WO2022127849A1 - 通信处理方法、装置和通信设备 - Google Patents

通信处理方法、装置和通信设备 Download PDF

Info

Publication number
WO2022127849A1
WO2022127849A1 PCT/CN2021/138724 CN2021138724W WO2022127849A1 WO 2022127849 A1 WO2022127849 A1 WO 2022127849A1 CN 2021138724 W CN2021138724 W CN 2021138724W WO 2022127849 A1 WO2022127849 A1 WO 2022127849A1
Authority
WO
WIPO (PCT)
Prior art keywords
harq
target
ack
pdsch
time
Prior art date
Application number
PCT/CN2021/138724
Other languages
English (en)
French (fr)
Inventor
曾超君
李娜
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP21905775.9A priority Critical patent/EP4266820A4/en
Priority to JP2023535044A priority patent/JP2023552477A/ja
Priority to KR1020237024132A priority patent/KR20230118672A/ko
Publication of WO2022127849A1 publication Critical patent/WO2022127849A1/zh
Priority to US18/329,998 priority patent/US20230318755A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1614Details of the supervisory signal using bitmaps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1848Time-out mechanisms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1848Time-out mechanisms
    • H04L1/1851Time-out mechanisms using multiple timers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/11Semi-persistent scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing

Definitions

  • the present application belongs to the field of wireless communication technologies, and in particular relates to a communication processing method, apparatus and communication device.
  • SPSPDSCH Semi-Persistent Scheduling Physical downlink shared channel
  • HARQ-ACK hybrid automatic repeat request acknowledgement
  • Embodiments of the present application provide a communication processing method, apparatus, and communication device, which can at least solve some functions that rely on HARQ-ACK feedback or are related to HARQ-ACK feedback when the HARQ-ACK disabling scheme is adopted or the HARQ-ACK feedback delay occurs. Problems that may not perform properly, ensuring communication performance.
  • a communication processing method comprising: performing a predetermined operation according to a transmission time of a target physical downlink shared channel PDSCH; wherein the target PDSCH is configured as no-target hybrid automatic repeat request response HARQ-ACK information feedback, or, the target HARQ-ACK information corresponding to the target PDSCH has a feedback delay; the predetermined operation includes at least one of the following: determining whether the target PDSCH corresponds to a nominal HARQ-ACK feedback time unit; determining the target medium access control layer The effective time of the control unit MAC CE, the target MAC CE is carried on the target PDSCH; the target HARQ-ACK codebook corresponding to the target PDSCH is determined; the application of the first rule is determined, and the first rule represents the Timing relationship requirements between the target PDSCH and the feedback time corresponding to the target HARQ-ACK information; determine the start of the target discontinuous reception DRX timer, the target DRX timer corresponds to the first HARQ process, the first
  • a communication processing apparatus comprising: an execution module configured to execute a predetermined operation according to a transmission time of a target physical downlink shared channel PDSCH; wherein the target PDSCH is configured as an untargeted hybrid automatic repeat request In response to the HARQ-ACK information feedback, or, the target HARQ-ACK information corresponding to the target PDSCH has a feedback delay; the predetermined operation includes at least one of the following: determining whether the target PDSCH corresponds to a nominal HARQ-ACK feedback time unit; determining The effective time of the target medium access control layer control unit MAC CE, the target MAC CE is carried on the target PDSCH; determine the target HARQ-ACK codebook corresponding to the target PDSCH; determine the application of the first rule, the first A rule represents the timing relationship requirement between the target PDSCH and the feedback time corresponding to the target HARQ-ACK information; determining the start of the target DRX timer, the target DRX timer corresponding to the first HARQ
  • a communication device comprising a processor, a memory, and a program or instruction stored on the memory and executable on the processor, the program or instruction being implemented when executed by the processor.
  • a readable storage medium is provided, and a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the communication according to any one of the first aspect is implemented The steps of the processing method.
  • a chip in a fifth aspect, includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a network device program or instruction, and the implementation is as described in the first aspect Methods.
  • a computer program product comprising a processor, a memory, and a program or instruction stored on the memory and executable on the processor, the program or instruction being executed by the The processor implements the steps of the method as described in the first aspect when executed.
  • the scheduled execution can be performed according to the transmission time of the target PDSCH.
  • the predetermined operation includes at least one of the following: determine whether the target PDSCH corresponds to a nominal HARQ-ACK feedback time unit; determine the effective time of the target MAC CE; determine the target HARQ-ACK codebook corresponding to the target PDSCH; determine Application of the first rule; determine the start of the target DRX timer. Therefore, when the HARQ-ACK disabling scheme is adopted or the HARQ-ACK feedback delay occurs, the functions that rely on the HARQ-ACK feedback or related to the HARQ-ACK feedback can be normally performed, and the communication performance is ensured.
  • FIG. 1 is a schematic diagram of a wireless communication system provided by an exemplary embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a communication processing method provided by an exemplary embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a communication processing method provided by another exemplary embodiment of the present application.
  • FIG. 4 is a block diagram of a communication processing apparatus provided by an exemplary embodiment of the present application.
  • FIG. 5 is a block diagram of a communication device provided by an exemplary embodiment of the present application.
  • FIG. 6 is a block diagram of a user terminal provided by an exemplary embodiment of the present application.
  • FIG. 7 is a block diagram of a network device provided by an exemplary embodiment of the present application.
  • first, second and the like in the description and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and "first”, “second” distinguishes Usually it is a class, and the number of objects is not limited.
  • the first object may be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the associated objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies.
  • NR New Radio
  • the following description describes a New Radio (NR) system for example purposes, and uses NR terminology in most of the description below, although these techniques are also applicable to applications other than NR system applications, such as 6th generation (6 th Generation, 6G) communication system.
  • 6th generation 6 th Generation, 6G
  • FIG. 1 shows a block diagram of a wireless communication system to which the embodiments of the present application can be applied.
  • the wireless communication system includes a terminal 11 and a network device 12 .
  • the terminal 11 may also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital computer Assistant (Personal Digital Assistant, PDA), PDA, netbook, ultra-mobile personal computer (ultra-mobile personal computer, UMPC), mobile Internet Device (Mobile Internet Device, MID), wearable device (Wearable Device) or vehicle-mounted device ( VUE), pedestrian terminal (PUE) and other terminal-side devices, wearable devices include: bracelets, earphones, glasses, etc.
  • the network device 12 may be a base station or a core network, where the base station may be referred to as a Node B, an evolved Node B, an access point, a Base Transceiver Station (BTS), a radio base station, a radio transceiver, a basic service set (Basic Service Set, BSS), Extended Service Set (Extended Service Set, ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN Access Point, WiFi Node, Transmission and Reception Point (Transmitting Receiving Point, TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to a specific technical vocabulary. It should be noted that in the embodiment of this application, only the NR system is used The base station is taken as an example, but the specific type of the base station is not limited.
  • FIG. 2 it is a schematic flowchart of a communication processing method 200 provided by an exemplary embodiment of the present application.
  • the method 200 can be applied to communication devices, such as terminals, network devices, etc. Hardware and/or software implementation.
  • the method 200 may include the following steps.
  • the target PDSCH is configured without target HARQ-ACK information feedback, for example, the target PDSCH adopts or configures a HARQ-ACK disabling scheme, wherein the HARQ-ACK disabling scheme is used to reduce the feedback load, for example , assuming that the target PDSCH is the SPS PDSCH, then, in the case where the SPS PDSCH is configured with the HARQ-ACK disabling scheme, the SPS PDSCH transmission does not need to feed back the HARQ-ACK information, but the network equipment configures the transmission resources and attributes and activates the SPS PDSCH , it can ensure that the corresponding SPSPDSCH can be transmitted correctly.
  • the target HARQ-ACK information corresponding to the target PDSCH has a feedback delay.
  • the SPS HARQ-ACK corresponding to the target PDSCH in a Time Division Duplex (TDD) system may be delayed due to the transmission resources of the predefined feedback positions. The directions conflict with each other, resulting in the inability to perform feedback at the predefined feedback positions, thus requiring delayed feedback.
  • TDD Time Division Duplex
  • the target PDSCH may be SPSPDSCH or the like.
  • the target HARQ-ACK information may be the SPSHARQ-ACK information corresponding to the SPSPDSCH; in some cases, the target PDSCH may also be a dynamically scheduled PDSCH; or, the target PDSCH may also be extended to the target physical uplink sharing Channel (Physical Uplink Shared Channel, PUSCH), such as PUSCH (Configured Grant, CG), the target HARQ-ACK information can correspond to PUSCH, and is sent to the terminal by the network device, such as the target HARQ-ACK information Corresponding to the configuration authorization downlink feedback information (Configured Grant downlink feedback information, CG-DFI) in the NR-U, this embodiment does not limit it here.
  • the corresponding SPS PDSCH may also be referred to as the no-feedback SPS PDSCH hereinafter.
  • the SPS PDSCH corresponding to other SPS Config is hereinafter referred to as the regular SPS PDSCH
  • the SPS PDSCH mentioned later generally refers to the SPS PDSCH transmission corresponding to the SPS Config, including no feedback SPS PDSCH and regular SPS PDSCH.
  • the predetermined operation may include at least one of the following (1)-(5).
  • the nominal HARQ-ACK feedback time unit can be understood as: when the HARQ-ACK feedback time of SPS PDSCH needs to be used, or the HARQ-ACK feedback time unit, this nominal HARQ-ACK feedback time unit can be used unit, or the time corresponding to this nominal HARQ-ACK feedback time unit (that is, the nominal HARQ-ACK feedback time, for example, the time corresponding to the nominal HARQ-ACK feedback time unit may be the end time of this time unit), then it is guaranteed to depend on The subsequent functions or procedures of the HARQ-ACK feedback time or HARQ-ACK feedback time unit of the SPS PDSCH are performed smoothly.
  • each non-feedback SPS PDSCH can still have corresponding HARQ -ACK feedback time, that is, nominal HARQ-ACK feedback time, or nominal HARQ-ACK feedback time unit; of course, each non-feedback SPS PDSCH may also have no corresponding nominal HARQ-ACK feedback time unit.
  • this nominal HARQ-ACK feedback time unit or nominal HARQ-ACK feedback time unit (for example, based on the nominal HARQ-ACK feedback time unit)
  • This nominal HARQ-ACK feedback time is determined by the end time of The feedback moment is used as the successful transmission moment of the target PDSCH.
  • the HARQ-ACK information of this SPS PDSCH has feedback delay
  • the target MAC CE is carried on the target PDSCH.
  • MACCE-based indication mode is introduced for multiple functions, which corresponds to L2 signaling (signalling).
  • determining the effective time of the target MAC CE according to the transmission time of the target PDSCH can avoid or solve the problem that the HARQ-ACK feedback time is unavailable or ambiguous when the effective time of the target MAC CE is determined based on the HARQ-ACK feedback time, Ensure the normal execution of the aforementioned function or process based on the MAC CE indication (that is, clearly define the effective time of the MAC CE, and ensure that the network side and the terminal side have the same understanding).
  • the target MAC CE carried on the target PDSCH is the downlink MAC CE.
  • the targeted MAC CE may be an uplink MAC CE.
  • no feedback SPS PDSCH transmission has no corresponding HARQ-ACK feedback bit, or in other words, there is no corresponding HARQ-ACK codebook, however, there are some HARQ-ACK codebook types in NR Rel-15/16, in order to avoid Due to the missed detection of DCI, the two sides (that is, the terminal and the network device) have inconsistent understanding of the Codebook size (the size of the codebook, that is, the length of the HARQ-ACK bit sequence corresponding to the codebook), and the semi-statically configured Codebook size is used.
  • the codebook size does not depend on downlink data scheduling or transmission. There may still be HARQ-ACK bits corresponding to SPS PDSCH transmission without feedback in the codebook.
  • These HARQ-ACK codebook types can refer to the second type HARQ-ACK codebook mentioned in the subsequent embodiments.
  • the no-feedback SPS PDSCH transmission (which can be used as a case of the target PDSCH) corresponds to a specific codebook corresponding to a certain HARQ-ACK codebook type (which can be understood as the target HARQ-ACK).
  • the target HARQ-ACK codebook can be determined according to the transmission time of the target PDSCH, so as to ensure the correspondence between the PDSCH and the HARQ-ACK codebook on both sides and the setting of the HARQ-ACK bits in the HARQ-ACK codebook consistent understanding.
  • the first rule represents the timing relationship requirement between the target PDSCH and the feedback time corresponding to the target HARQ-ACK information, for example, the HARQ-ACK feedback of the PDSCH that starts transmission earlier is required not to be later than the later HARQ-ACK feedback of the PDSCH that starts transmission to ensure that the terminal side receives and schedules downlink control information (Downlink Control Information, DCI), receives PDSCH and feedback HARQ-ACK and other operations can be performed in a pipelined manner to avoid disorder and reduce the realization of the terminal. the complexity.
  • DCI Downlink Control Information
  • the aforementioned first rule may also be understood as an Out-of-Order rule, or an OoO rule, or a rule for ensuring order, or a rule for avoiding disorder.
  • the application of the first rule is determined based on the transmission time of the target PDSCH, which can ensure that the terminal and the network have the same understanding of the restrictions on operations such as receiving and scheduling DCI, receiving PDSCH, and feeding back HARQ-ACK, and ensuring downlink PDSCH transmission and HARQ -The smooth progress of ACK feedback, thus ensuring the performance of downlink data transmission.
  • the target DRX timer corresponds to the first HARQ process, and the first HARQ process corresponds to the target PDSCH.
  • the corresponding DRX timer may not be started to simplify terminal implementation.
  • a corresponding DRX timer or a corresponding part of the DRX timer may also be started.
  • the target DRX timer is started or not, which can ensure that the terminal and the network side have the same understanding of the state and time period of monitoring the downlink control channel, thereby ensuring the air interface data transmission performance.
  • the predetermined operation may include one or more of the foregoing (1)-(5), which may be specifically determined according to actual communication requirements, which is not limited in this embodiment.
  • the scheduled execution can be performed according to the transmission time of the target PDSCH.
  • the predetermined operation includes at least one of the following: determine whether the target PDSCH corresponds to a nominal HARQ-ACK feedback time unit; determine the effective time of the target MAC CE; determine the target HARQ-ACK codebook corresponding to the target PDSCH; determine Application of the first rule; determine the start of the target DRX timer.
  • FIG. 3 it is a schematic flowchart of a communication processing method 300 provided by an exemplary embodiment of the present application.
  • the method 300 can be applied to a communication device, such as a user terminal, a network device, etc., and can be installed in the communication device. hardware and/or software implementation.
  • the method 300 may include the following steps.
  • the implementation process of S310 may refer to the relevant description in the foregoing S210.
  • the implementation process of the S310 is different.
  • the embodiment will further describe the implementation process of S310 with reference to different examples.
  • the determining whether the target PDSCH corresponds to a nominal HARQ feedback time unit may include the following (1)-(2 ) either.
  • the target PDSCH does not correspond to the first nominal HARQ-ACK feedback time unit.
  • the target PDSCH when the target PDSCH is a non-feedback PDSCH, the target PDSCH does not correspond to (that is, does not exist) the first nominal HARQ-ACK feedback time unit (that is, the nominal HARQ-ACK feedback time unit). ).
  • the target PDSCH corresponds to the first nominal HARQ-ACK feedback time unit.
  • the determination of the first nominal HARQ-ACK feedback time unit includes any one of the following (21)-(22).
  • (21) Determine the first nominal HARQ-ACK feedback time unit based on the transmission time and the first time indicated by the predetermined indication information.
  • the transmission time is the transmission end time of the target PDSCH, or the transmission time is the time unit where the transmission end time of the target PDSCH is located.
  • the time unit at which the transmission end moment of the target PDSCH described here is located can be understood as a time unit in the uplink direction, or an uplink time unit, and specifically can be an uplink time slot, an uplink sub-slot or other predefined durations in the uplink direction.
  • the target PDSCH is located in the time unit n' in the downlink direction (that is, the downlink time unit n'), and the transmission end time of the target PDSCH is located in the time unit n in the uplink direction (that is, the uplink time unit n) , then n' and n are not necessarily equal, the downlink time unit n' and the uplink time unit n may overlap in time domain, but not necessarily completely coincident, and the time period corresponding to the target PDSCH transmission may not be completely located in the uplink.
  • the time unit n this is related to parameters such as the subcarrier spacing independently configured in the uplink direction and the downlink direction, that is, the time unit lengths in the uplink direction and the downlink direction may be equal or unequal.
  • the uplink time unit n where the end time of the target PDSCH transmission is located may be used as the transmission time.
  • the time unit may include, but is not limited to, any one of a symbol (OFDM), a sub-slot (sub-slot), and a time slot (slot).
  • the predetermined indication information may include activating downlink control information (Downlink Control Information, DCI), reactivating DCI, or high-layer signaling (such as radio resource control (Radio Resource Control, RRC) signaling, etc.).
  • DCI Downlink Control Information
  • RRC Radio Resource Control
  • the relative timing of HARQ-ACK feedback of PDSCH transmission scheduled by DCI or reactivation is thus activated by DCI or DCI.
  • Reactivate the PDSCH-to-HARQ_feedback timing indicator field in the DCI that is, the timing indication field between PDSCH and HARQ feedback
  • the higher layer parameter dl-DataToUL-ACK when there is no timing indication field between the aforementioned PDSCH and HARQ feedback in this DCI time
  • the PDSCH-to-HARQ_feedback timing indicator field in the activated DCI or the reactivated DCI or the value indicated by the higher layer parameter dl-DataToUL-ACK is k
  • the end time of the PDSCH transmission scheduled by the activated DCI or the reactivated DCI is at Uplink time slot n
  • the corresponding HARQ-ACK feedback time unit is n+k.
  • the first nominal HARQ-ACK feedback time unit determined in (22) can be understood to be obtained based on the transmission time (that is, the start time), and then delayed by a predefined time period. It should be noted that for the transmission time, reference may be made to the description in (1) above, and details are not repeated here.
  • the predefined duration may include a predetermined number of time units, and the time units may include any of symbols, sub-slots, and time slots.
  • the predefined duration (or the predetermined number) may be determined according to the duration required by the terminal to decode the target PDSCH.
  • the predefined duration may be the duration corresponding to N time-domain symbols, or may be simply understood as N time-domain symbols; in some cases, the time obtained by applying the predefined duration based on the transmission time may be further Round up, that is, take the uplink time unit whose corresponding start time is not later than the time obtained above, and use the start time of this uplink time unit, or this uplink time unit, as the first nominal HARQ corresponding to the target PDSCH - ACK feedback time unit.
  • this way of determining the predefined duration may be used.
  • the predefined duration may also be a duration corresponding to M uplink time slots, or may be simply understood as M uplink time slots, or M time units.
  • this way of determining the predefined duration may be used.
  • the predefined duration may be configured by high-layer signaling or specified based on a protocol, which is not limited.
  • the nominal HARQ-ACK feedback time unit corresponding to the target PDSCH is determined according to the transmission time of the target PDSCH, so that the function that originally depended on the HARQ-ACK feedback time can depend on the nominal HARQ-ACK.
  • the feedback time unit continues to execute, effectively ensuring the communication performance.
  • the predetermined operation is the determination of the effective time of the target MAC CE
  • the following describes the implementation process of S310 according to the difference of the target PDSCH.
  • the target MACCE may consider the successful transmission time of the target PDSCH, and then determine the effective time of the MACCE based on the successful transmission time. , as the effective time of the target MACCE.
  • the target PDSCH is in the target PDSCH
  • the transmission end time (that is, the transmission time)
  • the target PDSCH has been successfully transmitted, so the successful transmission time of the target PDSCH can be directly determined based on the transmission time, that is, the successful transmission time of the target PDSCH can be the target PDSCH
  • the transmission end time or, is the time unit where the transmission end time of the target PDSCH is located.
  • the effective time of the target MAC CE is determined based on the successful transmission time of the target PDSCH.
  • the effective time of the target MAC CE when determining the effective time of the target MAC CE, there is no need to consider the HARQ-ACK feedback time or feedback time unit corresponding to the target PDSCH, or, in other words, it is no longer based on the HARQ-ACK feedback time or feedback corresponding to the target PDSCH.
  • the time unit is used to determine the effective time of the target MAC CE carried by the target PDSCH, but the effective time of the target MAC CE carried by the target PDSCH is determined based on the transmission time of the target PDSCH (such as the above-mentioned successful transmission time).
  • the success of determining the target PDSCH For the process of the transmission time, refer to the determination process of the first nominal HARQ-ACK feedback time unit in the aforementioned example 1, and use the determined first nominal HARQ-ACK feedback time unit as the successful transmission time of the target PDSCH, and then based on the target PDSCH
  • the successful transmission time of the target MAC CE determines the effective time of the target MAC CE, in order to avoid repetition, it will not be repeated here.
  • the target PDSCH corresponds to a second nominal HARQ-ACK feedback time unit
  • the second nominal HARQ-ACK feedback time unit may be the same as the first nominal HARQ-ACK feedback time unit in the foregoing example 1, or the second nominal HARQ-ACK feedback time unit is indicated by high-layer signaling or Agreement provisions, etc., are not limited here.
  • the process of determining the second nominal HARQ-ACK feedback time unit may be Referring to the relevant description about the determination of the first nominal HARQ-ACK feedback time unit in the foregoing Example 1, details are not repeated here.
  • the process of determining the effective time of the target MAC CE may include: delaying the second nominal HARQ-ACK feedback time unit for a predetermined time period to obtain the effective time of the MAC CE time.
  • the predetermined operation is performed according to the transmission time of the target PDSCH, including any one of the following (1)-(3) item.
  • the transmission time is the transmission end time of the target PDSCH, or the transmission time is the time unit where the transmission end time of the target PDSCH is located.
  • the feedback delay duration k' can be determined according to the feedback delay time of the target HARQ-ACK information, that is, k' can be understood as delaying the transmission of the uplink time unit n+k' where the target HARQ-ACK information is fed back and the target PDSCH
  • the time domain offset between the uplink time unit n where the end time is located can be a slot slot or a sub-slot Sub-slot, and the time domain offset can also be understood as the difference with the time unit as the granularity ).
  • the target PDSCH corresponds to a second nominal HARQ-ACK feedback time unit
  • the second nominal HARQ-ACK feedback time unit may be the same as the first nominal HARQ-ACK feedback time unit in the foregoing example 1
  • the second nominal HARQ-ACK feedback time unit is indicated by high-level signaling or protocol specification, etc., in order to avoid repetition, details are not repeated here.
  • the effective time of the target MACCE is determined by the transmission time of the target PDSCH (such as the successful transmission time), which can ensure the normal execution of the process of determining the effective time of the target MACCE, and ensure that the network side and the terminal are aware of the MACCE.
  • the understanding of the effective time is consistent, thereby ensuring the communication performance.
  • This example 3 is the implementation process of S310 when the target PDSCH is configured without target HARQ-ACK information feedback, and the predetermined operation is the determination of the target HARQ-ACK codebook corresponding to the target PDSCH Introduce.
  • the target PDSCH does not correspond to the second nominal HARQ-ACK feedback time unit, the target PDSCH does not have a corresponding target HARQ-ACK codebook; or, when the target PDSCH corresponds to the second nominal HARQ-ACK feedback In the case of a time unit, the target PDSCH has a corresponding target HARQ-ACK codebook.
  • the second nominal HARQ-ACK feedback time unit reference may be made to the relevant description in the foregoing example 2, and to avoid repetition, details are not repeated here.
  • the second nominal HARQ-ACK feedback time unit may be the same as the first nominal HARQ-ACK feedback time unit in the foregoing example 1, or the second nominal HARQ-ACK feedback time unit may be through high-layer signaling Configuration or protocol provisions, etc., are not repeated here in order to avoid repetition.
  • the target HARQ-ACK codebook may correspond to a first-type HARQ-ACK codebook or a second-type HARQ-ACK codebook.
  • the first type of HARQ-ACK codebook may include a codebook (SPS HARQ-ACK only) that only includes semi-persistent scheduling HARQ-ACK, a Type-2 codebook (Type-2 codebook), an enhanced (enhanced) Type- Any of the 2codebooks.
  • the second type HARQ-ACK codebook may include Type-1 codebook or Type-3 codebook.
  • the target PDSCH has a corresponding target HARQ-ACK codebook
  • the target HARQ-ACK codebook corresponds to the first type of HARQ-ACK codebook
  • in the second nominal No HARQ-ACK information is fed back within the HARQ-ACK feedback time unit; alternatively, the first HARQ-ACK information is fed back within the second nominal HARQ-ACK feedback time unit, where the first HARQ-ACK information is other than the HARQ-ACK information other than the target HARQ-ACK information.
  • the target HARQ-ACK information here can be understood as the HARQ-ACK information that needs to be carried or reported in the target HARQ-ACK codebook when the SPS Config corresponding to the non-feedback SPS PDSCH is not configured to adopt the HARQ-ACK disabling scheme, and
  • the target HARQ-ACK information corresponds to the non-feedback SPS PDSCH (ie, the target PDSCH). It can be understood that whether the first HARQ-ACK information is fed back in the second nominal HARQ-ACK feedback time unit or not depends on whether the target HARQ-ACK codebook includes the first HARQ-ACK information and the like.
  • the number of HARQ-ACK bits in the first-type HARQ-ACK codebook may be determined based on dynamic scheduling or actual transmission of the target PDSCH.
  • the transmission situation can be understood as: the time position and quantity indicated by PDSCH transmission of HARQ-ACK or DCI need to be fed back in the time unit where the target HARQ-ACK codebook is located.
  • HARQ-ACK in a specified time unit, it can be understood as: when a certain PDSCH transmission or a certain DCI indication corresponding HARQ-ACK feedback time corresponds to a certain specified time unit (such as uplink Slot or uplink Sub-slot) when , the HARQ-ACK corresponding to the PDSCH transmission or the DCI indication is fed back within the specified time unit.
  • a certain specified time unit such as uplink Slot or uplink Sub-slot
  • the SPS HARQ-ACK bit sequence corresponding to the target HARQ-ACK codebook Does not include the HARQ-ACK bit or HARQ-ACK bit sequence corresponding to the target PDSCH, where the HARQ-ACK bit or HARQ-ACK bit sequence corresponding to the target PDSCH can be understood as a HARQ-ACK bit or bit sequence.
  • Target HARQ-ACK information corresponding to the target PDSCH can be understood as a HARQ-ACK bit or bit sequence.
  • the uplink time unit where the transmission time is located is the second nominal HARQ-ACK feedback time unit
  • the HARQ-ACK bit/bit sequence corresponding to the SPS PDSCH without feedback needs to be skipped, that is, the HARQ-ACK bit or bit sequence corresponding to the SPS PDSCH without feedback is not included in the finally obtained or transmitted SPS HARQ-ACK bit sequence.
  • Type-2 codebook or enhanced Type-2 codebook when there is an SPS HARQ-ACK, the corresponding bit sequence is appended to the dynamically scheduled HARQ-ACK bit sequence, and the organization of the SPS HARQ-ACK bit sequence can follow the SPS HARQ-ACK bit sequence. For the processing of ACK only, see the corresponding description above.
  • the second type of HARQ-ACK codebook in the case that the target PDSCH has a corresponding target HARQ-ACK codebook, and the target HARQ-ACK codebook corresponds to the second type of HARQ-ACK codebook, the second type of HARQ-ACK codebook -
  • the number of HARQ-ACK bits in the ACK codebook is determined based on high-layer semi-static parameters, and does not depend on dynamic scheduling or the actual transmission of PDSCH.
  • the second type HARQ-ACK codebook reserves the corresponding PDSCH transmission (including SPS PDSCH) in all possible situations. Therefore, for SPS PDSCH without feedback, there may also be corresponding HARQ-ACK bits in this type of codebook, and due to the limitation of the number of semi-static HARQ-ACK bits, these HARQ-ACK bits cannot pruning, otherwise it may lead to inconsistent understanding of the number of bits or the bit mapping relationship between the two sides, for example, when multiplexing with dynamic scheduling HARQ-ACK and there is a DCI missed detection.
  • the target HARQ-ACK codebook when the target PDSCH has a corresponding target HARQ-ACK codebook, and the target HARQ-ACK codebook corresponds to the second type of HARQ-ACK codebook, the target HARQ-ACK codebook is in the target HARQ-ACK codebook. There must be HARQ-ACK bits corresponding to the target PDSCH.
  • this embodiment sets the first HARQ-ACK bit in the target HARQ-ACK codebook through any one of the following (1)-(4), wherein the first HARQ-ACK The bits correspond to the target PDSCH.
  • the first predetermined value may be ACK, that is, it is assumed that the target PDSCH can always be transmitted correctly at one time, therefore, the first HARQ-ACK bit is always set to ACK.
  • the first HARQ-ACK bit may also be set to NACK.
  • the value setting of the first HARQ-ACK bit is the same as when the HARQ-ACK disabling scheme is not configured. For example, when the decoding result is that decoding fails, the value of the first HARQ-ACK bit may be set to NACK, and when the decoding result is that decoding is successful, the value of the first HARQ-ACK bit may be Set to ACK.
  • the first HARQ-ACK bit is set according to the case where the target PDSCH transmission does not occur.
  • the setting manners of the first HARQ-ACK bits are different.
  • the target HARQ-ACK codebook corresponds to a Type-1 codebook
  • the first HARQ-ACK bit is set to a second predetermined value. That is, for the Type-1 codebook, it may be considered to set the first HARQ-ACK bit to a default value (ie, a second predetermined value), where the second predetermined value may be, but not limited to, NACK.
  • the first HARQ-ACK bit is set based on the first PDSCH, the first PDSCH and the target PDSCH correspond to the same HARQ process, and The transmission time of the first PDSCH is earlier than the transmission time of the target PDSCH. That is, assuming that the target PDSCH is the SPS PDSCH, then, for the Type-3 codebook, if the most recent PDSCH transmission of a certain HARQ process is the no-feedback SPS PDSCH, the bit setting corresponding to this HARQ process is based on this HARQ before the no-feedback SPS PDSCH.
  • the first HARQ-ACK bit is set in the case of dynamic scheduling PDSCH transmission of the process, or in the case of regular SPS PDSCH transmission.
  • how the transmitting end (for example, the terminal) sets the first HARQ-ACK bit can be based on implementation, or set to an arbitrary value, because these HARQ-ACK bits are directly ignored by the receiving end (for example, the network device), No additional impact will be caused.
  • Type-1 codebook only the value of the HARQ-ACK bit (in the codebook) corresponding to the PDSCH in the uplink time unit where the HARQ-ACK feedback is directed to the codebook transmission is valid. Therefore, for the non-feedback SPS PDSCH, only When there is a corresponding nominal HARQ-ACK feedback time unit and it is the uplink time unit where the Type-1 codebook transmission is located, the HARQ-ACK bits corresponding to this non-feedback SPS PDSCH will only exist in the Type-1 codebook.
  • Type-3 codebook it is organized based on the HARQ process, so there is no need to pay attention to whether there is a corresponding nominal HARQ-ACK feedback time unit in the non-feedback SPS PDSCH, only when the most recent PDSCH transmission of a HARQ process is a non-feedback SPS PDSCH, It can be considered that there are HARQ-ACK bits corresponding to the SPS PDSCH without feedback in the Type-3 codebook including the HARQ-ACK of this HARQ process.
  • the second type of HARQ-ACK codebook it can also be considered that when there are first HARQ-ACK bits in the codebook, these first HARQ-ACK bits are removed from the codebook when the codebook is actually transmitted, and only the codebook is transmitted.
  • the (new) codebook composed of other HARQ-ACK bits in the book may lead to inconsistent understanding of the number of bits in the transmission codebook on both sides when DCI is missed at the terminal side, thus affecting the HARQ-ACK. feedback performance.
  • the codebook when it is actually transmitted, the codebook does not contain the HARQ-ACK bits corresponding to the SPS PDSCH without feedback, and the PUCCH power control variable n HARQ -The calculation of the ACK also excludes the HARQ-ACK bits corresponding to the SPS PDSCH without feedback, or, in other words, excludes the SPS PDSCH without feedback, that is, the SPS PDSCH without feedback is not included in the PDSCH or TB count.
  • the PUCCH power control corresponding to the target HARQ-ACK codebook (corresponding to the Type-1 codebook) can be calculated through the following (21) or (22). variable.
  • the target PDSCH is included in the received PDSCH count.
  • the calculation of the PUCCH power control variable n HARQ-ACK considers the first HARQ-ACK bit corresponding to the non-feedback SPS PDSCH, or considers the non-feedback SPS PDSCH or the TB (transport block) or CBG ( code block group), and its calculation method can follow the existing protocol regulations.
  • the setting method of the first HARQ-ACK bit may include setting the first HARQ-ACK bit to a first predetermined value, or setting the first HARQ-ACK bit according to the decoding result of the target PDSCH.
  • the target PDSCH is not considered (or in other words, the no-feedback SPS PDSCH is excluded, that is, the no-feedback SPS PDSCH is not included in the PDSCH or TB count).
  • the calculation of the PUCCH power control variable n HARQ-ACK does not consider the first HARQ-ACK bit corresponding to the non-feedback SPS PDSCH, or does not consider the non-feedback SPS PDSCH or the TB (transport block) it carries.
  • CBG Code Block Group
  • the aforementioned setting method of the first HARQ-ACK bit may be: according to the situation that the target PDSCH transmission does not occur, the first HARQ-ACK bit is set. No longer.
  • the target HARQ-ACK codebook corresponding to the target PDSCH and the PUCCH power control variable are determined according to the transmission time of the target PDSCH, thereby ensuring the communication performance.
  • This example 4 describes the implementation process of S310 when the predetermined operation is the application of the determining first rule.
  • the determining the application of the first rule includes any one of the following (1) and (2).
  • the first rule is not applicable to the target PDSCH.
  • the target PDSCH including the non-feedback SPS PDSCH
  • the target PDSCH does not apply the first rule, that is, because the target PDSCH has no corresponding HARQ-ACK feedback time, the first rule cannot be applied; in the case that the target PDSCH corresponds to a nominal HARQ-ACK feedback time unit, the first rule can be applied to the target PDSCH.
  • the target PDSCH including the non-feedback SPS PDSCH, still applies the first rule.
  • the HARQ-ACK feedback time corresponding to the target PDSCH needs to be used.
  • the first rule can be applied by using its corresponding nominal HARQ-ACK feedback time unit as the corresponding HARQ-ACK feedback time; If the target PDSCH does not correspond to the nominal HARQ-ACK feedback time unit, other methods may be used to determine its corresponding HARQ-ACK feedback time and apply the first rule.
  • the first rule may apply to the target PDSCH if the target PDSCH corresponds to a nominal HARQ-ACK feedback time unit.
  • the above-mentioned first rule may be applied based on the nominal HARQ-ACK feedback time unit corresponding to the non-feedback target PDSCH. It can be understood that, in the case where the first rule applies to the target PDSCH, the first feedback moment corresponding to the target HARQ-ACK information may be the second nominal HARQ-ACK feedback time unit corresponding to the target PDSCH. .
  • the second nominal HARQ-ACK feedback time unit may be the same as the first nominal HARQ-ACK feedback time unit in the foregoing example 1, or the second nominal HARQ-ACK feedback time unit is configured by high-layer signaling or Agreement provisions, etc., are not limited here. It can be understood that in the case where the second nominal HARQ-ACK feedback time unit is the same as the first nominal HARQ-ACK feedback time unit in the foregoing example 1, the process of determining the second nominal HARQ-ACK feedback time unit may be Referring to the related description about the first nominal HARQ-ACK feedback time unit in the foregoing example 1, details are not repeated here.
  • the application of the determining the first rule includes any one of the following (1) or (2).
  • the first rule is not applicable to the target PDSCH.
  • the predefined HARQ-ACK feedback position cannot actually be fed back, so the first rule does not apply to the target PDSCH.
  • the delayed HARQ-ACK feedback position can be regarded as HARQ-ACK retransmission, based on the conclusion that the OoO requirement for retransmission of HARQ-ACK in NR-U is relaxed (ie, the OoO requirement is only applied to the initial allocation for HARQ-ACK).
  • the transmission opportunity (assigned initial HARQ-ACK transmission occasion) does not need to apply the OoO rule (that is, the first rule).
  • the second feedback time is the feedback time of the target HARQ-ACK information corresponding to the target PDSCH.
  • the feedback delay time is determined according to the feedback delay time of the target HARQ-ACK information.
  • This example 5 describes the implementation process of S310 based on the predetermined operation being the activation of the determined target DRX timer.
  • the target DRX timer includes a downlink HARQ round-trip time timer (drx-HARQ-RTT-TimerDL) and the downlink retransmission timer (drx-Retransmission-TimerDL).
  • the starting of the determining the target DRX timer may include any one of the following (1)-(4).
  • the drx-HARQ-RTT-TimerDL and the drx-RetransmissionTimerDL are not activated.
  • the drx-HARQ-RTT-TimerDL is not activated, but the drx-RetransmissionTimerDL is activated.
  • the starting of the drx-HARQ-RTT-TimerDL may include: starting the drx-HARQ-RTT-TimerDL at the third feedback moment; wherein, the third feedback moment passes the following Any of (a)-(d) is determined.
  • the implementation process of the communication processing method given in this embodiment may include one or more of the foregoing examples 1 to 5.
  • the predetermined operation includes determining the Whether the target PDSCH corresponds to the nominal HARQ-ACK feedback time unit; and in the case of determining the effective time of the target MAC CE, the implementation process of the communication processing method may include the implementations in Example 1 and Example 2, and this embodiment is for this No restrictions.
  • HARQ-ACK disabling scheme when adopted for a certain SPS Config configuration, a series of adaptive solutions are introduced for functions and procedures that rely on or relate to HARQ-ACK feedback, thereby ensuring that HARQ-ACK can be fully applied Disbaling scheme to achieve the goal of reducing the SPS HARQ-ACK feedback load.
  • each communication device (including the terminal-side device and the network-side device) involved in the communication processing process has a consistent understanding of the communication processing method.
  • Transmission time when a predetermined operation is performed, a corresponding protocol or configuration is preset in the network-side device corresponding to the terminal-side device, so that the network-side device can understand the aforementioned operations performed by the terminal-side device, thereby ensuring the smooth execution of the communication process. .
  • the execution body may be a communication processing apparatus, or a control module in the communication processing apparatus for executing the communication processing method.
  • the communication processing device provided by the embodiment of the present application is described by taking the communication processing device executing the communication processing method as an example.
  • the apparatus includes an execution module 410, configured to perform a predetermined operation according to the transmission time of the target physical downlink shared channel PDSCH; wherein, the The target PDSCH is configured to have no target HARQ-ACK information feedback, or the target HARQ-ACK information corresponding to the target PDSCH has feedback delay; the predetermined operation includes at least one of the following: determining the Whether the target PDSCH corresponds to the nominal HARQ-ACK feedback time unit; determine the effective time of the target MAC CE, which is carried on the target PDSCH; determine the target HARQ-ACK codebook corresponding to the target PDSCH; determine the first The application of the rule, the first rule represents the timing relationship requirement between the target PDSCH and the feedback time corresponding to the target HARQ-ACK information; determine the start of the target discontinuous reception DRX timer, the target DRX timer Corresponding to the first HARQ process, and
  • the execution module 410 determines a nominal HARQ feedback time unit corresponding to the target PDSCH, Including any one of the following: the target PDSCH does not correspond to the first nominal HARQ-ACK feedback time unit; the target PDSCH corresponds to the first nominal HARQ-ACK feedback time unit.
  • the execution module 410 is configured to perform any one of the following: based on the transmission time and predetermined indication information The indicated first time, the first nominal HARQ-ACK feedback time unit is determined; based on the transmission time and the predefined duration, the first nominal HARQ-ACK feedback time unit is determined; wherein, the transmission time is the The transmission end time of the target PDSCH, or the transmission time is the time unit where the transmission end time of the target PDSCH is located.
  • the execution module 410 uses In any of the following: determine the effective time of the target MAC CE based on the transmission time; determine the effective time of the target MAC CE based on the transmission time and the first time indicated by the predetermined indication information; The transmission time and the predefined duration are used to determine the effective time of the target MAC CE; in the case that the target PDSCH corresponds to the second nominal HARQ-ACK feedback time unit, based on the second nominal HARQ-ACK feedback time unit, Determine the effective time of the target MAC CE; wherein, the transmission time is the transmission end time of the target PDSCH, or the transmission time is the time unit where the transmission end time of the target PDSCH is located.
  • the execution module 410 uses In any one of the following: determine the effective time of the target MAC CE based on the transmission time and the first time indicated by the predetermined indication information; determine the effective time of the target MAC CE based on the transmission time and the feedback delay time time; when the target PDSCH corresponds to a second nominal HARQ-ACK feedback time unit, determine the effective time of the target MAC CE based on the second nominal HARQ-ACK feedback time unit; wherein, the transmission time is the transmission end time of the target PDSCH, or the transmission time is the time unit where the transmission end time of the target PDSCH is located, and the feedback delay duration is determined according to the feedback delay time of the target HARQ-ACK information.
  • the executing module 410 is configured to include any one of the following: in the case that the target PDSCH does not correspond to the second nominal HARQ-ACK feedback time unit, the target PDSCH does not have a corresponding target HARQ-ACK codebook; In the case that the target PDSCH corresponds to the second nominal HARQ-ACK feedback time unit, the target PDSCH has a corresponding target HARQ-ACK codebook.
  • the target PDSCH corresponds to a target HARQ-ACK codebook
  • the target HARQ-ACK codebook is an actual codebook to be transmitted
  • the target HARQ-ACK codebook may correspond to the first type HARQ-ACK codebook or the second type HARQ-ACK codebook.
  • the HARQ-ACK codebook of the first type includes any one of the following: a codebook that only includes semi-persistent scheduling HARQ-ACK; a Type-2 codebook; an enhanced Type-2 codebook; 2codebook; and/or, the second type HARQ-ACK codebook includes any one of the following: Type-1 codebook; Type-3 codebook.
  • the SPS HARQ-ACK corresponding to the target HARQ-ACK codebook The bit sequence does not include the HARQ-ACK bit or HARQ-ACK bit sequence corresponding to the target PDSCH.
  • the execution module 410 is further configured to perform any one of the following: in the first type of HARQ-ACK codebook No HARQ-ACK information is fed back in the two nominal HARQ-ACK feedback time units; the first HARQ-ACK information is fed back in the second nominal HARQ-ACK feedback time unit, and the first HARQ-ACK information is a HARQ-ACK information other than the target HARQ-ACK information.
  • the first HARQ-ACK bits in the target HARQ-ACK codebook includes any one of the following: setting the first HARQ-ACK bit to a first predetermined value; setting the first HARQ-ACK bit according to the decoding result of the target PDSCH; In this case, the first HARQ-ACK bit is set; wherein, the first HARQ-ACK bit corresponds to the target PDSCH.
  • the setting of the first HARQ-ACK bit according to the condition that the target PDSCH transmission does not occur includes: when the target HARQ-ACK codebook corresponds to a Type-1 codebook , the first HARQ-ACK bit is set to a second predetermined value; in the case that the target HARQ-ACK codebook corresponds to a Type-3 codebook, the first HARQ-ACK bit is set based on the first PDSCH, and the first HARQ-ACK bit is set based on the first PDSCH.
  • a PDSCH and the target PDSCH correspond to the same HARQ process, and the transmission time of the first PDSCH is earlier than the transmission time of the target PDSCH.
  • the executing module 410 is further configured to calculate the corresponding value of the target HARQ-ACK codebook by any one of the following when the target HARQ-ACK codebook corresponds to the Type-1 codebook Physical uplink control channel PUCCH power control variable: In the case of calculating the PUCCH power control variable, the target PDSCH is included in the received PDSCH count; in the case of calculating the PUCCH power control variable, the Target PDSCH.
  • the determining the application of the first rule includes any one of the following: the target PDSCH is not applicable to all the first rule; the target PDSCH applies the first rule.
  • the first feedback moment corresponding to the target HARQ-ACK information is the second nominal HARQ-ACK corresponding to the target PDSCH Feedback time unit.
  • the determining the application of the first rule includes any one of the following: the target PDSCH does not apply the first rule A rule; the target PDSCH applies the first rule.
  • the second feedback moment of the target HARQ-ACK information corresponding to the target PDSCH is determined by any of the following methods: based on the The transmission time and the first time indicated by the predetermined indication information are used to determine the second feedback time; based on the transmission time and the feedback delay time, the second feedback time is determined; when the target PDSCH corresponds to the second nominal HARQ- In the case of the ACK feedback time unit, the second feedback time is determined based on the second nominal HARQ-ACK feedback time unit; wherein the transmission time is the transmission end time of the target PDSCH, or the transmission The time is the time unit where the transmission end time of the target PDSCH is located, and the feedback delay duration is determined according to the feedback delay time of the target HARQ-ACK information.
  • the target DRX timer includes a downlink HARQ round-trip time timer drx- HARQ-RTT-TimerDL and downlink retransmission timer drx-Retransmission-TimerDL.
  • the starting of the determining the target DRX timer includes any one of the following: not starting the drx-HARQ-RTT-TimerDL and the drx-RetransmissionTimerDL; starting the drx-HARQ-RTT - TimerDL, and in the case of the drx-HARQ-RTT-TimerDL timeout, do not start the drx-RetransmissionTimerDL; start the drx-HARQ-RTT-TimerDL, and in the drx-HARQ-RTT-TimerDL timeout and if the first HARQ process is not successfully decoded, the drx-RetransmissionTimerDL is activated; the drx-HARQ-RTT-TimerDL is not activated, but the drx-RetransmissionTimerDL is activated.
  • the starting the drx-HARQ-RTT-TimerDL includes: starting the drx-HARQ-RTT-TimerDL at the third feedback moment; wherein, the third feedback moment passes the following Any one of the determinations: determine the third feedback time based on the transmission time; determine the third feedback time based on the transmission time and the first time indicated by the predetermined indication information; determine the third feedback time based on the transmission time and the predetermined time.
  • the duration Define the duration, and determine the third feedback time; in the case that the target PDSCH corresponds to a second nominal HARQ-ACK feedback time unit, determine the third feedback time based on the second nominal HARQ-ACK feedback time unit ; wherein, the transmission time is the transmission end time of the target PDSCH, or the transmission time is the time unit where the transmission end time of the target PDSCH is located.
  • the predetermined indication information includes activating DCI, reactivating DCI, or high-layer signaling.
  • the predefined duration includes a predetermined number of time units.
  • the time unit includes any one of a symbol, a subslot, and a time slot.
  • the target PDSCH includes the SPS PDSCH.
  • the foregoing communication processing apparatus 400 provided in this embodiment of the present application can implement each process implemented by the method embodiments in FIG. 2 to FIG. 3 , and achieve the same technical effect, which is not repeated here to avoid repetition.
  • the communication processing apparatus 400 in this embodiment of the present application may be an apparatus, and may also be a component, an integrated circuit, or a chip in a terminal.
  • the device may be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may include, but is not limited to, the types of terminals 11 listed above, and the non-mobile terminal may be a server, a network attached storage (NAS), a personal computer (personal computer, PC), a television ( television, TV), teller machine, or self-service machine, etc., which are not specifically limited in the embodiments of the present application.
  • the communication processing device in the embodiment of the present application may be a device having an operating system.
  • the operating system may be an Android (Android) operating system, an ios operating system, or other possible operating systems, which are not specifically limited in the embodiments of the present application.
  • an exemplary embodiment of the present application further provides a communication device 500, including a processor 501, a memory 502, and a program or instruction stored in the memory 502 and executable on the processor 501, such as , when the communication device 500 is a terminal, when the program or instruction is executed by the processor 501, each process of the above-mentioned embodiment of the communication processing method is implemented, and the same technical effect can be achieved.
  • the communication device 500 is a network device, when the program or instruction is executed by the processor 501, each process of the above communication processing method embodiments can be implemented, and the same technical effect can be achieved. To avoid repetition, details are not described here.
  • the communication device 500 may be a terminal.
  • FIG. 6 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 600 includes but is not limited to: a radio frequency unit 601, a network module 602, an audio output unit 603, an input unit 604, a sensor 605, a display unit 606, a user input unit 607, an interface unit 608, a memory 609, a processor 610 and other components .
  • the terminal 600 may also include a power source (such as a battery) for supplying power to various components, and the power source may be logically connected to the processor 610 through a power management system, so as to manage charging, discharging, and power consumption through the power management system management and other functions.
  • a power source such as a battery
  • the terminal structure shown in FIG. 6 does not constitute a limitation on the terminal, and the terminal may include more or less components than shown, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 604 may include a graphics processor (Graphics Processing Unit, GPU) 1041 and a microphone 6042. Such as camera) to obtain still pictures or video image data for processing.
  • the display unit 606 may include a display panel 6061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 607 includes a touch panel 6071 and other input devices 6072 .
  • the touch panel 6071 is also called a touch screen.
  • the touch panel 6071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 6072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which are not described herein again.
  • the radio frequency unit 601 receives the downlink data from the network device, and then processes it to the processor 610; in addition, sends the uplink data to the network device.
  • the radio frequency unit 601 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • Memory 609 may be used to store software programs or instructions as well as various data.
  • the memory 609 may mainly include a stored program or instruction area and a storage data area, wherein the stored program or instruction area may store an operating system, an application program or instruction required for at least one function (such as a sound playback function, an image playback function, etc.) and the like.
  • the memory 609 may include a high-speed random access memory, and may also include a non-volatile memory, wherein the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM) ), erasable programmable read-only memory (ErasablePROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • ErasablePROM ErasablePROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory for example at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • the processor 610 may include one or more processing units; optionally, the processor 610 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, and application programs or instructions, etc. Modem processors mainly deal with wireless communications, such as baseband processors. It can be understood that, the above-mentioned modulation and demodulation processor may not be integrated into the processor 610.
  • the processor 610 invokes the instructions or programs in the memory 609 to execute the method executed by each module shown in FIG. 4 , and achieves the same technical effect. To avoid repetition, details are not described here.
  • the communication device 500 may also be a network device.
  • the network device is a block diagram of the network device 700 .
  • the network device may include: an antenna 701 , a radio frequency device 702 , and a baseband device 703.
  • the antenna 701 is connected to the radio frequency device 702 .
  • the radio frequency device 702 receives information through the antenna 701, and sends the received information to the baseband device 703 for processing.
  • the baseband device 703 processes the information to be sent and sends it to the radio frequency device 702
  • the radio frequency device 702 processes the received information and sends it out through the antenna 701 .
  • the above-mentioned frequency band processing apparatus may be located in the baseband apparatus 703, and the method performed by the network device in the above embodiments may be implemented in the baseband apparatus 703, where the baseband apparatus 703 includes a processor 704 and a memory 705.
  • the baseband device 703 may include, for example, at least one baseband board on which multiple chips are arranged. As shown in FIG. 7 , one of the chips is, for example, the processor 704 , which is connected to the memory 705 to call a program in the memory 705 to execute The network devices shown in the above method embodiments operate.
  • the baseband device 703 may further include a network interface 706 for exchanging information with the radio frequency device 702, and the interface is, for example, a common public radio interface (CPRI for short).
  • CPRI common public radio interface
  • the network device in the embodiment of the present invention further includes: instructions or programs stored in the memory 705 and executable on the processor 704, and the processor 704 invokes the instructions or programs in the memory 705 to execute the modules shown in FIG. 4 to execute method, and achieve the same technical effect, in order to avoid repetition, it is not repeated here.
  • Embodiments of the present application further provide a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, each process of the foregoing communication processing method embodiment can be achieved, and the same In order to avoid repetition, the technical effect will not be repeated here.
  • the processor is the processor in the terminal described in the foregoing embodiment.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • An embodiment of the present application further provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run a network device program or instruction to implement the above communication processing method In order to avoid repetition, the details are not repeated here.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.
  • Embodiments of the present application also provide a computer program product, the computer program product includes a processor, a memory, and a program or instruction stored on the memory and executable on the processor, the program or instruction being When the processor is executed, each process of the above communication processing method embodiment is implemented, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • the method of the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course can also be implemented by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or in a part that contributes to the prior art, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, CD-ROM), including several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of this application.
  • a storage medium such as ROM/RAM, magnetic disk, CD-ROM

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

本申请公开了一种通信处理方法、装置和通信设备,属于无线通信技术领域。其中,方法包括:根据目标物理下行共享信道PDSCH的传输时间,执行预定操作;其中,目标PDSCH被配置为无目标混合自动重传请求应答HARQ-ACK信息反馈,或者,目标PDSCH对应的目标HARQ-ACK信息存在反馈延迟;预定操作包括以下至少一项:确定目标PDSCH是否对应名义HARQ-ACK反馈时间单元;确定目标介质访问控制层控制单元MAC CE的生效时刻;确定目标PDSCH对应的目标HARQ-ACK码本;确定第一规则的应用;确定目标非连续接收DRX定时器的启动。

Description

通信处理方法、装置和通信设备
交叉引用
本发明要求在2020年12月18日提交中国专利局、申请号为202011511911.2、发明名称为“通信处理方法、装置和通信设备”的中国专利申请的优先权,该申请的全部内容通过引用结合在本发明中。
技术领域
本申请属于无线通信技术领域,具体涉及一种通信处理方法、装置和通信设备。
背景技术
相关通信技术中,以半持续调度物理下行共享信道(Semi-Persistent Scheduling Physical downlink shared channel,SPSPDSCH)为例,在SPSPDSCH采用混合自动重传请求应答(Hybrid automatic repeat request acknowledgement,HARQ-ACK)disabling方案(即禁用、关闭或免除HARQ-ACK反馈)时,或者在SPSPDSCH对应的HARQ-ACK出现反馈延迟时,一些依赖HARQ-ACK反馈或与HARQ-ACK反馈相关的功能可能无法正常执行,导致通信性能下降。
发明内容
本申请实施例提供一种通信处理方法、装置和通信设备,至少能够解决在采用HARQ-ACK disabling方案或出现HARQ-ACK反馈延迟时,一些依赖HARQ-ACK反馈或与HARQ-ACK反馈相关的功能可能无法正常执行的问题,确保了通信性能。
第一方面,提供了一种通信处理方法,包括:根据目标物理下行共享信道PDSCH的传输时间,执行预定操作;其中,所述目标PDSCH被配置为无 目标混合自动重传请求应答HARQ-ACK信息反馈,或者,所述目标PDSCH对应的目标HARQ-ACK信息存在反馈延迟;所述预定操作包括以下至少一项:确定所述目标PDSCH是否对应名义HARQ-ACK反馈时间单元;确定目标介质访问控制层控制单元MAC CE的生效时刻,所述目标MAC CE承载于所述目标PDSCH上;确定所述目标PDSCH对应的目标HARQ-ACK码本;确定第一规则的应用,所述第一规则表征所述目标PDSCH与所述目标HARQ-ACK信息对应的反馈时刻之间的定时关系要求;确定目标非连续接收DRX定时器的启动,所述目标DRX定时器与第一HARQ进程对应,所述第一HARQ进程与所述目标PDSCH对应。
第二方面,提供了一种通信处理装置,包括:执行模块,用于根据目标物理下行共享信道PDSCH的传输时间,执行预定操作;其中,所述目标PDSCH被配置为无目标混合自动重传请求应答HARQ-ACK信息反馈,或者,所述目标PDSCH对应的目标HARQ-ACK信息存在反馈延迟;所述预定操作包括以下至少一项:确定所述目标PDSCH是否对应名义HARQ-ACK反馈时间单元;确定目标介质访问控制层控制单元MAC CE的生效时刻,所述目标MAC CE承载于所述目标PDSCH上;确定所述目标PDSCH对应的目标HARQ-ACK码本;确定第一规则的应用,所述第一规则表征所述目标PDSCH与所述目标HARQ-ACK信息对应的反馈时刻之间的定时关系要求;确定目标非连续接收DRX定时器的启动,所述目标DRX定时器与第一HARQ进程对应,所述第一HARQ进程与所述目标PDSCH对应。
第三方面,提供了一种通信设备,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的通信处理方法的步骤。
第四方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的任一项所述的通信处理方法的步骤。
第五方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通 信接口和所述处理器耦合,所述处理器用于运行网络设备程序或指令,实现如第一方面所述的方法。
第六方面,提供了一种计算机程序产品,该计算机程序产品包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
在本申请实施例中,对于目标PDSCH被配置为无目标HARQ-ACK信息反馈,或者,所述目标PDSCH对应的目标HARQ-ACK信息存在反馈延迟的情况,可根据目标PDSCH的传输时间,执行预定操作,其中,预定操作包括以下至少一项:确定所述目标PDSCH是否对应名义HARQ-ACK反馈时间单元;确定目标MAC CE的生效时刻;确定所述目标PDSCH对应的目标HARQ-ACK码本;确定第一规则的应用;确定目标DRX定时器的启动。由此,能够在采用HARQ-ACK disabling方案或出现HARQ-ACK反馈延迟时,使得依赖HARQ-ACK反馈或与HARQ-ACK反馈相关的功能正常执行,确保了通信性能。
附图说明
图1是本申请一示例性实施例提供的无线通信系统的示意图。
图2是本申请一示例性实施例提供的通信处理方法的流程示意图。
图3是本申请另一示例性实施例提供的通信处理方法的流程示意图。
图4是本申请一示例性实施例提供的通信处理装置的框图。
图5是本申请一示例性实施例提供的通信设备的框图。
图6是本申请一示例性实施例提供的用户终端的框图。
图7是本申请一示例性实施例提供的网络设备的框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施 例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。然而,以下描述出于示例目的描述了新空口(NewRadio,NR)系统,并且在以下大部分描述中使用NR术语,尽管这些技术也可应用于NR系统应用以外的应用,如第6代(6 thGeneration,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile  InternetDevice,MID)、可穿戴式设备(Wearable Device)或车载设备(VUE)、行人终端(PUE)等终端侧设备,可穿戴式设备包括:手环、耳机、眼镜等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络设备12可以是基站或核心网,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点、发送接收点(TransmittingReceivingPoint,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的技术方案进行详细地说明。
如图2所示,为本申请一示例性实施例提供的通信处理方法200的流程示意图,该方法200可应用于通信设备,如终端、网络设备等,具体可由安装于所述通信设备中的硬件和/或软件执行。
所述方法200可以包括如下步骤。
S210,根据目标PDSCH的传输时间,执行预定操作。
其中,所述目标PDSCH被配置为无目标HARQ-ACK信息反馈,例如,所述目标PDSCH采用或配置了HARQ-ACK disabling方案,其中,所述HARQ-ACK disabling方案是用于减轻反馈负荷,例如,假设所述目标PDSCH为SPS PDSCH,那么,在所述SPS PDSCH配置了HARQ-ACK disabling方案的情况下,SPSPDSCH传输不用反馈HARQ-ACK信息,但网络设备在配置传输资源和属性并激活SPS PDSCH时,可确保对应的SPSPDSCH能正确传输。
或者,所述目标PDSCH对应的目标HARQ-ACK信息存在反馈延迟,例如,时分复用(Time Division Duplex,TDD)系统中的目标PDSCH对应的 SPS HARQ-ACK可能会因为预定义反馈位置的传输资源的方向冲突,导致无法在预定义反馈位置执行反馈,从而需要延迟反馈。
本实施例中,所述目标PDSCH可以是SPSPDSCH等。相应的,所述目标HARQ-ACK信息可以是SPSPDSCH对应的SPSHARQ-ACK信息;一些情形下,所述目标PDSCH也可以是动态调度的PDSCH;或者,所述目标PDSCH还可以推广到目标物理上行共享信道(Physical Uplink Shared Channel,PUSCH),例如配置授权PUSCH(Configured Grant,CG),此时所述目标HARQ-ACK信息可以与PUSCH对应,由网络设备发送给终端,例如所述目标HARQ-ACK信息对应NR-U中的配置授权下行反馈信息(Configured Grant downlink feedback information,CG-DFI),本实施例在此不做限制。
应注意,为便于描述,在后续实施例中,当所述目标PDSCH的某项SPS配置(SPSConfig)配置了HARQ-ACK disabling方案时,其对应的SPS PDSCH下文也可称之为无反馈SPS PDSCH,而其它(未配置HARQ-ACK disabling的)SPS Config对应的SPS PDSCH下文称之为常规SPS PDSCH,而对于后续提到的SPS PDSCH则泛指SPS Config对应的SPS PDSCH传输,包括无反馈SPS PDSCH和常规SPS PDSCH。
进一步,所述预定操作可以包括以下(1)-(5)中至少一项。
(1)确定所述目标PDSCH是否对应名义HARQ-ACK反馈时间单元。
其中,以SPSPDSCH为例,所述名义HARQ-ACK反馈时间单元可以理解为:当需要使用SPS PDSCH的HARQ-ACK反馈时刻,或者HARQ-ACK反馈时间单元时,可以使用此名义HARQ-ACK反馈时间单元,或者此名义HARQ-ACK反馈时间单元对应的时刻(即名义HARQ-ACK反馈时刻,例如,名义HARQ-ACK反馈时间单元对应的时刻可以为此时间单元的结束时刻),则可保证依赖于SPS PDSCH的HARQ-ACK反馈时刻或HARQ-ACK反馈时间单元的后续功能或过程顺利执行。
对于无反馈SPS PDSCH(也就是,配置为无HARQ-ACK信息反馈的SPS Config对应的SPS PDSCH),虽然高层已配置无需作HARQ-ACK反馈,但 每个无反馈SPS PDSCH仍然可以存在对应的HARQ-ACK反馈时刻,也即名义HARQ-ACK反馈时刻,或名义HARQ-ACK反馈时间单元;当然,每个无反馈SPS PDSCH也可以不存在对应的名义HARQ-ACK反馈时间单元。
可选地,当某个无反馈SPS PDSCH存在对应的名义HARQ-ACK反馈时间单元时,在此名义HARQ-ACK反馈时间单元或名义HARQ-ACK反馈时刻(例如,基于名义HARQ-ACK反馈时间单元的结束时刻来确定此名义HARQ-ACK反馈时刻),此无反馈SPS PDSCH,即所述目标PDSCH,可被认为已确认成功传输,因此也可将名义HARQ-ACK反馈时间单元或名义HARQ-ACK反馈时刻作为所述目标PDSCH的成功传输时刻。
对于对应HARQ-ACK信息存在反馈时延的SPS PDSCH(例如,在TDD系统中,因为预定义反馈时间位置的资源不可用,导致此SPS PDSCH的HARQ-ACK信息存在反馈时延),也可以引入名义HARQ-ACK反馈时间单元或名义HARQ-ACK反馈时刻的概念,此时名义HARQ-ACK反馈时间单元或名义HARQ-ACK反馈时刻可以基于预定义/预指示的反馈时间单元/反馈时刻来确定,也可以基于其它方式来确定。
(2)确定目标介质访问控制层控制单元(Medium Access Control-Control Element,MAC CE)的生效时刻。
其中,所述目标MAC CE承载于所述目标PDSCH上。在NR中,对于多个功能引入了基于MACCE的指示方式,其对应L2信令(signalling)。本实施例中根据目标PDSCH的传输时间确定目标MAC CE的生效时刻,能够避免或解决当基于HARQ-ACK反馈时刻确定目标MAC CE的生效时刻时,HARQ-ACK反馈时刻不可用或者模糊的问题,确保前述的基于MAC CE指示这一功能或过程的正常执行(即明确定义MAC CE的生效时刻,并保证网络侧和终端侧的理解一致)。可以理解的是,在目标PDSCH上承载的目标MAC CE为下行MAC CE。当本实施例推广到PUSCH时,相应地,针对的MAC CE可以为上行MAC CE。
(3)确定所述目标PDSCH对应的目标HARQ-ACK码本。
一般而言,无反馈SPS PDSCH传输没有对应的HARQ-ACK反馈比特,或者说,没有对应的HARQ-ACK码本,但是,在NR Rel-15/16中存在一些HARQ-ACK codebook类型,为了避免因为DCI漏检等导致两侧(也即终端和网络设备)对于Codebook size(码本大小,即码本对应的HARQ-ACK比特序列的长度)理解不一致,采用半静态配置的Codebook size,此时Codebook size并不依赖于下行数据调度或传输情况,在Codebook中可能仍存在与无反馈SPS PDSCH传输对应的HARQ-ACK比特,这些HARQ-ACK比特在发送端的设置和在接收端的理解需要相应的规定;这些HARQ-ACK codebook类型可以参照后续实施例中提及的第二类型HARQ-ACK码本。另外,还有一些其它的HARQ-ACK codebook类型,其中包含的HARQ-ACK比特以及取值的设置依赖于下行数据调度或传输情况;这些HARQ-ACK codebook类型可以参照后续实施例中提及的第一类型HARQ-ACK码本。
对于上述提及的不同HARQ-ACK codebook类型,无反馈SPS PDSCH传输(可作为目标PDSCH的一种情况)与某种HARQ-ACK codebook类型对应的某个具体码本(可以理解为目标HARQ-ACK码本)之间的对应关系,以及此具体码本中HARQ-ACK比特的设置,需要相应的规则,以保证两侧理解的一致性。本实施例中,可根据目标PDSCH的传输时间,确定目标HARQ-ACK码本,以确保两侧对于PDSCH与HARQ-ACK码本的对应关系,以及HARQ-ACK码本中HARQ-ACK比特的设置的理解一致。
(4)确定第一规则的应用。
其中,所述第一规则表征所述目标PDSCH与所述目标HARQ-ACK信息对应的反馈时刻之间的定时关系要求,如,要求较早开始传输的PDSCH的HARQ-ACK反馈不能晚于较晚开始传输的PDSCH的HARQ-ACK反馈,以确保终端侧接收调度下行控制信息(Downlink Control Information,DCI)、接收PDSCH和反馈HARQ-ACK等操作能够以流水线方式执行,避免乱序,降低终端的实现复杂度。需理解,前述的第一规则也可以理解为Out-of-Order规则,或者OoO规则,或者保证顺序的规则,或者避免乱序的规则。
本实施例中,通过目标PDSCH的传输时间,确定第一规则的应用,能够确保终端与网络侧对于接收调度DCI、接收PDSCH和反馈HARQ-ACK等操作的限制理解一致,保证下行PDSCH传输和HARQ-ACK反馈的顺利进行,从而确保下行数据传输性能。
(5)确定目标非连续接收(Discontinuous Reception,DRX)定时器的启动。
其中,所述目标DRX定时器与第一HARQ进程对应,所述第一HARQ进程与所述目标PDSCH对应。
考虑到对于无反馈SPSPDSCH,在高层配置HARQ-ACK disabling方案时已假设或期望其能够一次性传输正确,无需HARQ重传。因此,在DRX机制中,对于无反馈SPS PDSCH传输对应的HARQ进程,可以不启动对应的DRX定时器,以简化终端实现。当然,作为一种实现方式,也可以启动对应的DRX定时器或对应的部分DRX定时器。
本实施例中根据目标PDSCH的传输时间,确定目标DRX定时器的启动或不启动,能够确保终端和网络侧对于监听下行控制信道的状态和时间段理解一致,从而保证了空口数据传输性能。
可以理解,所述预定操作可以包括前述(1)-(5)中的一项或多项,具体可根据实际通信需求确定,本实施例对此不做限制。
在本申请实施例中,对于目标PDSCH被配置为无目标HARQ-ACK信息反馈,或者,所述目标PDSCH对应的目标HARQ-ACK信息存在反馈延迟的情况,可根据目标PDSCH的传输时间,执行预定操作,其中,预定操作包括以下至少一项:确定所述目标PDSCH是否对应名义HARQ-ACK反馈时间单元;确定目标MAC CE的生效时刻;确定所述目标PDSCH对应的目标HARQ-ACK码本;确定第一规则的应用;确定目标DRX定时器的启动。由此,能够使得依赖HARQ-ACK反馈或与HARQ-ACK反馈相关的功能正常执行,确保了通信性能。
如图3所示,为本申请一示例性实施例提供的通信处理方法300的流程示意图,该方法300可应用于通信设备,如用户终端、网络设备等,具体可由安装于所述通信设备中的硬件和/或软件执行。所述方法300可以包括如下步骤。
S310,根据目标物理下行共享信道PDSCH的传输时间,执行预定操作。
其中,S310的实现过程除可参照前述S210中的相关描述之外,在本实施例中,根据所述目标PDSCH和/或所述预定操作的不同,所述S310的实现过程有所不同,本实施例将结合不同的示例,对S310的实现过程作进一步说明。
示例1
在所述预定操作为所述确定所述目标PDSCH是否对应名义HARQ-ACK反馈时间单元的情况下,所述确定所述目标PDSCH是否对应名义HARQ反馈时间单元,可以包括以下(1)-(2)任一项。
(1)所述目标PDSCH不对应第一名义HARQ-ACK反馈时间单元。
一种实现方式中,在所述目标PDSCH为无反馈PDSCH的情况下,所述目标PDSCH不对应(也即不存在)第一名义HARQ-ACK反馈时间单元(也就是名义HARQ-ACK反馈时间单元)。
(2)所述目标PDSCH对应第一名义HARQ-ACK反馈时间单元。
其中,在所述目标PDSCH对应第一名义HARQ-ACK反馈时间单元的情况下,所述第一名义HARQ-ACK反馈时间单元的确定,包括以下(21)-(22)任一项。
(21)基于所述传输时间以及预定指示信息所指示的第一时间,确定所述第一名义HARQ-ACK反馈时间单元。
其中,所述传输时间为所述目标PDSCH的传输结束时刻,或者,所述传输时间为所述目标PDSCH的传输结束时刻所在的时间单元。这里所述目标PDSCH的传输结束时刻所在的时间单元,可以理解为上行方向的时间单元,或上行时间单元,具体可以为上行时隙、上行子时隙或上行方向的其它 预定义时长。
可以理解的是,假设所述目标PDSCH位于下行方向的时间单元n’(即下行时间单元n’)内,所述目标PDSCH的传输结束时刻位于上行方向的时间单元n(即上行时间单元n)内,则n’和n不一定相等,下行时间单元n’和上行时间单元n会存在时域交叠,但不一定完全重合,所述目标PDSCH传输对应的时间段也不一定完整地位于上行时间单元n内,这与上行方向和下行方向分别独立配置的子载波间隔等参数有关,即上行方向和下行方向的时间单元长度既可以相等,也可以不等。本实施例中,为了便于统一的理解,可将所述目标PDSCH传输的结束时刻所在的上行时间单元n作为所述传输时间。另外,所述时间单元可以包括但不限于符号(OFDM)、子时隙(sub-slot)、时隙(slot)中的任一项。
所述预定指示信息可以包括激活下行控制信息(Downlink Control Information,DCI)、重激活DCI或高层信令(如无线资源控制(Radio Resource Control,RRC)信令等)。当所述目标PDSCH为SPS PDSCH时,所述激活DCI/重激活DCI用于实现对包含所述目标PDSCH在内的一系列SPS PDSCH的激活或重激活。
一种实现方式中,以某项SPS Config为例,当其由下行DCI激活或重激活之后,由此激活DCI或重激活DCI调度的PDSCH传输的HARQ-ACK反馈的相对定时由此激活DCI或重激活DCI中的PDSCH-to-HARQ_feedback timing indicator域(即PDSCH与HARQ反馈之间定时指示域)或高层参数dl-DataToUL-ACK(当此DCI中不存在前述PDSCH与HARQ反馈之间定时指示域时)来指示。例如,假设此激活DCI或重激活DCI中的PDSCH-to-HARQ_feedback timing indicator域或高层参数dl-DataToUL-ACK指示的取值为k,此激活DCI或重激活DCI调度的PDSCH传输的结束时刻位于上行时隙n,则对应的HARQ-ACK反馈时间单元为n+k。在此PDSCH传输之后,在释放之前,周期性出现的一系列PDSCH传输或传输机会,即SPS PDSCH,可以作为目标PDSCH的一种。这些SPS PDSCH或目标PDSCH 的结束时刻所在的上行时间单元与其预定指示的第一时间,或者第一时间单元之间的偏移量仍保持为k,即假设目标PDSCH的结束时刻位于上行时间单元n”,则对应的第一名义HARQ-ACK反馈时间单元为n”+k。
(22)基于所述传输时间以及预定义时长,确定所述第一名义HARQ-ACK反馈时间单元。
其中,(22)中确定的第一名义HARQ-ACK反馈时间单元可以理解为基于所述传输时间(也即起始时刻),向后再延迟一个预定义时长得到。应注意,关于所述传输时间可参照前述(1)中的描述,在此不再赘述。
所述预定义时长可以包括预定数量个时间单元,所述时间单元可以包括符号、子时隙、时隙中的任一项。本实施例中,所述预定义时长(或所述预定数量)可根据终端解码目标PDSCH所需的时长确定。
例如,所述预定义时长可以是N个时域符号对应的时长,或者可以简单理解为N个时域符号;一些情形下,可以将基于所述传输时间应用此预定义时长后得到的时刻进一步往上取整,即取对应的开始时刻不晚于上述得到的时刻的上行时间单元,将此上行时间单元的开始时刻,或者将此上行时间单元,作为目标PDSCH对应的所述第一名义HARQ-ACK反馈时间单元。可选地,当前述起始时刻考虑采用目标PDSCH传输的结束时刻时,可以采用这种预定义时长的确定方式。
又例如,所述预定义时长还可以是M个上行时隙对应的时长,或者可以简单理解为M个上行时隙,或者M个时间单元。可选地,当前述起始时刻采用目标PDSCH的传输结束时刻所在上行时间单元的结束时刻时,可以采用这种预定义时长的确定方式。
应注意,所述预定义时长可以由高层信令配置或基于协议规定,对此不做限制。
可以理解的是,本示例1中根据目标PDSCH的传输时间,确定目标PDSCH对应的名义HARQ-ACK反馈时间单元,使得原有依赖于HARQ-ACK反馈时刻实现的功能,可依赖于名义HARQ-ACK反馈时间单元继续执行, 有效确保了通信性能。
示例2
在所述预定操作为所述确定目标MAC CE的生效时刻的情况下,下面根据所述目标PDSCH的不同对S310的实现过程进行介绍。
第一种实现方式中,在所述目标PDSCH被配置为无目标HARQ-ACK信息反馈的情况下,可认为高层已配置目标PDSCH无目标HARQ-ACK信息反馈,在此情况下,所述目标MACCE的生效时刻可考虑所述目标PDSCH的成功传输时刻,再基于该成功传输时刻确定所述MACCE的生效时刻,例如,可在所述目标PDSCH的成功传输时刻上再延迟一预定时长(如3ms),作为所述目标MACCE的生效时刻。
基于此,下面对通过以下(1)-(4)任一项确定所述目标MACCE的生效时刻的过程进行说明。
(1)基于所述传输时间,确定所述目标MAC CE的生效时刻。
其中,关于所述传输时间可参照示例1中的相关描述,在此不再赘述。
另外,考虑到高层已配置目标PDSCH无HARQ-ACK信息反馈,也即,高层配置HARQ-ACK disabling时已假设或期望无反馈SPS PDSCH一次性传输正确,无需HARQ重传,则可以认为在目标PDSCH的传输结束时刻(即所述传输时间),所述目标PDSCH已成功传输,因此目标PDSCH成功传输时刻可以直接基于所述传输时间确定,也就是,目标PDSCH成功传输时刻可以是所述目标PDSCH的传输结束时刻,或者,是所述目标PDSCH的传输结束时刻所在的时间单元。
最后,基于所述目标PDSCH的成功传输时刻确定所述目标MAC CE的生效时刻。
可以理解的是,此时在确定目标MAC CE的生效时刻时,无需考虑目标PDSCH对应的HARQ-ACK反馈时刻或反馈时间单元,或者说,不再基于目标PDSCH对应的HARQ-ACK反馈时刻或反馈时间单元来确定此目标PDSCH承载的目标MACCE的生效时刻,而是基于目标PDSCH的传输时间 (如前述的成功传输时刻)来确定此目标PDSCH承载的目标MACCE的生效时刻。
(2)基于所述传输时间以及预定指示信息所指示的第一时间,确定所述目标MAC CE的生效时刻。
(3)基于所述传输时间以及预定义时长,确定所述目标MAC CE的生效时刻。
应注意,考虑到所述目标PDSCH对应的第一名义HARQ-ACK反馈时间单元可作为所述目标PDSCH的成功传输时刻,因此,前述(2)和(3)中,确定所述目标PDSCH的成功传输时刻的过程可参照前述示例1中关于第一名义HARQ-ACK反馈时间单元的确定过程,将确定的第一名义HARQ-ACK反馈时间单元作为所述目标PDSCH的成功传输时刻,再基于目标PDSCH的成功传输时刻确定所述目标MAC CE的生效时刻,为避免重复,在此不再赘述。
(4)在所述目标PDSCH对应第二名义HARQ-ACK反馈时间单元的情况下,基于所述第二名义HARQ-ACK反馈时间单元,确定所述目标MAC CE的生效时刻。
其中,所述第二名义HARQ-ACK反馈时间单元可以与前述示例1中的第一名义HARQ-ACK反馈时间单元相同,或者,所述第二名义HARQ-ACK反馈时间单元通过高层信令指示或协议规定等,在此不做限制。
可以理解,在所述第二名义HARQ-ACK反馈时间单元与前述示例1中的第一名义HARQ-ACK反馈时间单元相同的情况下,所述第二名义HARQ-ACK反馈时间单元的确定过程可以参照前述示例1中的关于第一名义HARQ-ACK反馈时间单元的确定的相关描述,在此不再赘述。
进一步,基于所述第二名义HARQ-ACK反馈时间单元,确定所述目标MAC CE的生效时刻的过程可以包括:将第二名义HARQ-ACK反馈时间单元延迟预定时长,得到所述MAC CE的生效时刻。
第二种实现方式中,在所述目标PDSCH对应的目标HARQ-ACK信息存 在反馈延迟的情况下,所述根据目标PDSCH的传输时间,执行预定操作,包括以下(1)-(3)任一项。
(1)基于所述传输时间以及预定指示信息所指示的第一时间,确定所述目标MAC CE的生效时刻。
其中,关于(1)中确定所述目标MAC CE的生效时刻的确定过程可参照前述相关描述,为避免重复,在此不再赘述。
(2)基于所述传输时间以及反馈延迟时长,确定所述目标MAC CE的生效时刻。
其中,所述传输时间为所述目标PDSCH的传输结束时刻,或者,所述传输时间为所述目标PDSCH的传输结束时刻所在的时间单元。
所述反馈延迟时长k’可根据所述目标HARQ-ACK信息的反馈延迟时间确定,也就是,k’可以理解为延迟目标HARQ-ACK信息反馈所在上行时间单元n+k’与目标PDSCH的传输结束时刻所在上行时间单元n之间的时域偏移量(这里的时间单元可以为时隙Slot或子时隙Sub-slot,时域偏移量也可以理解为以时间单元为粒度的差值)。
可以理解,前述(2)中,也可看作首先基于所述传输时间以及反馈延迟时长确定所述目标PDSCH的成功传输时刻,再基于所述成功传输时刻确定所述目标MACCE的生效时刻,如在所述成功传输时刻的基础上延迟一预定时长得到所述目标MACCE的生效时刻。
(3)在所述目标PDSCH对应第二名义HARQ-ACK反馈时间单元的情况下,基于所述第二名义HARQ-ACK反馈时间单元,确定所述目标MAC CE的生效时刻。
其中,前述(3)的实现过程可参照前述第一种实现方式中的相关描述,如所述第二名义HARQ-ACK反馈时间单元可以与前述示例1中的第一名义HARQ-ACK反馈时间单元相同,或者,所述第二名义HARQ-ACK反馈时间单元通过高层信令指示或协议规定等,为避免重复,在此不再赘述。
在本示例2中,对于目标PDSCH,通过目标PDSCH的传输时间(如成 功传输时刻)确定目标MACCE的生效时刻,能够确保目标MACCE的生效时刻的确定流程的正常执行,确保网络侧和终端对于MACCE生效时间的理解一致,从而保证了通信性能。
示例3
本示例3是在所述目标PDSCH被配置为无目标HARQ-ACK信息反馈、且所述预定操作为所述确定所述目标PDSCH对应的目标HARQ-ACK码本的情况下,对S310的实现过程进行介绍。
在所述目标PDSCH不对应第二名义HARQ-ACK反馈时间单元的情况下,所述目标PDSCH不存在对应的目标HARQ-ACK码本;或者,在所述目标PDSCH对应第二名义HARQ-ACK反馈时间单元的情况下,所述目标PDSCH存在对应的目标HARQ-ACK码本。其中,关于所述第二名义HARQ-ACK反馈时间单元可参照前述示例2中的相关描述,为避免重复,在此不再赘述。
可以理解,所述第二名义HARQ-ACK反馈时间单元可以与前述示例1中的第一名义HARQ-ACK反馈时间单元相同,或者,所述第二名义HARQ-ACK反馈时间单元可以通过高层信令配置或协议规定等,为避免重复,在此不再赘述。
本实施例中,所述目标HARQ-ACK码本可以对应第一类型HARQ-ACK码本或第二类型HARQ-ACK码本。其中,所述第一类型HARQ-ACK码本可包括仅包含半持续调度HARQ-ACK的码本(SPS HARQ-ACK only)、类型2码本(Type-2codebook)、增强的(enhanced)Type-2codebook中的任意一种。所述第二类型HARQ-ACK码本可包括Type-1codebook或Type-3codebook。
第一种实现方式中,在所述目标PDSCH存在对应的目标HARQ-ACK码本、且所述目标HARQ-ACK码本对应第一类型HARQ-ACK码本的情况下,在所述第二名义HARQ-ACK反馈时间单元内不反馈任何HARQ-ACK信息;或者,在所述第二名义HARQ-ACK反馈时间单元内反馈第一HARQ-ACK信息,所述第一HARQ-ACK信息是除所述目标HARQ-ACK信息之外的其他HARQ-ACK信息。这里的目标HARQ-ACK信息,可以理解为当无反馈SPS  PDSCH对应的SPS Config未被配置采用HARQ-ACK disabling方案时,在目标HARQ-ACK码本中需要承载或上报的HARQ-ACK信息,并且目标HARQ-ACK信息与无反馈SPS PDSCH(即目标PDSCH)对应。可以理解,前述在第二名义HARQ-ACK反馈时间单元内是否反馈第一HARQ-ACK信息等,依赖于在所述目标HARQ-ACK码本中是否包含第一HARQ-ACK信息等。
示例性的,假设除了所述目标PDSCH对应的目标HARQ-ACK信息之外,无其它HARQ-ACK信息(包括针对动态调度PDSCH、常规SPS PDSCH以及SPS释放的HARQ-ACK等)需要在第二名义HARQ-ACK反馈时间单元内反馈时,那么,在此第二名义HARQ-ACK反馈时间单元内不反馈任何HARQ-ACK,也可以理解为不反馈第一HARQ-ACK信息;否则在此第二名义HARQ-ACK反馈时间单元内仅反馈除目标PDSCH对应的目标HARQ-ACK信息之外的其它HARQ-ACK,作为反馈的第一HARQ-ACK信息。
在此实现方式中,所述第一类型HARQ-ACK码本中的HARQ-ACK比特数可以基于动态调度或实际传输的所述目标PDSCH的传输情况确定。其中,所述传输情况可以理解为:需要在所述目标HARQ-ACK码本所在时间单元内反馈HARQ-ACK的PDSCH传输或DCI指示的时间位置和数量。关于在指定时间单元内反馈HARQ-ACK,可以理解为:当某个PDSCH传输或某个DCI指示对应的HARQ-ACK反馈时间对应与某一指定时间单元(如上行Slot或上行Sub-slot)时,在此指定时间单元内反馈此PDSCH传输或此DCI指示对应的HARQ-ACK。
但需注意的是,在所述目标HARQ-ACK码本对应所述仅包含半持续调度HARQ-ACK的码本的情况下,所述目标HARQ-ACK码本对应的SPS HARQ-ACK比特序列中不包含所述目标PDSCH对应的HARQ-ACK比特或HARQ-ACK比特序列,这里所述目标PDSCH对应的HARQ-ACK比特或HARQ-ACK比特序列可以理解为以HARQ-ACK比特或比特序列形式表示的所述目标PDSCH对应的目标HARQ-ACK信息。例如,对于SPS HARQ-ACK  only这种码本,当其传输时间所在上行时间单元为第二名义HARQ-ACK反馈时间单元时,在组织SPS HARQ-ACK比特序列时,可按照“Serving cell->SPS Config->DL slot”循环结构进行,或者针对包含Serving cell、SPS Config和DL slot/SPS PDSCH这些维度在内的多个维度按指定顺序进行循环确定SPS HARQ-ACK比特序列,在循环过程中需跳过无反馈SPS PDSCH对应的HARQ-ACK比特/比特序列,即在最终得到或传输的SPS HARQ-ACK比特序列中不包含无反馈SPS PDSCH对应的HARQ-ACK比特或比特序列。
一些情形下,对于Type-2codebook或enhanced Type-2codebook,当存在SPS HARQ-ACK时,对应的比特序列附在动态调度HARQ-ACK比特序列之后,SPS HARQ-ACK比特序列的组织可沿用SPS HARQ-ACK only时的处理,参见前面的对应描述。
第二种实现方式中,在所述目标PDSCH存在对应的目标HARQ-ACK码本、且所述目标HARQ-ACK码本对应第二类型HARQ-ACK码本的情况下,所述第二类型HARQ-ACK码本中的HARQ-ACK比特数基于高层半静态参数确定,而不依赖于动态调度或实际传输的PDSCH的传输情况。
本实施例中,为了能够兼容各种动态调度或实际传输的PDSCH的传输情况,在第二类型HARQ-ACK码本中对于所有可能的情况下的PDSCH传输(包括SPS PDSCH)都预留了对应的HARQ-ACK比特,因此对于无反馈SPS PDSCH,在这类码本中可能也会存在对应的HARQ-ACK比特,并且由于半静态HARQ-ACK比特数属性的限制,这些HARQ-ACK比特并不能删减,否则可能会导致两侧对于比特数或比特映射关系理解的不一致,例如,当与动态调度HARQ-ACK复用且存在DCI漏检时。
可以理解的是,当所述目标PDSCH存在对应的目标HARQ-ACK码本、且所述目标HARQ-ACK码本对应第二类型HARQ-ACK码本时,在所述目标HARQ-ACK码本中必然存在与目标PDSCH对应的HARQ-ACK比特。
在此情况下,本实施例通过以下(1)-(4)中任一项对所述目标HARQ-ACK码本中的第一HARQ-ACK比特进行设置,其中,所述第一 HARQ-ACK比特与所述目标PDSCH对应。
(1)设置所述第一HARQ-ACK比特为第一预定值。
其中,所述第一预定值可以为ACK,也就是,假设所述目标PDSCH总是可以一次性传输正确,因此,将所述第一HARQ-ACK比特总设置为ACK。可选地,也可以将第一HARQ-ACK比特设置为NACK。
(2)根据所述目标PDSCH的解码结果设置所述第一HARQ-ACK比特。
其中,所述第一HARQ-ACK比特的取值设置与没有配置HARQ-ACK disabling方案时一致。例如,在所述解码结果为解码失败时,所述第一HARQ-ACK比特的取值可以设置为NACK,在所述解码结果为解码成功时,所述第一HARQ-ACK比特的取值可以设置为ACK。
(3)按照没有发生所述目标PDSCH传输的情况,设置所述第一HARQ-ACK比特。
其中,根据所述第二类型HARQ-ACK码本的不同,所述第一HARQ-ACK比特的设置方式有所区别。例如,在所述目标HARQ-ACK码本对应Type-1codebook的情况下,设置所述第一HARQ-ACK比特为第二预定值。也就是,对于Type-1codebook,可以考虑将所述第一HARQ-ACK比特设置为默认值(即第二预定值),其中,所述第二预定值可以是但不限于NACK。
又例如,在所述目标HARQ-ACK码本对应Type-3codebook的情况下,基于第一PDSCH设置所述第一HARQ-ACK比特,所述第一PDSCH与所述目标PDSCH对应同一HARQ进程、且所述第一PDSCH的传输时间早于所述目标PDSCH的传输时间。也就是,假设目标PDSCH为SPSPDSCH,那么,对于Type-3codebook,如果某个HARQ进程最近的PDSCH传输为无反馈SPS PDSCH,则此HARQ进程对应的比特设置基于在此无反馈SPS PDSCH之前针对此HARQ进程的动态调度PDSCH传输情况,或者常规SPS PDSCH传输的情况进行第一HARQ-ACK比特的设置。
(4)对于发送端如何设置所述第一HARQ-ACK比特不作任何限定,接收端忽略所述第一HARQ-ACK比特的取值。
此时,发送端(例如,终端)如何设置所述第一HARQ-ACK比特可以基于实现,或者设置为任意值,因为这些HARQ-ACK比特在接收端(例如,网络设备)会被直接忽略,不会造成额外的影响。
需要说明的是,对于Type-1codebook,仅HARQ-ACK反馈指向码本传输所在上行时间单元的PDSCH对应的(码本中)HARQ-ACK比特的取值才有效,因此对于无反馈SPS PDSCH,仅当其存在对应的名义HARQ-ACK反馈时间单元、且为Type-1codebook传输所在上行时间单元时,才会在Type-1codebook中存在与此无反馈SPS PDSCH对应的HARQ-ACK比特。需要注意的是,对于某个上行时间单元(例如某个上行时隙或子时隙),如果除了无反馈SPS PDSCH对应的HARQ-ACK之外,并无针对动态调度PDSCH或者SPS释放的HARQ-ACK反馈,则并不会反馈常规的Type-1codebook,此时可以参考第一类型HARQ-ACK码本中针对SPS HARQ-ACK only的相应处理。当无反馈SPS PDSCH不存在对应的名义HARQ-ACK反馈时间单元时,其不会对应任何上行时间单元内的Type-1codebook。
对于Type-3codebook,其基于HARQ进程来组织,因此无需关注无反馈SPS PDSCH是否存在对应的名义HARQ-ACK反馈时间单元,仅当某一HARQ进程最近的PDSCH传输为某一无反馈SPS PDSCH时,即可认为包含此HARQ进程的HARQ-ACK的Type-3codebook中存在无反馈SPS PDSCH对应的HARQ-ACK比特。
可以理解的是,当HARQ-ACK比特设置为ACK时,其比特值可以设置为1,当HARQ-ACK比特设置为NACK时,其比特值可以设置为0。
一些情形下,对于第二类型HARQ-ACK码本,也可以考虑当其存在第一HARQ-ACK比特时,这些第一HARQ-ACK比特在码本实际传输时从码本中剔除,只传输码本中其它HARQ-ACK比特构成的(新)码本,但这种方式可能会导致当DCI在终端侧发生漏检时,两侧对于传输码本的比特数的理解不一致,从而影响HARQ-ACK反馈性能。
在前述两种实现方式的基础上,由于基于相关协议规定,当PUCCH上 承载的上行控制信息(UCI)比特数不超过11(即O ACK+O SR+O CSI≤11,O ACK、O SR和O CSI分别为HARQ-ACK码本大小、调度请求(Scheduling Request,SR)比特数和信道状态信息(Channel State Information,CSI)比特数)时,需要计算Type-1codebook或Type-2codebook中有效HARQ-ACK比特数,即PUCCH功控变量n HARQ-ACK,以用于确定PUCCH发送功率的调整量。
下面针对不同的码本类型对所述PUCCH功控变量的计算进行说明。
(1)对于第一类型HARQ-ACK码本(包括Type-2codebook),当其实际传输时,在码本中不包含无反馈SPS PDSCH对应的HARQ-ACK比特,此时PUCCH功控变量n HARQ-ACK的计算也排除无反馈SPS PDSCH对应的HARQ-ACK比特,或者说,排除无反馈SPS PDSCH,即不将无反馈SPS PDSCH纳入PDSCH或TB计数。
(2)对于第二类型HARQ-ACK码本,因为Type-3codebook目前不考虑UCI比特数不超过11的情况,所以本实施例在此仅对Type-1codebook对应的PUCCH功控变量的计算进行说明。
其中,在所述目标HARQ-ACK码本对应Type-1codebook的情况下,可通过以下(21)或(22)计算所述目标HARQ-ACK码本(与Type-1codebook对应)对应的PUCCH功控变量。
(21)在计算所述PUCCH功控变量的情况下,将所述目标PDSCH纳入接收到的PDSCH计数中。在此计算方式中,可以认为PUCCH功控变量n HARQ-ACK的计算考虑无反馈SPS PDSCH对应的第一HARQ-ACK比特,或者考虑无反馈SPS PDSCH或其承载的TB(传输块)或CBG(码块组),其计算方式可沿用现有的协议规定。
此外,该第一HARQ-ACK比特的设置方式可以包括设置所述第一HARQ-ACK比特为第一预定值,或者根据所述目标PDSCH的解码结果设置所述第一HARQ-ACK比特,具体可参见前述相关描述,为避免重复,在此不再赘述。
(22)在计算所述PUCCH功控变量的情况下,不考虑所述目标PDSCH (或者说,排除无反馈SPS PDSCH,即不将无反馈SPS PDSCH纳入PDSCH或TB计数)。在此计算方式中,可以认为:PUCCH功控变量n HARQ-ACK的计算不考虑无反馈SPS PDSCH对应的第一HARQ-ACK比特,或者不考虑无反馈SPS PDSCH或其承载的TB(传输块)或CBG(码块组),即在计算PUCCH功控变量时将其排除在外。
此外,前述的第一HARQ-ACK比特的设置方式可以为:按照没有发生所述目标PDSCH传输的情况,设置所述第一HARQ-ACK比特,具体可参见前述相关描述,为避免重复,在此不再赘述。
本示例3中,对于目标PDSCH,根据目标PDSCH的传输时间,确定目标PDSCH对应的目标HARQ-ACK码本,以及PUCCH功控变量,由此,能够确保通信性能。
示例4
本示例4是在所述预定操作为所述确定第一规则的应用的情况下,对S310的实现过程进行说明。
第一种实现方式中,在所述目标PDSCH被配置为无目标HARQ-ACK信息反馈的情况下,所述确定第一规则的应用,包括以下(1)和(2)中任一项。
(1)所述目标PDSCH不适用所述第一规则。
其中,可以对目标PDSCH,包括无反馈SPS PDSCH,统一规定不适用所述第一规则,因为基于配置,其并无实际的HARQ-ACK反馈。一些情形下,在所述目标PDSCH不对应名义HARQ-ACK反馈时间单元的情况下,所述目标PDSCH不适用所述第一规则,也就是,因为所述目标PDSCH并无对应的HARQ-ACK反馈时刻,无法应用所述第一规则;在所述目标PDSCH对应名义HARQ-ACK反馈时间单元的情况下,所述目标PDSCH可适用所述第一规则。
(2)所述目标PDSCH适用所述第一规则。
其中,可以对目标PDSCH,包括无反馈SPS PDSCH,统一规定其仍然适用所述第一规则。此时,在应用所述第一规则时,需要使用目标PDSCH对应的HARQ-ACK反馈时刻。此时,在所述目标PDSCH对应名义HARQ-ACK反馈时间单元的情况下,可使用其对应的名义HARQ-ACK反馈时间单元作为对应的HARQ-ACK反馈时刻来应用所述第一规则;在所述目标PDSCH不对应名义HARQ-ACK反馈时间单元的情况下,可使用其它方式来确定其对应的HARQ-ACK反馈时刻并应用所述第一规则。
一些情形下,可在所述目标PDSCH对应名义HARQ-ACK反馈时间单元的情况下,所述目标PDSCH适用所述第一规则。在此情况下,可以基于无反馈目标PDSCH对应的名义HARQ-ACK反馈时间单元来应用上述第一规则。可以理解的是,在所述目标PDSCH适用所述第一规则的情况下,所述目标HARQ-ACK信息对应的第一反馈时刻可以为所述目标PDSCH对应的第二名义HARQ-ACK反馈时间单元。
其中,所述第二名义HARQ-ACK反馈时间单元可以与前述示例1中的第一名义HARQ-ACK反馈时间单元相同,或者,所述第二名义HARQ-ACK反馈时间单元通过高层信令配置或协议规定等,在此不做限制。可以理解,在所述第二名义HARQ-ACK反馈时间单元与前述示例1中的第一名义HARQ-ACK反馈时间单元相同的情况下,所述第二名义HARQ-ACK反馈时间单元的确定过程可以参照前述示例1中的关于第一名义HARQ-ACK反馈时间单元的相关描述,在此不再赘述。
第二种实现方式,在所述目标PDSCH对应的目标HARQ-ACK信息存在反馈延迟的情况下,所述确定第一规则的应用,包括以下(1)或(2)任一项。
(1)所述目标PDSCH不适用所述第一规则。
可以理解,对于所述目标PDSCH,预定义的HARQ-ACK反馈位置实际无法反馈,因此所述目标PDSCH不适用第一规则。而延迟的HARQ-ACK反馈位置可看作HARQ-ACK重传,基于NR-U中对于重传HARQ-ACK的OoO 要求进行放松的结论(即,OoO要求仅应用于为HARQ-ACK分配的初始传输机会(assigned initial HARQ-ACK transmission occasion),也无需再应用OoO规则(也即第一规则)。
(2)所述目标PDSCH适用所述第一规则。
可以理解,所述目标PDSCH适用PDSCH接收与HARQ-ACK反馈之间的OoO规则,此时应用OoO规则的第二反馈时刻可通过以下(1)-(3)中任一方式确定,所述第二反馈时刻为所述目标PDSCH对应的目标HARQ-ACK信息的反馈时刻。
(1)基于所述传输时间以及预定指示信息所指示的第一时间,确定所述第二反馈时刻;其中,所述传输时间为所述目标PDSCH的传输结束时刻,或者,所述传输时间为所述目标PDSCH的传输结束时刻所在的时间单元。
(2)基于所述传输时间以及反馈延迟时长,确定所述第二反馈时刻;所述反馈延迟时长根据所述目标HARQ-ACK信息的反馈延迟时间确定。
(3)在所述目标PDSCH对应第二名义HARQ-ACK反馈时间单元的情况下,基于所述第二名义HARQ-ACK反馈时间单元,确定所述第二反馈时刻。
示例5
本示例5是基于所述预定操作为所述确定目标DRX定时器的开启,对所述S310的实现过程进行说明。
其中,在所述目标PDSCH被配置为无目标HARQ-ACK信息反馈、且配置开启了DRX机制的情况下,所述目标DRX定时器包括下行HARQ往返时间定时器(drx-HARQ-RTT-TimerDL)和下行重传定时器(drx-Retransmission-TimerDL)。
本示例中,所述确定目标DRX定时器的启动可以包括以下(1)-(4)中的任一项。
(1)在接收到所述目标PDSCH之后,不启动所述drx-HARQ-RTT-TimerDL以及所述drx-RetransmissionTimerDL。
(2)在接收到所述目标PDSCH之后,启动所述drx-HARQ-RTT-TimerDL,以及在所述drx-HARQ-RTT-TimerDL超时的情况下,不启动所述drx-RetransmissionTimerDL。
(3)在接收到所述目标PDSCH之后,启动所述drx-HARQ-RTT-TimerDL,以及在所述drx-HARQ-RTT-TimerDL超时、且所述第一HARQ进程未成功解码的情况下,启动所述drx-RetransmissionTimerDL。
(4)在接收到所述目标PDSCH之后,不启动所述drx-HARQ-RTT-TimerDL,但启动所述drx-RetransmissionTimerDL。
在前述四种实现方式中,所述启动所述drx-HARQ-RTT-TimerDL,可以包括:在第三反馈时刻启动所述drx-HARQ-RTT-TimerDL;其中,所述第三反馈时刻通过以下(a)-(d)任一项确定。
(a)基于所述传输时间,确定所述第三反馈时刻;其中,所述传输时间为所述目标PDSCH的传输结束时刻,或者,所述传输时间为所述目标PDSCH的传输结束时刻所在的时间单元。
(b)基于所述传输时间以及预定指示信息所指示的第一时间,确定所述第三反馈时刻。
(c)基于所述传输时间以及预定义时长,确定所述第三反馈时刻。
(d)在所述目标PDSCH对应第二名义HARQ-ACK反馈时间单元的情况下,基于所述第二名义HARQ-ACK反馈时间单元,确定所述第三反馈时刻。
基于(a)-(d)确定所述第三反馈时刻的过程可参照前述各示例中的相关描述,为避免重复,在此不再赘述。
基于前述各示例,根据所述预定操作的不同,本实施例给出的通信处理方法的实现过程可以包括前述示例1-示例5中的一个或多个,例如,在所述预定操作包括确定所述目标PDSCH是否对应名义HARQ-ACK反馈时间单元;以及确定目标MAC CE的生效时刻的情况下,所述通信处理方法的实现过程可以包括示例1和示例2中的实现方式,本实施例对此不做限制。
此外,本实施例给出的通信处理方法300中,对于不同的目标PDSCH和/或预定操作,引入了一系列的适配性解决方案,以确保通信性能。
例如,当针对某项SPS Config配置采用HARQ-ACK disabling方案时,针对依赖于HARQ-ACK反馈或与其有关的功能和过程引入了一系列适配性解决方案,从而保证可完整地应用HARQ-ACK disbaling方案,以实现降低SPS HARQ-ACK反馈负荷的目标。
又例如,当针对TDD系统中的SPS HARQ-ACK被延迟反馈时,针对依赖于HARQ-ACK反馈或与其有关的功能和过程引入了一系列适配性解决方案,从而保证UE和网络两侧理解的一致性。
需要说明的是,前述各实施例中,通信处理过程中涉及的各通信设备(包括终端侧设备和网络侧设备)对通信处理方法均具有一致的理解,例如,在终端侧设备根据目标PDSCH的传输时间,执行预定操作时,与所述终端侧设备对应的网络侧设备中预设有对应的协议或配置,使得网络侧设备能够理解终端侧设备执行的前述操作,从而确保通信过程的顺利执行。
此外,本申请实施例提供的通信处理方法,执行主体可以为通信处理装置,或者,该通信处理装置中的用于执行通信处理方法的控制模块。本申请实施例中以通信处理装置执行通信处理方法为例,说明本申请实施例提供的通信处理装置。
如图4示,为本申请一示例性实施例提供的通信处理装置400的框图,所述装置包括执行模块410,用于根据目标物理下行共享信道PDSCH的传输时间,执行预定操作;其中,所述目标PDSCH被配置为无目标混合自动重传请求应答HARQ-ACK信息反馈,或者,所述目标PDSCH对应的目标HARQ-ACK信息存在反馈延迟;所述预定操作包括以下至少一项:确定所述目标PDSCH是否对应名义HARQ-ACK反馈时间单元;确定目标MAC CE的生效时刻,所述目标MAC CE承载于所述目标PDSCH上;确定所述目标PDSCH对应的目标HARQ-ACK码本;确定第一规则的应用,所述第一规则表征所述目标PDSCH与所述目标HARQ-ACK信息对应的反馈时刻之间的定 时关系要求;确定目标非连续接收DRX定时器的启动,所述目标DRX定时器与第一HARQ进程对应,所述第一HARQ进程与所述目标PDSCH对应。
作为一种可能的实现方式,在所述预定操作为确定所述目标PDSCH是否对应名义HARQ-ACK反馈时间单元的情况下,所述执行模块410确定所述目标PDSCH对应的名义HARQ反馈时间单元,包括以下任一项:所述目标PDSCH不对应第一名义HARQ-ACK反馈时间单元;所述目标PDSCH对应第一名义HARQ-ACK反馈时间单元。
作为另一种可能的实现方式,在所述目标PDSCH对应第一名义HARQ-ACK反馈时间单元的情况下,所述执行模块410用于以下任一项:基于所述传输时间以及预定指示信息所指示的第一时间,确定所述第一名义HARQ-ACK反馈时间单元;基于所述传输时间以及预定义时长,确定所述第一名义HARQ-ACK反馈时间单元;其中,所述传输时间为所述目标PDSCH的传输结束时刻,或者,所述传输时间为所述目标PDSCH的传输结束时刻所在的时间单元。
作为另一种可能的实现方式,在所述目标PDSCH被配置为无目标HARQ-ACK信息反馈、且所述预定操作为所述确定目标MAC CE的生效时刻的情况下,所述执行模块410用于以下任一项:基于所述传输时间,确定所述目标MAC CE的生效时刻;基于所述传输时间以及预定指示信息所指示的第一时间,确定所述目标MAC CE的生效时刻;基于所述传输时间以及预定义时长,确定所述目标MAC CE的生效时刻;在所述目标PDSCH对应第二名义HARQ-ACK反馈时间单元的情况下,基于所述第二名义HARQ-ACK反馈时间单元,确定所述目标MAC CE的生效时刻;其中,所述传输时间为所述目标PDSCH的传输结束时刻,或者,所述传输时间为所述目标PDSCH的传输结束时刻所在的时间单元。
作为另一种可能的实现方式,在所述目标PDSCH对应的目标HARQ-ACK信息存在反馈延迟、且所述预定操作为所述确定目标MAC CE的生效时刻的情况下,所述执行模块410用于以下任一项:基于所述传输时 间以及预定指示信息所指示的第一时间,确定所述目标MAC CE的生效时刻;基于所述传输时间以及反馈延迟时长,确定所述目标MAC CE的生效时刻;在所述目标PDSCH对应第二名义HARQ-ACK反馈时间单元的情况下,基于所述第二名义HARQ-ACK反馈时间单元,确定所述目标MAC CE的生效时刻;其中,所述传输时间为所述目标PDSCH的传输结束时刻,或者,所述传输时间为所述目标PDSCH的传输结束时刻所在的时间单元,所述反馈延迟时长根据所述目标HARQ-ACK信息的反馈延迟时间确定。
作为另一种可能的实现方式,在所述目标PDSCH被配置为无目标HARQ-ACK信息反馈、且所述预定操作为所述确定所述目标PDSCH对应的目标HARQ-ACK码本的情况下,所述执行模块410用于包括以下任一项:在所述目标PDSCH不对应第二名义HARQ-ACK反馈时间单元的情况下,所述目标PDSCH不存在对应的目标HARQ-ACK码本;在所述目标PDSCH对应第二名义HARQ-ACK反馈时间单元的情况下,所述目标PDSCH存在对应的目标HARQ-ACK码本。
作为另一种可能的实现方式,在所述目标PDSCH对应目标HARQ-ACK码本的情况下,也就是,在此实现方式中,所述目标HARQ-ACK码本为一个实际待传输的码本,在此情况下,所述目标HARQ-ACK码本可以对应第一类型HARQ-ACK码本或第二类型HARQ-ACK码本。
作为另一种可能的实现方式,所述第一类型HARQ-ACK码本包括以下任意一种:仅包含半持续调度HARQ-ACK的码本;类型2码本Type-2codebook;增强的enhanced Type-2codebook;和/或,所述第二类型HARQ-ACK码本包括以下任意一种:Type-1codebook;Type-3codebook。
作为另一种可能的实现方式,在所述目标HARQ-ACK码本对应所述仅包含半持续调度HARQ-ACK的码本的情况下,所述目标HARQ-ACK码本对应的SPS HARQ-ACK比特序列中不包含所述目标PDSCH对应的HARQ-ACK比特或HARQ-ACK比特序列。
作为另一种可能的实现方式,在所述目标HARQ-ACK码本对应所述第 一类型HARQ-ACK码本的情况下,所述执行模块410还用于以下任一项:在所述第二名义HARQ-ACK反馈时间单元内不反馈任何HARQ-ACK信息;在所述第二名义HARQ-ACK反馈时间单元内反馈第一HARQ-ACK信息,所述第一HARQ-ACK信息是除所述目标HARQ-ACK信息之外的其他HARQ-ACK信息。
作为另一种可能的实现方式,在所述目标HARQ-ACK码本对应所述第二类型HARQ-ACK码本的情况下,所述目标HARQ-ACK码本中的第一HARQ-ACK比特的设置方式包括以下任一项:设置所述第一HARQ-ACK比特为第一预定值;根据所述目标PDSCH的解码结果设置所述第一HARQ-ACK比特;按照没有发生所述目标PDSCH传输的情况,设置所述第一HARQ-ACK比特;其中,所述第一HARQ-ACK比特与所述目标PDSCH对应。
作为另一种可能的实现方式,所述按照没有发生所述目标PDSCH传输的情况,设置所述第一HARQ-ACK比特,包括:在所述目标HARQ-ACK码本对应Type-1codebook的情况下,设置所述第一HARQ-ACK比特为第二预定值;在所述目标HARQ-ACK码本对应Type-3codebook的情况下,基于第一PDSCH设置所述第一HARQ-ACK比特,所述第一PDSCH与所述目标PDSCH对应同一HARQ进程、且所述第一PDSCH的传输时间早于所述目标PDSCH的传输时间。
作为另一种可能的实现方式,所述执行模块410还用于在所述目标HARQ-ACK码本对应Type-1codebook的情况下,通过以下任一项计算所述目标HARQ-ACK码本对应的物理上行控制信道PUCCH功控变量:在计算所述PUCCH功控变量的情况下,将所述目标PDSCH纳入接收到的PDSCH计数中;在计算所述PUCCH功控变量的情况下,不考虑所述目标PDSCH。
作为另一种可能的实现方式,在所述目标PDSCH被配置为无目标HARQ-ACK信息反馈的情况下,所述确定第一规则的应用,包括以下任一项:所述目标PDSCH不适用所述第一规则;所述目标PDSCH适用所述第一规则。
作为另一种可能的实现方式,在所述目标PDSCH适用所述第一规则的情况下,所述目标HARQ-ACK信息对应的第一反馈时刻为所述目标PDSCH对应的第二名义HARQ-ACK反馈时间单元。
作为另一种可能的实现方式,在所述目标PDSCH对应的目标HARQ-ACK信息存在反馈延迟的情况下,所述确定第一规则的应用,包括以下任一项:所述目标PDSCH不适用第一规则;所述目标PDSCH适用所述第一规则。
作为另一种可能的实现方式,在所述目标PDSCH适用所述第一规则的情况下,所述目标PDSCH对应的目标HARQ-ACK信息的第二反馈时刻通过以下任一方式确定:基于所述传输时间以及预定指示信息所指示的第一时间,确定所述第二反馈时刻;基于所述传输时间以及反馈延迟时长,确定所述第二反馈时刻;在所述目标PDSCH对应第二名义HARQ-ACK反馈时间单元的情况下,基于所述第二名义HARQ-ACK反馈时间单元,确定所述第二反馈时刻;其中,所述传输时间为所述目标PDSCH的传输结束时刻,或者,所述传输时间为所述目标PDSCH的传输结束时刻所在的时间单元,所述反馈延迟时长根据所述目标HARQ-ACK信息的反馈延迟时间确定。
作为另一种可能的实现方式,在所述目标PDSCH被配置为无目标HARQ-ACK信息反馈、且配置开启了DRX机制的情况下,所述目标DRX定时器包括下行HARQ往返时间定时器drx-HARQ-RTT-TimerDL和下行重传定时器drx-Retransmission-TimerDL。
作为另一种可能的实现方式,所述确定目标DRX定时器的启动包括以下任一项:不启动所述drx-HARQ-RTT-TimerDL以及所述drx-RetransmissionTimerDL;启动所述drx-HARQ-RTT-TimerDL,以及在所述drx-HARQ-RTT-TimerDL超时的情况下,不启动所述drx-RetransmissionTimerDL;启动所述drx-HARQ-RTT-TimerDL,以及在所述drx-HARQ-RTT-TimerDL超时、且所述第一HARQ进程未成功解码的情况下,启动所述drx-RetransmissionTimerDL;不启动所述drx-HARQ-RTT-TimerDL, 但启动所述drx-RetransmissionTimerDL。
作为另一种可能的实现方式,所述启动所述drx-HARQ-RTT-TimerDL,包括:在第三反馈时刻启动所述drx-HARQ-RTT-TimerDL;其中,所述第三反馈时刻通过以下任一项确定:基于所述传输时间,确定所述第三反馈时刻;基于所述传输时间以及预定指示信息所指示的第一时间,确定所述第三反馈时刻;基于所述传输时间以及预定义时长,确定所述第三反馈时刻;在所述目标PDSCH对应第二名义HARQ-ACK反馈时间单元的情况下,基于所述第二名义HARQ-ACK反馈时间单元,确定所述第三反馈时刻;其中,所述传输时间为所述目标PDSCH的传输结束时刻,或者,所述传输时间为所述目标PDSCH的传输结束时刻所在的时间单元。
作为另一种可能的实现方式,所述预定指示信息包括激活DCI、重激活DCI或高层信令。
作为另一种可能的实现方式,所述预定义时长包括预定数量个时间单元。
作为另一种可能的实现方式,所述时间单元包括符号、子时隙、时隙中的任一项。
作为另一种可能的实现方式,所述目标PDSCH包括SPS PDSCH。
本申请实施例提供的前述通信处理装置400能够实现图2至图3的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
此外,本申请实施例中的通信处理装置400可以是装置,也可以是终端中的部件、集成电路、或芯片。该装置可以是移动终端,也可以为非移动终端。示例性的,移动终端可以包括但不限于上述所列举的终端11的类型,非移动终端可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例中的通信处理装置可以为具有操作系统的装置。该操作系统可以为安卓(Android)操作系统,可以为ios操作系统,还可以为其他可 能的操作系统,本申请实施例不作具体限定。
如图5所示,本申请一示例性实施例还提供一种通信设备500,包括处理器501,存储器502,存储在存储器502上并可在所述处理器501上运行的程序或指令,例如,该通信设备500为终端时,该程序或指令被处理器501执行时实现上述通信处理方法实施例的各个过程,且能达到相同的技术效果。该通信设备500为网络设备时,该程序或指令被处理器501执行时实现上述通信处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
一种实现方式,所述通信设备500可以是终端,例如,图6为实现本申请实施例的一种终端的硬件结构示意图。该终端600包括但不限于:射频单元601、网络模块602、音频输出单元603、输入单元604、传感器605、显示单元606、用户输入单元607、接口单元608、存储器609、以及处理器610等部件。
本领域技术人员可以理解,终端600还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器610逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图6中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元604可以包括图形处理器(Graphics Processing Unit,GPU)1041和麦克风6042,图形处理器6041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元606可包括显示面板6061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板6061。用户输入单元607包括触控面板6071以及其他输入设备6072。触控面板6071,也称为触摸屏。触控面板6071可包括触摸检测装置和触摸控制器两个部分。其他输入设备6072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元601将来自网络设备的下行数据接收后,给处理器610处理;另外,将上行的数据发送给网络设备。通常,射频单元601包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器609可用于存储软件程序或指令以及各种数据。存储器609可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器609可以包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-OnlyMemory,ROM)、可编程只读存储器(ProgrammableROM,PROM)、可擦除可编程只读存储器(ErasablePROM,EPROM)、电可擦除可编程只读存储器(ElectricallyEPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
处理器610可包括一个或多个处理单元;可选的,处理器610可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器610中。
其中,处理器610调用存储器609中的指令或程序执行图4所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
另一种实现方式中,所述通信设备500还可以是网络设备,网络设备如图7所示,为所述网络设备700的框图,该网络设备可以包括:天线701、射频装置702、基带装置703。天线701与射频装置702连接。在上行方向上,射频装置702通过天线701接收信息,将接收的信息发送给基带装置703进行处理。在下行方向上,基带装置703对要发送的信息进行处理,并发送给射频装置702,射频装置702对收到的信息进行处理后经过天线701发送出去。
上述频带处理装置可以位于基带装置703中,以上实施例中网络设备执 行的方法可以在基带装置703中实现,该基带装置703包括处理器704和存储器705。
基带装置703例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图7所示,其中一个芯片例如为处理器704,与存储器705连接,以调用存储器705中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置703还可以包括网络接口706,用于与射频装置702交互信息,该接口例如为通用公共无线接口(common public radio interface,简称CPRI)。
具体地,本发明实施例的网络设备还包括:存储在存储器705上并可在处理器704上运行的指令或程序,处理器704调用存储器705中的指令或程序执行图4所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述通信处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行网络设备程序或指令,实现上述通信处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例还提供了一种计算机程序产品,该计算机程序产品包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令, 所述程序或指令被所述处理器执行时,实现上述通信处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (46)

  1. 一种通信处理方法,包括:
    根据目标物理下行共享信道PDSCH的传输时间,执行预定操作;其中,所述目标PDSCH被配置为无目标混合自动重传请求应答HARQ-ACK信息反馈,或者,所述目标PDSCH对应的目标HARQ-ACK信息存在反馈延迟;
    所述预定操作包括以下至少一项:
    确定所述目标PDSCH是否对应名义HARQ-ACK反馈时间单元;
    确定目标介质访问控制层控制单元MAC CE的生效时刻,所述目标MAC CE承载于所述目标PDSCH上;
    确定所述目标PDSCH对应的目标HARQ-ACK码本;
    确定第一规则的应用,所述第一规则表征所述目标PDSCH与所述目标HARQ-ACK信息对应的反馈时刻之间的定时关系要求;
    确定目标非连续接收DRX定时器的启动,所述目标DRX定时器与第一HARQ进程对应,所述第一HARQ进程与所述目标PDSCH对应。
  2. 如权利要求1所述的方法,其中,在所述预定操作为确定所述目标PDSCH是否对应名义HARQ-ACK反馈时间单元的情况下,所述确定所述目标PDSCH是否对应名义HARQ反馈时间单元,包括以下任一项:
    所述目标PDSCH不对应第一名义HARQ-ACK反馈时间单元;
    所述目标PDSCH对应第一名义HARQ-ACK反馈时间单元。
  3. 如权利要求2所述的方法,其中,在所述目标PDSCH对应第一名义HARQ-ACK反馈时间单元的情况下,根据目标PDSCH的传输时间,确定所述目标PDSCH是否对应名义HARQ反馈时间单元,包括以下任一项:
    基于所述传输时间以及预定指示信息所指示的第一时间,确定所述第一名义HARQ-ACK反馈时间单元;
    基于所述传输时间以及预定义时长,确定所述第一名义HARQ-ACK反馈时间单元;
    其中,所述传输时间为所述目标PDSCH的传输结束时刻,或者,所述 传输时间为所述目标PDSCH的传输结束时刻所在的时间单元。
  4. 如权利要求1所述的方法,其中,在所述目标PDSCH被配置为无目标HARQ-ACK信息反馈、且所述预定操作为所述确定目标MAC CE的生效时刻的情况下,根据目标PDSCH的传输时间,执行预定操作,包括以下任一项:
    基于所述传输时间,确定所述目标MAC CE的生效时刻;
    基于所述传输时间以及预定指示信息所指示的第一时间,确定所述目标MAC CE的生效时刻;
    基于所述传输时间以及预定义时长,确定所述目标MAC CE的生效时刻;
    在所述目标PDSCH对应第二名义HARQ-ACK反馈时间单元的情况下,基于所述第二名义HARQ-ACK反馈时间单元,确定所述目标MAC CE的生效时刻;
    其中,所述传输时间为所述目标PDSCH的传输结束时刻,或者,所述传输时间为所述目标PDSCH的传输结束时刻所在的时间单元。
  5. 如权利要求1所述的方法,其中,在所述目标PDSCH对应的目标HARQ-ACK信息存在反馈延迟、且所述预定操作为所述确定目标MAC CE的生效时刻的情况下,根据目标PDSCH的传输时间,执行预定操作,包括以下任一项:
    基于所述传输时间以及预定指示信息所指示的第一时间,确定所述目标MAC CE的生效时刻;
    基于所述传输时间以及反馈延迟时长,确定所述目标MAC CE的生效时刻;
    在所述目标PDSCH对应第二名义HARQ-ACK反馈时间单元的情况下,基于所述第二名义HARQ-ACK反馈时间单元,确定所述目标MAC CE的生效时刻;
    其中,所述传输时间为所述目标PDSCH的传输结束时刻,或者,所述传输时间为所述目标PDSCH的传输结束时刻所在的时间单元,所述反馈延 迟时长根据所述目标HARQ-ACK信息的反馈延迟时间确定。
  6. 如权利要求1所述的方法,其中,在所述目标PDSCH被配置为无目标HARQ-ACK信息反馈、且所述预定操作为所述确定所述目标PDSCH对应的目标HARQ-ACK码本的情况下,根据目标PDSCH的传输时间,执行预定操作,包括以下任一项:
    在所述目标PDSCH不对应第二名义HARQ-ACK反馈时间单元的情况下,所述目标PDSCH不存在对应的目标HARQ-ACK码本;
    在所述目标PDSCH对应第二名义HARQ-ACK反馈时间单元的情况下,所述目标PDSCH存在对应的目标HARQ-ACK码本。
  7. 如权利要求6所述的方法,其中,所述目标HARQ-ACK码本对应第一类型HARQ-ACK码本或第二类型HARQ-ACK码本。
  8. 如权利要求7所述的方法,其中,所述第一类型HARQ-ACK码本包括以下任意一种:
    仅包含半持续调度HARQ-ACK的码本;
    类型2码本Type-2 codebook;
    增强的enhanced Type-2 codebook;
    和/或,
    所述第二类型HARQ-ACK码本包括以下任意一种:
    Type-1 codebook;
    Type-3 codebook。
  9. 如权利要求8所述的方法,其中,在所述目标HARQ-ACK码本对应仅包含半持续调度HARQ-ACK的码本的情况下,所述目标HARQ-ACK码本对应的SPS HARQ-ACK比特序列中不包含所述目标PDSCH对应的HARQ-ACK比特或HARQ-ACK比特序列。
  10. 如权利要求7所述的方法,其中,在所述目标HARQ-ACK码本对应所述第一类型HARQ-ACK码本的情况下,所述方法还包括以下任一项:
    在所述第二名义HARQ-ACK反馈时间单元内不反馈任何HARQ-ACK信 息;
    在所述第二名义HARQ-ACK反馈时间单元内反馈第一HARQ-ACK信息,所述第一HARQ-ACK信息是除所述目标HARQ-ACK信息之外的其他HARQ-ACK信息。
  11. 如权利要求7所述的方法,其中,在所述目标HARQ-ACK码本对应所述第二类型HARQ-ACK码本的情况下,所述目标HARQ-ACK码本中的第一HARQ-ACK比特的设置方式包括以下任一项:
    设置所述第一HARQ-ACK比特为第一预定值;
    根据所述目标PDSCH的解码结果设置所述第一HARQ-ACK比特;
    按照没有发生所述目标PDSCH传输的情况,设置所述第一HARQ-ACK比特;
    其中,所述第一HARQ-ACK比特与所述目标PDSCH对应。
  12. 如权利要求11所述的方法,其中,所述按照没有发生所述目标PDSCH传输的情况,设置所述第一HARQ-ACK比特,包括以下任一项:
    在所述目标HARQ-ACK码本对应Type-1 codebook的情况下,设置所述第一HARQ-ACK比特为第二预定值;
    在所述目标HARQ-ACK码本对应Type-3 codebook的情况下,基于第一PDSCH设置所述第一HARQ-ACK比特,所述第一PDSCH与所述目标PDSCH对应同一HARQ进程、且所述第一PDSCH的传输时间早于所述目标PDSCH的传输时间。
  13. 如权利要求8所述的方法,其中,执行预定操作之后,所述方法还包括:
    在所述目标HARQ-ACK码本对应Type-1 codebook的情况下,通过以下任一项计算所述目标HARQ-ACK码本对应的物理上行控制信道PUCCH功控变量:
    在计算所述PUCCH功控变量的情况下,将所述目标PDSCH纳入接收到的PDSCH计数中;
    在计算所述PUCCH功控变量的情况下,不考虑所述目标PDSCH。
  14. 如权利要求1所述的方法,其中,在所述目标PDSCH被配置为无目标HARQ-ACK信息反馈的情况下,所述确定第一规则的应用,包括以下任一项:
    所述目标PDSCH不适用所述第一规则;
    所述目标PDSCH适用所述第一规则。
  15. 如权利要求14所述的方法,其中,在所述目标PDSCH适用所述第一规则的情况下,所述目标HARQ-ACK信息对应的第一反馈时刻为所述目标PDSCH对应的第二名义HARQ-ACK反馈时间单元。
  16. 如权利要求1所述的方法,其中,在所述目标PDSCH对应的目标HARQ-ACK信息存在反馈延迟的情况下,所述确定第一规则的应用,包括以下任一项:
    所述目标PDSCH不适用所述第一规则;
    所述目标PDSCH适用所述第一规则。
  17. 如权利要求16所述的方法,其中,在所述目标PDSCH适用所述第一规则的情况下,所述目标PDSCH对应的目标HARQ-ACK信息的第二反馈时刻通过以下任一方式确定:
    基于所述传输时间以及预定指示信息所指示的第一时间,确定所述第二反馈时刻;
    基于所述传输时间以及反馈延迟时长,确定所述第二反馈时刻;
    在所述目标PDSCH对应第二名义HARQ-ACK反馈时间单元的情况下,基于所述第二名义HARQ-ACK反馈时间单元,确定所述第二反馈时刻;
    其中,所述传输时间为所述目标PDSCH的传输结束时刻,或者,所述传输时间为所述目标PDSCH的传输结束时刻所在的时间单元,所述反馈延迟时长根据所述目标HARQ-ACK信息的反馈延迟时间确定。
  18. 如权利要求1所述的方法,其中,在所述目标PDSCH被配置为无目标HARQ-ACK信息反馈、且配置开启了DRX机制的情况下,所述目标DRX 定时器包括下行HARQ往返时间定时器drx-HARQ-RTT-TimerDL和下行重传定时器drx-Retransmission-TimerDL。
  19. 如权利要求18所述的方法,其中,所述确定目标DRX定时器的启动包括以下任一项:
    不启动所述drx-HARQ-RTT-TimerDL以及所述drx-RetransmissionTimerDL;
    启动所述drx-HARQ-RTT-TimerDL,以及在所述drx-HARQ-RTT-TimerDL超时的情况下,不启动所述drx-RetransmissionTimerDL;
    启动所述drx-HARQ-RTT-TimerDL,以及在所述drx-HARQ-RTT-TimerDL超时、且所述第一HARQ进程未成功解码的情况下,启动所述drx-RetransmissionTimerDL;
    不启动所述drx-HARQ-RTT-TimerDL,但启动所述drx-RetransmissionTimerDL。
  20. 如权利要求19所述的方法,其中,所述启动所述drx-HARQ-RTT-TimerDL,包括:
    在第三反馈时刻启动所述drx-HARQ-RTT-TimerDL;
    其中,所述第三反馈时刻通过以下任一项确定:
    基于所述传输时间,确定所述第三反馈时刻;
    基于所述传输时间以及预定指示信息所指示的第一时间,确定所述第三反馈时刻;
    基于所述传输时间以及预定义时长,确定所述第三反馈时刻;
    在所述目标PDSCH对应第二名义HARQ-ACK反馈时间单元的情况下,基于所述第二名义HARQ-ACK反馈时间单元,确定所述第三反馈时刻;
    其中,所述传输时间为所述目标PDSCH的传输结束时刻,或者,所述传输时间为所述目标PDSCH的传输结束时刻所在的时间单元。
  21. 如权利要求3、4、5、17或20所述的方法,其中,所述预定指示信息包括激活DCI、重激活DCI或高层信令。
  22. 如权利要求1-20中任一项所述的方法,其中,所述目标PDSCH包括SPS PDSCH。
  23. 一种通信处理装置,包括:
    执行模块,用于根据目标物理下行共享信道PDSCH的传输时间,执行预定操作;其中,所述目标PDSCH被配置为无目标混合自动重传请求应答HARQ-ACK信息反馈,或者,所述目标PDSCH对应的目标HARQ-ACK信息存在反馈延迟;
    所述预定操作包括以下至少一项:
    确定所述目标PDSCH是否对应名义HARQ-ACK反馈时间单元;
    确定目标介质访问控制层控制单元MAC CE的生效时刻,所述目标MAC CE承载于所述目标PDSCH上;
    确定所述目标PDSCH对应的目标HARQ-ACK码本;
    确定第一规则的应用,所述第一规则表征所述目标PDSCH与所述目标HARQ-ACK信息对应的反馈时刻之间的定时关系要求;
    确定目标非连续接收DRX定时器的启动,所述目标DRX定时器与第一HARQ进程对应,所述第一HARQ进程与所述目标PDSCH对应。
  24. 如权利要求23所述的装置,其中,在所述预定操作为确定所述目标PDSCH是否对应名义HARQ-ACK反馈时间单元的情况下,所述执行模块确定所述目标PDSCH是否对应名义HARQ反馈时间单元,包括以下任一项:
    所述目标PDSCH不对应第一名义HARQ-ACK反馈时间单元;
    所述目标PDSCH对应第一名义HARQ-ACK反馈时间单元。
  25. 如权利要求24所述的装置,其中,在所述目标PDSCH对应第一名义HARQ-ACK反馈时间单元的情况下,所述执行模块用于以下任一项:
    基于所述传输时间以及预定指示信息所指示的第一时间,确定所述第一名义HARQ-ACK反馈时间单元;
    基于所述传输时间以及预定义时长,确定所述第一名义HARQ-ACK反馈时间单元;
    其中,所述传输时间为所述目标PDSCH的传输结束时刻,或者,所述传输时间为所述目标PDSCH的传输结束时刻所在的时间单元。
  26. 如权利要求23所述的装置,其中,在所述目标PDSCH被配置为无目标HARQ-ACK信息反馈、且所述预定操作为所述确定目标MAC CE的生效时刻的情况下,所述执行模块用于以下任一项:
    基于所述传输时间,确定所述目标MAC CE的生效时刻;
    基于所述传输时间以及预定指示信息所指示的第一时间,确定所述目标MAC CE的生效时刻;
    基于所述传输时间以及预定义时长,确定所述目标MAC CE的生效时刻;
    在所述目标PDSCH对应第二名义HARQ-ACK反馈时间单元的情况下,基于所述第二名义HARQ-ACK反馈时间单元,确定所述目标MAC CE的生效时刻;
    其中,所述传输时间为所述目标PDSCH的传输结束时刻,或者,所述传输时间为所述目标PDSCH的传输结束时刻所在的时间单元。
  27. 如权利要求23所述的装置,其中,在所述目标PDSCH对应的目标HARQ-ACK信息存在反馈延迟、且所述预定操作为所述确定目标MAC CE的生效时刻的情况下,所述执行模块用于以下任一项:
    基于所述传输时间以及预定指示信息所指示的第一时间,确定所述目标MAC CE的生效时刻;
    基于所述传输时间以及反馈延迟时长,确定所述目标MAC CE的生效时刻;
    在所述目标PDSCH对应第二名义HARQ-ACK反馈时间单元的情况下,基于所述第二名义HARQ-ACK反馈时间单元,确定所述目标MAC CE的生效时刻;
    其中,所述传输时间为所述目标PDSCH的传输结束时刻,或者,所述传输时间为所述目标PDSCH的传输结束时刻所在的时间单元,所述反馈延迟时长根据所述目标HARQ-ACK信息的反馈延迟时间确定。
  28. 如权利要求23所述的装置,其中,在所述目标PDSCH被配置为无目标HARQ-ACK信息反馈、且所述预定操作为所述确定所述目标PDSCH对应的目标HARQ-ACK码本的情况下,所述执行模块用于包括以下任一项:
    在所述目标PDSCH不对应第二名义HARQ-ACK反馈时间单元的情况下,所述目标PDSCH不存在对应的目标HARQ-ACK码本;
    在所述目标PDSCH对应第二名义HARQ-ACK反馈时间单元的情况下,所述目标PDSCH存在对应的目标HARQ-ACK码本。
  29. 如权利要求28所述的装置,其中,所述目标HARQ-ACK码本对应第一类型HARQ-ACK码本或第二类型HARQ-ACK码本。
  30. 如权利要求29所述的装置,其中,所述第一类型HARQ-ACK码本包括以下任意一种:
    仅包含半持续调度HARQ-ACK的码本;
    类型2码本Type-2 codebook;
    增强的enhanced Type-2 codebook;
    和/或,
    所述第二类型HARQ-ACK码本包括以下任意一种:
    Type-1 codebook;
    Type-3 codebook。
  31. 如权利要求30所述的装置,其中,在所述目标HARQ-ACK码本对应所述仅包含半持续调度HARQ-ACK的码本的情况下,所述目标HARQ-ACK码本对应的SPS HARQ-ACK比特序列中不包含所述目标PDSCH对应的HARQ-ACK比特或HARQ-ACK比特序列。
  32. 如权利要求29所述的装置,其中,在所述目标HARQ-ACK码本对应所述第一类型HARQ-ACK码本的情况下,所述执行模块还用于以下任一项:
    在所述第二名义HARQ-ACK反馈时间单元内不反馈任何HARQ-ACK信息;
    在所述第二名义HARQ-ACK反馈时间单元内反馈第一HARQ-ACK信息, 所述第一HARQ-ACK信息是除所述目标HARQ-ACK信息之外的其他HARQ-ACK信息。
  33. 如权利要求29所述的装置,其中,在所述目标HARQ-ACK码本对应所述第二类型HARQ-ACK码本的情况下,所述目标HARQ-ACK码本中的第一HARQ-ACK比特的设置方式包括以下任一项:
    设置所述第一HARQ-ACK比特为第一预定值;
    根据所述目标PDSCH的解码结果设置所述第一HARQ-ACK比特;
    按照没有发生所述目标PDSCH传输的情况,设置所述第一HARQ-ACK比特;
    其中,所述第一HARQ-ACK比特与所述目标PDSCH对应。
  34. 如权利要求33所述的装置,其中,所述按照没有发生所述目标PDSCH传输的情况,设置所述第一HARQ-ACK比特,包括:
    在所述目标HARQ-ACK码本对应Type-1 codebook的情况下,设置所述第一HARQ-ACK比特为第二预定值;
    在所述目标HARQ-ACK码本对应Type-3 codebook的情况下,基于第一PDSCH设置所述第一HARQ-ACK比特,所述第一PDSCH与所述目标PDSCH对应同一HARQ进程、且所述第一PDSCH的传输时间早于所述目标PDSCH的传输时间。
  35. 如权利要求30所述的装置,其中,所述执行模块还用于在所述目标HARQ-ACK码本对应Type-1 codebook的情况下,通过以下任一项计算所述目标HARQ-ACK码本对应的物理上行控制信道PUCCH功控变量:
    在计算所述PUCCH功控变量的情况下,将所述目标PDSCH纳入接收到的PDSCH计数中;
    在计算所述PUCCH功控变量的情况下,不考虑所述目标PDSCH。
  36. 如权利要求23所述的装置,其中,在所述目标PDSCH被配置为无目标HARQ-ACK信息反馈的情况下,所述确定第一规则的应用,包括以下任一项:
    所述目标PDSCH不适用所述第一规则;
    所述目标PDSCH适用所述第一规则。
  37. 如权利要求36所述的装置,其中,在所述目标PDSCH适用所述第一规则的情况下,所述目标HARQ-ACK信息对应的第一反馈时刻为所述目标PDSCH对应的第二名义HARQ-ACK反馈时间单元。
  38. 如权利要求23所述的装置,其中,在所述目标PDSCH对应的目标HARQ-ACK信息存在反馈延迟的情况下,所述确定第一规则的应用,包括以下任一项:
    所述目标PDSCH不适用第一规则;
    所述目标PDSCH适用所述第一规则。
  39. 如权利要求38所述的装置,其中,在所述目标PDSCH适用所述第一规则的情况下,所述目标PDSCH对应的目标HARQ-ACK信息的第二反馈时刻通过以下任一方式确定:
    基于所述传输时间以及预定指示信息所指示的第一时间,确定所述第二反馈时刻;
    基于所述传输时间以及反馈延迟时长,确定所述第二反馈时刻;
    在所述目标PDSCH对应第二名义HARQ-ACK反馈时间单元的情况下,基于所述第二名义HARQ-ACK反馈时间单元,确定所述第二反馈时刻;
    其中,所述传输时间为所述目标PDSCH的传输结束时刻,或者,所述传输时间为所述目标PDSCH的传输结束时刻所在的时间单元,所述反馈延迟时长根据所述目标HARQ-ACK信息的反馈延迟时间确定。
  40. 如权利要求23所述的装置,其中,在所述目标PDSCH被配置为无目标HARQ-ACK信息反馈、且配置开启了DRX机制的情况下,所述目标DRX定时器包括下行HARQ往返时间定时器drx-HARQ-RTT-TimerDL和下行重传定时器drx-Retransmission-TimerDL。
  41. 如权利要求40所述的装置,其中,所述确定目标DRX定时器的启动包括以下任一项:
    不启动所述drx-HARQ-RTT-TimerDL以及所述drx-RetransmissionTimerDL;
    启动所述drx-HARQ-RTT-TimerDL,以及在所述drx-HARQ-RTT-TimerDL超时的情况下,不启动所述drx-RetransmissionTimerDL;
    启动所述drx-HARQ-RTT-TimerDL,以及在所述drx-HARQ-RTT-TimerDL超时、且所述第一HARQ进程未成功解码的情况下,启动所述drx-RetransmissionTimerDL;
    不启动所述drx-HARQ-RTT-TimerDL,但启动所述drx-RetransmissionTimerDL。
  42. 如权利要求41所述的装置,其中,所述启动所述drx-HARQ-RTT-TimerDL,包括:
    在第三反馈时刻启动所述drx-HARQ-RTT-TimerDL;
    其中,所述第三反馈时刻通过以下任一项确定:
    基于所述传输时间,确定所述第三反馈时刻;
    基于所述传输时间以及预定指示信息所指示的第一时间,确定所述第三反馈时刻;
    基于所述传输时间以及预定义时长,确定所述第三反馈时刻;
    在所述目标PDSCH对应第二名义HARQ-ACK反馈时间单元的情况下,基于所述第二名义HARQ-ACK反馈时间单元,确定所述第三反馈时刻;
    其中,所述传输时间为所述目标PDSCH的传输结束时刻,或者,所述传输时间为所述目标PDSCH的传输结束时刻所在的时间单元。
  43. 如权利要求25、26、27、39或42所述的装置,其中,所述预定指示信息包括激活DCI、重激活DCI或高层信令。
  44. 如权利要求23-42中任一项所述的装置,其中,所述目标PDSCH包括SPS PDSCH。
  45. 一种通信设备,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如 权利要求1至22任一项所述的通信处理方法的步骤。
  46. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1-22任一项所述的通信处理方法的步骤。
PCT/CN2021/138724 2020-12-18 2021-12-16 通信处理方法、装置和通信设备 WO2022127849A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21905775.9A EP4266820A4 (en) 2020-12-18 2021-12-16 METHOD AND DEVICE FOR COMMUNICATION PROCESSING AND COMMUNICATION DEVICE
JP2023535044A JP2023552477A (ja) 2020-12-18 2021-12-16 通信処理方法、装置と通信機器
KR1020237024132A KR20230118672A (ko) 2020-12-18 2021-12-16 통신 처리 방법, 장치 및 통신기기
US18/329,998 US20230318755A1 (en) 2020-12-18 2023-06-06 Communication processing method and apparatus and communication device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011511911.2 2020-12-18
CN202011511911.2A CN114650621A (zh) 2020-12-18 2020-12-18 通信处理方法、装置和通信设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/329,998 Continuation US20230318755A1 (en) 2020-12-18 2023-06-06 Communication processing method and apparatus and communication device

Publications (1)

Publication Number Publication Date
WO2022127849A1 true WO2022127849A1 (zh) 2022-06-23

Family

ID=81990003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/138724 WO2022127849A1 (zh) 2020-12-18 2021-12-16 通信处理方法、装置和通信设备

Country Status (6)

Country Link
US (1) US20230318755A1 (zh)
EP (1) EP4266820A4 (zh)
JP (1) JP2023552477A (zh)
KR (1) KR20230118672A (zh)
CN (1) CN114650621A (zh)
WO (1) WO2022127849A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117424684A (zh) * 2021-03-16 2024-01-19 Oppo广东移动通信有限公司 信息传输方法、装置、设备及存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111385080A (zh) * 2018-12-28 2020-07-07 北京三星通信技术研究有限公司 发送上行控制信息的方法及设备
WO2021184317A1 (zh) * 2020-03-19 2021-09-23 Oppo广东移动通信有限公司 生效时间的确定方法、终端及网络设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109391422B (zh) * 2017-08-11 2020-11-17 华为技术有限公司 一种反馈码本确定的方法及终端设备、网络设备
US11246155B2 (en) * 2018-03-27 2022-02-08 Qualcomm Incorporated Acknowledgement feedback in unlicensed new radio
CN110943806B (zh) * 2018-09-21 2021-10-26 大唐移动通信设备有限公司 一种混合自动重传请求确认码本的传输方法和设备
CN111106903B (zh) * 2018-10-26 2021-06-04 电信科学技术研究院有限公司 混合自动重传的反馈方法、接收方法、终端及网络设备

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111385080A (zh) * 2018-12-28 2020-07-07 北京三星通信技术研究有限公司 发送上行控制信息的方法及设备
WO2021184317A1 (zh) * 2020-03-19 2021-09-23 Oppo广东移动通信有限公司 生效时间的确定方法、终端及网络设备

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
OPPO: "HARQ Impact on MAC Procedures in NTN", 3GPP TSG-RAN WG2 MEETING #112 ELECTRONIC R2-2009108, 23 October 2020 (2020-10-23), XP051942138 *
See also references of EP4266820A4 *
SONY: "Enhancements on HARQ for NTN", 3GPP TSG RAN WG1 MEETING #103-E R1-2008361, 1 November 2020 (2020-11-01), XP051946647 *

Also Published As

Publication number Publication date
EP4266820A4 (en) 2024-06-19
KR20230118672A (ko) 2023-08-11
JP2023552477A (ja) 2023-12-15
US20230318755A1 (en) 2023-10-05
CN114650621A (zh) 2022-06-21
EP4266820A1 (en) 2023-10-25

Similar Documents

Publication Publication Date Title
US11641646B2 (en) Method and apparatus for receiving a transport block in a transmission occasion
US20220232662A1 (en) Drx handling in lte license assisted access operation
EP3738378B1 (en) Uplink channel scheduling to retain channel occupancy for unlicensed wireless spectrum
EP3764733A1 (en) Communication method and apparatus for discontinuous reception, and communication device and communication system
CN114374486B (zh) Harq-ack的传输方法、终端及网络侧设备
WO2022083496A1 (zh) 指示信息生效方法及装置、终端及可读存储介质
WO2022001815A1 (zh) 信道监听、传输方法、终端及网络侧设备
CN111436094A (zh) 通信方法及装置
EP3614771B1 (en) Method for transmitting information and terminal device
WO2022152072A1 (zh) 信道信息发送方法、信道信息接收方法及相关设备
WO2022078451A1 (zh) 配置授权的重复传输方法、装置、设备及可读存储介质
WO2022002259A1 (zh) 旁链路传输方法、传输装置和终端
WO2022127849A1 (zh) 通信处理方法、装置和通信设备
WO2023011286A1 (zh) 反馈方法、相关设备及可读存储介质
WO2022188794A1 (zh) 半静态harq-ack码本的生成方法及终端
WO2022012433A1 (zh) Harq-ack的反馈方法和设备
WO2022028604A1 (zh) 上行传输方法、装置及终端设备
WO2022037508A1 (zh) 上行传输方法、设备及可读存储介质
WO2022002248A1 (zh) 旁链路传输方法、传输装置和通信设备
WO2022063238A1 (zh) 传输信息确定方法、装置和终端
WO2022222879A1 (zh) Pdsch传输、接收方法、装置及通信设备
WO2022028606A1 (zh) 信息确定方法、信息指示方法、终端及网络侧设备
WO2022121908A1 (zh) 数据接收方法、装置、终端及可读存储介质
WO2022127680A1 (zh) 传输方法、装置、设备及可读存储介质
WO2023045957A1 (zh) Md传输方法、设备及可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21905775

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202317037795

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2023535044

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237024132

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021905775

Country of ref document: EP

Effective date: 20230718