WO2022126834A1 - 一种纵列多轴塔轮增压动力转换机 - Google Patents

一种纵列多轴塔轮增压动力转换机 Download PDF

Info

Publication number
WO2022126834A1
WO2022126834A1 PCT/CN2021/074013 CN2021074013W WO2022126834A1 WO 2022126834 A1 WO2022126834 A1 WO 2022126834A1 CN 2021074013 W CN2021074013 W CN 2021074013W WO 2022126834 A1 WO2022126834 A1 WO 2022126834A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
tower
shaft
seat
shaft rod
Prior art date
Application number
PCT/CN2021/074013
Other languages
English (en)
French (fr)
Inventor
田小明
杨彪
Original Assignee
海洋动力(海南自贸区)新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海洋动力(海南自贸区)新能源科技有限公司 filed Critical 海洋动力(海南自贸区)新能源科技有限公司
Priority to EP21904781.8A priority Critical patent/EP4249747A4/en
Priority to JP2023558919A priority patent/JP2023552501A/ja
Priority to US18/267,465 priority patent/US11971007B2/en
Publication of WO2022126834A1 publication Critical patent/WO2022126834A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B3/00Machines or engines of reaction type; Parts or details peculiar thereto
    • F03B3/04Machines or engines of reaction type; Parts or details peculiar thereto with substantially axial flow throughout rotors, e.g. propeller turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B11/00Parts or details not provided for in, or of interest apart from, the preceding groups, e.g. wear-protection couplings, between turbine and generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B3/00Machines or engines of reaction type; Parts or details peculiar thereto
    • F03B3/12Blades; Blade-carrying rotors
    • F03B3/126Rotors for essentially axial flow, e.g. for propeller turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/30Application in turbines
    • F05B2220/32Application in turbines in water turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/70Application in combination with
    • F05B2220/706Application in combination with an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • F05B2240/14Casings, housings, nacelles, gondels or the like, protecting or supporting assemblies there within
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/37Multiple rotors
    • F05B2240/372Multiple rotors coaxially arranged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/40Transmission of power
    • F05B2260/403Transmission of power through the shape of the drive components
    • F05B2260/4031Transmission of power through the shape of the drive components as in toothed gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/40Transmission of power
    • F05B2260/403Transmission of power through the shape of the drive components
    • F05B2260/4031Transmission of power through the shape of the drive components as in toothed gearing
    • F05B2260/40311Transmission of power through the shape of the drive components as in toothed gearing of the epicyclic, planetary or differential type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/50Kinematic linkage, i.e. transmission of position
    • F05B2260/503Kinematic linkage, i.e. transmission of position using gears
    • F05B2260/5032Kinematic linkage, i.e. transmission of position using gears of the bevel or angled type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Definitions

  • the present invention relates to the technical field of supercharging power devices, and more particularly, the present invention relates to a tandem multi-shaft tower wheel supercharging power converter.
  • a turbocharger is an air compressor that uses the exhaust gas generated by the operation of an internal combustion engine to drive through a structure composed of two coaxial impellers. Similar in function to a supercharger, both increase air flow into an internal combustion engine or boiler, thereby increasing combustion efficiency. Commonly used in automobile engines, by using the heat and flow of exhaust gas, turbochargers can increase the output power of internal combustion engines or improve fuel economy at the same output power.
  • turbochargers are not very suitable, so there is a need to propose a device that can use hydraulic power to increase the efficiency of hydroelectric generators to at least partially solve the problems in the prior art. .
  • the present invention provides a tandem multi-shaft tower wheel supercharging power converter, comprising: a shaft protection sleeve, a water inlet end seat, an outer sleeve, a plurality of first tower wheel units, a plurality of a first shaft rod, a plurality of second tower wheel units, a plurality of second shaft rods and a third shaft rod;
  • the water inlet end seat is arranged on the upper end of the outer sleeve
  • the shaft protection sleeve is arranged on the The inner and upper ends of the outer sleeve pass through the water inlet end seat, the water inlet end seat is provided with a plurality of water inlet holes, and the first shaft rod, the second shaft rod and the third shaft rod are all sleeved on the water inlet end seat.
  • the third shaft rod is arranged in the middle of the shaft protection sleeve, and a plurality of the first shaft rods and a plurality of the second shaft rods are evenly distributed on the third shaft in an intersecting manner.
  • a plurality of first tower wheel units are sequentially arranged on the first shaft rod and the second shaft rod from top to bottom, and the first tower wheel unit is drivingly connected with the first shaft rod, and is connected with the first shaft rod.
  • the second shaft rod is rotatably connected, and a plurality of second tower wheel units are sequentially arranged on the first shaft rod and the second shaft rod from top to bottom, the second tower wheel unit and the second shaft rod drive connection and rotational connection with the first shaft rod, wherein the first tower wheel unit is located above the second tower wheel unit, and the second tower wheel unit is opposite to the first tower wheel unit turn to.
  • the first shaft includes a plurality of first shafts
  • the first tower wheel unit includes a first gear set, a first triangular tower gear seat, a first gear sleeve and a plurality of first projections A backlash-free turbine blade
  • the first gear set includes a plurality of first internal gears
  • the plurality of first internal gears are all arranged on the first triangular tower gear seat
  • the first shaft rod passes through the In the first internal gear
  • the second shaft rod is passed through the first connecting hole of the first triangular tower gear seat
  • the third shaft rod is passed through the plurality of first triangle tower gear seats.
  • the first gear sleeve is sleeved on the outer circumference of the plurality of first internal gears, and the plurality of first projected non-backlash turbine blades are all disposed on the first gear sleeve.
  • the first triangular tower gear seat includes a first seat ring and a first tower seat
  • the first tower seat is arranged on the first seat ring
  • the middle of the first tower seat is arranged
  • There is the first central hole, and the part close to the outer periphery is evenly distributed with a plurality of the first connection holes, a first notch groove is arranged between two adjacent first connection holes, and the first inner The gear is arranged in the first notch groove.
  • the second tower wheel unit includes a second gear set, a second triangular tower gear seat, a second gear sleeve and a plurality of second projected non-backlash turbine blades
  • the second gear set includes a plurality of A second internal gear
  • a plurality of second internal gears are all arranged on the second triangular tower gear seat
  • the second shaft rod passes through the second internal gear
  • the first shaft rod passes through
  • the third shaft rod is passed through a plurality of second center holes of the second triangular tower gear seat
  • the second gear sleeve is sleeved on the multiple
  • On the outer circumference of each of the second internal gears a plurality of the second projected turbine blades are all disposed on the second gear sleeve, and the second projected turbine blades are connected to the first
  • the projected gapless turbine blades are inversely symmetrical.
  • the second triangular tower gear seat includes a second seat ring and a second tower seat, the second tower seat is arranged on the second seat ring, and the middle of the second tower seat is arranged There is the second central hole, and the part close to the outer periphery is evenly distributed with a plurality of the second connection holes, a second notch groove is arranged between two adjacent second connection holes, and the second inner The gear is arranged in the second notch groove.
  • the first output mechanism includes the first gear set, the first triangular tower gear seat, the first gear sleeve and a plurality of first helical teeth
  • the first gear set includes a plurality of first internal gears, and the plurality of first internal gears are all arranged on the first triangular tower gear seat, and the first shaft rod passes through the first internal gears , the second shaft rod is inserted through the first connecting hole of the first triangular tower gear base, and the third shaft rod is passed through the first center holes of the plurality of first triangle tower gear bases
  • the first gear sleeve is sleeved on the outer circumference of the plurality of first internal gears, and the plurality of first helical gear sleeves are all arranged on the first gear sleeve.
  • the second output mechanism includes the second gear set, the second triangular tower gear seat, the second gear sleeve and a plurality of second helical teeth
  • the second gear set includes a plurality of second inner gears, and the plurality of second inner gears are all arranged on the second triangular tower gear seat, and the second shaft rod passes through the second inner gear , the first shaft rod is inserted through the second connecting hole of the second triangular tower gear base, and the third shaft rod is passed through the second center holes of the second triangle tower gear base
  • the second gear sleeves are sleeved on the outer circumference of the plurality of second internal gears, and the plurality of second helical tooth sleeves are all arranged on the second gear sleeves.
  • the upper ends of the first shaft rod, the second shaft rod, and the third shaft rod are provided with a top seat, and the lower end is provided with a base.
  • the present invention at least includes the following beneficial effects:
  • the invention provides a tandem multi-shaft tower wheel supercharging power converter.
  • the tandem multi-shaft tower wheel supercharging power converter includes a shaft protection sleeve, a water inlet end seat, an outer sleeve, and a plurality of first tower wheels. unit, a plurality of first shaft rods, a plurality of second tower wheel units, a plurality of second shaft rods and a third shaft rod, wherein the first tower wheel unit and the second tower wheel unit are reversely designed, so in the drainage process There will be opposite motions in the water flow, so that the water flows collide with each other and increase the water pressure.
  • tandem multi-shaft tower turbocharger power converter described in the present invention
  • other advantages, objectives and features of the present invention will be reflected in part by the following description, and in part will be the technology in the art through the research and practice of the present invention understood by the staff.
  • FIG. 1 is a schematic structural diagram of the present invention.
  • FIG. 2 is a schematic diagram of a part of the structure of the present invention.
  • FIG. 3 is a schematic structural diagram of a tower wheel pressurizing mechanism in the present invention.
  • FIG. 4 is a schematic structural diagram of the first tower wheel unit in the present invention.
  • FIG. 5 is a schematic structural diagram of the first triangular tower gear seat in the present invention.
  • FIG. 6 is a schematic structural diagram of the second tower wheel unit in the present invention.
  • FIG. 7 is a schematic structural diagram of the second projected gapless turbine blade of the present invention.
  • FIG. 8 is a schematic structural diagram of the second gear sleeve in the present invention.
  • FIG. 9 is a schematic structural diagram of the first output mechanism in the present invention.
  • the present invention provides a tandem multi-shaft tower wheel supercharging power converter, including:
  • the water inlet end seat 2 is arranged on the upper end of the outer sleeve 3
  • the shaft protection sleeve 1 is arranged in the outer sleeve 3 and the upper end passes through the water inlet end seat 2
  • the water inlet end seat 2 is provided with a plurality of water inlet holes 201
  • the first shaft rod, the second shaft rod and the third shaft rod 63 are all sleeved in the shaft protection sleeve 1, the third shaft
  • the rod 63 is arranged in the middle of the shaft protection sleeve 1 , and a plurality of the first shaft rods 61 and a plurality of the second shaft rods 62 are evenly distributed around the third shaft rod
  • the first tower wheel unit 41 is sequentially arranged on the first shaft rod 61 and the second shaft rod 62 from top to bottom.
  • the second shaft rod 62 is rotatably connected, and a plurality of second tower wheel units 42 are sequentially arranged on the first shaft rod and the second shaft rod from top to bottom.
  • the shaft rod is connected in a driving manner and is rotatably connected with the first shaft rod, wherein the first tower wheel unit 41 is located above the second tower wheel unit 42, and the second tower wheel unit 42 is connected to the first tower wheel unit 42.
  • a pulley unit 41 rotates in the opposite direction.
  • the present invention provides a tandem multi-shaft tower wheel supercharging power converter, which is vertically connected to a hydraulic engine/steam engine in use.
  • the tandem multi-shaft tower wheel supercharging power converter includes a shaft protection sleeve 1, a water inlet end seat 2, an outer sleeve 3, a plurality of first tower wheel units 41, a plurality of first A shaft 61, a plurality of second tower wheel units 42, a plurality of second shafts 62 and a third shaft 63, a plurality of water inlet holes 201 are designed on the nozzle end seat 2, and these water inlet holes 201 are connected when in use
  • the water supply pipeline, the pipeline transports the water to the outer sleeve 3 through the water inlet 201.
  • a plurality of second tower wheel units 42 here the plurality of first tower wheel units 41 can be set to three, and the plurality of second tower wheel units 42 are also designed to be three, and the first tower wheel unit 41 is located in the Above the second tower wheel unit 42, that is, the longitudinal three-layer first tower wheel unit 41 and the three-layer second tower wheel unit 42 are arranged to cross each other, that is, "1", "3", "5" layers
  • the layers "2", "4" and "6" are the second tower wheel unit 42, and the second tower wheel unit 42 and the first tower wheel unit 41 are designed in reverse, so in the Under the impact of the water flow, the first drum units 41 of the "1", "3” and "5" layers rotate in the same direction, such as clockwise, while the first drum units 41 of the "2", "4" and “6” layers
  • the second tower wheel unit 41 here the plurality of first tower wheel units 41 can be set to three, and the plurality of second tower wheel units 42 are also designed to be three, and the first tower wheel unit 41 is located in the
  • the first tower wheel unit 41 of the 3rd floor rotates synchronously through the plurality of first shafts 61 to more fully absorb the potential energy and gravitational energy of the water flow, thereby outputting the working efficiency of the hydraulic engine/steam engine; similarly, the 3rd floor
  • the second tower wheel unit 42 rotates synchronously through a plurality of second shaft rods 62 to more fully absorb the potential energy and gravitational energy of the water flow, thereby outputting the working efficiency of the hydraulic engine/steam engine.
  • the present invention provides a tandem multi-axis tower wheel supercharging power converter
  • the tandem multi-axis tower wheel supercharging power converter comprises a shaft protection sleeve 1, an inlet The nozzle end seat 2, the outer sleeve 3, a plurality of first tower wheel units 41, a plurality of first shaft rods 61, a plurality of second tower wheel units 42, a plurality of second shaft rods 62 and a third shaft rod 63
  • the first tower wheel unit 41 and the second tower wheel unit 42 are reversely designed, so in the process of drainage, opposite movements will occur, so that the water flows collide with each other to increase the water pressure, and the increase of the water pressure will increase the first tower wheel unit 41.
  • the rotation speed of the second tower wheel unit 42 drives the rotation speed of the first shaft 61 and the second shaft 62 to increase, and then outputs the power to the two groups of hydraulic generators to improve the working efficiency of the hydraulic generators.
  • the first tower wheel unit 41 includes a first gear set, a first triangular tower gear seat, a first gear sleeve 412 and a plurality of first projected backlash-free turbine blades 413 , the first gear The group includes a plurality of first internal gears 411, the plurality of first internal gears 411 are all arranged on the first triangular tower gear seat, and the first shaft 61 passes through the first internal gears 411, so The second shaft rod 62 is inserted through the first connecting hole 417 of the first triangular tower gear seat, and the third shaft rod 63 is penetrated through the first center holes of the first triangle tower gear seat.
  • the first gear sleeve 412 is sleeved on the outer circumference of the plurality of first internal gears 411 , and the plurality of first projected non-backlash turbine blades 413 are all disposed on the first gear sleeve 412 .
  • the plurality of first shaft rods 61 are set to three, which are distributed around the third shaft rod 63 in an equilateral triangle and 120°
  • the second shaft rods 62 are set to three , also distributed around the third shaft 63 in an equilateral triangular distribution of 120°, that is to say, the three first shafts 61 and the three second shafts 62 intersect each other and are distributed around the third shaft 63 ;
  • the first tower wheel unit 41 includes a first gear set, a first triangular tower gear seat, a first gear sleeve 412 and a plurality of first projected backlash-free turbine blades 413;
  • the turbine blades 413 are distributed obliquely along the outer wall of the first gear sleeve 412, so the water flow impacts the plurality of first projection turbine blades 413 from above to push them to rotate, and then the first projection turbine blades 413 are rotated.
  • the blade 413 drives the first gear sleeve 412 to rotate, and the first gear sleeve 412 further drives the plurality of first internal gears 411 on the first triangular tower gear seat to rotate.
  • the plurality of first internal gears 411 are also designed to be three.
  • the first shaft 61 passes through the first inner gear 411, so the first inner gear 411 rotates and drives the first shaft 61 to rotate; similarly, the water flows through the first tower wheel unit 41 and then flows to the second tower wheel unit 42, the direction of the second tower wheel unit 42 is opposite to that of the first tower wheel unit 41 at this time, and then the first tower wheel unit 41 drives the second shaft 62 to rotate, that is to say, the rotation direction of the first shaft 61 is the same as that of the first shaft 61.
  • the rotation directions of the second shaft rods 62 are opposite, that is, the first tower wheel units 41 of the layers “1", “3” and “5" act on the three first shaft rods 61 in a triangular distribution, and more It fully absorbs the potential energy and gravitational energy of water movement, and outputs power through the three first shaft rods 61 in the row.
  • the plurality of first shaft rods 61 and the plurality of second shaft rods 62 may be set to three, or may be 9 or 12 shafts, which will not be repeated in the present invention.
  • the present embodiment provides the structure of the first tower wheel unit 41, and the first tower wheel unit 41 includes a first gear set, a first triangular tower gear seat, a first gear
  • the sleeve 412 and the plurality of first projection gapless turbine blades 413 through the above-mentioned structure, specifically realize that the first tower wheel unit 41 and the second tower wheel unit 42 will produce oppositely moving water flows collide with each other during the drainage process, and then Increasing the water pressure will increase the rotational speed of the first tower wheel unit 41 and the second tower wheel unit 42 in the lower layer, thereby speeding up the output speed and improving the working efficiency of the hydraulic generator power.
  • the first triangular tower gear seat includes a first seat ring 414 and a first tower seat 415 , the first tower seat 415 is disposed on the first seat ring 414 , and the first tower seat 415 is The first central hole 416 is arranged in the middle of the seat 415 , and a plurality of the first connecting holes 417 are evenly distributed in the part close to the outer periphery, and a first connecting hole 417 is arranged between two adjacent first connecting holes 417 . Notched groove 418 , the first internal gear 411 is disposed in the first notched groove 418 .
  • the structure of the first triangular tower gear seat in this embodiment includes a first seat ring 414 and a first tower seat 415.
  • the first tower seat 415 is installed On the first seat ring 414, and in order to install the designed three first internal gears 411, three corresponding first notch grooves 418 are designed on the first tower seat 415, and the first internal gears 411 are installed on the first tower seat 415.
  • a notch groove 418; and the first tower base 415 is designed with a first central hole 416 and three first connecting holes 417, which are just connected to the third shaft 63 and the second shaft 62 respectively, and the first inner The gear 411 is connected to the first shaft 61 .
  • the present embodiment provides the structure of the first triangular tower gear seat, and the first triangular tower gear seat includes a first seat ring 414 and a first tower seat 415.
  • a first center hole 416 is designed on a tower base 415, so that the first triangular tower gear base can be fixed on the third shaft 63 to avoid interference between the first tower wheel unit 41 and the second tower wheel unit 42;
  • the three first shaft rods 61 are of triangular design, and the three second shaft rods 62 are also of triangular design, so such a triangular shaft design has a stable mechanical structure, uniform force, and multi-point transmission of torque; at the same time, the first tower wheel unit 41
  • the design of using three first internal gears 411 can absorb more gravitational energy.
  • the second tower wheel unit 42 includes a second gear set, a second triangular tower gear seat, a second gear sleeve 422 and a plurality of second projected backlash-free turbine blades 423, the second gear The group includes a plurality of second internal gears 421, the plurality of second internal gears 421 are all arranged on the second triangular tower gear seat, and the second shaft 62 passes through the second internal gears 421, so The first shaft rod 61 is penetrated in the second connecting hole 427 of the second triangular tower gear seat, and the third shaft rod 63 is penetrated through the second center holes of the second triangular tower gear seat.
  • the second gear sleeve 422 is sleeved on the outer circumference of the plurality of second internal gears 421, and the plurality of second projected non-backlash turbine blades 423 are all disposed on the second gear sleeve 422, And the second projected gapless turbine blade 423 is inversely symmetrical with the first projected gapless turbine blade 413 .
  • the structure of the second tower wheel unit 42 is provided in this embodiment, and the second tower wheel unit 42 includes a second gear set, a second triangular tower gear seat, a second gear sleeve 422 and a plurality of The second projected gapless turbine blade 423;
  • the water flow passes through the first projected turbine blades 413 and then impacts the second projected turbine blades. 423, and then push the second projection seamless turbine blade 423 to rotate, and then the second projection seamless turbine blade 423 drives the second gear sleeve 422 to rotate, and the second gear sleeve 422 further drives the second triangular tower gear seat.
  • the plurality of second internal gears 421 are rotated, and the plurality of second internal gears 421 are also designed to be three. At the same time, since the second shaft 62 is inserted into the second internal gear 421, the second internal gear 421 rotates and drives the second internal gear 421.
  • the shaft 62 rotates; since the second projection turbine blade 423 and the first projection turbine blade 413 are designed in reverse, the rotation direction of the second projection turbine blade 423 is the same as that of the first projection at this time.
  • the gapless turbine blades 413 are opposite, that is to say, the rotation direction of the second shaft rod 62 is opposite to the rotation direction of the first shaft rod 61, thereby driving the output mechanism 5 to rotate, and the rotation of the output mechanism 5 can output torques in two opposite directions , brought to use with two hydraulic engines.
  • the present embodiment provides the structure of the second tower wheel unit 42, the second tower wheel unit 42 includes a second gear set, a second triangular tower gear seat, a second The gear sleeve 422 and the plurality of second projected gapless turbine blades 423; through the cooperation of the above-mentioned structure with the first tower wheel unit 41, it is specifically realized that the water flow of the tower wheel pressurizing mechanism 4 will produce an opposite movement during the drainage process They collide with each other, thereby increasing the water pressure. Increasing the water pressure will increase the speed of the tower wheel pressurizing mechanism 4 and drive the speed of the transmission shaft mechanism to speed up, thereby driving the speed of the output mechanism to speed up, thereby improving the working efficiency of the hydraulic generator power.
  • the second triangular tower gear seat includes a second seat ring 424 and a second tower seat 425, the second tower seat 425 is disposed on the second seat ring 424, and the second tower seat 425
  • the second central hole 426 is arranged in the middle of the seat 425 , and a plurality of the second connection holes 427 are evenly distributed in the part close to the outer periphery, and a second connection hole 427 is arranged between two adjacent second connection holes 427 .
  • Notched groove 428 the second internal gear 421 is disposed in the second notched groove 428 .
  • the second triangular tower gear seat includes a second seat ring 424 and a second tower seat 425.
  • the second tower seat 425 is installed On the second seat ring 424, and in order to install the designed three second internal gears 421, three corresponding second notch grooves 428 are designed on the second tower base 425, and the second internal gears 421 are installed on the first In the two notch grooves 428; and the second center hole 426 and three second connecting holes 427 are designed on the second tower base 425, which are just connected to the third shaft 63 and the first shaft 61, and the second The internal gear 421 is connected to the second shaft 62 .
  • the present embodiment provides the structure of the second triangular tower gear seat, the second triangular tower gear seat includes a second race 424 and a second tower seat 425.
  • the second center hole 426 is designed on the second tower base 425, so that the second triangular tower gear base can be fixed on the third shaft 63 to avoid interference between the first tower wheel unit 41 and the second tower wheel unit 42;
  • the three second shaft rods 61 are of triangular design, and the three second shaft rods 62 are also of triangular design, so such a triangular shaft design has a stable mechanical structure, uniform force, and multi-point transmission of torque; at the same time, the second tower wheel unit 42
  • the design of using three second internal gears 421 can absorb more gravitational energy.
  • the first output mechanism 51 includes the first gear set, the first triangular tower gear seat, the first gear sleeve 412 and a plurality of A helical gear sleeve 52
  • the first gear set includes a plurality of first internal gears 411
  • the plurality of first internal gears 411 are all arranged on the first triangular tower gear seat
  • the first shaft 61 passes through In the first internal gear 411
  • the second shaft rod 62 penetrates the first connecting hole 417 of the first triangular tower gear seat
  • the third shaft rod 63 penetrates through a plurality of the In the first center hole 416 of the first triangular tower gear seat
  • the first gear sleeve 412 is sleeved on the outer circumference of the plurality of first internal gears 411
  • the plurality of the first helical tooth sleeves 52 are arranged on the on the first gear sleeve 412.
  • the plurality of first tower wheel units 41 in the outer sleeve 3 rotate under the action of water flow, thereby driving the plurality of first shaft rods 61 to rotate, and the plurality of first shaft rods 61 rotate and drive the first shaft rods 61 to rotate.
  • An output mechanism 51 outputs power.
  • the structure of the first output mechanism 51 is similar to the structure of the first tower wheel unit 41, so the structure of the first output mechanism 51 is provided in this embodiment.
  • the output mechanism 51 includes a first gear set, the first triangular tower gear seat, the first gear sleeve 412 and a plurality of first helical gear sleeves 52 , that is to say, the first shaft 61 rotates and drives the first output
  • the first internal gear 411 in the mechanism 51 rotates, and then the first internal gear 411 drives the first gear sleeve 412 to rotate, and a plurality of first helical gear sleeves 52 are installed on the first gear sleeve 412.
  • Set of 52 output power is to say, the first shaft 61 rotates and drives the first output
  • the first internal gear 411 in the mechanism 51 rotates, and then the first internal gear 411 drives the first gear sleeve 412 to rotate, and a plurality of first helical gear sleeves 52 are installed on the first gear sleeve 412.
  • Set of 52 output power is to say, the first shaft 61 rotates and drives the first output
  • Set of 52 output power set of 52 output power.
  • the structure of the first output mechanism 51 is provided in this embodiment, which specifically realizes the process of outputting power of the tandem multi-shaft tower wheel supercharging power converter.
  • it further includes: a second output mechanism 53, the second output mechanism 53 includes the second gear set, the second triangular tower gear seat, the second gear sleeve 422 and a plurality of The second helical gear sleeve 54, the second gear set includes a plurality of second internal gears 421, the plurality of second internal gears 421 are all arranged on the second triangular tower gear seat, the second shaft 62 passes through Set on the second internal gear 421, the first shaft 61 passes through the second connecting hole 427 of the second triangular tower gear seat, and the third shaft 63 passes through a plurality of In the second center hole 426 of the second triangular tower gear seat, the second gear sleeve 422 is sleeved on the outer circumference of the plurality of second internal gears 421, and the plurality of second helical tooth sleeves 54 are arranged on the on the second gear sleeve 422 .
  • the plurality of second tower wheel units 42 in the outer sleeve 3 rotate under the joint action of the first tower wheel unit 41 and the water flow, thereby driving the plurality of second shaft rods 62 to rotate, and the plurality of The two shaft rods 62 rotate and drive the second output mechanism 53 to output power.
  • the structure of the second output mechanism 53 is similar to that of the second tower wheel unit 42 , so the second output mechanism 53 is provided in this embodiment.
  • the second output mechanism 53 of this structure includes the second gear set, the second triangular tower gear seat, the second gear sleeve 422 and a plurality of second helical gear sleeves 54, that is to say, the first
  • the two shaft rods 62 rotate and drive the second internal gear 421 in the second output mechanism 53 to rotate, and then the second internal gear 421 drives the second gear sleeve 422 to rotate, and a plurality of second helical teeth are installed on the second gear sleeve 422
  • the sleeve 54 outputs power through a plurality of second helical gear sleeves 54 .
  • the present embodiment provides the structure of the second output mechanism 53, the second output mechanism 53 and the first output mechanism 51 are configured for use, specifically realizing the multi-column
  • the process of outputting two powers from the shaft-tower turbocharger power converter provides the output capability of the tandem multi-shaft tower-wheel turbocharger power converter.
  • the upper end of the first shaft rod 61, the second shaft rod 62, and the third shaft rod 63 are provided with a top seat 64, and the lower end is provided with a base 65.
  • a top seat 64 is designed on the upper ends of the second shaft rod 62 and the third shaft rod 63, and similarly; a base 65 is designed on the lower ends of the first shaft rod 61, the second shaft rod 62 and the third shaft rod 63, so as to improve the
  • the second tower wheel unit 42 at the lowermost end is preferably fixed to prevent the second tower wheel unit 42 from being separated from the first shaft rod 61 , the second shaft rod 62 and the third shaft rod 63 .
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , or integrated; it can be a mechanical connection or an electrical connection or can communicate with each other; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two components or the interaction relationship between the two components, unless otherwise expressly qualified.
  • installed installed
  • connected connected
  • fixed a detachable connection
  • it can be a mechanical connection or an electrical connection or can communicate with each other
  • it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two components or the interaction relationship between the two components, unless otherwise expressly qualified.
  • the specific meanings of the above terms in the present invention can be understood according to specific situations.

Abstract

一种纵列多轴塔轮增压动力转换机,包括:护轴套(1)、入水口端座(2)、外套筒(3)、多个第一塔轮单元(41)、多个第一轴杆(61)、多个第二塔轮单元(42)、多个第二轴杆(62)以及第三轴杆(63);第一塔轮单元(41)位于第二塔轮单元(42)的上方,第二塔轮单元(42)与第一塔轮单元(41)反向转动。该纵列多轴塔轮增压动力转换机在排水过程中会产生相反运动,使得水流相互撞击进而增加水压,增加水压就会提高第一塔轮单元(41)、第二塔轮单元(42)的转速而带动第一轴杆(61)、第二轴杆(62)的转速加快,输出给两组水力发电机动力,提高水力发电机的工作效率。

Description

一种纵列多轴塔轮增压动力转换机 技术领域
本发明涉及增压动力装置技术领域,更具体地说,本发明涉及一种纵列多轴塔轮增压动力转换机。
背景技术
涡轮增压器是一种利用内燃机运作所产生的废气通过同轴的两个叶轮组成的结构驱动的空气压缩机。与机械增压器功能相似,两者都可增加进入内燃机或锅炉的空气流量,从而提升燃烧效率。常见用于汽车引擎中,透过利用排出废气的热量及流量,涡轮增压器能提升内燃机的输出功率或者在同等输出功率下提升燃油经济性。
但是对于水力发电机而言,涡轮增压器就不是很合适了,因此需要提出一种装置,该装置能利用水力来增加水力发电机的效率,以至少部分地解决现有技术中存在的问题。
发明内容
在发明内容部分中引入了一系列简化形式的概念,这将在具体实施方式部分中进一步详细说明。本发明的发明内容部分并不意味着要试图限定出所要求保护的技术方案的关键特征和必要技术特征,更不意味着试图确定所要求保护的技术方案的保护范围。
为至少部分地解决上述问题,本发明提供了一种纵列多轴塔轮增压动力转换机,包括:护轴套、入水口端座、外套筒、多个第一塔轮单元、多个第一轴杆、多个第二塔轮单元、多个第二轴杆以及第三轴杆;所述入水口端座设置在所述外套筒的上端,所述护轴套设置在所述外套筒内且上端穿出所述入水口端座,所述入水口端座上设置有多个入水孔,所述第一轴杆、第二轴杆以及第三轴杆均套在所述护轴套内,所述第三轴杆设置在所述护轴套的中部,多个所述第一轴杆、多个所述第二轴杆相互交叉地均布在所述第三轴杆的周围,多个第一塔轮单元由上至下依次设置在所述第一轴杆、第二轴杆上,所述第一塔轮单 元与所述第一轴杆传动连接,并与所述第二轴杆转动连接,多个第二塔轮单元由上至下依次设置在所述第一轴杆、第二轴杆上,所述第二塔轮单元与所述第二轴杆传动连接,并与所述第一轴杆转动连接,其中,所述第一塔轮单元位于所述第二塔轮单元的上方,所述第二塔轮单元与所述第一塔轮单元反向转动。
优选的是,其中,所述第一轴杆包括多个第一轴杆,所述第一塔轮单元包括第一齿轮组、第一三角塔齿轮座、第一齿轮套以及多个第一投影无隙满轮叶片,所述第一齿轮组包括多个第一内齿轮,多个第一内齿轮均设置在所述第一三角塔齿轮座上,所述第一轴杆穿设在所述第一内齿轮中,所述第二轴杆穿设在所述第一三角塔齿轮座的第一连接孔中,所述第三轴杆穿设在多个所述第一三角塔齿轮座的第一中心孔内,所述第一齿轮套套在多个所述第一内齿轮的外周上,多个所述第一投影无隙满轮叶片均设置在所述第一齿轮套上。
优选的是,其中,所述第一三角塔齿轮座包括第一座圈、第一塔座,所述第一塔座设置在所述第一座圈上,所述第一塔座的中间设置有所述第一中心孔,并且靠近外周的部分均布有多个所述第一连接孔,两个相邻的所述第一连接孔之间设置有第一缺口槽,所述第一内齿轮设置在所述第一缺口槽内。
优选的是,其中,所述第二塔轮单元包括第二齿轮组、第二三角塔齿轮座、第二齿轮套以及多个第二投影无隙满轮叶片,所述第二齿轮组包括多个第二内齿轮,多个第二内齿轮均设置在所述第二三角塔齿轮座上,所述第二轴杆穿设在所述第二内齿轮上,所述第一轴杆穿设在所述第二三角塔齿轮座的第二连接孔中,所述第三轴杆穿设在多个所述第二三角塔齿轮座的第二中心孔内,所述第二齿轮套套在多个所述第二内齿轮的外周上,多个所述第二投影无隙满轮叶片均设置在所述第二齿轮套上,并且所述第二投影无隙满轮叶片与所述第一投影无隙满轮叶片反向对称。
优选的是,其中,所述第二三角塔齿轮座包括第二座圈、第二塔座,所述第二塔座设置在所述第二座圈上,所述第二塔座的中间设置有所述第二中心孔,并且靠近外周的部分均布有多个所述第二连接孔,两个相邻的所述第二连接孔之间设置有第二缺口槽,所述第二内齿轮设置在所述第二缺口槽内。
优选的是,其中,还包括:第一输出机构,所述第一输出机构包括所述第一齿轮组、所述第一三角塔齿轮座、所述第一齿轮套以及多个第一斜齿套,所述第一齿轮组包括多个第一内齿轮,多个第一内齿轮均设置在所述第一三角塔齿轮座上,所述第一轴杆穿设在所述第一内齿轮中,所述第二轴杆穿设在所述第一三角塔齿轮座的第一连接孔中,所述第三轴杆穿设在多个所述第一三角塔齿轮座的第一中心孔内,所述第一齿轮套套在多个所述第一内齿轮的外周上,多个所述第一斜齿套均设置在所述第一齿轮套上。
优选的是,其中,还包括:第二输出机构,所述第二输出机构包括所述第二齿轮组、所述第二三角塔齿轮座、所述第二齿轮套以及多个第二斜齿套,所述第二齿轮组包括多个第二内齿轮,多个第二内齿轮均设置在所述第二三角塔齿轮座上,所述第二轴杆穿设在所述第二内齿轮上,所述第一轴杆穿设在所述第二三角塔齿轮座的第二连接孔中,所述第三轴杆穿设在多个所述第二三角塔齿轮座的第二中心孔内,所述第二齿轮套套在多个所述第二内齿轮的外周上,多个所述第二斜齿套均设置在所述第二齿轮套上。
优选的是,其中,所述第一轴杆、第二轴杆、第三轴杆的上端设置有顶座,下端设置有底座。
相比现有技术,本发明至少包括以下有益效果:
本发明提供了一种纵列多轴塔轮增压动力转换机,该纵列多轴塔轮增压动力转换机包括护轴套、入水口端座、外套筒、多个第一塔轮单元、多个第一轴 杆、多个第二塔轮单元、多个第二轴杆以及第三轴杆,其中第一塔轮单元、第二塔轮单元反向设计的,所以在排水过程中会产生相反运动,使得水流相互撞击进而增加水压,增加水压就会提高第一塔轮单元、第二塔轮单元的转速而带动第一轴杆、第二轴杆的转速加快,进而输出给两组水力发电机动力,提高水力发电机的工作效率。
本发明所述的纵列多轴塔轮增压动力转换机,本发明的其它优点、目标和特征将部分通过下面的说明体现,部分还将通过对本发明的研究和实践而为本领域的技术人员所理解。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。在附图中:
图1为本发明的结构示意图。
图2为本发明的部分结构示意图。
图3为本发明中塔轮增压机构的结构示意图。
图4为本发明中第一塔轮单元的结构示意图。
图5为本发明中第一三角塔齿轮座的结构示意图。
图6为本发明中第二塔轮单元的结构示意图。
图7为本发明第二投影无隙满轮叶片的结构示意图。
图8为本发明中第二齿轮套的结构示意图。
图9为本发明中第一输出机构的结构示意图。
具体实施方式
下面结合附图以及实施例对本发明做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施。
应当理解,本文所使用的诸如“具有”、“包含”以及“包括”术语并不排除一个或多个其它元件或其组合的存在或添加。
如图1-图9所示,本发明提供了一种纵列多轴塔轮增压动力转换机,包括:
护轴套1、入水口端座2、外套筒3、多个第一塔轮单元41、多个第一轴杆61、多个第二塔轮单元42、多个第二轴杆62以及第三轴杆63;所述入水口端座2设置在所述外套筒3的上端,所述护轴套1设置在所述外套筒3内且上端穿出所述入水口端座2,所述入水口端座2上设置有多个入水孔201,所述第一轴杆、第二轴杆以及第三轴杆63均套在所述护轴套1内,所述第三轴杆63设置在所述护轴套1的中部,多个所述第一轴杆61、多个所述第二轴杆62相互交叉地均布在所述第三轴杆63的周围,多个第一塔轮单元41由上至下依次设置在所述第一轴杆61、第二轴杆62上,所述第一塔轮单元41与所述第一轴杆61传动连接,并与所述第二轴杆62转动连接,多个第二塔轮单元42由上至下依次设置在所述第一轴杆、第二轴杆上,所述第二塔轮单元42与所述第二轴杆传动连接,并与所述第一轴杆转动连接,其中,所述第一塔轮单元41位于所述第二塔轮单元42的上方,所述第二塔轮单元42与所述第一塔轮单元41反向转动。
上述技术方案的工作原理:本发明中提供了一种纵列多轴塔轮增压动力转换机,该纵列多轴塔轮增压动力转换机在使用是竖直地与水力发动机/蒸汽发动机的输入端连接,具体而言,该纵列多轴塔轮增压动力转换机包括护轴套1、入水口端座2、外套筒3、多个第一塔轮单元41、多个第一轴杆61、多个第二塔轮单元42、多个第二轴杆62以及第三轴杆63,水口端座2上设计了多个入水孔201,在使用时这些入水孔201连接着供水的管道,管道将水流经入水孔201输送到外套筒3内,在重力的作用下,水流向下流动进而冲击外套筒3内并位于护轴套1下方的多个第一塔轮单元41、多个第二塔轮单元42,这里可以将多个第一塔轮单元41设为3个,多个第二塔轮单元42也设计为3个,同时第一塔轮单元41位于第二塔轮单元42的上方,也就是,纵向的3层第一塔轮单元41,3层第二塔轮单元42相互交叉的排列,即,“1”、“3”、“5”层为第一塔轮单元41,“2”、“4”、“6”层为第二塔轮单元42,并且第二塔轮单元42与第一塔轮单元41为反向设计的,所以在水流的冲击作用下“1”、“3”、“5”层的第一塔轮单元41向同一个方向转动,如顺时针方向,而“2”、“4”、“6”层的第二塔轮单元42则向另一个方向转动,如逆时针方向,这样第一塔轮单元41、第 二塔轮单元42反向转动,在排水的过程中会产生相反运动的水流相互撞击,也就是,3层的第一塔轮单元41通过多个第一轴杆61同步转动,更充分的吸收水流的势能、重力能,进而输出给水力发动机/蒸汽发动机的工作效率;同理,3层的第二塔轮单元42通过多个第二轴杆62同步转动,更充分的吸收水流的势能、重力能,进而输出给水力发动机/蒸汽发动机的工作效率。
上述技术方案的有益效果:通过上述结构的设计,本发明提供了一种纵列多轴塔轮增压动力转换机,该纵列多轴塔轮增压动力转换机包括护轴套1、入水口端座2、外套筒3、多个第一塔轮单元41、多个第一轴杆61、多个第二塔轮单元42、多个第二轴杆62以及第三轴杆63,其中第一塔轮单元41、第二塔轮单元42反向设计的,所以在排水过程中会产生相反运动,使得水流相互撞击进而增加水压,增加水压就会提高第一塔轮单元41、第二塔轮单元42的转速而带动第一轴杆61、第二轴杆62的转速加快,进而输出给两组水力发电机动力,提高水力发电机的工作效率。
在一个实施例中,所述第一塔轮单元41包括第一齿轮组、第一三角塔齿轮座、第一齿轮套412以及多个第一投影无隙满轮叶片413,所述第一齿轮组包括多个第一内齿轮411,多个第一内齿轮411均设置在所述第一三角塔齿轮座上,所述第一轴杆61穿设在所述第一内齿轮411中,所述第二轴杆62穿设在所述第一三角塔齿轮座的第一连接孔417中,所述第三轴杆63穿设在多个所述第一三角塔齿轮座的第一中心孔416内,所述第一齿轮套412套在多个所述第一内齿轮411的外周上,多个所述第一投影无隙满轮叶片413均设置在所述第一齿轮套412上。
上述技术方案的工作原理:本实施例中多个第一轴杆61设为3个,呈等边三角、120°分布在第三轴杆63的周围,而第二轴杆62设为3个,也呈等边三角分布120°分布在第三轴杆63的周围,也就是说,3个第一轴杆61、3个第二轴杆62相互交叉的分布在第三轴杆63的周围;
具体而言,该第一塔轮单元41包括第一齿轮组、第一三角塔齿轮座、第一 齿轮套412以及多个第一投影无隙满轮叶片413;由于多个第一投影无隙满轮叶片413沿着第一齿轮套412的外壁呈斜向分布的,所以水流从上方冲击到多个第一投影无隙满轮叶片413上可以推动其转动,进而第一投影无隙满轮叶片413则带动第一齿轮套412转动,第一齿轮套412进而带动第一三角塔齿轮座上的多个第一内齿轮411转动,多个第一内齿轮411也设计为3个,同时由于第一轴杆61穿设在第一内齿轮411中,所以第一内齿轮411转动进而带动第一轴杆61转动;同理,水流通过第一塔轮单元41后流动到第二塔轮单元42上,第二塔轮单元42此时与第一塔轮单元41的方向相反,进而第一塔轮单元41带动第二轴杆62转动,也就是说,第一轴杆61的转动方向与第二轴杆62的转动方向相反,也就是,“1”、“3”、“5”层的第一塔轮单元41连动作用在呈三角分布的3个第一轴杆61上,更充分的吸收水流运动的势能、重力能,通过该纵列的3个第一轴杆61输出动力。
需要说明的是,多个第一轴杆61、多个第二轴杆62可以设为3个,也可以是9轴或12轴,对此本发明不再赘述。
上述技术方案的有益效果:通过上述结构的设计,本实施例中提供了第一塔轮单元41的结构,第一塔轮单元41包括第一齿轮组、第一三角塔齿轮座、第一齿轮套412以及多个第一投影无隙满轮叶片413,通过上述结构,具体地实现了第一塔轮单元41、第二塔轮单元42在排水过程中会产生相反运动的水流相互撞击,进而增加水压,增加水压就会提高下层的第一塔轮单元41、第二塔轮单元42的转速进而输出转速加快,提高水力发电机动力的工作效率。
在一个实施例中,所述第一三角塔齿轮座包括第一座圈414、第一塔座415,所述第一塔座415设置在所述第一座圈414上,所述第一塔座415的中间设置有所述第一中心孔416,并且靠近外周的部分均布有多个所述第一连接孔417,两个相邻的所述第一连接孔417之间设置有第一缺口槽418,所述第一内齿轮411设置在所述第一缺口槽418内。
上述技术方案的工作原理:本实施例中第一三角塔齿轮座的结构,该第一 三角塔齿轮座包括第一座圈414、第一塔座415,具体而言,第一塔座415安装在第一座圈414上,并且为了安装设计的3个第一内齿轮411,则在第一塔座415上设计了3个对应的第一缺口槽418,第一内齿轮411则安装在第一缺口槽418内;而第一塔座415上设计了第一中心孔416以及3个第一连接孔417,则正好分别连接着第三轴杆63、第二轴杆62,而第一内齿轮411连接着第一轴杆61。
上述技术方案的有益效果:通过上述结构的设计,本实施例提供了第一三角塔齿轮座的结构,该第一三角塔齿轮座包括第一座圈414、第一塔座415,通过在第一塔座415上设计第一中心孔416,使得第一三角塔齿轮座可以固定在第三轴杆63上,避免第一塔轮单元41、第二塔轮单元42之间出现干涉;同时,3个第一轴杆61呈三角设计,3个第二轴杆62也呈三角设计,所以这样的三角轴设计机械结稳定,受力均匀,多点转送扭力;同时,第一塔轮单元41中采用3个第一内齿轮411的设计可以吸收更多的重力能。
在一个实施例中,所述第二塔轮单元42包括第二齿轮组、第二三角塔齿轮座、第二齿轮套422以及多个第二投影无隙满轮叶片423,所述第二齿轮组包括多个第二内齿轮421,多个第二内齿轮421均设置在所述第二三角塔齿轮座上,所述第二轴杆62穿设在所述第二内齿轮421上,所述第一轴杆61穿设在所述第二三角塔齿轮座的第二连接孔427中,所述第三轴杆63穿设在多个所述第二三角塔齿轮座的第二中心孔426内,所述第二齿轮套422套在多个所述第二内齿轮421的外周上,多个所述第二投影无隙满轮叶片423均设置在所述第二齿轮套422上,并且所述第二投影无隙满轮叶片423与所述第一投影无隙满轮叶片413反向对称。
上述技术方案的工作原理:本实施例中提供了第二塔轮单元42的结构,该第二塔轮单元42包括第二齿轮组、第二三角塔齿轮座、第二齿轮套422以及多个第二投影无隙满轮叶片423;
由于多个第二投影无隙满轮叶片423沿着第二齿轮套422的外壁呈斜向分 布的,所以水流经过第一投影无隙满轮叶片413后冲击到第二投影无隙满轮叶片423上,进而推动第二投影无隙满轮叶片423转动,进而第二投影无隙满轮叶片423则带动第二齿轮套422转动,第二齿轮套422进而带动第二三角塔齿轮座上的多个第二内齿轮421转动,多个第二内齿轮421也设计为3个,同时由于第二轴杆62穿设在第二内齿轮421中,所以第二内齿轮421转动进而带动第二轴杆62转动;由于第二投影无隙满轮叶片423与第一投影无隙满轮叶片413是反向设计的,所以此时第二投影无隙满轮叶片423的转动方向与第一投影无隙满轮叶片413相反,也就是说,第二轴杆62的转动方向与第一轴杆61的转动方向相反,进而带动输出机构5转动,输出机构5转动可以输出两个相反方向的扭矩,带到两个水力发动机使用。
上述技术方案的有益效果:通过上述结构的设计,本实施例中提供了第二塔轮单元42的结构,该第二塔轮单元42包括第二齿轮组、第二三角塔齿轮座、第二齿轮套422以及多个第二投影无隙满轮叶片423;通过上述结构与第一塔轮单元41的配合使用,具体地实现了塔轮增压机构4在排水过程中会产生相反运动的水流相互撞击,进而增加水压,增加水压就会提高塔轮增压机构4的转速而带动传动轴机构的转速加快,进而带动输出机构的转速加快,进而提高水力发电机动力的工作效率。
在一个实施例中,所述第二三角塔齿轮座包括第二座圈424、第二塔座425,所述第二塔座425设置在所述第二座圈424上,所述第二塔座425的中间设置有所述第二中心孔426,并且靠近外周的部分均布有多个所述第二连接孔427,两个相邻的所述第二连接孔427之间设置有第二缺口槽428,所述第二内齿轮421设置在所述第二缺口槽428内。
上述技术方案的工作原理:本实施例中第二三角塔齿轮座的结构,该第二三角塔齿轮座包括第二座圈424、第二塔座425,具体而言,第二塔座425安装在第二座圈424上,并且为了安装设计的3个第二内齿轮421,则在第二塔座425上设计了3个对应的第二缺口槽428,第二内齿轮421则安装在第二缺口槽 428内;而第二塔座425上设计了第二中心孔426以及3个第二连接孔427,则正好分别连接着第三轴杆63、和第一轴杆61,而第二内齿轮421连接着第二轴杆62。
上述技术方案的有益效果:通过上述结构的设计,本实施例提供了第二三角塔齿轮座的结构,该第二三角塔齿轮座包括第二座圈424、第二塔座425,通过在第二塔座425上设计第二中心孔426,使得第二三角塔齿轮座可以固定在第三轴杆63上,避免第一塔轮单元41、第二塔轮单元42之间出现干涉;同时,3个第二轴杆61呈三角设计,3个第二轴杆62也呈三角设计,所以这样的三角轴设计机械结稳定,受力均匀,多点转送扭力;同时,第二塔轮单元42中采用3个第二内齿轮421的设计可以吸收更多的重力能。
在一个实施例中,还包括:第一输出机构51,所述第一输出机构51包括所述第一齿轮组、所述第一三角塔齿轮座、所述第一齿轮套412以及多个第一斜齿套52,所述第一齿轮组包括多个第一内齿轮411,多个第一内齿轮411均设置在所述第一三角塔齿轮座上,所述第一轴杆61穿设在所述第一内齿轮411中,所述第二轴杆62穿设在所述第一三角塔齿轮座的第一连接孔417中,所述第三轴杆63穿设在多个所述第一三角塔齿轮座的第一中心孔416内,所述第一齿轮套412套在多个所述第一内齿轮411的外周上,多个所述第一斜齿套52均设置在所述第一齿轮套412上。
上述技术方案的工作原理:外套筒3内的多个第一塔轮单元41在水流的作用下转动,进而带动多个第一轴杆61转动,多个第一轴杆61转动并带动第一输出机构51输出动力,具体而言,第一输出机构51的结构与第一塔轮单元41的结构相似,所以在本实施例中提供了第一输出机构51的结构,该结构的第一输出机构51包括第一齿轮组、所述第一三角塔齿轮座、所述第一齿轮套412以及多个第一斜齿套52,也就是说,第一轴杆61转动并带动第一输出机构51中的第一内齿轮411转动,进而第一内齿轮411带动第一齿轮套412转动,而第一齿轮套412上安装了多个第一斜齿套52,通过多个第一斜齿套52输出动力。
上述技术方案的有益效果:通过上述结构的设计,本实施例中提供第一输出机构51的结构,具体地实现了该纵列多轴塔轮增压动力转换机输出动力的过程。
在一个实施例中,还包括:第二输出机构53,所所述第二输出机构53包括所述第二齿轮组、所述第二三角塔齿轮座、所述第二齿轮套422以及多个第二斜齿套54,所述第二齿轮组包括多个第二内齿轮421,多个第二内齿轮421均设置在所述第二三角塔齿轮座上,所述第二轴杆62穿设在所述第二内齿轮421上,所述第一轴杆61穿设在所述第二三角塔齿轮座的第二连接孔427中,所述第三轴杆63穿设在多个所述第二三角塔齿轮座的第二中心孔426内,所述第二齿轮套422套在多个所述第二内齿轮421的外周上,多个所述第二斜齿套54均设置在所述第二齿轮套422上。
上述技术方案的工作原理:外套筒3内的多个第二塔轮单元42在第一塔轮单元41、水流的共同作用下转动,进而带动多个第二轴杆62转动,多个第二轴杆62转动并带动第二输出机构53输出动力,具体而言,第二输出机构53的结构与第二塔轮单元42的结构相似,所以在本实施例中提供了第二输出机构53的结构,该结构的第二输出机构53包括所述第二齿轮组、所述第二三角塔齿轮座、所述第二齿轮套422以及多个第二斜齿套54,也就是说,第二轴杆62转动并带动第二输出机构53中的第二内齿轮421转动,进而第二内齿轮421带动第二齿轮套422转动,而第二齿轮套422上安装了多个第二斜齿套54,通过多个第二斜齿套54输出动力。
上述技术方案的有益效果:通过上述结构的设计,本实施例中提供第二输出机构53的结构,该第二输出机构53与第一输出机构51配设使用,具体地实现了该纵列多轴塔轮增压动力转换机输出两个动力的过程,提供了该纵列多轴塔轮增压动力转换机的输出能力。
在一个实施例中,所述第一轴杆61、第二轴杆62、第三轴杆63的上端设 置有顶座64,下端设置有底座65。
上述技术方案的工作原理和有益效果:为了更好的固定第一输出机构51防止脱器离第一轴杆61、第二轴杆62、第三轴杆63,所以在第一轴杆61、第二轴杆62、第三轴杆63的上端设计了顶座64,同理;在第一轴杆61、第二轴杆62、第三轴杆63的下端设计了底座65,以此更好的固定最下端的第二塔轮单元42,防止第二塔轮单元42与第一轴杆61、第二轴杆62、第三轴杆63脱离。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或彼此可通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节与这里示出与描述的图例。

Claims (8)

  1. 一种纵列多轴塔轮增压动力转换机,其特征在于,包括:护轴套(1)、入水口端座(2)、外套筒(3)、多个第一塔轮单元(41)、多个第一轴杆(61)、多个第二塔轮单元(42)、多个第二轴杆(62)以及第三轴杆(63);所述入水口端座(2)设置在所述外套筒(3)的上端,所述护轴套(1)设置在所述外套筒(3)内且上端穿出所述入水口端座(2),所述入水口端座(2)上设置有多个入水孔(201),所述第一轴杆、第二轴杆以及第三轴杆(63)均套在所述护轴套(1)内,所述第三轴杆(63)设置在所述护轴套(1)的中部,多个所述第一轴杆(61)、多个所述第二轴杆(62)相互交叉地均布在所述第三轴杆(63)的周围,多个第一塔轮单元(41)由上至下依次设置在所述第一轴杆(61)、第二轴杆(62)上,所述第一塔轮单元(41)与所述第一轴杆(61)传动连接,并与所述第二轴杆(62)转动连接,多个第二塔轮单元(42)由上至下依次设置在所述第一轴杆、第二轴杆上,所述第二塔轮单元(42)与所述第二轴杆传动连接,并与所述第一轴杆转动连接,其中,所述第一塔轮单元(41)位于所述第二塔轮单元(42)的上方,所述第二塔轮单元(42)与所述第一塔轮单元(41)反向转动。
  2. 根据权利要求1所述的纵列多轴塔轮增压动力转换机,其特征在于,所述第一轴杆包括多个第一轴杆(61),所述第一塔轮单元(41)包括第一齿轮组、第一三角塔齿轮座、第一齿轮套(412)以及多个第一投影无隙满轮叶片(413),所述第一齿轮组包括多个第一内齿轮(411),多个第一内齿轮(411)均设置在所述第一三角塔齿轮座上,所述第一轴杆(61)穿设在所述第一内齿轮(411)中,所述第二轴杆(62)穿设在所述第一三角塔齿轮座的第一连接孔(417)中,所述第三轴杆(63)穿设在多个所述第一三角塔齿轮座的第一中心孔(416)内,所述第一齿轮套(412)套在多个所述第一内齿轮(411)的外周上,多个所述第一投影无隙满轮叶片(413)均设置在所述第一齿轮套(412)上。
  3. 根据权利要求2所述的纵列多轴塔轮增压动力转换机,其特征在于,所述第一三角塔齿轮座包括第一座圈(414)、第一塔座(415),所述第一塔座(415)设置在所述第一座圈(414)上,所述第一塔座(415)的中间设置有所述第一 中心孔(416),并且靠近外周的部分均布有多个所述第一连接孔(417),两个相邻的所述第一连接孔(417)之间设置有第一缺口槽(418),所述第一内齿轮(411)设置在所述第一缺口槽(418)内。
  4. 根据权利要求2所述的纵列多轴塔轮增压动力转换机,其特征在于,所述第二塔轮单元(42)包括第二齿轮组、第二三角塔齿轮座、第二齿轮套(422)以及多个第二投影无隙满轮叶片(423),所述第二齿轮组包括多个第二内齿轮(421),多个第二内齿轮(421)均设置在所述第二三角塔齿轮座上,所述第二轴杆(62)穿设在所述第二内齿轮(421)上,所述第一轴杆(61)穿设在所述第二三角塔齿轮座的第二连接孔(427)中,所述第三轴杆(63)穿设在多个所述第二三角塔齿轮座的第二中心孔(426)内,所述第二齿轮套(422)套在多个所述第二内齿轮(421)的外周上,多个所述第二投影无隙满轮叶片(423)均设置在所述第二齿轮套(422)上,并且所述第二投影无隙满轮叶片(423)与所述第一投影无隙满轮叶片(413)反向对称。
  5. 根据权利要求4所述的纵列多轴塔轮增压动力转换机,其特征在于,所述第二三角塔齿轮座包括第二座圈(424)、第二塔座(425),所述第二塔座(425)设置在所述第二座圈(424)上,所述第二塔座(425)的中间设置有所述第二中心孔(426),并且靠近外周的部分均布有多个所述第二连接孔(427),两个相邻的所述第二连接孔(427)之间设置有第二缺口槽(428),所述第二内齿轮(421)设置在所述第二缺口槽(428)内。
  6. 根据权利要求2所述的纵列多轴塔轮增压动力转换机,其特征在于,还包括:第一输出机构(51),所述第一输出机构(51)包括所述第一齿轮组、所述第一三角塔齿轮座、所述第一齿轮套(412)以及多个第一斜齿套(52),所述第一齿轮组包括多个第一内齿轮(411),多个第一内齿轮(411)均设置在所述第一三角塔齿轮座上,所述第一轴杆(61)穿设在所述第一内齿轮(411)中,所述第二轴杆(62)穿设在所述第一三角塔齿轮座的第一连接孔(417)中,所述第三轴杆(63)穿设在多个所述第一三角塔齿轮座的第一中心孔(416)内,所述第一齿轮套(412)套在多个所述第一内齿轮(411)的外周上,多个所述 第一斜齿套(52)均设置在所述第一齿轮套(412)上。
  7. 根据权利要求4所述的纵列多轴塔轮增压动力转换机,其特征在于,还包括:第二输出机构(53),所述第二输出机构包括所述第二齿轮组、所述第二三角塔齿轮座、所述第二齿轮套以及多个第二斜齿套(54),所述第二齿轮组包括多个第二内齿轮,多个第二内齿轮均设置在所述第二三角塔齿轮座上,所述第二轴杆穿设在所述第二内齿轮上,所述第一轴杆穿设在所述第二三角塔齿轮座的第二连接孔中,所述第三轴杆穿设在多个所述第二三角塔齿轮座的第二中心孔内,所述第二齿轮套套在多个所述第二内齿轮的外周上,多个所述第二斜齿套(54)均设置在所述第二齿轮套上。
  8. 根据权利要求1所述的纵列多轴塔轮增压动力转换机,其特征在于,所述第一轴杆(61)、第二轴杆(62)、第三轴杆(63)的上端设置有顶座(64),下端设置有底座(65)。
PCT/CN2021/074013 2020-12-15 2021-01-27 一种纵列多轴塔轮增压动力转换机 WO2022126834A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21904781.8A EP4249747A4 (en) 2020-12-15 2021-01-27 MULTI-LONGITUDINAL SHAFT CONE PULLEY SUPERCHARGE POWER CONVERTER
JP2023558919A JP2023552501A (ja) 2020-12-15 2021-01-27 縦列多軸ステッププーリーによる増圧動力変換装置
US18/267,465 US11971007B2 (en) 2020-12-15 2021-01-27 Power converter having boosting mechanism with multi-shaft vertically stepped turbine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011479383.7 2020-12-15
CN202011479383.7A CN112594116B (zh) 2020-12-15 2020-12-15 一种纵列多轴塔轮增压动力转换机

Publications (1)

Publication Number Publication Date
WO2022126834A1 true WO2022126834A1 (zh) 2022-06-23

Family

ID=75195923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/074013 WO2022126834A1 (zh) 2020-12-15 2021-01-27 一种纵列多轴塔轮增压动力转换机

Country Status (5)

Country Link
US (1) US11971007B2 (zh)
EP (1) EP4249747A4 (zh)
JP (1) JP2023552501A (zh)
CN (1) CN112594116B (zh)
WO (1) WO2022126834A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4464095A (en) * 1982-06-25 1984-08-07 Kango Iida Hydraulic energy converter
US20110012361A1 (en) * 2009-07-16 2011-01-20 Lee S Peter Integrated turbine generator/motor and method
WO2012021951A1 (pt) * 2010-08-18 2012-02-23 Pettersen Euclydes Algembejer Motor hidráulico por sistema submerso de turbina
CN102953899A (zh) * 2011-08-16 2013-03-06 董禹全 水轮机双向作功技术
CN104514666A (zh) * 2013-09-27 2015-04-15 中国石油天然气股份有限公司 一种注水井井下发电系统及方法
CN109915303A (zh) * 2019-05-08 2019-06-21 段家忠 一种涡扇式轴流水轮机
CN210003446U (zh) * 2019-05-22 2020-01-31 刘光明 一种水利水电用涡轮发电装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1615619A (en) 1925-05-08 1927-01-25 Finne William Two-way water turbine
CN2766057Y (zh) * 2004-10-29 2006-03-22 崇恩秀 塔式风力发电机
US7791213B2 (en) * 2008-08-20 2010-09-07 Patterson Morris D Vertical motion wave power generator
WO2010141347A2 (en) * 2009-06-01 2010-12-09 Synkinetics, Inc. Multi-rotor fluid turbine drive with speed converter
WO2011145762A1 (ko) * 2010-05-20 2011-11-24 (주)이지펙스 유체기계용 반전회전장치
CN102278262B (zh) * 2011-07-06 2013-06-05 大连理工大学 正反旋转双叶轮水平轴潮流发电机组
CN102536616A (zh) * 2012-01-13 2012-07-04 同济大学 反倾向双叶轮管道式潮流发电水轮机
TW201337093A (zh) * 2012-03-07 2013-09-16 Meng-Chyang Peng 海浪發電設備
CN108547722A (zh) * 2018-04-09 2018-09-18 刘宇 一种高效立体式海洋能采集装置
CA3128890A1 (en) 2019-02-08 2020-08-13 Grace COULTER Improvements to a helical fan/pump/propeller/turbine
CN110397545B (zh) * 2019-07-08 2021-05-18 武汉大学 一种螺旋叶对旋式双转轮水轮机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4464095A (en) * 1982-06-25 1984-08-07 Kango Iida Hydraulic energy converter
US20110012361A1 (en) * 2009-07-16 2011-01-20 Lee S Peter Integrated turbine generator/motor and method
WO2012021951A1 (pt) * 2010-08-18 2012-02-23 Pettersen Euclydes Algembejer Motor hidráulico por sistema submerso de turbina
CN102953899A (zh) * 2011-08-16 2013-03-06 董禹全 水轮机双向作功技术
CN104514666A (zh) * 2013-09-27 2015-04-15 中国石油天然气股份有限公司 一种注水井井下发电系统及方法
CN109915303A (zh) * 2019-05-08 2019-06-21 段家忠 一种涡扇式轴流水轮机
CN210003446U (zh) * 2019-05-22 2020-01-31 刘光明 一种水利水电用涡轮发电装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4249747A4 *

Also Published As

Publication number Publication date
CN112594116B (zh) 2021-08-31
JP2023552501A (ja) 2023-12-15
EP4249747A4 (en) 2024-02-07
US11971007B2 (en) 2024-04-30
US20240044310A1 (en) 2024-02-08
EP4249747A1 (en) 2023-09-27
CN112594116A (zh) 2021-04-02

Similar Documents

Publication Publication Date Title
TWI296302B (zh)
JP6356757B2 (ja) レース下潤滑方式による円筒ローラ軸受を備えた遊星ギアボックス
JP5844959B2 (ja) 歯車型差動速度二重反転式低圧タービン
CN106065830B (zh) 一种基于旋转阀与气动阀组合的脉冲爆震燃烧室装置
US20110097189A1 (en) Boundary layer effect turbine
JP2018516331A5 (ja) タービンエンジン用のエピサイクリック歯車列を有する減速装置
JP2001221141A (ja) 軸流水車発電装置
US11230942B2 (en) Gas turbine engine electrical generator
CN106195136A (zh) 一种齿轮驱动风扇(gtf)发动机齿轮传动装置
EP2939929B1 (en) Multi-axis accessory gearboxes of mechanical drive systems and gas turbine engines including the same
US8075438B2 (en) Apparatus and method for transmitting a rotary input into counter-rotating outputs
JP5896449B2 (ja) ターボファンジェットエンジン
CN101457656A (zh) 双转向透平式叶轮机及双转向叶轮发动机
US7062900B1 (en) Single wheel radial flow gas turbine
WO2022126834A1 (zh) 一种纵列多轴塔轮增压动力转换机
CN106593642A (zh) 平转发动机
CN217582378U (zh) 风力发电传动系统
CN105781737A (zh) 动力单元组合曲柄行星轮发动机
CN201723303U (zh) 行星式旋转内燃机
CN205000995U (zh) 背靠背式的涡轮
CN207777533U (zh) 带纠偏联轴器的双原动力驱动用齿轮组和超越离合器集成
CN106089412A (zh) 一种缸体旋转活塞差动式发动机
WO2017041197A1 (zh) 多轴套传动双向旋转轮扇式涡轮机及镶套轮扇式压气机
CN213928581U (zh) 一种单轴齿轮传动涡扇发动机
CN205605329U (zh) 双反涡扇发动机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21904781

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023558919

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18267465

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2021904781

Country of ref document: EP

Effective date: 20230620

NENP Non-entry into the national phase

Ref country code: DE