WO2022124828A1 - 핫 스탬핑 부품 및 이의 제조 방법 - Google Patents

핫 스탬핑 부품 및 이의 제조 방법 Download PDF

Info

Publication number
WO2022124828A1
WO2022124828A1 PCT/KR2021/018671 KR2021018671W WO2022124828A1 WO 2022124828 A1 WO2022124828 A1 WO 2022124828A1 KR 2021018671 W KR2021018671 W KR 2021018671W WO 2022124828 A1 WO2022124828 A1 WO 2022124828A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature increase
increase rate
average temperature
change rate
heating section
Prior art date
Application number
PCT/KR2021/018671
Other languages
English (en)
French (fr)
Inventor
윤승채
공제열
김성민
김제우수
김혜진
박재명
유병길
육완
임기학
정승필
정현영
Original Assignee
현대제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대제철 주식회사 filed Critical 현대제철 주식회사
Priority to EP21903874.2A priority Critical patent/EP4260960A1/en
Priority to CN202180083200.6A priority patent/CN116568420A/zh
Priority to JP2022575414A priority patent/JP2023535866A/ja
Publication of WO2022124828A1 publication Critical patent/WO2022124828A1/ko
Priority to US18/079,453 priority patent/US20230104619A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • B21D22/022Stamping using rigid devices or tools by heating the blank or stamping associated with heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/16Heating or cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0006Details, accessories not peculiar to any of the following furnaces

Definitions

  • the present invention relates to a hot stamped part and a method for manufacturing the same.
  • the hot stamping process is generally made of heating/forming/cooling/trimming, and changes in microstructure such as phase transformation of materials and alloying of plating can be used during the process.
  • the microstructure characteristics of the hot stamping material may vary depending on the heating or heat treatment temperature, and accordingly, hydrogen embrittlement and welding performance may vary.
  • Embodiments of the present invention provide a hot stamping part in which the part performance of a hot stamping material such as strength characteristics, hydrogen embrittlement according to the amount of mixed hydrogen, and weldability according to the plating layer structure is improved by controlling the hot stamping heating temperature, and a method for manufacturing the same do.
  • a hot stamping material such as strength characteristics, hydrogen embrittlement according to the amount of mixed hydrogen, and weldability according to the plating layer structure is improved by controlling the hot stamping heating temperature, and a method for manufacturing the same do.
  • a method of manufacturing a hot stamping part comprising: inputting a blank having a plating layer formed on at least one surface of a base material into a heating furnace having a plurality of sections having different temperature increase rate ranges; and a multi-stage heating step of heating the blank in stages while passing through the plurality of sections, wherein the plurality of sections includes: a first heating section having a first average rate of change of temperature increase rate; After the first heating section, a second heating section having a second average temperature increase rate change rate different from the first average temperature increase rate change rate; And after the second heating section, a third heating section having a third average temperature increase rate change rate different from the first average temperature increase rate change rate and the second average temperature increase rate change rate; Containing, the third average temperature increase rate change rate includes an interval that changes from a positive value to a negative value.
  • the change from the first average temperature increase rate change rate to the second average temperature increase rate change rate may be discontinuous.
  • the third heating section includes a 3-1 heating section having a 3-1 average temperature increase rate change rate and a 3-2 heating section having a 3-2 average temperature increase rate change rate, wherein the 3-1 average temperature increase rate change rate
  • the rate of change has a positive value
  • the 3-2 average rate of change of the temperature increase rate has a negative value
  • the 3-1 absolute value of the average rate of temperature increase rate of change is the absolute value of the 3-2 average rate of change of the temperature increase rate.
  • the first average temperature increase rate change rate and the second average temperature increase rate change rate may each have a negative value, and the absolute value of the first average temperature increase rate change rate may be greater than the absolute value of the second average temperature increase rate change rate.
  • the plurality of sections after the third heating section, the first average temperature increase rate change rate, the second average temperature increase rate change rate, and a fourth heating section having a fourth average temperature increase rate change rate different from the third average temperature increase rate change rate Further comprising, the absolute value of the fourth average temperature increase rate change rate may be smaller than the absolute value of each of the first average temperature increase rate change rate, the second average temperature increase rate change rate, and the third average temperature increase rate change rate.
  • the 3-1 average temperature increase rate change rate may have a value of 0 or more and 0.25 °C/s 2 or less, and the 3-2 average temperature increase rate change rate may have a value of -0.3 °C/s 2 or more and 0 or less.
  • the first average temperature increase rate change rate may have a value of -0.5 °C/s 2 or more and 0 or less
  • the second average temperature increase rate change rate may have a value of -0.25 °C/s 2 or more and 0 or less.
  • the plating layer may be alloyed in the second heating section, and the base material may undergo a phase transformation in the third heating section.
  • the amount of mixed hydrogen may be 0 or more and less than 0.21 ppm, and the dynamic resistance value may be more than 0 and 0.8 m ⁇ or less.
  • the component performance of the hot stamping material such as strength characteristics, hydrogen embrittlement according to the amount of mixed hydrogen, and weldability according to the plating layer structure, for hot stamping steel can be improved
  • FIG. 1 is a flowchart schematically illustrating a method of manufacturing a hot stamping part according to an embodiment of the present invention.
  • 2 is a graph showing the temperature change of the blank when the blank is single heated by the conventional method.
  • FIG 3 is a graph illustrating a temperature change when a blank is heated in multiple stages and heated by cracking in the method of manufacturing a hot stamping part according to an embodiment of the present invention.
  • FIG. 4 is a graph showing the rate of change of the temperature increase rate in a plurality of sections according to the heating time in the method of manufacturing a hot stamping part according to an embodiment of the present invention.
  • SEM scanning electron microscope
  • SEM scanning electron microscope
  • FIG. 7 is a plan view schematically illustrating a blank used in a method of manufacturing a hot stamping part according to an embodiment of the present invention.
  • FIG. 8 is a plan view schematically illustrating a blank inserted into a heating furnace in a method of manufacturing a hot stamping part according to an embodiment of the present invention.
  • a specific process sequence may be performed different from the described sequence.
  • two processes described in succession may be performed substantially simultaneously, or may be performed in an order opposite to the order described.
  • FIG. 1 is a flowchart schematically illustrating a method of manufacturing a hot stamping part according to an embodiment of the present invention. Hereinafter, a method of manufacturing a hot stamping part will be described with reference to FIG. 1 .
  • the method of manufacturing a hot stamping part may include a blank input step (S100) and a multi-stage heating step (S200), and after the multi-stage heating step (S200), a transfer step (S300), forming It may further include a step (S400), and a cooling step (S500).
  • the blank input step (S100) may be a step of inputting the blank into a heating furnace having a plurality of sections having different temperature increase rate ranges.
  • the blank may be provided in a form in which a plating layer is formed on at least one surface of the base material.
  • the blank input into the heating furnace may be formed by cutting a plate (or a base material) for forming a hot stamping part.
  • the plate material may be manufactured by performing hot rolling or cold rolling on a steel slab, followed by annealing heat treatment.
  • an Al-Si-based plating layer or a Zn plating layer may be formed on at least one surface of the annealed sheet material, and the type of the plating layer formed on one surface of the base material is not limited thereto.
  • a multi-stage heating step (S200) may be performed.
  • the multi-stage heating step (S200) may be a step in which the blank passes through a plurality of sections provided in the heating furnace and is heated step by step.
  • the multi-stage heating step ( S200 ) will be described in more detail using the graphs of FIGS. 2 to 4 to be described later.
  • the multi-stage heating step (S200), the transferring step (S300), the forming step (S400), and the cooling step (S500) may be further performed.
  • the transferring step (S300) may be a step of transferring the crack-heated blank from the heating furnace to the press mold during multi-stage heating.
  • the crack-heated blank may be air-cooled for 7 seconds to 15 seconds, preferably, it may be air-cooled for 10 seconds to 15 seconds.
  • the forming step (S400) may be a step of hot stamping the transferred blank to form a molded body.
  • the cooling step (S500) may be a step of cooling the formed body.
  • a final product After being molded into a final part shape in a press mold, a final product may be formed by cooling the molded body.
  • a cooling channel through which a refrigerant circulates may be provided in the press mold. It is possible to rapidly cool the blank heated by circulation to the refrigerant supplied through the cooling channel provided in the press mold at the same time as molding. At this time, in order to prevent a spring back phenomenon of the plate material and maintain a desired shape, rapid cooling may be performed while pressurizing the press die in a closed state.
  • the average cooling rate can be cooled to at least 10° C./s or more to the martensite end temperature.
  • the blank can be held in the press mold for 3 to 20 seconds.
  • the holding time in the press mold is less than 3 seconds, a sufficient amount of martensite may not be generated and mechanical properties may not be secured. In addition, when the holding time in the press mold exceeds 20 seconds, the holding time in the press mold becomes long and productivity may decrease.
  • FIG. 2 is a graph showing the temperature change of the blank when the blank is single heated by the conventional method. Specifically, FIG. 2 shows a blank having a thickness of 1.2 mm and a blank having a thickness of 1.6 mm after setting the temperature of the furnace so that the internal temperature of the furnace is maintained equal to the target temperature (T t ) of the blank. In the case of a single heating (310, 320) at the same time, it is a graph showing the temperature change of these blanks with time.
  • the target temperature (T t ) of the blank may be equal to or higher than Ac3 (the temperature at which the transformation from ferrite to austenite is completed).
  • the target temperature (T t ) of the blank may be about 930 °C. More preferably, the target temperature (T t ) of the blank may be about 950 °C.
  • the present invention is not limited thereto.
  • the single heating is not performed by putting a blank having a thickness of 1.2 mm and a blank having a thickness of 1.6 mm into the heating furnace and heating, but after setting the temperature of the heating furnace to a single temperature, 1.2 mm in the heating furnace It means a case where a blank having a thickness of , and a blank having a thickness of 1.6 mm are simultaneously input and heated.
  • a blank having a thickness of 1.2 mm and a blank having a thickness of 1.6 mm are single-heated at the same time , it can be seen that the blank with a thickness of 1.2 mm reaches the target temperature (T t ) first compared to the blank with a thickness of 1.6 mm.
  • the blank with a thickness of 1.2 mm first reaches the target temperature T t , so that the blank with a thickness of 1.2 mm is crack-heated 310 for a first time S1 , and a blank with a thickness of 1.6 mm may be crack-heated for a second time (S2) shorter than the first time (S1) ( 320 ). Since the crack heating time is adjusted based on the blank reaching the target temperature late, the blank with a thickness of 1.2 mm that reached the target temperature first is overheated, so that the hydrogen-delayed rupture of the blank with a thickness of 1.2 mm increases, and weldability this may be lowered.
  • a component including an Al-Si plating layer may be accompanied by an alloying of the plating layer and a phase transformation operation of the base material during the hot stamping process.
  • the structure of the plating layer, the thickness of the interdiffusion layer, the plating layer peeling, the formability, hydrogen embrittlement, and weldability are determined differently depending on the temperature history applied to the component and the control of the hot stamping process.
  • the existing hot stamping process can be controlled based on the above-described final target temperature (T t ) or the overall temperature increase rate. , hereinafter, in the embodiments of the present invention, by controlling the rate of change of the temperature increase rate for the blank, it is intended to easily and precisely control the component performance.
  • FIG. 3 is a graph illustrating a temperature change when a blank is heated in multiple stages and heated by cracking in the method for manufacturing a hot stamping part according to an embodiment of the present invention. More specifically, Figure 3 according to time in the case of multi-stage heating 510 of a blank having a thickness of 1.2 mm, and multi-stage heating 520 of a blank having a thickness of 1.6 mm in an embodiment of the present invention As a graph showing the temperature change, it shows the temperature change with time.
  • the heating furnace may include a plurality of sections P1 , P2 , P3 , and P4 having different temperature ranges. More specifically, the heating furnace has a first heating section (P1) having a first temperature range (T1), a second heating section (P2) having a second temperature range (T2), and a third temperature range (T3) A third heating section (P3) and a fourth heating section (P4) having a fourth temperature range (T4) may be provided.
  • the third heating section T3 may include two sections having different temperature ranges.
  • the third heating section T3 is a 3-1th heating section P3-1 having a 3-1th temperature range T3-1 and a 3-2th heating section P3-1 having a 3-2 temperature range T3-2. It may include a heating section (P3-2).
  • the second heating section T2 may include a plurality of sections having different temperature ranges.
  • the second heating section (T2) is a 2-1th heating section (P2-1) having a 2-1th temperature range (T2-1) to a 2-nth having a 2-nth temperature range (T2-n) It may include a heating section (P2-n).
  • the first heating section T1 may include a plurality of sections having different temperature ranges.
  • the first heating section (T1) is a 1-n-th having a 1-1 heating section (P1-1) to a 1-n-th temperature range (T1-n) having a 1-1 temperature range (T1-1) It may include a heating section (P1-n).
  • the first heating section (P1) to the fourth heating section (P4) may be sequentially arranged in the heating furnace.
  • the first heating section (P1) may be adjacent to the inlet of the heating furnace into which the blank is put, and the fourth heating section (P4) may be adjacent to the outlet of the heating furnace through which the blank is discharged.
  • the first heating section P1 having the first temperature range T1 may be the first section of the heating furnace
  • the fourth heating section P4 having the fourth temperature range T4 is the last section of the heating furnace. It can be a section.
  • the fourth heating section P4, which is the last section among the plurality of sections of the heating furnace may be a section in which crack heating is performed, not a section in which multi-stage heating is performed.
  • the temperature of the plurality of sections provided in the heating furnace for example, the temperature of the first heating section (P1) to the fourth heating section (P4) increases in the direction of the outlet of the furnace from which the blank is taken out from the inlet of the furnace into which the blank is put. can do.
  • a temperature difference between two adjacent sections among a plurality of sections provided in the heating furnace may be greater than 0°C and less than or equal to 100°C.
  • the temperature difference between the first heating section (P1) and the second heating section (P2) may be greater than 0°C and less than or equal to 100°C.
  • the first temperature range T1 of the first heating section P1 may be 840 °C to 860 °C, and 835 °C to 865 °C.
  • the second temperature range T2 of the second heating section P2 may be 870 °C to 920 °C, and 865 °C to 925 °C.
  • the 3-1 th temperature range T3-1 of the 3-1 th section P3-1 may be 920°C to 940°C, and may be 915°C to 945°C.
  • the 3-2 temperature range T3 -2 of the 3-2 section P3-2 may be 940°C to 960°C, and 935°C to 965°C.
  • the fourth temperature range T4 of the fourth heating section P4 may be Ac3 to 1,000°C.
  • the fourth temperature range (T4) of the fourth heating section (P4) may be 930 °C or more and 1,000 °C or less. More preferably, the fourth temperature range T4 of the fourth heating section P4 may be 950°C or more and 1,000°C or less.
  • the second heating section (P2) when the second heating section (P2) includes a 2-1 heating section (P2-1) and a second heating section (P2-2) having different temperature ranges as described above, the second heating section (P2-2)
  • the 2-1 temperature range (T2-1) may be 870°C to 890°C, and may be 865°C to 895°C, and the 2-2 second temperature range (T2-) of the second 2-2 heating section (P2-2). 2) may be 900°C to 920°C, and 895°C to 925°C.
  • Boundary values defining the plurality of sections described above will be described.
  • the boundary values represent the heating time range (sec) as the horizontal axis of the graph.
  • the first boundary value e1 positioned between the first heating section P1 and the second heating section P2 may be about 30 to about 50, and may be about 40 (sec).
  • the second boundary value e2 positioned between the second heating section P2 and the third heating section P3 may be about 80 to about 130, and may be about 85 (sec).
  • the third boundary value e3 positioned between the 3-1 heating section P3-1 and the 3-2 heating section P3-2 may be about 110 to about 180, and about 120 (sec) can be
  • the fourth boundary value e4 positioned between the 3-2 heating section P3-2 and the fourth heating section P4 may be about 140 to about 230, and may be about 150 (sec).
  • the second heating section (P2) when the second heating section (P2) includes a 2-1 heating section (P2-1) and a second heating section (P2-2) having different temperature ranges as described above, the second heating section (P2-2)
  • the 2-1 threshold value (e2') positioned between the 2-1 heating section (P2-1) and the 2-2 heating section (P2-2) may be about 50 to about 110, and about 60 ( sec).
  • the heating furnace according to an embodiment of the present invention is illustrated as having five sections (P1, P2, P3-1, P3-2, P4) having different temperature ranges, but the present invention This is not limited thereto. Five, seven, or eight sections having different temperature ranges may be provided in the heating furnace.
  • FIG. 4 is a graph showing the rate of change of the temperature increase rate of a plurality of sections according to the heating time in the method for manufacturing a hot stamping part according to an embodiment of the present invention, and the heating rate of the blank according to the heating time (s) (°C / s) show the graph.
  • the plurality of sections and boundary values shown in FIG. 4 have the same contents as those described above in FIG. 3 , and descriptions may be simplified or omitted.
  • the distribution of the temperature increase rate (°C/s) or the rate of change of the temperature increase rate (°C/s 2 ) of a plurality of sections in which the multi-stage heating of the blank is performed is as described later.
  • the term "change rate of temperature increase rate” refers to an average slope of each section of the graph shown in FIG. 4 , and may be described as 'average rate of temperature increase rate change' hereinafter.
  • the 'average temperature increase rate change rate' in one section may be defined as, for example, a value obtained by dividing the difference between the initial temperature increase rate and the final temperature increase rate in the corresponding section by the time of the corresponding section. 4 shows a first temperature increase rate control curve 610 and a second temperature increase rate control curve 620 according to a comparative embodiment according to an embodiment of the present invention.
  • the first heating section (P1) may have a first average temperature increase rate change rate (r1).
  • the second heating section (P2) positioned after the first heating section (P1) may have a second average temperature increase rate change rate (r2) different from the first average temperature increase rate change rate (r1).
  • the third heating section (P3) positioned after the second heating section (P2) may have a third average temperature increase rate change rate (r3) different from the first and second average temperature increase rate change rates (r1, r2).
  • the third average temperature increase rate change rate r3 may include a section in which a positive value is changed to a negative value.
  • the fourth heating section (P4) positioned after the third heating section (P3) is a fourth average temperature increase rate change rate (r4) different from the first, second and third average temperature increase rate change rates (r1, r2, r3) can have
  • the first heating section (P1) may be a general temperature rising section, and in the second heating section (P2), the temperature increase rate is gently decreased compared to the first heating section (P1) (
  • the third heating section (P3) is a phase transformation section in which the base material of the blank undergoes phase transformation, and the 3-1 heating section (P3-1) has a positive (+) temperature increase rate change rate, and the 3-2 heating section (P3- 2) may have a negative (-) rate of change of the temperature increase rate.
  • the fourth heating section P4 may be a stabilization section in which the blank is heated by cracking to a uniform temperature.
  • the first average temperature increase rate change rate (r1) and the second average temperature increase rate change rate (r2) each have a negative value
  • the absolute value of the first average temperature increase rate change rate (r1) may be greater than the absolute value of the second average temperature increase rate change rate (r2) (
  • the first average temperature increase rate change rate (r1) may be about -0.5 °C/s 2 or more and 0 or less, for example about -0.3 °C/s 2 .
  • the second average temperature increase rate change rate (r2) may be about -0.25 °C/s 2 or more and 0 or less, for example, about -0.07 °C/s 2 .
  • the change from the first average temperature increase rate change rate (r1) to the second average temperature increase rate rate change rate (r2) is It is discontinuous. More specifically, the temperature increase rate v1 in the first boundary value e1 defining the first average temperature increase rate change rate r1 in the first heating section P1, and the second heating section P2 in the second heating section P2 2
  • the temperature increase rate v2 in the first boundary value e1 defining the average temperature increase rate change rate r2 may have different values.
  • the final temperature increase rate v1 of the first average temperature increase rate change rate r1 and the initial temperature increase rate v2 of the second average temperature increase rate change rate r2 may have different values.
  • the rate of change of the temperature increase rate discontinuously changes in the vicinity of the first boundary value e1 (r1 ⁇ r2) (610)
  • the discontinuous change of the average temperature increase rate change rate between the first heating section P1 and the second heating section P2 is because a lot of energy is required to change the plating layer.
  • Fe of the base material In order for Fe of the base material to be diffused into the Al plating layer and the Al-Fe phase is initially generated and grown in the plating layer, necessary energy must be supplied.
  • Fe diffused into the base material creates an Al-Fe-Si alloy layer over time.
  • the more discontinuous the change in the rate of change of the temperature increase rate near the first boundary value e1 the more uniform the diffusion to the surface. Thus, good weldability can be obtained.
  • the change when the change is continuous, since the diffusion of Al-Fe-Si to the surface is made quickly and non-uniformly, phases with high welding resistance exist on the surface, resulting in poor weldability.
  • the third heating section (P3) is a third having a 3-1 heating section (P3-1) and a 3-2 temperature increase rate change rate (r3-2) having a 3-1 temperature increase rate change rate (r3-1) -2 includes a heating section (P3-2).
  • the 3-1 average temperature increase rate change rate (r3-1) has a positive value
  • the 3-2 average temperature increase rate change rate (r3-2) has a negative value
  • the third average temperature increase rate change rate (r3) is It may have an interval that changes from positive to negative values.
  • the absolute value of the 3-1 average temperature increase rate change rate (r3-1) may be smaller than the absolute value of the 3-2 average temperature increase rate change rate (r3-2) (
  • the 3-1 average temperature increase rate change rate (r3-1) may be 0 or more and about 0.25 ° C./s 2 or less, for example, the 3-1 average temperature increase rate change rate (r3-1) may be about 0.07 ° C / s 2 have.
  • the average temperature increase rate change rate (r3-2) may be about -0.3 °C/s 2 or more and 0 or less, for example, about -0.08 °C/s 2 .
  • the second control curve 620 has a form in which the rate of change of the temperature increase rate rapidly increases or discontinuously increases in the 3-1 heating section P3-1. Brittleness can be inferior.
  • the third heating section (P3) unlike between the first heating section (P1) and the second heating section (P2), as a section in which the phase transformation of the base material is performed, when there is a sudden temperature change, hydrogen embrittlement due to this, Since there may be problems such as delayed fracture, the lower the rate of change of the temperature increase rate, the more advantageous.
  • the 3-1 average temperature increase rate change rate from the second average temperature increase rate change rate (r2) changes from a negative value to a positive value. That is, as the temperature increase rate decreases and then increases, a phase transformation of the base material may occur. For example, during the phase transformation of the base material, when transforming to austenite in the corresponding section, an endothermic reaction occurs, and energy supply is required for this. can induce a phase transformation of
  • the change in the average temperature increase rate change rate (r3-2) changes from a positive value to a negative value. That is, as the temperature increase rate increases and then decreases again, a phase transformation of the base material may occur. As the phase transformation progresses, the endothermic reaction requires a large amount of heat energy, so the temperature increase rate increases. However, as the phase transformation proceeds, the amount of austenite increases, so that in the 3-2 heating section (P3-2), the thermal energy required for the endothermic reaction may gradually decrease, resulting in a decrease in the temperature increase rate.
  • the absolute value of the fourth average temperature increase rate change rate (r4) may be smaller than the absolute value of each of the first average temperature increase rate change rate (r1), the second average temperature increase rate change rate (r2), and the third average temperature increase rate change rate (r3) .
  • the fourth average temperature increase rate change rate (r4) is a value close to zero, and the fourth heating section (P4) may be a section heated by cracking to a uniform temperature.
  • the heating time (t4) of the blank may be about 50% or less of the total heating time (t).
  • the ratio (t1:t4) of the length of the multi-stage heating section (P1, P2, P3) to the length of the crack heating section (P4) may satisfy 1:1 to 4:1.
  • the characteristics of the second control curve 620 compared to the above-described first control curve 610 will be described, but differences from the first control curve 610 will be mainly described.
  • the first 'average temperature increase rate change rate (r1') between the first heating section (P1) and the second heating section (P2) is continuously changed. More specifically, the first 'in the first heating section (P1), the temperature increase rate at the first boundary value (e1) defining the average temperature increase rate change rate (r1), and the first 'in the second heating section (P2)
  • the temperature increase rate v1' in the first boundary value e1 defining the average temperature increase rate change rate r1' may have the same value.
  • the first 'average temperature increase rate change rate (r1') may be about -0.26 °C/s 2 or more and 0 or less, for example, about -0.2 °C/s 2 .
  • the change characteristics of the rate of change of the temperature increase rate (r3';r3-1',r3-2') in the third heating section P3 of the second control curve 620 are the same as those described in the first control curve 610 can have However, the 3-1' temperature increase rate change rate (r3-1') may have a discontinuous, unstable value compared to the 3-1 average temperature increase rate change rate (r3-1) of the first control curve 610 .
  • the 3-1' rate of change of the temperature increase rate (r3-1') may mean a rate of change at the front end in which the rate of temperature increase shows an increasing trend during the 3-1 heating section (P3-1).
  • the third 3-1' temperature increase rate change rate (r3-1') may be about 0.04 °C/s 2 or more and about 0.16 °C/s 2 or less, for example, about 0.1 °C/s 2 .
  • the rate of change of the temperature increase rate (r3-2') may be about -0.16 °C/s 2 or more and about -0.04 °C/s 2 or less, for example, about -0.1 °C/s 2 .
  • the fourth heating section P4 of the second control curve 620 like the first control curve 610, the fourth average temperature increase rate change rate (r4) may be a crack heating section having a value close to zero.
  • the relationship between the heating time (s) and the boundary values shown on the horizontal axis of FIG. 4 is not limited to that shown in FIG. 4, and various changes may be applied within the range of improving the part performance of the hot stamping part of the present disclosure. .
  • the plurality of sections has been described as having five sections, but the plurality of sections may be differently classified according to the distribution of the rate of change of the temperature increase rate.
  • the hot stamping part according to FIG. 5 is a scanning electron microscope (SEM) image showing a cross section of a hot stamping part according to an embodiment of the present invention.
  • the hot stamping part according to FIG. 5 may be a part manufactured by the above-described hot stamping part manufacturing method according to an embodiment of the present invention (eg, curve 610 in FIG. 4 ).
  • the hot stamping part 1 may include a plating layer 20 including a base material 10 and a plurality of layers 21 , 22 , 23 and 24 positioned on the base material 10 .
  • the base material 10 may be a steel sheet manufactured by performing a hot rolling process and/or a cold rolling process on a steel slab cast to include a predetermined alloy element in a predetermined content as a base steel sheet.
  • the base steel sheet 100 is carbon (C), silicon (Si), manganese (Mn), phosphorus (P), sulfur (S), titanium (Ti), boron (B), the balance iron (Fe) , and other unavoidable impurities.
  • the base steel sheet 100 may further include one or more of niobium (Nb), molybdenum (Mo), and aluminum (Al).
  • the plating layer 20 is formed on at least one surface of the base material 10 as an alloying layer, and may include aluminum (Al), iron (Fe), or the like.
  • the plating layer 20 may include a plurality of layers 21 , 22 , 23 , and 24 sequentially stacked on the base material 10 .
  • the plating layer 20 may be clearly divided into four layers.
  • the plurality of layers 21 , 22 , 23 , and 24 may sequentially have an ⁇ -Fe phase, an Fe 2 Al 5 phase, an AlFe phase, and an Fe 2 Al 5 phase, but the composition of the plurality of layers is not limited thereto.
  • the amount of mixed hydrogen may be 0 or more and less than 0.21 ppm, and the dynamic resistance value may be more than 0 and 0.8 m ⁇ or less.
  • FIG. 6 is a scanning electron microscope (SEM) image showing a cross section of a hot stamping part according to a comparative embodiment of the present invention, and portions that are different from the cross section of FIG. 5 will be mainly described.
  • the hot stamping part 1 ′ according to FIG. 6 may be a part manufactured by the above-described hot stamping part manufacturing method (eg, curve 620 in FIG. 4 ).
  • the hot stamping part 1 ′ illustrated in FIG. 6 may include a base material 10 and a plating layer 30 positioned on the base material 10 .
  • the plating layer 30 may be a single layer rather than a plurality of layers, and may be thinner than the plating layer 20 .
  • the plating layer 30 may have an unclear boundary even if it includes a plurality of layers.
  • the plating layer 30 may include at least one of Al, Fe, and Si.
  • the amount of mixed hydrogen may be 0 or more and less than 0.35 ppm, and the dynamic resistance value may be 0.5 m ⁇ or more and 1.5 m ⁇ or less.
  • Example 1 (FIG. 5) Comparative Example (FIG. 6) plating layer thickness thick tenuity amount of mixed hydrogen (hydrogen embrittlement) less (predominance) plenty (inferiority) dynamic resistance Small (about 0.8 m ⁇ or less) greatness (about 0.8 m ⁇ or more) weldability predominance inferior
  • the plating layer 20 of FIG. 5 is composed of a plurality of layers than the plating layer 30 of FIG. 6 , and the boundary between the plurality of layers may also be clear, and accordingly, the thickness of the plating layer 20 is greater than the thickness of the plating layer 30 . can be thick.
  • the thickness characteristics of the plating layer and the control characteristics of the first control curve 610 may be derived as a result of mutual influence.
  • the rate of change of the temperature increase rate between the two sections (P1, P2) may be discontinuously changed, and the third heating section In (P3), the slope of the first control curve 610 may be gentle, that is, the rate of change of the temperature increase rate may be small.
  • the thicker the plating layer the smaller the amount of mixed hydrogen, the better the hydrogen embrittlement of the blank. Since the thickness of the plating layer 20 of FIG. 5 is thick, as described above, the amount of mixed hydrogen is less than that of the part 1 of FIG. 5 (less than about 0.21 ppm) compared to the part 1' of FIG. 6 (less than about 0.35 ppm). small, and thus hydrogen embrittlement is more dominant, and the risk of hydrogen delayed rupture can be reduced.
  • the surface resistance of the component 1 of FIG. 5 may be smaller than that of the component 1' of FIG. 6 due to the above-described thickness characteristics of the plating layer.
  • the smaller the dynamic resistance the better the weldability.
  • the dynamic resistance value of the part 1 of FIG. 5 (about 0.8 m ⁇ or less) is compared to the part 1' of FIG. 6 (about 0.8 m ⁇ or less) Since it is small, it can be seen that the weldability is also superior to the part 1 of FIG. 5 .
  • FIG. 7 is a plan view schematically illustrating a blank used in a method of manufacturing a hot stamping part according to an embodiment of the present invention.
  • a blank 200 is a blank 210 having a single thickness, and a Taylor welded blank 220 obtained by cutting and welding different types of plates having different thicknesses into a required shape (Taylor Welded) Blank, TWB), a patchwork manufactured by welding a small patch blank to a tailor rolled blank 230 (Tailor Rolled Blank, TRB) having different thicknesses by rolling a single-thickness plate and a large blank 240 (Patchwork) may include at least one of
  • the Taylor welded blank 220 may be manufactured by welding the first plate material 221 and the second plate material 223 having different thicknesses.
  • the B-pillar an important component for collision members of a vehicle, is a form in which plates of different strengths are combined in an upper crash support part and a lower shock absorber, and is manufactured by welding the two plates and then forming them.
  • the Taylor welded blank method which is mainly used at this time, refers to a series of processes of manufacturing parts by cutting and welding different types of sheets with different thicknesses, strengths, and materials to the required shape, and then press forming to manufacture parts. By welding blanks having different thicknesses, it is possible to have different properties for each part of the blank.
  • 120 ⁇ 150K grade ultra-high-strength plate is used for the collision support part of the upper part of the B-pillar, and the lower part of the B-pillar, where stress is concentrated, is connected to a plate with good shock absorption performance to improve the shock absorption ability in the event of a vehicle collision. can do it
  • the Taylor rolled blank 230 may be manufactured by rolling a cold rolled steel material to have a specific thickness profile, and the weight reduction effect is excellent when manufacturing hot stamping parts using the Taylor rolled blank 230 .
  • the thickness profile may be performed by a conventional method.
  • a first region 231 having a first thickness, a second region 232 having a second thickness, and a third region having a third thickness ( 233 ), and a Taylor rolled blank 230 including a fourth region 234 having a fourth thickness may be formed.
  • first thickness, the second thickness, the third thickness, and the fourth thickness may be different from each other, and between the first region 231 and the second region 232 , the second region 232 and the third region A transition period 235 may exist between 233 and between the third region 233 and the fourth region 234 .
  • FIG. 2 illustrates that the Taylor rolled blank 230 includes the first region 231 to the fourth region 234 , the present invention is not limited thereto.
  • Taylor rolled blank 230 has a first area 231, a second area 232, . , may be formed to include an n-th region.
  • the patchwork 240 is a method of partially reinforcing the base material using at least two or more plate materials, and the patch is bonded to the base material before the forming process so that the base material and the patch can be formed at the same time. For example, after the patch 243 having a second size smaller than the first size is welded to the base material 241 having the first size, it may be simultaneously molded.
  • FIG. 8 is a plan view schematically illustrating a blank inserted into a heating furnace in a method of manufacturing a hot stamping part according to an embodiment of the present invention. Hereinafter, it will be described with reference to FIG. 1 .
  • At least two blanks 200 having different at least one of thickness and size may be simultaneously introduced into the heating furnace.
  • FIG. 8 shows two first blanks 250 and two second blanks 260 that are simultaneously introduced into the heating furnace.
  • the first blank 250 and the second blank 260 may have different sizes and different thicknesses.
  • the first blank 250 may have a thickness of about 1.2 mm
  • the second blank 260 may have a thickness of about 1.6 mm.
  • the present invention is not limited thereto, and one first blank 250 and one second blank 260 may be simultaneously introduced into the heating furnace.
  • the first blank 250 and the second blank 260 have the same size but different thicknesses, or are formed to have different sizes with the same thickness, and various modifications are possible.
  • At least two blanks 200 having a single thickness into the heating furnace may be simultaneously input.
  • at least two or more blanks 240 having a thickness of 1.2 mm may be simultaneously input, and at least two or more blanks 250 having a thickness of 1.6 mm may be simultaneously input.
  • the above-described Taylor welded blank 220 (refer to FIG. 7) or the Taylor rolled blank (230, see FIG. 7) may be introduced into the heating furnace.
  • the blank introduced into the heating furnace may be transported along the transport direction after being mounted on the roller (S300).
  • a multi-stage heating step (S200) may be performed.
  • the multi-stage heating step (S200) may be a step in which the blank passes through a plurality of sections provided in the heating furnace and is heated step by step, and may include at least one section in which crack heating is performed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

본 발명의 일 실시예에 따른 핫 스탬핑 부품의 제조 방법은, 서로 다른 승온 속도 범위를 가지는 복수의 구간을 구비한 가열로 내로 모재의 적어도 일면에 도금층이 형성된 블랭크를 투입하는 단계; 및 상기 복수의 구간을 통과하며 상기 블랭크를 단계적으로 가열하는 다단 가열 단계;를 포함하고, 상기 복수의 구간은, 제1 평균 승온속도 변화율을 가지는 제1 가열 구간; 상기 제1 가열 구간 이후에, 상기 제1 평균 승온속도 변화율과 상이한 제2 평균 승온속도 변화율을 가지는 제2 가열 구간; 및 상기 제2 가열 구간 이후에, 상기 제1 평균 승온속도 변화율 및 상기 제2 평균 승온속도 변화율과 상이한 제3 평균 승온속도 변화율을 가지는 제3 가열 구간을 포함하며, 상기 제3 평균 승온속도 변화율은 양의 값에서 음의 값으로 변화하는 구간을 포함한다.

Description

핫 스탬핑 부품 및 이의 제조 방법
본 발명은 핫 스탬핑 부품 및 이의 제조 방법에 관한 것이다.
자동차 산업에서 환경 규제와 안전 기준의 강화에 따라 고강도를 가지면서도 경량화된 차량 소재에 대한 필요성이 증대되고 있다. 이러한 고강도 및 경량성 차량 소재를 제조하는 공법으로서 핫 스탬핑 기술이 주목받고 있으며, 핫 스탬핑 소재에 대한 연구개발이 활발하게 이루어지고 있다.
핫 스탬핑 공정은 일반적으로 가열/성형/냉각/트림으로 이루어지며 공정 중 소재의 상변태, 및 도금의 합금화 등의 미세조직의 변화를 이용할 수 있다. 이때, 상기 핫 스탬핑 공정 중 가열 또는 열처리 중에 수소 혼입량이 증가하고, 도금층 구조에 따른 용접성이 떨어지는 등 부품 성능의 저하가 발생하는 문제점이 발생할 수 있다. 특히, 상기 가열 또는 열처리 온도에 따라 핫 스탬핑 소재의 미세조직 특성이 달라지고, 이에 따라 수소취성, 용접 성능이 달라질 수 있다.
따라서, 핫 스탬핑 소재의 부품 성능에 대하여 핫 스탬핑 열처리 온도 조건을 이용한 정밀한 제어가 요구된다. 이와 관련된 기술로서, 대한민국 특허공개공보 제10-2013-0136565호(발명의 명칭: 핫 스탬프 부재용 강판 및 그 제조 방법) 등이 있다.
본 발명의 실시예들은 핫 스탬핑 가열 온도를 제어함으로써 강도 특성, 혼입 수소량에 따른 수소취성, 및 도금층 구조에 따른 용접성 등의 핫 스탬핑 소재의 부품 성능이 개선된 핫 스탬핑 부품 및 이의 제조 방법을 제공한다.
본 발명의 일 실시예에 따른 핫 스탬핑 부품의 제조 방법은, 서로 다른 승온 속도 범위를 가지는 복수의 구간을 구비한 가열로 내로 모재의 적어도 일면에 도금층이 형성된 블랭크를 투입하는 단계; 및 상기 복수의 구간을 통과하며 상기 블랭크를 단계적으로 가열하는 다단 가열 단계;를 포함하고, 상기 복수의 구간은, 제1 평균 승온속도 변화율을 가지는 제1 가열 구간; 상기 제1 가열 구간 이후에, 상기 제1 평균 승온속도 변화율과 상이한 제2 평균 승온속도 변화율을 가지는 제2 가열 구간; 및 상기 제2 가열 구간 이후에, 상기 제1 평균 승온속도 변화율 및 상기 제2 평균 승온속도 변화율과 상이한 제3 평균 승온속도 변화율을 가지는 제3 가열 구간;을 포함하며, 상기 제3 평균 승온속도 변화율은 양의 값에서 음의 값으로 변화하는 구간을 포함한다.
상기 제1 가열 구간과 상기 제2 가열 구간 사이에서, 상기 제1 평균 승온속도 변화율로부터 상기 제2 평균 승온속도 변화율로의 변화는 불연속적일 수 있다.
상기 제3 가열 구간은 제3-1 평균 승온속도 변화율을 가지는 제3-1 가열 구간 및 제3-2 평균 승온속도 변화율을 가지는 제3-2 가열 구간을 포함하되, 상기 제3-1 평균 승온속도 변화율은 양의 값을 가지며, 상기 제3-2 평균 승온속도 변화율은 음의 값을 가지고, 상기 제3-1 평균 승온속도 변화율의 절대값은 상기 제3-2 평균 승온속도 변화율의 절대값보다 작을 수 있다.
상기 제1 평균 승온속도 변화율 및 상기 제2 평균 승온속도 변화율은 각각 음의 값을 가지고, 상기 제1 평균 승온속도 변화율의 절대값은 상기 제2 평균 승온속도 변화율의 절대값보다 클 수 있다.
상기 복수의 구간은, 제3 가열 구간 이후에, 상기 제1 평균 승온속도 변화율, 상기 제2 평균 승온속도 변화율 및 상기 제3 평균 승온속도 변화율과 상이한 제4 평균 승온속도 변화율을 가지는 제4 가열 구간을 더 포함하고, 상기 제4 평균 승온속도 변화율의 절대값은 상기 제1 평균 승온속도 변화율, 상기 제2 평균 승온속도 변화율 및 상기 제3 평균 승온속도 변화율 각각의 절대값보다 작을 수 있다.
상기 제3-1 평균 승온속도 변화율은 0 이상 0.25 ℃/s2 이하의 값을 가지고, 상기 제3-2 평균 승온속도 변화율은 -0.3 ℃/s2 이상 0 이하의 값을 가질 수 있다.
상기 제1 평균 승온속도 변화율은 -0.5 ℃/s2 이상 0 이하의 값을 가지고, 상기 제2 평균 승온속도 변화율은 -0.25 ℃/s2 이상 0 이하의 값을 가질 수 있다.
상기 제2 가열 구간에서 상기 도금층이 합금화되고, 상기 제3 가열 구간에서 상기 모재가 상변태할 수 있다.
전술한 본 발명의 일 실시예에 따른 방법에 의해 제조된 핫 스탬핑 부품으로서, 혼입 수소량이 0 이상 0.21 ppm 미만이고, 동저항값은 0 초과 0.8 mΩ 이하일 수 있다.
본 발명의 실시예들에 의하면, 핫 스탬핑 가열 공정에서 승온 속도를 구간별로 제어함으로써 핫 스탬핑 강에 대하여 강도 특성, 혼입 수소량에 따른 수소취성 및 도금층 구조에 따른 용접성 등 핫 스탬핑 소재의 부품 성능을 개선할 수 있다.
도 1은 본 발명의 일 실시예에 따른 핫 스탬핑 부품의 제조 방법을 개략적으로 도시한 순서도이다.
도 2는 종래 방법에 의해 블랭크가 단일 가열되는 경우, 블랭크의 온도 변화를 나타내는 그래프이다.
도 3은 본 발명의 일 실시예에 따른 핫 스탬핑 부품의 제조 방법에 있어서, 블랭크가 다단 가열 및 균열 가열되는 경우의 온도 변화를 나타내는 그래프이다.
도 4는 본 발명의 일 실시예에 따른 핫 스탬핑 부품의 제조 방법에 있어서 가열 시간에 따른 복수의 구간의 승온속도 변화율을 나타내는 그래프이다.
도 5는 본 발명의 일 실시예에 따른 핫 스탬핑 부품의 단면을 나타내는 SEM(주사전자현미경) 이미지이다.
도 6은 본 발명의 비교 실시예에 따른 핫 스탬핑 부품의 단면을 나타내는SEM(주사전자현미경) 이미지이다.
도 7은 본 발명의 일 실시예에 따른 핫 스탬핑 부품의 제조 방법에 이용되는 블랭크를 개략적으로 도시한 평면도이다.
도 8은 본 발명의 일 실시예에 따른 핫 스탬핑 부품의 제조 방법에 있어서, 가열로 내로 투입된 블랭크를 개략적으로 도시한 평면도이다.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 본 발명의 효과, 및 특징 그리고 그것들을 달성하는 방법은 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 다양한 형태로 구현될 수 있다.
이하의 실시예에서, 제1, 제2 등의 용어는 한정적인 의미가 아니라 하나의 구성 요소를 다른 구성 요소와 구별하는 목적으로 사용되었다.
이하의 실시예에서, 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
이하의 실시예에서, 포함하다 또는 가지다 등의 용어는 명세서 상에 기재된 특징, 또는 구성요소가 존재함을 의미하는 것이고, 하나 이상의 다른 특징들 또는 구성요소가 부가될 가능성을 미리 배제하는 것은 아니다.
이하의 실시예에서, 막, 영역, 구성 요소 등의 부분이 다른 부분 위에 또는 상에 있다고 할 때, 다른 부분의 바로 위에 있는 경우뿐만 아니라, 그 중간에 다른 막, 영역, 구성 요소 등이 개재되어 있는 경우도 포함한다.
도면에서는 설명의 편의를 위하여 구성 요소들이 그 크기가 과장 또는 축소될 수 있다. 예컨대, 도면에서 나타난 각 구성의 크기, 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도시된 바에 한정되지 않는다.
어떤 실시예가 달리 구현 가능한 경우에 특정한 공정 순서는 설명되는 순서와 다르게 수행될 수도 있다. 예를 들어, 연속하여 설명되는 두 공정이 실질적으로 동시에 수행될 수도 있고, 설명되는 순서와 반대의 순서로 진행될 수 있다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명하기로 하며, 도면을 참조하여 설명할 때 동일하거나 대응하는 구성 요소는 동일한 도면부호를 부여하기로 한다.
도 1은 본 발명의 일 실시예에 따른 핫 스탬핑 부품의 제조 방법을 개략적으로 도시한 순서도이다. 이하에서는, 도 1을 참조하여 핫 스탬핑 부품의 제조 방법을 설명한다.
본 발명의 일 실시예에 따른 핫 스탬핑 부품의 제조 방법은 블랭크 투입 단계(S100) 및 다단 가열 단계(S200)를 포함할 수 있고, 다단 가열 단계(S200) 이후에, 이송 단계(S300), 형성 단계(S400), 및 냉각 단계(S500)를 더 포함할 수 있다.
먼저, 블랭크 투입 단계(S100)는 서로 다른 승온 속도 범위를 가지는 복수의 구간을 구비한 가열로 내로 블랭크를 투입하는 단계일 수 있다. 상기 블랭크는 모재의 적어도 일면에 도금층이 형성된 형태로 구비될 수 있다.
가열로 내로 투입되는 블랭크는 핫 스탬핑 부품 형성을 위한 판재(또는 모재)를 재단하여 형성된 것일 수 있다. 상기 판재는 강 슬라브에 열간압연 또는 냉간압연을 수행한 후 소둔 열처리하는 과정을 통해 제조될 수 있다. 또한, 상기 소둔 열처리 이후에, 상기 소둔 열처리된 판재의 적어도 일면에 Al-Si계 도금층 또는 Zn 도금층을 형성할 수 있으며, 모재의 일면에 형성되는 도금층의 종류는 이에 한정되지 않는다.
블랭크 투입 단계(S100) 이후에, 다단 가열 단계(S200)가 수행될 수 있다. 다단 가열 단계(S200)는 블랭크가 가열로 내에 구비된 복수의 구간을 통과하며 단계적으로 가열되는 단계일 수 있다. 다단 가열 단계(S200)에 관하여는 후술하는 도 2 내지 도 4의 그래프를 이용하여 더 상세히 설명한다.
다단 가열 단계(S200) 이후에 이송 단계(S300), 형성 단계(S400) 및 냉각 단계(S500)가 더 수행될 수 있다.
이송 단계(S300)는 다단 가열 중 균열 가열된 블랭크를 가열로로부터 프레스 금형으로 이송하는 단계일 수 있다. 균열 가열된 블랭크를 가열로로부터 프레스 금형으로 이송하는 단계에 있어서, 균열 가열된 블랭크는 7초 내지 15초 동안 공랭될 수 있고, 바람직하게는 10초 내지 15초 동안 공랭될 수 있다.
형성 단계(S400)는 이송된 블랭크를 핫 스탬핑하여 성형체를 형성하는 단계일 수 있다. 냉각 단계(S500)는 형성된 성형체를 냉각하는 단계일 수 있다.
프레스 금형에서 최종 부품형상으로 성형된 후 성형체를 냉각하여 최종 제품이 형성될 수 있다. 프레스 금형에는 내부에 냉매가 순환하는 냉각 채널이 구비될 수 있다. 프레스 금형에 구비된 냉각 채널을 통하여 공급되는 냉매에 순환에 의해 가열된 블랭크를 성형과 동시에 급냉시킬 수 있게 된다. 이때, 판재의 스프링 백(spring back) 현상을 방지함과 더불어 원하는 형상을 유지하기 위해서는 프레스 금형을 닫은 상태에서 가압하면서 급랭을 실시할 수 있다. 가열된 블랭크를 성형 및 냉각 조작을 함에 있어, 마르텐사이트 종료 온도까지 평균냉각속도를 최소 10℃/s 이상으로 냉각할 수 있다. 블랭크는 프레스 금형 내에서 3 ~ 20초간 유지될 수 있다. 프레스 금형 내 유지 시간이 3초 미만일 경우, 충분한 양의 마르텐사이트가 생성되지 않아 기계적 물성이 확보되지 않을 수 있다. 또한, 프레스 금형 내 유지 시간이 20초를 초과하는 경우, 프레스 금형 내 유지 시간이 길어져 생산성이 저하될 수 있다.
도 2는 종래 방법에 의해 블랭크가 단일 가열되는 경우, 블랭크의 온도 변화를 나타내는 그래프이다. 구체적으로, 도 2는 가열로의 내부 온도가 블랭크의 목표 온도(Tt)와 동일하게 유지되도록 가열로의 온도를 설정한 후, 1.2 mm의 두께를 가진 블랭크와 1.6 mm의 두께를 가진 블랭크를 동시에 단일 가열(310, 320)한 경우, 시간에 따른 이들 블랭크들의 온도 변화를 나타내는 그래프이다.
이때, 블랭크의 목표 온도(Tt)는 Ac3(페라이트에서 오스테나이트로의 변태가 완료되는 온도) 이상일 수 있다. 바람직하게는 블랭크의 목표 온도(Tt)는 약 930℃일 수 있다. 더욱 바람직하게는 블랭크의 목표 온도(Tt)는 약 950℃일 수 있다. 다만, 본 발명이 이에 한정되는 것은 아니다. 또한, 상기 단일 가열은 가열로 내에 1.2 mm의 두께를 가진 블랭크와 1.6 mm의 두께를 가진 블랭크를 각각 투입하여 가열하는 것이 아닌, 가열로의 온도를 단일 온도로 설정한 후, 가열로 내에 1.2 mm의 두께를 가진 블랭크와 1.6 mm의 두께를 가진 블랭크를 동시에 투입하여 가열한 경우를 의미한다.
도 2를 참조하면, 가열로 내부의 온도를 블랭크의 목표 온도(Tt)와 동일한 온도로 세팅한 후, 1.2 mm의 두께를 가진 블랭크, 및 1.6 mm의 두께를 가진 블랭크를 동시에 단일 가열하는 경우, 1.2 mm의 두께를 가진 블랭크가 1.6 mm의 두께를 가진 블랭크에 비해 목표 온도(Tt)에 먼저 도달함을 알 수 있다.
즉, 1.2 mm의 두께를 가진 블랭크가 먼저 목표 온도(Tt)에 도달하여, 1.2 mm의 두께를 가진 블랭크는 제1 시간(S1) 동안 균열 가열되고(310), 1.6 mm의 두께를 가진 블랭크는 상기 제1 시간(S1) 보다 짧은 제2 시간(S2) 동안 균열 가열될 수 있다(320). 목표 온도에 늦게 도달하는 블랭크를 기준으로 균열 가열 시간이 조절되므로, 목표 온도에 먼저 도달한 1.2 mm의 두께를 가진 블랭크가 과가열되어 1.2 mm의 두께를 가진 블랭크의 수소지연파단이 증가하고, 용접성이 저하될 수 있다.
또한, 핫 스탬핑 공정의 목표 온도(Tt)와 시간만을 기준으로 제어 범위를 설정할 경우 부품 성능을 효과적으로 제어할 수 없는 문제점이 있다. 일 예로, Al-Si 도금층을 포함하는 부품은 핫 스탬핑 공정 중에 도금층의 합금화와 모재의 상변태 동작을 수반할 수 있다. 이때 부품에 가해지는 온도 이력, 핫 스탬핑 공정 제어에 따라 도금층의 구조나 상호 확산층의 두께, 도금층 박리, 성형성, 수소취성 및 용접성 등의 부품 성능이 달리 결정된다. 기존의 핫 스탬핑 공정은 전술한 최종 목표 온도(Tt)나 전체적인 승온속도를 기준으로 제어될 수 있는데, 단순히 목표 온도, 시간만을 이용한 공정 제어로는 부품 성능을 정밀하게 제어하는 것에 한계가 있기 때문에, 이하 본 발명의 실시예들에서는 블랭크에 대한 승온속도 변화율을 제어함으로써 부품 성능을 용이하고 정밀하게 제어하고자 한다.
이하, 도 3 및 도 4를 참조하여 다단 가열 단계에서 블랭크가 통과하며 단계적으로 가열되는 복수의 구간에 대하여 살펴본다.
도 3은 본 발명의 일 실시예에 따른 핫 스탬핑 부품의 제조 방법에 있어서, 블랭크가 다단 가열, 및 균열 가열되는 경우의 온도 변화를 나타내는 그래프이다. 더 구체적으로, 도 3는 본 발명의 일 실시예에 있어서, 1.2 mm의 두께를 가진 블랭크를 다단 가열(510), 및 1.6 mm의 두께를 가진 블랭크를 다단 가열(520)하는 경우의 시간에 따른 온도 변화를 나타내는 그래프로서, 시간에 따른 온도 변화를 나타낸다.
도 3을 참조하면, 일 실시예에 따른 가열로는 서로 다른 온도 범위를 가지는 복수의 구간(P1, P2, P3, P4)을 구비할 수 있다. 보다 구체적으로, 가열로는 제1 온도 범위(T1)를 가지는 제1 가열 구간(P1), 제2 온도 범위(T2)를 가지는 제2 가열 구간(P2), 제3 온도 범위(T3)를 가지는 제3 가열 구간(P3) 및 제4 온도 범위(T4)를 가지는 제4 가열 구간(P4)을 구비할 수 있다. 이때, 제3 가열 구간(T3)은 서로 다른 온도 범위를 가지는 두 개의 구간을 구비할 수 있다. 제3 가열 구간(T3)은 제3-1 온도 범위(T3-1)를 가지는 제3-1 가열 구간(P3-1) 및 제3-2 온도 범위(T3-2)를 가지는 제3-2 가열 구간(P3-2)을 포함할 수 있다. 실시예에 따라서, 제2 가열 구간(T2)은 서로 다른 온도 범위를 가지는 복수 개의 구간을 구비할 수 있다. 제2 가열 구간(T2)은 제2-1 온도 범위(T2-1)를 가지는 제2-1 가열 구간(P2-1) 내지 제2-n 온도 범위(T2-n)를 가지는 제2-n 가열 구간(P2-n)을 포함할 수 있다. 또한, 제1 가열 구간(T1)도 서로 다른 온도 범위를 가지는 복수 개의 구간을 구비할 수 있다. 제1 가열 구간(T1)은 제1-1 온도 범위(T1-1)를 가지는 제1-1 가열 구간(P1-1) 내지 제1-n 온도 범위(T1-n)를 가지는 제1-n 가열 구간(P1-n)을 포함할 수 있다.
제1 가열 구간(P1) 내지 제4 가열 구간(P4)은 차례대로 가열로 내에 배치될 수 있다. 제1 가열 구간(P1)은 블랭크가 투입되는 가열로의 입구와 인접하고, 제4 가열 구간(P4)은 블랭크가 배출되는 가열로의 출구와 인접할 수 있다. 따라서, 제1 온도 범위(T1)를 가지는 제1 가열 구간(P1)이 가열로의 첫 번째 구간일 수 있고, 제4 온도 범위(T4)를 가지는 제4 가열 구간(P4)이 가열로의 마지막 구간일 수 있다. 후술할 바와 같이, 가열로의 복수의 구간들 중 마지막 구간인 제4 가열 구간(P4)은 다단 가열이 수행되는 구간이 아닌 균열 가열이 수행되는 구간일 수 있다.
가열로 내에 구비된 복수의 구간의 온도, 예컨대 제1 가열 구간(P1) 내지 제4 가열 구간(P4)의 온도는 블랭크가 투입되는 가열로의 입구로부터 블랭크가 취출되는 가열로의 출구 방향으로 증가할 수 있다. 또한, 가열로 내에 구비된 복수의 구간 중 서로 인접한 두 개의 구간들 간의 온도 차는 0℃ 보다 크고 100℃ 이하일 수 있다. 예를 들어, 제1 가열 구간(P1)과 제2 가열 구간(P2)의 온도 차는 0℃ 보다 크고 100℃ 이하일 수 있다.
일 실시예로, 제1 가열 구간(P1)의 제1 온도 범위(T1)는 840℃ 내지 860℃일 수 있고, 835℃ 내지 865℃일 수 있다. 제2 가열 구간(P2)의 제2 온도 범위(T2)는 870℃ 내지 920℃일 수 있고, 865℃ 내지 925℃일 수 있다. 제3-1 구간(P3-1)의 제3-1 온도 범위(T3-1)는 920℃ 내지 940℃일 수 있고, 915℃ 내지 945℃일 수 있다. 제3-2 구간(P3-2)의 제3-2 온도 범위(T3-2)는 940℃ 내지 960℃일 수 있고, 935℃ 내지 965℃일 수 있다. 제4 가열 구간(P4)의 제4 온도 범위(T4)는 Ac3 내지 1,000℃일 수 있다. 바람직하게는 제4 가열 구간(P4)의 제4 온도 범위(T4)는 930℃ 이상 1,000℃이하일 수 있다. 더욱 바람직하게는 제4 가열 구간(P4)의 제4 온도 범위(T4)는 950℃ 이상 1,000℃이하일 수 있다.
실시예에 따라서, 제2 가열 구간(P2)이 전술한 서로 다른 온도 범위를 가지는 제2-1 가열 구간(P2-1) 및 제2-2 가열 구간(P2-2)을 포함하는 경우, 제2-1 온도 범위(T2-1)는 870℃ 내지 890℃일 수 있고, 865℃ 내지 895℃일 수 있으며, 제2-2 가열 구간(P2-2)의 제2-2 온도 범위(T2-2)는 900℃ 내지 920℃일 수 있고, 895℃ 내지 925℃일 수 있다.
전술한 복수의 구간을 정의하는 경계값들에 관하여 설명한다. 상기 경계값들은 그래프의 가로축으로서 가열 시간 범위(sec)를 나타낸다. 먼저, 제1 가열 구간(P1) 및 제2 가열 구간(P2)의 사이에 위치하는 제1 경계값(e1)은 약 30 내지 약 50일 수 있고, 약 40(sec)일 수 있다. 제2 가열 구간(P2) 및 제3 가열 구간(P3)의 사이에 위치하는 제2 경계값(e2)은 약 80 내지 약 130일 수 있고, 약 85(sec)일 수 있다. 제3-1 가열 구간(P3-1) 및 제3-2 가열 구간(P3-2)의 사이에 위치하는 제3 경계값(e3)은 약 110 내지 약 180일 수 있고, 약 120(sec)일 수 있다. 제3-2 가열 구간(P3-2) 및 제4 가열 구간(P4)의 사이에 위치하는 제4 경계값(e4)은 약 140 내지 약 230일 수 있고, 약 150(sec)일 수 있다.
실시예에 따라서, 제2 가열 구간(P2)이 전술한 서로 다른 온도 범위를 가지는 제2-1 가열 구간(P2-1) 및 제2-2 가열 구간(P2-2)을 포함하는 경우, 제2-1 가열 구간(P2-1) 및 제2-2 가열 구간(P2-2)의 사이에 위치하는 제2-1 경계값(e2')은 약 50 내지 약 110일 수 있고, 약 60(sec)일 수 있다.
도 3에서는 본 발명의 일 실시예에 따른 가열로가 대표적으로 서로 다른 온도 범위를 가지는 다섯 개의 구간(P1, P2, P3-1, P3-2, P4)을 구비한 것으로 도시되어 있으나, 본 발명이 이에 한정되는 것은 아니다. 가열로 내에는 서로 다른 온도 범위를 가지는 다섯 개, 일곱 개, 또는 여덟 개 등의 구간이 구비될 수도 있다.
도 4는 본 발명의 일 실시예에 따른 핫 스탬핑 부품의 제조 방법에 있어서 가열 시간에 따른 복수의 구간의 승온속도 변화율을 나타내는 그래프로서 가열 시간(s)에 따른 블랭크의 승온 속도(℃/s) 그래프를 나타낸다. 도 4에 도시된 복수의 구간 및 경계값들은 도 3에서 전술한 내용과 동일한 내용으로 설명을 간략히 하거나 생략할 수 있다.
도 4를 참조하면, 블랭크의 다단 가열이 수행되는 복수의 구간의 승온속도(℃/s) 또는 승온속도 변화율(℃/s2)의 분포는 후술하는 바와 같다. 이하, "승온속도 변화율"이라 함은 도 4에 도시된 그래프의 각 구간의 평균 기울기로서, 이하에서는 '평균 승온속도 변화율'로 설명할 수 있다. 이하에서는, 일 구간에서의 '평균 승온속도 변화율'은 일 예로 해당 구간에서의 최초 승온속도 및 최종 승온속도의 차이를 해당 구간의 시간으로 나눈 값으로 정의될 수 있다. 도 4에는 본 발명의 일 실시예에 따른 승온속도 제1 제어 곡선(610) 및 비교 실시예에 따른 승온속도 제2 제어 곡선(620)이 도시되어 있다.
먼저 본 발명의 일 실시예에 따른 승온속도 제1 제어 곡선(610)에 대하여 설명한다.
제1 가열 구간(P1)은 제1 평균 승온속도 변화율(r1)을 가질 수 있다. 제1 가열 구간(P1) 이후에 위치하는 제2 가열 구간(P2)은 제1 평균 승온속도 변화율(r1)과 상이한 제2 평균 승온속도 변화율(r2)을 가질 수 있다. 상기 제2 가열 구간(P2) 이후에 위치하는 제3 가열 구간(P3)은 제1 및 제2 평균 승온속도 변화율(r1, r2)과 상이한 제3 평균 승온속도 변화율(r3)을 가질 수 있다. 이때, 제3 평균 승온속도 변화율(r3)은 양의 값에서 음의 값으로 변화하는 구간을 포함할 수 있다. 제3 가열 구간(P3) 이후에 위치하는 제4 가열 구간(P4)은 상기 제1, 제2 및 제3 평균 승온속도 변화율(r1, r2, r3)과 상이한 제4 평균 승온속도 변화율(r4)을 가질 수 있다.
제1 가열 구간(P1)은 일반 승온 구간일 수 있고, 제2 가열 구간(P2)에서는 승온속도가 제1 가열 구간(P1) 대비 완만하게 감소하여(|r1|>|r2|) 도금층의 합금화가 수행될 수 있다. 제3 가열 구간(P3)은 블랭크의 모재가 상변태하는 상변태 구간으로서, 제3-1 가열 구간(P3-1)은 양(+)의 승온속도 변화율을 가지고, 제3-2 가열 구간(P3-2)은 음(-)의 승온속도 변화율을 가질 수 있다. 제4 가열 구간(P4)은 블랭크가 균일한 온도로 균열 가열되는 안정화 구간일 수 있다.
제1 제어 곡선(610)을 참조하면, 제1 평균 승온속도 변화율(r1) 및 제2 평균 승온속도 변화율(r2)은 각각 음의 값을 가지고, 제1 평균 승온속도 변화율(r1)의 절대값은 제2 평균 승온속도 변화율(r2)의 절대값보다 클 수 있다 (|r1|>|r2|). 제1 평균 승온속도 변화율(r1)은 약 -0.5 ℃/s2 이상 0 이하일 수 있고, 일 예로 약 -0.3 ℃/s2 일 수 있다. 제2 평균 승온속도 변화율(r2)은 약 -0.25 ℃/s2 이상 0 이하일 수 있고, 일 예로 약 -0.07 ℃/s2 일 수 있다.
제1 가열 구간(P1)과 제2 가열 구간(P2) 사이에서, 즉 제1 경계값(e1) 부근에서 제1 평균 승온속도 변화율(r1)로부터 제2 평균 승온속도 변화율(r2)로의 변화는 불연속적이다. 더 구체적으로, 제1 가열 구간(P1)에서 제1 평균 승온속도 변화율(r1)을 정의하는 상기 제1 경계값(e1)에서의 승온속도(v1)와, 제2 가열 구간(P2)에서 제2 평균 승온속도 변화율(r2)을 정의하는 상기 제1 경계값(e1)에서의 승온속도(v2)는 다른 값을 가질 수 있다. 다시 말해, 제1 평균 승온속도 변화율(r1)의 최종 승온속도(v1)와 제2 평균 승온속도 변화율(r2)의 최초 승온속도(v2)는 다른 값일 수 있다. 제1 경계값(e1) 부근에서 승온속도 변화율이 불연속적으로 변화할 때(r1 → r2)(610), 연속적으로 변화하는 경우(620)와 비교할 때 핫 스탬핑 부품의 용접성을 향상시킬 수 있다.
상기 제1 가열 구간(P1) 및 제2 가열 구간(P2) 사이에서 평균 승온속도 변화율의 불연속적인 변화는 도금층 변화에 많은 에너지가 요구되기 때문이다. 모재의 Fe가 Al 도금층으로 확산이 이루어지고, 도금층 내에 Al-Fe 상이 초기 생성되고 성장하기 위해서는 필요한 에너지가 공급되어야 한다. 또한 모재로 확산된 Fe는 시간이 경과함에 따라 Al-Fe-Si 합금층을 생성하는데, 상기 제1 경계값(e1) 부근에서 승온속도 변화율의 변화가 불연속적일수록 표면까지의 확산이 균일하게 이루어지고 이에 따라 양호한 용접성을 얻을 수 있다. 반면, 상기 변화가 연속적인 경우에는 Al-Fe-Si의 확산이 표면까지 빠르고 불균일하게 이루어지기 때문에 표면에 용접 저항이 높은 상들이 존재하여 용접성이 떨어지는 현상이 발생한다.
제3 가열 구간(P3)은 제3-1 승온속도 변화율(r3-1)을 가지는 제3-1 가열 구간(P3-1) 및 제3-2 승온속도 변화율(r3-2)을 가지는 제3-2 가열 구간(P3-2)을 포함한다. 제3-1 평균 승온속도 변화율(r3-1)은 양의 값을 가지고, 제3-2 평균 승온속도 변화율(r3-2)은 음의 값을 가져, 제3 평균 승온속도 변화율(r3)은 양에서 음의 값으로 변화하는 구간을 가질 수 있다. 이때, 제3-1 평균 승온속도 변화율(r3-1)의 절대값은 제3-2 평균 승온속도 변화율(r3-2)의 절대값보다 작을 수 있다 (|r3-1|<|r3-2|). 제3-1 평균 승온속도 변화율(r3-1)은 0 이상 약 0.25 ℃/s2 이하일 수 있고, 일 예로 제3-1 평균 승온속도 변화율(r3-1)은 약 0.07 ℃/s2 일 수 있다. 제3-2 평균 승온속도 변화율(r3-2)은 약 -0.3 ℃/s2 이상 0 이하일 수 있고, 일 예로 약 -0.08 ℃/s2 일 수 있다.
제3-1 가열 구간(P3-1)에서 제3 평균 승온속도 변화율(r3)이 작을수록, 제1 제어 곡선(610)의 기울기가 완만할수록 혼입 수소량은 감소하고 이에 따라 수소취성은 개선된다. 이와 대비하여 제2 제어 곡선(620)은 제3-1 가열 구간(P3-1)에서 승온속도 변화율이 급격히 증가하거나 불연속으로 증가하는 형태를 가지는데, 이런 경우 혼입 수소량은 증가하고 이에 따라 수소취성은 열위해질 수 있다. 이와 같이, 제3 가열 구간(P3)에서는 제1 가열 구간(P1) 및 제2 가열 구간(P2) 사이에서와 달리, 모재의 상변태가 수행되는 구간으로서 급격한 온도 변화가 있을 경우 이로 인한 수소취성, 지연 파단 등의 문제가 있을 수 있으므로, 승온속도 변화율이 낮을수록 유리하다.
제2 가열 구간(P2)과 제3-1 가열 구간(P3-1) 사이에서, 즉 제2 경계값(e2) 부근에서 제2 평균 승온속도 변화율(r2)로부터 제3-1 평균 승온속도 변화율(r3-1)로의 변화는 음의 값으로부터 양의 값으로 변화 한다. 즉, 승온속도가 감소하다가 증가하면서 모재의 상변태가 일어날 수 있다. 예컨대, 상기 모재의 상변태 중 해당 구간에서 오스테나이트로 변태 시 흡열 반응이 일어나며 이를 위한 에너지 공급이 필요하므로 승온속도는 제3-1 가열 구간(P3-1)에서 다시 증가해야 오스테나이트로의 합리적인 수준의 상변태를 유도할 수 있다.
제3-1 가열 구간(P3-1)과 제3-2 가열 구간(P3-2) 사이에서, 즉 제3 경계값(e3) 부근에서 제3-1 평균 승온속도 변화율(r3-1)로부터 제3-2 평균 승온속도 변화율(r3-2)로의 변화는 양의 값으로부터 음의 값으로 변화한다. 즉, 승온속도가 증가하다가 다시 감소하면서 모재의 상변태가 일어날 수 있다. 상변태가 진행될수록 흡열 반응으로 많은 양의 열에너지 공급이 필요하여 승온속도가 증가하나, 상변태가 진행됨에 따라 오스테나이트 양이 증가되어 제3-2 가열 구간(P3-2)에서는 상기 흡열 반응에 필요한 열에너지가 점차 감소하여 승온속도가 감소할 수 있다.
제4 평균 승온속도 변화율(r4)의 절대값은 제1 평균 승온속도 변화율(r1), 제2 평균 승온속도 변화율(r2) 및 제3 평균 승온속도 변화율(r3) 각각의 절대값보다 작을 수 있다. 일 예로, 제4 평균 승온속도 변화율(r4)은 0에 가까운 값으로 제4 가열 구간(P4)은 균일한 온도로 균열 가열되는 구간일 수 있다. 제4 가열 구간(P4)에서 블랭크가 가열되는 시간(t4)은 전체 가열 시간(t)의 약 50 % 이하일 수 있다. 이는 블랭크가 제1 내지 제3 가열 구간(P1, P2, P3)에서 다단 가열되는 시간(t1) 대비 제4 가열 구간(P4)에서 균열 가열되는 시간(t4)이 길어질수록 용접성, 수소취성 및 굽힘 성능 등의 부품 특성이 열위해질 수 있기 때문이다. 일 예로, 다단 가열하는 구간(P1, P2, P3)의 길이와 균열 가열하는 구간(P4)의 길이의 비(t1:t4)는 1:1 내지 4:1을 만족할 수 있다.
이하, 전술한 제1 제어 곡선(610) 대비 제2 제어 곡선(620)의 특성에 대하여 설명하되, 제1 제어 곡선(610)과 다른 점을 위주로 설명한다. 제2 제어 곡선(620)을 참조하면, 제1 가열 구간(P1) 및 제2 가열 구간(P2) 사이에서 제1’ 평균 승온속도 변화율(r1’)은 연속적으로 변화한다. 더 구체적으로, 제1 가열 구간(P1)에서 제1' 평균 승온속도 변화율(r1)을 정의하는 상기 제1 경계값(e1)에서의 승온속도와, 제2 가열 구간(P2)에서 제1' 평균 승온속도 변화율(r1')을 정의하는 상기 제1 경계값(e1)에서의 승온속도(v1')는 같은 값을 가질 수 있다.
제1’ 평균 승온속도 변화율(r1’)은 약 -0.26 ℃/s2이상 0 이하일 수 있고, 일 예로 약 -0.2 ℃/s2 일 수 있다. 제2 제어 곡선(620)의 제3 가열 구간(P3)에서의 승온속도 변화율(r3'; r3-1', r3-2')의 변화 특성은 제1 제어 곡선(610)에서 설명한 것과 동일한 특성을 가질 수 있다. 다만, 제3-1' 승온속도 변화율(r3-1')은 제1 제어 곡선(610)의 제3-1 평균 승온속도 변화율(r3-1) 대비 불연속, 불안정한 값을 가질 수 있다. 이때, 제3-1' 승온속도 변화율(r3-1')은 제3-1 가열 구간(P3-1) 중 승온 속도가 증가 추세를 보이는 전단부에서의 변화율을 의미할 수 있다. 제3-1' 승온속도 변화율(r3-1')은 약 0.04 ℃/s2 이상 약 0.16 ℃/s2 이하일 수 있고, 일 예로 약 0.1 ℃/s2 일 수 있다. 제3-2' 승온속도 변화율(r3-2')은 약 -0.16 ℃/s2 이상 약 -0.04 ℃/s2 이하일 수 있고, 일 예로 약 -0.1 ℃/s2 일 수 있다. 제2 제어 곡선(620)의 제4 가열 구간(P4)은 제1 제어 곡선(610)과 마찬가지로 제4 평균 승온속도 변화율(r4)이 0에 근사한 값을 가지는 균열 가열 구간일 수 있다.
이와 같이, 본 발명의 일 실시예에 따른 핫 스탬핑 부품의 제조 방법에 있어서, 전술한 바와 같은 복수의 구간 특성에 따른 구간 별로 승온속도 변화율을 제어함으로써 핫 스탬핑 부품의 초고강도 특성, 용접성, 수소취성, 굽힘 성능 등의 부품 특성을 정밀하게 제어하고 개선할 수 있다. 실시예들에 따른 핫 스탬핑 부품의 부품 특성에 관하여는 후술하는 도 5 및 도 6에서 더 상세히 살펴본다.
도 4의 가로축에 도시된 가열 시간(s)과 경계값들 간의 관계는 도 4에 도시된 바에 한정되지 않고, 본 개시의 핫 스탬핑용 부품의 부품 성능을 개선하는 범위에서 다양하게 변경 적용될 수 있다. 이상에서는 복수의 구간이 5개의 구간을 구비하는 것으로 설명하였으나, 승온속도 변화율의 분포에 따라 복수의 구간은 다르게 구분될 수 있다.
도 5는 본 발명의 일 실시예에 따른 핫 스탬핑 부품의 단면을 나타내는 SEM(주사전자현미경) 이미지이다. 도 5에 따른 핫 스탬핑 부품은 전술한 본 발명의 일 실시예에 따른 핫 스탬핑 부품 제조 방법(예를 들어 도 4의 610 곡선)에 의해 제조된 부품일 수 있다.
도 5를 참조하면, 핫 스탬핑 부품(1)은 모재(10) 및 상기 모재(10) 위에 위치하는 복수의 층(21, 22, 23, 24)을 포함하는 도금층(20)을 포함할 수 있다. 상기 모재(10)는 소지 강판으로서 소정의 합금 원소를 소정 함량 포함하도록 주조된 강 슬라브에 대해 열연 공정, 및/또는 냉연 공정을 진행하여 제조된 강판일 수 있다. 일 예로, 소지 강판(100)은 탄소(C), 실리콘(Si), 망간(Mn), 인(P), 황(S), 티타늄(Ti), 보론(B), 잔부의 철(Fe), 및 기타 불가피한 불순물을 포함할 수 있다. 또한, 소지 강판(100)은 니오븀(Nb), 몰리브덴(Mo), 및 알루미늄(Al) 중 하나 이상의 성분을 더 포함할 수 있다.
도금층(20)은 합금화층으로서 모재(10)의 적어도 일면에 형성되고, 알루미늄(Al), 철(Fe) 등을 포함할 수 있다. 도금층(20)은 모재(10) 상에 순차적으로 적층된 복수의 층(21, 22, 23, 24)을 포함할 수 있다. 본 발명의 일 실시예에 따른 핫 스탬핑 부품은 도 5에 도시된 바와 같이 도금층(20)이 4 층(4 layer)으로 명확히 구분될 수 있다. 일 예로 복수의 층(21, 22, 23, 24)은 순차적으로 α-Fe상, Fe2Al5상, AlFe상 및 Fe2Al5상을 가질 수 있으나 복수의 층의 조성은 이에 한정되지 않는다. 도 5에 도시된 핫 스탬핑 부품(1)은 혼입 수소량이 0 이상 0.21 ppm 미만이고, 동저항값은 0 초과 0.8 mΩ 이하일 수 있다.
도 6은 본 발명의 비교 실시예에 따른 핫 스탬핑 부품의 단면을 나타내는SEM(주사전자현미경) 이미지로서, 도 5의 단면과 차이점이 되는 부분을 위주로 설명한다. 도 6에 따른 핫 스탬핑 부품(1')은 전술한 핫 스탬핑 부품 제조 방법(예를 들어 도 4의 620 곡선)에 의해 제조된 부품일 수 있다.
도 6에 도시된 핫 스탬핑 부품(1')은 모재(10) 및 모재(10) 위에 위치하는 도금층(30)을 포함할 수 있다. 도금층(30)은 도 5의 도금층(20)과 달리 복수의 층이 아닌 단일층일 수 있고, 도금층(20)보다 그 두께가 얇을 수 있다. 실시예에 따라서 도금층(30)은 복수의 층을 포함하더라도 그 경계가 불분명한 상태일 수 있다. 도금층(30)은 Al, Fe 및 Si 중 적어도 어느 하나의 원소를 포함할 수 있다. 도 6에 도시된 핫 스탬핑 부품(1')은 혼입 수소량이 0 이상 0.35 ppm 미만이고, 동저항값은 0.5 mΩ이상 1.5 mΩ 이하일 수 있다.
이하, [표 1]을 함께 사용하여 전술한 도 5 및 도 6에 따른 핫 스탬핑 부품의 특성을 비교하여 설명한다. 하기 표에 기재된 평가 내용은 상대적인 비교 결과일 수 있다.
실시예 1 (도 5) 비교예 (도 6)
도금층 두께 두꺼움 얇음
혼입 수소량
(수소취성)
적음
(우위)
많음
(열위)
동저항 작음(약 0.8 mΩ 이하)
(약 0.8 mΩ 이상)
용접성 우위 열위
도 5의 도금층(20)은 도 6의 도금층(30)보다 복수의 층으로 구성되며 이때 복수의 층들 간의 경계 또한 명확할 수 있고, 이에 따라 도금층(20)의 두께가 도금층(30)의 두께보다 두꺼울 수 있다. 여기서 도 4를 함께 참조하면 이러한 도금층의 두께 특성과 제1 제어 곡선(610)의 제어 특성은 상호 영향의 결과로 도출된 것일 수 있다. 예를 들어 도금층이 두꺼울 경우 제1 가열 구간(P1) 및 제2 가열 구간(P2) 동안 가열할 때 두 구간(P1, P2) 사이에서 승온속도 변화율이 불연속적으로 변할 수 있고, 제3 가열 구간(P3)에서는 제1 제어 곡선(610)의 기울기가 완만, 즉 승온속도 변화율이 작을 수 있다.
한편, 도금층의 두께가 두꺼울수록 혼입 수소량이 적어져 블랭크의 수소취성이 우수해진다. 도 5의 도금층(20)의 두께가 두꺼우므로 전술한 바와 같이 혼입 수소량이 도 5의 부품(1)(약 0.21 ppm 미만)이 도 6의 부품(1')(약 0.35 ppm 미만)에 비해 작고, 이에 따라 수소취성이 더 우위에 있으며 수소 지연 파단의 위험성이 감소할 수 있다.
또한, 전술한 도금층의 두께 특성으로 인해 표면 저항은 도 5의 부품(1)이 도 6의 부품(1')보다 작을 수 있다. 또한, 동저항이 작을수록 용접성이 우수해지는데 전술한 바와 같이 동저항 값이 도 5의 부품(1)(약 0.8 mΩ 이하)이 도 6의 부품(1')(약 0.8 mΩ 이하)에 비해 작으므로, 용접성 또한 도 5의 부품(1)이 더 우위에 있음을 확인할 수 있다.
이와 같이 본 발명의 일 실시예에 따른 핫 스탬핑 부품의 제조 방법에 의하면, 복수의 구간 별로 승온속도 변화율을 제어함으로써 부품에 대한 정밀 제어가 가능하고 이로 인한 핫 스탬핑 부품의 용접성, 수소취성, 초고강도 특성 등의 부품 성능을 개선할 수 있는 이점이 있다.
도 7은 본 발명의 일 실시예에 따른 핫 스탬핑 부품의 제조 방법에 이용되는 블랭크를 개략적으로 도시한 평면도이다.
도 7을 참조하면, 일 실시예에 따른 블랭크(200)는 단일 두께를 가지는 블랭크(210), 두께가 서로 다른 이종의 판재를 필요한 모양으로 재단하여 용접한 테일러 웰디드 블랭크(220)(Taylor Welded Blank, TWB), 단일 두께의 판재를 압연하여 서로 다른 두께를 가지는 테일러 롤드 블랭크(230)(Tailor Rolled Blank, TRB) 및 큰 블랭크에 작은 패치 블랭크를 용접하여 제조된 패치워크(240)(Patchwork) 중 적어도 하나를 포함할 수 있다.
테일러 웰디드 블랭크(220)는 서로 다른 두께를 갖는 제1 판재(221), 및 제2 판재(223)를 용접하여 제조할 수 있다. 차량의 충돌 부재용 중요 부품인 B-필러(Pillar)는 상부의 충돌 지지부와 하부의 충격 흡수부에 서로 다른 강도의 판재가 결합된 형태로, 두 판재를 용접한 후 성형하여 제작한다. 이때 주로 사용되는 테일러 웰디드 블랭크 공법은 두께, 강도 및 재질이 서로 다른 이종의 판재를 필요한 모양으로 재단하여 용접한 후 프레스 성형하여 부품을 제조하는 일련의 과정을 의미하는데, 이종의 두께를 가진 판재를 용접하여 서로 다른 두께를 가진 블랭크를 제조함으로써, 블랭크의 부분별로 상이한 특성을 갖도록 할 수 있다. 예를 들어 B-필러의 상부의 충돌 지지부에는 120~150K급 초고 강도 판재를 사용하고, 응력이 집중되는 B-필러의 하단부에는 충격 흡수성능이 좋은 판재를 연결하여 차량 충돌 시 충격 흡수능력을 향상시킬 수 있다.
테일러 롤드 블랭크(230)는 냉연 상태의 강재를 특정 두께 프로파일을 갖도록 압연하여 제조할 수 있으며, 상기 테일러 롤드 블랭크(230)를 이용하여 핫 스탬핑 부품 제조 시 경량화 효과가 우수하다. 일 예로, 상기 두께 프로파일은 통상적인 방법으로 실시할 수 있다. 예컨대, 상기 냉연 상태의 강재를 냉간 압연 시, 압하율을 조절하여 제1 두께를 갖는 제1 영역(231), 제2 두께를 갖는 제2 영역(232), 제3 두께를 갖는 제3 영역(233), 및 제4 두께를 갖는 제4 영역(234)을 포함하는 테일러 롤드 블랭크(230)를 형성할 수 있다. 이때, 제1 두께, 제2 두께, 제3 두께, 및 제4 두께는 각각 상이할 수 있고, 제1 영역(231)과 제2 영역(232) 사이, 제2 영역(232)과 제3 영역(233) 사이, 및 제3 영역(233)과 제4 영역(234) 사이에는 천이구간(235)이 존재할 수 있다. 다만, 도 2에서는 테일러 롤드 블랭크(230)가 제1 영역(231) 내지 제4 영역(234)을 포함하는 것을 도시하였으나, 본 발명이 이에 한정되는 것은 아니다. 테일러 롤드 블랭크(230)는 제1 영역(231), 제2 영역(232), …, 제n 영역을 포함하여 형성될 수도 있다.
패치워크(240)는 적어도 두개 이상의 판재를 사용하여 부분적으로 모재를 보강하는 공법으로, 성형공정 이전에 패치가 모재에 접합되어 모재와 패치가 동시에 형성될 수 있다. 일 예로, 제1 크기를 갖는 모재(241)에 상기 제1 크기보다 작은 제2 크기를 갖는 패치(243)가 용접된 후, 동시에 성형될 수 있다.
도 8은 본 발명의 일 실시예에 따른 핫 스탬핑 부품의 제조 방법에 있어서, 가열로 내로 투입된 블랭크를 개략적으로 도시한 평면도이다. 이하, 도 1을 함께 참조하여 설명한다.
블랭크 투입 단계(S100)에 있어서, 두께 및 크기 중 적어도 어느 하나가 서로 다른 적어도 두 개의 블랭크(200)는 가열로 내로 동시에 투입될 수 있다.
일 예로, 도 8은 가열로 내로 동시에 투입되는 두 개의 제1 블랭크(250)와 두 개의 제2 블랭크(260)를 도시한다. 이때, 제1 블랭크(250)와 제2 블랭크(260)는 서로 다른 크기 및 다른 두께를 가질 수 있다. 예를 들어, 제1 블랭크(250)는 약 1.2 mm의 두께를 가지고, 제2 블랭크(260)는 약 1.6 mm의 두께를 가질 수 있다. 다만, 본 발명이 이에 한정되는 것은 아니며, 한 개의 제1 블랭크(250), 및 한 개의 제2 블랭크(260)가 가열로 내로 동시에 투입될 수도 있다. 또한, 제1 블랭크(250)와 제2 블랭크(260)는 크기는 동일하지만 두께가 상이하게 형성되거나, 또는 동일한 두께로 다른 크기를 가지도록 형성되는 등 다양한 변형이 가능하다.
다른 실시예로, 블랭크 투입 단계(S100)에 있어서, 가열로 내로 단일 두께를 가지는 적어도 두 개의 블랭크(200)가 동시에 투입될 수 있다. 예를 들어, 1.2 mm의 두께를 가진 블랭크(240)가 적어도 두 개 이상 동시에 투입될 수 있고, 1.6 mm의 두께를 가진 블랭크(250)가 적어도 두 개 이상 동시에 투입될 수 있다. 또한, 블랭크 투입 단계(S100)에 있어서, 가열로 내로 전술한 테일러 웰디드 블랭크(220, 도 7 참조), 또는 테일러 롤드 블랭크(230, 도 7 참조)가 투입될 수도 있다.
가열로 내로 투입된 블랭크는 롤러에 실장된 후 이송 방향을 따라 이송될 수 있다(S300).
블랭크 투입 단계(S100) 이후에, 다단 가열 단계(S200)가 이루어질 수 있다. 다단 가열 단계(S200)는 블랭크가 가열로 내에 구비된 복수의 구간을 통과하며 단계적으로 가열되는 단계일 수 있고, 균열 가열이 수행되는 구간을 적어도 하나 이상 포함할 수 있다.
이와 같이 본 발명은 도면에 도시된 일 실시예를 참고로 하여 설명하였으나 이는 예시적인 것에 불과하며 당해 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 실시예의 변형이 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.

Claims (9)

  1. 서로 다른 승온 속도 범위를 가지는 복수의 구간을 구비한 가열로 내로 모재의 적어도 일면에 도금층이 형성된 블랭크를 투입하는 단계; 및
    상기 복수의 구간을 통과하며 상기 블랭크를 단계적으로 가열하는 다단 가열 단계;를 포함하고,
    상기 복수의 구간은,
    제1 평균 승온속도 변화율을 가지는 제1 가열 구간;
    상기 제1 가열 구간 이후에, 상기 제1 평균 승온속도 변화율과 상이한 제2 평균 승온속도 변화율을 가지는 제2 가열 구간; 및
    상기 제2 가열 구간 이후에, 상기 제1 평균 승온속도 변화율 및 상기 제2 평균 승온속도 변화율과 상이한 제3 평균 승온속도 변화율을 가지는 제3 가열 구간;을 포함하며,
    상기 제3 평균 승온속도 변화율은 양의 값에서 음의 값으로 변화하는 구간을 포함하는, 핫 스탬핑 부품의 제조 방법.
  2. 제1항에 있어서,
    상기 제1 가열 구간과 상기 제2 가열 구간 사이에서, 상기 제1 평균 승온속도 변화율로부터 상기 제2 평균 승온속도 변화율로의 변화는 불연속적인, 핫 스탬핑 부품의 제조 방법.
  3. 제1항에 있어서,
    상기 제3 가열 구간은 제3-1 평균 승온속도 변화율을 가지는 제3-1 가열 구간 및 제3-2 평균 승온속도 변화율을 가지는 제3-2 가열 구간을 포함하되,
    상기 제3-1 평균 승온속도 변화율은 양의 값을 가지며, 상기 제3-2 평균 승온속도 변화율은 음의 값을 가지고,
    상기 제3-1 평균 승온속도 변화율의 절대값은 상기 제3-2 평균 승온속도 변화율의 절대값보다 작은, 핫 스탬핑 부품의 제조 방법.
  4. 제1항에 있어서,
    상기 제1 평균 승온속도 변화율 및 상기 제2 평균 승온속도 변화율은 각각 음의 값을 가지고,
    상기 제1 평균 승온속도 변화율의 절대값은 상기 제2 평균 승온속도 변화율의 절대값보다 큰, 핫 스탬핑 부품의 제조 방법.
  5. 제1항에 있어서,
    상기 복수의 구간은, 제3 가열 구간 이후에,
    상기 제1 평균 승온속도 변화율, 상기 제2 평균 승온속도 변화율 및 상기 제3 평균 승온속도 변화율과 상이한 제4 평균 승온속도 변화율을 가지는 제4 가열 구간을 더 포함하고,
    상기 제4 평균 승온속도 변화율의 절대값은 상기 제1 평균 승온속도 변화율, 상기 제2 평균 승온속도 변화율 및 상기 제3 평균 승온속도 변화율 각각의 절대값보다 작은, 핫 스탬핑 부품의 제조 방법.
  6. 제3항에 있어서,
    상기 제3-1 평균 승온속도 변화율은 0 이상 0.25 ℃/s2 이하의 값을 가지고, 상기 제3-2 평균 승온속도 변화율은 -0.3 ℃/s2 이상 0 이하의 값을 가지는, 핫 스탬핑 부품의 제조 방법.
  7. 제4항 및 제6항 중 어느 한 항에 있어서,
    상기 제1 평균 승온속도 변화율은 -0.5 ℃/s2 이상 0 이하의 값을 가지고, 상기 제2 평균 승온속도 변화율은 -0.25 ℃/s2 이상 0 이하의 값을 가지는, 핫 스탬핑 부품의 제조 방법.
  8. 제1항에 있어서,
    상기 제2 가열 구간에서 상기 도금층이 합금화되고,
    상기 제3 가열 구간에서 상기 모재가 상변태하는, 핫 스탬핑 부품의 제조 방법.
  9. 제1항 내지 제8항 중 어느 한 항에 의해 제조된 핫 스탬핑 부품으로서,
    혼입 수소량이 0 이상 0.21 ppm 미만이고, 동저항값은 0 초과 0.8 mΩ 이하인, 핫 스탬핑 부품.
PCT/KR2021/018671 2020-12-09 2021-12-09 핫 스탬핑 부품 및 이의 제조 방법 WO2022124828A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21903874.2A EP4260960A1 (en) 2020-12-09 2021-12-09 Hot-stamped component and method for manufacturing same
CN202180083200.6A CN116568420A (zh) 2020-12-09 2021-12-09 热冲压部件及其制造方法
JP2022575414A JP2023535866A (ja) 2020-12-09 2021-12-09 ホットスタンピング部品及びその製造方法
US18/079,453 US20230104619A1 (en) 2020-12-09 2022-12-12 Hot stamping component and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200171622A KR102399887B1 (ko) 2020-12-09 2020-12-09 핫 스탬핑 부품 및 이의 제조 방법
KR10-2020-0171622 2020-12-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/079,453 Continuation US20230104619A1 (en) 2020-12-09 2022-12-12 Hot stamping component and method of manufacturing the same

Publications (1)

Publication Number Publication Date
WO2022124828A1 true WO2022124828A1 (ko) 2022-06-16

Family

ID=81801773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/018671 WO2022124828A1 (ko) 2020-12-09 2021-12-09 핫 스탬핑 부품 및 이의 제조 방법

Country Status (6)

Country Link
US (1) US20230104619A1 (ko)
EP (1) EP4260960A1 (ko)
JP (1) JP2023535866A (ko)
KR (1) KR102399887B1 (ko)
CN (1) CN116568420A (ko)
WO (1) WO2022124828A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100037692A (ko) * 2008-10-02 2010-04-12 주식회사 엠에스 오토텍 핫스탬핑용 가열로 장치
KR20130136565A (ko) 2011-04-27 2013-12-12 신닛테츠스미킨 카부시키카이샤 핫 스탬프 부재용 강판 및 그 제조 방법
WO2014162984A1 (ja) * 2013-04-02 2014-10-09 新日鐵住金株式会社 ホットスタンプ成形体、冷延鋼板、及びホットスタンプ成形体の製造方法
CN108588612A (zh) * 2018-04-28 2018-09-28 育材堂(苏州)材料科技有限公司 热冲压成形构件、热冲压成形用预涂镀钢板及热冲压成形工艺
KR20190084288A (ko) * 2016-12-19 2019-07-16 아르셀러미탈 핫 프레스 성형된 알루미늄 처리된 강 부품의 제조 프로세스
KR20200076071A (ko) * 2018-12-19 2020-06-29 주식회사 포스코 열간 성형용 알루미늄 도금강재의 가열 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100037692A (ko) * 2008-10-02 2010-04-12 주식회사 엠에스 오토텍 핫스탬핑용 가열로 장치
KR20130136565A (ko) 2011-04-27 2013-12-12 신닛테츠스미킨 카부시키카이샤 핫 스탬프 부재용 강판 및 그 제조 방법
WO2014162984A1 (ja) * 2013-04-02 2014-10-09 新日鐵住金株式会社 ホットスタンプ成形体、冷延鋼板、及びホットスタンプ成形体の製造方法
KR20190084288A (ko) * 2016-12-19 2019-07-16 아르셀러미탈 핫 프레스 성형된 알루미늄 처리된 강 부품의 제조 프로세스
CN108588612A (zh) * 2018-04-28 2018-09-28 育材堂(苏州)材料科技有限公司 热冲压成形构件、热冲压成形用预涂镀钢板及热冲压成形工艺
KR20200076071A (ko) * 2018-12-19 2020-06-29 주식회사 포스코 열간 성형용 알루미늄 도금강재의 가열 방법

Also Published As

Publication number Publication date
KR102399887B9 (ko) 2023-11-20
US20230104619A1 (en) 2023-04-06
EP4260960A1 (en) 2023-10-18
KR102399887B1 (ko) 2022-05-20
JP2023535866A (ja) 2023-08-22
CN116568420A (zh) 2023-08-08

Similar Documents

Publication Publication Date Title
WO2010079995A2 (ko) 내식성이 우수한 알루미늄 도금강판, 이를 이용한 열간 프레스 성형 제품 및 그 제조방법
WO2012060496A1 (ko) 열처리 경화 강판을 이용한 국부적으로 이종강도를 가지는 자동차 부품 제조방법
WO2020130560A1 (ko) 가공성이 우수한 냉연강판, 용융아연도금강판 및 이들의 제조방법
WO2020222394A1 (ko) 핫 스탬핑 부품 및 그 제조방법
WO2013047939A1 (ko) 레이저 열처리를 이용한 이종강도를 갖는 강 제품 제조 방법 및 이에 이용되는 열처리 경화강
KR101054773B1 (ko) Twip형 초고강도 강판의 제조방법
KR20210080176A (ko) 핫 스탬핑용 블랭크, 이의 제조 방법, 핫 스탬핑 부품, 및 이의 제조 방법
WO2021100995A1 (ko) 고강도 및 고성형성을 가지는 강판 및 그 제조방법
WO2021125577A1 (ko) 핫 스탬핑 부품, 및 이의 제조 방법
WO2022124828A1 (ko) 핫 스탬핑 부품 및 이의 제조 방법
WO2017052005A1 (ko) 페라이트계 스테인리스강 및 이의 제조 방법
WO2022004969A1 (ko) 열간 프레스용 강판 및 이의 제조 방법
WO2018105939A1 (en) Method for manufacturing vehicle body parts
WO2017051997A1 (ko) 성형체 제조방법
WO2016064226A1 (ko) 고강도, 고연성의 페라이트계 스테인리스 강판 및 그의 제조방법
WO2022097989A1 (ko) 선영성이 우수한 고강도 아연계 도금강판 및 그 제조방법
WO2020085687A1 (ko) 클램프용 고강도 페라이트계 스테인리스강 및 그 제조방법
WO2019124794A1 (ko) 폭방향을 따라 강도가 차등화된 강판 및 그 제조방법
KR102608377B1 (ko) 핫 스탬핑 부품 및 이의 제조 방법
WO2023075033A1 (ko) 핫 스탬핑 부품
WO2022255587A1 (ko) 핫스탬핑용 강판 및 그 제조방법
WO2023075035A1 (ko) 핫 스탬핑 부품
WO2023075032A1 (ko) 핫 스탬핑 부품 및 이의 제조 방법
WO2023058827A1 (ko) 열간 프레스용 강판 및 이를 이용하여 제조된 핫 스탬핑 부품
WO2024058312A1 (ko) 초고강도 냉연 강판 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21903874

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022575414

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180083200.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021903874

Country of ref document: EP

Effective date: 20230710