WO2022127416A1 - 显示面板及其显示装置、头戴显示设备、显示均匀性校准方法 - Google Patents

显示面板及其显示装置、头戴显示设备、显示均匀性校准方法 Download PDF

Info

Publication number
WO2022127416A1
WO2022127416A1 PCT/CN2021/128304 CN2021128304W WO2022127416A1 WO 2022127416 A1 WO2022127416 A1 WO 2022127416A1 CN 2021128304 W CN2021128304 W CN 2021128304W WO 2022127416 A1 WO2022127416 A1 WO 2022127416A1
Authority
WO
WIPO (PCT)
Prior art keywords
display panel
sub
light
pixel
pixel units
Prior art date
Application number
PCT/CN2021/128304
Other languages
English (en)
French (fr)
Inventor
黄凯
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2022127416A1 publication Critical patent/WO2022127416A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/006Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]

Definitions

  • the present invention relates to the field of display technology, and in particular, to a display panel and a display device thereof, a head-mounted display device, and a display uniformity calibration method.
  • display panels are widely used in mobile phones, tablet computers, notebook computers, desktop monitors, TVs and head-mounted display devices, such as AR (Augmented Reality, augmented reality) glasses, VR (Virtual Reality, virtual reality) Glasses, MR (Mixed Reality, Mixed Reality) glasses and other electronic devices.
  • AR Augmented Reality, augmented reality
  • VR Virtual Reality, virtual reality
  • MR Magnetic Reality, Mixed Reality
  • Embodiments of the present invention disclose a display panel, a display device, a head-mounted display device, and a display uniformity calibration method, so that the uniformity of a display image is better.
  • an embodiment of the present invention discloses a display panel, the display panel includes:
  • the color filter includes a plurality of filter units of different colors
  • a plurality of pixel units each of the pixel units is set corresponding to one of the filter units, each of the pixel units includes at least two sub-pixel units, and each of the sub-pixel units of the same pixel unit is used to face the corresponding the filter unit emits light;
  • the display panel has a first part and a second part located at the periphery of the first part, the second part is an edge region of the display panel, the pixel units of the first part have a first light emitting direction, the The pixel units in the second part have a second light emitting direction, and the pixel units in the first part have the same luminous intensity of the sub-pixel units as the sub-pixel units in the second part.
  • the luminous intensities of the pixel units are different, so that the first light emitting direction is different from the second light emitting direction;
  • the first light emitting direction is the direction in which the brightness center of the pixel unit in the first part points to the center of the corresponding filter unit
  • the second light emitting direction is the pixel in the second part.
  • the brightness center of the unit points in the direction of the center of the corresponding filter unit.
  • an embodiment of the present invention discloses a display device, which includes a control unit and the display panel described in the first aspect, the control unit is configured to apply a control signal to each of the sub-pixel units to control each of the sub-pixel units.
  • the luminous intensity of the sub-pixel units is controlled, thereby controlling the light-emitting direction of each of the pixel units.
  • an embodiment of the present invention discloses a head-mounted display device, which includes an optical device and the display device according to the first aspect, wherein the optical device is disposed corresponding to the display panel and used to display the display panel. The emitted display light is transmitted to the user's eyes.
  • an embodiment of the present invention discloses a display calibration method for a display panel, and the calibration method includes the following steps:
  • a display panel and an optical device are provided, the display panel includes a color filter and a plurality of pixel units, the color filter includes a plurality of filter units of different colors, and the pixel unit is arranged corresponding to one of the filter units , the pixel unit includes at least two sub-pixel units, each of the sub-pixel units emits light toward the corresponding filter unit, and the optical device corresponds to the display panel and is used to receive and transmit the light emitted by the display panel ;
  • Detect the display uniformity of the test picture when the display uniformity of the test picture meets the preset uniformity standard, store the test signal that meets the preset uniformity standard as standard parameter data, and the standard parameter data is used It is used when driving the display panel next time.
  • FIG. 1 is a schematic diagram of a luminance distribution curve of each region of a display panel of a related art
  • FIG. 2 is a schematic diagram of light-emitting direction distribution in each region of a display panel according to a related art
  • FIG. 3 is a schematic diagram of an optical path structure of a head-mounted display device using a display panel of the related art
  • FIG. 4 is a schematic diagram of an optical path structure of a head-mounted display device using a display panel of the related art
  • FIG. 5 is a schematic diagram showing the requirements on the light emitting direction of each area of the display panel by a head-mounted display device using the related art
  • FIG. 6 is a schematic diagram of the effect of the uniformity of the display screen of a head-mounted display device using a display panel of the related art
  • FIG. 7 is a schematic diagram of light emitting directions of pixel units in various regions of a display panel according to the related art
  • FIG. 8 is a schematic diagram of the light emitting direction of each region of the display panel according to another related art.
  • FIG. 9 is a schematic diagram of light-emitting direction distribution in each area of a head-mounted display device using the display panel of the other related art.
  • FIG. 10 is a schematic plan view of a display panel disclosed in an embodiment of the present application.
  • FIG. 11 is a schematic plan view of a pixel unit of a display panel disclosed in an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a pixel unit of a display panel disclosed in an embodiment of the present application.
  • FIG. 13 is a schematic cross-sectional structural diagram of a pixel unit of a display panel disclosed in an embodiment of the present application.
  • FIG. 14 is a schematic diagram of the principle of adjusting the light emitting direction of the pixel units in each area of the display panel disclosed in an embodiment of the present application;
  • FIG. 15 is a schematic diagram of the principle of adjusting the light-emitting direction of the pixel units in each area of the display panel disclosed in another embodiment of the present application;
  • 16 is a schematic diagram of an equivalent circuit of a pixel unit of a display panel disclosed in an embodiment of the present application.
  • 17 is a schematic diagram of an equivalent circuit of a pixel unit of a display panel disclosed in another embodiment of the present application.
  • FIG. 18 is a schematic diagram of a control principle of the brightness center of a pixel unit of a display panel disclosed in an embodiment of the present application;
  • FIG. 19 is a schematic plan view of a pixel unit of a display panel disclosed in another embodiment of the present application.
  • FIG. 20 is a dimensional schematic diagram of a light emitting direction of a pixel unit of a display panel disclosed in yet another embodiment of the present application.
  • 21 is a schematic plan view of a pixel unit of a display panel disclosed in another embodiment of the present application.
  • FIG. 22 is a schematic diagram of the principle of adjusting the light-emitting direction of a pixel unit of a display panel disclosed in another embodiment of the present application.
  • FIG. 23 is a schematic diagram of the principle of adjusting the light output direction of a pixel unit of a display panel disclosed in still another embodiment of the present application.
  • FIG. 24 is a schematic block diagram of a display device disclosed in an embodiment of the present application.
  • 25 is a schematic diagram of an optical path structure of a head-mounted display device disclosed in an embodiment of the present application.
  • 26 is a schematic diagram of an optical path structure of a head-mounted display device disclosed in another embodiment of the present application.
  • FIG. 27 is a flowchart of a display uniformity calibration method disclosed in an embodiment of the present application.
  • FIG. 28 is a structural block diagram of a test system and a head-mounted display device in a display uniformity calibration method disclosed in an embodiment of the present application.
  • the terms “installed”, “arranged”, “provided”, “connected”, “connected” should be construed broadly. For example, it may be a fixed connection, a detachable connection, or an integral structure; it may be a mechanical connection, or an electrical connection; it may be directly connected, or indirectly connected through an intermediary, or between two devices, elements, or components. internal communication.
  • installed may be a fixed connection, a detachable connection, or an integral structure
  • it may be a mechanical connection, or an electrical connection
  • it may be directly connected, or indirectly connected through an intermediary, or between two devices, elements, or components. internal communication.
  • the specific meanings of the above terms in the present invention can be understood according to specific situations.
  • first means two or more.
  • a display panel when a display panel is applied to an electronic device, there may be a phenomenon of poor display uniformity such as uneven color and/or brightness of the display screen, especially when the display panel is applied to some electronic devices such as head-mounted display devices
  • the display uniformity of the device may be poor, and it is necessary to improve.
  • the horizontal angle of the abscissa represents the light emitting direction of the display panel and the vertical angle of the display panel.
  • the included angle of the direction where 0 degrees represents the light-emitting direction of the display panel is the direction vertical to the display panel
  • the ordinate represents the luminous intensity
  • the left, middle and right curves represent the horizontal angle and luminous intensity of the left, middle and right areas of the display panel respectively.
  • Schematic diagram of the curve relationship of brightness it can be seen that as the horizontal angle increases, the luminous intensity gradually decreases.
  • each pixel unit in the display panel has a light-emitting direction with the highest light-emitting intensity, and the light-emitting energy outside this direction gradually decreases.
  • the luminous intensity in the direction perpendicular to the display panel is the same, so that the human eye directly looks at the screen is uniform.
  • the device when the display panel is used in an electronic device such as a head-mounted display device, the device also includes an optical device, and the optical device can transmit the display light emitted by the display panel to the user's eyes. Specifically, as shown in FIG.
  • the optical device 30 may include a lens group 31 for transmitting the display light emitted by the display panel 10 , specifically Specifically, the display light emitted by the display panel 10 for displaying the virtual scene passes through a part of the lens of the optical device 30 and then enters the human eye 300 after being reflected.
  • the optical device 30 may also include a lens group 31 and a waveguide element 32 .
  • the lens group 31 is located between the display panel 10 and the waveguide element 32 and has one, two or more lenses.
  • the lens group 31 will The display light emitted by the display panel 10 is transmitted to the waveguide element 32 , and the waveguide element 32 transmits the light from the lens group 31 to the front of the human eye 300 through the principle of total reflection and then releases it, and the external real scene can also be transmitted through the waveguide element 32 to enter Human eye 300.
  • the waveguide element 32 is characterized by being light and thin and having high penetrability of external light.
  • total reflection is the key, that is, the light is reflected back and forth in the waveguide element 32 like a snake, and will not be transmitted.
  • the waveguide element 32 couples the light into its own glass substrate, transmits the light to the front of the eye and releases it by the principle of "total reflection". In this process, the waveguide element 32 is only responsible for transmitting the image.
  • the display panel 10 and the lens group 31 can be moved away from the glasses to the top or side of the forehead, which greatly reduces the impact of the optical device 30 on the outside sight. block, and make the weight distribution more ergonomic, thereby improving the wearing experience of the head-mounted display device.
  • the light emitted by the lens group 31 is projected to the coupling position of the waveguide element 32 , the light transmission in the waveguide element 32 is total reflection, and the light is emitted in the direction of the human eye at the coupling out position of the waveguide element 32 .
  • a related art display panel 10 includes a plurality of pixel units 11 and a color filter 12 located above the plurality of pixel units 11 , and the color filter 12 includes a plurality of filter units 121 (such as a red filter unit, a green filter unit, and a blue filter unit), each filter unit 121 is arranged in a one-to-one correspondence with each pixel unit 11 , and each pixel unit 11 is used to emit light toward the corresponding filter unit 121 .
  • the display panel 10 can be an OLED (Organic Light-Emitting Diode, organic electroluminescence unit) display panel, and the pixel unit 11 is an OLED pixel unit and is used to emit white light.
  • OLED Organic Light-Emitting Diode, organic electroluminescence unit
  • the filter unit 121 and the pixel unit 11 are positioned directly opposite, and for the left, middle, and right regions of the display panel 10, the direction perpendicular to the display panel is the light-emitting direction with the highest luminous intensity. , that is, the direction of maximum light energy.
  • the display uniformity of the device may be poor. For example, due to the influence of optical devices, the brightness of the image displayed in the edge area will be low.
  • the filter units in each area are not vertically aligned with the pixel electrodes of the corresponding pixel units, but have a certain angle.
  • FIG. 8 in the display panel 20 The filter unit 221 is still vertically aligned with the pixel electrode 211 of the corresponding pixel unit 21, but the filter unit 221 in the left area of the center area is shifted to the left by a certain displacement compared to the corresponding pixel unit 21 , the farther to the left, the larger the offset; the filter unit 221 in the right area of the central area is offset to the right by a certain displacement compared to the corresponding pixel unit 21 , and the farther to the right the greater the offset.
  • the advantage of this design is that the maximum luminous intensity of the edge area is not perpendicular to the direction of the display panel 20, but exists at a certain angle. As shown in FIG. 9, the maximum luminous intensity of the left edge area is shifted toward the left outer side. The highest luminous intensity of the right edge region is shifted toward the right outer side, so that when the display panel 20 is used in an electronic device, the aforementioned problem of the decrease in edge brightness can be compensated for and better display uniformity can be achieved.
  • the problem still exists in this design is that if the display panel 20 has been produced, the relative positions of the filter unit 221 of the color filter 22 and the pixel electrode 211 of the corresponding pixel unit 21 are fixed. That is to say, the light-emitting angle and the maximum luminous intensity of each pixel unit 21 of the display panel 20 are also fixed. Although the maximum luminous intensity of the edge area can be increased to a certain extent, if the offset of the filter unit 221 of the color filter If the displacement does not match the parameters of the optical device 30 (such as the design angle), the phenomenon that the edge is too bright or too dark may still occur, resulting in the problem of poor display uniformity.
  • an embodiment of the present invention discloses a display panel, including:
  • the color filter includes a plurality of filter units of different colors
  • a plurality of pixel units each of the pixel units is set corresponding to one of the filter units, each of the pixel units includes at least two sub-pixel units, and each of the sub-pixel units of the same pixel unit is used to face the corresponding the filter unit emits light;
  • the display panel has a first part and a second part located at the periphery of the first part, the second part is an edge part of the display panel, the pixel units of the first part have a first light emitting direction, the The pixel units in the second part have a second light emitting direction, and the luminous intensity of the sub-pixel units in the pixel units in the first part is the same as that in the sub-pixels in the pixel units in the second part.
  • the luminous intensities of the units are different, so that the first light-emitting direction is different from the second light-emitting direction;
  • the first light emitting direction is the direction in which the brightness center of the pixel unit in the first part points to the center of the corresponding filter unit
  • the second light emitting direction is the pixel in the second part.
  • the brightness center of the unit points in the direction of the center of the corresponding filter unit.
  • the pixel unit includes one, two or more rows of the sub-pixel units arranged in a matrix, the number of the sub-pixel units in each row is at least two, and the sub-pixel units in each row are at least two.
  • the pixel units are sequentially arranged along the first direction from the first part to the second part.
  • the included angle between the first light-emitting direction and the first direction is greater than the angle between the second light-emitting direction and the second light-emitting direction. The included angle in the first direction.
  • the display panel includes a center position of the first part, the direction from the center position to the second part is the first direction, and the direction along the first part is the first direction.
  • the included angle between each of the first light emitting directions and the first direction, and/or the included angle between each of the second light emitting directions and the first direction gradually decreases.
  • the display panel includes a center position of the first part, the direction from the center position to the second part is the first direction, and the direction along the first direction is the first direction. , the included angle between the first light emitting direction and the first direction remains unchanged, and the included angle between the second light emitting direction and the first direction remains unchanged.
  • the angle between the second light-emitting direction of each of the pixel units in the second part and the first direction is smaller than that of each of the first part.
  • the included angle between the first light-emitting direction of the pixel unit and the first direction is smaller than that of each of the first part.
  • the display panel includes a center position of the first part, the direction from the center position to the second part is the first direction, and the first part further includes a direction along the center of the first part.
  • the angle between the first light emitting direction and the first direction of the pixel units of the at least two first subsections gradually decreases;
  • the second part includes at least two second sub-parts arranged along the first direction, and the second light-emitting direction and the first direction of the pixel units of the at least two second sub-parts The included angle gradually decreases.
  • the first direction of each of the pixel units in each of the first subsections remains unchanged, and the The second light emitting direction remains unchanged.
  • the luminous intensity of the sub-pixel unit close to the first part is greater than that far from the first part.
  • the luminous intensity of a part of the sub-pixel units is greater than that far from the first part.
  • the display panel further includes a plurality of drive lines
  • the sub-pixel unit includes a switch element connected to the corresponding drive line, a sub-pixel electrode connected to the switch element, and a sub-pixel electrode connected to the corresponding drive line.
  • a light-emitting structure of a sub-pixel electrode, and a transparent electrode disposed on the side of the light-emitting structure away from the sub-pixel electrode.
  • the display panel further includes a silicon-based substrate, a plurality of the driving lines and the switching elements are disposed on the silicon-based substrate, and the sub-pixel electrodes are also disposed on the silicon-based substrate.
  • a silicon-based substrate is electrically connected to the corresponding switching element, the light-emitting structure is disposed on the side of the sub-pixel electrode away from the silicon-based substrate, and the transparent electrode is disposed on the light-emitting structure away from the On one side of the sub-pixel electrode, the transparent electrodes of each of the sub-pixel units of each of the pixel units are connected into one body.
  • the drive line includes a plurality of scan drive lines, data drive lines and power supply lines
  • the switch element in the scan drive line and the data pixel unit, includes a first switch element and a second switch element, the control end of the first switch element is connected to the corresponding scan drive line, and the two conduction ends of the first switch element are respectively connected to the corresponding data drive line and the first Two control terminals of the switching element, and two conducting terminals of the second switching element are respectively connected to the power line and the sub-pixel electrode.
  • control terminal of the first switching element of each sub-pixel unit is connected to the same one of the scan driving lines, and the sub-pixel unit is said to be the conducting terminal of the first switching element Connect different data drive lines.
  • control terminals of the first switching elements of each sub-pixel unit are connected to different scan driving lines, and the conducting terminals of the first switching elements of each sub-pixel unit are connected to the same data drive line.
  • the light-emitting structure is an OLED structure; the display panel is a silicon-based OLED panel or a Micro OLED panel.
  • the present application further discloses a display device, the display device includes a control unit and the display panel according to the first aspect, the control unit is configured to apply a control signal to each of the sub-pixel units to The luminous intensity of each of the sub-pixel units is controlled, thereby controlling the light-emitting direction of each of the pixel units.
  • the present application further discloses a head-mounted display device, the head-mounted display device includes an optical device and the display device described in the second aspect, the optical device is disposed corresponding to the display panel and is used to display the The display light emitted by the display panel is transmitted to the user's eyes.
  • the optical device includes a lens group or a lens group and a waveguide element, the lens group includes at least one lens, and the waveguide element is configured to be located between the display panel and the lens group .
  • the present application also discloses a display uniformity calibration method, the calibration method includes the following steps:
  • a display panel and an optical device are provided, the display panel includes a color filter and a plurality of pixel units, the color filter includes a plurality of filter units of different colors, and the pixel unit is arranged corresponding to one of the filter units , the pixel unit includes at least two sub-pixel units, each of the sub-pixel units is used to emit light toward the corresponding filter unit, and the optical device corresponds to the display panel and is used to receive and transmit the emitted light from the display panel light;
  • Detect the display uniformity of the test picture when the display uniformity of the test picture meets the preset uniformity standard, store the test signal that meets the preset uniformity standard as standard parameter data, and the standard parameter data is used It is used when driving the display panel next time.
  • the display panel has a first part and a second part located at the periphery of the first part, the second part is an edge part of the display panel, and the pixels of the first part
  • the unit has a first light-emitting direction
  • the pixel unit of the second part has a second light-emitting direction
  • the luminous intensity of the sub-pixel unit of the pixel unit located in the first part is the same as that of the pixel unit located in the second part.
  • the luminous intensities of the sub-pixel units of the pixel unit are different, so that the first light-emitting direction is different from the second light-emitting direction;
  • the first light emitting direction is the direction in which the brightness center of the pixel unit in the first part points to the center of the corresponding filter unit
  • the second light emitting direction is the pixel in the second part.
  • the brightness center of the unit points in the direction of the center of the corresponding filter unit.
  • a first aspect of the embodiments of the present application discloses a display panel 40 .
  • the display panel 40 includes a plurality of pixel units 41 and a color filter 42 .
  • the plurality of pixel units 41 can be located under the color filter 42, and are used to receive the driving signal of the picture to be displayed and emit light toward the color filter 42, and the color filter 42 is used for the light emitted by the plurality of pixel units 41. filter.
  • the plurality of pixel units 41 may emit white light
  • the color filter 42 may include a plurality of filter units 421 of different colors (such as a red filter unit, a green filter unit and a blue filter unit), each of which The filter unit 421 is set corresponding to one pixel unit 41, and a plurality of filter units 421 of different colors can receive the white light emitted by the corresponding pixel unit 41 and filter the light, thereby respectively emitting a variety of different colors of light (such as red, green, blue three primary colors), so that the display panel 40 realizes color display.
  • the display panel 40 is mainly described as a self-luminous display panel.
  • the display panel 40 may be an OLED display panel, such as a silicon-based OLED panel or a Micro OLED panel, but is not limited to the above.
  • each pixel unit 41 may include at least two sub-pixel units 410 , and each sub-pixel unit 410 is configured to emit light toward the filter unit 421 corresponding to each pixel unit 41 .
  • the display panel 40 has a first portion 40a and a second portion 40b located at the periphery of the first portion 40a.
  • the second portion 40b may be an edge portion of the display panel 20 (as shown in the left and right sides of FIG.
  • the pixel unit 41 of the first part 40a has a first light emitting direction D1
  • the pixel unit 41 of the second part 40b has a second light emitting direction D2
  • the sub-pixel unit 410 of the pixel unit 41 of the first part 40a The luminous intensity of D is different from the luminous intensity of the sub-pixel unit 410 of the pixel unit 41 of the second portion 40b, so that the first light-emitting direction D1 and the second light-emitting direction D2 are different.
  • the luminous intensity of the sub-pixel unit 410 of the pixel unit 41 of the first part 40a refers to the overall intensity of the pixel unit 41 of the first part 40a, correspondingly, the luminous intensity of the sub-pixel unit 410 of the pixel unit 41 of the second part 40b
  • the intensity refers to the overall intensity of the pixel units 41 of the second portion 40a. It can be understood that the luminous intensity of each sub-pixel unit 410 of the pixel unit 41 of the first part 40a may be the same or different. For example, if the pixel unit 41 of the first part 40a has two sub-pixel units 410, the respective luminous intensities of the two sub-pixel units 410 may be the same or different.
  • the luminous intensity of the three sub-pixel units 410 may be the same, or, the luminous intensity of the two sub-pixel units 410 may be the same, and the luminous intensity of the other sub-pixel unit 410 may be the same.
  • the intensity is different from the luminous intensity of the two sub-pixel units 410.
  • the luminous intensity of the three sub-pixel units 410 may also be different.
  • the luminous intensity of each sub-pixel unit 410 of the pixel unit 41 of the second part 40b may also be the same or different.
  • the first light-emitting direction D1 is the direction in which the brightness center of the pixel unit 41 in the first part 40a points to the center of the corresponding filter unit 42
  • the second light-emitting direction D2 is the direction in which the brightness center of the pixel unit 41 in the second part 40b points.
  • the direction of the center of the filter unit 42 corresponding thereto.
  • each pixel unit 41 of the display panel 40 includes at least two sub-pixel units 410, the second part 40b is an edge part of the display panel 40, and the first part 40a is an edge part of the display panel 40.
  • the luminous intensity of the sub-pixel unit 410 of the pixel unit 41 is different from the luminous intensity of the sub-pixel unit 410 of the pixel unit 41 of the second part 40b, so that the first light-emitting direction D1 of the pixel unit 41 of the first part 40a is different from that of the second part 40b.
  • the second light emitting direction D2 of the pixel unit 41 is different, so as to compensate for the uneven display of the edge of the display panel, so that the display uniformity of the display panel 40 when used in an electronic device (such as a head-mounted display device) is relatively high. good.
  • the plurality of filter units 421 of the color filter 42 may be arranged in a matrix
  • the plurality of pixel units 41 corresponding to the plurality of filter units 421 may also be arranged in a matrix
  • each pixel unit 41 may also be arranged in a matrix. It includes one, two or more rows of sub-pixel units 410 arranged in a matrix, and the number of sub-pixel units 410 in each row is at least two. As shown in FIG. 12 and FIG.
  • the pixel unit 41 includes a row of sub-pixel units 410 (for example, six sub-pixel units 410 ) for exemplary illustration, and the row of sub-pixel units 410 may be in accordance with the first part 40 a
  • the first directions K1 pointing to the second portion 40b are arranged in sequence.
  • the first portion 40a may be a display area located approximately in the central portion, but the shape is not limited, and may be a square, a rectangle or other polygons, and the second portion 40b is an edge display located on one side of the first portion 40a Area, but the shape is not limited, it can be square, rectangle or other polygon.
  • the number of the second parts 40b may be multiple, and the multiple second parts 40b are located on four sides of the first part 40a.
  • the first direction from the first part 40a to the second part 40a may also include the direction from the first part 40a to the four sides of four different first directions. Since the designs and principles of each of the first directions are basically the same, the present embodiment mainly exemplifies one of the first directions K1.
  • the first light exit direction D1 and the first direction K1 are sandwiched between The angle may be greater than the included angle between the second light-emitting direction D2 and the first direction K1, so that the second light-emitting direction D2 of the second portion 40b of the edge is offset toward the right outer side compared to the first light-emitting direction D1 of the first portion 40a.
  • brightness compensation can be performed on the display image corresponding to the second part 40b on the right, so that the brightness and/or color of the display image of the second part 40b on the right and the display image of the first part 40a are basically the same, and the uniformity is better.
  • the display panel 40 may include a center position P located at the first portion 40a, and the direction of the center position P pointing to the second portion 40b is the first direction K1, along the first direction K1, the first portion 40a and /or the light emitting direction defined by the brightness center of each pixel unit 41 in the second part 40b and the center of the corresponding filter unit 421 gradually decreases.
  • the first light emitting direction D1 defined by the brightness center of each pixel unit 41 of the first portion 40a and the center of the corresponding filter unit 421 gradually decreases.
  • the brightness center of each pixel unit 41 of the second part 40b and the second light output direction D2 defined by the center of the corresponding filter unit 421 gradually decrease; or along the first direction K1, each of the first part 40a
  • the first light emitting direction D1 defined by the center of the brightness of the pixel unit 41 and the center of the corresponding filter unit 421 gradually decreases
  • the center of the brightness of each pixel unit 41 of the second part 40b is defined by the center of the corresponding filter unit 421.
  • the light exit direction D2 gradually decreases. It can be understood that the above-mentioned gradually decreasing design can make the brightness compensation of each part (eg, the first part 40a, the second part 40b, or the first part 40a and the second part 40b) change gradually.
  • the compensation can be gradually changed. becomes larger, so that it can match the display panel 40 whose brightness gradually becomes darker from the center position to the edge position of the display screen, so that the uniformity of the overall display screen of the device after compensation is better.
  • the direction from the center of the first portion 40a of the display panel 40 to the second portion 40b is the first direction K1, and along the first direction K1, the first light emitting direction of each pixel unit 41 of the first portion 40a D1 remains unchanged, that is, the first light emitting direction D1 of each pixel unit 41 of the first part 40a is the same, and the second light emitting direction D2 of each pixel unit 41 of the second part 40b remains unchanged, but along the first direction K1,
  • the angle between the second light-emitting direction D2 of each pixel unit 41 of the second part 40b and the first direction K1 is smaller than the angle between the first light-emitting direction D1 and the first direction K1 of each pixel unit 41 of the first part 40a.
  • the direction in which the center position P of the first part 40a of the display panel 40 points to the second part 40b is the first direction K1
  • the first part 40a further includes at least In the two first sub-sections 401, the first light-emitting direction of each pixel unit 41 of each first sub-section 401 remains unchanged, and the first light-emitting direction D1 of each pixel unit 41 of at least two first sub-sections 401 is the same as the first light-emitting direction D1 of each pixel unit 41 of the first sub-section 401.
  • the included angle in one direction K1 gradually decreases.
  • the included angle between the first light-emitting direction D1 and the first direction K1 of each pixel unit 41 of the first sub-portion 401 close to the center position P is larger than that of the first sub-portion away from the center position P.
  • the second portion 40b may also include at least two second sub-portions 402 arranged along the first direction K1, and the second light-emitting direction D2 of each pixel unit 41 of each second sub-portion 402 remains unchanged.
  • the angle between the second light-emitting direction D2 of each pixel unit 41 of the second sub-section 402 and the first direction K1 gradually decreases, such as the second light-emitting direction of each pixel unit 41 of the second sub-section 402 adjacent to the first section 40a
  • the included angle between D2 and the first direction K1 is greater than the included angle between the second light emitting direction D2 and the first direction K1 of each pixel unit 41 away from the second sub-portion 40b of the first portion 40a.
  • the display panel 10 of the embodiment is also easier to control or implement than the progressive compensation method.
  • the luminous intensity of the sub-pixel units 410 of a part 40a is greater than that of the sub-pixel units 410 far away from the first part 40a, so that the luminous direction of the pixel units 41 of the second part 40b can be directed toward its target direction.
  • FIG. 14 there are three pixel units 41 in the second part 40 b located on the right side, and each pixel unit 41 has a row such as six sub-pixel units 410 .
  • the luminous intensity of the sub-pixel units 410 close to the first part 40a is greater than the luminous intensity of the sub-pixel units 410 far away from the first part 40a, that is, the sub-pixel units 410 close to the first part 40a emit light, while the sub-pixel units 410 far away from the first part 40a emit light.
  • the pixel unit 410 is turned off, so that the second light emitting direction D2 of the pixel unit 41 of the second portion 40b located on the right side emits light toward the right side.
  • the display panel 10 further includes a plurality of driving lines 416 a and 416 b
  • the sub-pixel unit 410 includes switching elements 415 a and 415 b connected to the corresponding driving lines 416 a and 416 b, and a connection switch.
  • the sub-pixel electrodes 411 of the elements 415a and 415b, the light-emitting structure 412 connected to the sub-pixel electrode 411, and the transparent electrode 413 disposed on the side of the light-emitting structure 412 away from the sub-pixel electrode 411 are provided.
  • the pixel electrodes 411 of each sub-pixel unit 410 can be respectively applied with different data driving signals, and the transparent electrodes 413 can be applied with a common voltage, Furthermore, the light-emitting structures 412 of each sub-pixel unit 410 can emit different light-emitting intensities under the driving of different data driving signals and common voltages.
  • the display panel 10 can also be a silicon-based OLED panel, which includes a silicon-based substrate 414, and a plurality of driving lines 416a, 416b and switching elements 415a, 415b can be disposed on the silicon-based substrate 414, Specifically, a plurality of driving lines 416 a and 416 b and switching elements 415 a and 415 b may be formed on the silicon-based substrate 414 .
  • the sub-pixel electrode 411 is also disposed on the silicon-based substrate 414 and is electrically connected to the corresponding switching elements 415a and 415b, the light-emitting structure 412 is disposed on the side of the sub-pixel electrode 411 away from the silicon-based substrate 414, and the transparent electrode 413 is disposed on the light-emitting structure On the side of 412 away from the sub-pixel electrode 411 , the transparent electrodes 413 of each sub-pixel unit 410 of each pixel unit 41 are connected together, so that a common voltage is applied together.
  • the driving lines 416a and 416b include a plurality of scanning driving lines 416a, data driving lines 416b and a power supply line VDD.
  • the switching elements 415a and 415b include a first switching element 415a and a second switching element 415b.
  • the control terminal of a switching element 415a is connected to the corresponding scan driving line 416a
  • the two conducting terminals of the first switching element 415a are respectively connected to the corresponding data driving line 416b and the control terminal of the second switching element 415b.
  • the two conductive terminals are respectively connected to the power line VDD and the sub-pixel electrode 411 .
  • the control terminal of the first switching element 415a of each sub-pixel unit 410 is connected to For the same scan driving line 416a, the conducting ends of the first switching elements 415a of each sub-pixel unit 410 are connected to different data driving lines 416b.
  • the control terminals of the first switching elements 415 a of each sub-pixel unit 410 are connected to different scan driving lines 416 a , and the first switching elements 415 a of each sub-pixel unit 410 are turned on. The terminals are connected to the same data driving line 416b.
  • FIG. 16 and FIG. 17 mainly illustrate the structure and connection of the switching elements 415a and 415b of the sub-pixel unit 410.
  • the sub-pixel unit 410 may also include other switching elements with different numbers or connection relationships. , as long as the independent control of the luminous intensity of each sub-pixel unit 410 can be achieved.
  • the equivalent circuit structure of each sub-pixel unit 410 of each pixel unit 41 is basically the same, but in other embodiments, the equivalent circuit structure of each sub-pixel unit 410 It can also be different, as long as it can realize the independent control of the luminous intensity of each sub-pixel unit 410 .
  • control signals can be applied to the display panel 10, such as applying a scan driving signal to the scan driving line 416a, applying a power supply signal to the power supply line VDD, applying a common voltage to the transparent electrode 413, and applying a data driving signal to the data
  • the driving line 416b is used to independently control the luminous intensity of each sub-pixel unit 410 of each pixel unit 41.
  • the luminous intensity of the sub-pixel unit 410 of the pixel unit 41 of part 40b) can be controlled by the control signal to be at least partially different (for example, the data driving signal is at least partially different and/or the power supply signal is at least partially different, etc.), and thus can be located in different parts.
  • the brightness centers of the pixel units 41 may be different, and the light-emitting direction of the pixel units 41 defined by the brightness center of each pixel unit 41 and the center of the filter unit 421 may also be different in different regions, so it can be used in electronic equipment. Compensation for display uniformity is achieved.
  • the pixel unit 41 is divided into a plurality of sub-pixel units 410 . Viewed from the direction perpendicular to the display panel 40 , the center of the pixel unit 41 (ie, the center in physical position) and the center of the filter unit 421 (ie, centers in physical locations) may substantially coincide.
  • a part of the sub-pixel units 410 can be controlled to emit light, and the other part is turned off (ie, not to emit light), so as to control the position of the brightness center of the pixel unit 41, such as one on each of the left and right sides
  • the brightness center of the pixel unit 410 is located in the middle of the middle four sub-pixel units 410, that is, the center of the pixel unit 41.
  • the brightness center of the pixel unit 410 coincides with the center of the filter unit 421, so the main light-emitting direction of the light emitted by the pixel unit 410 is: the brightness center of the pixel unit 41 points to the light-emitting direction of the center of the filter unit 421, such as D1 .
  • each sub-pixel unit 410 can be controlled independently, in some embodiments, a part of the plurality of sub-pixel units 410 can be controlled to emit light, and the other part is turned off (ie, does not emit light). , so as to control the position of the brightness center of the pixel unit 41.
  • the black sub-pixel electrodes 411 represent that the sub-pixel units 410 are turned off
  • the four sub-pixel units 410 on the left are turned on to emit light
  • the white sub-pixel electrode 411 represents the sub-pixel unit 410 emits light
  • the brightness center of the pixel unit 41 will be located in the middle of the four sub-pixel units 410 on the left.
  • the brightness center of the pixel unit 410 and the center of the filter unit 421 may have an offset a in the first direction K1, so that the main light emitting direction of the light emitted by the pixel unit 410 is: the brightness center of the pixel unit 41 points to the light output from the center of the filter unit 421 direction, such as D2.
  • the specific size of the angle ⁇ between the light-emitting direction D2 and the first direction K1 is also related to the overall thickness d of the filter unit 421, the transparent electrode 413, and the light-emitting structure 412.
  • each sub-pixel unit 410 of the pixel unit 41 eg, emitting or turning off
  • the deviation between the brightness center of the pixel unit 410 and the center of the filter unit 421 in the first direction K1 can be changed.
  • the size of the shift amount a as shown in FIG. 18(a), if the two sub-pixel units 410 on the left are turned off, the one sub-pixel unit 410 on the right is turned off, and the three sub-pixel units 410 in the middle emit light, set two adjacent sub-pixels
  • the offset a w shown in FIG. 18( b ).
  • the shift amount a of the luminance center of the pixel unit 41 is shifted to the left, so that the second light exit direction D2 is controlled to have a component toward the right.
  • the shift amount a of the luminance center of the pixel unit 41 of the second portion 40b on the left side of the first portion 40a is shifted to the right, so that the second light emitting direction is controlled to have a component toward the left.
  • the light emitting direction of each pixel unit 41 may be controlled in combination with the coordinates of each pixel unit 41 or filter unit 421 of the display panel 40.
  • the defined coordinate position of the pixel unit 41 or the filter unit 421 of the display panel 40 is (x, y)
  • the light emitting direction may be different.
  • the display panel 40 of 1920*1080 (x*y) it can be defined that the light from 0 to 960 in the x coordinate is emitted to the left, and the light of 960 to 1920 is emitted to the right.
  • the target can be obtained according to the design parameters of the optical devices (such as the design parameters of the lens)
  • each pixel unit 41 in one of the first directions K1.
  • the principle of controlling the light emitting direction of each pixel unit 41 in a first direction (the pixel unit 41 on the left) is also similar, and will not be repeated here.
  • the light-emitting direction of each pixel unit 41 of the display panel 40 may be a three-dimensional space as shown in FIG. 20 , wherein the control of the light-emitting direction r not only needs to consider the above-mentioned left and right sides, but also needs to consider the upper and lower sides.
  • the control of the light-emitting direction may include the control of the angle ⁇ between the first component in the plane defined by xy and the x-axis, and the control of the angle ⁇ between the light-emitting direction and the z-axis direction. control.
  • the pixel unit 41 may include a plurality of sub-pixel units 410 arranged in a matrix, and the number of sub-pixel units 410 in each row and column is at least two (mainly in FIG. 21 ). The number of sub-pixel units in each row and each column is 6 for schematic illustration).
  • the brightness center of each pixel unit 41 can be controlled in the X-axis direction. and the Y-axis direction are offset, so as to control the light-emitting direction of each pixel unit 41, and then complete the display uniformity compensation in the three-dimensional space.
  • the offset a of the luminance center of each pixel unit 41 can be oriented in an obliquely downward direction, that is, including the X-axis direction.
  • the component and the component in the Y-axis direction wherein, in addition, it can be understood that the component in the X-axis direction is related to the horizontal spacing v of the sub-pixel unit 410; the component in the Y-axis direction is related to the vertical spacing h of the sub-pixel unit 410.
  • the display uniformity compensation for the second display area 40b on the four side edges of the display panel 40 can be completed.
  • FIG. 22 by controlling the luminous intensity of each sub-pixel unit 410 of each pixel unit 41 , the offset a of the luminance center of each pixel unit 41 can be oriented in an obliquely downward direction, that is, including the X-axis direction.
  • the component and the component in the Y-axis direction wherein, in addition, it can be understood that the component in the X-axis direction is
  • the design parameters of the optical device such as the design parameters of the mirrors
  • the luminous intensity for example, the sub-pixel units 410 in the preset M rows and the preset M columns in the periphery of the pixel unit 41 centered on the target coordinate are turned on to emit light, and the other sub-pixel units 410 are turned off (not emitting light), so that the pixel unit 41 The center of brightness is located at the target coordinates to achieve the required light-emitting direction.
  • each sub-pixel unit 410 the above embodiments are mainly implemented by controlling each sub-pixel unit 410 to emit light and not to emit light.
  • the driving current applied to the pixel electrode 411 of each sub-pixel unit 410 can also be controlled, and the luminous intensity of each sub-pixel unit 410 can also be controlled, so as to realize the control of each sub-pixel unit 410.
  • Control of the brightness center of the pixel unit 41 It can be understood that, in this embodiment, the brightness center of the pixel unit 41 mainly represents a center position point where each pixel unit 41 has the strongest brightness.
  • the first switching element 415a can be controlled to be turned on by the scan driving line 416a, and the data driving signal on the data driving line 416b can pass through the first switching element 415a.
  • the degree of turn-on of the second switching element 415b is controlled, so that the on-current flowing from the power line VDD to the light-emitting structure 412 realizes the control of the light-emitting intensity of the light-emitting structure 412 , that is, the control of the light-emitting intensity of the sub-pixel unit 410 .
  • the greater the voltage of the data driving signal the greater the starting degree of the second switching element 415b, the greater the on-current, and the higher the luminous intensity of the light emitting structure 412;
  • the achievable effect is shown in FIG. 23 , in which the black sub-pixel electrode 411 indicates that the sub-pixel unit 410 is turned off, and the gray sub-pixel electrode 411 indicates that the data driving signals are used to control different conductions. current size. 23(a), (b), (c), and (d) respectively illustrate four different luminous intensity controls for each sub-pixel unit 410 of each pixel unit 41.
  • the light-emitting, non-emitting, and on-current of the unit 410 can control the position of the brightness center of each pixel unit 41 , thereby realizing the adjustment of the light-emitting angle of the pixel unit 41 .
  • the position of the brightness center of each pixel unit 41 is specifically determined by the on-current from the sub-pixel electrodes 411, since the on-current of each sub-pixel electrode 411 is controlled by the data driving signal in the above figure.
  • the light-emitting direction D21 of the pixel units 41 can be as shown in FIG. 23 ( a )
  • FIG. 23 ( a ) the light-emitting direction D21 of the pixel units 41
  • the data driving signal value of the third sub-pixel electrode on the right is low, the on-current is not high, and the left
  • the data drive signal value of the three sub-pixel electrodes 411 is high and the on-current is high.
  • the brightness center of the pixel unit 41 in FIG. 23( b ) is shifted to the left.
  • the light emitting direction D21 of the pixel unit 41 in FIG. 23( a ) is shifted to the right.
  • the data driving signal value of the sub-pixel electrode 411 of the one sub-pixel unit 410 on the left is low, and the current is turned on. is not high, other sub-pixel units 410 are turned on to emit light, relative to the brightness center of the pixel unit 41 in FIG. 23( a ), the brightness center of the pixel unit 41 in FIG. ) of the light-emitting direction D21 of the pixel unit 41, and the light-emitting direction D22 of the pixel unit 41 of FIG. 23(b) is shifted to the left.
  • FIG. 23( c ) if the two sub-pixel units 410 on the right are turned off and do not emit light, the data driving signal value of the sub-pixel electrode 411 of the one sub-pixel unit 410 on the left is low, and the current is turned on. is not high, other sub-pixel units 410 are turned on to emit light, relative to the brightness center of the pixel unit 41 in FIG. 23( a ), the brightness center of the pixel unit 41 in FIG. ) of
  • the data driving signal values of the sub-pixel electrodes 411 of the two sub-pixel units 410 in the middle are low, and the on-current is not high.
  • the sub-pixel unit 410 is turned on to emit light, with respect to the brightness center of the pixel unit 41 in FIG. 23(b), the brightness center of the pixel unit 41 in FIG. 23(d) is shifted to the left, relative to the pixel unit in FIG. 23(b).
  • the light emitting direction D22 of 41 and the light emitting direction D24 of the pixel unit 41 in FIG. 23(d) are shifted to the right.
  • each sub-pixel unit 410 the above is mainly based on the control of the combination of ON and OFF of each sub-pixel unit 410 to emit light and the on-current of the sub-pixel electrode 411 to turn ON and OFF
  • the combined control of the size of each sub-pixel unit 410 is described as an example, but in some other embodiments, the control of each sub-pixel unit 410 can also be realized by controlling the size of the on-current of the sub-pixel electrode 411 of each sub-pixel unit 410
  • the control of the luminous intensity if the on-current is 0, can be basically the same as the effect of turning off no light, and if the on-current is the maximum value, it can be basically the same as the effect of turning on the light.
  • luminous intensity It can be understood that since the control of the luminous intensity of the sub-pixel unit 410 is various, the control of the brightness center of the pixel unit 41 is also various, and other various implementations are not exhaustively listed here.
  • each sub-pixel unit 410 of each pixel unit 41 controls the ON/OFF of each sub-pixel unit 410 of each pixel unit 41 to emit light, the OFF to not emit light, and the size of the on-current of the sub-pixel electrode 411, etc., the position of the brightness center of the pixel unit 41 can be controlled, so as to realize the control of the brightness of the pixel unit 41.
  • the control of the light-emitting direction of the pixel unit 41 can achieve compensation for display uniformity.
  • FIG. 24 is a schematic block diagram of a display device 60 disclosed in an embodiment of the present invention.
  • the display device 60 may include the display panel 40 of any of the above-mentioned embodiments and the control unit 50 electrically connected to the display panel 40.
  • the control unit 50 is used for applying control signals to the display panel 40, such as applying scan driving signals to the scan driving lines 416a, applying The power supply signal is applied to the power supply line VDD, the common voltage is applied to the transparent electrode 413, and the data driving signal is applied to the data driving line 416b, thereby independently controlling the light emission intensity of each sub-pixel unit 410 of each pixel unit 41.
  • FIG. 25 is a schematic structural diagram of a head-mounted display device 80 disclosed in an embodiment of the present invention.
  • the head-mounted display device 80 includes the optical device 70 and the display device 60 of the above-mentioned embodiment.
  • the head-mounted display device 80 may be a VR display device, an AR display device (such as AR glasses), or an MR display device, etc.
  • the optical device 70 may include a lens group 71 for transmitting the display light emitted by the display panel 40, specifically , the display light emitted by the display panel 40 for displaying the virtual scene passes through a part of the lens of the optical device 70 , and then enters the human eye through reflection, and the external real scene can also be transmitted through the optical device 70 to enter the human eye.
  • the brightness center of the pixel unit 41 of the display panel 40 can be adjusted and adapted to the corresponding optical device 70 by controlling the luminous intensity of each sub-pixel unit 410 , the direction of the light entering the optical device 70 can be adjusted to the parameters of the optical device 70 .
  • the adaptation makes the display uniformity of the picture displayed by the head-mounted display device 80 better.
  • FIG. 26 is a schematic structural diagram of a head-mounted display device 80 disclosed in another embodiment of the present invention.
  • the head-mounted display device 80 includes the optical device 70 and the display device 60 of the above-mentioned embodiment.
  • the head-mounted display device 80 may be a VR display device, an AR display device (AR glasses) or an MR display device, etc.
  • the optical device 70 may also include a lens group 71 and a waveguide element 72 , and the lens group 71 is located on the display panel 40 and the waveguide. There are one, two or more mirrors between the elements 72.
  • the mirror group 71 transmits the display light emitted by the display panel 40 to the waveguide element 72, and the waveguide element 72 transmits the light from the mirror group 71 to the human through the principle of total reflection.
  • the front side is released again, and the external real scene can also be transmitted through the waveguide element 32 into the human eye. Since the brightness center of the pixel unit 41 of the display panel 40 can be adjusted and adapted to the corresponding optical device 70 by controlling the luminous intensity of each sub-pixel unit 410 , the direction of the light entering the optical device 70 can be adjusted to the parameters of the optical device 70 .
  • the adaptation makes the display uniformity of the picture displayed by the head-mounted display device 80 better.
  • IR drop IR drop
  • the display uniformity calibration method may include the following steps S91 , S92 and S93 .
  • Step S91 providing a display panel and an optical device
  • the display panel includes a color filter and a plurality of pixel units
  • the color filter includes a plurality of filter units of different colors
  • the pixel unit is set corresponding to one filter unit
  • the pixel unit includes at least one filter unit.
  • Two sub-pixel units, each sub-pixel unit is used to emit light toward the corresponding filter unit
  • the optical device corresponds to the display panel and is used to receive and transmit the light emitted by the display panel.
  • the display panel may be the display panel 40 described in the above embodiments.
  • the display panel 40 and the optical device 70 may be assembled on the finished head-mounted display device 80 (such as AR glasses), wherein the head-mounted display device 80 is in addition to the display panel 40 , the control part 50 and the optical device 70 which have been described above.
  • the head mounted display device 80 may further include a power supply module 81 and a memory 82.
  • the control unit 50 is electrically connected to the display panel 40 and the memory 82 respectively.
  • the power supply module 81 is used to supply power to the control unit 50.
  • the optical device 70 is provided corresponding to the display panel 40 .
  • Step S92 applying a test signal to each sub-pixel unit of the display panel to drive the display panel, so that the display panel displays the test image through the optical device.
  • a test system 90 may be provided, and the test system 90 may include a two-dimensional imaging luminance colorimeter.
  • the test system 90 may provide a pre-stored test signal to the control unit 50, so that the control unit 50 outputs control signals to the display panel 40 ; in an alternative embodiment, the test system 90 may also provide pre-stored test signals to the display panel 40 .
  • the test signals can be one, two or more groups, or can be adjusted within a preset range, so that the display panel can display one, two or more tests according to different groups of test signals or test signals before and after adjustment Frames, one, two or more test frames may be provided to test system 90 through optics 70 .
  • the control signal has been described in detail in the above embodiments of the display panel, and will not be repeated here.
  • the parameters of the optical device 70 or the light-emitting direction requirements of the display panel of the optical device 70 , the center coordinates of each pixel unit 41 of the display panel 40 , the filter unit 421 of the display panel 40 , and the transparent electrode can be obtained first. 413. Calculate parameters such as the overall thickness d of the light emitting structure 412 to obtain the coordinates of the brightness center of each pixel unit 41 (ie, target coordinates), and then sequentially preset driving rules to calculate the control signals required by each sub-pixel unit 410.
  • control signals can be fine-tuned within a preset range to form at least one, two or more sets of test signals, and then one, two or more sets of test signals are provided to the control unit 50 or directly provided to the display panel 40 ; in other embodiments, the control signal can be used as a standard test signal, and the standard test signal can be fine-tuned within a preset range and provided to the control part 50 in sequence or directly to the display panel 40 .
  • Step S93 detecting the display uniformity of the test picture, when the display uniformity of the test picture meets the preset uniformity standard, the test signal that meets the preset uniformity standard is stored as standard parameter data, and the standard parameter data is used for driving display in the next time used when using the panel.
  • the display panel 40 can display one, two or more test images, which can be detected by the test system 90
  • the display panel 40 displays the display uniformity of one, two or more test images.
  • the display uniformity such as brightness uniformity
  • the preset uniformity standard such as the preset brightness uniformity standard
  • the test signal of the uniformity standard is stored as standard parameter data, and the standard parameter data can be used when driving the display panel next time, so that the light emitting direction of the display screen of the display panel 40 can achieve a better matching effect with the optical device 70.
  • the display panel 20 with the light-emitting direction is fixed during production, and the display panel 40 can be adapted to different optical devices 70 by controlling the luminous intensity of each sub-pixel unit 410, so that when it is applied to electronic devices such as head-mounted display devices, the It has better picture display uniformity.

Abstract

一种显示面板及其显示装置、头戴显示设备、显示均匀性校准方法,显示面板(40)包括彩色滤光片(42)及多个像素单元(41),彩色滤光片包括多个滤光单元,像素单元对应滤光单元设置,像素单元包括至少两子像素单元(410),各子像素单元用于朝向对应的滤光单元发光,显示面板具有第一部分(40a)及位于第一部分外围的第二部分(40b),第二部分为显示面板的边缘区域,第一部分的像素单元具有第一出光方向,第二部分的像素单元具有第二出光方向,位于第一部分的像素单元的子像素单元的发光强度与位于第二部分的像素单元的子像素单元的发光强度不同,使得第一出光方向与第二出光方向不同,能够对显示面板的边缘显示不均的情况进行补偿,提高显示面板的显示均匀性。

Description

显示面板及其显示装置、头戴显示设备、显示均匀性校准方法 技术领域
本发明涉及显示技术领域,尤其涉及一种显示面板及其显示装置、头戴显示设备、显示均匀性校准方法。
背景技术
随着显示技术的发展,显示面板被广泛应用于手机、平板电脑、笔记本电脑、桌面显示器、电视及头戴显示设备,例如AR(Augmented Reality,增强现实)眼镜、VR(Virtual Reality,虚拟现实)眼镜、MR(Mixed Reality,混合现实)眼镜等各类电子设备中。然而,现有显示面板应用于电子设备时,可能存在显示画面的颜色不均和/或亮度不均等显示均匀性不佳的现象,特别是显示面板应用于一些头戴显示设备中时,电子设备边缘区域显示的画面亮度可能较低或较高,导致设备显示均匀性不佳,有必要改善。
发明内容
本发明实施例公开了一种显示面板、显示装置、头戴显示设备及显示均匀性校准方法,使得显示画面的均匀性较佳。
为了实现上述目的,第一方面,本发明实施例公开了一种显示面板,所述显示面板包括:
彩色滤光片,所述彩色滤光片包括多个不同颜色的滤光单元;及
多个像素单元,各所述像素单元分别对应一个所述滤光单元设置,每一所述像素单元包括至少两个子像素单元,同一所述像素单元的各所述子像素单元用于朝向对应的所述滤光单元发光;
所述显示面板具有第一部分及位于所述第一部分外围的第二部分,所述第二部分为所述显示面板的边缘区域,所述第一部分的所述像素单元具有第一出光方向,所述第二部分的所述像素单元具有第二出光方向,位于所述第一部分的所述像素单元,其所述子像素单元的发光强度与位于所述第二部分的所述像素单元的所述子像素单元的发光强度不同,以使所述第一出光方向与所述第二出光方向不同;
其中,所述第一出光方向为所述第一部分的所述像素单元的亮度中心指向对应的所述滤光单元的中心的方向,所述第二出光方向为所述第二部分的所述像素单元的亮度中心指向对应的所述滤光单元的中心的方向。
第二方面,本发明实施例公开了一种显示装置,其包括控制部及上述第一方面所述的显示面板,所述控制部用于施加控制信号至各所述子像素单元以控制各所述子像素单元的发光强度,从而控制各所述像素单元的出光方向。
第三方面,本发明实施例公开了一种头戴显示设备,其包括光学器件及上述第一方面所述的显示装置,所述光学器件对应所述显示面板设置且用于将所述显示面板发出的显示光线传输至用户眼部。
第四方面,本发明实施例公开了一种显示面板的显示校准方法,其校准方法包括以下步骤:
提供显示面板及光学器件,所述显示面板包括彩色滤光片及多个像素单元,所述彩色滤光片包括多个不同颜色的滤光单元,所述像素单元对应一个所述滤光单元设置,所述像素单元包括至少两个子像素单元,各所述子像素单元朝向对应的所述滤光单元发光,所述光学器件对应所述显示面板且用于接收并传输所述显示面板发出的光线;
施加测试信号至所述显示面板的各所述子像素单元以驱动所述显示面板,使得所述显示面板经由所述光学器件显示测试画面;及
检测所述测试画面的显示均匀性,当所述测试画面的显示均匀性符合预设均匀性标准,将符合预设均匀性标准的所述测试信号存储为标准参数数据,所述标准参数数据用于在下一次驱动所述显示面板时使用。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介 绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是一种相关技术的显示面板各区域的亮度分布曲线示意图;
图2是一种相关技术的显示面板各区域的出光方向分布示意图;
图3是一种使用相关技术的显示面板的头戴显示设备的光路结构示意图;
图4是一种使用相关技术的显示面板的头戴显示设备的光路结构示意图;
图5是一种使用相关技术的头戴显示设备对显示面板各区域的出光方向需求示意图;
图6是一种使用相关技术的显示面板的头戴显示设备的显示画面均匀性的效果示意图;
图7是一种相关技术的显示面板各区域的像素单元的出光方向示意图;
图8是一种另一种相关技术的显示面板各区域的出光方向示意图;
图9是使用所述另一种相关技术的显示面板的头戴显示设备的各区域的出光方向分布示意图;
图10是本申请一种实施例公开的显示面板的平面结构示意图;
图11是本申请一种实施例公开的显示面板的像素单元的平面结构示意图;
图12是本申请一种实施例公开的显示面板的一个像素单元的结构示意图;
图13是本申请一种实施例公开的显示面板的一个像素单元的剖面结构示意图;
图14是本申请一种实施例公开的显示面板的各区域的像素单元的出光方向调节原理示意图;
图15是本申请另一种实施例公开的显示面板的各区域的像素单元的出光方向调节原理示意图;
图16是本申请一种实施例公开的显示面板的一个像素单元的等效电路示意图;
图17是本申请另一种实施例公开的显示面板的一个像素单元的等效电路示意图;
图18是本申请一种实施例公开的显示面板的一个像素单元的亮度中心的控制原理示意图;
图19是本申请另一种实施例公开的显示面板的一个像素单元的平面结构示意图;
图20是本申请又一种实施例公开的显示面板的像素单元的出光方向的维度示意图;
图21是本申请又一种实施例公开的显示面板的一个像素单元的平面结构示意图;
图22是本申请又一种实施例公开的显示面板的一个像素单元的出光方向调节原理示意图;
图23是本申请再一种实施例公开的显示面板的像素单元的出光方向调节原理示意图;
图24是本申请一种实施例公开的显示装置的方框结构示意图;
图25是本申请一种实施例公开的一种头戴显示设备的光路结构示意图;
图26是本申请另一种实施例公开的一种头戴显示设备的光路结构示意图;
图27是本申请一种实施例公开的显示均匀性校准方法的流程图;
图28是本申请一种实施例公开的显示均匀性校准方法中的测试系统与头戴显示设备的结构框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明中,术语“上”、“下”、“左”、“右”、“前”、“后”、“顶”、“底”、“内”、“外”、“中”、“竖直”、“水平”、“横向”、“纵向”等指示的方位或位置关系为基于附图所示的方位或位置关系。这些术语主要是为了更好地描述本发明及其实施例,并非用于限定所指示的装置、元件或组成部分必须具有特定方位,或以特定方位进行构造及操作。
并且,上述部分术语除了可以用于表示方位或位置关系以外,还可能用于表示其他含义,例如术语“上”在某些情况下也可能用于表示某种依附关系或连接关系。对于本领域普通技术人员而言,可以根据具体情况理解这些术语在本发明中的具体含义。
此外,术语“安装”、“设置”、“设有”、“连接”、“相连”应做广义理解。例如,可以是固定连接,可拆卸连接,或整体式构造;可以是机械连接,或电连接;可以是直接相连,或者是通过中间媒介间接相连,又或者是两个装置、元件或组成部分之间内部的连通。对于本领域普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
此外,术语“第一”、“第二”等主要是用于区分不同的装置、元件或组成部分(具体的种类及构造可能相同也可能不同),并非用于表明或暗示所指示装置、元件或组成部分的相对重要性及数量。除非另有说明,“多个”的含义为两个或两个以上。
如前所述,显示面板应用于电子设备时,可能存在显示画面的颜色不均和/或亮度不均等显示均匀性不佳的现象,特别是显示面板应用于一些头戴显示设备等电子设备中时,电子设备的边缘区域(或者边缘部分)显示的画面亮度可能较低或较高,导致设备显示均匀性不佳,有必要改善。
发明人研究发现,显示面板各区域的发光强度分布存在水平角度特性,如图1所示,一种相关技术中,依据产品规格,横坐标的水平角度代表显示面板的出光方向与垂直显示面板的方向的夹角,其中0度代表显示面板的出光方向为垂直显示面板的方向,纵坐标代表发光强度,左、中、右三条曲线分别代表显示面板的左、中、右区域的水平角度与发光亮度的曲线关系示意图,可见,随着水平角度增加,发光强度逐渐降低。换句话说,显示面板中的每个像素单元具有一个最高发光强度的出光方向,在这个方向以外的发光能量逐渐降低。
如图2所示,一般情况下,垂直显示面板的方向发光强度一致,这样人眼直接看屏幕是均匀的。然而,显示面板用于头戴显示设备等电子设备中时,设备中还包括光学器件,光学器件可将显示面板发出的显示光线传输至用户眼部。具体地,如图3所示,显示面板10用于头戴显示设备(如AR眼镜)等电子设备中时,光学器件30可以包括镜片组31,用于传输显示面板10发出的显示光线,具体地,显示面板10发出的用于显示虚拟场景的显示光线穿过光学器件30的一部分镜片,再经过反射进入人眼300,外部真实场景也可以透射经过光学器件30进入人眼300。或者,如图4所示,光学器件30也可以包括镜片组31及波导元件32,镜片组31位于显示面板10及波导元件32之间且具有一个、两个或多个镜片,镜片组31将显示面板10发出的显示光线传输至波导元件32,波导元件32将来自镜片组31的光线通过全反射的原理传输到人眼300前方再释放出来,并且外部真实场景也可以透射经过波导元件32进入人眼300。
其中,波导元件32的特点是轻薄而且外界光线有高穿透性。在头戴显示设备中,要想光在传输的过程中基本无损失无泄漏,“全反射”是关键,即光在波导元件32中像只游蛇一样通过来回反射前进而并不会透射出来。波导元件32将光耦合进自己的玻璃基底中,通过“全反射”原理将光传输到眼睛前方再释放出来。这个过程中波导元件32只负责传输图像,有了波导元件32这个传输渠道,可以将显示面板10及镜片组31远离眼镜移到额头顶部或者侧面,这极大降低了光学器件30对外界视线的阻挡,并且使得重量分布更符合人体工程学,从而改善了头戴显示设备的佩戴体验。其中,镜片组31出射的光投射到波导元件32的耦入位置,在波导元件32内部光的传输是全反射,在波导元件32的耦出位置射向人眼的方向。
然而,发明人研究发现,由于光学器件30接收的显示面板10的显示光线不仅仅包括垂直方向的,其他角度的光也会进入。因此考虑到光学器件30(如其中的镜片)的光学特性,进入光学器件30的有效光线并不都是沿垂直显示面板10的方向出射的光线,而是与位置相关且符合一定角度的光线才有效。如图5所示,从显示面板10边缘发出,进入光学器件30边缘的有效光线能量,与显示面板10的中心区域发出的进入光学器件30中心区域的有效光线能量并不相同。因此,对于上述保证沿垂直显示面板10的方向能量一致的显示面板来说,经过光学器件30后,可能会造成边缘亮度下降,显示均匀性变差,具体可如图6所示。
举例来说,如图7所示,一种相关技术的显示面板10包括多个像素单元11及位于多个像素单元11上方的彩色滤光片12,彩色滤光片12包括多个滤光单元121(如红色滤光单元、绿色滤光单元及蓝色滤光单元),各滤光单元121与各像素单元11一一对应设置,各像素单元11用于朝向对应滤光单 元121发光。可以理解,显示面板10可以为OLED(Organic Light-Emitting Diode,有机电致发光单元)显示面板,像素单元11为OLED像素单元,且用于发出白光。进一步地,沿垂直显示面板的方向看,滤光单元121与像素单元11的位置正对,且对于显示面板10左中右各区域来说,垂直显示面板的方向均为最高发光强度的出光方向,即出光能量最大方向。然而,如前所述,这种显示面板10用于电子设备时,可能导致设备显示均匀性较差,如受光学器件等影响,边缘区域显示的画面亮度会较低。
另一种相关技术中,在制备彩色滤光片时,各区域的滤光单元与对应的像素单元的像素电极不是垂直对齐,而是存在一定的角度,如图8所示,在显示面板20的中心区域,滤光单元221与对应的像素单元21的像素电极211仍然是垂直对齐,但在中心区域的左侧区域的滤光单元221相较于对应的像素单元21向左偏一定的位移,越往左偏移量越大;在中心区域的右侧区域的滤光单元221相较于对应的像素单元21向右偏一定的位移,越往右偏移量越大。这样设计可以带来的好处是,边缘区域的最高发光强度不是垂直显示面板20的方向,而是存在一定的角度,如图9所示,左侧边缘区域的最高发光强度朝向左外侧偏移,右侧边缘区域的最高发光强度朝向右外侧偏移,从而这种显示面板20用于电子设备时,可以弥补前述边缘亮度下降的问题,达到较好的显示均匀性。
然而,这样设计仍然存在的问题是,如果显示面板20已经生产出来了,那么彩色滤光片22的滤光单元221及对应的像素单元21的像素电极211的相对位置就固定了。也就是说显示面板20的各像素单元21的出光角度及最高发光强度也是固定了,虽然边缘区域的最高发光强度可以在一定程度上增加,但是如果彩色滤光片的滤光单元221的偏移位移与光学器件30的参数(如设计角度)不匹配,仍可能会出现边缘过亮或者过暗的现象,导致显示均匀性不佳的问题。
为改善上述显示均匀性不佳的问题,第一方面,本发明实施例公开了一种显示面板,包括:
彩色滤光片,所述彩色滤光片包括多个不同颜色的滤光单元;及
多个像素单元,各所述像素单元分别对应一个所述滤光单元设置,每一所述像素单元包括至少两个子像素单元,同一所述像素单元的各所述子像素单元用于朝向对应的所述滤光单元发光;
所述显示面板具有第一部分及位于所述第一部分外围的第二部分,所述第二部分为所述显示面板的边缘部分,所述第一部分的所述像素单元具有第一出光方向,所述第二部分的所述像素单元具有第二出光方向,位于所述第一部分的所述像素单元的所述子像素单元的发光强度与位于所述第二部分的所述像素单元的所述子像素单元的发光强度不同,以使所述第一出光方向与所述第二出光方向不同;
其中,所述第一出光方向为所述第一部分的所述像素单元的亮度中心指向对应的所述滤光单元的中心的方向,所述第二出光方向为所述第二部分的所述像素单元的亮度中心指向对应的所述滤光单元的中心的方向。
作为一种可选地实施方式,所述像素单元包括矩阵排列的一行、两行或多行所述子像素单元,每行所述子像素单元的数量为至少两个,且每行所述子像素单元沿着所述第一部分至所述第二部分的第一方向依次排列。
作为一种可选地实施方式,沿所述第一部分至所述第二部分的第一方向上,所述第一出光方向与所述第一方向的夹角大于所述第二出光方向与所述第一方向的夹角。
作为一种可选地实施方式,所述显示面板包括位于所述第一部分的中心位置,沿所述中心位置至所述第二部分的方向为所述第一方向,且沿所述第一方向上,各所述第一出光方向与所述第一方向的夹角,和/或,各所述第二出光方向与所述第一方向的夹角逐渐减小。
作为一种可选地实施方式,所述显示面板包括位于所述第一部分的中心位置,沿所述中心位置至所述第二部分的方向为所述第一方向,沿所述第一方向上,所述第一出光方向与所述第一方向的夹角保持不变,所述第二出光方向与所述第一方向的夹角保持不变。
作为一种可选地实施方式,沿所述第一方向上,所述第二部分的各所述像素单元的第二出光方向 与所述第一方向的夹角小于所述第一部分的各所述像素单元的第一出光方向与所述第一方向的夹角。
作为一种可选地实施方式,所述显示面板包括位于所述第一部分的中心位置,沿所述中心位置至所述第二部分的方向为所述第一方向,所述第一部分还包括沿所述第一方向排列的至少两个第一子部分,所述至少两个第一子部分的所述各像素单元的所述第一出光方向与所述第一方向的夹角逐渐减小;所述第二部分包括沿所述第一方向排列的至少两个第二子部分,所述至少两个第二子部分的所述各像素单元的所述第二出光方向与所述第一方向的夹角逐渐减小。
作为一种可选地实施方式,每个所述第一子部分的各所述像素单元的所述第一方向保持不变,每个所述第二子部分的各所述像素单元的所述第二出光方向保持不变。
作为一种可选地实施方式,沿所述第一方向上,所述第二部分中的同一所述像素单元中,靠近所述第一部分的所述子像素单元的发光强度大于远离所述第一部分的子像素单元的发光强度。作为一种可选地实施方式,
作为一种可选地实施方式,所述显示面板还包括多条驱动线,所述子像素单元包括连接对应的所述驱动线的开关元件、连接所述开关元件的子像素电极、连接所述子像素电极的发光结构、及设置于所述发光结构远离所述子像素电极一侧的透明电极。
作为一种可选地实施方式,所述显示面板还包括硅基衬底,多条所述驱动线与所述开关元件设置于所述硅基衬底,所述子像素电极也设置于所述硅基衬底且与对应的所述开关元件电连接,所述发光结构设置于所述子像素电极远离所述硅基衬底的一侧,所述透明电极设置于所述发光结构远离所述子像素电极的一侧,各所述像素单元的各子像素单元的所述透明电极连接于一体。
作为一种可选地实施方式,所述驱动线包括多条扫描驱动线、数据驱动线及电源线,所述扫描驱动线与所述数据所述像素单元中,所述开关元件包括第一开关元件及第二开关元件,所述第一开关元件的控制端连接对应的所述扫描驱动线,所述第一开关元件的两个导通端分别连接对应的所述数据驱动线与所述第二开关元件的控制端,所述第二开关元件的两个导通端分别连接所述电源线与所述子像素电极。
作为一种可选地实施方式,各所述子像素单元的第一开关元件的控制端连接相同的一条所述扫描驱动线,该所述子像素单元的说是第一开关元件的导通端连接不同的数据驱动线。
作为一种可选地实施方式,各所述子像素单元的第一开关元件的控制端连接不同的扫描驱动线,各所述子像素单元的第一开关元件的导通端连接同一条所述数据驱动线。
作为一种可选地实施方式,所述发光结构为OLED结构;所述显示面板为硅基OLED面板或Micro OLED面板。
第二方面,本申请还公开了一种显示装置,所述显示装置包括控制部及如上述第一方面所述的显示面板,所述控制部用于施加控制信号至各所述子像素单元以控制各所述子像素单元的发光强度,从而控制各所述像素单元的出光方向。
第三方面,本申请还公开了一种头戴显示设备,头戴显示设备包括光学器件及上述第二方面所述的显示装置,所述光学器件对应所述显示面板设置且用于将所述显示面板发出的显示光线传输至用户眼部。
作为一种可选地实施方式,所述光学器件包括镜片组或镜片组与波导元件,所述镜片组包括至少一个镜片,所述波导元件用于位于所述显示面板与所述镜片组之间。
第四方面,本申请还公开了一种显示均匀性校准方法,所述校准方法包括包括以下步骤:
提供显示面板及光学器件,所述显示面板包括彩色滤光片及多个像素单元,所述彩色滤光片包括多个不同颜色的滤光单元,所述像素单元对应一个所述滤光单元设置,所述像素单元包括至少两个子像素单元,各所述子像素单元用于朝向对应的所述滤光单元发光,所述光学器件对应所述显示面板且用于接收并传输所述显示面板发出的光线;
施加测试信号至所述显示面板的各所述子像素单元以驱动所述显示面板,使得所述显示面板经由所述光学器件显示测试画面;及
检测所述测试画面的显示均匀性,当所述测试画面的显示均匀性符合预设均匀性标准,将符合预设均匀性标准的所述测试信号存储为标准参数数据,所述标准参数数据用于在下一次驱动所述显示面板时使用。
作为一种可选地实施方式,所述显示面板具有第一部分及位于所述第一部分外围的第二部分,所述第二部分为所述显示面板的边缘部分,所述第一部分的所述像素单元具有第一出光方向,所述第二部分的所述像素单元具有第二出光方向,位于所述第一部分的所述像素单元的所述子像素单元的发光强度与位于所述第二部分的所述像素单元的所述子像素单元的发光强度不同,以使所述第一出光方向与所述第二出光方向不同;
其中,所述第一出光方向为所述第一部分的所述像素单元的亮度中心指向对应的所述滤光单元的中心的方向,所述第二出光方向为所述第二部分的所述像素单元的亮度中心指向对应的所述滤光单元的中心的方向。
以下将结合附图对本实施例的显示面板、显示装置、头戴显示设备以及显示均匀性校准方法进行详细说明。
本申请实施例第一方面公开了一种显示面板40,如图10及图11所示,显示面板40包括多个像素单元41及彩色滤光片42。多个像素单元41可以位于彩色滤光片42下方,且用于接收待显示画面的驱动信号并朝向彩色滤光片42发光,彩色滤光片42用于对多个像素单元41发出的光线进行滤光。具体地,多个像素单元41可以发出白色光,彩色滤光片42可以包括多个不同颜色的滤光单元421(如红色滤光单元、绿色滤光单元及蓝色滤光单元),每个滤光单元421对应一个像素单元41设置,多个不同颜色的滤光单元421可以接收对应的像素单元41发出的白色光并进行滤光,从而分别发出多种不同颜色光(如红、绿、蓝三原色光),使得显示面板40实现彩色显示。本实施例中,主要以显示面板40为自发光型显示面板为例进行说明,具体地,显示面板40可以为OLED显示面板,如硅基OLED面板或Micro OLED面板,但并不限于上述。
进一步地,如图12及图13所示,每个像素单元41可以包括至少两个子像素单元410,各子像素单元410均用于朝向与各个像素单元41对应的滤光单元421发光。本实施例中,如图14所示,显示面板40具有第一部分40a及位于第一部分40a外围的第二部分40b,第二部分40b可以为显示面板20的边缘部分(如图14中左右侧的边缘区域),显示面板40中,第一部分40a的像素单元41具有第一出光方向D1,第二部分40b的像素单元41具有第二出光方向D2,第一部分40a的像素单元41的子像素单元410的发光强度与第二部分40b的像素单元41的子像素单元410的发光强度不同,以使第一出光方向D1与第二出光方向D2不同。
其中,该第一部分40a的像素单元41的子像素单元410的发光强度是指该第一部分40a的像素单元41的整体强度,对应的,第二部分40b的像素单元41的子像素单元410的发光强度是指第二部分40a的像素单元41的整体强度。可以理解的,第一部分40a的像素单元41的各个子像素单元410的发光强度可以相同或不同。举例来说,第一部分40a的像素单元41具有两个子像素单元410,则这两个子像素单元410各自的发光强度可以相同或者是不同。或者,第一部分40a的像素单元41具有三个子像素单元410,则这三个子像素单元410的发光强度可以相同,或者,其中两个子像素单元410的发光强度相同,另一个子像素单元410的发光强度与其中两个子像素单元410的发光强度不同,当然,也可该三个子像素单元410的发光强度都不相同。相应地,第二部分40b的像素单元41的各个子像素单元410的发光强度同样可以相同或不同。
其中,第一出光方向D1是位于第一部分40a的像素单元41的亮度中心指向与其对应的滤光单元42的中心的方向,第二出光方向D2为第二部分40b的像素单元41的亮度中心指向与其对应的滤光单 元42的中心的方向。
与相关技术相比,本发明实施例公开的显示面板40中,显示面板40的各像素单元41均包括至少两个子像素单元410,第二部分40b为显示面板40的边缘部分,第一部分40a的像素单元41的子像素单元410的发光强度与第二部分40b的像素单元41的子像素单元410的发光强度不同,使得第一部分40a的像素单元41的第一出光方向D1与第二部分40b的像素单元41的第二出光方向D2不同,以用于对显示面板的边缘显示不均的情况进行一定补偿,进而使得显示面板40用于电子设备(如头戴显示设备)时的显示均匀性较佳。
可以理解,显示面板40中,彩色滤光片42的多个滤光单元421可以呈矩阵排列,多个像素单元41对应多个滤光单元421也可以呈矩阵排列,每个像素单元41也可以包括一行、两行或多行矩阵排列的子像素单元410,每行子像素单元410的数量为至少两个。如图12及图13所示,本实施例中,主要以像素单元41包括一行子像素单元410(如六个子像素单元410)进行示例性说明,所述一行子像素单元410可以按照第一部分40a指向第二部分40b的第一方向K1依次排列。
进一步地,本实施例中,第一部分40a可以为大致位于中央部分的显示区域,但形状不限,可以为正方形、长方形或其他多边形,第二部分40b为位于第一部分40a的一侧的边缘显示区域,但形状不限,可以为正方形、长方形或其他多边形。第二部分40b的数量可以为多个,多个第二部分40b位于第一部分40a的四侧,对应地,第一部分40a至第二部分40a的第一方向也可以包括由第一部分40a朝向四侧的四个不同的第一方向。因各个第一方向的设计及原理基本相同,本实施例主要从其中一个第一方向K1上进行示例性说明。
举例来说,沿第一部分40a至第二部分40b的第一方向K1上(如第一部分40a朝向右侧的第二部分40b的方向),第一出光方向D1与所述第一方向K1的夹角可以大于所述第二出光方向D2与所述第一方向K1的夹角,使得边缘的第二部分40b的第二出光方向D2相较于第一部分40a的第一出光方向D1朝向右外侧偏移,从而可以对右侧的第二部分40b对应的显示画面进行亮度补偿,使得右侧的第二部分40b与第一部分40a的显示画面的亮度和/或颜色基本一致,均匀性较佳。
进一步来说,在一些实施例中,显示面板40可以包括位于第一部分40a的中心位置P,中心位置P指向第二部分40b的方向为第一方向K1,沿第一方向K1,第一部分40a和/或第二部分40b的各像素单元41亮度中心与对应的滤光单元421的中心定义的出光方向逐渐减小。具体地,沿第一方向K1,第一部分40a的各像素单元41的亮度中心与对应的滤光单元421的中心定义的第一出光方向D1逐渐减小。沿第一方向K1,第二部分40b的各个像素单元41的亮度中心与对应的滤光单元421的中心定义的第二出光方向D2逐渐减小;或者沿第一方向K1,第一部分40a的各个像素单元41亮度中心与对应的滤光单元421的中心定义的第一出光方向D1逐渐减小,且第二部分40b的各个像素单元41亮度中心与对应的滤光单元421的中心定义的第二出光方向D2逐渐减小。可以理解,上述逐渐减小的设计可以使得各部分(例如第一部分40a、第二部分40b、或者第一部分40a和第二部分40b)的亮度补偿逐渐变化,如沿第一方向K1,补偿可以逐渐变大,从而可以匹配从显示画面的中心位置至边缘位置的亮度逐渐变暗的显示面板40,使得补偿后的设备整体显示画面的均匀性更佳。
在另一些实施例中,显示面板40的第一部分40a的中心位置指向第二部分40b的方向为第一方向K1,沿第一方向K1上,第一部分40a的各像素单元41的第一出光方向D1保持不变,即第一部分40a的各像素单元41的第一出光方向D1都相同,第二部分40b的各像素单元41的第二出光方向D2保持不变,但沿第一方向K1上,第二部分40b的各像素单元41的第二出光方向D2与第一方向K1的夹角小于第一部分40a的各像素单元41的第一出光方向D1与第一方向K1的夹角,这种补偿虽然没有渐进式变化,但从对各像素单元41的发光强度控制的角度来说,相较于渐进式变化的补偿方式,这种控制方式较容易实现。
在又一些实施例中,如图15所示,显示面板40的第一部分40a的中心位置P指向第二部分40b的方向为第一方向K1,第一部分40a还包括沿第一方向K1排列的至少两个第一子部分401,每个第一子部分401 的各像素单元41的第一出光方向保持不变,至少两个第一子部分401的各像素单元41的第一出光方向D1与第一方向K1的夹角逐渐减小,如靠近中心位置P的第一子部分401的各像素单元41的第一出光方向D1与第一方向K1的夹角大于远离中心位置P的第一子部分401的各像素单元41的第一出光方向D1与第一方向K1的夹角。进一步地,第二部分40b也可以包括沿第一方向K1排列的至少两个第二子部分402,每个第二子部分402的各像素单元41的第二出光方向D2保持不变,至少两个第二子部分402的各像素单元41的第二出光方向D2与第一方向K1的夹角逐渐减小,如邻近第一部分40a的第二子部分402的各像素单元41的第二出光方向D2与第一方向K1的夹角大于远离第一部分40a的第二子部分40b的各像素单元41的第二出光方向D2与第一方向K1的夹角。实施例的显示面板10,相较于渐进式变化的补偿方式,也较容易控制或实现。
进一步地,沿第一方向K1上,第二部分40b的各像素单元41中,以同一个像素单元41为例,于同一个像素单元41而言,其多个子像素单元41中,靠近该第一部分40a的子像素单元410的发光强度大于远离该第一部分40a的子像素单元410的发光强度,从而使得第二部分40b的像素单元41的发光方向能够朝向其目标方向。例如,以图14为例,图14中,位于右侧的第二部分40b的像素单元41为三个,每一个像素单元41均具有一行如六个子像素单元410,对于每一个像素单元41而言,靠近该第一部分40a的子像素单元410的发光强度大于远离该第一部分40a的子像素单元410的发光强度,即,靠近第一部分40a的子像素单元410发光,而远离第一部分40a的子像素单元410则关闭,从而使得位于右侧的第二部分40b的像素单元41的第二出光方向D2朝向右侧出光。
进一步地,如图13、图16及图17所示,显示面板10还包括多条驱动线416a、416b,子像素单元410包括连接对应的驱动线416a、416b的开关元件415a、415b、连接开关元件415a、415b的子像素电极411、连接子像素电极411的发光结构412、及设置于发光结构412远离子像素电极411一侧的透明电极413。可以理解,显示面板10工作时,通过驱动线416a、416b及开关元件415a、415b,各子像素单元410的像素电极411可以被分别施加不同的数据驱动信号,透明电极413可以被施加公共电压,进而各子像素单元410的发光结构412在不同的数据驱动信号及公共电压的驱动下,可以发出不同的发光强度。
其中,如图13所示,显示面板10还可以为硅基OLED面板,其包括硅基衬底414,多条驱动线416a、416b与开关元件415a、415b可以设置于硅基衬底414上,具体地,多条驱动线416a、416b与开关元件415a、415b可以形成于硅基衬底414上。子像素电极411也设置于硅基衬底414且与对应的开关元件415a、415b电连接,发光结构412设置于子像素电极411远离硅基衬底414的一侧,透明电极413设置于发光结构412远离子像素电极411的一侧,各像素单元41的各子像素单元410的透明电极413连接于一体,从而被共同施加公共电压。
具体地,驱动线416a、416b包括多条扫描驱动线416a、数据驱动线416b及电源线VDD,子像素单元410中,开关元件415a、415b包括第一开关元件415a及第二开关元件415b,第一开关元件415a的控制端连接对应述扫描驱动线416a,第一开关元件415a的两个导通端分别连接对应的数据驱动线416b与第二开关元件415b的控制端,第二开关元件415b的两个导通端分别连接电源线VDD与子像素电极411。
为实现对每个像素单元41的各子像素单元410的发光强度的独立控制,在图16所示的实施例中,像素单元41中,各子像素单元410的第一开关元件415a控制端连接相同的一条扫描驱动线416a,各子像素单元410的第一开关元件415a的导通端连接不同的数据驱动线416b。在图17所示的实施例中,像素单元41中,各子像素单元410的第一开关元件415a控制端连接不同的扫描驱动线416a,各子像素单元410的第一开关元件415a的导通端连接同一条数据驱动线416b。
可以理解,图16及图17主要示意出一种子像素单元410的开关元件415a、415b的结构与连接,在一些变更实施例中,子像素单元410也可以包括其他不同数量或连接关系的开关元件,只要能够实现对各子像素单元410的发光强度的独立控制即可。另外,图16及图17所示的实施例中,每个像素单元41的各子像素单元410的等效电路结构基本相同,但是在其他实施例中,各子像素单元410的等效电路结构也可 以不同,只要能够实现对各子像素单元410的发光强度的独立控制即可。
显示面板10工作时,可以通过施加控制信号至显示面板10,如施加扫描驱动信号至扫描驱动线416a,施加电源信号至电源线VDD,施加公共电压至透明电极413,以及施加数据驱动信号至数据驱动线416b,从而独立控制每个像素单元41的各子像素单元410的发光强度,当显示面板10的各部分预显示颜色亮度相同的画面时,对于位于不同部分(如第一部分40a与第二部分40b)的像素单元41的子像素单元410的发光强度可以通过控制信号控制为可以至少部分不同(如数据驱动信号至少部分不同和/或电源信号至少部分不同等),进而可以使得位于不同部分的像素单元41的亮度中心可以不同,且每个像素单元41的亮度中心与滤光单元421的中心定义的像素单元41的出光方向在不同区域也可并不相同,从而可以在用于电子设备时实现显示均匀性的补偿。
关于如何通过控制信号实现对显示面板10的各部分的像素单元41的出光方向的控制,以下结合图13、图14进行简要说明。
可以理解,如图14所示,像素单元41被划分为多个子像素单元410,从垂直显示面板40的方向看,像素单元41的中心(即物理位置上的中心)与滤光单元421的中心(即物理位置上的中心)可以基本重合。对于位于第一部分40a的像素单元41来说,可以控制多个子像素单元410中的一部分发光,另一部分关闭(即不发光),从而控制像素单元41的亮度中心的位置,如左右侧各有一个子像素单元410关闭,中间四个子像素单元410开启发光时,像素单元410的亮度中心位于中间四个子像素单元410的中间位置,即可以为像素单元41的中心,此时从垂直显示面板40的方向看,像素单元410的亮度中心与滤光单元421的中心重合,从而像素单元410发出的光的主要出光方向为:像素单元41的亮度中心指向滤光单元421的中心的出光方向,如D1。
如图13及图14所示,由于各子像素单元410的发光强度可以独立控制,因此,在一些实施例中,可以控制多个子像素单元410中的一部分发光,另一部分关闭(即不发光),从而控制像素单元41的亮度中心的位置,如右侧两个子像素单元410关闭(可以理解,黑色的子像素电极411代表子像素单元410关闭),左侧四个子像素单元410开启发光时(可以理解,白色的子像素电极411代表子像素单元410发光),像素单元41的亮度中心将位于左侧四个子像素单元410的中间位置,此时从垂直显示面板40的方向看,像素单元410的亮度中心与滤光单元421的中心在第一方向K1上可以具有偏移量a,从而像素单元410发出的光主要出光方向为:像素单元41的亮度中心指向滤光单元421的中心的出光方向,如D2。并且,可以理解,出光方向D2与第一方向K1的夹角λ的具体大小也与滤光单元421、透明电极413、发光结构412的整体厚度d有关,具体地,夹角λ可以符合以下公式:λ=arctan(a/d)。
进一步地,可以理解,通过控制像素单元41的各子像素单元410的发光强度(如发光或关闭),可以改变像素单元410的亮度中心与滤光单元421的中心在第一方向K1上的偏移量a的大小,如图18(a)所示,若左侧的两个子像素单元410关闭,右侧的一个子像素单元410关闭,中间三个子像素单元410发光,设相邻两个子像素单元410的距离均为W,则图18(a)所示的偏移量a=1/2w;对应地,如图18(b)所示,若左侧的两个子像素单元410关闭,右侧四个子像素单元410发光,则图18(b)所示的偏移量a=w。
并且,进一步地,可以理解,像素单元41中,沿第一方向K1可独立控制的子像素单元410的数量越多,像素单元41的亮度中心的偏移量a的可调节范围将更宽,可调节精度也有所提高。如图19所示,若像素单元41沿第一方向K1具有10个子像素单元,像素单元41的亮度中心的偏移量a的可调节范围明显更宽。
更进一步地,如图14及图15所示,可以理解,对于显示面板40不同位置的像素单元41的出光角度可能需要有不同的控制,具体地,第一部分40a右侧的第二部分40b的像素单元41的亮度中心的偏移量a为朝左偏移,从而控制第二出光方向D2具有朝向右侧的分量。同理,第一部分40a左侧的第二部分40b的像素单元41的亮度中心的偏移量a为朝右偏移,从而控制第二出光方向具有朝向左侧的分量。具体地,在一种实施例中,可以结合显示面板40的每个像素单元41或滤光单元421的坐标来控制各部分的像素单 元41的出光方向。如,设显示面板40的像素单元41或滤光单元421的定义坐标位置为(x,y),当x在不同范围内时,其出光方向可以不同。例如对于1920*1080(x*y)的显示面板40,那么可以定义x坐标中0~960的向左出光,960~1920的向右出光。
在实际使用显示面板40时,为使得显示面板40的各部分40a、40b的像素单元41的出光方向与对应的光学器件匹配,可以根据光学器件的设计参数(如其中镜片的设计参数)获得目标的显示面板40的各部分的像素单元41出光角度分布需求,即获知各像素单元41的出光方向或各像素单元41的出光方向与第一方向K1的夹角需求,进一步基于厚度d及像素单元41或滤光单元421的中心位置的坐标,通过上述公式λ=arctan(a/d),即可计算获得需要的像素单元41的亮度中心的偏移量a的数值,进一步基于偏移量a的需求,即可获知如何控制各子像素单元410的发光强度(如控制各子像素单元410的发光与关闭),从而达到需求的出光方向,进而使得显示面板40的发光控制可以与对应的光学器件匹配。
进一步地,可以理解,上述描述主要从其中一个第一方向K1上的各像素单元41的出光方向控制的原理进行示例性说明,按照图14所示的实施例,与第一方向K1相反的另一个第一方向上的各像素单元41(左侧的像素单元41)的出光方向控制的原理也是类似的,此处就不再赘述。然而,显示面板40的各像素单元41的出光方向可以是如图20所示的立体空间,其中,出光方向r的控制不仅上述的左右侧,还需要考虑上下侧,因此,为了能够对显示面板40各区域都进行显示均匀性的补偿,出光方向的控制可能包括对在xy定义的平面内的第一分量与x轴的夹角ψ的控制,以及出光方向与z轴方向的夹角θ的控制。在这种情况下,如图21及图22所示,像素单元41可以包括矩阵排列的多个子像素单元410,每行每列的子像素单元410的数量均为至少两个(图21中主要以每行每列的子像素单元各为6个进行示意性说明),通过对每行每列的子像素单元410的发光强度进行控制,可以控制每个像素单元41的亮度中心在X轴方向及Y轴方向均有偏移,从而控制每个像素单元41的出光方向,进而完成在立体空间内显示均匀性补偿。
举例来说,请参阅图22,通过控制各像素单元41的各子像素单元410的发光强度,可以使得像素单元41的亮度中心的偏移量a可以朝向斜下方向,即包括X轴方向的分量及Y轴方向的分量,其中,此外,可以理解,其中X轴方向的分量与子像素单元410水平间距v有关;Y轴方向的分量与子像素单元410垂直方向间距h有关。从而可以完成对显示面板40四侧边缘的第二显示区域40b的显示均匀性补偿。此外,请参阅图13,与之前分析的原理类似,可以根据光学器件的设计参数(如其中镜片的设计参数)获得目标的显示面板40的各区域的像素单元41出光角度分布需求,即获知各像素单元41的出光方向或各像素单元41的出光方向的需求,进一步基于厚度d及像素单元41或滤光单元421的中心位置的坐标,通过上述公式λ=arctan(a/d),即可计算获得需要的像素单元41的亮度中心的偏移量a的数值,即可获知需要控制的像素单元41的亮度中心的坐标(即目标坐标),依据预设规则,控制各子像素单元410的发光强度,如控制像素单元41以目标坐标为中心的外围的预设M行及预设M列的子像素单元410均开启发光,其他子像素单元410关闭(不发光),从而使得像素单元41的亮度中心位于目标坐标,达到需求的出光方向。
进一步地,关于对各子像素单元410的发光强度的控制,以上各个实施例主要以对各子像素单元410进行发光及不发光的控制来实现。然而,在其他一些实施例中,也可以通过控制施加到各子像素单元410的像素电极411的驱动电流进行控制,也可以实现对各子像素单元410的发光强度的控制,以实现对每个像素单元41的亮度中心的控制。其中,可以理解,本实施例中,像素单元41的亮度中心主要代表每个像素单元41具有最强亮度的一个中心位置点。
如图16或图17所示,对每个子像素单元410来说,通过扫描驱动线416a可以控制第一开关元件415a的开启,通过数据驱动线416b上的数据驱动信号可以经由第一开关元件415a控制第二开关元件415b的开启程度,从而从电源线VDD流向发光结构412的导通电流,实现对发光结构412的发光强度的控制,即实现对子像素单元410的发光强度的控制。具体地,数据驱动信号的电压越大,第二开关元件415b的开始程度越大,导通电流越大,发光结构412的发光强度越高,反之,数据驱动信号的电压越小,第二开关元件415b的开始程度越小,导通电流越小,发光结构412的发光强度越小。举例来说,在这种设计下, 可以实现的效果如图23所示,其中黑色的子像素电极411表示子像素单元410关闭,灰色的子像素电极411表示通过数据驱动信号控制不同的导通电流大小。其中,图23(a)、(b)、(c)、(d)分别示意出对每个像素单元41的各子像素单元410的四种不同的发光强度控制,具体地,根据控制子像素单元410的发光、不发光、及导通电流的大小,可以控制每个像素单元41的亮度中心的位置,从而实现对像素单元41的出光角度的调整。
详细地说,每个像素单元41的亮度中心的位置具体由来自子像素电极411的导通电流决定,由于各子像素电极411的导通电流由上图中的数据驱动信号控制。例如,如图23(a)所示,如右侧的两个子像素单元410关闭而不发光,其他子像素单元410开启发光,其像素单元41的出光方向D21可如图23(a)所示;但是,如图23(b)所示,如果右侧的两个子像素单元410关闭而不发光,右侧第3个子像素电极的数据驱动信号值较低,导通电流不高,而左侧3个子像素电极411数据驱动信号值高,导通电流高,相对于图23(a)的像素单元41的亮度中心,图23(b)的像素单元41的亮度中心朝向左侧偏移,相对于图23(a)的像素单元41的出光方向D21,图23(b)的像素单元41的出光方向D22朝向右侧偏移。
同理,如图23(c)所示,如右侧的两个子像素单元410关闭而不发光,左侧的一个子像素单元410的子像素电极411的数据驱动信号值较低,导通电流不高,其他子像素单元410开启发光,相对于图23(a)的像素单元41的亮度中心,图23(b)的像素单元41的亮度中心朝向右侧偏移,相对于图23(a)的像素单元41的出光方向D21,图23(b)的像素单元41的出光方向D22朝向左侧偏移。如图23(d)所示,如右侧的两个子像素单元410关闭而不发光,中间的两个子像素单元410的子像素电极411的数据驱动信号值较低,导通电流不高,其他子像素单元410开启发光,相对于图23(b)的像素单元41的亮度中心,图23(d)的像素单元41的亮度中心朝向左侧偏移,相对于图23(b)的像素单元41的出光方向D22,图23(d)的像素单元41的出光方向D24朝向右侧偏移。
此外,关于对各子像素单元410的发光强度的控制,以上主要以对各子像素单元410的开启发光与关闭不发光结合的控制以及开启发光、关闭不发光与子像素电极411的导通电流的大小的结合的控制两个为例进行说明,但在其他一些实施例中,也可以通过控制各子像素单元410的子像素电极411的导通电流的大小来实现对各子像素单元410的发光强度的控制,如导通电流为0则可与关闭不发光的效果基本一致,如导通电流为最大值则可与开启发光的效果基本一致,由此同样可以实现对各子像素单元410的发光强度。可以理解,由于对子像素单元410发光强度的控制多种多样,使得对像素单元41的亮度中心的控制也是多种多样,此处就不再穷举其他各种实施方式。
综上,通过控制每个像素单元41的各子像素单元410的开启发光、关闭不发光、以及子像素电极411的导通电流的大小等,可以控制像素单元41的亮度中心的位置,实现对像素单元41的出光方向的控制,从而实现对显示均匀性的补偿。
请参阅图24,图24为本发明一种实施例公开的显示装置60的方框结构示意图。显示装置60可以包括上述任意一实施例的显示面板40及电连接显示面板40的控制部50,控制部50用于施加控制信号至显示面板40,如施加扫描驱动信号至扫描驱动线416a,施加电源信号至电源线VDD,施加公共电压至透明电极413,以及施加数据驱动信号至数据驱动线416b,从而独立控制每个像素单元41的各子像素单元410的发光强度。
请参阅图25,图25是本发明一种实施例公开的头戴显示设备80的结构示意图。头戴显示设备80包括光学器件70及上述实施例的显示装置60。具体地,头戴显示设备80可以为VR显示设备、AR显示设备(如AR眼镜)或MR显示设备等,光学器件70可以包括镜片组71,用于传输显示面板40发出的显示光线,具体地,显示面板40发出的用于显示虚拟场景的显示光线穿过光学器件70的一部分镜片,再经过反射进入人眼,外部真实场景也可以透射经过光学器件70进入人眼。由于显示面板40的像素单元41的亮度中心可以通过控制各子像素单元410的发光强度的方式调节与对应的光学器件70适配,从而可以使得进入光学器件70的光线方向与光学器件70的参数适配,使得头戴显示设备80显示的画面的显示均匀性较佳。
请参阅图26,图26是本发明另一种实施例公开的头戴显示设备80的结构示意图。头戴显示设备80包括光学器件70及上述实施例的显示装置60。具体地,头戴显示设备80可以为VR显示设备、AR显示设备(AR眼镜)或MR显示设备等,光学器件70也可以包括镜片组71及波导元件72,镜片组71位于显示面板40及波导元件72之间且具有一个、两个或多个镜片,镜片组71将显示面板40发出的显示光线传输至波导元件72,波导元件72将来自镜片组71的光线通过全反射的原理传输到人眼前方再释放出来,并且外部真实场景也可以透射经过波导元件32进入人眼。由于显示面板40的像素单元41的亮度中心可以通过控制各子像素单元410的发光强度的方式调节与对应的光学器件70适配,从而可以使得进入光学器件70的光线方向与光学器件70的参数适配,使得头戴显示设备80显示的画面的显示均匀性较佳。
进一步,对于头戴显示设备,实际上除了出光角度,还有很多因素会影响显示画面的均匀性,例如显示面板或显示装置不同位置的电极引线的长短不同,导致电阻不同,从而影响电流的细微差异,也叫做IR drop(IR压降);头戴显示设备组装的匹配程度不好,即使设计符合要求,但是实际装配以及元件生产的误差会导致均匀性的变化。针对上述造成显示画面均匀性不佳的各种因素,本发明实施例进一步提供一种显示均匀性校准方法。
如图27及图28所示,在一种实施例中,显示均匀性校准方法可以包括以下步骤S91、S92及S93。
步骤S91,提供显示面板及光学器件,显示面板包括彩色滤光片及多个像素单元,彩色滤光片包括多个不同颜色的滤光单元,像素单元对应一个滤光单元设置,像素单元包括至少两个子像素单元,各子像素单元用于朝向对应的滤光单元发光,光学器件对应显示面板且用于接收并传输显示面板发出的光线。
可以理解,步骤S91中,显示面板可以为以上各实施例所述的显示面板40。显示面板40与光学器件70可以是已经组装在成品的头戴显示设备80(如AR眼镜)上,其中,头戴显示设备80除了上述已经介绍的显示面板40、控制部50及光学器件70外,头戴式显示设备80还可以包括供电模块81、存储器82,控制部50分别与显示面板40、存储器82电连接,供电模块81用于向控制部50供电,光学器件70对应显示面板40设置。
步骤S92,施加测试信号至显示面板的各子像素单元以驱动显示面板,使得显示面板经由光学器件显示测试画面。
具体地,步骤S92中,可以提供测试系统90,测试系统90可以包括二维成像亮度色度计,在一种实施例中,测试系统90可以提供预存的测试信号至控制部50,使得控制部50输出控制信号至显示面板40;在变更实施例中,测试系统90也可以将预存的测试信号提供至显示面板40。其中,测试信号可以为一组、两组或多组,或者可以在预设范围内进行调节,使得显示面板可以依据不同组的测试信号或调节前后的测试信号显示一个、两个或多个测试画面,一个、两个或多个测试画面可以通过光学器件70提供至测试系统90。
其中,关于控制信号已经在上述显示面板的实施例中进行了详细的说明,此处就不再赘述。关于测试信号的获得,可以先依据光学器件70的参数或者光学器件70的显示面板的出光方向需求、以及显示面板40的各像素单元41的中心坐标、显示面板40的滤光单元421、透明电极413、发光结构412的整体厚度d等参数计算获得各像素单元41的亮度中心的坐标(即目标坐标),再依次预设驱动规则计算各子像素单元410需要的控制信号。在一种实施例中,可以将控制信号在预设范围进行微调形成至少一组、两组或多组测试信号,再将一组、两组或多组测试信号提供至控制部50或直接提供至显示面板40;在其他实施例中,可以将控制信号作为标准测试信号,并且可以对标准测试信号进行预设范围内的微调并依次提供至控制部50或直接提供至显示面板40。
步骤S93,检测测试画面的显示均匀性,当测试画面的显示均匀性符合预设均匀性标准,将符合预设均匀性标准的测试信号存储为标准参数数据,标准参数数据用于在下一次驱动显示面板时使用。
具体地,通过上述一组、两组或多组测试信号、或者可在预设范围微调的标准测试信号,可以使 得显示面板40显示一个、两个或多个测试画面,可以通过测试系统90检测显示面板40显示一个、两个或多个测试画面的显示均匀性,当测试画面的显示均匀性(如亮度均匀性)符合预设均匀性标准(如预设亮度均匀性标准),将符合预设均匀性标准的测试信号存储为标准参数数据,标准参数数据可以用于在下一次驱动显示面板时使用,这样显示面板40显示画面的出光方向可与光学器件70达到较佳的匹配效果,相较于生产时就固定了出光方向的显示面板20,显示面板40可以通过控制每个子像素单元410的发光强度而适配不同的光学器件70,使得其应用于头戴显示设备等电子设备时,设备具有较好的画面显示均匀性。
以上对本发明实施例公开的显示面板、显示装置、头戴显示设备及显示均匀性校准方法进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的显示面板、显示装置、头戴显示设备及显示均匀性校准方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上,本说明书内容不应理解为对本发明的限制。

Claims (20)

  1. 一种显示面板,其特征在于,所述显示面板包括:
    彩色滤光片,所述彩色滤光片包括多个不同颜色的滤光单元;及
    多个像素单元,各所述像素单元分别对应一个所述滤光单元设置,每一所述像素单元包括至少两个子像素单元,同一所述像素单元的各所述子像素单元用于朝向对应的所述滤光单元发光;
    所述显示面板具有第一部分及位于所述第一部分外围的第二部分,所述第二部分为所述显示面板的边缘部分,所述第一部分的所述像素单元具有第一出光方向,所述第二部分的所述像素单元具有第二出光方向,位于所述第一部分的所述像素单元的所述子像素单元的发光强度与位于所述第二部分的所述像素单元的所述子像素单元的发光强度不同,以使所述第一出光方向与所述第二出光方向不同;
    其中,所述第一出光方向为所述第一部分的所述像素单元的亮度中心指向对应的所述滤光单元的中心的方向,所述第二出光方向为所述第二部分的所述像素单元的亮度中心指向对应的所述滤光单元的中心的方向。
  2. 如权利要求1所述的显示面板,其特征在于,所述像素单元包括矩阵排列的一行、两行或多行所述子像素单元,每行所述子像素单元的数量为至少两个,且每行所述子像素单元沿着所述第一部分至所述第二部分的第一方向依次排列。
  3. 如权利要求1所述的显示面板,其特征在于,沿所述第一部分至所述第二部分的第一方向上,所述第一出光方向与所述第一方向的夹角大于所述第二出光方向与所述第一方向的夹角。
  4. 如权利要求3所述的显示面板,其特征在于,所述显示面板包括位于所述第一部分的中心位置,沿所述中心位置至所述第二部分的方向为所述第一方向,且沿所述第一方向上,各所述第一出光方向与所述第一方向的夹角,和/或,各所述第二出光方向与所述第一方向的夹角逐渐减小。
  5. 如权利要求3所述的显示面板,其特征在于,所述显示面板包括位于所述第一部分的中心位置,沿所述中心位置至所述第二部分的方向为所述第一方向,沿所述第一方向上,所述第一出光方向与所述第一方向的夹角保持不变,所述第二出光方向与所述第一方向的夹角保持不变。
  6. 如权利要求5所述的显示面板,其特征在于,沿所述第一方向上,所述第二部分的各所述像素单元的第二出光方向与所述第一方向的夹角小于所述第一部分的各所述像素单元的第一出光方向与所述第一方向的夹角。
  7. 如权利要求3所述的显示面板,其特征在于,所述显示面板包括位于所述第一部分的中心位置,沿所述中心位置至所述第二部分的方向为所述第一方向,所述第一部分还包括沿所述第一方向排列的至少两个第一子部分,所述至少两个第一子部分的所述各像素单元的所述第一出光方向与所述第一方向的夹角逐渐减小;所述第二部分包括沿所述第一方向排列的至少两个第二子部分,所述至少两个第二子部分的所述各像素单元的所述第二出光方向与所述第一方向的夹角逐渐减小。
  8. 根据权利要求7所述的显示面板,其特征在于,每个所述第一子部分的各所述像素单元的所述第一方向保持不变,每个所述第二子部分的各所述像素单元的所述第二出光方向保持不变。
  9. 根据权利要求4-8任一项所述的显示面板,其特征在于,沿所述第一方向上,所述第二部分中的同一所述像素单元中,靠近所述第一部分的所述子像素单元的发光强度大于远离所述第一部分的子像素单元的发光强度。
  10. 如权利要求1所述的显示面板,其特征在于,所述显示面板还包括多条驱动线,所述子像素单元包括连接对应的所述驱动线的开关元件、连接所述开关元件的子像素电极、连接所述子像素电极的发光结构、及设置于所述发光结构远离所述子像素电极一侧的透明电极。
  11. 如权利要求10所述的显示面板,其特征在于,所述显示面板还包括硅基衬底,多条所述驱动线与所述开关元件设置于所述硅基衬底,所述子像素电极也设置于所述硅基衬底且与对应的所述开关元件电连接,所述发光结构设置于所述子像素电极远离所述硅基衬底的一侧,所述透明电极设置于所述发光结构远 离所述子像素电极的一侧,各所述像素单元的各子像素单元的所述透明电极连接于一体。
  12. 如权利要求10所述的显示面板,其特征在于,所述驱动线包括多条扫描驱动线、数据驱动线及电源线,所述扫描驱动线与所述数据所述像素单元中,所述开关元件包括第一开关元件及第二开关元件,所述第一开关元件的控制端连接对应的所述扫描驱动线,所述第一开关元件的两个导通端分别连接对应的所述数据驱动线与所述第二开关元件的控制端,所述第二开关元件的两个导通端分别连接所述电源线与所述子像素电极。
  13. 如权利要求12所述的显示面板,其特征在于,各所述子像素单元的第一开关元件的控制端连接相同的一条所述扫描驱动线,各所述子像素单元的所述第一开关元件的导通端连接不同的数据驱动线。
  14. 如权利要求12所述的显示面板,其特征在于,各所述子像素单元的第一开关元件的控制端连接不同的扫描驱动线,各所述子像素单元的第一开关元件的导通端连接同一条所述数据驱动线。
  15. 如权利要求10-14任一项所述的显示面板,其特征在于,所述发光结构为OLED结构;所述显示面板为硅基OLED面板或Micro OLED面板。
  16. 一种显示装置,其特征在于:所述显示装置包括控制部及如权利要求1-15任意一项所述的显示面板,所述控制部用于施加控制信号至各所述子像素单元以控制各所述子像素单元的发光强度,从而控制各所述像素单元的出光方向。
  17. 一种头戴显示设备,其特征在于,所述头戴显示设备包括光学器件及如权利要求12所述的显示装置,所述光学器件对应所述显示面板设置且用于将所述显示面板发出的显示光线传输至用户眼部。
  18. 如权利要求17所述的头戴显示设备,其特征在于,所述光学器件包括镜片组或镜片组与波导元件,所述镜片组包括至少一个镜片,所述波导元件用于位于所述显示面板与所述镜片组之间。
  19. 一种显示均匀性校准方法,其特征在于,所述校准方法包括包括以下步骤:
    提供显示面板及光学器件,所述显示面板包括彩色滤光片及多个像素单元,所述彩色滤光片包括多个不同颜色的滤光单元,所述像素单元对应一个所述滤光单元设置,所述像素单元包括至少两个子像素单元,各所述子像素单元用于朝向对应的所述滤光单元发光,所述光学器件对应所述显示面板且用于接收并传输所述显示面板发出的光线;
    施加测试信号至所述显示面板的各所述子像素单元以驱动所述显示面板,使得所述显示面板经由所述光学器件显示测试画面;及
    检测所述测试画面的显示均匀性,当所述测试画面的显示均匀性符合预设均匀性标准,将符合预设均匀性标准的所述测试信号存储为标准参数数据,所述标准参数数据用于在下一次驱动所述显示面板时使用。
  20. 如权利要求19所述的显示均匀性校准方法,其特征在于,所述显示面板具有第一部分及位于所述第一部分外围的第二部分,所述第二部分为所述显示面板的边缘部分,所述第一部分的所述像素单元具有第一出光方向,所述第二部分的所述像素单元具有第二出光方向,位于所述第一部分的所述像素单元的所述子像素单元的发光强度与位于所述第二部分的所述像素单元的所述子像素单元的发光强度不同,以使所述第一出光方向与所述第二出光方向不同;
    其中,所述第一出光方向为所述第一部分的所述像素单元的亮度中心指向对应的所述滤光单元的中心的方向,所述第二出光方向为所述第二部分的所述像素单元的亮度中心指向对应的所述滤光单元的中心的方向。
PCT/CN2021/128304 2020-12-14 2021-11-03 显示面板及其显示装置、头戴显示设备、显示均匀性校准方法 WO2022127416A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011479345.1A CN112415754B (zh) 2020-12-14 2020-12-14 显示面板及其显示装置、头戴显示设备、显示均匀性校准方法
CN202011479345.1 2020-12-14

Publications (1)

Publication Number Publication Date
WO2022127416A1 true WO2022127416A1 (zh) 2022-06-23

Family

ID=74775640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/128304 WO2022127416A1 (zh) 2020-12-14 2021-11-03 显示面板及其显示装置、头戴显示设备、显示均匀性校准方法

Country Status (2)

Country Link
CN (1) CN112415754B (zh)
WO (1) WO2022127416A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112415754B (zh) * 2020-12-14 2022-11-11 Oppo广东移动通信有限公司 显示面板及其显示装置、头戴显示设备、显示均匀性校准方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001083511A (ja) * 1999-09-16 2001-03-30 Nippon Leiz Co Ltd 導光板および平面照明装置
CN101101237A (zh) * 2007-08-21 2008-01-09 友达光电(苏州)有限公司 测量发光画面亮度均匀性的方法
CN101561584A (zh) * 2008-04-14 2009-10-21 奇美电子股份有限公司 背光模块及应用其的液晶显示装置
CN101697273A (zh) * 2009-10-29 2010-04-21 彩虹集团公司 使用led背光源的lcd亮度均匀性自动校正系统及校正方法
CN110164938A (zh) * 2019-05-30 2019-08-23 武汉天马微电子有限公司 一种显示面板及显示装置
CN111554715A (zh) * 2020-05-13 2020-08-18 京东方科技集团股份有限公司 显示面板及其制作方法
CN112415754A (zh) * 2020-12-14 2021-02-26 Oppo广东移动通信有限公司 显示面板及其显示装置、头戴显示设备、显示均匀性校准方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005283816A (ja) * 2004-03-29 2005-10-13 Seiko Epson Corp 電気光学装置、電気光学装置の駆動方法、電気光学装置の製造方法、及び電子機器
JP4727216B2 (ja) * 2004-11-30 2011-07-20 株式会社 日立ディスプレイズ 有機el表示装置
JP4753661B2 (ja) * 2005-08-16 2011-08-24 シャープ株式会社 表示装置
TR200705747A2 (tr) * 2007-08-17 2009-03-23 Vestel Elektroni̇k San. Ve Ti̇c. A.Ş. Ekran panellerinde arka-ışık ve piksel parlaklığının otomatik ayarlanması
CN108022524B (zh) * 2016-10-31 2021-01-15 上海箩箕技术有限公司 像素结构、显示屏以及调整显示屏亮度均匀性的方法
CN106873205B (zh) * 2017-04-21 2019-10-29 京东方科技集团股份有限公司 液晶显示装置及其驱动方法
CN107146573B (zh) * 2017-06-26 2020-05-01 上海天马有机发光显示技术有限公司 显示面板、其显示方法及显示装置
CN107908050B (zh) * 2017-12-18 2020-10-30 昆山龙腾光电股份有限公司 液晶显示面板及液晶显示装置
CN110828526B (zh) * 2019-11-20 2023-01-20 京东方科技集团股份有限公司 显示面板和显示装置
CN111025660B (zh) * 2019-12-31 2022-04-19 合肥视涯技术有限公司 一种显示面板及近眼显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001083511A (ja) * 1999-09-16 2001-03-30 Nippon Leiz Co Ltd 導光板および平面照明装置
CN101101237A (zh) * 2007-08-21 2008-01-09 友达光电(苏州)有限公司 测量发光画面亮度均匀性的方法
CN101561584A (zh) * 2008-04-14 2009-10-21 奇美电子股份有限公司 背光模块及应用其的液晶显示装置
CN101697273A (zh) * 2009-10-29 2010-04-21 彩虹集团公司 使用led背光源的lcd亮度均匀性自动校正系统及校正方法
CN110164938A (zh) * 2019-05-30 2019-08-23 武汉天马微电子有限公司 一种显示面板及显示装置
CN111554715A (zh) * 2020-05-13 2020-08-18 京东方科技集团股份有限公司 显示面板及其制作方法
CN112415754A (zh) * 2020-12-14 2021-02-26 Oppo广东移动通信有限公司 显示面板及其显示装置、头戴显示设备、显示均匀性校准方法

Also Published As

Publication number Publication date
CN112415754A (zh) 2021-02-26
CN112415754B (zh) 2022-11-11

Similar Documents

Publication Publication Date Title
JP5910529B2 (ja) 表示装置および電子機器
KR102629404B1 (ko) 픽셀 배열 구조, 디스플레이 패널 및 디스플레이 장치
CN110824725B (zh) 3d显示基板、3d显示装置及显示方法
WO2013069405A1 (ja) 照明装置および表示装置、ならびに電子機器
TWI818092B (zh) 多視像顯示器和方法
KR20180117770A (ko) 헤드 마운티드 디스플레이 장치
JP7284195B2 (ja) 混合フォーマットバックライト、ディスプレイ、および方法
US9641829B2 (en) Image display apparatus
US20230006002A1 (en) Display module and display device
US20170263209A1 (en) Backlight unit, display panel and display device
US20210209980A1 (en) Multiview display and method with offset rows of multibeam emitters and multiview pixels
CN113260903A (zh) 具有动态颜色子像素重映射的多视图显示器、系统和方法
CN107407818A (zh) 具有输出的方向性控制的显示设备以及用于这种显示设备的背光源和光导向方法
WO2022127416A1 (zh) 显示面板及其显示装置、头戴显示设备、显示均匀性校准方法
CN109283692A (zh) 一种显示装置和显示装置的驱动方法
CN110634415B (zh) 一种显示装置
US20200209806A1 (en) Active Light-Field Holographic Elements, Light-Field Display Devices, and Methods
CN107079147B (zh) 具有输出方向控制的显示设备及用于这种显示设备的背光
US10867539B2 (en) Display module, display method, and display device
CN110009993A (zh) 显示面板以及显示装置
US10732430B2 (en) Display device and display method
US10942365B2 (en) Stereoscopic display device
US20210264841A1 (en) Color display panel and control method thereof
CN114839811B (zh) 背光组件、显示面板及显示装置
CN106373495A (zh) Oled显示器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21905345

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21905345

Country of ref document: EP

Kind code of ref document: A1