WO2022127558A1 - 投影校正方法、投影校正装置及电子设备 - Google Patents

投影校正方法、投影校正装置及电子设备 Download PDF

Info

Publication number
WO2022127558A1
WO2022127558A1 PCT/CN2021/133175 CN2021133175W WO2022127558A1 WO 2022127558 A1 WO2022127558 A1 WO 2022127558A1 CN 2021133175 W CN2021133175 W CN 2021133175W WO 2022127558 A1 WO2022127558 A1 WO 2022127558A1
Authority
WO
WIPO (PCT)
Prior art keywords
coordinate system
projection device
feature
coordinates
screen
Prior art date
Application number
PCT/CN2021/133175
Other languages
English (en)
French (fr)
Inventor
王霖
贾坤
赵振宇
唐泽达
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2022127558A1 publication Critical patent/WO2022127558A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3179Video signal processing therefor

Definitions

  • the present application relates to the field of projection technology, and in particular, to a projection correction method, a projection correction device, and an electronic device.
  • Embodiments of the present application provide a projection correction method, a projection correction device, and an electronic device to improve the above problems.
  • a projection correction method comprising: acquiring screen coordinates of at least three non-collinear feature points in a projected image in a screen coordinate system; the at least three non-collinear feature points constitute one or more Characteristic triangle; according to the screen coordinates of the characteristic points in one or more characteristic triangles, the screen coordinate system, and the azimuth angle of the characteristic points of the characteristic triangle at the light-emitting point of the projection equipment, determine the coordinate system of the projection equipment with the smallest offset error, and the projection equipment
  • the coordinate system corresponds to the ideal characteristic triangle in one or more characteristic triangles; according to the coordinate system of the projection device and the ideal coordinates of the light-emitting point in the coordinate system of the projection device, the translation correction component and rotation of the light point in the coordinate system of the projection device are obtained.
  • Correction component rotates and/or translates the projection device to correct the position of the projection device according to the translational correction component and the rotational correction component.
  • a projection correction device including: an acquisition module, a calculation module, and a correction module.
  • the acquisition module is used to acquire the screen coordinates of the at least three non-collinear feature points in the projected image in the screen coordinate system; the at least three non-collinear feature points form one or more characteristic triangles;
  • the calculation module is used for according to the The screen coordinates of the feature point in one or more feature triangles, the screen coordinate system, and the azimuth angle of the feature point of the feature triangle at the light-emitting point of the projection device, determine the projection device coordinate system with the smallest offset error, and the projection device coordinate system and a or corresponding to the ideal characteristic triangles in the characteristic triangles;
  • the calculation module is also used to obtain the translation correction component of the light point in the projection equipment coordinate system according to the projection equipment coordinate system and the ideal coordinates of the light emitting point in the projection equipment coordinate system and rotation correction components; correction module for rotating and/or translating the projection device according to the translation correction component and the rotation correction component to correct the position of
  • an electronic device comprising: one or more processors; a memory; one or more application programs, wherein the one or more application programs are stored in the memory and configured to be executed by one or more The processor executes one or more programs configured to perform the method of the first aspect.
  • a computer-readable storage medium where program codes are stored in the computer-readable storage medium, and the program codes can be invoked by a processor to execute the method described in the first aspect.
  • the screen coordinates of at least three non-collinear feature points in the projected image in the screen coordinate system can be obtained, and at least three non-collinear feature points can be obtained.
  • the feature points can form one or more feature triangles.
  • the coordinate system of the projection device can be determined, and then according to the coordinate system of the projection device and the light-emitting point of the projection device.
  • the ideal coordinates are determined to determine the translation correction component and the rotation correction component, and then automatically correct the position of the projection device according to the translation correction component and/or the rotation correction component, so as to provide an accurate correction amount for the 6-axis motion platform without the need for manual adjustment by the user.
  • FIG. 1 is a schematic diagram of a projection image on a projection screen provided by an embodiment of the present application.
  • FIG. 2 is a flowchart of a projection correction method provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a projection image on a projection screen provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a projection image on a projection screen provided by an embodiment of the present application.
  • FIG. 5 is a flowchart of a projection correction method provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a projection image and a light exit point provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a projection image and a light exit point provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a projected image and a light exit point provided by an embodiment of the present application.
  • FIG. 9 is a block diagram of a projection correction apparatus provided by an embodiment of the present application.
  • FIG. 10 is a block diagram of a projection correction apparatus provided by an embodiment of the present application.
  • FIG. 11 is a block diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 12 shows a memory for storing an application program implementing the method for processing device network configuration according to an embodiment of the present application.
  • the related technology proposes a solution: some manufacturers have developed a 6-axis motion platform, and the user can adjust the position of the projector in the 6 degrees of freedom through the operation panel.
  • the adjustment process is simplified to a certain extent.
  • the exact solution of the 6-axis adjustment amount is not given, the user needs to stare at the projected image for real-time adjustment, and the whole process is not fully automated. It can be proved by mathematical derivation that the impact of the compound motion of the three rotation axes on the projected image is quite complicated, and it is not easy for the user to adjust the position of the projection device by "intuition".
  • the present application proposes a projection correction method, which can provide an accurate correction amount for a 6-axis motion platform by means of triangular positioning.
  • this application equals the light outlet of the projection device as a light outlet. If the equivalent aperture of the light outlet of the projection device is small enough, the light outlet is the size of the light outlet.
  • the light exit point can be the center point of the light exit port. It can be understood that, in order to meet different imaging scenarios, those skilled in the art can select any point of the light exit port of the projection device as the reference light exit point, and use the coordinates of the light exit point. The coordinates that characterize the light exit port of the projection device, so that the correction can be done.
  • the projected image projected by the projection device is also in the ideal position.
  • a screen coordinate system can be established, and the coordinates of any feature point on the projected image under the screen coordinate system are the feature.
  • the ideal coordinates of the point which are simulated coordinates.
  • FIG. 1 For the screen coordinate system, reference may be made to FIG.
  • the projection screen 10 is a rectangle, and the projection device projects directly against the projection screen
  • the extension direction of the x-axis of the screen coordinate system may be the long-side direction of the projection screen 10 and the extension of the y-axis
  • the direction may be the direction perpendicular to the projection screen 10
  • the extending direction of the z-axis may be the short side direction of the projection screen 10 .
  • the simulated coordinates of the feature points of the projected image when the projection device is installed in the ideal position, and the screen coordinates of the feature points of the projected image in the screen coordinate system when the projection device is not installed in the ideal position can be obtained as known parameters; according to the path of the light emitted from the projection device, the azimuth angle of each two feature points at the light-emitting point can be determined by the optical sensor, and the azimuth angle is the distance from the two feature points to the light-emitting point. The angle between the lines.
  • an algorithm model can be established in advance.
  • the translation offset and the rotation offset of the light emitting point are obtained, and then the translation correction component and the rotation correction component are obtained according to the translation offset and the rotation offset, and the position of the projection device is corrected.
  • the projection correction method includes:
  • any point on the projection image can be used as a feature point.
  • the selected feature point may be a vertex of the projected image, or may be any point other than the vertex of the projected image.
  • every three non-collinear feature points can form a feature triangle
  • the number of feature triangles used for calculating the coordinate system of the projection device is not limited, and the number of feature triangles is related to the number of acquired feature points.
  • the number of characteristic triangles Among them, M represents the number of feature triangles used, and N represents the number of acquired feature points.
  • the three feature points can form a feature triangle, and the feature triangle can be regarded as an ideal feature triangle.
  • the feature points can form multiple feature triangles, and the feature triangle with the smallest offset error among the multiple feature triangles can be regarded as an ideal feature triangle.
  • the screen coordinates of any feature point coincide with the simulated coordinates; when the installation position of the projection device is offset, the screen coordinates of any feature point and the feature point's
  • the simulated coordinates may or may not be coincident, and the screen coordinates of all feature points are not completely coincident with the simulated coordinates.
  • the projection device may be an ultra-short throw projection device, a telephoto projection device, or the like.
  • the azimuth angle of every two feature points in the feature triangle at the light-emitting point of the projection device is related to the shape of the projected image, not related to the position of the projection screen 10 and the position of the projection device, at the position of the projection screen 10 And/or when the position of the projection device changes, but the projected image does not change, the azimuth angle of every two feature points in the feature triangle at the light exit point of the projection device is always a certain value.
  • each characteristic triangle may correspond to a deflection coordinate system.
  • the degree of offset of the multiple characteristic triangles may be different.
  • the offset degree of some characteristic triangles is small, and the offset degree of some characteristic triangles is relatively large, and the deflection coordinate system determined by the characteristic triangle with the smallest degree of offset can be taken as the coordinate system of the projection device.
  • the offset degree of the characteristic triangle may be the sum of the offset degrees of the three characteristic points constituting the characteristic triangle.
  • the deflection coordinate system can be regarded as the minimum offset error
  • the number of non-collinear feature points is greater than three
  • the number of characteristic triangles is multiple
  • the number of deflection coordinate systems is also multiple
  • the offset in multiple deflection coordinate systems The offset coordinate system with the smallest error can be used as the coordinate system of the projection device.
  • the coordinate system of the projection device is the coordinates corresponding to when the projection device is installed in the actual position, and the coordinates of the projection device may be polar coordinates.
  • the screen coordinate system coincides with the deflection coordinate system and the projection device coordinate system.
  • step S12 is not limited.
  • the coordinates of the light-emitting point of the projection device in the screen coordinate system are known parameters. After the projection device coordinate system is determined, the light-emitting point can be placed in the screen coordinate system. The coordinates of , are substituted into the coordinate system of the projection device, and the equivalent replacement is obtained to obtain the ideal coordinates of the light-emitting point in the coordinate system of the projection device under the ideal position.
  • step S13 is not limited.
  • the projection device when the coordinate axis of the projection device coordinate system is parallel to the screen coordinate system, the projection device is translated according to the translation correction component, and the projection device does not need to be rotated according to the projection device coordinate system, and thus does not need to acquire the rotation correction component.
  • the projection device when the coordinate axis of the projection device coordinate system is not parallel to the screen coordinate system, the projection device is rotated according to the projection device coordinate system. In this case, the projection device may also be translated according to the translation correction component.
  • the method may further include: judging whether the coordinate axis of the projection device coordinate system is parallel to the coordinate axis of the screen coordinate system.
  • the coordinate axis of the projection device coordinate system is parallel to the coordinate axis of the screen coordinate system, there is no need to perform the step of obtaining the rotation correction component of the light spot in the projection device coordinate system in step S13, and the rotation correction component in step S14 to rotate the projection equipment steps.
  • the specific manner of step S14 is not limited.
  • the projection device may be rotated according to the coordinate axis of the projection device coordinate system, or the projection device may be translated based on the light exit point of the projection device coordinate system.
  • the embodiment of the present application provides a projection correction method, which can obtain screen coordinates of at least three non-collinear feature points in a projected image in a screen coordinate system, and the at least three non-collinear feature points can constitute one or more features Triangle, according to the screen coordinates, azimuth angle, and screen coordinate system of the three characteristic points in the characteristic triangle, the coordinate system of the projection device can be determined, and then the translation correction component and The rotation correction component, and then the position of the projection device is automatically corrected according to the translation correction component and/or the rotation correction component, thereby providing an accurate correction amount for the 6-axis motion platform without manual adjustment by the user.
  • the embodiment of the present application proposes a projection correction method, which can provide an accurate correction amount for a 6-axis motion platform by means of triangulation.
  • the projection correction method includes:
  • step S11 is the same as that of step S11 in the foregoing embodiment, and is not repeated here.
  • a plurality of offset coordinate systems corresponding to the feature triangles are established, including:
  • the distance between the two feature points can be obtained according to the screen coordinates of each two feature points by using the point-to-point distance formula.
  • the three feature points are feature point G, feature point H, and feature point K
  • the coordinates of feature point H are (x1, y1, z1)
  • the coordinates of feature point G are (x2, y2 , z2)
  • the coordinates of the feature point K are (x3, y3, z3)
  • the distance between the feature point G and the feature point H is Distance between feature point G and feature point K
  • S1212 Determine the characteristic distances from the light point to the three characteristic points of the characteristic triangle according to the distance between each two characteristic points and the azimuth angle of the light outgoing point.
  • the cosine theorem can be used to determine the distance from the light point P to the two feature points according to the screen coordinates of each two feature points and the azimuth angle of the two feature points at the light point.
  • the length l1 of GH, the length l2 of GK, the length l3 of HK, the characteristic point H and the characteristic point are known.
  • the point-to-point distance formula can be used to determine the light-emitting point coordinates of the light-emitting point P in the screen coordinate system according to the screen coordinates of the three feature points and the distances from the light-emitting point P to the three feature points respectively.
  • the coordinates (x p , y p , z p ) of the light point P can be calculated. Assuming that the coordinates of the point P in the y-axis direction are 0, then x p , y p , and z p are respectively:
  • S1214 Determine the offset coordinate system according to the coordinates of the light emitting point, the screen coordinates of the feature points of the characteristic triangle, and the screen coordinate system.
  • the unit vector unit vector unit vector As shown in Figure 7, the unit vector unit vector unit vector
  • the coordinates of the feature point G and the feature point H are different along the z-axis of the screen coordinate system, and are the same along the x-axis and y-axis of the screen coordinate system. Therefore, the ratio of the straight line PG to the straight line PH is In addition, the coordinates of the feature point G and the coordinates of the feature point K are different along the x-axis of the screen coordinate system, and are the same along the y-axis and z-axis of the screen coordinate system. Therefore, the unit vector of the projected device coordinate system They are:
  • S122 Acquire the simulated coordinates of the three characteristic points of the characteristic triangle in the screen coordinate system when the projection device is installed in an ideal position.
  • the polygon surrounded by solid lines on the projection screen 10 represents the projected image projected on the projection screen 10 when the projection device is installed in an ideal position
  • the polygons surrounded by dotted lines on the projection screen 10 represent A projected image projected on the projection screen 10 when the projection device is installed in the wrong position.
  • the number of acquired feature points are feature point G, feature point H, feature point K, and feature point L, and the number of feature triangles can be four, respectively ⁇ GHK, ⁇ GHL, ⁇ GKL, ⁇ HKL.
  • the total offset error of each feature triangle can be calculated separately, and the offset degrees of the total offset errors of the four feature triangles can be compared, and the offset coordinate system corresponding to the feature triangle with the smallest offset degree is taken as the projection device coordinate system.
  • the characteristic triangle with the smallest f value is the ideal characteristic triangle
  • the offset coordinate system corresponding to the ideal characteristic triangle is the projection device coordinate system.
  • an equation can be established through a rotation matrix to obtain the rotation angle of the projection device around each axis of the coordinate system of the projection device, as the rotation correction component, wherein:
  • c is the transformation matrix that rotates around the e3 axis of the projection device coordinate system, and c represents the angle at which the projection device rotates around the e3 axis.
  • a is the transformation matrix that rotates around the e1 axis of the projection device coordinate system, and a represents the rotation angle of the projection device around the e1 axis.
  • the translation correction component of the light spot in the projection device coordinate system is obtained, including:
  • the coordinates of the light-emitting point of the projection device in the screen coordinate system are known parameters. After the projection device coordinate system is determined, the light-emitting point can be placed in the screen coordinate system The coordinates of , are substituted into the coordinate system of the projection device, and the equivalent replacement is obtained to obtain the ideal coordinates of the light-emitting point in the coordinate system of the projection device under the ideal position.
  • the difference between the actual coordinates and the ideal coordinates can be obtained to obtain the translation correction component of the light point in the projection device coordinate system.
  • (xp, yp, zp) represents the ideal coordinates of the light point
  • (xp ⁇ , yp ⁇ , zp ⁇ ) represents the actual coordinates of the light point.
  • the embodiment of the present application provides a projection correction method, which can obtain screen coordinates of at least three non-collinear feature points in a projected image in a screen coordinate system, and the at least three non-collinear feature points can constitute one or more features Triangle, according to the screen coordinates, azimuth angle, and screen coordinate system of the three characteristic points in the characteristic triangle, the coordinate system of the projection device can be determined, and then the translation correction component and The rotation correction component, and then the position of the projection device is automatically corrected according to the translation correction component and/or the rotation correction component, thereby providing an accurate correction amount for the 6-axis motion platform without manual adjustment by the user.
  • the displacement deviation of the projection device is less than 1mm, and the angle deviation is less than 0.2°.
  • an embodiment of the present application further provides a projection correction device 100 , including: an acquisition module 101 , a calculation module 102 , and a correction module 103 .
  • the obtaining module 101 is configured to obtain screen coordinates of at least three non-collinear feature points in the projection image in the screen coordinate system; the at least three non-collinear feature points form one or more characteristic triangles.
  • the calculation module 102 is used to determine the coordinate system of the projection device with the smallest offset error according to the screen coordinates of the feature point in one or more feature triangles, the screen coordinate system and the azimuth angle of the feature point of the feature triangle at the light-emitting point of the projection device , the projection device coordinate system corresponds to an ideal characteristic triangle among the one or more characteristic triangles.
  • the calculation module 102 is also used to obtain the translation correction component and the rotation correction component of the light point under the projection equipment coordinate system according to the ideal coordinates of the projection equipment coordinate system and the light exit point;
  • the correction module 103 is configured to rotate and/or translate the projection device according to the translation correction component and the rotation correction component, so as to correct the position of the projection device.
  • the calculation module 102 is further configured to establish a plurality of offset coordinate systems corresponding to the characteristic triangles one-to-one according to the screen coordinates, azimuth angles, and screen coordinate systems of the three characteristic points of the characteristic triangle;
  • the simulated coordinates of the three feature points of the feature triangle in the screen coordinate system When installed in an ideal position, the simulated coordinates of the three feature points of the feature triangle in the screen coordinate system; the offset error of the feature triangle is calculated according to the sum of the squares of the differences between the simulated coordinates of the three feature points of the feature triangle and the screen coordinates , and the offset coordinate system corresponding to the characteristic triangle with the smallest offset error is determined as the projection device coordinate system.
  • the calculation module 102 is also used to obtain the distance between every two feature points according to the screen coordinates of every two feature points of the feature triangle; according to the distance between every two feature points and the azimuth angle of the light point, determine the light point
  • the characteristic distance to the three feature points of the characteristic triangle according to the characteristic distance and screen coordinates, determine the light-emitting point coordinates of the light-emitting point in the screen coordinate system; according to the light-emitting point coordinates, the screen coordinates of the feature points of the characteristic triangle, and the screen coordinate system , to determine the offset coordinate system.
  • the calculation module 102 is also used to obtain the actual coordinates of the light point in the projection device coordinate system according to the base transformation and the light-emitting point coordinates of the light-emitting point; according to the actual coordinates and ideal coordinates of the light-emitting point in the projection device coordinate system, obtain The translation correction component of the light emitting point in the coordinate system of the projection device.
  • the projection correction device 100 further includes a judgment module 104, and the judgment module 104 is used for judging whether the coordinate axis of the projection device coordinate system is parallel to the coordinate axis of the screen coordinate system.
  • the correction module 103 is configured to not need to rotate the projection device according to the projection device coordinate system when the coordinate axis of the projection device coordinate system is parallel to the coordinate axis of the screen coordinate system.
  • An embodiment of the present application provides a projection correction device, the explanation and beneficial effects of which are the same as those of the projection correction method in the foregoing embodiments, and are not described herein again.
  • an embodiment of the present application further provides a structural block diagram of an electronic device 200 , where the electronic device 200 is an electronic device 200 capable of running an application program.
  • the electronic device 200 of the present application may include: one or at least one processor 201 , a memory 202 , and one or at least one application program 203 .
  • the one or at least one application program 203 is stored in the memory 202 and configured to be executed by the one or at least one processor 201, and the one or at least one application program 203 is configured to perform the method described in the foregoing embodiments .
  • the processor 201 may include one or more processing cores.
  • the processor 201 uses various interfaces and lines to connect various parts of the entire smart panel 200, and executes by running or executing the instructions, programs, code sets or instruction sets stored in the memory 202, and calling the data stored in the memory 202.
  • the processor 201 may adopt digital signal processing (Digital Signal Processing, referred to as DSP), Field-Programmable Gate Array (Field-Programmable Gate Array, referred to as FPGA), Programmable Logic Array (Programmable Logic Array, referred to as PLA) in the of at least one hardware form.
  • DSP Digital Signal Processing
  • FPGA Field-Programmable Gate Array
  • PLA Programmable Logic Array
  • the processor 201 may integrate one or a combination of a central processing unit (Central Processing Unit, CPU for short), a graphics processor (Graphics Processing Unit, GPU for short), and a modem.
  • a central processing unit Central Processing Unit, CPU for short
  • a graphics processor Graphics Processing Unit, GPU for short
  • the CPU mainly handles the operating system, user interface and application programs, etc.
  • the GPU is used for rendering and drawing of the display content
  • the modem is used to handle wireless communication. It can be understood that, the above-mentioned modem may not be integrated into the processor 201, and is implemented by a communication chip alone.
  • the memory 202 may include a random access memory (Random Access Memory, RAM for short), or a read-only memory (Read-Only Memory, ROM for short). Memory 202 may be used to store instructions, programs, codes, sets of codes, or sets of instructions.
  • the memory 202 may include a stored program area and a stored data area, wherein the stored program area may store instructions for implementing an operating system, instructions for implementing at least one function (such as a touch function, a sound playback function, an image playback function, etc.) , instructions for implementing the following method embodiments, and the like.
  • the storage data area can also store data (such as phone book, audio and video data, chat record data) created by the smart panel 200 during use.
  • FIG. 12 shows a structural block diagram of a computer-readable storage medium 300 provided by another embodiment of the present application.
  • the computer-readable storage medium 300 stores program codes, and the program codes can be invoked by the processor to execute the methods described in the above method embodiments.
  • the computer-readable storage medium 300 may be an electronic memory such as flash memory, EEPROM (Electrically Erasable Programmable Read Only Memory), EPROM, hard disk, or ROM.
  • the computer-readable storage medium 300 includes a non-transitory computer-readable storage medium.
  • the computer readable storage medium 300 has storage space for an application 203 that performs any of the method steps in the above-described methods. These applications 203 can be read from or written to one or more computer program products. Application 203 may be compressed, for example, in a suitable form.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Projection Apparatus (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Abstract

本申请实施例提供了一种投影校正方法、投影校正装置及电子设备,涉及投影技术领域,可以自动校正投影设备的位置,改善投影图像与投影屏幕难以匹配的问题。该方法包括:获取投影图像中至少三个不共线的特征点在屏幕坐标系下的屏幕坐标;至少三个不共线的特征点构成一个或多个特征三角形;根据一个或多个特征三角形中特征点的屏幕坐标、屏幕坐标系和方位角,确定偏移误差最小的投影设备坐标系,投影设备坐标系与一个或多个特征三角形中的理想特征三角形对应;根据投影设备坐标系以及出光点在投影设备坐标系下的理想坐标,求得出光点在投影设备坐标系下的平移校正分量和旋转校正分量;根据平移校正分量和旋转校正分量,旋转和/或平移投影设备。

Description

投影校正方法、投影校正装置及电子设备 技术领域
本申请涉及投影技术领域,尤其涉及一种投影校正方法、投影校正装置及电子设备。
背景技术
在安装投影设备的过程中,存在投影图像与投影屏幕难以完全匹配的问题,该问题不但影响安装人员的工作效率,也影响了用户的体验。而且,即使安装后的投影设备投影的画面与投影屏幕完全匹配,在使用过程中也可能因意外磕碰导致投影设备的位置发生变化,在重新调节投影的位置的过程中又存在上述问题。
发明内容
本申请实施例提供了一种投影校正方法、投影校正装置及电子设备,以改善上述问题。
第一方面,提供了一种投影校正方法,包括:获取投影图像中至少三个不共线的特征点在屏幕坐标系下的屏幕坐标;至少三个不共线的特征点构成一个或多个特征三角形;根据一个或多个特征三角形中特征点的屏幕坐标、屏幕坐标系以及特征三角形的特征点在投影设备的出光点处的方位角,确定偏移误差最小的投影设备坐标系,投影设备坐标系与一个或多个特征三角形中的理想特征三角形对应;根据投影设备坐标系以及出光点在投影设备坐标系下的理想坐标,求得出光点在投影设备坐标系下的平移校正分量和旋转校正分量;根据平移校正分量和旋转校正分量,旋转和/或平移投影设备,以校正投影设备的位置。
第二方面,提供了一种投影校正装置,包括:获取模块、计算模块、校正模块。获取模块,用于获取投影图像中至少三个不共线的特征点在屏 幕坐标系下的屏幕坐标;至少三个不共线的特征点构成一个或多个特征三角形;计算模块,用于根据一个或多个特征三角形中特征点的屏幕坐标、屏幕坐标系以及特征三角形的特征点在投影设备的出光点处的方位角,确定偏移误差最小的投影设备坐标系,投影设备坐标系与一个或多个特征三角形中的理想特征三角形对应;计算模块,还用于根据投影设备坐标系以及出光点在投影设备坐标系下的理想坐标,求得出光点在投影设备坐标系下的平移校正分量和旋转校正分量;校正模块,用于根据平移校正分量和旋转校正分量,旋转和/或平移投影设备,以校正投影设备的位置
第三方面,提供了一种电子设备,包括:一个或多个处理器;存储器;一个或多个应用程序,其中一个或多个应用程序被存储在存储器中并被配置为由一个或多个处理器执行,一个或多个程序配置用于执行第一方面所述的方法。
第四方面,提供了一种计算机可读存储介质,计算机可读取存储介质中存储有程序代码,程序代码可被处理器调用执行如第一方面所述的方法。
本申请实施例提供的一种投影校正方法、投影校正装置及电子设备中,可以获取投影图像中至少三个不共线的特征点在屏幕坐标系下的屏幕坐标,至少三个不共线的特征点可以构成一个或多个特征三角形,根据特征三角形中三个特征点的屏幕坐标、方位角、以及屏幕坐标系,可以确定投影设备坐标系,再根据投影设备坐标系以及投影设备的出光点的理想坐标,确定平移校正分量和旋转校正分量,进而根据平移校正分量和/或旋转校正分量,自动校正投影设备的位置,从而为6轴运动平台提供精确的校正量,且无需用户手动调节。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请实施例提供的投影图像在投影屏幕上的示意图;
图2为本申请实施例提供的投影校正方法的流程图;
图3为本申请实施例提供的投影图像在投影屏幕上的示意图;
图4为本申请实施例提供的投影图像在投影屏幕上的示意图;
图5为本申请实施例提供的投影校正方法的流程图;
图6为本申请实施例提供的投影图像与出光点的示意图;
图7为本申请实施例提供的投影图像与出光点的示意图;
图8为本申请实施例提供的投影图像与出光点的示意图;
图9为本申请实施例提供的投影校正装置的框图;
图10为本申请实施例提供的投影校正装置的框图;
图11为本申请实施例提供的电子设备的框图;
图12示出了用于保存实现根据本申请实施例的设备配网处理方法的应用程序的存储器。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。
针对背景技术提出的投影图像与投影屏幕难以完全匹配的问题,相关技术提出了解决方案:部分厂商开发了6轴运动平台,用户可以通过操作面板对投影机6个方向自由度的位置进行调节,一定程度上简化了调节过程。但是,由于6轴调节量的精确解没有给出,用户需要盯着投影图像实时调节,整个过程没有完全自动化。通过数学推导可以证明,3个旋转轴的复合运动对投影图像的影响相当复杂,用户凭“直觉”调好投影设备的位置并不是一件容易的事。
基于此,本申请提出一种投影校正方法,可以采用三角定位的方式,为6轴运动平台提供精确的校正量。
为便于描述,本申请将投影设备的出光口等效为一个出光点,若投影设备的出光口的等效口径足够小,此出光点即为出光口大小,若此出光口的等效口径过大,此出光点即可以为出光口的中心点,可以理解的是,为满足不同的成像场景,本领域技术人员可以选择投影设备的出光口的任意一点作为参考出光点,以出光点的坐标表征投影设备的出光口的坐标,以便于完成校正。
当投影设备安装在理想位置时,投影设备投影的投影图像也在理想位置,在此情况下,可以建立屏幕坐标系,投影图像上任意一个特征点在屏幕坐标系下的坐标,均为该特征点的理想坐标,该理想坐标为模拟坐标。对于屏幕坐标系可参考图1,假设投影屏幕10为矩形,投影设备正对着投影屏幕投影,其中,屏幕坐标系的x轴的延伸方向可以是投影屏幕10的长边方向、y轴的延伸方向可以是垂直于投影屏幕10的方向、z轴的延伸方向可以是投影屏幕10的短边方向。
在已知屏幕坐标系的情况下,投影设备安装在理想位置时,投影图像的特征点的模拟坐标,以及投影设备未安装在理想位置时,投影图像的特征点在屏幕坐标系下的屏幕坐标均可作为已知参数获取得到;可以根据从投影设备出射的光线的路径,利用光学传感器确定每两个特征点在出光点处的方位角,方位角为这两个特征点分别到出光点的连线之间夹角。
进一步的,基于屏幕坐标系、各个特征点的模拟坐标以及屏幕坐标、方位角等参数,可以预先建立算法模型,在该算法模型的基础上,反算投影设备未安装在理想位置时,投影设备的出光点的平移偏移量以及旋转偏移量,之后根据平移偏移量以及旋转偏移量得到平移校正分量以及旋校正分量,对投影设备的位置进行校正。
具体地,如图2所示,该投影校正方法包括:
S11、获取投影图像中至少三个不共线的特征点在屏幕坐标系下的屏幕坐标;至少三个不共线的特征点构成一个或多个特征三角形。
在一些实施例中,对于由投影设备出射,投影到投影屏幕10上的投影图像,其上任意点均可作为特征点。示例的,如图3所示,选取的特征点可以是投影图像的顶点,也可以是投影图像除顶点以外的任意点。
其中,每三个不共线的特征点即可构成一个特征三角形,不对用于计算投影设备坐标系的特征三角形的个数进行限定,特征三角形的个数与获取的特征点的个数有关。特征三角形的个数
Figure PCTCN2021133175-appb-000001
其中,M表示用于特征三角形的个数,N表示获取的特征点的个数。
当特征点的个数为三个时,三个特征点可以构成一个特征三角形,该特征三角形可以作为理想特征三角形。
当特征点的个数大于三个,特征点可以构成多个特征三角形,多个特征三角形中偏移误差最小的特征三角形可以作为理想特征三角形。
在一些实施例中,当投影设备安装在理想位置时,任意一个特征点的屏幕坐标与模拟坐标重合;当投影设备的安装位置发生偏移时,任意一个特征点的屏幕坐标与该特征点的模拟坐标可能重合或不重合,且所有特征点的屏幕坐标与模拟坐标不完全重合。
在一些实施例中,投影设备可以是超短焦投影设备、长焦投影设备等。
S12、根据一个或多个特征三角形中特征点的屏幕坐标、屏幕坐标系以及特征三角形的特征点在投影设备的出光点处的方位角,确定偏移误差最小的投影设备坐标系,投影设备坐标系与一个或多个特征三角形中的理想特征三角形对应。
在一些实施例中,特征三角形中每两个特征点在投影设备的出光点处的方位角与投影图像的形状有关,与投影屏幕10的位置和投影设备的位置无关,在投影屏幕10的位置和/或投影设备的位置发生变化,但投影图像没有变化时,特征三角形中每两个特征点在投影设备的出光点处的方位角始终为一定值。
在一些实施例中,每个特征三角形可以对应一个偏转坐标系,当投影设备的安装位置发生偏移时,若特征三角形的个数为多个,则多个特征三角形的偏移程度可能不同,部分特征三角形的偏移程度较小,部分特征三角形的偏移程度较大,可以取偏移程度最小的特征三角形确定的偏转坐标系作为投影设备坐标系。
其中,特征三角形的偏移程度可以是构成该特征三角形的三个特征点的偏移程度之和。
在一些实施例中,当不共线的特征点的个数为三个时,特征三角形的个数为一个,偏转坐标系的个数也为一个,该偏转坐标系即可作为偏移误差最小的投影设备坐标系;当不共线的特征点的个数为大于三个时,特征三角形的个数为多个,偏转坐标系的个数也为多个,多个偏转坐标系中偏移误差最小的偏移坐标系可作为投影设备坐标系。
在一些实施例中,投影设备坐标系为投影设备安装在实际位置时对应的坐标,投影设备坐标可以为极坐标。
在一些实施例中,如图4所示,当投影设备安装在理想位置时,屏幕坐标系与偏转坐标系以及投影设备坐标系重合。
在一些实施例中,不对步骤S12的具体方式进行限定。
S13、根据投影设备坐标系以及出光点在投影设备坐标系下的理想坐标,求得出光点在投影设备坐标系下的平移校正分量和旋转校正分量。
在一些实施例中,当投影设备安装在理想位置时,投影设备的出光点在屏幕坐标系下的坐标为已知参数,在确定出投影设备坐标系后,可以将出光点在屏幕坐标系下的坐标代入到投影设备坐标系下,等效替换得到理想位置下,出光点在投影设备坐标系下的理想坐标。
在一些实施例中,不对步骤S13的具体方式进行限定。
S14、根据平移校正分量和旋转校正分量,旋转和/或平移投影设备,以校正投影设备的位置。
在一些实施例中,在投影设备坐标系的坐标轴与屏幕坐标系平行时,根据平移校正分量对投影设备进行平移,且无需根据投影设备坐标系旋转投影设备,进而无需获取旋转校正分量。当投影设备坐标系的坐标轴与屏幕坐标系不平行时,根据投影设备坐标系旋转投影设备,在此情况下,还可能根据平移校正分量对投影设备进行平移。
基于此,在步骤S12之后、步骤S13之前,所述方法还可以包括:判断投影设备坐标系的坐标轴与屏幕坐标系的坐标轴是否平行。当投影设备坐标系的坐标轴与屏幕坐标系的坐标轴平行时,无需执行步骤S13中求得出光点在投影设备坐标系下旋转校正分量的步骤、以及步骤S14中根据旋转校正分量,旋转投影设备的步骤。
在一些实施例中,不对步骤S14的具体方式进行限定。可选的,可以根据投影设备坐标系的坐标轴旋转投影设备,也可以以投影设备坐标系的出光点为基准平移投影设备。
本申请实施例提供一种投影校正方法,可以获取投影图像中至少三个不共线的特征点在屏幕坐标系下的屏幕坐标,至少三个不共线的特征点可以构成一个或多个特征三角形,根据特征三角形中三个特征点的屏幕坐标、方位角、以及屏幕坐标系,可以确定投影设备坐标系,再根据投影设备坐标系以及投影设备的出光点的理想坐标,确定平移校正分量和旋转校正分量,进而根据平移校正分量和/或旋转校正分量,自动校正投影设备的位置,从而为6轴运动平台提供精确的校正量,且无需用户手动调节。
本申请实施例提出一种投影校正方法,可以采用三角定位的方式,为6轴运动平台提供精确的校正量。如图5所示,当特征三角形的个数为多个时,该投影校正方法包括:
S11、获取投影图像中至少三个不共线的特征点在屏幕坐标系下的屏幕坐标;至少三个不共线的特征点构成一个或多个特征三角形。
步骤S11的解释说明,与前述实施例中步骤S11的解释说明相同,在此不再赘述。
S121、根据特征三角形的三个所述特征点的屏幕坐标、方位角、屏幕坐标系,建立与特征三角形一一对应的多个偏移坐标系。
具体的,根据特征三角形的三个所述特征点的屏幕坐标、方位角、屏幕坐标系,建立与特征三角形一一对应的多个偏移坐标系,包括:
S1211、根据所述特征三角形每两个特征点的屏幕坐标,得到每两个特征点之间的距离。
可以利用点到点的距离公式,根据每两个特征点的屏幕坐标,得到这两个特征点之间的距离。
例如,如图6所示,三个特征点分别为特征点G、特征点H、特征点K,特征点H的坐标为(x1,y1,z1),特征点G的坐标为(x2,y2,z2),特征点K的坐标为(x3,y3,z3)则特征点G与特征点H之间的距离为
Figure PCTCN2021133175-appb-000002
特征点G与特征点K之间的距离
Figure PCTCN2021133175-appb-000003
特征点H与特征点K之间的距离
Figure PCTCN2021133175-appb-000004
S1212、根据每两个特征点之间的距离和出光点的方位角,确定出光点到所述特征三角形的三个特征点的特征距离。
可以利用余弦定理,根据每两个特征点的屏幕坐标,以及这两个特征点在出光点处的方位角,确定出光点P分别到这两个特征点的距离。
如图6所示,在以特征点G、特征点H、特征点K构成的特征三角形△GHK中,已知GH的长度l1、GK的长度l2、HK的长度l3、特征点H与特征点G在出光点P处的夹角α、特征点G与特征点K在出光点P处的夹角β、以及特征点H与特征点K在出光点P处的夹角γ,可以通过余弦定理:l 1 2=r 1 2+r 2 2-2r 1r 2cosα、l 2 2=r 2 2+r 3 2-2r 2r 3cosβ、l 3 2=r 1 2+r 3 2-2r 1r 3cosγ,计算得到出光点到特征点H的距离r1、出光点到特征点G的距离r2、出光点到特征点K的距离r3。
S1213、根据特征距离和屏幕坐标,确定所述出光点在屏幕坐标系下的出光点坐标。
可以利用点到点的距离公式,根据这三个特征点的屏幕坐标,以及出光点P分别到这三个特征点的距离,确定出光点P在屏幕坐标系下的出光点坐标。
如图6所示,在直线HP中,有(x p-x 1) 2+(y p-y 1) 2+(z p-z 1) 2=r 1 2;在直线GP中,有(x p-x 2) 2+(y p-y 2) 2+(z p-z 2) 2=r 2 2;在直线KP中,有(x p-x 3) 2+(y p-y 3) 2+(z p-z 3) 2=r 3 2。根据上述三个公式可以计算得到出光点P的坐标(x p,y p,z p),假设P点在y轴方向上的坐标为0,则x p、y p、z p分别为:
Figure PCTCN2021133175-appb-000005
Figure PCTCN2021133175-appb-000006
Figure PCTCN2021133175-appb-000007
S1214、根据出光点坐标、特征三角形的特征点的屏幕坐标、以及屏幕坐标系,确定偏移坐标系。
如图7所示,单位向量
Figure PCTCN2021133175-appb-000008
单位向量
Figure PCTCN2021133175-appb-000009
单位向量
Figure PCTCN2021133175-appb-000010
在此基础上,特征点G的坐标与特征点H的坐标沿屏幕坐标系的z轴不同、沿屏幕坐标系的x轴和y轴相同,因此,直线PG与直线PH的比值
Figure PCTCN2021133175-appb-000011
并且,特征点G的坐标与特征点K的坐标沿屏幕坐标系的x轴不同、沿屏幕坐标系的y轴和z轴相同。因此,投影设备坐标系的单位向量
Figure PCTCN2021133175-appb-000012
Figure PCTCN2021133175-appb-000013
分别为:
Figure PCTCN2021133175-appb-000014
S122、获取在投影设备安装在理想位置时,特征三角形的三个特征点在屏幕坐标系下的模拟坐标。
S123、根据特征三角形的三个特征点的模拟坐标与屏幕坐标的差值的平方和,计算特征三角形的偏移误差,确定偏移误差最小的特征三角形对应的偏移坐标系为投影设备坐标系。
具体的,如图8所示,投影屏幕10上的实线围成的多边形表示投影设备安装在理想位置时,投影在投影屏幕10上的投影图像,投影屏幕10上的虚线围成的多边形表示投影设备安装在错误位置处时,投影在投影屏幕10上的投影图像。
以获取的特征点的个数可以为四个为例,分别为特征点G、特征点H、特征点K、以及特征点L,特征三角形的个数可以是四个,分别为△GHK、△GHL、△GKL、△HKL。
在已知特征点G、特征点H、特征点K、以及特征点L的理想坐标和实际坐标的情况下,可以根据公式
Figure PCTCN2021133175-appb-000015
计算各个特征三角形的偏移程度,f表示各个特征三角形的总偏移误差。其中,s i表示特征三角形中的特征点的屏幕坐标,s i`表示特征三角形中的特征点的模拟坐标;N=3,表示特征三角形具有三个特征点。
进一步的,可以分别计算各个特征三角形的总偏移误差,并比较四个特征三角形的总偏移误差的偏移程度,取偏移程度最小的特征三角形对应的偏移坐标系作为投影设备坐标系,即,f值最小的特征三角形为理想特征三角形,理想特征三角形对应的偏移坐标系为投影设备坐标系。
S13、根据投影设备坐标系以及出光点在投影设备坐标系下的理想坐标,求得出光点在投影设备坐标系下的平移校正分量和旋转校正分量。
在一些实施例中,以投影设备坐标系为基准,对投影设备进行旋转为例,可以通过旋转矩阵建立方程式,求投影设备绕投影设备坐标系各个轴旋转的角度,作为旋转校正分量,其中:
Figure PCTCN2021133175-appb-000016
为绕投影设备坐标系的e3轴旋转的变换矩阵,c表示投影设备绕e3轴旋转的角度。
Figure PCTCN2021133175-appb-000017
为绕投影设备坐标系的e1轴旋转的变换矩阵,a表示投影设备绕e1轴旋转的角度。
Figure PCTCN2021133175-appb-000018
为绕投影设备坐标系的e2轴旋转的变换矩阵,b表示投影设备绕e2轴旋转的角度。
在一些实施例中,以以投影设备坐标系为基准,对投影设备进行平移为例,求出光点在投影设备坐标系下的平移校正分量,包括:
S131、根据基变换以及出光点的出光点坐标,求得出光点在投影设备坐标系下的实际坐标。
根据步骤S1213计算得到出光点在屏幕坐标系下的出光点坐标,在已知投影设备坐标系的情况下,可以将出光点坐标带入到投影设备坐标系下,等效换算得到出光点在投影设备坐标系下的实际坐标。
S132、根据出光点在投影设备坐标系下的实际坐标和理想坐标,求得出光点在投影设备坐标系下的平移校正分量。
前述步骤中提到,当投影设备安装在理想位置时,投影设备的出光点 在屏幕坐标系下的坐标为已知参数,在确定出投影设备坐标系后,可以将出光点在屏幕坐标系下的坐标代入到投影设备坐标系下,等效替换得到理想位置下,出光点在投影设备坐标系下的理想坐标。
进一步的,在已知出光点在投影设备坐标系下的实际坐标以及理想坐标的情况下,可以对实际坐标与理想坐标做差,求得出光点在投影设备坐标系下的平移校正分量。
投影设备的平移量为(Δx,Δy,Δz)=(xp`-xp,yp`-yp,zp`-zp)。其中,(xp,yp,zp)表示出光点的理想坐标,(xp`,yp`,zp`)表示出光点的实际坐标。
S14、根据平移校正分量和旋转校正分量,旋转和/或平移投影设备,以校正投影设备的位置。
本申请实施例提供一种投影校正方法,可以获取投影图像中至少三个不共线的特征点在屏幕坐标系下的屏幕坐标,至少三个不共线的特征点可以构成一个或多个特征三角形,根据特征三角形中三个特征点的屏幕坐标、方位角、以及屏幕坐标系,可以确定投影设备坐标系,再根据投影设备坐标系以及投影设备的出光点的理想坐标,确定平移校正分量和旋转校正分量,进而根据平移校正分量和/或旋转校正分量,自动校正投影设备的位置,从而为6轴运动平台提供精确的校正量,且无需用户手动调节。经发明人计算,采用该方法矫正投影设备的位置,任意两个特征三角形确定的两个偏转坐标系之间,对投影设备的位移偏差小于1mm,角度偏差小于0.2°。
如图9所示,本申请实施例还提供一种投影矫正装置100,包括:获取模块101、计算模块102、校正模块103。
获取模块101,用于获取投影图像中至少三个不共线的特征点在屏幕坐标系下的屏幕坐标;至少三个不共线的特征点构成一个或多个特征三角形。
计算模块102,用于根据一个或多个特征三角形中特征点的屏幕坐标、屏幕坐标系以及特征三角形的特征点在投影设备的出光点处的方位角,确定偏移误差最小的投影设备坐标系,投影设备坐标系与一个或多个特征三角形中的理想特征三角形对应。
计算模块102,还用于根据投影设备坐标系以及出光点的理想坐标,求 得出光点在投影设备坐标系下的平移校正分量和旋转校正分量;
校正模块103,用于根据平移校正分量和所述旋转校正分量,旋转和/或平移所述投影设备,以校正投影设备的位置。
在此基础上,计算模块102,还用于根据特征三角形的三个特征点的屏幕坐标、方位角、屏幕坐标系,建立与特征三角形一一对应的多个偏移坐标系;获取在投影设备安装在理想位置时,特征三角形的三个特征点在屏幕坐标系下的模拟坐标;根据特征三角形的三个特征点的模拟坐标与屏幕坐标的差值的平方和,计算特征三角形的偏移误差,确定偏移误差最小的特征三角形对应的偏移坐标系为投影设备坐标系。
计算模块102,还用于根据特征三角形每两个特征点的屏幕坐标,得到每两个特征点之间的距离;根据每两个特征点之间的距离和出光点的方位角,确定出光点到特征三角形的三个特征点的特征距离;根据特征距离和屏幕坐标,确定出光点在屏幕坐标系下的出光点坐标;根据出光点坐标、特征三角形的特征点的屏幕坐标、以及屏幕坐标系,确定偏移坐标系。
计算模块102,还用于根据基变换以及出光点的出光点坐标,求得出光点在投影设备坐标系下的实际坐标;根据出光点在投影设备坐标系下的实际坐标和理想坐标,求得出光点在投影设备坐标系下的平移校正分量。
如图10所示,投影矫正装置100还包括判断模块104,判断模块104用于判断投影设备坐标系的坐标轴与屏幕坐标系的坐标轴是否平行。
校正模块103用于在所述投影设备坐标系的坐标轴与所述屏幕坐标系的坐标轴平行时,无需根据所述投影设备坐标系旋转所述投影设备。
本申请实施例提供一种投影校正装置,其解释说明和有益效果与前述实施例投影校正方法相同,在此不再赘述。
如图11所示,本申请实施例还提供的一种电子设备200的结构框图,该电子设备200是能够运行应用程序的电子设备200。本申请的电子设备200可以包括:一个或至少一个处理器201、存储器202、一个或至少一个应用程序203。其中所述一个或至少一个应用程序203被存储在存储器202中并被配置为由所述一个或至少一个处理器201执行,一个或至少一个应用程序203配置用于执行前述实施例所述的方法。
处理器201可以包括一个或者多个处理核。处理器201利用各种接口和线路连接整个智能面板200内的各个部分,通过运行或执行存储在存储器202内的指令、程序、代码集或指令集,以及调用存储在存储器202内的数据,执行智能面板200的各种功能和处理数据。可选地,处理器201可以采用数字信号处理(Digital Signal Processing,简称DSP)、现场可编程门阵列(Field-Programmable Gate Array,简称FPGA)、可编程逻辑阵列(Programmable Logic Array,简称PLA)中的至少一种硬件形式来实现。处理器201可集成中央处理器(Central Processing Unit,简称CPU)、图像处理器(Graphics Processing Unit,简称GPU)和调制解调器等中的一种或几种的组合。其中,CPU主要处理操作系统、用户界面和应用程序等;GPU用于负责显示内容的渲染和绘制;调制解调器用于处理无线通信。可以理解的是,上述调制解调器也可以不集成到处理器201中,单独通过一块通信芯片进行实现。
存储器202可以包括随机存储器(Random Access Memory,简称RAM),也可以包括只读存储器(Read-Only Memory,简称ROM)。存储器202可用于存储指令、程序、代码、代码集或指令集。存储器202可包括存储程序区和存储数据区,其中,存储程序区可存储用于实现操作系统的指令、用于实现至少一个功能的指令(比如触控功能、声音播放功能、图像播放功能等)、用于实现下述各个方法实施例的指令等。存储数据区还可以存储智能面板200在使用中所创建的数据(比如电话本、音视频数据、聊天记录数据)等。
如图12所示,其示出了本申请另一实施例提供的一种计算机可读存储介质300的结构框图。该计算机可读存储介质300中存储有程序代码,所述程序代码可被处理器调用执行上述方法实施例中所描述的方法。
计算机可读存储介质300可以是诸如闪存、EEPROM(电可擦除可编程只读存储器)、EPROM、硬盘或者ROM之类的电子存储器。可选的,计算机可读存储介质300包括非瞬时性计算机可读介质(non-transitory computer-readable storage medium)。
计算机可读存储介质300具有执行上述方法中的任何方法步骤的应用 程序203的存储空间。这些应用程序203可以从一个或者多个计算机程序产品中读出或者写入到这一个或者多个计算机程序产品中。应用程序203可以例如以适当形式进行压缩。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不驱使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (11)

  1. 一种投影校正方法,其特征在于,包括:
    获取投影图像中至少三个不共线的特征点在屏幕坐标系下的屏幕坐标;所述至少三个不共线的特征点构成一个或多个特征三角形;
    根据所述一个或多个特征三角形中特征点的屏幕坐标、所述屏幕坐标系以及所述特征三角形的特征点在投影设备的出光点处的方位角,确定偏移误差最小的投影设备坐标系,所述投影设备坐标系与所述一个或多个特征三角形中的理想特征三角形对应;
    根据所述投影设备坐标系以及所述出光点在所述投影设备坐标系下的理想坐标,求得所述出光点在所述投影设备坐标系下的平移校正分量和旋转校正分量;
    根据所述平移校正分量和所述旋转校正分量,旋转和/或平移所述投影设备,以校正所述投影设备的位置。
  2. 根据权利要求1所述的方法,其特征在于,
    所述特征点的个数为三个,所述特征点构成一个特征三角形,该特征三角形为所述理想特征三角形;或
    所述特征点的个数大于三个,所述特征点构成多个特征三角形,所述多个特征三角形中偏移误差最小的特征三角形为所述理想特征三角形。
  3. 根据权利要求2所述的方法,其特征在于,所述特征三角形的个数为多个;所述根据所述一个或多个特征三角形中特征点的屏幕坐标、所述屏幕坐标系以及特征三角形的特征点在投影设备的出光点处的方位角,确定偏移误差最小的投影设备坐标系,包括:
    根据所述特征三角形的三个所述特征点的屏幕坐标、所述方位角、所述屏幕坐标系,建立与所述特征三角形一一对应的多个偏移坐标系;
    获取在所述投影设备安装在理想位置时,所述特征三角形的三个特征点在所述屏幕坐标系下的模拟坐标;
    根据所述特征三角形的三个特征点的所述模拟坐标与所述屏幕坐标的 差值的平方和,计算所述特征三角形的偏移误差,确定偏移误差最小的所述特征三角形对应的所述偏移坐标系为投影设备坐标系。
  4. 根据权利要求3所述的方法,其特征在于,所述根据所述特征三角形的三个所述特征点的屏幕坐标、所述方位角、所述屏幕坐标系,建立与所述特征三角形一一对应的多个偏移坐标系,包括:
    根据所述特征三角形每两个特征点的屏幕坐标,得到每两个特征点之间的距离;
    根据每两个特征点之间的距离和所述出光点的方位角,确定所述出光点到所述特征三角形的三个特征点的特征距离;
    根据所述特征距离和屏幕坐标,确定所述出光点在所述屏幕坐标系下的出光点坐标;
    根据所述出光点坐标、所述特征三角形的特征点的屏幕坐标、以及屏幕坐标系,确定偏移坐标系。
  5. 根据权利要求4所述的方法,其特征在于,
    所述理想特征三角形的三个特征点分别为第一特征点、第二特征点、以及第三特征点,所述第一特征点的屏幕坐标与所述第二特征点的坐标沿所述屏幕坐标系的z轴不同、沿所述屏幕坐标系的x轴和y轴相同,所述第一特征点的坐标与所述第三特征点的坐标沿所述屏幕坐标系的x轴不同、沿所述屏幕坐标系的y轴和z轴相同;
    所述根据所述出光点坐标、所述特征三角形的特征点的屏幕坐标、以及屏幕坐标系,确定偏移坐标系,包括:
    Figure PCTCN2021133175-appb-100001
    Figure PCTCN2021133175-appb-100002
    Figure PCTCN2021133175-appb-100003
    其中,
    Figure PCTCN2021133175-appb-100004
    表示所述投影设备坐标系的单位向量,
    Figure PCTCN2021133175-appb-100005
    表示所述出光点到所述第三特征点的单位向量,
    Figure PCTCN2021133175-appb-100006
    表示所述出光点到所述第一特征点的单位向量,
    Figure PCTCN2021133175-appb-100007
    表示所述出光点到所述第二特征点的单位向量,t表示所述出 光点到所述第一特征点的距离与所述出光点到所述第二特征点的距离的比值。
  6. 根据权利要求5所述的方法,其特征在于,所述根据所述屏幕坐标系、所述投影设备坐标系、所述理想特征三角形中特征点的屏幕坐标、所述出光点的方位角以及所述出光点的理想坐标,求得所述出光点在所述投影设备坐标系下的平移校正分量,包括:
    根据基变换以及所述出光点的出光点坐标,求得所述出光点在所述投影设备坐标系下的实际坐标;
    根据所述出光点在所述投影设备坐标系下的实际坐标和所述理想坐标,求得所述出光点在所述投影设备坐标系下的所述平移校正分量。
  7. 根据权利要求5所述的方法,其特征在于,
    根据以下关系式确定所述投影设备绕所述投影设备坐标系的旋转校正分量:
    Figure PCTCN2021133175-appb-100008
    Figure PCTCN2021133175-appb-100009
    Figure PCTCN2021133175-appb-100010
    其中,M(c)为绕e3轴旋转的变换矩阵,c表示所述投影设备绕e3轴旋转的角度;M(a)为绕e1轴旋转的变换矩阵,a表示所述投影设备绕e1轴旋转的角度;M(b)为绕e2轴旋转的变换矩阵,b表示所述投影设备绕e2轴旋转的角度。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述根据所述特征三角形中特征点的屏幕坐标、所述屏幕坐标系以及所述特征三角形的特征点在所述投影设备的出光点的方位角,确定偏移误差最小的投影设备坐标系之后,所述根据所述投影设备坐标系以及所述出光点的理想坐标,求得所述出光点在所述投影设备坐标系下的平移校正分量和旋转校正分量 之前,所述方法还包括:
    判断所述投影设备坐标系的坐标轴与所述屏幕坐标系的坐标轴是否平行;
    所述根据所述投影设备坐标系以及所述出光点的理想坐标,求得所述出光点在所述投影设备坐标系下的平移校正分量和旋转校正分量,包括:
    当所述投影设备坐标系的坐标轴与所述屏幕坐标系的坐标轴平行时,根据所述投影设备坐标系以及所述出光点的理想坐标,求得所述平移校正分量且无需确定所述旋转校正分量。
  9. 一种投影校正装置,其特征在于,包括:
    获取模块,用于获取投影图像中至少三个不共线的特征点在屏幕坐标系下的屏幕坐标;所述至少三个不共线的特征点构成一个或多个特征三角形;
    计算模块,用于根据所述一个或多个特征三角形中特征点的屏幕坐标、所述屏幕坐标系以及所述特征三角形的特征点在投影设备的出光点处的方位角,确定偏移误差最小的投影设备坐标系,所述投影设备坐标系与所述一个或多个特征三角形中的理想特征三角形对应;
    所述计算模块,还用于根据所述投影设备坐标系以及所述出光点在所述投影设备坐标系下的理想坐标,求得所述出光点在所述投影设备坐标系下的平移校正分量和旋转校正分量;
    校正模块,用于根据所述平移校正分量和所述旋转校正分量,旋转和/或平移所述投影设备,以校正所述投影设备的位置。
  10. 一种电子设备,其特征在于,包括:
    一个或多个处理器;
    存储器;
    一个或多个应用程序,其中所述一个或多个应用程序被存储在所述存储器中并被配置为由所述一个或多个处理器执行,所述一个或多个程序配置用于执行权利要求1-8任一项所述的方法。
  11. 一种计算机可读存储介质,其特征在于,所述计算仪可读取存储介质中存储有程序代码,所述程序代码可被处理器调用执行如权利要求1-8任一项所述的方法。
PCT/CN2021/133175 2020-12-18 2021-11-25 投影校正方法、投影校正装置及电子设备 WO2022127558A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011511124.8 2020-12-18
CN202011511124.8A CN114650400A (zh) 2020-12-18 2020-12-18 投影校正方法、投影校正装置及电子设备

Publications (1)

Publication Number Publication Date
WO2022127558A1 true WO2022127558A1 (zh) 2022-06-23

Family

ID=81990698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/133175 WO2022127558A1 (zh) 2020-12-18 2021-11-25 投影校正方法、投影校正装置及电子设备

Country Status (2)

Country Link
CN (1) CN114650400A (zh)
WO (1) WO2022127558A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013038656A1 (ja) * 2011-09-15 2013-03-21 日本電気株式会社 投影像自動補正システム、投影像自動補正方法およびプログラム
CN104754264A (zh) * 2015-03-13 2015-07-01 中国科学院空间应用工程与技术中心 一种基于特征点的投影变形校正方法及系统
CN104902201A (zh) * 2015-06-25 2015-09-09 山东大学 基于移动视点与异形屏幕的投影图像实时校正方法
CN105227881A (zh) * 2015-09-15 2016-01-06 海信集团有限公司 一种投影画面校正方法及投影设备
CN107197222A (zh) * 2017-05-25 2017-09-22 青岛海信电器股份有限公司 生成投影设备的校正信息的方法及装置
CN109257582A (zh) * 2018-09-26 2019-01-22 上海顺久电子科技有限公司 一种投影设备的校正方法和装置
CN109978958A (zh) * 2019-03-27 2019-07-05 哈尔滨拓博科技有限公司 一种互动投影系统标定误差补偿方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013038656A1 (ja) * 2011-09-15 2013-03-21 日本電気株式会社 投影像自動補正システム、投影像自動補正方法およびプログラム
CN104754264A (zh) * 2015-03-13 2015-07-01 中国科学院空间应用工程与技术中心 一种基于特征点的投影变形校正方法及系统
CN104902201A (zh) * 2015-06-25 2015-09-09 山东大学 基于移动视点与异形屏幕的投影图像实时校正方法
CN105227881A (zh) * 2015-09-15 2016-01-06 海信集团有限公司 一种投影画面校正方法及投影设备
CN107197222A (zh) * 2017-05-25 2017-09-22 青岛海信电器股份有限公司 生成投影设备的校正信息的方法及装置
CN109257582A (zh) * 2018-09-26 2019-01-22 上海顺久电子科技有限公司 一种投影设备的校正方法和装置
CN109978958A (zh) * 2019-03-27 2019-07-05 哈尔滨拓博科技有限公司 一种互动投影系统标定误差补偿方法

Also Published As

Publication number Publication date
CN114650400A (zh) 2022-06-21

Similar Documents

Publication Publication Date Title
WO2022193560A1 (zh) 投影仪校正方法、系统、存储介质以及电子设备
JP5183833B1 (ja) 再帰反射器プローブアダプタ装置、レーザ追跡装置で点を測定する方法
CN110780285A (zh) 激光雷达与组合惯导的位姿标定方法、系统及介质
WO2017124759A1 (zh) 对鱼眼镜头拍摄的图像矫正的方法和装置
TWI244623B (en) System and method for environment mapping
WO2021031781A1 (zh) 投影图像校准方法、装置及投影设备
WO2019114197A1 (zh) 投影方法及投影设备
CN105635551A (zh) 一种球型摄像机生成全景图像的方法及球型摄像机
US11074719B2 (en) Calibration for vision system
CN109040736A (zh) 一种人眼空间位置的标定方法、装置、设备和存储介质
TW202019642A (zh) 用於機械手臂系統之校正方法及裝置
CN111899305A (zh) 一种相机自动标定优化方法及相关系统、设备
US11722845B2 (en) System for combining sensor data to determine a relative position
Geng et al. A novel welding path planning method based on point cloud for robotic welding of impeller blades
CN110470320A (zh) 摆动扫描式线结构光测量系统的标定方法及终端设备
CN114663515A (zh) 用于执行多相机标定的方法和设备
CN111197980B (zh) 一种ar量房智能吸附方法
CN113211445A (zh) 一种机器人参数标定方法、装置、设备及存储介质
WO2022127558A1 (zh) 投影校正方法、投影校正装置及电子设备
JP2009222568A (ja) 3次元形状データの生成方法および装置ならびにコンピュータプログラム
WO2019155903A1 (ja) 情報処理装置および方法
US11557046B2 (en) Single-moment alignment of imprecise overlapping digital spatial datasets, maximizing local precision
CN109648563A (zh) 串联机器人运动控制方法及计算机存储介质
CN116418958A (zh) 投影校准方法、装置、电子设备及存储介质
CN116136388A (zh) 机器人工具坐标系的标定方法、装置、设备以及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21905487

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21905487

Country of ref document: EP

Kind code of ref document: A1