WO2022127026A1 - 一种小型高速风机 - Google Patents

一种小型高速风机 Download PDF

Info

Publication number
WO2022127026A1
WO2022127026A1 PCT/CN2021/094807 CN2021094807W WO2022127026A1 WO 2022127026 A1 WO2022127026 A1 WO 2022127026A1 CN 2021094807 W CN2021094807 W CN 2021094807W WO 2022127026 A1 WO2022127026 A1 WO 2022127026A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
casing
motor
speed fan
small high
Prior art date
Application number
PCT/CN2021/094807
Other languages
English (en)
French (fr)
Inventor
张震坚
庞广陆
Original Assignee
稻津电机(珠海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202023037935.7U external-priority patent/CN214036195U/zh
Priority claimed from CN202011490610.6A external-priority patent/CN112524066A/zh
Priority claimed from CN202120993776.3U external-priority patent/CN215444468U/zh
Application filed by 稻津电机(珠海)有限公司 filed Critical 稻津电机(珠海)有限公司
Publication of WO2022127026A1 publication Critical patent/WO2022127026A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • H02K9/06Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium with fans or impellers driven by the machine shaft

Definitions

  • the invention belongs to the technical field of fans, in particular to a small high-speed fan.
  • the iron core of the high-speed fan adopts an overall cylindrical silicon steel laminated iron core, and the iron core is 6 In the slot or 3-slot form, the winding occupancy rate of the iron core is low, which leads to the large size of the high-speed fan in order to achieve certain performances.
  • the high-speed fan has a large volume.
  • high-speed fans are prone to power and load mismatches, coupled with improper design of cooling runners, the cooling effect of the winding part of the motor is poor. Lead to high-speed fan temperature rise, low efficiency.
  • the preloading method of the bearing is mostly the use of spring constant pressure preloading. This method will lead to poor consistency and poor stability of the bearing preload due to the individual differences of the spring and the diversity of the force load.
  • the tolerance of the preload force is large. If the preload force is too large, the bearing will be fatigued and worn, the noise will be high, the heat will be large, and the service life will be short.
  • the object of the present invention is to overcome the deficiencies of the above-mentioned prior art, and to provide a small high-speed fan, which solves the problems of large volume and poor heat dissipation effect of the high-speed fan in the prior art, and overcomes the high temperature rise, low efficiency, and pre-heating effect of the high-speed fan in the prior art. Tight way unreliable defect.
  • the invention provides a small high-speed fan, including a casing, a fan blade, a motor and a bearing assembly, the casing is respectively provided with a front end and a rear end along the direction of its central axis from front to back, and the motor is fixed to the rear end of the casing , the motor is connected to the fan blade through its output shaft, the fan blade is arranged coaxially with the casing, the fan blade is set at the front end of the casing, and the motor output shaft is connected to the casing through a bearing assembly
  • the bearing assembly and the housing are provided with several heat dissipation channels, the bearing assembly includes at least two bearings, and the adjacent bearings are connected by a receiving part.
  • the inner wall of the housing is provided with several air guiding structures, the air guiding structures are arranged in an annular array along the central axis of the bearing, and the two adjacent air guiding structures are connected to the inner wall of the housing, The space enclosed between the outer walls of the bearing forms a heat dissipation channel.
  • the outer wall of the bearing is provided with several air guide structures, the air guide structures are arranged in an annular array along the central axis of the bearing, and the two adjacent air guide structures are connected to the inner wall of the housing, The space enclosed between the outer walls of the bearing forms a heat dissipation channel.
  • the air guide structure has a fan-shaped surface structure.
  • the housing includes a connecting shell and an air duct shell, the connecting shell is used for connecting the bearing, and a ventilation duct is provided between the connecting shell and the air duct shell.
  • the motor is fixed to the lower part of the connecting shell, the bearing is connected to the upper part of the connecting shell, and the heat dissipation channel is connected to the air passage of the motor.
  • the motor includes a stator, a magnetic ring and an output shaft, the magnetic ring is connected to the output shaft, the magnetic ring is arranged in the stator, the stator is fixed on the connection shell, the The stator is a six-slot stator, and the magnetic ring is a two-pole magnetic ring.
  • the six-slot stator includes an in-line six-slot iron core, and the in-line six-slot iron core forms a full circle shape.
  • the housing and heat dissipation channel are made of a zinc alloy material.
  • the housing and heat dissipation channel are made of aluminum silicon carbide composite material.
  • the bearing assembly includes a first bearing and a second bearing, and the receiving portion abuts the outer wheels of the first bearing and the second bearing, respectively.
  • the bearing portion is a bushing
  • the outer diameter of the bushing is the same as the outer diameter of the outer wheels of the first bearing and the second bearing, the first bearing, the second bearing and the bushing are respectively In close contact with the inner wall of the casing.
  • the receiving portion is integrally formed with the housing, the receiving portion is an annular boss on the inner wall of the housing, and the upper and lower end surfaces of the annular boss are respectively connected to the outer wheels of the first bearing and the second bearing. Abut.
  • the invention provides a small high-speed fan.
  • Several heat dissipation channels are arranged between the bearing and the casing. The front end and the rear end of the casing are connected by the heat dissipation passages.
  • a flowing air flow field is formed between the front end and the rear end of the motor through the heat dissipation channel, and the motor at the rear end is between the flowing air flow field; it is only necessary to reduce the diameter of the output shaft or bearing, or slightly increase the housing and bearing.
  • the diameter of the connection can provide space for the heat dissipation channel.
  • This heat dissipation channel is cleverly designed and occupies a small space, which further reduces the weight of the fan.
  • the high-speed fan not only retains the small size, but also improves the heat dissipation effect. good, low temperature rise, high efficiency.
  • the output shaft of the motor is connected to the housing through a bearing assembly
  • the bearing assembly includes at least two bearings and a bearing part for connecting the bearings, and a pre-tightening force is applied to the adjacent two bearings through the bearing part
  • the bearing part can be an independent bushing Or an annular boss formed integrally with the housing, through this external preloading method, the consistency of the bearing preloading force is improved, the preloading force tolerance is reduced, and the service life is increased.
  • FIG. 1 is a schematic diagram of the internal structure of a small high-speed fan disclosed in the present invention.
  • FIG. 2 is a schematic structural diagram of a small high-speed fan disclosed in the present invention in a state where the casing and the bearing are installed.
  • FIG 3 is a structural half-sectional view of a small high-speed fan disclosed by the present invention in a state where the casing and the bearing are installed.
  • FIG. 4 is a schematic structural diagram of the in-line six-slot iron core in a motor of a small high-speed fan disclosed in the present invention after synthesizing a full circle shape.
  • FIG. 5 is a schematic structural diagram of an inline six-slot iron core in a motor of a small high-speed fan disclosed in the present invention.
  • FIG. 6 is a partial cross-sectional structural schematic diagram of a small high-speed fan disclosed in the present invention.
  • FIG. 7 is a schematic structural diagram of a bearing assembly in a small high-speed fan provided in Embodiment 1 under an installed state.
  • FIG. 8 is a schematic structural diagram of a bearing assembly in a small high-speed fan provided in Embodiment 1.
  • FIG. 8 is a schematic structural diagram of a bearing assembly in a small high-speed fan provided in Embodiment 1.
  • FIG. 9 is a schematic structural diagram of a bearing in a small high-speed fan disclosed in the present invention.
  • FIG. 10 is a schematic structural diagram of a bearing in a small high-speed fan provided in Embodiment 2.
  • FIG. 10 is a schematic structural diagram of a bearing in a small high-speed fan provided in Embodiment 2.
  • a small high-speed fan including a housing 1 , a fan blade 2 , a motor 3 and a bearing assembly 4 , and the motor 3 is fixed on the housing 1 At the rear end 5, the motor 3 is connected to the fan blade 2 through its output shaft 34, the fan blade 2 is arranged coaxially with the casing 1, the fan blade 2 is arranged at the front end 6 of the casing 1, and the motor output shaft 34 is connected with the casing 1 through the bearing assembly 4,
  • Several heat dissipation channels 7 are provided between the bearing assembly 4 and the housing 1 , the bearing assembly 4 includes at least two bearings, and the adjacent bearings are connected by a receiving portion.
  • the motor 3 is located at the rear end 5 of the casing 1
  • the fan blade 2 is located at the front end 6 of the casing 1
  • the motor 3 drives the fan blade 2 to rotate, and the rotation of the fan blade 2 forms a flow field.
  • a pressure difference is formed between the front end 6 and the rear end 5 of
  • the output shaft 34 flows through the motor 3 from the gap between the bearing assembly 4 and the housing 1 by the diversion effect of the heat dissipation channel 7, wherein the heat dissipation channel 7 occupies a small space, and the flow field diversion effect is obvious.
  • the heat dissipation effect is good, so that the heat generated by the motor 3 is dissipated in time, the temperature rise of the motor 3 is reduced, and the good running state of the motor 3 is ensured.
  • the airflow direction of the flow field can be blown from the rear end 5 to the front end 6 of the casing 1, or can be blown from the rear end 5 of the casing 1 to the front end 6.
  • the front end 6 of the housing 1 is blown toward the rear end 5, and the two different airflow directions are within the protection scope of this embodiment.
  • the motor output shaft 34 is connected to the housing 1 through the bearing assembly 4, and the bearing assembly 4 includes at least two bearings and Connect the bearing part of the bearing, this bearing part connects two adjacent bearings at the same time, and applies a pre-tightening force to the bearing.
  • the bearing part has a certain hardness and strength, it will not deform during the operation of the motor 3 and the fan blade 2, ensuring that The stability of the bearing force ensures that the bearing will not be displaced or deformed during operation, so that abnormal vibration and noise will not occur during the transmission process, and the operation reliability and stability will be improved.
  • the housing 1 is provided with a plurality of air guide structures 71 on the inner wall connected to the bearing assembly 4 , and the air guide structures 71 are arranged in an annular array along the central axis of the bearing assembly 4 ,
  • the space enclosed between the two adjacent air guide structures 71 and the inner wall of the casing 1 and the outer wall of the bearing assembly 4 forms a heat dissipation channel 7, that is, the plurality of air guide structures 71 drawn out from the inner wall of the casing 1, the inner wall of the casing 1 and the bearing assembly 4.
  • the gap space between the outer walls is divided into a plurality of heat dissipation channels 7, and the plurality of heat dissipation channels 7 are juxtaposed with each other, so that the air flow blown in from the front end 6 of the housing 1 can be divided into a plurality of heat dissipation air flows, which flow through the rear end 5 side by side respectively.
  • the bearing assembly 4 is provided with a number of air guide structures 71 on its outer wall, and the air guide structures 71 are arranged in an annular array along the central axis of the bearing assembly 4. Two adjacent air guide structures 71 are connected to the housing. 1.
  • the space enclosed between the inner wall and the outer wall of the bearing assembly 4 forms a heat dissipation channel 7, that is, a plurality of air guide structures 71 drawn out from the outer wall of the bearing assembly 4 to divide the gap space between the inner wall of the housing 1 and the outer wall of the bearing assembly 4 into multiple parts.
  • the plurality of cooling channels 7 are juxtaposed with each other, so that the airflow blown from the front end 6 of the housing 1 can be divided into multiple cooling airflows, which are blown to the motor 3 located at the rear end 5 in parallel.
  • the air guide structure 71 can be set in the form of raised ribs or in the form of heat dissipation circular holes according to actual needs, as long as a heat dissipation channel can be formed, connecting the front end 6 and the rear end of the housing 1 5. No matter what kind of structure the wind guide structure 71 is, it is within the protection scope of this embodiment.
  • the wind guide structure 71 regardless of whether the wind guide structure 71 is arranged on the inner wall of the housing 1 or the outer wall of the bearing assembly 4, its function is the same. More specifically, when the wind guide structure 71 is in the form of a raised rib, the raised rib is The fan-shaped surface structure, in the shape of a curved arc, cooperates with the rotation of the front end 6 of the casing 1 and the fan blades 2 to make the air flow more smoothly and evenly through the rear end 5 of the casing 1, so as to better dissipate heat for the motor 3 and improve the heat dissipation effect.
  • the housing 1 includes a connecting shell 11 and an air duct shell 12 , the connecting shell 11 is used to connect the bearing assembly 4 , and a ventilation duct 13 is provided between the connecting shell 11 and the air duct shell 12 , there is a gap between the connection shell 11 and the air duct shell 12, and a plurality of ventilation air ducts 13 are formed in this gap, and the airflow formed by the rotation of the fan blade 2 flows through the rear end 5 through this ventilation duct.
  • the ventilation channels are in the form of one inside and one outside, and dissipate heat to the inside and the outside of the motor 3 respectively.
  • the motor 3 is fixed to the lower part of the connecting shell 11, the bearing assembly 4 is connected to the upper part of the connecting shell 11, and the heat dissipation channel 7 is connected with the air channel of the motor 3; the upper part of the connecting shell 11 is also provided with a heat dissipation channel 7, and the heat dissipation channel 7 and
  • the interior of the motor 3 is connected through the air passage, and only a part of the outer surface of the motor 3 is connected and fixed with the lower part of the connection shell 11, and a part of the outer surface of the motor 3 is exposed outside the lower part of the connection shell 11, and the outer surface of the motor 3 of this part is ventilated.
  • the air blown by the air duct 13 is heat-exchanged to realize multi-dimensional heat dissipation of the motor 3 .
  • the motor 3 includes a stator 31 , a magnetic ring 32 and an output shaft 34 , the magnetic ring 32 is connected to the output shaft 34 , the magnetic ring 32 is set in the stator 31 , and the stator 31 It is fixed to the connecting shell 11, and the stator 31 is energized to drive the magnetic ring 32 in it to rotate, thereby driving the output shaft 34 and the fan blade 2 to rotate.
  • the stator 31 is a six-slot stator
  • the magnetic ring 32 is a two-pole magnetic ring 32, which can improve the uniformity of force between the stator 31 and the magnetic ring 32 in a small space. The operating state of the high-speed fan has been further improved.
  • the six-slot stator includes an in-line six-slot iron core 33 .
  • the in-line six-slot iron core 33 is wound, it is formed into a full circle shape and then matched with the housing 1 .
  • the housing 1 and the heat dissipation channel 7 are made of zinc alloy material.
  • the housing 1 and the heat dissipation channel 7 are made of aluminum silicon carbide composite material, and similarly, the aluminum silicon carbide composite material is used for its light weight, good heat dissipation, and high strength.
  • the bearing part is an independent bushing 43
  • the bearing assembly 4 includes a first bearing 41 and a second bearing 42 , the first bearing 41 and the first bearing Both of the two bearings 42 have an inner wheel 45 and an outer wheel 44.
  • the inner wheel 45 and the outer wheel 44 are connected by balls 46.
  • the shaft sleeve 43 abuts the outer wheel 44 of the first bearing 41 and the second bearing 42 respectively, and the shaft sleeve 43 is in the shape of an oval.
  • the outer ring 44 of the first bearing 41 and the second bearing 42 abuts on the upper and lower ends, respectively.
  • the outer diameter of the shaft sleeve 43 is the same as the outer diameter of the outer wheels 44 of the first bearing 41 and the second bearing 42, that is, the outer surfaces of the shaft sleeve 43, the first bearing 41 and the second bearing 42 are a smooth plane , the first bearing 41, the second bearing 42 and the shaft sleeve 43 are in close contact with the inner wall of the casing respectively, and the three outer surfaces are all closely connected with the inner wall to improve stability.
  • the bearing assembly 4 further includes a pre-tightening device, the pre-tightening device is fixed on the motor output shaft 34, the pre-tightening device is in contact with the inner wheel 45 of the first bearing 41 and/or the second bearing 42, and exerts a force along the output shaft of the motor.
  • the preloading force in the direction of the shaft 34 that is, when the bearing outer wheel 44 has been preloaded by the shaft sleeve 43, the preloading device also applies a preloading force to the inner wheel 45, and the direction of this preloading force is towards the other bearing.
  • the preload force of the inner wheel 45 of the first bearing 41 is in the direction of the second bearing 42, so that a fixed preload force is formed between the inner and outer wheels of the bearing depending on the contact angle of the ball 46 to ensure that the bearing runs at high speed. Offset and vibration will not occur under the system, which improves the operation stability and reliability of the system.
  • the bearing assembly 4 includes a first bearing 41 and a second bearing 42, the upper and lower ends of the shaft sleeve are respectively provided with limit buckles, and the first bearing 41 and the second bearing 42 are respectively engaged with the limit buckles Inside, the outer wall of the shaft sleeve is in close contact with the inner wall of the housing.
  • the shaft sleeve wraps the first bearing 41 and the second bearing 42 respectively, and they are fixed by the limit buckles in the shaft sleeve.
  • the inner wheel 45 is connected with the motor output shaft 34, and the outer wheel 44 is connected with the inner wall of the shaft sleeve, so that the entire bearing assembly forms a whole, the first bearing 41, Both the second bearing 42 and the shaft sleeve are fixed together and have good structural stability.
  • the limit buckle is provided with an inclined undercut portion, and the undercut portion abuts against the inner wheel 45 of the first bearing 41 and/or the second bearing 42 and applies a pre-tightening force along the direction of the motor output shaft 34,
  • the undercut portion is more inward than the limit buckle at the outermost edge, that is, after the limit buckle is stuck at the end of the outer wheel 44 of the bearing, it extends the distance at one end, and then extends inwardly out of the inverted buckle.
  • the buckle part, the undercut part is in contact with the inner wheel 45, so that the inner wheel 45 is subjected to a pre-tightening force.
  • the direction of the pre-tightening force is the direction of the other bearing, that is, the inner wheel 45 of the first bearing 41.
  • the pre-tightening force is in the direction of the second bearing 42, so that a fixed pre-tightening force is formed between the inner and outer wheels of the bearing by the contact angle of the ball 46, so as to ensure that the bearing will not be offset and vibrated under high-speed operation, and improve the system operational stability and reliability.
  • the receiving portion is an annular boss 47 integrally formed with the housing.
  • the annular boss 47 is arranged at the inner wall of the housing 1 and extends toward the axis.
  • the upper and lower portions of the annular boss 47 The two end faces abut the outer wheels 44 of the first bearing 41 and the second bearing 42 respectively.
  • the annular boss 47 plays the same role as the shaft sleeve 43, including its combination with the preloading device. The specific structure can be adjusted accordingly, and will not be repeated here.
  • the present invention provides a small high-speed fan.
  • a number of heat dissipation channels 7 are arranged between the bearing assembly 4 and the casing 1.
  • the heat dissipation channels 7 are used to communicate the front end 6 and the rear end 5 of the casing 1.
  • the pressure difference formed by the rotation of the fan blades 2 of 6 makes a flowing air flow field formed between the front end 6 and the rear end 5 of the casing 1 through the heat dissipation channel 7, and the motor 3 of the rear end 5 is located in the flowing air flow field.
  • the heat dissipation channel 7 is ingeniously designed, so It occupies a small space and further reduces the weight of the fan.
  • the high-speed fan not only retains the small size, but also improves the heat dissipation effect. It has the characteristics of small size, good heat dissipation, low temperature rise and high efficiency.
  • the motor output shaft 34 is connected to the housing 1 through the bearing assembly 4, and the bearing assembly 4 includes at least two bearings and a bearing part for connecting the bearings, and a pre-tightening force is applied to the adjacent two bearings through the bearing part, wherein the bearing part can be
  • the independent shaft sleeve 43 or the annular boss 47 integrally formed with the housing 1 can improve the consistency of the bearing preload force, reduce the preload force tolerance and improve the service life through this external preload method.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种小型高速风机,包括外壳(1)、风叶(2)、电机(3)和轴承组件(4),电机(3)固定于外壳(1)的后端(5),电机(3)通过输出轴(34)连接风叶(2),风叶(2)与外壳(1)同轴设置,风叶(2)设于外壳(1)的前端(6),电机输出轴(34)通过轴承组件(4)与外壳(1)连接,轴承组件(4)与外壳(1)之间设有若干个散热通道(7),轴承组件(4)包括至少两个轴承,相邻轴承之间通过承接部连接。在轴承与外壳之间设有若干个散热通道用于冷却电机,保持小体积的同时提升散热效果;通过承接部对相邻两个轴承施加预紧力,提高轴承预紧力的一致性。

Description

一种小型高速风机 技术领域
本发明属于风机技术领域,尤其涉及一种小型高速风机。
背景技术
目前在高速风机领域,存在外形尺寸大、体积大、散热效果差的问题,主要因为在现有技术中,高速风机的铁芯采用整体圆柱状的硅钢叠层的铁芯,此铁芯为6槽或3槽形式,铁芯的绕组占积率较低,导致高速风机为了达到某几项性能而外形尺寸较大,例如为了提高流量和功率,造成高速风机体积较大。且由于缺乏对叶轮、流道等与气流流体相关的设计理论知识及设计经验,高速风机容易发生动力与负载不匹配,再加上散热流道设计不当,电机卷线部分的散热效果差,最终导致高速风机温升高、效率低。
另外的,在高速风机中随着电机转速的提高,且风叶等相关零件的体积增大,对电机的运行状态稳定性也提出了更高的要求,由于目前电机输出轴与外壳之间通过轴承实现连接,而轴承的预紧方式大多为使用弹簧定压预紧,这种方式会由于弹簧的个体差异性、受力载荷的多样性等原因,导致轴承预紧力一致性差,稳定性差,且预紧力的公差较大,如预紧力过大会造成轴承疲劳磨损、噪音大、发热大且寿命短,预紧力过小又会导致转子刚性不足,容易产生振动、噪音等不良。
因此,亟需一种在体积上保留小型优势,散热效果好,且在高速下还能保持预紧可靠,运行稳定的高速风机。
发明内容
本发明的目的在于克服上述现有技术存在的不足,提供一种小型高速风机,解决了现有技术中高速风机体积大且散热效果差的问题,克服了高速风机温升高、效率低、预紧方式不可靠的缺陷。
本发明提供一种小型高速风机,包括外壳、风叶、电机和轴承组件,所述外壳沿其中心轴线方向从前至后分别设有前端和后端,所述电机固定于所述外壳的后端,所述电机通过其输出轴连接所述风叶,所述风叶与所述外壳同轴设置,所述风叶设于所述外壳的前端,所述电机输出轴通过轴承组件与所述外壳连接,所述轴承组件与所述外壳之间设有若干个散热通道,所述轴承组件包括至少两个轴承,所述相邻轴承之间通过一承接部连接。
在一些实施例中,所述外壳的内壁设有若干个导风结构,所述导风结构沿着所述轴承的中心轴线呈环形阵列设置,所述相邻两个导风结构与外壳内壁、轴承外壁之间所围空间形成散热通道。
在一些实施例中,所述轴承的外壁设有若干个导风结构,所述导风结构沿着所述轴承的中心轴线呈环形阵列设置,所述相邻两个导风结构与外壳内壁、轴承外壁之间所围空间形成散热通道。
在一些实施例中,所述导风结构呈扇形面结构。
在一些实施例中,所述外壳包括连接壳和风道壳,所述连接壳用于连接所述轴承,所述连接壳与风道壳之间设有通风风道。
在一些实施例中,所述电机固定于所述连接壳的下部,所述轴承连接于所述连接壳的上部,所述散热通道与所述电机气道连接。
在一些实施例中,所述电机包括定子、磁环和输出轴,所述磁环与输出轴连接,所述磁环设于所述定子内,所述定子固定于所述连接壳,所述定子为六槽定子,所述磁环为两极磁环。
在一些实施例中,所述六槽定子包括直列六槽铁芯,所述直列六槽铁芯合成整圆形状。
在一些实施例中,所述外壳和散热通道由锌合金材料制成。
在一些实施例中,所述外壳和散热通道由铝碳化硅复合材料制成。
在一些实施例中,所述轴承组件包括第一轴承和第二轴承,所述承接部分别抵接所述第一轴承和第二轴承的外轮。
在一些实施例中,所述承接部为轴套,所述轴套的外径与所述第一轴承和第二轴承的外轮外径相同,所述第一轴承、第二轴承和轴套分别与所述外壳内壁紧密接触。
在一些实施例中,所述承接部与所述外壳一体成型,所述承接部为外壳内壁上的环形凸台,所述环形凸台的上下两端面分别与第一轴承、第二轴承的外轮抵接。
本发明的有益效果:
本发明提供一种小型高速风机,在轴承与所述外壳之间设有若干个散热通道,利用散热通道连通外壳的前端和后端,通过位于前端的风叶转动所形成的压力差,使外壳的前端和后端之间经由散热通道形成了流动的气流流场,后端的电机处于此流动的气流流场之间;只需减小输出轴或者轴承的直径,又或者稍微加大外壳与轴承连接处的直径,即可为散热通道提供设置空间,此散热通道设计巧妙,所占空间小,进一步减轻风机重量,高速风机既保留小型的外形尺寸,又提升了散热效果,具有尺寸小、散热好、温升低、效率高的特点。
电机输出轴通过轴承组件与外壳连接,轴承组件中包括至少两个轴承和用于连接轴承的承接部,通过承接部对相邻两个轴承施加预紧力,其中承接部可以为独立的轴套或者与外壳一体成型的环形凸台,通过这种外部预紧方式提高 轴承预紧力的一致性,降低预紧力公差,提高使用寿命。
附图说明
利用附图对本发明作进一步说明,但附图中的实施例不构成对本发明的任何限制,对于本领域的普通技术人员,在不付出创造性劳动的前提下,还可以根据以下附图获得其它的附图。
图1是本发明公开的一种小型高速风机的内部结构示意图。
图2是本发明公开的一种小型高速风机中外壳与轴承安装状态下的结构示意图。
图3是本发明公开的一种小型高速风机中外壳与轴承安装状态下的结构半剖视图。
图4是本发明公开的一种小型高速风机的电机中直列六槽铁芯合成整圆形状后的结构示意图。
图5是本发明公开的一种小型高速风机的电机中直列六槽铁芯的结构示意图。
图6是本发明公开的一种小型高速风机的部分剖面结构示意图。
图7是本实施例1提供的一种小型高速风机中轴承组件安装状态下的结构示意图。
图8是本实施例1提供的一种小型高速风机中轴承组件的结构示意图。
图9是本发明公开的一种小型高速风机中轴承的结构示意图。
图10是本实施例2提供的一种小型高速风机中轴承的结构示意图。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实 施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
参照图1、图2、图3和图6,在本公开的实施例中提供了一种小型高速风机,包括外壳1、风叶2、电机3和轴承组件4,电机3固定于外壳1的后端5,电机3通过其输出轴34连接风叶2,风叶2与外壳1同轴设置,风叶2设于外壳1的前端6,电机输出轴34通过轴承组件4与外壳1连接,轴承组件4与外壳1之间设有若干个散热通道7,所述轴承组件4包括至少两个轴承,所述相邻轴承之间通过一承接部连接。
需要说明的是,电机3位于外壳1的后端5,风叶2位于外壳1的前端6,电机3驱动风叶2转动,由于风叶2转动形成流场,当空气被带动起来,在外壳1的前端6和后端5之间形成压力差,在此压力差的作用下,有部分气流会经过散热通道7,此散热通道7设在轴承组件4与外壳1之间,即气流沿着输出轴34,从轴承组件4与外壳1之间的间隙处,受到散热通道7的导流作用流经电机3,其中散热通道7所占空间小,且流场导流作用明显,电机3的散热效果好,使得电机3所产生的热量得到及时的散发,降低电机3温升,保证电机3的良好运行状态。
另外地,在风叶2的转动下,由于压力差所造成的流场,根据风叶2的叶 型不同,流场气流流动方向可以从外壳1的后端5吹向前端6,也可以从外壳1的前端6吹向后端5,两种不同的气流方向均在本实施例的保护范围内。
更具体地,为了提高高速风机的运行稳定性,改善轴承的受力情况,在本实施例中电机输出轴34通过轴承组件4与外壳1连接,轴承组件4中包括至少两个轴承和用于连接轴承的承接部,此承接部同时连接相邻的两个轴承,并对轴承施加预紧力,由于承接部具有一定硬度强度,在电机3和风叶2运行过程中不会发生形变,保证了轴承受力的稳定性,使得轴承在运行过程中不发生位移或者形变,使得传动过程不发生异常振动和噪音,提高运行可靠性和稳定性。
参照图2至图3,作为一种实施方式,外壳1在与轴承组件4连接的内壁上设有若干个导风结构71,导风结构71沿着轴承组件4的中心轴线呈环形阵列设置,相邻两个导风结构71与外壳1内壁、轴承组件4外壁之间所围空间形成散热通道7,即在外壳1内壁处引出的多个导风结构71,将外壳1内壁和轴承组件4外壁之间的间隙空间分割成多个散热通道7,此多个散热通道7相互并列,以便从外壳1前端6吹入的气流可以分割成多股散热气流,分别并列地流经位于后端5的电机3。
作为另一种实施方式,轴承组件4在其外壁上设有若干个导风结构71,导风结构71沿着轴承组件4的中心轴线呈环形阵列设置,相邻两个导风结构71与外壳1内壁、轴承组件4外壁之间所围空间形成散热通道7,即在轴承组件4外壁处引出的多个导风结构71,将外壳1内壁和轴承组件4外壁之间的间隙空间分割成多个散热通道7,此多个散热通道7相互并列,以便从外壳1前端6吹入的气流可以分割成多股散热气流,分别并列地向位于后端5的电机3吹去。
需要说明的是,此导风结构71根据实际需要,可设置为凸起肋条的结构形式,也可以设置为散热圆孔的结构形式,只要能形成散热通道,连通外壳1的 前端6和后端5,不管导风结构71为何种结构形式,均在本实施例的保护范围内。
另外地,无论导风结构71设置在外壳1内壁上还是轴承组件4外壁上,其作用均相同,更具体地,当导风结构71为凸起肋条的结构形式时,此凸起的肋条呈扇形面结构,呈弯曲弧形状,配合外壳1前端6风叶2的转动,将气流更流畅均匀地流经外壳1后端5,更好地为电机3散热,提升散热效果。
参照图1至图3,在本实施例中,外壳1包括连接壳11和风道壳12,连接壳11用于连接轴承组件4,连接壳11与风道壳12之间设有通风风道13,连接壳11和风道壳12存在间隙,在此间隙中形成多个通风风道13,由风叶2转动所形成的气流,经过此通风通道流经后端5,同时地,散热通道7和通风通道呈一内一外的形式,分别对电机3的内部和外表进行散热。
优选地,电机3固定于连接壳11的下部,轴承组件4连接于连接壳11的上部,散热通道7与电机3气道连接;连接壳11的上部同样设有散热通道7,散热通道7与电机3的内部通过气道连接,且电机3的外表只有一部分与连接壳11的下部连接固定,电机3还有一部分的外表是裸露于连接壳11下部之外,这部分的电机3外表通过通风风道13所吹出的风进行换热,实现电机3多维度的散热。
参照图1、图4和图5,在本实施例中,电机3包括定子31、磁环32和输出轴34,磁环32与输出轴34连接,磁环32设于定子31内,定子31固定于连接壳11,通过给定子31通电,驱动其内的磁环32作旋转运动,进而带动输出轴34和风叶2转动,其中为了解决磁场受力不均所引起的噪音和振动问题,定子31为六槽定子,磁环32为两极磁环32,实现了在小空间情况下,改善定子31和磁环32之间的受力均匀性,再配合散热通道7和通风风道13,使高速风 机的运行状态得到进一步提升。
优选地,六槽定子包括直列六槽铁芯33,直列六槽铁芯33在完成绕线后,合成整圆形状,再与外壳1配合。
作为一种优选方式,外壳1和散热通道7由锌合金材料制成。
作为另一种优选方式,外壳1和散热通道7由铝碳化硅复合材料制成,同样地,利用铝碳化硅复合材料材质轻、散热好、强度高的特点。
在本实施例中,对于轴承组件中轴承和承接部的结构形式,可以分为以下两种实施方式。
实施例1:
在本实施例1中,承接部为独立存在的轴套43,参照图6至图9,作为一种实施方式,轴承组件4包括第一轴承41和第二轴承42,第一轴承41和第二轴承42均具有内轮45和外轮44,内轮45和外轮44之间通过滚珠46实现连接,轴套43分别抵接第一轴承41和第二轴承42的外轮44,轴套43呈长圆环状,分别在上下两端抵接第一轴承41和第二轴承42的外轮44。
优选地,轴套43的外径与第一轴承41和第二轴承42的外轮44外径相同,即轴套43、第一轴承41和第二轴承42三者的外表面是一个圆滑的平面,第一轴承41、第二轴承42和轴套43分别与外壳内壁紧密接触,三个外表面都与内壁紧密连接,提高稳定性。
优选地,轴承组件4还包括预紧装置,预紧装置固定于电机输出轴34上,预紧装置与第一轴承41和/或第二轴承42的内轮45抵接、并施加沿电机输出轴34方向的预紧力,即在轴承外轮44已经受到轴套43预紧的作用下,预紧装置还向内轮45施加一个预紧力,此预紧力的方向为向着另一个轴承的方向,即第一轴承41的内轮45预紧力为向着第二轴承42的方向,以此使得轴承内、外轮 之间依靠滚珠46接触角形成一个固定的预紧力,保证轴承在高速运转下不会发生偏移和振动,提高系统的运行稳定性和可靠性。
作为另一种实施方式,轴承组件4包括第一轴承41和第二轴承42,轴套上下两端分别设有限位卡扣,第一轴承41和第二轴承42分别卡接于限位卡扣内,轴套的外壁与外壳内壁紧密接触,在本实施方式中,轴套分别将第一轴承41和第二轴承42包裹于内,都通过轴套中的限位卡扣实现固定,当第一轴承41和第二轴承42卡进限位卡扣内时,其内轮45与电机输出轴34连接,外轮44与轴套的内壁连接,这样整个轴承组件形成一个整体,第一轴承41、第二轴承42和轴套都固定在一起,具有良好的结构稳定性。
优选地,限位卡扣设有倾斜的倒扣部,倒扣部与第一轴承41和/或第二轴承42的内轮45抵接、并施加沿电机输出轴34方向的预紧力,针对轴套而言,此倒扣部比最外沿的限位卡扣更向内拢,即限位卡扣在卡住轴承的外轮44端部后,延长一端距离,再向内延伸出倒扣部,此倒扣部抵接于内轮45,使得内轮45受到一个预紧力,同样地,此预紧力的方向为向着另一个轴承的方向,即第一轴承41的内轮45预紧力为向着第二轴承42的方向,以此使得轴承内、外轮之间依靠滚珠46接触角形成一个固定的预紧力,保证轴承在高速运转下不会发生偏移和振动,提高系统的运行稳定性和可靠性。
实施例2:
在本实施例2中,参照图10,承接部为与外壳一体成型的环形凸台47,此环形凸台47设置在外壳1内壁处,并向着轴心方向延伸,此环形凸台47的上下两端面分别抵接所述第一轴承41和第二轴承42的外轮44,环形凸台47所起的作用与轴套43一样,包括其与预紧装置的结合,也可根据环形凸台47的具体结构作相适应调整,在此不再一一赘述。
相对于现有技术,本发明提供一种小型高速风机,在轴承组件4与外壳1之间设有若干个散热通道7,利用散热通道7连通外壳1的前端6和后端5,通过位于前端6的风叶2转动所形成的压力差,使外壳1的前端6和后端5之间经由散热通道7形成了流动的气流流场,后端5的电机3处于此流动的气流流场之间;只需减小输出轴34或者轴承组件4的直径,又或者稍微加大外壳1与轴承组件4连接处的直径,即可为散热通道7提供设置空间,此散热通道7设计巧妙,所占空间小,进一步减轻风机重量,高速风机既保留小型的外形尺寸,又提升了散热效果,具有尺寸小、散热好、温升低、效率高的特点。
电机输出轴34通过轴承组件4与外壳1连接,轴承组件4中包括至少两个轴承和用于连接轴承的承接部,通过承接部对相邻两个轴承施加预紧力,其中承接部可以为独立的轴套43或者与外壳1一体成型的环形凸台47,通过这种外部预紧方式提高轴承预紧力的一致性,降低预紧力公差,提高使用寿命。
最后需要强调的是,本发明不限于上述实施方式,以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (13)

  1. 一种小型高速风机,其特征在于,包括外壳、风叶、电机和轴承组件,所述外壳沿其中心轴线方向从前至后分别设有前端和后端,所述电机固定于所述外壳的后端,所述电机通过其输出轴连接所述风叶,所述风叶与所述外壳同轴设置,所述风叶设于所述外壳的前端,所述电机输出轴通过轴承组件与所述外壳连接,所述轴承组件与所述外壳之间设有若干个散热通道,所述轴承组件包括至少两个轴承,所述相邻轴承之间通过一承接部连接。
  2. 如权利要求1所述的小型高速风机,其特征在于,所述外壳的内壁设有若干个导风结构,所述导风结构沿着所述轴承的中心轴线呈环形阵列设置,所述相邻两个导风结构与外壳内壁、轴承外壁之间所围空间形成散热通道。
  3. 如权利要求1所述的小型高速风机,其特征在于,所述轴承的外壁设有若干个导风结构,所述导风结构沿着所述轴承的中心轴线呈环形阵列设置,所述相邻两个导风结构与外壳内壁、轴承外壁之间所围空间形成散热通道。
  4. 如权利要求2或3所述的小型高速风机,其特征在于,所述导风结构呈扇形面结构。
  5. 如权利要求4所述的小型高速风机,其特征在于,所述外壳包括连接壳和风道壳,所述连接壳用于连接所述轴承,所述连接壳与风道壳之间设有通风风道。
  6. 如权利要求5所述的小型高速风机,其特征在于,所述电机固定于所述连接壳的下部,所述轴承连接于所述连接壳的上部,所述散热通道与所述电机气道连接。
  7. 如权利要求6所述的小型高速风机,其特征在于,所述电机包括定子、磁环和输出轴,所述磁环与输出轴连接,所述磁环设于所述定子内,所述定子固定于所述连接壳,所述定子为六槽定子,所述磁环为两极磁环。
  8. 如权利要求7所述的小型高速风机,其特征在于,所述六槽定子包括直列六槽铁芯,所述直列六槽铁芯合成整圆形状。
  9. 如权利要求5至8任一项所述的小型高速风机,其特征在于,所述外壳和散热通道由锌合金材料制成。
  10. 如权利要求5至8任一项所述的小型高速风机,其特征在于,所述外壳和散热通道由铝碳化硅复合材料制成。
  11. 如权利要求1至3任一项所述的小型高速风机,其特征在于,所述轴承组件包括第一轴承和第二轴承,所述承接部分别抵接所述第一轴承和第二轴承的外轮。
  12. 如权利要求11所述的小型高速风机,其特征在于,所述承接部为轴套,所述轴套的外径与所述第一轴承和第二轴承的外轮外径相同,所述第一轴承、第二轴承和轴套分别与所述外壳内壁紧密接触。
  13. 如权利要求11所述的小型高速风机,其特征在于,所述承接部与所述外壳一体成型,所述承接部为外壳内壁上的环形凸台,所述环形凸台的上下两端面分别与第一轴承、第二轴承的外轮抵接。
PCT/CN2021/094807 2020-12-15 2021-05-20 一种小型高速风机 WO2022127026A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202023037935.7 2020-12-15
CN202023037935.7U CN214036195U (zh) 2020-12-15 2020-12-15 一种小型高速风机
CN202011490610.6A CN112524066A (zh) 2020-12-15 2020-12-15 一种小型高速风机
CN202011490610.6 2020-12-15
CN202120993776.3U CN215444468U (zh) 2021-05-10 2021-05-10 一种高稳定性风机
CN202120993776.3 2021-05-10

Publications (1)

Publication Number Publication Date
WO2022127026A1 true WO2022127026A1 (zh) 2022-06-23

Family

ID=82060024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/094807 WO2022127026A1 (zh) 2020-12-15 2021-05-20 一种小型高速风机

Country Status (1)

Country Link
WO (1) WO2022127026A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117118132A (zh) * 2023-07-13 2023-11-24 东莞市驰驱电机有限公司 一种三维磁路导磁高速马达

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108512345A (zh) * 2018-03-07 2018-09-07 珠海凯邦电机制造有限公司 轴承组件及具有其的电机
DE102017219087A1 (de) * 2017-10-25 2019-04-25 Vorwerk & Co. Interholding Gmbh Motorlagerung
CN210273736U (zh) * 2019-09-06 2020-04-07 稻津电机(珠海)有限公司 一种高速风机马达
CN211573813U (zh) * 2019-09-27 2020-09-25 陈光喜 一种一体式高速风机
CN111927801A (zh) * 2020-08-18 2020-11-13 昆山祥维电子科技有限公司 一种超高速三相无刷轴流风机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017219087A1 (de) * 2017-10-25 2019-04-25 Vorwerk & Co. Interholding Gmbh Motorlagerung
CN108512345A (zh) * 2018-03-07 2018-09-07 珠海凯邦电机制造有限公司 轴承组件及具有其的电机
CN210273736U (zh) * 2019-09-06 2020-04-07 稻津电机(珠海)有限公司 一种高速风机马达
CN211573813U (zh) * 2019-09-27 2020-09-25 陈光喜 一种一体式高速风机
CN111927801A (zh) * 2020-08-18 2020-11-13 昆山祥维电子科技有限公司 一种超高速三相无刷轴流风机

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117118132A (zh) * 2023-07-13 2023-11-24 东莞市驰驱电机有限公司 一种三维磁路导磁高速马达
CN117118132B (zh) * 2023-07-13 2024-02-23 东莞市驰驱电机有限公司 一种三维磁路导磁高速马达

Similar Documents

Publication Publication Date Title
CA2517994C (en) Radial fan wheel, fan unit, and radial fan arrangement
WO2022127026A1 (zh) 一种小型高速风机
US11261879B2 (en) Fluid machine
CN113482978B (zh) 一种高稳定性的风机动力系统
WO2020073551A1 (zh) 轴向轴承、电机和空调器
CN116526753B (zh) 一种具有复合散热方式的磁悬浮电机及磁悬浮鼓风机
CN112994323B (zh) 电机轴承冷却结构
CN110500293B (zh) 离心式压缩机
CN104810981A (zh) 一种电机
TWI414681B (zh) 軸流式風扇之扇輪
CN218276240U (zh) 一种油冷电机
CN214036195U (zh) 一种小型高速风机
CN108365703B (zh) 电机风冷叶轮、双风道电机以及电动车
WO2022134963A1 (zh) 风机组件和吸尘器
CN107379884B (zh) 轮毂电机呼吸散热结构
CN112524066A (zh) 一种小型高速风机
CN211266681U (zh) 一种强迫冷却式实心转子电动机
CN100377475C (zh) 电梯用环式线圈电机
CN106989035A (zh) 节能低噪声轴流风机
JP2009168004A (ja) ファン
CN113404706A (zh) 一种自冷式空气悬浮鼓风机
CN219477746U (zh) 一种自通风冷却式超高速电机
JP2009228665A (ja) 送風機及び該送風機を備えた空気調和機
CN219388183U (zh) 离心式压缩机及制冷系统
US10797565B2 (en) Motor with inner fan

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21904963

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21904963

Country of ref document: EP

Kind code of ref document: A1