RX can indicate that the transmission of DU in the frequency domain range A and the reception of MT in the working bandwidth B are performed simultaneously;
  • (DU)RX&(MT)TX may indicate that the DU is received in the frequency domain range A and the MT is transmitted in the working bandwidth B at the same time.
  • the above-mentioned frequency domain range A and the working bandwidth B may be two different frequency domain resources whose minimum interval is the above-mentioned guard interval.
  • the reference time of the above-mentioned expected information may be a reference time point of the above-mentioned expected information. After the parent node or CU receives the above-mentioned expected information, the expected information is used when the reference time is reached. In addition, the above-mentioned reference time may be explicitly or implicitly carried in the reporting information.
  • the effective time of the above-mentioned desired information may be the effective time of configuring the frequency domain resource information of the above-mentioned IAB node based on the desired information.
  • the effective time may be carried in the report information explicitly or implicitly.
  • the above-mentioned IAB node reports the expected guard interval configuration to the parent node or CU through MAC CE or RRC signaling.
  • the parent node or CU configures the corresponding guard interval configuration for the IAB node.
  • the expected guard interval may only report the guard interval value of the currently used multiplexing mode, or may report the guard interval value of all the multiplexing modes supported by the IAB node.
  • the guard interval value reserves frequency domain resources as the guard interval.
  • the working bandwidth is explicitly or implicitly indicated by the parent node or the CU through the frequency domain resource information.
  • the above-mentioned explicit indication may be through configuration or dynamic indication, for example, through a bandwidth part (Bandwidth part, BWP) indication.
  • BWP bandwidth part
  • the above implicit indication may be based on the explicitly indicated working bandwidth, excluding the available frequency domain resources of the DU and the frequency domain resources after the guard interval.
  • the working bandwidth is related to the multiplexing manner of the IAB node.
  • the above multiplexing methods include FDM, space division multiplexing (Space Division Multiplex, SDM) and time division multiplexing (Time Division Multiplexing, TDM).
  • the manner of obtaining the above-mentioned frequency domain resource information may also be related to the multiplexing manner.
  • FDM, SDM or TDM multiplexing is implemented through the above working bandwidth.
  • the above-mentioned IAB node does not expect the available frequency domain range of IAB DU to overlap with the working bandwidth of IAB MT; in other words, the CU/parent node configures the available frequency domain resources of IAB DU and the work of IAB MT Bandwidths do not overlap.
  • FDM multiplexing may be implemented through the explicit or implicit configuration described above.
  • the available frequency domain range of the above-mentioned IAB DU may overlap with the working bandwidth of the IAB MT.
  • DUs and MTs are multiplexed in the overlapping frequency domain resources.
  • additional indication signaling can be used to indicate whether the overlapped part is available to the MT. If the indication is unavailable, the DU and the MT are switched back to FDM resource multiplexing, otherwise it is SDM resource multiplexing. Alternatively, the MT is instructed to use only part of the overlapping resources.
  • the method further includes:
  • the IAB node reports expected information to the parent node or the CU, where the expected information includes at least one of the following:
  • Desired multiplexing mode frequency domain resources corresponding to at least one multiplexing mode.
  • the above-mentioned desired multiplexing manner may be FDM, SDM, or TDM.
  • the frequency domain resource corresponding to the at least one multiplexing manner may be, each multiplexing manner corresponds to at least one of a size and a location of the frequency domain resource.
  • the finally obtained resource configuration information can be easily matched with the above-mentioned desired information, so as to ultimately improve the working performance of the IAB node.
  • the CU may notify the above-mentioned multiplexing mode of the IAB node, for example: directly through the IAB node, or notify the IAB node through the parent node.
  • the frequency domain resource information is also used for at least one of the following:
  • the IAB node supports frequency division multiplexing FDM, indicating that the working bandwidth can be used as an FDM multiplexing resource;
  • the IAB node supports space division multiplexing SDM
  • the working bandwidth can be used as an SDM multiplexing resource
  • the indicated working bandwidth can be used as an FDM multiplexing resource, it can be realized that before the available frequency domain resources of the IAB DU overlap with the working bandwidth of the IAB MT, the potential SDM multiplexing can be indicated in advance, which is a bandwidth segment (Bandwidth part, BWP) to prepare for the handover to improve the handover efficiency.
  • BWP Bandwidth part
  • the indicated working bandwidth can be used as the SDM multiplexing resource, it is possible to indicate the potential FDM multiplexing in advance before the available frequency domain resources of the IAB DU overlap with the working bandwidth of the IAB MT to prepare for the handover of the BWP, so as to improve the handover efficiency.
  • the IAB node determines the working bandwidth according to the indication information. It can be used as an FDM multiplexing resource or the determined working bandwidth can be used as an SDM multiplexing resource.
  • the above-mentioned indication information may be additional indication signaling, so as to determine through the indication signaling that the working bandwidth can be used as the FDM multiplexing resource or the working bandwidth can be used as the SDM multiplexing resource.
  • the working bandwidth is related to a duplex mode of the IAB node
  • the duplex mode includes: a duplex mode supported on a DU cell of the IAB node, or the IAB node Duplex mode between the node's DU cell and at least one MT serving cell.
  • the MT may support dual connectivity, for example, multiple MT cells correspond to one DU cell.
  • the duplex mode between the above-mentioned DU cell and at least one MT serving cell may be that when the DU cell corresponds to the MT serving cell, it corresponds to different duplex modes, and different MT working bandwidths may be configured.
  • the frequency domain resource information is obtained according to a duplex manner.
  • the working bandwidth and guard interval of the MT can be independently acquired or notified. It should be noted that the different duplex modes here do not refer to all duplex modes, because, in some scenarios, it is not excluded that some duplex modes do not need to obtain or notify the working bandwidth of the MT.
  • the method further includes at least one of the following:
  • the IAB node reports the working bandwidth to the parent node
  • the IAB node reports the acquisition method of the frequency domain resource information to the parent node
  • the IAB node reports the working bandwidth to the CU
  • the IAB node reports the acquisition method of the frequency domain resource information to the CU.
  • the above acquisition method may also be understood as a notification method in which the parent node or the CU notifies the frequency domain resource information.
  • the parent node or the CU can control at least one of the available frequency domain resources and resource scheduling of the IAB DU according to the MT working bandwidth of the IAB.
  • One item is to implement FDM and SDM multiplexing between MT and DU, or to ensure that the frequency domain resource interval used by DU and MT satisfies the guard interval.
  • the IAB node reports the available frequency domain range of the IAB node to the parent node, and/or the IAB node reports the acquisition of frequency domain resource information of the available frequency domain range of the IAB node to the parent node Way.
  • the parent node or CU can control the BWP/resource scheduling of the IAB node MT according to the available frequency domain range of the IAB DU, so as to realize the FDM/SDM multiplexing between the MT and the DU.
  • the advantage is that the parent node can control the BWP/resource scheduling of the IAB MT according to the available frequency domain range of the IAB DU, so as to realize the communication between the MT and the DU. FDM/SDM multiplexing mode, or ensure that the frequency domain resource interval used by DU and MT satisfies the guard interval.
  • the CU may notify the parent node of the available frequency domain range of the DU, and/or the acquisition method or notification method of the available frequency domain range of the DU of the IAB node.
  • the effective time of at least one of the working bandwidth and the guard interval is configured by the CU or the parent node.
  • the configuration of at least one of the working bandwidth and the guard interval can only take effect within the valid time period, so as to further enhance the control over the working bandwidth and the guard interval.
  • the CU or the parent node configures the effective time through at least one of the following indication parameters:
  • Period indication time domain offset, time domain resource size.
  • the CU or the parent node may send the above at least one indication parameter to the above IAB node to configure the above effective time.
  • the above indication parameters may be configured by at least one of F1-C signaling, RRC signaling, backhaul adaptive protocol control packet data unit (BAP control PDU), and DCI.
  • At least one of the working bandwidth and the guard interval is valid during the time when the first duplex mode is adopted.
  • the above-mentioned first duplex mode may be a pre-defined duplex mode, which is not limited.
  • the at least one of the working bandwidth and the guard interval is in the time when the first duplex mode is adopted. valid within. For example, if the above-mentioned first duplex mode is adopted within the above-mentioned effective time, at least one of the above-mentioned working bandwidth and guard interval will take effect during the above-mentioned first-duplex mode. In a duplex mode, at least one of the above working bandwidth and guard interval does not take effect.
  • the control over the working bandwidth and the guard interval can be further enhanced.
  • the following example illustrates the configuration signaling for configuring the guard interval of the IAB node:
  • the above CU may configure the frequency domain resources of the guard interval through F1-C or RRC signaling.
  • the CU uses F1-C signaling to guard the frequency domain resources of the interval, which may be as follows:
  • F1-C signaling can explicitly configure the frequency domain starting position and frequency domain resource length indication, for example:
  • F1-C signaling The command can include the following configuration:
  • Frequency configuration item refers to the frequency configuration item
  • Starting PRBs are the starting positions in the frequency domain
  • Number of PRBs is the frequency domain resource length indication
  • the CU can choose to explicitly configure or implicitly configure the frequency domain starting position and the frequency domain resource length indication, and the F1-C signaling can include the following configurations:
  • choice frequency configuration selects the frequency configuration
  • Explicit Format is the selection format
  • Starting PRBs is the starting position of the frequency domain
  • Number of PRBs is the frequency domain resource length indication
  • Implicit Format is the implicit format
  • BW is a bandwidth (Bandwidth, BW)
  • BW1 is a configured first frequency domain resource bandwidth
  • BW2 is a configured second frequency domain resource bandwidth
  • BW3 is a configured third frequency domain resource bandwidth.
  • the configurations of BW1, BW2 and BW3 can be the same or different.
  • the CU can configure the guard interval frequency domain resources related to the multiplexing way, and the signaling can include the following configuration:
  • the CU can configure the guard interval frequency domain resources related to the duplex mode.
  • the duplexing information element (multiplexing info IE) of the signaling includes the following configuration:
  • IAB-MT Cell List refers to IAB-MT cell list
  • NR Cell Identity is NR cell identification
  • frequency info is frequency point information
  • BW1 is the first frequency domain resource bandwidth
  • BW2 is the first frequency domain resource bandwidth
  • BW3 is the first frequency domain resource bandwidth
  • BW4 is the first frequency domain resource bandwidth.
  • the parent node may also configure at least one of the above working bandwidth and guard interval for the IAB node with reference to the above signaling.
  • the IAB node acquires frequency domain resource information; wherein, the frequency domain resource information is used to indicate at least one of the following: the working bandwidth of the mobile terminal MT of the IAB node; and a guard interval.
  • the working bandwidth and the guard interval can be configured separately for the MT, thereby improving the accuracy of resource configuration and further improving the configuration effect of configuring resources for the IAB node. Interference and delay in the system can also be reduced.
  • FIG. 4 is a flowchart of another resource configuration method provided by an embodiment of the present application. As shown in FIG. 4, the following steps are included:
  • Step 401 the target node configures frequency domain resource information for the IAB node
  • the frequency domain resource information is used to indicate at least one of the following:
  • the target node is the centralized control unit CU or the parent node of the IAB node.
  • the guard interval is related to at least one of the following:
  • the power spectral density of at least one of the DU and MT of the IAB node
  • the beam index of at least one of the DU and MT of the IAB node
  • the cell type of the serving cell is the cell type of the serving cell
  • the cell group type of the serving cell is the cell group type of the serving cell
  • the method further includes:
  • the target node receives the expected information reported by the IAB node, where the expected information is used for the configuration of the guard interval.
  • the desired information includes at least one of the following:
  • the guard bandwidth, the multiplexing mode, the duplex mode, the reference time of the desired information, and the effective time of the desired information are provided.
  • the working bandwidth is explicitly or implicitly indicated by the target node through the frequency domain resource information.
  • the working bandwidth is related to the multiplexing mode of the IAB node.
  • the frequency domain resource information is also used for at least one of the following:
  • the IAB node supports frequency division multiplexing FDM, indicating that the working bandwidth can be used as an FDM multiplexing resource;
  • the IAB node supports space division multiplexing SDM
  • the working bandwidth can be used as an SDM multiplexing resource
  • the working bandwidth is related to a duplex mode of the IAB node
  • the duplex mode includes: a duplex mode supported on the DU cell of the IAB node, or the DU cell of the IAB node and Duplex mode between at least one MT serving cell.
  • the frequency domain resource information is obtained according to a duplex manner.
  • the method also includes at least one of the following:
  • the target node receives the working bandwidth reported by the IAB node
  • the parent node receives the available frequency domain resources of the distribution unit DU of the parent node sent by the CU.
  • the CU When the target node is a CU, the CU sends the available frequency domain resources of the distribution unit DU of the IAB node to the parent node of the IAB node.
  • the effective time of at least one of the working bandwidth and the guard interval is configured by the target node.
  • the target node configures the effective time through at least one of the following indication parameters:
  • Period indication time domain offset, time domain resource size.
  • At least one of the working bandwidth and the guard interval is valid during the time when the first duplex mode is adopted.
  • this embodiment is an implementation on the target node side corresponding to the embodiment shown in FIG. 3 , and reference may be made to the relevant description of the embodiment shown in FIG. 3 for the specific implementation. To avoid repeated descriptions, This embodiment will not be repeated here.
  • the configuration effect of configuring resources for the IAB node can also be improved.
  • FIG. 5 is a structural diagram of a resource configuration apparatus provided by an embodiment of the present invention.
  • the resource configuration apparatus 500 includes:
  • an acquisition module 501 configured to acquire frequency domain resource information
  • the frequency domain resource information is used to indicate at least one of the following:
  • the frequency domain resource information includes at least one of the following:
  • the first frequency domain resource information configured by the parent node for the IAB node
  • the frequency domain resource information is frequency domain resource information determined in the at least two items according to the first signaling.
  • the guard interval is related to at least one of the following:
  • the power spectral density of at least one of the DU and MT of the IAB node
  • the beam index of at least one of the DU and MT of the IAB node
  • the cell type of the serving cell is the cell type of the serving cell
  • the cell group type of the serving cell is the cell group type of the serving cell
  • the device further includes:
  • the first reporting module is configured to report expected information to the parent node or CU, where the expected information is used for the configuration of the guard interval.
  • the desired information includes at least one of the following:
  • the guard bandwidth, the multiplexing mode, the duplex mode, the reference time of the desired information, and the effective time of the desired information are provided.
  • the working bandwidth is explicitly or implicitly indicated by the parent node or the CU through the frequency domain resource information.
  • the working bandwidth is related to the multiplexing mode of the IAB node.
  • the frequency domain resource information is also used for at least one of the following:
  • the IAB node supports frequency division multiplexing FDM, indicating that the working bandwidth can be used as an FDM multiplexing resource;
  • the IAB node supports space division multiplexing SDM
  • the working bandwidth can be used as an SDM multiplexing resource
  • the IAB node determines the working bandwidth according to the indication information. It can be used as an FDM multiplexing resource or the determined working bandwidth can be used as an SDM multiplexing resource.
  • the working bandwidth is related to a duplex mode of the IAB node
  • the duplex mode includes: a duplex mode supported on the DU cell of the IAB node, or the DU cell of the IAB node and Duplex mode between at least one MT serving cell.
  • the frequency domain resource information is obtained according to a duplex manner.
  • the device further includes at least one of the following:
  • a second reporting module configured to report the working bandwidth to the parent node
  • a third reporting module configured to report the acquisition method of the frequency domain resource information to the parent node
  • a fourth reporting module configured to report the working bandwidth to the CU
  • a fifth reporting module configured to report the acquisition method of the frequency domain resource information to the CU.
  • the effective time of at least one of the working bandwidth and the guard interval is configured by the CU or the parent node.
  • the CU or the parent node configures the effective time through at least one of the following indication parameters:
  • Period indication time domain offset, time domain resource size.
  • At least one of the working bandwidth and the guard interval is independently configured in the first duplex mode, at least one of the working bandwidth and the guard interval is only within the effective time. The time in the first duplex mode is valid.
  • the resource configuration apparatus provided in the embodiment of the present application can implement each process in the method embodiment of FIG. 3 , which is not repeated here to avoid repetition, and can improve the configuration effect of configuring resources for the IAB node.
  • the resource configuration apparatus in this embodiment of the present application may be an apparatus, or may be a component, an integrated circuit, or a chip in an IAB node.
  • FIG. 6 is a structural diagram of another resource configuration apparatus provided by an embodiment of the present invention.
  • the resource configuration apparatus 600 includes:
  • the frequency domain resource information is used to indicate at least one of the following:
  • the target node includes the apparatus, and the target node is the centralized control unit CU or the parent node of the IAB node.
  • the guard interval is related to at least one of the following:
  • the power spectral density of at least one of the DU and MT of the IAB node
  • the beam index of at least one of the DU and MT of the IAB node
  • the cell type of the serving cell is the cell type of the serving cell
  • the cell group type of the serving cell is the cell group type of the serving cell
  • the device further includes:
  • the first receiving module is configured to receive the expected information reported by the IAB node, where the expected information is used for the configuration of the guard interval.
  • the desired information includes at least one of the following:
  • the guard bandwidth, the multiplexing mode, the duplex mode, the reference time of the desired information, and the effective time of the desired information are provided.
  • the working bandwidth is explicitly or implicitly indicated by the target node through the frequency domain resource information.
  • the working bandwidth is related to the multiplexing mode of the IAB node.
  • the frequency domain resource information is also used for at least one of the following:
  • the IAB node supports frequency division multiplexing FDM, indicating that the working bandwidth can be used as an FDM multiplexing resource;
  • the IAB node supports space division multiplexing SDM
  • the working bandwidth can be used as an SDM multiplexing resource
  • the working bandwidth is related to a duplex mode of the IAB node
  • the duplex mode includes: a duplex mode supported on the DU cell of the IAB node, or the DU cell of the IAB node and Duplex mode between at least one MT serving cell.
  • the frequency domain resource information is obtained according to a duplex manner.
  • the device further includes at least one of the following:
  • a second receiving module configured to receive the working bandwidth reported by the IAB node
  • a third receiving module configured to receive the acquisition method of the frequency domain resource information reported by the IAB node
  • the fourth receiving module is configured to receive, when the target node is a parent node, the available frequency domain resources of the distribution unit DU of the parent node sent by the CU.
  • a sending module configured to send the available frequency domain resources of the distribution unit DU of the IAB node to the parent node of the IAB node when the target node is a CU.
  • the effective time of at least one of the working bandwidth and the guard interval is configured by the target node.
  • the target node configures the effective time through at least one of the following indication parameters:
  • Period indication time domain offset, time domain resource size.
  • At least one of the working bandwidth and the guard interval is valid during the time when the first duplex mode is adopted.
  • the resource configuration apparatus provided in this embodiment of the present application can implement each process in the method embodiment of FIG. 4 , which is not repeated here to avoid repetition, and can improve the configuration effect of configuring resources for the IAB node.
  • the resource configuration apparatus in this embodiment of the present application may be an apparatus, and may also be a component, an integrated circuit, or a chip in a target node.
  • FIG. 7 is a structural diagram of a network node provided by an embodiment of the present invention.
  • the network node 700 includes: a processor 701, a transceiver 702, a memory 703, and a bus interface, wherein:
  • the above-mentioned network node is an IAB node, which may be specifically as follows:
  • the frequency domain resource information is used to indicate at least one of the following:
  • the frequency domain resource information includes at least one of the following:
  • the first frequency domain resource information configured by the parent node for the IAB node
  • the frequency domain resource information is frequency domain resource information determined in the at least two items according to the first signaling.
  • the guard interval is related to at least one of the following:
  • the power spectral density of at least one of the DU and MT of the IAB node
  • the beam index of at least one of the DU and MT of the IAB node
  • the cell type of the serving cell is the cell type of the serving cell
  • the cell group type of the serving cell is the cell group type of the serving cell
  • transceiver 702 is also used to:
  • the desired information includes at least one of the following:
  • the guard bandwidth, the multiplexing mode, the duplex mode, the reference time of the desired information, and the effective time of the desired information are provided.
  • the working bandwidth is explicitly or implicitly indicated by the parent node or the CU through the frequency domain resource information.
  • the working bandwidth is related to the multiplexing mode of the IAB node.
  • the frequency domain resource information is also used for at least one of the following:
  • the IAB node supports frequency division multiplexing FDM, indicating that the working bandwidth can be used as an FDM multiplexing resource;
  • the IAB node supports space division multiplexing SDM
  • the working bandwidth can be used as an SDM multiplexing resource
  • the IAB node determines the working bandwidth according to the indication information. It can be used as an FDM multiplexing resource or the determined working bandwidth can be used as an SDM multiplexing resource.
  • the working bandwidth is related to a duplex mode of the IAB node
  • the duplex mode includes: a duplex mode supported on the DU cell of the IAB node, or the DU cell of the IAB node and Duplex mode between at least one MT serving cell.
  • the frequency domain resource information is obtained according to a duplex manner.
  • the transceiver 702 is also used for at least one of the following:
  • the acquisition method of the frequency domain resource information is reported to the CU.
  • the effective time of at least one of the working bandwidth and the guard interval is configured by the CU or the parent node.
  • the CU or the parent node configures the effective time through at least one of the following indication parameters:
  • Period indication time domain offset, time domain resource size.
  • At least one of the working bandwidth and the guard interval is independently configured in the first duplex mode, at least one of the working bandwidth and the guard interval is only within the effective time. The time in the first duplex mode is valid.
  • the above-mentioned network node is a target node, and the target node is a centralized control unit CU or a parent node of the IAB node, which may be specifically as follows:
  • the frequency domain resource information is used to indicate at least one of the following:
  • the target node is the centralized control unit CU or the parent node of the IAB node.
  • the guard interval is related to at least one of the following:
  • the power spectral density of at least one of the DU and MT of the IAB node
  • the beam index of at least one of the DU and MT of the IAB node
  • the cell type of the serving cell is the cell type of the serving cell
  • the cell group type of the serving cell is the cell group type of the serving cell
  • transceiver 1302 is also used to:
  • the desired information includes at least one of the following:
  • the guard bandwidth, the multiplexing mode, the duplex mode, the reference time of the desired information, and the effective time of the desired information are provided.
  • the working bandwidth is explicitly or implicitly indicated by the target node through the frequency domain resource information.
  • the working bandwidth is related to the multiplexing mode of the IAB node.
  • the frequency domain resource information is also used for at least one of the following:
  • the IAB node supports frequency division multiplexing FDM, indicating that the working bandwidth can be used as an FDM multiplexing resource;
  • the IAB node supports space division multiplexing SDM
  • the working bandwidth can be used as an SDM multiplexing resource
  • the working bandwidth is related to a duplex mode of the IAB node
  • the duplex mode includes: a duplex mode supported on the DU cell of the IAB node, or the DU cell of the IAB node and Duplex mode between at least one MT serving cell.
  • the frequency domain resource information is obtained according to a duplex manner.
  • the transceiver 1302 is also used for at least one of the following:
  • the target node is a parent node, receiving the available frequency domain resources of the distribution unit DU of the parent node sent by the CU;
  • the available frequency domain resources of the distribution unit DU of the IAB node are sent to the parent node of the IAB node.
  • the effective time of at least one of the working bandwidth and the guard interval is configured by the target node.
  • the target node configures the effective time through at least one of the following indication parameters:
  • Period indication time domain offset, time domain resource size.
  • At least one of the working bandwidth and the guard interval is valid during the time when the first duplex mode is adopted.
  • the transceiver 702 is used for receiving and transmitting data under the control of the processor 701, and the transceiver 702 includes at least two antenna ports.
  • the bus architecture may include any number of interconnected buses and bridges, in particular one or more processors represented by processor 701 and various circuits of memory represented by memory 703 linked together.
  • the bus architecture may also link together various other circuits, such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be described further herein.
  • the bus interface provides the interface.
  • Transceiver 702 may be a number of elements, including a transmitter and a receiver, that provide means for communicating with various other devices over a transmission medium.
  • the processor 701 is responsible for managing the bus architecture and general processing, and the memory 703 may store data used by the processor 701 in performing operations.
  • an embodiment of the present invention further provides a network node, where the network node is a self-backhaul IAB node, and includes a processor 701 and a memory 703 , which are stored in the memory 703 and run on the processor 701 .
  • a program or instruction when the program or instruction is executed by the processor 701, implements each process of the foregoing resource configuration method embodiment, and can achieve the same technical effect. To avoid repetition, details are not described here.
  • an embodiment of the present invention further provides a network node, where the network node is a target node, including a processor 701 , a memory 703 , a program or an instruction stored in the memory 703 and executable on the processor 701 , when the program or instruction is executed by the processor 701, each process of the foregoing resource configuration method embodiment is implemented, and the same technical effect can be achieved. To avoid repetition, details are not described here.
  • An embodiment of the present application further provides a readable storage medium, the readable storage medium may be non-volatile or volatile, and a program or an instruction is stored on the readable storage medium, and the program or instruction When executed by the processor, the steps in the resource configuration method provided by the embodiment of the present application are implemented.
  • the embodiments of the present application further provide a computer program product, where the computer program product is stored in a non-transitory readable storage medium, and the computer program product is executed by at least one processor to implement the resources provided by the embodiments of the present application
  • the steps in the configuration method can achieve the same technical effect, and are not repeated here in order to avoid repetition.
  • the processor is the processor in the terminal or the network device described in the foregoing embodiment.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • An embodiment of the present application further provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a program or an instruction to implement the above resource configuration method embodiments.
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is configured to run a program or an instruction to implement the above resource configuration method embodiments.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip, or the like.
  • the terms “comprising”, “comprising” or any other variation thereof are intended to encompass non-exclusive inclusion, such that a process, method, article or device comprising a series of elements includes not only those elements, It also includes other elements not expressly listed or inherent to such a process, method, article or apparatus.
  • an element qualified by the phrase "comprising a" does not preclude the presence of additional identical elements in a process, method, article or apparatus that includes the element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种资源配置方法、装置、网络节点和存储介质,该方法包括:IAB节点获取频域资源信息;其中,所述频域资源信息用于指示如下至少一项:所述IAB节点的移动终端MT的工作带宽;保护间隔。

Description

资源配置方法、装置、网络节点和存储介质
相关申请的交叉引用
本申请主张在2020年12月18日在中国提交的中国专利申请No.202011511766.8的优先权,其全部内容通过引用包含于此。
技术领域
本发明涉及通信技术领域,尤其涉及一种资源配置方法、装置、网络节点和存储介质。
背景技术
在一些通信系统(例如:第五代移动通信技术(5th Generation Mobile Communication Technology,5G)系统)中引入了自回传(integrated access backhaul,IAB)系统,其中,IAB系统中一个IAB节点包括分布单元(Distributed Unit,DU)和移动终端(Mobile Termination,MT)这两部分功能。然而,目前IAB节点的资源是以IAB节点为单位配置的,例如:在配置频域资源时为IAB节点配置对应的载波。可见,目前为IAB节点配置资源的配置效果比较差。
发明内容
本申请实施例提供一种资源配置方法、装置、网络节点和存储介质,能够解决为IAB节点配置资源的配置效果比较差的问题。
第一方面,本申请实施例提供一种资源配置方法,包括:
自回传IAB节点获取频域资源信息;
其中,所述频域资源信息用于指示如下至少一项:
所述IAB节点的移动终端MT的工作带宽;
保护间隔。
第二方面,本申请实施例提供一种资源配置方法,包括:
目标节点为自回传IAB节点配置频域资源信息;
其中,所述频域资源信息用于指示如下至少一项:
所述IAB节点的移动终端MT的工作带宽;
保护间隔;
所述目标节点为集中控制单元CU或者所述IAB节点的父节点。
第三方面,本申请实施例提供一种资源配置装置,包括:
获取模块,用于IAB节点获取频域资源信息;
其中,所述频域资源信息用于指示如下至少一项:
所述IAB节点的移动终端MT的工作带宽;
保护间隔。
第四方面,本申请实施例提供一种资源配置装置,包括:
配置模块,用于为自回传IAB节点配置频域资源信息;
其中,所述频域资源信息用于指示如下至少一项:
所述IAB节点的移动终端MT的工作带宽;
保护间隔;
目标节点包括所述装置,所述目标节点为集中控制单元CU或者所述IAB节点的父节点。
第五方面,本申请实施例提供一种网络节点,所述网络节点为IAB节点,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序或者指令,所述程序或者指令被所述处理器执行时实现本申请实施例提供的IAB节点侧的资源配置方法中的步骤。
第六方面,本申请实施例提供一种网络节点,所述网络节点为目标节点,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序或者指令,所述程序或者指令被所述处理器执行时实现本申请实施例提供的目标节点侧的资源配置方法中的步骤。
第七方面,本申请实施例提供一种可读存储介质,所述可读存储介质上存储有程序或指令,所述程序或指令被处理器执行时实现本申请实施例提供的IAB节点侧的资源配置方法中的步骤,或者,所述程序或指令被处理器执行时实现本申请实施例提供的目标节点侧的资源配置方法中的步骤。
第八方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通 信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现本申请实施例提供的IAB节点侧的资源配置方法中的步骤,或者,实现本申请实施例提供的目标节点侧的资源配置方法中的步骤。
第九方面,提供了一种计算机程序产品,所述计算机程序产品被存储在非瞬态的存储介质中,所述计算机程序产品被至少一个处理器执行以实现本申请实施例提供的IAB节点侧的资源配置方法中的步骤,或者,实现本申请实施例提供的目标节点侧的资源配置方法中的步骤。
第十方面,提供一种通信设备,被配置为执行本申请实施例提供的IAB节点侧的资源配置方法中的步骤,或者,执行本申请实施例提供的目标节点侧的资源配置方法中的步骤。
本申请实施例中,IAB节点获取频域资源信息;其中,所述频域资源信息用于指示如下至少一项:所述IAB节点的移动终端MT的工作带宽;保护间隔。这样可以实现单独为MT配置工作带宽,单独配置保护间隔,从而提高资源配置的精度,进而提高为IAB节点配置资源的配置效果。
附图说明
图1示出本申请实施例可应用的一种无线通信系统的示意图;
图2是本申请实施例可应用的另一种无线通信系统的框图;
图3是本申请实施例提供的一种资源配置方法的流程图;
图4是本申请实施例提供的另一种资源配置方法的流程图;
图5是本申请实施例提供的一种资源配置装置的结构图;
图6是本申请实施例提供的另一种资源配置装置的结构图;
图7是本申请实施例提供的一种网络节点的结构图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。然而,以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,尽管这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的示意图。无线通信系统包括终端11、IAB节点(IAB node)12、父IAB节点(parent IAB node)13和集中控制单元(Centralized Unit,CU)14。
在上述系统中IAB节点12可以依靠MT找到父IAB节点13,并跟父IAB节点13的DU建立无线连接,该无线连接被称为IAB节点12的回传链路(backhaul link),成为父IAB节点13的接入链路。在建立完整的回传链路后,IAB节点12打开其DU功能,DU会提供小区服务,即DU可以为终端11提供接入服务。所有的IAB节点的DU都可以与CU14连接。
另外,如图2所示,CU可以通过F1控制平面接口(F1-C)(F1应用流程协议(F1-AP))协议进行对IAB节点的DU进行配置。CU可以通过无线 资源控制(Radio Resource Control,RRC)协议对IAB节点的MT进行配置。且CU14可以是宿主节点(Donor IAB node)或者单独的网络节点,具体可以包括:CU-控制面(control plane,CP)和CU-用户面(user plane,UP)。
需要说明的是,图1仅是以终端11、IAB节点12、父IAB节点13和CU14进行举例说明,在实际应用中本申请实施例对IAB节点的数量不作限定。
另外,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)或车载终端(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、降低能力终端(reduced capability User Equipment,RedCap UE)等终端侧设备,其中,RedCap UE可以包括:穿戴设备、工业传感器、视频监控设备等,穿戴设备包括:手环、耳机、眼镜等。需要说明的是,在本申请实施例并不限定终端11的具体类型。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的资源配置方法、装置、网络节点和存储介质进行详细地说明。
请参见图3,图3是本申请实施例提供的一种资源配置方法的流程图,如图3所示,包括以下步骤:
步骤301、IAB节点获取频域资源信息;
其中,所述频域资源信息用于指示如下至少一项:
所述IAB节点的MT的工作带宽;
保护间隔。
其中,上述IAB获取频域资源信息可以是接收父节点或者CU配置的频域资源信息,或者可以是获取预先定义的频域资源信息。
另外,上述工作带宽和保护间隔中的至少一项可以是上述频域资源信息隐式或者显式指示。
上述保护间隔可以是上述IAB节点的DU与MT的工作带宽之间的保护间隔。
本申请实施例中,MT的工作带宽可以包括:频域资源的大小和/或频域资源的位置。类似的,保护间隔可以包括:频域资源的大小和/或频域资源的位置。
本申请实施例中通过上述步骤可以实现,单独为MT配置工作带宽,单独配置保护间隔,从而提高资源配置的精度,进而提高为IAB节点配置资源的配置效果。
作为一种可选地实施方式,所述频域资源信息包括如下至少一项:
父节点为所述IAB节点配置的第一频域资源信息
集中控制单元CU为所述IAB节点配置的第二频域资源信息;
协议预定义的第三频域资源信息。
其中,上述父节点可以是上述IAB节点的上一跳,或者可以是上述IAB节点的上N跳的节点,N为大于1的整数,即该父节点与上述IAB节点之间可以存在其他IAB节点。
其中,上述父节点可以通过媒质接入控制单元(Medium access control control element,MAC CE)或者下行控制信息(Downlink Control Information,DCI)信令配置频域资源信息,或者可以通过传递CU的RRC信令配置频域资源信息。
上述CU可以通过F1-C或者RRC信令,或者回传自适应协议控制分组数据单元(Backhaul Adaptation Protocol control packet data unit,BAP control PDU)配置频域资源信息。
另外,还可以协议定义IAB节点的MT和DU的保护频域间隔的资源。
该实施方式中,可以实现通过多种方式为IAB配置工作带宽和保护间隔中的至少一项。
可选地,在所述IAB节点获取有所述第一频域资源信息、所述第二频域资源信息和所述第三频域资源信息中至少两项的情况下,所述频域资源信息为依据第一信令在所述至少两项中确定的频域资源信息。
上述第一信令可以是上述频域资源信息之外的额外指示信令,例如:一条信令配置上述频域资源信息,另一条信令指示所述至少两项中的一项,通过该信令指示采用上述至少两项中的一项,例如:指示采用父节点、CU或者 协议预定义的频域资源信息确定MT的工作带宽和保护间隔,如1比特或者2比特进行指示。
作为一种可选地实施方式,所述保护间隔与如下至少一项相关:
所述IAB节点的双工方式;
所述IAB节点的DU和MT中至少一项的发送功率;
所述IAB节点的DU和MT中至少一项的功率谱密度;
所述IAB节点的DU和MT中至少一项的波束方向;
所述IAB节点的DU和MT中至少一项的波束索引;
服务小区的小区类型;
服务小区的小区组类型;
所述MT的工作带宽和所述DU的可用频域资源的相对位置;
双连接的模式配置;
频域范围。
其中,上述保护间隔与IAB节点的双工方式可以是,根据IAB节点的双工方式可以确定上述保护间隔,例如:不同的双工方式可以配置不同的保护间隔。例如:在频分复用(Frequency Division Multiplexing,FDM)的复用方式下,CU可以为上述IAB节点配置如下至少一项:
MT发射端口(Transmit X,TX)和DU TX对应的保护带宽1;
MT接收端口(Receive X,RX)和DU RX对应的保护带宽2;
MT TX和DU RX对应的保护带宽3;
MT RX和DU TX对应的保护带宽4。
上述MT TX和DU TX可以表示MT TX和DU TX同时进行,MT RX和DU RX可以表示MT RX和DU RX同时进行,MT TX和DU RX可以表示MT TX和DU RX同时进行,MT RX和DU TX可以表示MT RX和DU TX同时进行。
另外,当IAB节点采用某种复用方式,则MT和DU之间的保护间隔为对应的保护带宽x(x为1或2或3或4)。
需要说明的是,本申请实施例可以存在某一些双工方式不设定保护间隔。
上述保护间隔与IAB节点的DU和MT中至少一项的发送功率相关可以 是,保护间隔的最大或者最小值按照DU和MT中至少一项的发送功率配置。
上述保护间隔与所述IAB节点的DU和MT中至少一项的功率谱密度相关可以是,保护间隔的带宽的最大或者最小值按照DU和MT中至少一项的功率谱密度配置。
上述保护间隔与IAB节点的DU和MT中至少一项的波束方向相关可以是,保护间隔的带宽的最大或者最小值按照IAB节点的DU和MT中至少一项的波束方向配置。
上述保护间隔与IAB节点的DU和MT中至少一项的波束索引相关可以是,保护间隔的最大或者最小值按照IAB节点的DU和MT中至少一项的波束索引配置。
上述服务小区可以是MT的服务小区,上述小区类型可以是主小区或者辅小区,例如:上述保护间隔与MT的服务小区为主小区或者辅小区相关,如针对MT的服务小区为主小区和针对MT的服务小区为辅小区这两种不同的情况,可以配置不同的保护间隔,当然,在一些实施方式也可以配置相关的保护间隔。
上述小区组类型可以是主小区组(Master Cell Group,MCG)或者辅小区组(Secondary Cell Group,SCI),例如:上述保护间隔与MT的服务小区属于MCG或者SCI相关,如针对MT的服务小区属于MCG和针对MT的服务小区属于SCG两种不同的情况,可以配置不同的保护间隔,当然,在一些实施方式也可以配置相关的保护间隔。
上述保护间隔与所述MT的工作带宽和所述DU的可用频域资源的相对位置相关可以是,依据该相对位置配置上述保护间隔,例如:MT的工作带宽和DU的可用频域资源位于不同的载波,载波间的频域隔离也可算作保护间隔的一部分。
上述保护间隔与双连接的模式配置相关可以是,依据该模式配置为上述IAB节点配置对应的保护间隔,如不同的双连接模式配置不同的保护间隔。
上述频域范围可以是IAB节点的工作频段,例如:依据IAB节点的工作频段为FR1频段或者FR2,配置不同的保护间隔。其中,上述FR1为Sub6GHz频段,即低频频段,FR2为毫米波(mmWave)频段,即为高频频段。
该实施方式中,可以实现根据上述至少一项为IAB节点配置适合的保护间隔,以提高IAB节点的工作性能。
作为一种可选地实施方式,所述方法还包括:
所述IAB节点向父节点或者CU上报期望信息,所述期望信息用于所述保护间隔的配置。
上述期望信息用于所述保护间隔的配置可以是父节点或者CU参考上述期望信息为上述IAB节点配置保护间隔,这样使得父节点或者CU保证IAB节点MT和DU之间的保护间隔,达到IAB节点和父节点或者CU节点之间的资源协调的目的。
可选地,所述期望信息包括如下至少一项:
保护带宽、复用模式、双工方式、所述期望信息的参考时间和所述期望信息的生效时间。
上述保护带宽可以是上述IAB节点期望的保护间隔,且还可以上报该保护带宽的参数信息,例如:双工方式、发送功率、功率谱密度、波束信息等与保护间隔相关的参数信息。
其中,上述复用模式可以是FDM下的复用模式,例如:可以包括如下模式:
(DU)TX&(MT)TX、(DU)RX&(MT)RX、(DU)TX&(MT)RX、(DU)RX&(MT)TX。
其中,(DU)TX&(MT)TX可以表示DU在频域范围A的发送与MT在工作带宽B的发送同时进行;
(DU)RX&(MT)RX可以表示DU在频域范围A的接收与MT在工作带宽B的接收同时进行;
(DU)TX&(MT)RX可以表示DU在频域范围A的发送与MT在工作带宽B的接收同时进行;
(DU)RX&(MT)TX可以表示DU在频域范围A的接收与MT在工作带宽B的发送同时进行。
上述频域范围A和工作带宽B可以是之间的最小间隔为上述保护间隔的两个不同的频域资源。
上述期望信息的参考时间可以是,上述期望信息的参考时间点,父节点或者CU接收到上述期望信息后,在到达该参考时间时使用该期望信息。另外,上述参考时间可以是显式或者隐式携带在上报信息。
上述期望信息的生效时间可以是,基于该期望信息配置上述IAB节点的频域资源信息的生效时间。该生效时间可以是显式或者隐式携带在上报信息。
例如:上述IAB节点通过MAC CE或RRC信令向父节点或CU上报期望的保护间隔配置,父节点或CU收到该配置后,给该IAB节点配置相应保护间隔配置。期望的保护间隔可以只汇报当前的正在使用的复用模式的保护间隔值,也可以汇报IAB节点所有支持的复用模式的保护间隔值。IAB节点在收父节点或CU配置的保护间隔值后,该保护间隔值预留频域资源作为保护间隔。
作为一种可选地实施方式,所述工作带宽为父节点或者CU通过所述频域资源信息显式或者隐式指示的。
上述显式指示可以是通过配置或者动态指示,例如:通过带宽部分(Bandwidth part,BWP)指示。
上述隐式指示可以是在显式指示的工作带宽基础上,排除DU的可用频域资源和保护间隔后的频域资源。
作为一种可选地实施方式,所述工作带宽与所述IAB节点的复用方式相关。
其中,上述复用方式包括FDM、空分复用(Space Division Multiplex,SDM)和时分复用(Time Division Multiplexing,TDM)。
且上述频域资源信息的获取方式也可以与复用方式相关。
该实施方式中,实现通过上述工作带宽实现FDM、SDM或者TDM复用。
例如:当支持FDM的复用,则上述IAB节点不期望IAB DU的可用频域范围与IAB MT的工作带宽重叠;或者说,CU/父节点配置IAB DU的可用频域资源与IAB MT的工作带宽不重叠。具体可以是通过上述描述的显式或者隐式配置的方式实现FDM复用。
例如:当支持SDM的复用,上述IAB DU的可用频域范围可以与IAB MT的工作带宽有重叠。DU和MT在所述重叠的频域资源进行复用。另外,还可 以采用额外的指示信令,指示MT是否可用重叠的部分,如果指示不可用,DU和MT切换回FDM资源复用,否则为SDM资源复用。或者,指示MT只使用重叠资源中的部分资源。
可选地,所述方法还包括:
所述IAB节点向父节点或者CU上报期望信息,所述期望信息包括如下至少一项:
期望的复用方式、至少一个复用方式对应的频域资源。
上述期望的复用方式可以是FDM或者SDM,也可以是TDM。
上述至少一个复用方式对应的频域资源可以是,每个复用方式对应频域资源大小和位置中的至少一项。
该实施方式中,由于上报上述期望信息,这样可以使得最终获取的资源配置信息与上述期望信息容易匹配,以最终提高IAB节点的工作性能。
另外,本申请实施例中,CU可以通知上述IAB节点的复用方式,例如:直接通过IAB节点,或者通过父节点通知IAB节点。
可选地,所述频域资源信息还用于如下至少一项:
在所述IAB节点支持频分复用FDM的情况下,指示所述工作带宽可作为FDM复用资源;
在所述IAB节点支持空分复用SDM的情况下,指示所述工作带宽可作为SDM复用资源。
该实施方式中,由于指示工作带宽可作为FDM复用资源,这样可以实现在IAB DU的可用频域资源与IAB MT的工作带宽发生重叠之前,预先指示潜在的SDM复用,为带宽片段(Bandwidth part,BWP)的切换做准备,以提高切换效率。
由于指示工作带宽可作为SDM复用资源,这样可以实现在IAB DU的可用频域资源与IAB MT的工作带宽发生重叠之前,预先指示潜在的FDM复用,为BWP的切换做准备,以提高切换效率。
可选地,在所述频域资源信息指示所述工作带宽可作为FDM复用资源和指示所述工作带宽可作为SDM复用资源的情况下,所述IAB节点依据指示信息确定所述工作带宽可作为FDM复用资源或者确定所述工作带宽可作为 SDM复用资源。
其中,上述指示信息可以是额外的指示信令,以通过该指示信令确定工作带宽可作为FDM复用资源或者工作带宽可作为SDM复用资源。
作为一种可选地实施方式,所述工作带宽与所述IAB节点的双工方式相关,所述双工方式包括:所述IAB节点的DU小区上支持的双工方式,或者,所述IAB节点的DU小区和至少一个MT服务小区间的双工方式。
本申请实施例中,MT可以支持双连接,如多个MT小区对应一个DU小区。上述DU小区和至少一个MT服务小区间的双工方式可以是,DU小区对应MT服务小区的时候对应不同双工方式,且可以配置不同的MT的工作带宽。
可选地,所述频域资源信息为根据双工方式获取的。
该实施方式中,可以实现对于不同的双工方式,MT的工作带宽和保护间隔可以独立获取或者通知。需要说明的是,这里的不同双工方式并不是指所有双工方式,因为,在一些场景中,不排除一部分双工方式无需获取或者通知MT的工作带宽。
作为一种可选地实施方式,所述方法还包括如下至少一项:
所述IAB节点向父节点上报所述工作带宽;
所述IAB节点向所述父节点上报所述频域资源信息的获取方式;
所述IAB节点向CU上报所述工作带宽;
所述IAB节点向所述CU上报所述频域资源信息的获取方式。
其中,上述获取方式也可以理解为父节点或者CU通知频域资源信息的通知方式。
该实施方式中,由于向父节点上报工作带宽和上述获取方式中的至少一项,这样父节点或者CU可以根据IAB的MT工作带宽,控制IAB DU的可用频域资源和资源调度等中的至少一项,以实现MT和DU间的FDM和SDM复用方式,或确保DU和MT所使用的频域资源间隔满足保护间隔。
另外,所述IAB节点向父节点上报所述IAB节点的可用频域范围,和/或,所述IAB节点向所述父节点上报所述IAB节点的可用频域范围的频域资源信息的获取方式。这样由于向父节点或者CU上报了上述信息,从而父节 点或者CU可以根据IAB DU的可用频域范围,控制IAB节点MT的BWP/资源调度等,以实现MT和DU间的FDM/SDM复用方式,或确保DU和MT所使用的频域资源间隔满足保护间隔好处是,使得父节点可以根据IAB DU的可用频域范围,控制IAB MT的BWP/资源调度等,以实现MT和DU间的FDM/SDM复用方式,或确保DU和MT所使用的频域资源间隔满足保护间隔。
在一种实施方式中,CU可以通知父节点的DU的可用频域范围,和/或上述IAB节点的DU的可用频域范围的获取方式或者通知方式。
作为一种可选地实施方式,所述工作带宽和所述保护间隔中的至少一项的生效时间由CU或者父节点配置。
该实施方式中,可以实现配置上述工作带宽和所述保护间隔中的至少一项的只在上述生效时间内生效,以进一步增强对工作带宽和保护间隔的控制。
可选地,所述CU或者父节点通过如下至少一项指示参数配置所述生效时间:
周期指示、时域偏移、时域资源大小。
例如:CU或者父节点可以向上述IAB节点发送上述至少一项指示参数,以配置上述生效时间。具体可以是通过F1-C信令、RRC信令、回传自适应协议控制分组数据单元(BAP control PDU)、DCI中至少一项配置上述指示参数。另外,指示粒度可以为:M个时隙、N个符号、L毫秒、K个子帧或者A个帧等,其中,M,N,L,K,A>=1。
可选地,所述工作带宽和所述保护间隔中的至少一项在采用第一双工方式的时间内有效。
其中,上述第一双工方式可以是预先定义的一种双工方式,对此不作限定。
该实施方式可以是,在工作带宽和保护间隔中的至少一项的配置与第一双工方式相关的情况下,工作带宽和保护间隔中的至少一项在采用上述第一双工方式的时间内有效。例如:在上述生效时间内如果采用上述第一双工方式,则采用上述第一双工方式的时间内上述工作带宽和保护间隔中的至少一项生效,如果在上述生效时间内不采用上述第一双工方式,则上述工作带宽 和保护间隔中的至少一项不生效。
由于所述工作带宽和所述保护间隔中的至少一项在采用第一双工方式的时间内有效,从而可以进一步增强对工作带宽和保护间隔的控制。
下面对配置IAB节点的保护间隔的配置信令进行如下举例说明:
上述CU可以通过F1-C或者RRC信令配置保护间隔的频域资源。
一种方式中,CU通过F1-C信令保护间隔的频域资源,具体可以如下:F1-C信令可以显式配置频域起始位置和频域资源长度指示,例如:F1-C信令可以包括如下配置:
Frequency configuration item:
>Starting PRBs
>Number of PRBs
其中,Frequency configuration item是指频率配置项;
Starting PRBs是频域起始位置;
Number of PRBs是频域资源长度指示;
另一种方式中,CU可以选择显式配置或者隐式配置频域起始位置和频域资源长度指示,F1-C信令可以包括如下配置:
Figure PCTCN2021139153-appb-000001
其中,choice frequency configuration选择频率配置;Explicit Format为选择格式;Starting PRBs是频域起始位置;Number of PRBs是频域资源长度指示;Implicit Format是隐式格式;
BW为带宽(Bandwidth,BW),BW1为配置的第一频域资源带宽,BW2为配置的第二频域资源带宽,BW3为配置的第三频域资源带宽。BW1、BW2和BW3的配置可以相同或者不同。
另一种方式中,CU可以配置与复用方式相关的保护间隔频域资源,信令可以包括如下配置:
Frequency configuration item:
>FDM ENUMERATED(BW1,BW2,BW3)
>SDM ENUMERATED(BW1,BW2,BW3)
>TDM ENUMERATED(BW1,BW2,BW3)
需要说明的是,上述仅以3个带宽参数为例,不限制为可选3个带宽的配置,实际可选的数目为大于等于1的整数。
另一种方式,CU可以配置与双工方式相关的保护间隔频域资源,例如:信令的双工信息单元(multiplexing info IE)中包括如下配置:
Figure PCTCN2021139153-appb-000002
其中,IAB-MT Cell List是指IAB-MT小区列表;NR Cell Identity为NR小区识别;frequency info为频点信息;
BW1为第一频域资源带宽,BW2为第一频域资源带宽,BW3为第一频域资源带宽,BW4为第一频域资源带宽。这里以四种复用方式为例,具体带 宽的数目(BW1-BW4)大小可能不一定为4,可以更多也可以更少。也可能多种复用方式对应一种带宽配置,对此不作限定。
需要说明的是,上述以CU配置为例进行说明,本申请实施例中,父节点也可以参考上述信令为IAB节点配置上述工作带宽和保护间隔中的至少一项。
本申请实施例中,IAB节点获取频域资源信息;其中,所述频域资源信息用于指示如下至少一项:所述IAB节点的移动终端MT的工作带宽;保护间隔。这样可以实现单独为MT配置工作带宽,单独配置保护间隔,从而提高资源配置的精度,进而提高为IAB节点配置资源的配置效果。还可以降低系统中的干扰和延时。
请参见图4,图4是本申请实施例提供的另一种资源配置方法的流程图,如图4所示,包括以下步骤:
步骤401、目标节点为IAB节点配置频域资源信息;
其中,所述频域资源信息用于指示如下至少一项:
所述IAB节点的移动终端MT的工作带宽;
保护间隔;
所述目标节点为集中控制单元CU或者所述IAB节点的父节点。
可选地,所述保护间隔与如下至少一项相关:
所述IAB节点的双工方式;
所述IAB节点的分布单元DU和MT中至少一项的发送功率;
所述IAB节点的DU和MT中至少一项的功率谱密度;
所述IAB节点的DU和MT中至少一项的波束方向;
所述IAB节点的DU和MT中至少一项的波束索引;
服务小区的小区类型;
服务小区的小区组类型;
所述MT的工作带宽和所述DU的可用频域资源的相对位置;
双连接的模式配置;
频域范围。
可选地,所述方法还包括:
所述目标节点接收所述IAB节点上报的期望信息,所述期望信息用于所述保护间隔的配置。
可选地,所述期望信息包括如下至少一项:
保护带宽、复用模式、双工方式、所述期望信息的参考时间和所述期望信息的生效时间。
可选地,所述工作带宽为所述目标节点通过所述频域资源信息显式或者隐式指示的。
可选地,所述工作带宽与所述IAB节点的复用方式相关。
可选地,所述频域资源信息还用于如下至少一项:
在所述IAB节点支持频分复用FDM的情况下,指示所述工作带宽可作为FDM复用资源;
在所述IAB节点支持空分复用SDM的情况下,指示所述工作带宽可作为SDM复用资源。
可选地,所述工作带宽与所述IAB节点的双工方式相关,所述双工方式包括:所述IAB节点的DU小区上支持的双工方式,或者,所述IAB节点的DU小区和至少一个MT服务小区间的双工方式。
可选地,所述频域资源信息为根据双工方式获取的。
可选地,所述方法还包括如下至少一项:
所述目标节点接收所述IAB节点上报的所述工作带宽;
所述目标节点接收所述IAB节点上报的所述频域资源信息的获取方式;
在所述目标节点为父节点的情况下,所述父节点接收所述CU发送的所述父节点的分布单元DU的可用频域资源。
在所述目标节点为CU的情况下,所述CU发送所述IAB节点的分布单元DU的可用频域资源给所述IAB节点的父节点。
可选地,所述工作带宽和所述保护间隔中的至少一项的生效时间由所述目标节点配置。
可选地,所述目标节点通过如下至少一项指示参数配置所述生效时间:
周期指示、时域偏移、时域资源大小。
可选地,所述工作带宽和所述保护间隔中的至少一项在采用第一双工方 式的时间内有效。
需要说明的是,本实施例作为与图3所示的实施例中对应的目标节点侧的实施方式,其具体的实施方式可以参见图3所示的实施例的相关说明,为避免重复说明,本实施例不再赘述。本实施例中,同样可以提高为IAB节点配置资源的配置效果。
请参见图5,图5是本发明实施例提供的一种资源配置装置的结构图,如图5所示,资源配置装置500包括:
获取模块501,用于获取频域资源信息;
其中,所述频域资源信息用于指示如下至少一项:
所述IAB节点的移动终端MT的工作带宽;
保护间隔。
可选地,所述频域资源信息包括如下至少一项:
父节点为所述IAB节点配置的第一频域资源信息
集中控制单元CU为所述IAB节点配置的第二频域资源信息;
协议预定义的第三频域资源信息。
可选地,在所述IAB节点获取有所述第一频域资源信息、所述第二频域资源信息和所述第三频域资源信息中至少两项的情况下,所述频域资源信息为依据第一信令在所述至少两项中确定的频域资源信息。
可选地,所述保护间隔与如下至少一项相关:
所述IAB节点的双工方式;
所述IAB节点的分布单元DU和MT中至少一项的发送功率;
所述IAB节点的DU和MT中至少一项的功率谱密度;
所述IAB节点的DU和MT中至少一项的波束方向;
所述IAB节点的DU和MT中至少一项的波束索引;
服务小区的小区类型;
服务小区的小区组类型;
所述MT的工作带宽和所述DU的可用频域资源的相对位置;
双连接的模式配置;
频域范围。
可选地,所述装置还包括:
第一上报模块,用于向父节点或者CU上报期望信息,所述期望信息用于所述保护间隔的配置。
可选地,所述期望信息包括如下至少一项:
保护带宽、复用模式、双工方式、所述期望信息的参考时间和所述期望信息的生效时间。
可选地,所述工作带宽为父节点或者CU通过所述频域资源信息显式或者隐式指示的。
可选地,所述工作带宽与所述IAB节点的复用方式相关。
可选地,所述频域资源信息还用于如下至少一项:
在所述IAB节点支持频分复用FDM的情况下,指示所述工作带宽可作为FDM复用资源;
在所述IAB节点支持空分复用SDM的情况下,指示所述工作带宽可作为SDM复用资源。
可选地,在所述频域资源信息指示所述工作带宽可作为FDM复用资源和指示所述工作带宽可作为SDM复用资源的情况下,所述IAB节点依据指示信息确定所述工作带宽可作为FDM复用资源或者确定所述工作带宽可作为SDM复用资源。
可选地,所述工作带宽与所述IAB节点的双工方式相关,所述双工方式包括:所述IAB节点的DU小区上支持的双工方式,或者,所述IAB节点的DU小区和至少一个MT服务小区间的双工方式。
可选地,所述频域资源信息为根据双工方式获取的。
可选地,所述装置还包括如下至少一项:
第二上报模块,用于向父节点上报所述工作带宽;
第三上报模块,用于向所述父节点上报所述频域资源信息的获取方式;
第四上报模块,用于向CU上报所述工作带宽;
第五上报模块,用于向所述CU上报所述频域资源信息的获取方式。
可选地,所述工作带宽和所述保护间隔中的至少一项的生效时间由CU或者父节点配置。
可选地,所述CU或者父节点通过如下至少一项指示参数配置所述生效时间:
周期指示、时域偏移、时域资源大小。
可选地,在所述工作带宽和所述保护间隔中的至少一项为第一双工方式独立配置的情况下,所述工作带宽和所述保护间隔中的至少一项仅在生效时间内采用所述第一双工方式的时间有效。
本申请实施例提供的资源配置装置能够实现图3的方法实施例中的各个过程,为避免重复,这里不再赘述,且可以提高为IAB节点配置资源的配置效果。
需要说明的是,本申请实施例中的资源配置装置可以是装置,也可以是IAB节点中的部件、集成电路、或芯片。
请参见图6,图6是本发明实施例提供的另一种资源配置装置的结构图,如图6所示,资源配置装置600包括:
配置模块601,用于为自回传IAB节点配置频域资源信息;
其中,所述频域资源信息用于指示如下至少一项:
所述IAB节点的移动终端MT的工作带宽;
保护间隔;
目标节点包括所述装置,所述目标节点为集中控制单元CU或者所述IAB节点的父节点。
可选地,所述保护间隔与如下至少一项相关:
所述IAB节点的双工方式;
所述IAB节点的分布单元DU和MT中至少一项的发送功率;
所述IAB节点的DU和MT中至少一项的功率谱密度;
所述IAB节点的DU和MT中至少一项的波束方向;
所述IAB节点的DU和MT中至少一项的波束索引;
服务小区的小区类型;
服务小区的小区组类型;
所述MT的工作带宽和所述DU的可用频域资源的相对位置;
双连接的模式配置;
频域范围。
可选地,所述装置还包括:
第一接收模块,用于接收所述IAB节点上报的期望信息,所述期望信息用于所述保护间隔的配置。
可选地,所述期望信息包括如下至少一项:
保护带宽、复用模式、双工方式、所述期望信息的参考时间和所述期望信息的生效时间。
可选地,所述工作带宽为所述目标节点通过所述频域资源信息显式或者隐式指示的。
可选地,所述工作带宽与所述IAB节点的复用方式相关。
可选地,所述频域资源信息还用于如下至少一项:
在所述IAB节点支持频分复用FDM的情况下,指示所述工作带宽可作为FDM复用资源;
在所述IAB节点支持空分复用SDM的情况下,指示所述工作带宽可作为SDM复用资源。
可选地,所述工作带宽与所述IAB节点的双工方式相关,所述双工方式包括:所述IAB节点的DU小区上支持的双工方式,或者,所述IAB节点的DU小区和至少一个MT服务小区间的双工方式。
可选地,所述频域资源信息为根据双工方式获取的。
可选地,所述装置还包括如下至少一项:
第二接收模块,用于接收所述IAB节点上报的所述工作带宽;
第三接收模块,用于接收所述IAB节点上报的所述频域资源信息的获取方式;
第四接收模块,用于在所述目标节点为父节点的情况下,接收所述CU发送的所述父节点的分布单元DU的可用频域资源。
发送模块,用于在所述目标节点为CU的情况下,发送所述IAB节点的分布单元DU的可用频域资源给所述IAB节点的父节点。
可选地,所述工作带宽和所述保护间隔中的至少一项的生效时间由所述目标节点配置。
可选地,所述目标节点通过如下至少一项指示参数配置所述生效时间:
周期指示、时域偏移、时域资源大小。
可选地,所述工作带宽和所述保护间隔中的至少一项在采用第一双工方式的时间内有效。
本申请实施例提供的资源配置装置能够实现图4的方法实施例中的各个过程,为避免重复,这里不再赘述,且可以提高为IAB节点配置资源的配置效果。
需要说明的是,本申请实施例中的资源配置装置可以是装置,也可以是目标节点中的部件、集成电路、或芯片。
参见图7,图7是本发明实施例提供的一种网络节点的结构图,如图7所示,该网络节点700包括:处理器701、收发机702、存储器703和总线接口,其中:
在一个实施例中,上述网络节点为IAB节点,具体可以如下:
处理器701或者收发机702,用于获取频域资源信息;
其中,所述频域资源信息用于指示如下至少一项:
所述IAB节点的移动终端MT的工作带宽;
保护间隔。
可选地,所述频域资源信息包括如下至少一项:
父节点为所述IAB节点配置的第一频域资源信息
集中控制单元CU为所述IAB节点配置的第二频域资源信息;
协议预定义的第三频域资源信息。
可选地,在所述IAB节点获取有所述第一频域资源信息、所述第二频域资源信息和所述第三频域资源信息中至少两项的情况下,所述频域资源信息为依据第一信令在所述至少两项中确定的频域资源信息。
可选地,所述保护间隔与如下至少一项相关:
所述IAB节点的双工方式;
所述IAB节点的分布单元DU和MT中至少一项的发送功率;
所述IAB节点的DU和MT中至少一项的功率谱密度;
所述IAB节点的DU和MT中至少一项的波束方向;
所述IAB节点的DU和MT中至少一项的波束索引;
服务小区的小区类型;
服务小区的小区组类型;
所述MT的工作带宽和所述DU的可用频域资源的相对位置;
双连接的模式配置;
频域范围。
可选地,收发机702还用于:
向父节点或者CU上报期望信息,所述期望信息用于所述保护间隔的配置。
可选地,所述期望信息包括如下至少一项:
保护带宽、复用模式、双工方式、所述期望信息的参考时间和所述期望信息的生效时间。
可选地,所述工作带宽为父节点或者CU通过所述频域资源信息显式或者隐式指示的。
可选地,所述工作带宽与所述IAB节点的复用方式相关。
可选地,所述频域资源信息还用于如下至少一项:
在所述IAB节点支持频分复用FDM的情况下,指示所述工作带宽可作为FDM复用资源;
在所述IAB节点支持空分复用SDM的情况下,指示所述工作带宽可作为SDM复用资源。
可选地,在所述频域资源信息指示所述工作带宽可作为FDM复用资源和指示所述工作带宽可作为SDM复用资源的情况下,所述IAB节点依据指示信息确定所述工作带宽可作为FDM复用资源或者确定所述工作带宽可作为SDM复用资源。
可选地,所述工作带宽与所述IAB节点的双工方式相关,所述双工方式包括:所述IAB节点的DU小区上支持的双工方式,或者,所述IAB节点的DU小区和至少一个MT服务小区间的双工方式。
可选地,所述频域资源信息为根据双工方式获取的。
可选地,收发机702还用于如下至少一项:
向父节点上报所述工作带宽;
向所述父节点上报所述频域资源信息的获取方式;
向CU上报所述工作带宽;
向所述CU上报所述频域资源信息的获取方式。
可选地,所述工作带宽和所述保护间隔中的至少一项的生效时间由CU或者父节点配置。
可选地,所述CU或者父节点通过如下至少一项指示参数配置所述生效时间:
周期指示、时域偏移、时域资源大小。
可选地,在所述工作带宽和所述保护间隔中的至少一项为第一双工方式独立配置的情况下,所述工作带宽和所述保护间隔中的至少一项仅在生效时间内采用所述第一双工方式的时间有效。
在另一个实施例中,上述网络节点为目标节点,所述目标节点为集中控制单元CU或者所述IAB节点的父节点,具体可以如下:
收发机1302,用于为自回传IAB节点配置频域资源信息;
其中,所述频域资源信息用于指示如下至少一项:
所述IAB节点的移动终端MT的工作带宽;
保护间隔;
所述目标节点为集中控制单元CU或者所述IAB节点的父节点。
可选地,所述保护间隔与如下至少一项相关:
所述IAB节点的双工方式;
所述IAB节点的分布单元DU和MT中至少一项的发送功率;
所述IAB节点的DU和MT中至少一项的功率谱密度;
所述IAB节点的DU和MT中至少一项的波束方向;
所述IAB节点的DU和MT中至少一项的波束索引;
服务小区的小区类型;
服务小区的小区组类型;
所述MT的工作带宽和所述DU的可用频域资源的相对位置;
双连接的模式配置;
频域范围。
可选地,收发机1302还用于:
接收所述IAB节点上报的期望信息,所述期望信息用于所述保护间隔的配置。
可选地,所述期望信息包括如下至少一项:
保护带宽、复用模式、双工方式、所述期望信息的参考时间和所述期望信息的生效时间。
可选地,所述工作带宽为所述目标节点通过所述频域资源信息显式或者隐式指示的。
可选地,所述工作带宽与所述IAB节点的复用方式相关。
可选地,所述频域资源信息还用于如下至少一项:
在所述IAB节点支持频分复用FDM的情况下,指示所述工作带宽可作为FDM复用资源;
在所述IAB节点支持空分复用SDM的情况下,指示所述工作带宽可作为SDM复用资源。
可选地,所述工作带宽与所述IAB节点的双工方式相关,所述双工方式包括:所述IAB节点的DU小区上支持的双工方式,或者,所述IAB节点的DU小区和至少一个MT服务小区间的双工方式。
可选地,所述频域资源信息为根据双工方式获取的。
可选地,收发机1302还用于如下至少一项:
接收所述IAB节点上报的所述工作带宽;
接收所述IAB节点上报的所述频域资源信息的获取方式;
在所述目标节点为父节点的情况下,接收所述CU发送的所述父节点的分布单元DU的可用频域资源;
在所述目标节点为CU的情况下,发送所述IAB节点的分布单元DU的可用频域资源给所述IAB节点的父节点。
可选地,所述工作带宽和所述保护间隔中的至少一项的生效时间由所述目标节点配置。
可选地,所述目标节点通过如下至少一项指示参数配置所述生效时间:
周期指示、时域偏移、时域资源大小。
可选地,所述工作带宽和所述保护间隔中的至少一项在采用第一双工方式的时间内有效。
其中,收发机702,用于在处理器701的控制下接收和发送数据,所述收发机702包括至少两个天线端口。
在图7中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器701代表的一个或多个处理器和存储器703代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机702可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。
处理器701负责管理总线架构和通常的处理,存储器703可以存储处理器701在执行操作时所使用的数据。
可选地,本发明实施例还提供一种网络节点,所述网络节点为自回传IAB节点,包括处理器701,存储器703,存储在存储器703上并可在所述处理器701上运行的程序或者指令,该程序或者指令被处理器701执行时实现上述资源配置方法方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
可选地,本发明实施例还提供一种网络节点,所述网络节点为目标节点,包括处理器701,存储器703,存储在存储器703上并可在所述处理器701上运行的程序或者指令,该程序或者指令被处理器701执行时实现上述资源配置方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质可以是非易失的,也可以是易失的,所述可读存储介质上存储有程序或指令,所述程序或指令被处理器执行时实现本申请实施例提供的资源配置方法中的步骤。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品被存储在非瞬态的可读存储介质中,所述计算机程序产品被至少一个处理器执行以实现本申请实施例提供的资源配置方法中的步骤,且能达到相同的技术效果, 为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端或者网络设备中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述资源配置方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片、系统芯片、芯片系统或片上系统芯片等。需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上 述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (39)

  1. 一种资源配置方法,包括:
    自回传IAB节点获取频域资源信息;
    其中,所述频域资源信息用于指示如下至少一项:
    所述IAB节点的移动终端MT的工作带宽;
    保护间隔。
  2. 如权利要求1所述的方法,其中,所述频域资源信息包括如下至少一项:
    父节点为所述IAB节点配置的第一频域资源信息
    集中控制单元CU为所述IAB节点配置的第二频域资源信息;
    协议预定义的第三频域资源信息。
  3. 如权利要求2所述的方法,其中,在所述IAB节点获取有所述第一频域资源信息、所述第二频域资源信息和所述第三频域资源信息中至少两项的情况下,所述频域资源信息为依据第一信令在所述至少两项中确定的频域资源信息。
  4. 如权利要求1所述的方法,其中,所述保护间隔与如下至少一项相关:
    所述IAB节点的双工方式;
    所述IAB节点的分布单元DU和MT中至少一项的发送功率;
    所述IAB节点的DU和MT中至少一项的功率谱密度;
    所述IAB节点的DU和MT中至少一项的波束方向;
    所述IAB节点的DU和MT中至少一项的波束索引;
    服务小区的小区类型;
    服务小区的小区组类型;
    所述MT的工作带宽和所述DU的可用频域资源的相对位置;
    双连接的模式配置;
    频域范围。
  5. 如权利要求1所述的方法,其中,所述方法还包括:
    所述IAB节点向父节点或者CU上报期望信息,所述期望信息用于所述 保护间隔的配置。
  6. 如权利要求5所述的方法,其中,所述期望信息包括如下至少一项:
    保护带宽、复用模式、双工方式、所述期望信息的参考时间和所述期望信息的生效时间。
  7. 如权利要求1所述的方法,其中,所述工作带宽为父节点或者CU通过所述频域资源信息显式或者隐式指示的。
  8. 如权利要求1所述的方法,其中,所述工作带宽与所述IAB节点的复用方式相关。
  9. 如权利要求8所述的方法,其中,所述频域资源信息还用于如下至少一项:
    在所述IAB节点支持频分复用FDM的情况下,指示所述工作带宽可作为FDM复用资源;
    在所述IAB节点支持空分复用SDM的情况下,指示所述工作带宽可作为SDM复用资源。
  10. 如权利要求9所述的方法,其中,在所述频域资源信息指示所述工作带宽可作为FDM复用资源和指示所述工作带宽可作为SDM复用资源的情况下,所述IAB节点依据指示信息确定所述工作带宽可作为FDM复用资源或者确定所述工作带宽可作为SDM复用资源。
  11. 如权利要求1所述的方法,其中,所述工作带宽与所述IAB节点的双工方式相关,所述双工方式包括:所述IAB节点的DU小区上支持的双工方式,或者,所述IAB节点的DU小区和至少一个MT服务小区间的双工方式。
  12. 如权利要求1所述的方法,其中,所述频域资源信息为根据双工方式获取的。
  13. 如权利要求1所述的方法,其中,所述方法还包括如下至少一项:
    所述IAB节点向父节点上报所述工作带宽;
    所述IAB节点向所述父节点上报所述频域资源信息的获取方式;
    所述IAB节点向CU上报所述工作带宽;
    所述IAB节点向所述CU上报所述频域资源信息的获取方式。
  14. 如权利要求1所述的方法,其中,所述工作带宽和所述保护间隔中的至少一项的生效时间由CU或者父节点配置。
  15. 如权利要求14所述的方法,其中,所述CU或者父节点通过如下至少一项指示参数配置所述生效时间:
    周期指示、时域偏移、时域资源大小。
  16. 如权利要求14所述的方法,其中,所述工作带宽和所述保护间隔中的至少一项在采用第一双工方式的时间内有效。
  17. 一种资源配置方法,包括:
    目标节点为自回传IAB节点配置频域资源信息;
    其中,所述频域资源信息用于指示如下至少一项:
    所述IAB节点的移动终端MT的工作带宽;
    保护间隔;
    所述目标节点为集中控制单元CU或者所述IAB节点的父节点。
  18. 如权利要求17所述的方法,其中,所述保护间隔与如下至少一项相关:
    所述IAB节点的双工方式;
    所述IAB节点的分布单元DU和MT中至少一项的发送功率;
    所述IAB节点的DU和MT中至少一项的功率谱密度;
    所述IAB节点的DU和MT中至少一项的波束方向;
    所述IAB节点的DU和MT中至少一项的波束索引;
    服务小区的小区类型;
    服务小区的小区组类型;
    所述MT的工作带宽和所述DU的可用频域资源的相对位置;
    双连接的模式配置;
    频域范围。
  19. 如权利要求17所述的方法,其中,所述方法还包括:
    所述目标节点接收所述IAB节点上报的期望信息,所述期望信息用于所述保护间隔的配置。
  20. 如权利要求19所述的方法,其中,所述期望信息包括如下至少一项:
    保护带宽、复用模式、双工方式、所述期望信息的参考时间和所述期望信息的生效时间。
  21. 如权利要求17所述的方法,其中,所述工作带宽为所述目标节点通过所述频域资源信息显式或者隐式指示的。
  22. 如权利要求17所述的方法,其中,所述工作带宽与所述IAB节点的复用方式相关。
  23. 如权利要求22所述的方法,其中,所述频域资源信息还用于如下至少一项:
    在所述IAB节点支持频分复用FDM的情况下,指示所述工作带宽可作为FDM复用资源;
    在所述IAB节点支持空分复用SDM的情况下,指示所述工作带宽可作为SDM复用资源。
  24. 如权利要求17所述的方法,其中,所述工作带宽与所述IAB节点的双工方式相关,所述双工方式包括:所述IAB节点的DU小区上支持的双工方式,或者,所述IAB节点的DU小区和至少一个MT服务小区间的双工方式。
  25. 如权利要求24所述的方法,其中,所述频域资源信息为根据双工方式获取的。
  26. 如权利要求17所述的方法,其中,所述方法还包括如下至少一项:
    所述目标节点接收所述IAB节点上报的所述工作带宽或保护间隔;
    所述目标节点接收所述IAB节点上报的所述频域资源信息的获取方式;
    在所述目标节点为父节点的情况下,所述父节点接收所述CU发送的所述父节点的分布单元DU的可用频域资源;
    在所述目标节点为CU的情况下,所述CU发送所述IAB节点的移动终端MT的工作带宽或所述IAB节点的保护间隔给所述IAB节点的父节点。
  27. 如权利要求17所述的方法,其中,所述工作带宽和所述保护间隔中的至少一项的生效时间由所述目标节点配置。
  28. 如权利要求27所述的方法,其中,所述目标节点通过如下至少一项指示参数配置所述生效时间:
    周期指示、时域偏移、时域资源大小。
  29. 如权利要求28所述的方法,其中,所述工作带宽和所述保护间隔中的至少一项在采用第一双工方式的时间内有效。
  30. 一种资源配置装置,包括:
    获取模块,用于IAB节点获取频域资源信息;
    其中,所述频域资源信息用于指示如下至少一项:
    所述IAB节点的移动终端MT的工作带宽;
    保护间隔。
  31. 如权利要求30所述的装置,其中,所述保护间隔与如下至少一项相关:
    所述IAB节点的双工方式;
    所述IAB节点的分布单元DU和MT中至少一项的发送功率;
    所述IAB节点的DU和MT中至少一项的功率谱密度;
    所述IAB节点的DU和MT中至少一项的波束方向;
    所述IAB节点的DU和MT中至少一项的波束索引;
    服务小区的小区类型;
    服务小区的小区组类型;
    所述MT的工作带宽和所述DU的可用频域资源的相对位置;
    双连接的模式配置;
    频域范围。
  32. 一种资源配置装置,包括:
    配置模块,用于为自回传IAB节点配置频域资源信息;
    其中,所述频域资源信息用于指示如下至少一项:
    所述IAB节点的移动终端MT的工作带宽;
    保护间隔;
    目标节点包括所述装置,所述目标节点为集中控制单元CU或者所述IAB节点的父节点。
  33. 如权利要求32所述的装置,其中,所述保护间隔与如下至少一项相关:
    所述IAB节点的双工方式;
    所述IAB节点的分布单元DU和MT中至少一项的发送功率;
    所述IAB节点的DU和MT中至少一项的功率谱密度;
    所述IAB节点的DU和MT中至少一项的波束方向;
    所述IAB节点的DU和MT中至少一项的波束索引;
    服务小区的小区类型;
    服务小区的小区组类型;
    所述MT的工作带宽和所述DU的可用频域资源的相对位置;
    双连接的模式配置;
    频域范围。
  34. 一种网络节点,所述网络节点为自回传IAB节点,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序或者指令,其中,所述程序或者指令被所述处理器执行时实现如权利要求1至16中任一项所述的资源配置方法中的步骤。
  35. 一种网络节点,所述网络节点为目标节点,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序或者指令,其中,所述程序或者指令被所述处理器执行时实现如权利要求17至31中任一项所述的资源配置方法中的步骤。
  36. 一种可读存储介质,所述可读存储介质上存储有程序或指令,其中,所述程序或指令被处理器执行时实现如权利要求1至16中任一项所述的资源配置方法中的步骤,或者,所述程序或指令被处理器执行时实现如权利要求17至31中任一项所述的资源配置方法中的步骤。
  37. 一种芯片,包括处理器和通信接口,其中,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1至16中任一项所述的资源配置方法中的步骤,或者,实现如权利要求17至31中任一项所述的资源配置方法中的步骤。
  38. 一种计算机程序产品,其中,所述计算机程序产品被存储在非瞬态的可读存储介质中,所述计算机程序产品被至少一个处理器执行以实现如权利要求1至16中任一项所述的资源配置方法中的步骤,或者,所述计算机程 序产品被至少一个处理器执行以实现如权利要求17至31中任一项所述的资源配置方法中的步骤。
  39. 一种通信设备,被配置为执行如权利要求1至16中任一项所述的资源配置方法中的步骤,或者,被配置为执行如权利要求17至31中任一项所述的资源配置方法中的步骤。
PCT/CN2021/139153 2020-12-18 2021-12-17 资源配置方法、装置、网络节点和存储介质 WO2022127906A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011511766.8 2020-12-18
CN202011511766.8A CN114650600A (zh) 2020-12-18 2020-12-18 资源配置方法、装置、网络节点和存储介质

Publications (1)

Publication Number Publication Date
WO2022127906A1 true WO2022127906A1 (zh) 2022-06-23

Family

ID=81991527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/139153 WO2022127906A1 (zh) 2020-12-18 2021-12-17 资源配置方法、装置、网络节点和存储介质

Country Status (2)

Country Link
CN (1) CN114650600A (zh)
WO (1) WO2022127906A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117939542A (zh) * 2022-10-24 2024-04-26 大唐移动通信设备有限公司 保护间隔的确定方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020202190A1 (en) * 2019-03-29 2020-10-08 Centre Of Excellence In Wireless Technology Method and system for resource allocation and timing alignment in integrated access and backhaul (iab) network
CN111884777A (zh) * 2019-05-03 2020-11-03 华为技术有限公司 一种通信的方法及装置
CN111901871A (zh) * 2020-04-09 2020-11-06 中兴通讯股份有限公司 一种资源配置方法、装置、通信节点及存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020202190A1 (en) * 2019-03-29 2020-10-08 Centre Of Excellence In Wireless Technology Method and system for resource allocation and timing alignment in integrated access and backhaul (iab) network
CN111884777A (zh) * 2019-05-03 2020-11-03 华为技术有限公司 一种通信的方法及装置
WO2020224306A1 (zh) * 2019-05-03 2020-11-12 华为技术有限公司 一种通信的方法和装置
CN111901871A (zh) * 2020-04-09 2020-11-06 中兴通讯股份有限公司 一种资源配置方法、装置、通信节点及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Physical layer design for NR IAB", 3GPP DRAFT; R1-1812198, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 3 November 2018 (2018-11-03), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 15, XP051478354 *

Also Published As

Publication number Publication date
CN114650600A (zh) 2022-06-21

Similar Documents

Publication Publication Date Title
CA3044093C (en) Method for transmitting reference signal, and communication device
WO2018228433A1 (zh) 一种公共下行控制信道的传输方法和相关设备
JP7016404B2 (ja) リソース割り当て方法、端末及びネットワークデバイス
US11272547B2 (en) Communication method, network device, and user equipment
WO2022127900A1 (zh) 资源配置方法、装置、网络节点和存储介质
CN110351836B (zh) 中继资源的配置方法和设备
WO2018112932A1 (zh) 数据传输方法和装置
CN107852704A (zh) 配置信息获取的方法和装置
WO2018171601A1 (zh) 传输信号的方法和装置
US11737065B2 (en) Common information transmission method and apparatus
EP4161147A1 (en) Network switching method and apparatus, and communication device and system
WO2018170673A1 (zh) 传输数据的方法、终端设备和网络设备
WO2022028543A1 (zh) 资源复用指示方法、装置和中继节点
KR20220050157A (ko) 리소스 다중화 방법 및 장치
WO2018171689A1 (zh) 一种信息传输方法及通信设备
AU2018402038A1 (en) BWP frequency hopping configuration method, network device and terminal
WO2021062689A1 (zh) 一种上行传输的方法及装置
WO2019001135A1 (zh) 一种资源信息传输方法、相关设备和系统
WO2022127906A1 (zh) 资源配置方法、装置、网络节点和存储介质
CN110166204B (zh) 资源分配的方法和装置
US20230337206A1 (en) Information transmission method and apparatus, iab node, and network device
WO2020192719A1 (zh) 更新波束的方法与通信装置
US20200028641A1 (en) Signal transmission method and apparatus
WO2019085660A1 (zh) 规避信号干扰的方法及网络设备
WO2018201861A1 (zh) 一种消息解码方法、发送端设备和接收端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21905831

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21905831

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 12/02/2024)