WO2022127030A1 - 一种角膜接触镜的设计方法 - Google Patents

一种角膜接触镜的设计方法 Download PDF

Info

Publication number
WO2022127030A1
WO2022127030A1 PCT/CN2021/095682 CN2021095682W WO2022127030A1 WO 2022127030 A1 WO2022127030 A1 WO 2022127030A1 CN 2021095682 W CN2021095682 W CN 2021095682W WO 2022127030 A1 WO2022127030 A1 WO 2022127030A1
Authority
WO
WIPO (PCT)
Prior art keywords
aberration
wavefront
contact lens
corneal
cornea
Prior art date
Application number
PCT/CN2021/095682
Other languages
English (en)
French (fr)
Inventor
尉佩
陈文光
李慧杰
Original Assignee
上海美沃精密仪器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海美沃精密仪器股份有限公司 filed Critical 上海美沃精密仪器股份有限公司
Publication of WO2022127030A1 publication Critical patent/WO2022127030A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/024Methods of designing ophthalmic lenses
    • G02C7/027Methods of designing ophthalmic lenses considering wearer's parameters
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/024Methods of designing ophthalmic lenses
    • G02C7/028Special mathematical design techniques
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes

Definitions

  • the invention relates to a design method of a corneal contact lens, and belongs to the technical field of corneal contact lenses.
  • CL Contact lenses
  • Indications Especially suitable for high myopia, corneal astigmatism, anisometropia and aphakic eyes.
  • wavefront aberration The curved surface formed by the iso-phase surface when the light propagates to a certain position.
  • the human eye is an imperfect optical system, such as the axis of the eye is not consistent with the optical axis, the density of the lens is uneven, and the corneal surface is irregular. , which will lead to the deviation of the wavefront entering or exiting the human eye. This deviation between the ideal wavefront and the actual wavefront is called wavefront aberration.
  • Wavefront aberrations can be divided into low-order aberrations and high-order aberrations according to Zernike polynomial decomposition.
  • low-order aberrations include defocus and astigmatism and other commonly used optical parameters in the field of traditional optometry; high-order aberrations include coma, clover astigmatism and other optical changes with more complex morphological contents. See Figure 2.
  • the Hartmann-Shack wavefront aberration measurement system can accurately detect all aberrations in the whole eye, obtain the compensation value for correcting the aberration of the human eye, and then deduce the design of contact lenses that can be used to compensate for aberrations.
  • the technical problem to be solved by the present invention is that the existing corneal contact lens can only solve the basic parameters such as diopter and astigmatism, and the actual high-order aberration in the eye cannot be compensated.
  • the technical solution of the present invention is to provide a design method of a contact lens, by accurately measuring the whole eye aberration and the corneal aberration (Fig. 3, the wave aberration is represented by the Zernike polynomial to measure the aberration ), obtain the intraocular aberration to be compensated, and use the Monte Carlo reverse reconstruction method to establish a waveform segmentation array of the contact lens + corneal surface aberration to be compensated, so as to design a local waveform microlens compensation scheme, which is effective Improve visual quality;
  • the specific steps are as follows: a method for designing a contact lens, characterized in that it includes the following steps:
  • Step 1 Measure the data of the corneal surface, measure and obtain the corneal topography, filter out the noise on the three-dimensional discrete point cloud of the anterior corneal surface in the three-dimensional coordinate system, and fit the zernike expression, and denote the anterior surface of the cornea along the light exit direction as W1 ( r, ⁇ );
  • Step 2 Calculate the corneal wavefront distribution and the corresponding wavefront aberration according to the ray tracing method, which is denoted as Z1(r, ⁇ ) after the zernike decomposition;
  • Step 3 Measure the wavefront aberration data of the whole eye.
  • the Hartmann-Shack wavefront aberration measuring instrument measures the wavefront data of the array of focused spots in the fundus, and uses the modal wavefront estimation of the zernike polynomial to reconstruct the wavefront aberration of the whole eye. is Z2(r, ⁇ );
  • Step 4 The subtraction of the aberration of the whole eye and the aberration of the anterior surface of the cornea is the intraocular aberration, which is recorded as
  • Step 5 The action of the contact lens and the cornea is regarded as a whole, and the intraocular aberration Z3(r, ⁇ ) is compensated, that is, the sum of the aberration of the contact lens and the cornea is -Z3(r, ⁇ );
  • Step 6 Build a three-dimensional wavefront model, divide it into n*n wavefront arrays as variables, simulate and simulate by the Monte Carlo method, perform ray tracing, and obtain the aberration value of -Z3(r, ⁇ );
  • Step 8 Design the microlens structure in the corresponding area of the contact lens, so that the light wave forms a corresponding waveform in this area after passing through the orthokeratology lens and the cornea, and outputs the distribution of the microlens structure as the final result.
  • the surface data may be acquired by a corneal topograph, a three-dimensional imaging device based on the Scheimpflug principle or the OCT principle.
  • the contact lens of the present invention can compensate for higher-order aberrations, optimize the design of local structures, and flexibly compensate for all aberrations.
  • the micro-lens structure adopted on the surface of the contact lens of the present invention can be uniform as a whole or independent of each other, and the imaging position of the edge can be converged to the front of the retina, which is beneficial to the prevention and control of myopia and delays the growth of the eye axis.
  • Fig. 1 is the schematic diagram of the compensation aberration of the contact lens
  • Figure 2 is a schematic diagram of the aberration of the eye
  • Figure 3a is a wave aberration diagram for measuring intraocular aberration
  • Figure 3b is a diagram of low and high order aberrations expressed by zernike polynomials
  • 4a is a two-dimensional schematic diagram of the split wavefront of the present invention.
  • Fig. 4b is a three-dimensional schematic diagram of the divided wavefront according to the present invention.
  • FIG. 5 is a schematic diagram of the distribution of an output microlens design sample for compensating aberrations
  • Fig. 6 is the wave aberration diagram after compensating the aberration
  • FIG. 7 is a schematic diagram of light used for myopia prevention and control.
  • Surface data can be acquired by corneal topograph, Scheimpflug principle or OCT principle 3D imaging equipment;
  • the corneal wavefront distribution and the corresponding wavefront aberration are calculated, which is denoted as Z1(r, ⁇ ) after zernike decomposition;
  • the wavefront data of the array of the fundus focused spot can be measured by the Hartmann-Shack wavefront aberration measuring instrument, and the wavefront aberration of the whole eye can be reconstructed using the modal wavefront estimation of the zernike polynomial, which is recorded as Z2(r, ⁇ );
  • the subtraction of the aberration of the whole eye and the aberration of the anterior surface of the cornea is the intraocular aberration, which is recorded as
  • the action of the contact lens and the cornea is regarded as one, and the intraocular aberration Z3(r, ⁇ ) is compensated, that is, the sum of the aberration of the contact lens and the cornea is -Z3(r, ⁇ );
  • the selection of local structures can be done in the form of overall planning and layout.
  • contact lenses used for myopia prevention and control require a stepwise asymptotic change of curvature.
  • the optical focus of the focal zone is on the peripheral retina, as shown in Figure 7.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Prostheses (AREA)
  • Eyeglasses (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

一种角膜接触镜的设计方法,其特征在于,包括以下步骤:测量角膜表面的数据;计算角膜波前分布和相应波前像差;测量全眼波像差数据,重构全眼波前像差;计算眼内像差;构建三维波前模型;选取最优阵列组合;设计角膜接触镜相对应区域的微透镜结构,使光波经过角膜塑形镜和角膜后在此区域形成相应波形,输出微透镜结构分布为最终结果。

Description

一种角膜接触镜的设计方法 技术领域
本发明涉及一种角膜接触镜的设计方法,属于角膜接触镜技术领域。
背景技术
角膜接触镜(contactlens,CL)直接贴附在角膜的泪液层上,与人眼生理相容,达到视力矫正的目的。与眶架眼镜相比CL有更大的视野,在所有注视方向均能保持光学矫正性能,消除眼镜的三棱镜作用,消除斜向散光,减少双眼视网膜像差,保持更好的双眼视,使用安全、方便、美观,还有一些特殊镜片可满足一些特殊要求。适应症:特别适应高度近视、角膜散光屈光参差及无晶体眼等。
光线传播到某一位置处等相位面组成的曲面称为波前,然而,由于人眼是一个不完美的光学系统,如眼轴与光轴并不一致、晶状体密度不均、角膜表面不规则等,会导致进入或射出人眼的波前产生偏差,这种理想波前与实际波前之间的偏差即称之为波前像差。波前像差根据泽尔尼克多项式分解,可划分为低阶像差和高阶像差。其中,低阶像差包括离焦和散光等传统验光领域常用的光学参数;高阶像差包括慧差、三叶草散光等形态内容更加复杂的光学变化。见图2。
Hartmann-Shack波前像差测量系统可以精准检测全眼所有像差,得到矫正人眼的像差的补偿值,从而反推出可用来补偿像差的角膜接触镜的设计。
发明内容
本发明要解决的技术问题是现有的角膜接触镜仅能解决屈光度,散光等基础参数,实际眼内高阶像差无法补偿的问题。
为了解决上述技术问题,本发明的技术方案是提供了一种角膜接触镜的设计方法,通过精确测量全眼像差和角膜像差(图3,波像差用泽尔尼克多项式表示测像差),获取待补偿的眼内像差,使用蒙托卡罗反向重构的方式,建立角膜接触镜+角膜表面待补偿像差的波形分割阵列,从而设计局部波形的微透镜补偿方案,有效提高视觉质量;具体步骤如下:一种角膜接触镜的设计方法,其特征在于,包括以下步骤:
步骤一、测量角膜表面的数据,测量获取角膜地形,对三维坐标系中的角膜前表面三维离散点云做噪声滤除,做zernike表达式拟合,沿光线出射方向角膜前表面记为W1(r,θ);
步骤二、依据射线追踪法,计算角膜波前分布和相应波前像差,zernike分解后记为Z1(r,θ);
步骤三、测量全眼波像差数据,由Hartmann-Shack波前像差测量仪测得眼底聚焦光斑的阵列的波前数据,使用zernike多项式的模态波前估计重构全眼波前像差,记为Z2(r,θ);
步骤四、全眼像差与角膜前表面的像差相减即为眼内像差,记为
Z3(r,θ)=Z2(r,θ)-Z1(r,θ);
步骤五、角膜接触镜与角膜作用,看作一体,补偿该眼内像差Z3(r,θ),即角膜接触镜与角膜像差和为-Z3(r,θ);
步骤六、构建三维波前模型,分割成n*n个波前阵列设为变量,通过蒙托卡罗方法模拟仿真,进行光线追迹,得到-Z3(r,θ)的像差值;
步骤七、选取最优阵列组合,得到n^2个分割区域的每个波形,记为Pi(r,θ),(i=1,2,…,n^2);
步骤八、设计角膜接触镜相对应区域的微透镜结构,使光波经过角膜塑形镜和角膜后在此区域形成相应波形,输出微透镜结构分布为最终结果。
其中,所述步骤一中,表面数据可以由角膜地形图仪,Scheimpflug原理或OCT原理三维成像设备获取。
本发明方案优点在于:
1、本发明的角膜接触镜可补偿高阶像差,优化局部结构设计,灵活补偿所有像差。
2、本发明的角膜接触镜表面采用的微透镜结构可做到整体一致或彼此独立,可将边缘的成像位置会聚到视网膜前,有利于近视防控,延缓眼轴增长。
附图说明
图1为角膜接触镜补偿像差的示意图;
图2为眼睛自带像差示意图;
图3a为测量眼内像差的波像差图;
图3b为用zernike多项式表达的各低,高阶像差图;
图4a为本发明分割波前二维示意图;
图4b为本发明分割波前三维示意图;
图5为用于补偿像差的输出微透镜设计样例分布示意图;
图6为补偿像差后的波像差图;
图7为用于近视防控的光线示意图。
具体实施方式
为使下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变化和改进。这些都属于本发明的保护范围。
实施方法:
该方法实施步骤如下:
1、测量角膜表面的数据,测量获取角膜地形,对三维坐标系中的角膜前表面三维离散点云做噪声滤除,做zernike表达式拟合,沿光线出射方向角膜前表面记为W1(r,θ);
表面数据可由角膜地形图仪,Scheimpflug原理或OCT原理三维成像设备获取;
2、依据射线追踪法,计算角膜波前分布和相应波前像差,zernike分解后记为Z1(r,θ);
3、测量全眼波像差数据,可由Hartmann-Shack波前像差测量仪测得眼底聚焦光斑的阵列的波前数据,使用zernike多项式的模态波前估计重构全眼波前像差,记为Z2(r,θ);
4、全眼像差与角膜前表面的像差相减即为眼内像差,记为
Z3(r,θ)=Z2(r,θ)-Z1(r,θ);
5、角膜接触镜与角膜作用,看作一体,补偿该眼内像差Z3(r,θ),即角膜接触镜与角膜像差和为-Z3(r,θ);
6、构建三维波前模型,分割成n*n个波前阵列设为变量,通过蒙托卡罗方法模拟仿真,进行光线追迹,得到-Z3(r,θ)的像差值;
7、选取最优阵列组合,得到n^2个分割区域的每个波形,记为Pi(r,θ),(i=1,2,…,n^2),见图4。
8、设计角膜接触镜相对应区域的微透镜结构,使光波经过角膜塑形镜和角膜后在此区域形成相应波形,输出微透镜结构分布为最终结果,如图5所示。
补偿后测试全眼像差以验证效果,如图6所示。
局部结构的选择可先进行整体规划布局的形式,比如用于近视防控的角膜接触镜需阶梯式渐近变化的曲率,所述曲率根据个体眼部玻璃体的光学曲率设置,使得周边正向离焦区的光学焦点位于周边视网膜上,如图7所示。
以上所述仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (2)

  1. 一种角膜接触镜的设计方法,其特征在于,包括以下步骤:
    步骤一、测量角膜表面的数据,测量获取角膜地形,对三维坐标系中的角膜前表面三维离散点云做噪声滤除,做zernike表达式拟合,沿光线出射方向角膜前表面记为W1(r,θ);
    步骤二、依据射线追踪法,计算角膜波前分布和相应波前像差,zernike分解后记为Z1(r,θ);
    步骤三、测量全眼波像差数据,由Hartmann-Shack波前像差测量仪测得眼底聚焦光斑的阵列的波前数据,使用zernike多项式的模态波前估计重构全眼波前像差,记为Z2(r,θ);
    步骤四、全眼像差与角膜前表面的像差相减即为眼内像差,记为Z3(r,θ)=Z2(r,θ)-Z1(r,θ);
    步骤五、角膜接触镜与角膜作用,看作一体,补偿该眼内像差Z3(r,θ),即角膜接触镜与角膜像差和为-Z3(r,θ);
    步骤六、构建三维波前模型,分割成n*n个波前阵列设为变量,通过蒙托卡罗方法模拟仿真,进行光线追迹,得到-Z3(r,θ)的像差值;
    步骤七、选取最优阵列组合,得到n^2个分割区域的每个波形,记为Pi(r,θ),(i=1,2,…,n^2);
    步骤八、设计角膜接触镜相对应区域的微透镜结构,使光波经过角膜塑形镜和角膜后在此区域形成相应波形,输出微透镜结构分布为最终结果。
  2. 如权利要求1所述的一种角膜接触镜的设计方法,其特征在于,所述步骤一中,表面数据由角膜地形图仪,Scheimpflug原理或OCT原理三维成像设备获取。
PCT/CN2021/095682 2020-12-14 2021-05-25 一种角膜接触镜的设计方法 WO2022127030A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011464484.7A CN112415774A (zh) 2020-12-14 2020-12-14 一种角膜接触镜的设计方法
CN202011464484.7 2020-12-14

Publications (1)

Publication Number Publication Date
WO2022127030A1 true WO2022127030A1 (zh) 2022-06-23

Family

ID=74775544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/095682 WO2022127030A1 (zh) 2020-12-14 2021-05-25 一种角膜接触镜的设计方法

Country Status (2)

Country Link
CN (1) CN112415774A (zh)
WO (1) WO2022127030A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112415774A (zh) * 2020-12-14 2021-02-26 上海美沃精密仪器股份有限公司 一种角膜接触镜的设计方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1320026A (zh) * 1999-08-11 2001-10-31 阿斯科莱平医疗技术股份公司 完全矫正人眼视力缺陷的方法和装置
CN101140357A (zh) * 2006-09-05 2008-03-12 南开大学 基于个性化人眼模型的角膜接触镜的设计
CN101957502A (zh) * 2010-08-31 2011-01-26 吉林大学 个性化角膜接触镜的设计方法
US20110270596A1 (en) * 2010-04-30 2011-11-03 Amo Regional Holdings Apparatus, System and Method for Predictive Modeling to Design, Evaluate and Optimize Ophthalmic Lenses
CN104955633A (zh) * 2012-12-14 2015-09-30 科罗拉多大学董事会 制造像差校正梯度折射率透镜的系统和方法
CN112415774A (zh) * 2020-12-14 2021-02-26 上海美沃精密仪器股份有限公司 一种角膜接触镜的设计方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6086204A (en) * 1999-09-20 2000-07-11 Magnante; Peter C. Methods and devices to design and fabricate surfaces on contact lenses and on corneal tissue that correct the eye's optical aberrations
FR2798744B1 (fr) * 1999-09-22 2002-04-05 Essilor Int Procede pour determiner la forme d'une lentille de contact ophtalmique de correction des aberrations optiques de l'oeil au-dela de la defocalisation ou de l'astigmatisme et dispositif pour la mise en oeuvre de ce procede
SE0004829D0 (sv) * 2000-12-22 2000-12-22 Pharmacia Groningen Bv Methods of obtaining ophthalmic lenses providing the eye with reduced aberrations
US7703919B2 (en) * 2003-03-28 2010-04-27 Digital Vision, Llc Application of neuro-ocular wavefront data in vision correction
AT507254B1 (de) * 2008-09-09 2010-06-15 Fiala Werner Linse mit unabhängigen nichtinterferierenden teilzonen
CN102129132B (zh) * 2011-03-29 2012-05-30 南开大学 基于波前技术的角膜接触镜制作方法
AU2012385282B2 (en) * 2012-07-10 2016-04-14 Alcon Inc. Process and apparatus for determining optical aberrations of an eye
EP3273292A1 (de) * 2016-07-19 2018-01-24 Carl Zeiss Vision International GmbH Brillenglas und verfahren zu dessen herstellung
CN109661684B (zh) * 2016-09-06 2023-03-28 维塔医疗股份公司 用于现实交互式超声模拟的射线追踪方法
CN109031696B (zh) * 2018-08-20 2020-06-05 赵佩韬 基于周边微透镜的视力控制镜片及眼镜
CN109512380A (zh) * 2018-11-02 2019-03-26 爱尔眼科医院集团股份有限公司 基于波前传感技术制作全视网膜屈光地形图的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1320026A (zh) * 1999-08-11 2001-10-31 阿斯科莱平医疗技术股份公司 完全矫正人眼视力缺陷的方法和装置
CN101140357A (zh) * 2006-09-05 2008-03-12 南开大学 基于个性化人眼模型的角膜接触镜的设计
US20110270596A1 (en) * 2010-04-30 2011-11-03 Amo Regional Holdings Apparatus, System and Method for Predictive Modeling to Design, Evaluate and Optimize Ophthalmic Lenses
CN101957502A (zh) * 2010-08-31 2011-01-26 吉林大学 个性化角膜接触镜的设计方法
CN104955633A (zh) * 2012-12-14 2015-09-30 科罗拉多大学董事会 制造像差校正梯度折射率透镜的系统和方法
CN112415774A (zh) * 2020-12-14 2021-02-26 上海美沃精密仪器股份有限公司 一种角膜接触镜的设计方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
QU, JUNYUE: "High-order Aberration in Eyes of Young Adults with Myopia Measuring by iTrace Visual Function Analyzer", COLLECTION OF MASTER'S THESIS OF SHANDONG UNIVERSITY, 1 May 2008 (2008-05-01), pages 1 - 52, XP055943668 *
SHUI-QING YU ,HAI-PING XU ,JIA QU: "Analysis on the Principle and Characteristics of Four Clinical Aberrometers", INTERNATIONAL JOURNAL OF OPHTHALMOLOGY, vol. 11, no. 5, 25 May 2011 (2011-05-25), pages 830 - 833, XP055943680, ISSN: 1672-5123 *
WANG WEIMIN: "Analysis of Correlation between Wavefront Aberration and Objective Accommodation in Normal Human Eyes", COLLECTION OF MASTER'S THESIS OF YANBIAN UNIVERSITY, 19 May 2018 (2018-05-19), pages 1 - 56, XP055943673 *

Also Published As

Publication number Publication date
CN112415774A (zh) 2021-02-26

Similar Documents

Publication Publication Date Title
US6585375B2 (en) Method for producing an artificial ocular lense
US7887531B2 (en) Excimer laser unit and relative control method for performing cornea ablation to reduce presbyopia
Artal et al. The human eye is an example of robust optical design
JP5977447B2 (ja) 眼球の光学収差を決定するための方法と装置
Dorronsoro et al. On-eye measurement of optical performance of rigid gas permeable contact lenses based on ocular and corneal aberrometry
US20060279699A1 (en) Wavefront fusion algorithms for refractive vision correction and vision diagnosis
US11561413B2 (en) Population of an eye model using measurement data in order to optimize spectacle lenses
Dubbelman et al. The contribution of the posterior surface to the coma aberration of the human cornea
Tan et al. How keratoconus influences optical performance of the eye
WO2022127030A1 (zh) 一种角膜接触镜的设计方法
JP6093695B2 (ja) 眼内レンズの設計方法及び眼内レンズ
KR101063989B1 (ko) 정밀 유한 노안 모형안
Dunne A computing scheme for determination of retinal contour from peripheral refraction, keratometry and A‐scan ultrasonography
US10613347B2 (en) Population of an eye model for optimizing spectacle lenses with measurement data
CN113197543B (zh) 基于矢量像差理论的屈光手术后视觉质量评价方法和系统
Vilaseca et al. Optics of astigmatism and retinal image quality
Applegate et al. Allowable movement of wavefront‐guided contact lens corrections in normal and keratoconic eyes
Li et al. A method to design aspheric spectacles for correction of high-order aberrations of human eye
Wang et al. An Improved Schematic Human Eye Model for Human Vision Simulation
Thall Wavefront Optics and Aberrations of the Eye
JP2023079665A (ja) コンタクトレンズ、およびコンタクトレンズの設計方法
Fraser et al. Wavefront Aberrations in Subjects Wearing Soft Aspheric Contact Lenses and Those Wearing Spherical Ones
ES2253951B1 (es) Sistema para el diseño de patrones de foto-ablacion corneal personalizados, patron obtenido y sistema de cirugia laser para tallado de la cornea.
Tan et al. How keratoconus influences
Gupta et al. Corneal topography and wavefront sensing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21904965

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21904965

Country of ref document: EP

Kind code of ref document: A1