WO2022124523A1 - Composition comprising polystyrene sulfonic acid metal salt, semiconductor device, and method for manufacturing same - Google Patents

Composition comprising polystyrene sulfonic acid metal salt, semiconductor device, and method for manufacturing same Download PDF

Info

Publication number
WO2022124523A1
WO2022124523A1 PCT/KR2021/010756 KR2021010756W WO2022124523A1 WO 2022124523 A1 WO2022124523 A1 WO 2022124523A1 KR 2021010756 W KR2021010756 W KR 2021010756W WO 2022124523 A1 WO2022124523 A1 WO 2022124523A1
Authority
WO
WIPO (PCT)
Prior art keywords
poly
composition
pss
layer
acid
Prior art date
Application number
PCT/KR2021/010756
Other languages
French (fr)
Korean (ko)
Inventor
서정화
강주환
아즈맛알리
브라이트워커
안요한
Original Assignee
동아대학교 산학협력단
경희대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동아대학교 산학협력단, 경희대학교 산학협력단 filed Critical 동아대학교 산학협력단
Publication of WO2022124523A1 publication Critical patent/WO2022124523A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a composition comprising a polystyrene sulfonic acid metal salt, a semiconductor device, and a method for manufacturing the same.
  • perovskite is the most versatile and promising material applicable to a wide range of optoelectronic devices such as solar cells, light emitting diodes (LEDs), photodetectors and lasers.
  • Perovskite generally has a crystal structure of the formula ABX 3 , where A is an organic cation (CH 3 NH 3 ), B is a metal cation (Pb, Sn), and X is a halogen anion (I, Br and Cl).
  • CH 3 NH 3 PbI 3 MAbI 3
  • the organometallic halide perovskite has high charge carrier mobility, large carrier diffusion length, It exhibits excellent performance in solar cells and LEDs due to properties such as low exciton binding energy and tunable electroluminescence.
  • PSCs perovskite solar cells
  • HTL hole transport layer
  • HTM hole transport material
  • properties such as an appropriate HOMO (High Occupied Molecular Orbital) energy level, good photochemical stability, hole mobility and proper solubility in organic solvents are required.
  • HTMs in PSC are divided into three categories: organic small molecule HTM, organic polymer HTM and inorganic HTM.
  • HTMs copper-based HTMs are one of the most promising candidates.
  • spiro-oMeTAD 2,2',7,7'-Tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene
  • PEDOT:PSS poly(3,4-dioxyethylenethiophene): Poly(styrene sulfonate)
  • Chemical doping is one of the most powerful ways to improve the electronic conductivity of HTMs and to change semiconductor properties and energy band structure to create effective junctions.
  • Organic amines and alkyl ammonium cations can generate n-doping in organic and hybrid semiconductors, and various n-type dopant interfacial materials have been reported.
  • tetrabutylammonium halides TAAX
  • TBAX tetrabutylammonium halides
  • TBAX salt exhibits the same characteristic effect of reducing the work function ⁇ of the cathode in perovskite devices as in organic solar cells, and is used as a moisture-resistant n-type dopant for perovskite devices.
  • Polymers with low molecular weight TBAX, amine and ammonium functional groups can produce similar doping effects.
  • Non-conjugated polyelectrolytes such as polyethyleneimine (PEI) and ethoxylated polyethyleneimine (PEIE) are used as an interlayer between the electron transport layer (ETL) and indium tin oxide (ITO) for efficient electron injection and hole blocking.
  • p-dopants such as SnCl 4 , ( p -BrC 6 H 4 ) 3 NSbCl 6 , tris(2-(1 H -pyrazol-1-yl) pyridine) cobalt(iii) have improved the electronic properties of spiro-MeOTAD. investigated to improve.
  • other p-dopants including ionic liquids, metal-based salts, TCNQ (tetra cyanoquino dimethane) derivatives, oxidized radical cation salts, and the like, are being studied.
  • Wei Shi and co-workers reported that anionic polymers have excellent hole transport and electron blocking properties as well as good solubility in polar solvents, enabling effective multilayer solution processing in polymer light emitting diodes (PLEDs).
  • PSCs perovskite solar cells
  • PEDOT triarylamine-based organic semiconductors
  • HTL hole transport layer
  • PSS acidic poly (3,4-ethtyleynedioxythiophene)-poly(styrene sulfonate)
  • the present invention in order to solve the above-mentioned problems, by applying a mixture of polystyrene sulfonic acid metal salts (Metal salts of polystyrene sulfonic acid, Polystyrene sulfonate salt) and anionic electrolyte, to control the negative charge balance of the electrolyte backbone, semiconductor material
  • polystyrene sulfonic acid metal salts Metal salts of polystyrene sulfonic acid, Polystyrene sulfonate salt
  • anionic electrolyte to control the negative charge balance of the electrolyte backbone, semiconductor material
  • the present invention is to provide a semiconductor device comprising a hole transport layer comprising the composition according to the present invention, supporting p-doping in the semiconductor layer, and enabling efficient extraction of p-type carriers from the anode.
  • the present invention provides a method for manufacturing a semiconductor device according to the present invention.
  • polystyrene sulfonic acid metal salt relates to a composition comprising a.
  • the metal of the polystyrene sulfonic acid metal salt is lithium (Li), magnesium (Mg), copper (Cu), lead (Pb), silver (Ag), nickel (Ni), palladium ( Pd), sodium (Na), potassium (K), aluminum (Al), zirconium (Zr), scandium (Sc), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron ( Fe), zinc (Zn), platinum (Pt) and gold (Au) may include at least one selected from the group consisting of.
  • the mass ratio of the polystyrene sulfonic acid metal salt to the anionic polymer electrolyte may be 10: 1 to 1: 10.
  • the anionic polymer electrolyte is, PEDOT:PSS (poly(3,4-ethylenedioxythiophene) polystyrene sulfonate), polyacrylic acid (PAA, polyacrylic acid), polymethylacrylic acid (PMA, polymethyl acrylic acid) ), polyvinylsulfonic acid, poly-alpha-methyl sulfonic acid, poly-ethylidene sulfonic acid, polyglutamic acid, poly Aspartic acid, tri polyphosphoric acid, poly (4-vinyl pyridinium chloride) (poly (4-vinyl pyridinium chloride)), poly (2-vinyl pyridinium chloride) (poly (2-vinyl pyridinium chloride), poly (4-vinyl-2-hydroxyethyl pyridinium) chloride) and poly [2-vinyl-3- (2) -Sulfoethyl imidazolinium betaine)] (poly[
  • the composition includes polyphenylene, polypyrrole, polyaniline, polythiophene, polyperylene, poly(3-alkyl-thiophene), polyfullerene, polyflu Orene (polyfluorene), polyphenylene (polyphenylene), polypyrene (polypyrene), polyazulene (polyazulene), polynaphthalene (polynaphthalene), polyacetylene (polyacetylene, PAC), poly-p-phenylenevinylene (poly(p) -phenylene vinylene, PPV), polypyrrole (PPY), polycarbazole, polyindole, polyzepine, poly(thienylene vinylene), polyaniline, PANI ), polythiophene (poly(thiophene)), poly(p-phenylene sulfide, PPS), poly(3,4-ethylenedioxythiophene, PEDOT), poly(
  • the composition may provide a p-type dopant to the semiconductor material.
  • the composition may further include a water-soluble solvent, and the water-soluble solvent may include water.
  • the composition may be used for manufacturing a hole transport layer of a semiconductor device.
  • the composition may provide a film having a light transmittance of 90% or more.
  • a first electrode layer a second electrode layer; A hole transport layer comprising the composition of claim 1 between the first electrode layer and the second electrode layer; and a semiconductor layer formed on the hole transport layer. It relates to a semiconductor device comprising a.
  • the hole transport layer may have a thickness of 1 nm to 50 nm.
  • the hole transport layer may have a light transmittance of 90% or more.
  • At least a portion of the semiconductor layer may form an interface with the hole transport layer, and the interface or the semiconductor region adjacent to the interface may include a p-type doped region in both.
  • the surface roughness of the semiconductor layer may be 1.00 RMS to 1.5 RMS.
  • the semiconductor layer includes perovskite, wherein the perovskite is ABX 3 , A 2 BX 4 , ABX 4 or A n-1 B n X 3n+1 ( n is an integer between 2 and 6), wherein A is an organoammonium or alkali metal material, B is a metal material, and X may be a halogen element.
  • the semiconductor device may be an optoelectronic device
  • the semiconductor layer may be a photoactive layer or a photoluminescent layer
  • the optoelectronic device may be a light emitting device or a solar cell.
  • forming the hole transport layer comprises: annealing at a temperature of 0 °C to 130 °C after coating the composition; may include.
  • the forming of the semiconductor layer on the hole transport layer may include: forming a deposition film of a semiconductor material on the hole transport layer; It may include; annealing the deposited film at a temperature of 0 °C to 130 °C.
  • the present invention can provide a novel composition for a hole transport layer that can effectively form a p-type contact in a semiconductor device and increase the work function of an electrode.
  • the present invention provides a composition that can be utilized as a p-type interface material based on a convenient and inexpensive polymer electrolyte, and the composition is applied not only to solar cells but also to other organic and hybrid semiconductor devices such as thin film transistors and LEDs This can improve the p-type contact and provide performance improvements such as device efficiency.
  • FIG. 1 shows a Perovskite Solar Cell (PSC) device using Cu:PSS as an HTL according to an embodiment of the present invention, and shows a schematic diagram of a device structure and a p-type doping effect of Cu:PSS.
  • PSC Perovskite Solar Cell
  • FIG. 2A illustrates Fermi-level pinning (red line: HOMO and blue line: LUMO) in an interlayer and energy level diagram, according to an embodiment of the present invention.
  • 2b is a work function of different thicknesses of Cu:PSS (IP: ionization potential, ⁇ : work function, ⁇ e : electron injection barrier, ⁇ h : hole injection barrier, E vac , according to an embodiment of the present invention. : vacuum level and ⁇ : interfacial dipole)).
  • 3A shows an S 2p XPS spectrum according to an embodiment of the present invention.
  • 3b is a work function (Cu:PSS A: small amount of PEDOT:PSS and Cu:PSS and PEDOT: PSS and Cu:PSS M: PEDOT:PSS and Cu:PSS mixture) is shown.
  • FIG. 4 shows SEM images of MAPbI 3 formed on four different HTLs, namely Cu:PSS, Cu:PSS A, Cu:PSS M and PEDOT:PSS, according to an embodiment of the present invention.
  • FIG. 5a shows the characteristics of MAPbI 3 formed on four different HTLs , namely Cu:PSS, Cu:PSS A, Cu:PSS M and PEDOT:PSS, according to an embodiment of the present invention. it has been shown
  • FIG. 5b shows the characteristics of MAPbI 3 formed on four different HTLs, namely Cu:PSS, Cu:PSS A, Cu:PSS M, and PEDOT:PSS, according to an embodiment of the present invention.
  • the EQE curves are shown in FIG. it has been shown
  • FIG. 5C illustrates, in accordance with an embodiment of the present invention, MAPbI 3 formed on four different HTLs, namely Cu:PSS, Cu:PSS A, Cu:PSS M and PEDOT:PSS; PEDOT: PSS HTL calculated by the transfer matrix method as showing the characteristics of the optical field intensity (Optical field intensity) in the device using the HTL is shown.
  • Figure 6a shows the light intensity dependence J SC , according to an embodiment of the present invention.
  • FIG. 6B illustrates the light intensity dependence V OC , according to an embodiment of the present invention.
  • FIG. 6c shows the FF at a low luminous intensity of 1 mWcm -2 related to the luminance dependence according to an embodiment of the present invention, and the right y-axis shows the difference from the ideal FF of 90% in MAPbI 3 .
  • FIG. 6d shows the intensity-dependent FF according to an embodiment of the present invention, and the right y-axis shows the difference from the ideal FF of 90% in MAPbI 3 .
  • FIG. 7 shows light transmittance of various HTLs on a glass substrate according to an embodiment of the present invention, and a range of 90 to 100% light transmittance can be confirmed.
  • the present invention relates to a composition comprising a polystyrenesulfonic acid metal salt.
  • the composition comprises: a polystyrenesulfonic acid metal salt; and an anionic polymer electrolyte.
  • the present invention can be applied as a material for a hole transport layer (HTL) in a semiconductor device by applying a mixture of polystyrene sulfonic acid metal salt and anionic polymer electrolyte, and is applied to the hole transport layer to create a p-type contact And, it can help improve the performance of a semiconductor device, and, for example, can improve the charge collection efficiency and photocurrent generation of the perovskite layer in the PSC. It will be described in more detail with reference to FIG. 1 .
  • HTL hole transport layer
  • composition according to the present invention in FIG. 1 can provide an effective p-type polyelectrolyte dopant, ie when applying a PSS backbone with an anionic charge with a reduced Cu 2+ counterion, in this system Cu 2+ ions easily receive electrons on the semiconductor, leaving an excessive negative charge on the PSS backbone, and can not only balance the negative charge in the PSS polyelectrolyte backbone, but also compensate for the p-type carriers on the semiconductor as a result.
  • the metal in the polystyrene sulfonic acid metal salt may include at least one metal selected from alkali metals, alkaline earth metals and transition metals.
  • lithium (Li), magnesium (Mg), copper (Cu), lead (Pb), silver (Ag), nickel (Ni), palladium (Pd), sodium (Na), potassium (K), aluminum (Al), zirconium (Zr), scandium (Sc), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), zinc (Zn), platinum (Pt) and gold (Au) may contain at least one selected from the group consisting of, the metal is preferably to generate a metal ion having a monovalent to divalent oxidation number in a metal salt, for example, Li + , Mg 2+ , Cu 2+ , Pb 2+ , Ag 2+ , Ni 2+ and Pd 2+ .
  • the polystyrene sulfonic acid metal salt may be represented by the following Chemical Formula 1, in which n is 1 to 350, and M + may be the aforementioned metal ion.
  • the mixing ratio (mmol) of the polystyrene sulfonic acid metal salt to the anionic polymer electrolyte is 10: 1 to 1: 10; 9: 1 to 5: 5; Or 9: 1 to 6: 4, and when included within the above range, it is possible to provide an optimized pneumatic transport layer, and improve the performance and stability of the device.
  • an improved function as a hole transport layer can be provided, for example, when used as a hole transport layer, a p-type contact (p- type contact) and reduce the acidity of the anionic polymer electrolyte, that is, PEDOT:PSS, as well as reduce the hysteresis of the semiconductor device and improve the performance of various semiconductor devices.
  • a p-type contact p- type contact
  • PEDOT:PSS anionic polymer electrolyte
  • the polystyrene sulfonic acid metal salt and the anionic polymer electrolyte 0.01 wt% to less than 100 wt% of the composition; 0.1% to 30% by weight; 1% to 20% by weight; Alternatively, when included in an amount of 1 wt% to 10 wt%, performance improvement and stability of the device can be secured when included in the above range.
  • the concentration ratio (mmol) of the metal (metal of polystyrene sulfonic acid metal salt): anionic polymer: polystyrene sulfonic acid is 1 to 10: 1 to 10: 1 to 400; 1-4: 1-7: 300-400; 1-4: 1-7: 30-100; 2 ⁇ 4 : 1 ⁇ 7 : 5 ⁇ 8; Or 3-4: 1-7: 6-7.
  • the pH of the composition is 3 to 7.5; 4 to 7.5; or 5 to 7.5.
  • the anionic polymer electrolyte is, PEDOT: PSS (poly(3,4-ethylenedioxythiophene) polystyrene sulfonate), polyacrylic acid (PAA, polyacrylic acid), polymethylacrylic acid (PMA, polymethyl acrylic acid), poly polyvinylsulfonic acid, poly-alpha-methyl sulfonic acid, poly-ethylidene sulfonic acid, polyglutamic acid, polyaspartic acid (poly aspartic acid), tri polyphosphoric acid, poly (4-vinyl pyridinium chloride) (poly (4-vinyl pyridinium chloride)), poly (2-vinyl pyridinium chloride) (poly (2- vinyl pyridinium chloride), poly(4-vinyl-2-hydroxyethyl pyridinium) chloride) and poly[2-vinyl-3-(2-sulfoethyl) It may include at least one selected from
  • the composition includes polyphenylene, polypyrrole, polyaniline, polythiophene, polyperylene, poly(3-alkyl-thiophene), polyfullerene, polyfluorene ), polyphenylene, polypyrene, polyazulene, polynaphthalene, polyacetylene, PAC, poly-p-phenylene vinylene , PPV), polypyrrole (PPY), polycarbazole, polyindole, polyzepine, poly(thienylene vinylene), polyaniline (PANI), poly thiophene (poly (thiophene)), poly (p-phenylene sulfide, PPS), poly (3,4-ethylenedioxy thiophene (poly (3,4-ethylenedioxy thiophene, PEDOT), At least one conductive polymer selected from the group consisting of poly(3,4-ethylenedioxythiophene)-tetramethacrylate (PE), PEDOT), At least one
  • the composition may further include a water-soluble solvent in a residual amount or an appropriate content, for example, water; and water-soluble alcohols such as methanol, ethanol and isopropanol, and hydrophilic solvents such as acetone and ketone. It may further include dimethylformamide (DMF), N-Methyl-2-pyrrolidone (NMP), 1,4-dioxane, dimethyl sulfoxide (DMSO), toluene, methyl ethyl ketone, and the like.
  • a water-soluble solvent in a residual amount or an appropriate content
  • water water-soluble alcohols
  • hydrophilic solvents such as acetone and ketone.
  • DMF dimethylformamide
  • NMP N-Methyl-2-pyrrolidone
  • DMSO dimethyl sulfoxide
  • toluene methyl ethyl ketone, and the like.
  • a film comprising or prepared from the composition according to the present invention may be provided, wherein the film is a film, a sheet, a thin film, etc., wherein the film is 80% or more; It may exhibit a light transmittance of 90% or more or 95% or more.
  • the light transmittance is related to a light wavelength greater than or equal to ultraviolet light, for example, 300 nm to 900 nm.
  • the film is formed using a solution process, vapor deposition, or both, and the film has a thickness of 1 nm or more; more than 10 nm; or 100 nm or more, preferably 1 nm to 30 nm; 1 nm to 20 nm, or 1 nm to 5 nm.
  • the present invention relates to a semiconductor device comprising the composition according to the present invention.
  • the semiconductor device includes: a first electrode layer; a second electrode layer; a hole transport layer comprising the composition according to the present invention between the first electrode layer and the second electrode layer; and a semiconductor layer formed on the hole transport layer.
  • the semiconductor device according to the present invention can improve the performance of the device by improving the p-type contact point in the device by applying the p-type interface material according to the composition according to the present invention.
  • the first electrode is a transparent or semi-transparent electrode, Ti, Zn, Sr, In, Ba, K, Nb, Fe, Ta, W, Sa, Bi, Ni, Cu, Mo, Ce, Oxides including those selected from the group consisting of Pt, Ag, Rh, Ru, V and mixtures thereof, for example, indium-tin oxide (ITO; indium-tin oxide), fluorine-containing tin oxide (FTO; Fluorine- doped tin oxide), indium zinc oxide (IZO), aluminum-doped zinc oxide (AZO; aluminum-zinc oxide; ZnO:Al), aluminum tin oxide (ATO; aluminum-tin oxide; SnO 2 :Al) and tin-based It may include at least one selected from the group consisting of oxides and zinc oxide (ZnO).
  • ITO indium-tin oxide
  • FTO fluorine-containing tin oxide
  • IZO indium zinc oxide
  • AZO aluminum-doped zinc oxide
  • ZnO aluminum
  • the first electrode is formed on a substrate
  • the substrate may include an organic material such as plastic having flexibility, an inorganic material, or a metal, for example, Si, SiO 2 , Ge, GaN, AlN, GaP, InP, GaAs, SiC, Al 2 O 3 , LiAlO 3 , MgO, quartz, sapphire, graphite, graphene, as an organic material, polyimide (PI), polycarbonate (PC), polyethersulfone (PES), Polyether ether ketone (PEEK), polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polyvinyl chloride (PVC), polyethylene (PE), ethylene copolymer, polypropylene (PP), propylene copolymer, Poly (4-methyl-1-pentene) (TPX), polyarylate (PAR), polyacetal (POM), polyphenylene oxide (PPO), polysulfone (PSF), polyphenylene
  • PI polyimide
  • the second electrode is the same as or different from the first electrode, for example, Al, Ag, Au, W, Cu, Ti, Zn, Sr, In, Ba, K, Nb, Fe, It may include at least one selected from the group consisting of Ta, Sa, Bi, Ni, Mo, Ce, Pt, Rh, Ru, V, and a conductive polymer.
  • it may further include at least one or more selected from the group consisting of a hole injection layer, an electron blocking layer, an electron transport layer and an electron injection layer between the first electrode and the second electrode, for example, the An electron transport layer, an electron injection layer, an electron blocking layer, etc. may be included between the semiconductor layer, that is, the photoactive layer and the second electrode, and the stacking order thereof may be appropriately selected.
  • the electron transport layer is , fullerene (C60), fullerene derivative, perylene, PBI (polybenzimidazole), PTCBI (3,4,9,10-perylene-tetracarboxylic bis-benzimidazole) PCBM ((6,6)-phenyl-C 61 -butyric acid-methylester), PCBCR((6,6)-phenyl-C61-butyric acid cholesteryl ester), PCBM((6,6)-phenyl-C 61 -butyric acid-methylester), PBI(polybenzimidazole), PCBCR ((6,6)-phenyl-C 61 -butyric acid-cholesteryl ester) and PTCBI (3,4,9,10-perylene-tetracarboxylic bis-benzimidazole)
  • PCBM ((6,6)-phenyl-C 61 -butyric acid-methylester)
  • PCBCR (6,6)-phenyl-C 61
  • the hole transport layer to form a p-type contact point with the semiconductor layer, the hole transport layer, 80% or more; It may exhibit a light transmittance of 90% or more or 95% or more.
  • the light transmittance is related to a light wavelength greater than or equal to ultraviolet light, for example, 300 nm to 900 nm.
  • the thickness of the hole transport layer is 1 nm or more; more than 10 nm; 100 nm or more, preferably 1 nm to 30 nm; 1 nm to 20 nm or 1 nm to 5 nm. Performance of a semiconductor device, that is, an optoelectronic device, may be improved by applying the thickness and the light transmittance.
  • the semiconductor layer is an optoelectronic device, and the ptoelectronic device requires a hole injection or transport material, an electron injection or transport material, or a light emitting material to drive the device.
  • a photoelectronic device includes a light emitting device, a solar cell, an organic photo conductor drum, an optical sensor, a thin film transistor, and an organic and hybrid semiconductor device such as an LED, all of which are devices.
  • a hole injection or transport material, an electron injection or transport material, a photoelectric material (or a semiconductor material), a light emitting material (organic or inorganic), etc. are required to drive the .
  • the optoelectronic device may refer to a device that requires charge exchange between an electrode using holes or electrons and an organic or inorganic material.
  • the photoelectric device may include a photoactive layer (or semiconductor layer) or a photoluminescent layer
  • the optoelectronic device includes a light emitting device, a solar cell (eg, an inverted solar cell, a perovskite solar cell). ) can be
  • the photoactive layer includes perovskite, ABX 3 , A 2 BX 4 , ABX 4 or A n-1 B n X 3n+1 (n is an integer between 2 and 6) Including the structure of, wherein A is an organoammonium or alkali metal material, wherein B is a metal material, and X may be a halogen element.
  • the organic ammonium is an amidinium-based organic ion, for example, (CH 3 NH 3 ) n , ((C x H 2x+1 ) n NH 3 ) 2 (CH 3 NH 3 ) n , (RNH 3 ) 2 , (C n H 2n+1 NH 3 ) 2 , (CF 3 NH 3 ), (CF 3 NH 3 ) n , ((C x F 2x+1 ) n NH 3 ) 2 (CF 3 NH 3 ) n , ((C x F 2x+1 ) n NH 3 ) 2 or (C n F 2n+1 NH 3 ) 2 ) and (n is an integer greater than or equal to 1, x is an integer greater than or equal to 1), and the alkali metal is Na, K, Rb, Cs, or Fr, wherein B is a divalent transition metal, rare earth metal, alkaline earth metal, Pb, Sn, Ge, Ga, In, Al,
  • the perovskite nanocrystal particles may be in the form of a sphere, a cylinder, an elliptical column, or a polygonal column.
  • the light emitting layer may include an organic or inorganic light emitting material or a semiconductor material applicable to a light emitting device, and is not specifically mentioned herein.
  • At least a portion of the semiconductor layer may form an interface with the hole transport layer, and a p-type doped region may be included in both of the interface or the semiconductor region adjacent to the interface.
  • the semiconductor layer may have a surface roughness of 1.00 to 1.5 RMS and a thickness of 1.5 to 20 nm.
  • the present invention relates to a method of manufacturing a semiconductor device according to the present invention.
  • the manufacturing method includes: forming a hole transport layer; and forming a semiconductor layer on the hole transport layer.
  • the step of forming the hole transport layer, coating the composition according to the present invention in a solution process to form a hole transport layer the steps of preparing a polystyrene sulfonic acid metal salt; preparing an anionic polymer electrolyte; forming a composition in which the polystyrene sulfonic acid metal salt and the anionic polymer electrolyte are mixed; forming a coating layer by coating the composition with a solution process; and annealing the coating layer.
  • the manufacturing method according to the present invention is a very transparent and cost-effective polyelectrolyte hole transport layer (HTL) composed of a polystyrene sulfonic acid metal salt and an anionic polymer by applying a simple solution-processed method.
  • HTL polyelectrolyte hole transport layer
  • the semiconductor device can provide an effect of improving the performance of the semiconductor device.
  • it can be applied as a PSC device, that is, inverted perovskite solar cells, and in a composition comprising Cu:PSS and PEDOT:PSS, the easily reduced Cu 2+ counter ion is a PSS polyelectrolyte.
  • Balancing the negative charge of the backbone can support p-doping at the interface with perovskite and Cu:PSS and allow efficient extraction of p-type carriers from the anode.
  • the PCE power conversion efficiency
  • the anionic polymer electrolyte is prepared by the above-mentioned components.
  • the preparing of the polystyrene sulfonic acid metal salt may include preparing a metal precursor solution; preparing a polystyrene sulfonic acid solution; reacting while mixing the metal precursor solution and the polystyrene sulfonic acid solution; isolating the product; and washing and drying the separated product.
  • the step of preparing the polystyrene sulfonic acid metal salt may be prepared according to Scheme 1 below.
  • n is 1 to 350
  • M + may be the aforementioned monovalent to divalent metal ion.
  • the metal precursor in the step of preparing the metal precursor solution, is a metal, metal oxide and silicide, oxide, carbonate, bicarbonate, acetate, nitride, oxynitride, chloride, fluoride, oxyfluoride, hydroxide, oxalic acid It may include at least one selected from the group consisting of salts, metal salts of sulfates and nitrates.
  • the metal precursor solution is mixed with a solvent capable of dispersing and/or dissolving the metal precursor, and may include, for example, water, an organic solvent, or both, and the organic solvent may be a water-soluble solvent. .
  • the water-soluble solvent may be water; It may include an organic solvent or both, and a water-soluble alcohol such as methanol, ethanol and isopropanol, and a hydrophilic solvent such as acetone and ketone. It may further include dimethylformamide (DMF), N-Methyl-2-pyrrolidone (NMP), 1,4-dioxane, dimethyl sulfoxide (DMSO), toluene, methyl ethyl ketone, and the like.
  • the concentration of the metal precursor may be 0.005 wt% (0.05 mg/ml) to 0.1 wt% (1 mg/ml).
  • the step of preparing the polystyrene sulfonic acid solution may include mixing polystyrene sulfonic acid and a solvent to have a pH of 3 or less; 2.5 or less; 2 or less; Or preparing a solution of 1 to 1.5.
  • the concentration of the polystyrene sulfonic acid may be 0.01 mol/L to 1.02 mol/L.
  • the solvent is a solvent capable of dispersing and/or solventing the polystyrene sulfonic acid, and may include, for example, water, an organic solvent, or both.
  • the organic solvent may be a water-soluble solvent.
  • the molecular weight of the polystyrene sulfonic acid is 100 g/mol or more; 200 g/mol or more; 5,000 g/mol or more; 10,000 g/mol or more; 50,000 g/mol, or 200 to 75,000 g/mol, and may have a weight average or number average molecular weight.
  • the step of reacting while mixing the metal precursor solution and the polystyrene sulfonic acid solution 0 °C to 60 °C; 5°C to 40°C; 10°C to 30°C;
  • the reaction may proceed by dropping the metal precursor solution to the polystyrene sulfonic acid solution while stirring at room temperature (rt).
  • separating the product; And the step of washing and drying the separated product is for separating the desired product from the reactant mixture after the reaction proceeds, depending on whether the desired product is a liquid and/or solid (or precipitate), extraction, centrifugation, filter (Filtration), reduced pressure, etc. can be selected suitably. After filtration, redissolving, precipitation, or both may be appropriately selected to obtain a desired product, and impurities, by-products, etc. may be removed through separation, precipitation and/or washing processes, and dried. This step may be repeated several times.
  • the obtained product has a pH of 7 or less at a concentration of 2 mM or less; 6 or less; 4 or less; or 2 or less.
  • the step of forming a composition in which the polystyrene sulfonic acid metal salt and the anionic polymer electrolyte are mixed is to prepare a composition according to the present invention, that is, a coating solution, the above-mentioned solvent, the polystyrene sulfonic acid metal salt and an anionic polymer electrolyte.
  • the solution process is, paint brushing, spray coating, doctor blade, immersion-pulling method It may be (Dip-Drawing), spin coating (Spin Coating), inkjet printing (inkjet printing), slot die coating (slot die coating) and the like.
  • the step of annealing the coating layer may be selectively applied, for example, the deposition film at a temperature of 0° C. to 130° C., a time of 0 minutes to 10 minutes, and an inert gas, air and/or air atmosphere. , can be annealed in a vacuum atmosphere.
  • the forming of the semiconductor layer on the hole transport layer may include: forming a deposition film of a semiconductor material on the hole transport layer; and annealing the deposited film.
  • the deposited film in the step of annealing the deposited film, may be annealed at a temperature of 0° C. to 130° C., 0 minutes to 10 minutes, and inert gas, air and/or air atmosphere, and vacuum atmosphere. have.
  • the step of forming a deposition film of a semiconductor material on the hole transport layer may use a spin coating method, a deposition method or a printing method using a semiconductor material precursor, a semiconductor material and/or a semiconductor material source, etc.
  • a spin coating method for example, the solution process mentioned above, inkjet printing, gravure printing, spray coating, doctor blade, bar coating, gravure coating, brush painting, slot-die coating, thermal evaporation, e-beam evaporation), sputtering, chemical vapor deposition (CVD), physical vapor deposition (PVD), atomic layer deposition (ALD), etc.
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • ALD atomic layer deposition
  • Cu(OAc) 2 was dissolved in 0.13M concentration of water:MeOH solvent (1:1, by volume). 1 molar equivalent of a poly(4-styrenesulfonic acid) solution (the pH of the solution (1.8 mg/5 mL H 2 O) is 1.1) was added. The mixture was precipitated with a 10-fold volume of IPA, and ethyl acetate and a few drops of hexane were sequentially added thereto to induce complete precipitation of the product. The mixture was centrifuged at 3000 rpm for 10 minutes to separate the product from the solution. A dense cyan gel was obtained after centrifugation and re-dissolved in H 2 O.
  • the solution was re-precipitated in IPA, ethyl acetate and hexane.
  • the viscous gel was multitudered under dry IPA to extract the residue to give a solid material which was washed with additional IPA and hexanes and dried under vacuum.
  • the dilute solution (4.8 mg/5 mL H 2 O) has a pH of 5.9.
  • Inverted PSC was fabricated in the structure of ITO/HTL/MAPbI3/Al.
  • ITO-coated glass substrates were washed with detergent and then sonicated in deionized water and acetone for 10 minutes.
  • Different HTLs were used to build the device. That is, four different types of HTL were used, including Cu:PSS, PEDOT:PSS, a mixture of Cu:PSS and PEDOT:PSS, and Cu:PSS with PEDOT:PSS as an additive.
  • Cu:PSS HTLs were deposited from aqueous solutions at concentrations of 0.005, 0.015, 0.025 and 0.035 wt%. 0.015 wt % of Cu:PSS was used to prepare the mixture with PEDOT:PSS.
  • Cu:PSS and PEDOT:PSS mixture HTL was prepared with Cu:PSS and PEDOT:PSS in 5 mixing ratios (wt/wt): (Cu:PSS): (PEDOT:PSS), (0.9: 0.1), ( 0.8 : 0.2), (0.7 : 0.3), (0.6 : 0.4), (0.5 : 0.5).
  • PEDOT:PSS For Cu:PSS solutions containing PEDOT:PSS as additive, volumes of PEDOT:PSS (10, 20, 30, 40 and 50 ⁇ L) were added to 1 mL of Cu:PSS solution. All HTLs were spin cast in air at 2000 rpm and then annealed at 120 °C. However, PEDOT:PSS was annealed in air at 140 °C for 10 min.
  • MAPbI 3 films were prepared using a previously reported procedure (A. Ali, JH Kang, JH Seo, B. Walker, Adv. Eng. Mater. 2020 , 22 , 1900976.). Briefly, perovskite films were deposited via a solvent engineering method by spin coating the precursor solution in two steps of 3,500 rpm for 30 s and 6,500 rpm for 5 s. In the second step, anhydrous chlorobenzene (45 ⁇ L) was dropped into the center of the substrate.
  • the prepared film was placed on a hot plate at 90° C. for 10 minutes under N 2 atmosphere.
  • PC 61 BM was spin coated at 2,000 rpm for 30 sec and annealed at 60 °C for 10 min.
  • 100 nm of Al was deposited under a vacuum of 1 ⁇ 10 -6 Torr.
  • JV curves were measured using a Keithley 2635 source measure unit under AM 1.5G illumination with an irradiation intensity of 100 mW ⁇ cm -2 and calibrated using standard silicon reference solar cells prior to testing.
  • various luminous intensity data were collected using a neutral density filter obtained from Thorlabs.
  • XPS X-ray photoelectron spectroscopy
  • UPS ultraviolet photoelectron spectroscopy
  • surface images were measured. The results are shown in Table 1 and FIGS. 2A to 2B, 3A to 3B, 4, 5A to 5D, 6A to 6D to and 7 .
  • Figure 2a shows the energy level diagram of Cu:PSS at the ITO/Cu:PSS interface used as HTL in the PSC device.
  • Cu cations and PSS anions are interfacial dipoles ( can create an interfacial dipole, ⁇ , increasing the effective ⁇ of ITO
  • Cu:PSS is deposited on ITO with HTL, it forms an interfacial dipole increased by +0.24 eV, and an ohmic 6 p-type contact is formed. and can facilitate hole extraction.
  • Figure 2b shows the ⁇ of the ITO substrate when the Cu:PSS film is deposited with various thicknesses, and it can be confirmed that the ITO ⁇ value increases from 4.70 eV to 4.87 eV when the Cu:PSS film thickness is 1.8 nm.
  • increases to a maximum of 5.12 eV
  • decreases slightly to 5.05 and 4.97 eV for the films of 4.5 and 18.4 nm thickness. That is, for optimal hole extraction, the energy level is between the energy level of ITO and the perovskite balance band, and the optimal Cu:PSS thickness may be 3.1 nm.
  • PEDOT:PSS was added as an additive to the optimized Cu:PSS solution in small amounts.
  • PEDOT:PSS was added in variable amounts from 10 ⁇ L to 50 ⁇ L, and the concentrations (based on mmol) of each component (Cu 2+ , PEDOT and PSS) in these solutions were calculated, and the relative concentrations (0.35: 0) to the Cu:PSS solution. : 0.70), and relative concentrations (0.35 : 0.13 : 1.31), (0.35 : 0.26 : 1.93), (0.35 : 0.40: 2.55), (0.35: 0.53: 3.16) and (0.35: 0.66: 3.78).
  • the ⁇ values of Cu:PSS and Cu:PSS A in the UPS spectrum in FIG. 3b are 5.12 and 5.14 eV, respectively.
  • decreased by 5.06 eV
  • V OC decreased slightly to about 1.00 V.
  • PEDOT:PSS without Cu has a low ⁇ such as 5.00 eV, and it can be confirmed that a V OC of 0.89 V is observed.
  • Cu:PSS and a mixture of Cu:PSS and PEDOT:PSS were prepared, and the characteristics were defined as UPS and XPS, and it was confirmed that the desired effect on the electron band structure at the anode was confirmed. That is, when integrating Cu:PSS in X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS), it can be confirmed that the work function of the anode and the effect of increasing the upward band bending effect are increased.
  • XPS X-ray photoelectron spectroscopy
  • UPS ultraviolet photoelectron spectroscopy
  • Cu:PSS was observed to work effectively from PSC to HTL, using similar device parameters as PEDOT:PSS but with lower fill factor (FF) values.
  • FF fill factor
  • the mixture of Cu:PSS and PEDOT:PSS shows much improved performance compared to PEDOT:PSS alone.
  • the combination of Cu:PSS and PEDOT:PSS maintains high FF values and exhibits PCE up to 19.44%, and according to the transmittance data in FIG. %) showed an average transmittance (300 nm to 900 nm) in the range of 98.8 to 99.3 %, which can reduce parasitic absorption and improve J SC values.
  • the present invention provides an inverted PSC to which HTM (Cu:PSS) is applied, which is prepared by a solution process in a very transparent and simple way, which integrates easily reduced cations (Cu 2+ ) with an anionic polyelectrolyte to form an adjacent semiconductor
  • HTM Cu:PSS
  • an interfacial material capable of supporting p-doping in the layer. That is, these materials will remove electrons from the intrinsic semiconductor, leaving excess p-type carriers in the semiconductor compensated for by the excess negative charge in the adjacent polyelectrolyte layer in the interfacial layer, and will facilitate hole extraction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Electroluminescent Light Sources (AREA)
  • Physics & Mathematics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)

Abstract

The present invention relates to a composition comprising a polystyrene sulfonic acid metal salt, a semiconductor device, and a method for manufacturing same, and more specifically, to a composition comprising: a polystyrene sulfonic acid metal salt; and an anionic polyelectrolyte, a semiconductor device comprising the composition, and a method for manufacturing same.

Description

폴리스티렌설폰산 금속염을 포함하는 조성물, 반도체 소자 및 이의 제조방법Composition comprising polystyrene sulfonic acid metal salt, semiconductor device, and method for manufacturing the same
본 발명은, 폴리스티렌설폰산 금속염을 포함하는 조성물, 반도체 소자 및 이의 제조방법에 관한 것이다. The present invention relates to a composition comprising a polystyrene sulfonic acid metal salt, a semiconductor device, and a method for manufacturing the same.
반도체 재료 중 페로브스카이트는 태양 전지, 발광다이오드(LED), 광검출기 및 레이저와 같은 광범위한 광전자 장치(optoelectronic devices)에 응용 가능한 가장 다재 다능하고 유망한 물질이다. Among semiconductor materials, perovskite is the most versatile and promising material applicable to a wide range of optoelectronic devices such as solar cells, light emitting diodes (LEDs), photodetectors and lasers.
페로브스카이트는 일반적으로 화학식 ABX3인 결정구조를 가지며, A는 유기 양이온(CH3NH3), B는 금속 양이온(Pb, Sn) 및 X는 할로겐 음이온(I, Br 및 Cl)이다. CH3NH3PbI3(MAPbI3)는 가장 널리 사용되는 유기 무기 하이브리드 페로브스카이트이고, 유기금속 할라이드 페로브스카이트는 높은 전하 이동도(charge carrier mobility), 큰 캐리어 확산 길이(carrier diffusion length), 낮은 엑시톤 결합 에너지(low exciton binding energy), 조정 가능한 전기 발광(tunable electroluminescence) 등과 같은 특성으로 인해 태양전지 및 LED에서 우수한 성능을 나타낸다. Perovskite generally has a crystal structure of the formula ABX 3 , where A is an organic cation (CH 3 NH 3 ), B is a metal cation (Pb, Sn), and X is a halogen anion (I, Br and Cl). CH 3 NH 3 PbI 3 (MAPbI 3 ) is the most widely used organic-inorganic hybrid perovskite, and the organometallic halide perovskite has high charge carrier mobility, large carrier diffusion length, It exhibits excellent performance in solar cells and LEDs due to properties such as low exciton binding energy and tunable electroluminescence.
많은 연구자들은 페로브스키트 태양전지(PSC)의 전반적인 성능이 페로브스카이트 활성층 보다는 태양전지의 다른 구성요소 및 전하 추출층(charge extraction layer)에 의해 제한되므로, 더 나은 장치 구조를 개발하기 위해서 지속적으로 노력을 기울이고 있다. PSC 장치에서 정공수송층(hole transport layer, HTL)은, 페로브스키트 층의 전하 수집 효율 및 광전류 생성을 향상시키는 데 중요한 역할을 하며 정공 수집 전극에서의 재결합을 감소시킨다. Many researchers continue to develop better device structures because the overall performance of perovskite solar cells (PSCs) is limited by the charge extraction layer and other components of the solar cell rather than the perovskite active layer. are making efforts with The hole transport layer (HTL) in the PSC device plays an important role in improving the charge collection efficiency and photocurrent generation of the perovskite layer and reduces recombination at the hole collection electrode.
좋은 정공 수송 물질(HTM)을 만들기 위해서는 적절한 HOMO(High Occupied Molecular Orbital) 에너지 수준, 우수한 광화학적 안정성, 정공 이동성 및 유기 용매에서의 적절한 용해도와 같은 특성이 요구된다. PSC에서 HTM는 세 가지로 분류된다: 유기 소분자 HTM, 유기 폴리머 HTM 및 무기 HTM이다. To make a good hole transport material (HTM), properties such as an appropriate HOMO (High Occupied Molecular Orbital) energy level, good photochemical stability, hole mobility and proper solubility in organic solvents are required. HTMs in PSC are divided into three categories: organic small molecule HTM, organic polymer HTM and inorganic HTM.
무기 HTM의 경우 구리 기반 HTM이 가장 유망한 후보 중 하나이다. spiro-oMeTAD(2,2',7,7'-Tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene) 및 PEDOT:PSS(poly(3,4-dioxyethylenethiophene):poly(styrene sulfonate))는, 각각 유기 저분자 HTM과 유기 고분자 HTM 중에서 가장 널리 사용되고 효율적인 소재이다. For inorganic HTMs, copper-based HTMs are one of the most promising candidates. spiro-oMeTAD(2,2',7,7'-Tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene) and PEDOT:PSS(poly(3,4-dioxyethylenethiophene): Poly(styrene sulfonate)) is the most widely used and efficient material among organic low molecular weight HTM and organic high molecular weight HTM, respectively.
화학적 도핑은 HTM의 전자 전도도를 개선하고 반도체 특성과 에너지 밴드 구조를 변경하여 효과적인 접합을 만드는 가장 강력한 방법 중 하나이다. 유기 아민과 알킬 암모늄 양이온이 유기 및 하이브리드 반도체 내에서 n-도핑을 생성할 수 있고, 다양한 n-형 도펀트 계면 물질이 보고되었다. 예를 들어, TBAX (tetrabutylammonium halides)는 PC61BM과 TBAX를 혼합하여 풀러렌의 n-형 도펀트에 사용된다. 이들 사이의 전자 이동은 효과적인 도핑을 유도하기 때문이다. TBAX 염은 유기 태양 전지에서와 같이 페로브스카이트 소자에서 음극의 일함수 Φ를 감소시키는 것과 동일한 특성 효과를 나타내며 페로브스카이트 소자용 내습성 n-형 도펀트로 사용된다. 저분자 TBAX, 아민 및 암모늄 작용기를 가진 중합체는 유사한 도핑 효과를 생성할 수 있다. 폴리에틸렌이민(PEI) 및 에톡실화 폴리에틸렌 이민 (PEIE)과 같은 비공액 고분자 전해질(NPE)은 효율적인 전자 주입 및 정공 차단을 위해 전자 수송층(ETL)과 인듐 주석 산화물(ITO) 사이의 중간층으로 사용된다.Chemical doping is one of the most powerful ways to improve the electronic conductivity of HTMs and to change semiconductor properties and energy band structure to create effective junctions. Organic amines and alkyl ammonium cations can generate n-doping in organic and hybrid semiconductors, and various n-type dopant interfacial materials have been reported. For example, tetrabutylammonium halides (TBAX) is used as an n-type dopant of fullerene by mixing PC 61 BM and TBAX. This is because electron transfer between them leads to effective doping. TBAX salt exhibits the same characteristic effect of reducing the work function Φ of the cathode in perovskite devices as in organic solar cells, and is used as a moisture-resistant n-type dopant for perovskite devices. Polymers with low molecular weight TBAX, amine and ammonium functional groups can produce similar doping effects. Non-conjugated polyelectrolytes (NPEs) such as polyethyleneimine (PEI) and ethoxylated polyethyleneimine (PEIE) are used as an interlayer between the electron transport layer (ETL) and indium tin oxide (ITO) for efficient electron injection and hole blocking.
SnCl4, (p-BrC6H4)3NSbCl6, tris(2-(1H-pyrazol-1-yl) pyridine) cobalt(iii)와 같은 몇 가지 p-도펀트가 spiro-MeOTAD의 전자적 특성을 개선하기 위해 조사되었다. 또한, 이온성 액체, 금속 기반염, TCNQ(tetra cyanoquino dimethane) 유도체, 산화 라디칼 양이온염 등을 포함하는 다른 p-도펀트의 연구가 진행되고 있다. 예를 들어, Wei Shi 와 동료들은 음이온 폴리머가 우수한 정공 수송 및 전자 차단 특성은 물론 극성 용매에 대한 우수한 용해도를 가지고 있어 폴리머 발광 다이오드(PLED)에서 효과적인 다층 용액 처리가 가능함을 보고하였다. Several p-dopants such as SnCl 4 , ( p -BrC 6 H 4 ) 3 NSbCl 6 , tris(2-(1 H -pyrazol-1-yl) pyridine) cobalt(iii) have improved the electronic properties of spiro-MeOTAD. investigated to improve. In addition, other p-dopants, including ionic liquids, metal-based salts, TCNQ (tetra cyanoquino dimethane) derivatives, oxidized radical cation salts, and the like, are being studied. For example, Wei Shi and co-workers reported that anionic polymers have excellent hole transport and electron blocking properties as well as good solubility in polar solvents, enabling effective multilayer solution processing in polymer light emitting diodes (PLEDs).
할로겐화 납 페로브스카이트의 경이적인 반도체 특성에도 불구하고 페로브스카이트 태양 전지(PSC)의 가장 취약한 면 중 하나는 일반적으로 값 비싼 트리아릴 아민 기반 유기 반도체(triarylamine-based organic semiconductors) 또는 산성 PEDOT:PSS(acidic poly (3,4-ethtyleynedioxythiophene)-poly(styrene sulfonate))를 포함하는 정공수송층(HTL)이다. 따라서 PSC의 성능과 확장성을 개선하기 위해 확인된 가장 효과적인 전략 중 하나는 새로운 HTL 소재를 개발하는 것이다. Despite the phenomenal semiconducting properties of lead halide perovskite, one of the most vulnerable aspects of perovskite solar cells (PSCs) is the generally expensive triarylamine-based organic semiconductors or acid PEDOT: It is a hole transport layer (HTL) containing PSS (acidic poly (3,4-ethtyleynedioxythiophene)-poly(styrene sulfonate)). Therefore, one of the most effective strategies identified to improve the performance and scalability of PSCs is to develop new HTL materials.
본 발명은, 상기 언급한 문제점을 해결하기 위해서, 폴리스티렌설폰산 금속염(Metal salts of polystyrene sulfonic acid, Polystyrene sulfonate salt)과 음이온성 전해질의 혼합물을 적용하여, 전해질 백본의 음전하 균형을 조절하고, 반도체 물질에 전자적 특성을 개선시킬 수 있고, 정공수송층의 재료로 활용할 수 있는 조성물을 제공하는 것이다.The present invention, in order to solve the above-mentioned problems, by applying a mixture of polystyrene sulfonic acid metal salts (Metal salts of polystyrene sulfonic acid, Polystyrene sulfonate salt) and anionic electrolyte, to control the negative charge balance of the electrolyte backbone, semiconductor material To provide a composition that can improve electronic properties and can be used as a material for a hole transport layer.
본 발명은, 본 발명에 의한 조성물을 포함하고, 반도체층에 p-도핑을 지원하고, 애노드에서 p-형 캐리어의 효율적인 추출이 가능한, 정공수송층을 포함하는, 반도체 소자를 제공하는 것이다.The present invention is to provide a semiconductor device comprising a hole transport layer comprising the composition according to the present invention, supporting p-doping in the semiconductor layer, and enabling efficient extraction of p-type carriers from the anode.
본 발명은, 본 발명에 의한 반도체 소자의 제조방법을 제공하는 것이다. The present invention provides a method for manufacturing a semiconductor device according to the present invention.
그러나, 본 발명이 해결하고자 하는 과제는 이상에서 언급한 것들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 해당 분야 통상의 기술자에게 명확하게 이해될 수 있을 것이다.However, the problems to be solved by the present invention are not limited to those mentioned above, and other problems not mentioned will be clearly understood by those skilled in the art from the following description.
본 발명의 일 실시예에 따라, 폴리스티렌설폰산 금속염; 및 음이온성 고분자 전해질; 을 포함하는, 조성물에 관한 것이다. According to an embodiment of the present invention, polystyrene sulfonic acid metal salt; and anionic polyelectrolytes; It relates to a composition comprising a.
본 발명의 일 실시예에 따라, 상기 폴리스티렌설폰산 금속염의 금속은, 리튬(Li), 마그네슘(Mg), 구리(Cu), 납(Pb), 은(Ag), 니켈(Ni), 팔라듐(Pd), 나트륨(Na), 칼륨(K), 알루미늄(Al), 지르코늄(Zr), 스칸듐(Sc), 티타늄(Ti), 바나듐(V), 크롬(Cr), 망간(Mn), 철(Fe), 아연(Zn), 백금(Pt) 및 금(Au)으로 이루어진 군에서 선택되는 적어도 하나 이상을 포함하는 것일 수 있다. According to an embodiment of the present invention, the metal of the polystyrene sulfonic acid metal salt is lithium (Li), magnesium (Mg), copper (Cu), lead (Pb), silver (Ag), nickel (Ni), palladium ( Pd), sodium (Na), potassium (K), aluminum (Al), zirconium (Zr), scandium (Sc), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron ( Fe), zinc (Zn), platinum (Pt) and gold (Au) may include at least one selected from the group consisting of.
본 발명의 일 실시예에 따라, 상기 폴리스티렌설폰산 금속염 대 상기 음이온성 고분자 전해질의 질량비는 10 : 1 내지 1 : 10인 것일 수 있다.According to an embodiment of the present invention, the mass ratio of the polystyrene sulfonic acid metal salt to the anionic polymer electrolyte may be 10: 1 to 1: 10.
본 발명의 일 실시예에 따라, 상기 음이온성 고분자 전해질은, PEDOT:PSS (poly(3,4-ethylenedioxythiophene) polystyrene sulfonate), 폴리아크릴산(PAA, polyacrylic acid), 폴리메틸아크릴산(PMA, polymethyl acrylic acid), 폴리비닐설폰산(polyvinylsulfonic acid), 폴리-알파-메틸설폰산(poly-Alpha-Methyl sulfonic acid), 폴리-에틸리덴설폰산(poly-ethylidene sulfonic acid), 폴리글루탐산(polyglutamic acid), 폴리아스파르틱산(poly aspartic acid), 트리폴리인산(Tri polyphosphoric acid), 폴리(4-비닐피리디니움 클로라이드)(poly(4-vinyl pyridinium chloride)), 폴리(2-비닐피리디니움 클로라이드)(poly(2-vinyl pyridinium chloride)), 폴리(4-비닐-2-하이드록시에틸피리디늄)클로라이드(poly(4-vinyl-2-hydroxyethyl pyridinium) chloride)) 및 폴리[2-비닐-3-(2-설포에틸 이미다졸리늄 베테인)](poly[1-vinyl-3-(2-sulfoethyl imidazolium betaine)])으로 이루어진 군에서 선택된 적어도 하나 이상을 포함하는 것일 수 있다.According to an embodiment of the present invention, the anionic polymer electrolyte is, PEDOT:PSS (poly(3,4-ethylenedioxythiophene) polystyrene sulfonate), polyacrylic acid (PAA, polyacrylic acid), polymethylacrylic acid (PMA, polymethyl acrylic acid) ), polyvinylsulfonic acid, poly-alpha-methyl sulfonic acid, poly-ethylidene sulfonic acid, polyglutamic acid, poly Aspartic acid, tri polyphosphoric acid, poly (4-vinyl pyridinium chloride) (poly (4-vinyl pyridinium chloride)), poly (2-vinyl pyridinium chloride) (poly (2-vinyl pyridinium chloride), poly (4-vinyl-2-hydroxyethyl pyridinium) chloride) and poly [2-vinyl-3- (2) -Sulfoethyl imidazolinium betaine)] (poly[1-vinyl-3-(2-sulfoethyl imidazolium betaine)]) may include at least one selected from the group consisting of.
본 발명의 일 실시예에 따라, 상기 조성물은, 폴리페닐렌, 폴리피롤, 폴리아닐린, 폴리티오펜, 폴리페릴렌(perylene), 폴리(3-알킬-티오펜), 폴리플러렌(fullerene), 폴리플루오렌(polyfluorene), 폴리페닐렌(polyphenylene), 폴리피렌(polypyrene), 폴리아줄렌(polyazulene), 폴리나프탈렌(polynaphthalene), 폴리아세틸렌(polyacetylene, PAC), 폴리-p-페닐렌비닐렌(poly(p-phenylene vinylene, PPV), 폴리피롤(polypyrrole, PPY), 폴리카바졸(polycarbazole), 폴리인돌(polyindole), 폴리아제핀(polyzepine), 폴리티에닐렌비닐렌(poly(thienylene vinylene), 폴리아닐린(polyaniline, PANI), 폴리티오펜(poly(thiophene)), 폴리(p-페닐렌설파이드(poly(p-phenylene sulfide, PPS), 폴리(3,4-에틸렌디옥시티오펜(poly(3,4-ethylenedioxy thiophene, PEDOT), 폴리(3,4-에틸렌디옥시티오펜)-테트라메타크릴레이트(PEDOT-TMA), 폴리퓨란(polyfuran), PCBM((6,6)-phenyl-C61-butyric acid-methylester), PBI(polybenzimidazole), PCBCR((6,6)-phenyl-C61-butyric acid-cholesteryl ester) 및 PTCBI(3,4,9,10-perylene-tetracarboxylic bis-benzimidazole)으로 이루어진 군에서 선택된 적어도 하나 이상을 포함하는 전도성 고분자를 더 포함하는 것일 수 있다. According to an embodiment of the present invention, the composition includes polyphenylene, polypyrrole, polyaniline, polythiophene, polyperylene, poly(3-alkyl-thiophene), polyfullerene, polyflu Orene (polyfluorene), polyphenylene (polyphenylene), polypyrene (polypyrene), polyazulene (polyazulene), polynaphthalene (polynaphthalene), polyacetylene (polyacetylene, PAC), poly-p-phenylenevinylene (poly(p) -phenylene vinylene, PPV), polypyrrole (PPY), polycarbazole, polyindole, polyzepine, poly(thienylene vinylene), polyaniline, PANI ), polythiophene (poly(thiophene)), poly(p-phenylene sulfide, PPS), poly(3,4-ethylenedioxythiophene, PEDOT), poly(3,4-ethylenedioxythiophene)-tetramethacrylate (PEDOT-TMA), polyfuran, PCBM((6,6)-phenyl-C 61 -butyric acid-methylester), At least one selected from the group consisting of PBI (polybenzimidazole), PCBCR ((6,6)-phenyl-C 61 -butyric acid-cholesteryl ester) and PTCBI (3,4,9,10-perylene-tetracarboxylic bis-benzimidazole) It may further include a conductive polymer comprising a.
본 발명의 일 실시예에 따라, 상기 조성물은, 반도체 물질에 p-형 도펀트를 제공하는 것일 수 있다. According to an embodiment of the present invention, the composition may provide a p-type dopant to the semiconductor material.
본 발명의 일 실시예에 따라, 상기 조성물은, 수용성 용매를 더 포함하고, 상기 수용성 용매는, 물을 포함하는 것일 수 있다.According to an embodiment of the present invention, the composition may further include a water-soluble solvent, and the water-soluble solvent may include water.
본 발명의 일 실시예에 따라, 상기 조성물은, 반도체 소자의 정공수송층 제조에 사용되는 것일 수 있다. According to an embodiment of the present invention, the composition may be used for manufacturing a hole transport layer of a semiconductor device.
본 발명의 일 실시예에 따라, 상기 조성물은, 90 % 이상의 광투과도를 갖는 막을 제공하는 것일 수 있다. According to an embodiment of the present invention, the composition may provide a film having a light transmittance of 90% or more.
본 발명의 일 실시예에 따라, 제1 전극층; 제2 전극층; 상기 제1 전극층 및 제2 전극층 사이에 제1항의 조성물을 포함하는 정공수송층; 및 상기 정공수송층 상에 형성된 반도체층; 을 포함하는, 반도체 소자에 관한 것이다. According to an embodiment of the present invention, a first electrode layer; a second electrode layer; A hole transport layer comprising the composition of claim 1 between the first electrode layer and the second electrode layer; and a semiconductor layer formed on the hole transport layer. It relates to a semiconductor device comprising a.
본 발명의 일 실시예에 따라, 상기 정공수송층은, 1 nm 내지 50 nm 두께를 포함하는 것일 수 있다.According to an embodiment of the present invention, the hole transport layer may have a thickness of 1 nm to 50 nm.
본 발명의 일 실시예에 따라, 상기 정공수송층은, 90 % 이상의 광투과도를 갖는 것일 수 있다. According to an embodiment of the present invention, the hole transport layer may have a light transmittance of 90% or more.
본 발명의 일 실시예에 따라, 상기 반도체층 중 적어도 일부분은 상기 정공수송층과 계면을 형성하고, 상기 계면 또는 상기 계면에 인접한 상기 반도체 영역 이 둘에 p-형 도핑 영역을 포함하는 것일 수 있다. According to an embodiment of the present invention, at least a portion of the semiconductor layer may form an interface with the hole transport layer, and the interface or the semiconductor region adjacent to the interface may include a p-type doped region in both.
본 발명의 일 실시예에 따라, 상기 반도체층의 표면 거칠기는, 1.00 RMS 내지 1.5 RMS인 것일 수 있다. According to an embodiment of the present invention, the surface roughness of the semiconductor layer may be 1.00 RMS to 1.5 RMS.
본 발명의 일 실시예에 따라, 상기 반도체층은, 페로브스카이트를 포함하고, 상기 페로브스카이트는, ABX3, A2BX4, ABX4 또는 An-1BnX3n+1(n은 2 내지 6사이의 정수)의 구조를 포함하고, 상기 A는 유기암모늄 또는 알칼리금속 물질이고, 상기 B는 금속 물질이고, 상기 X는 할로겐 원소인 것일 수 있다. According to an embodiment of the present invention, the semiconductor layer includes perovskite, wherein the perovskite is ABX 3 , A 2 BX 4 , ABX 4 or A n-1 B n X 3n+1 ( n is an integer between 2 and 6), wherein A is an organoammonium or alkali metal material, B is a metal material, and X may be a halogen element.
본 발명의 일 실시예에 따라, 상기 반도체 소자는, 광전자 소자이며, 상기 반도체층은, 광활성층 또는 광발광층이며, 상기 광전자 소자는, 발광소자 또는 태양전지인 것일 수 있다. According to an embodiment of the present invention, the semiconductor device may be an optoelectronic device, the semiconductor layer may be a photoactive layer or a photoluminescent layer, and the optoelectronic device may be a light emitting device or a solar cell.
본 발명의 일 실시예에 따라, 본 발명에 의한 조성물을 용액 공정으로 코팅하여 정공수송층을 형성하는 단계; 및 상기 정공수송층 상에 반도체층을 형성하는 단계; 를 포함하는, 반도체 소자의 제조방법에 관한 것이다. According to an embodiment of the present invention, coating the composition according to the present invention in a solution process to form a hole transport layer; and forming a semiconductor layer on the hole transport layer. It relates to a method of manufacturing a semiconductor device comprising a.
본 발명의 일 실시예에 따라, 상기 정공수송층을 형성하는 단계는, 상기 조성물을 코팅한 이후에 0 ℃내지 130 ℃온도에서 어닐링하는 단계; 를 포함하는 것일 수 있다. According to an embodiment of the present invention, forming the hole transport layer comprises: annealing at a temperature of 0 °C to 130 °C after coating the composition; may include.
본 발명의 일 실시예에 따라, 상기 정공수송층 상에 반도체층을 형성하는 단계는, 상기 정공수송층 상에 반도체 물질의 증착막을 형성하는 단계; 상기 증착막을 0 ℃내지 130 ℃온도에서 어닐링하는 단계;를 포함하는 것일 수 있다.According to an embodiment of the present invention, the forming of the semiconductor layer on the hole transport layer may include: forming a deposition film of a semiconductor material on the hole transport layer; It may include; annealing the deposited film at a temperature of 0 °C to 130 °C.
본 발명은, 반도체 소자 내에서 p-형 접점(p-Type Contact)을 효과적으로 형성하고, 전극의 일함수를 증가시킬 수 있는, 새로운 정공수송층용 조성물을 제공할 수 있다. 또한, 본 발명은, 편리하고 저렴한 고분자 전해질을 기반으로 p-형 계면 재료로 활용할 수 있는 조성물을 제공하고, 상기 조성물은, 태양전지뿐만 아니라 박막 트랜지스터 및 LED와 같은 다른 유기 및 하이브리드 반도체 소자에도 적용하여 p-형 접점을 개선시키고, 장치의 효율 등 성능 개선을 제공할 수 있다. The present invention can provide a novel composition for a hole transport layer that can effectively form a p-type contact in a semiconductor device and increase the work function of an electrode. In addition, the present invention provides a composition that can be utilized as a p-type interface material based on a convenient and inexpensive polymer electrolyte, and the composition is applied not only to solar cells but also to other organic and hybrid semiconductor devices such as thin film transistors and LEDs This can improve the p-type contact and provide performance improvements such as device efficiency.
도 1은, 본 발명의 일 실시예에 따라, Cu:PSS를 HTL로 사용하는 PSC(Perovskite Solar Cell) 소자를 나타낸 것으로, 소자 구조 및 Cu:PSS의 p-형 도핑 효과의 개략도를 나타낸 것이다.1 shows a Perovskite Solar Cell (PSC) device using Cu:PSS as an HTL according to an embodiment of the present invention, and shows a schematic diagram of a device structure and a p-type doping effect of Cu:PSS.
도 2a는, 본 발명의 일 실시예에 따라, 층간 및 에너지 레벨 다이어그램에서 Fermi-level pinning(빨간색 선 : HOMO 및 파란색 선 : LUMO)를 나타낸 것이다.2A illustrates Fermi-level pinning (red line: HOMO and blue line: LUMO) in an interlayer and energy level diagram, according to an embodiment of the present invention.
도 2b는, 본 발명의 일 실시예에 따라, Cu:PSS의 상이한 두께의 일함수((IP: Ionization potential, Ψ : work function, Φe : electron injection barrier, Φh : hole injection barrier, Evac : vacuum level 및 △ : interfacial dipole))를 나타낸 것이다. 2b is a work function of different thicknesses of Cu:PSS (IP: ionization potential, Ψ: work function, Φ e : electron injection barrier, Φ h : hole injection barrier, E vac , according to an embodiment of the present invention. : vacuum level and △ : interfacial dipole)).
도 3a는, 본 발명의 일 실시예에 따라, S 2p XPS 스펙트럼을 나타낸 것이다. 3A shows an S 2p XPS spectrum according to an embodiment of the present invention.
도 3b는, 본 발명의 일 실시예에 따라, 도 3a에 상응하는 HTL의 UPS 스펙트럼의 cut-off region 에서 계산된 일함수(Cu:PSS A : 소량의 PEDOT:PSS와 Cu:PSS 및 PEDOT:PSS와 Cu:PSS M : PEDOT:PSS와 Cu:PSS 혼합물)을 나타낸 것이다. 3b is a work function (Cu:PSS A: small amount of PEDOT:PSS and Cu:PSS and PEDOT: PSS and Cu:PSS M: PEDOT:PSS and Cu:PSS mixture) is shown.
도 4는, 본 발명의 일 실시예에 따라, 4 개의 다른 HTL, 즉 Cu:PSS, Cu:PSS A, Cu:PSS M 및 PEDOT:PSS 상에 형성된 MAPbI3의 SEM 이미지를 나타낸 것이다.4 shows SEM images of MAPbI 3 formed on four different HTLs, namely Cu:PSS, Cu:PSS A, Cu:PSS M and PEDOT:PSS, according to an embodiment of the present invention.
도 5a는, 본 발명의 일 실시예에 따라, 4 개의 다른 HTL, 즉 Cu:PSS, Cu:PSS A, Cu:PSS M 및 PEDOT:PSS 상에 형성된 MAPbI3의 특성을 나타낸 것으로, J-V 곡선을 나타낸 것이다.FIG. 5a shows the characteristics of MAPbI 3 formed on four different HTLs , namely Cu:PSS, Cu:PSS A, Cu:PSS M and PEDOT:PSS, according to an embodiment of the present invention. it has been shown
도 5b는, 본 발명의 일 실시예에 따라, 4 개의 다른 HTL, 즉 Cu:PSS, Cu:PSS A, Cu:PSS M 및 PEDOT:PSS 상에 형성된 MAPbI3의 특성을 나타낸 것으로, EQE 곡선을 나타낸 것이다.FIG. 5b shows the characteristics of MAPbI 3 formed on four different HTLs, namely Cu:PSS, Cu:PSS A, Cu:PSS M, and PEDOT:PSS, according to an embodiment of the present invention. The EQE curves are shown in FIG. it has been shown
도 5c는, 본 발명의 일 실시예에 따라, 본 발명의 일 실시예에 따라, 4 개의 다른 HTL, 즉 Cu:PSS, Cu:PSS A, Cu:PSS M 및 PEDOT:PSS 상에 형성된 MAPbI3의 특성을 나타낸 것으로, 전송 매트릭스 방법(transfer matrix method)으로 계산된 PEDOT:PSS HTL을 사용하는 장치 내의 광학장 강도(Optical field intensity)를 나타낸 것이다.5C illustrates, in accordance with an embodiment of the present invention, MAPbI 3 formed on four different HTLs, namely Cu:PSS, Cu:PSS A, Cu:PSS M and PEDOT:PSS; PEDOT: PSS HTL calculated by the transfer matrix method as showing the characteristics of the optical field intensity (Optical field intensity) in the device using the HTL is shown.
도 5d는, 본 발명의 일 실시예에 따라, 본 발명의 일 실시예에 따라, 4 개의 다른 HTL, 즉 Cu:PSS, Cu:PSS A, Cu:PSS M 및 PEDOT:PSS 상에 형성된 MAPbI3의 특성을 나타낸 것으로, 완전히 투명한 ( Κ = 0) HTL를 사용한 장치 내에서 광학장 강도 변화를 나타낸 것이다.5D shows, in accordance with an embodiment of the present invention, MAPbI 3 formed on four different HTLs, namely Cu:PSS, Cu:PSS A, Cu:PSS M and PEDOT:PSS; This shows the change in optical field intensity in a device using a fully transparent ( Κ = 0) HTL.
도 6a는, 본 발명의 일 실시예에 따라, 광도 의존성 JSC를나타낸 것이다.. Figure 6a shows the light intensity dependence J SC , according to an embodiment of the present invention.
도 6b는, 본 발명의 일 실시예에 따라, 광도 의존성 VOC를 나타낸 것이다. 6B illustrates the light intensity dependence V OC , according to an embodiment of the present invention.
도 6c는, 본 발명의 일 실시예에 따라, 광도 의존성 관련 1 mWcm-2의 낮은 광도에서 FF를 나타낸 것이고, 오른쪽 y 축은 MAPbI3에서 90 %의 이상적인 FF와의 차이를 나타낸 것이다.FIG. 6c shows the FF at a low luminous intensity of 1 mWcm -2 related to the luminance dependence according to an embodiment of the present invention, and the right y-axis shows the difference from the ideal FF of 90% in MAPbI 3 .
도 6d는, 본 발명의 일 실시예에 따라, 광도 의존 FF을 나타낸 것이며, 오른쪽 y 축은 MAPbI3에서 90 %의 이상적인 FF와의 차이를 나타낸 것이다. FIG. 6d shows the intensity-dependent FF according to an embodiment of the present invention, and the right y-axis shows the difference from the ideal FF of 90% in MAPbI 3 .
도 7은, 본 발명의 일 실시예에 따라, 유리 기판 상에 다양한 HTL의 광투과도를 나타낸 것으로, 90 ~ 100% 광투과도 범위를 확인할 수 있다. 7 shows light transmittance of various HTLs on a glass substrate according to an embodiment of the present invention, and a range of 90 to 100% light transmittance can be confirmed.
이하 첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명한다. 본 발명을 설명함에 있어서, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 또한, 본 명세서에서 사용되는 용어들은 본 발명의 바람직한 실시예를 적절히 표현하기 위해 사용된 용어들로서, 이는 사용자, 운용자의 의도 또는 본 발명이 속하는 분야의 관례 등에 따라 달라질 수 있다. 따라서, 본 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. 각 도면에 제시된 동일한 참조 부호는 동일한 부재를 나타낸다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In describing the present invention, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the gist of the present invention, the detailed description thereof will be omitted. In addition, the terms used in this specification are terms used to properly express a preferred embodiment of the present invention, which may vary depending on the intention of a user or operator or a custom in the field to which the present invention belongs. Accordingly, definitions of these terms should be made based on the content throughout this specification. Like reference numerals in each figure indicate like elements.
명세서 전체에서, 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.Throughout the specification, when a member is said to be located "on" another member, this includes not only a case in which a member is in contact with another member but also a case in which another member exists between the two members.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.Throughout the specification, when a part "includes" a certain component, it means that other components may be further included, rather than excluding other components.
이하, 본 발명의 폴리스티렌설폰산 금속염을 포함하는 조성물, 반도체 소자 및 이의 제조 방법에 대하여 실시예 및 도면을 참조하여 구체적으로 설명하도록 한다. 그러나, 본 발명이 이러한 실시예 및 도면에 제한되는 것은 아니다.Hereinafter, a composition containing a polystyrene sulfonic acid metal salt of the present invention, a semiconductor device, and a method for manufacturing the same will be described in detail with reference to Examples and drawings. However, the present invention is not limited to these examples and drawings.
본 발명은, 폴리스티렌설폰산 금속염을 포함하는 조성물에 관한 것으로, 본 발명의 일 실시예에 따라, 상기 조성물은, 폴리스티렌설폰산 금속염; 및 음이온성 고분자 전해질;을 포함할 수 있다. The present invention relates to a composition comprising a polystyrenesulfonic acid metal salt. According to an embodiment of the present invention, the composition comprises: a polystyrenesulfonic acid metal salt; and an anionic polymer electrolyte.
본 발명은, 폴리스티렌설폰산 금속염 및 음이온성 고분자 전해질의 혼합물을 적용하여 반도체 소자에서 정공수송층(HTL)의 소재로 적용될 수 있으며, 정공수송층에 적용하여 p-형 접점(p-type contact)을 생성하고, 반도체 장치의 성능 향상에 도움을 주고, 예를 들어, PSC에서 페로브스키트 층의 전하 수집 효율 및 광전류 생성 향상시킬 수 있다. 도 1을 참조하여 보다 구체적으로 설명한다. The present invention can be applied as a material for a hole transport layer (HTL) in a semiconductor device by applying a mixture of polystyrene sulfonic acid metal salt and anionic polymer electrolyte, and is applied to the hole transport layer to create a p-type contact And, it can help improve the performance of a semiconductor device, and, for example, can improve the charge collection efficiency and photocurrent generation of the perovskite layer in the PSC. It will be described in more detail with reference to FIG. 1 .
도 1에서 본 발명에 의한 조성물은, 효과적인 p-형 고분자 전해질 도펀트를 제공할 수 있으며, 즉, 환원된 Cu2+ 반대 이온을 가진 음이온성 전하를 갖는 PSS 백본을 적용할 경우에, 이 시스템에서 Cu2+ 이온은 반도체 상에서 전자를 쉽게 받아 PSS 백본에 과도한 음전하를 남기고, PSS 고분자 전해질 백본에서 음전하의 균형을 유지할뿐만 아니라, 결과적으로 반도체 상에서 p-형 캐리어를 보상할 수 있다. The composition according to the present invention in FIG. 1 can provide an effective p-type polyelectrolyte dopant, ie when applying a PSS backbone with an anionic charge with a reduced Cu 2+ counterion, in this system Cu 2+ ions easily receive electrons on the semiconductor, leaving an excessive negative charge on the PSS backbone, and can not only balance the negative charge in the PSS polyelectrolyte backbone, but also compensate for the p-type carriers on the semiconductor as a result.
본 발명의 일 예로, 상기 폴리스티렌설폰산 금속염에서 금속은, 알칼리 금속, 알칼리 토금속 및 전이금속에서 선택되는 적어도 하나 이상의 금속을 포함할 수 있다. 예를 들어, 리튬(Li), 마그네슘(Mg), 구리(Cu), 납(Pb), 은(Ag), 니켈(Ni), 팔라듐(Pd), 나트륨(Na), 칼륨(K), 알루미늄(Al), 지르코늄(Zr), 스칸듐(Sc), 티타늄(Ti), 바나듐(V), 크롬(Cr), 망간(Mn), 철(Fe), 아연(Zn), 백금(Pt) 및 금(Au)으로 이루어진 군에서 선택되는 적어도 하나 이상을 포할 수 있으며, 상기 금속은 금속염 내에서 바람직하게는 1가 내지 2가의 산화수의 금속 이온을 생성하는 것으로, 예를 들어, Li+, Mg2+, Cu2+, Pb2+, Ag2+, Ni2+ 및 Pd2+일 수 있다. As an example of the present invention, the metal in the polystyrene sulfonic acid metal salt may include at least one metal selected from alkali metals, alkaline earth metals and transition metals. For example, lithium (Li), magnesium (Mg), copper (Cu), lead (Pb), silver (Ag), nickel (Ni), palladium (Pd), sodium (Na), potassium (K), aluminum (Al), zirconium (Zr), scandium (Sc), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), zinc (Zn), platinum (Pt) and gold (Au) may contain at least one selected from the group consisting of, the metal is preferably to generate a metal ion having a monovalent to divalent oxidation number in a metal salt, for example, Li + , Mg 2+ , Cu 2+ , Pb 2+ , Ag 2+ , Ni 2+ and Pd 2+ .
본 발명의 일 예로, 상기 폴리스티렌설폰산 금속염은, 하기의 화학식 1로 표시될 수 있으며, 화학식 1에서 n은 1 내지 350이며, M+은 상기 언급한 금속 이온일 수 있다.As an example of the present invention, the polystyrene sulfonic acid metal salt may be represented by the following Chemical Formula 1, in which n is 1 to 350, and M + may be the aforementioned metal ion.
Figure PCTKR2021010756-appb-img-000001
Figure PCTKR2021010756-appb-img-000001
본 발명의 일 예로, 상기 폴리스티렌설폰산 금속염 대 상기 음이온성 고분자 전해질의 혼합비(mmol)는 10 : 1 내지 1 : 10; 9 : 1 내지 5 : 5; 또는 9 : 1 내지 6 : 4이며, 상기 범위 내에 포함되면 최적화된 전공수송층을 제공하고, 소자의 성능 및 안정성을 개선시킬 수 있다. In one embodiment of the present invention, the mixing ratio (mmol) of the polystyrene sulfonic acid metal salt to the anionic polymer electrolyte is 10: 1 to 1: 10; 9: 1 to 5: 5; Or 9: 1 to 6: 4, and when included within the above range, it is possible to provide an optimized pneumatic transport layer, and improve the performance and stability of the device.
즉, 폴리스티렌설폰산 금속염 및 음이온성 고분자 전해질과 다양한 비율로 혼합될 때, 정공수송층으로의 개선된 기능을 제공할 수 있으며, 예를 들어, 정공수송층으로 사용할 경우에, p-형 접점(p-type contact)을 생성하고, 음이온성 고분자 전해질 즉, PEDOT:PSS의 산도의 감소시킬뿐 아니라 반도체 소자의 히스테리시스를 감소시키고 다양한 반도체 소자의 성능을 향상시킬 수 있다. That is, when mixed with polystyrene sulfonic acid metal salt and anionic polymer electrolyte in various ratios, an improved function as a hole transport layer can be provided, for example, when used as a hole transport layer, a p-type contact (p- type contact) and reduce the acidity of the anionic polymer electrolyte, that is, PEDOT:PSS, as well as reduce the hysteresis of the semiconductor device and improve the performance of various semiconductor devices.
본 발명의 일 예로, 상기 폴리스티렌설폰산 금속염 및 상기 음이온성 고분자 전해질은, 상기 조성물 중 0.01 중량% 내지 100 중량% 미만; 0.1 중량% 내지 30 중량%; 1 중량% 내지 20 중량%; 또는 1 중량% 내지 10 중량%로 포함되면, 상기 범위 내에 포함되면 소자의 성능 개선과 안정성을 확보할 수 있다.In one embodiment of the present invention, the polystyrene sulfonic acid metal salt and the anionic polymer electrolyte, 0.01 wt% to less than 100 wt% of the composition; 0.1% to 30% by weight; 1% to 20% by weight; Alternatively, when included in an amount of 1 wt% to 10 wt%, performance improvement and stability of the device can be secured when included in the above range.
본 발명의 일 예로, 상기 금속(폴리스티렌설폰산 금속염의 금속) : 음이온성 고분자 : 폴리스티렌설폰산의 농도비(mmol)는, 1~10 : 1~10 : 1~400; 1~4 : 1~7 : 300~400; 1~4 : 1~7 : 30~100; 2~4 : 1~7 : 5~8; 또는 3~4 : 1~7 : 6~7이다. As an example of the present invention, the concentration ratio (mmol) of the metal (metal of polystyrene sulfonic acid metal salt): anionic polymer: polystyrene sulfonic acid is 1 to 10: 1 to 10: 1 to 400; 1-4: 1-7: 300-400; 1-4: 1-7: 30-100; 2~4 : 1~7 : 5~8; Or 3-4: 1-7: 6-7.
본 발명의 일 예로, 상기 조성물의 pH는, 3 내지 7.5; 4 내지 7.5; 또는 5 내지 7.5일 수 있다.In one embodiment of the present invention, the pH of the composition is 3 to 7.5; 4 to 7.5; or 5 to 7.5.
본 발명의 일 예로, 상기 음이온성 고분자 전해질은, PEDOT:PSS (poly(3,4-ethylenedioxythiophene) polystyrene sulfonate), 폴리아크릴산(PAA, polyacrylic acid), 폴리메틸아크릴산(PMA, polymethyl acrylic acid), 폴리비닐설폰산(polyvinylsulfonic acid), 폴리-알파-메틸설폰산(poly-Alpha-Methyl sulfonic acid), 폴리-에틸리덴설폰산(poly-ethylidene sulfonic acid), 폴리글루탐산(polyglutamic acid), 폴리아스파르틱산(poly aspartic acid), 트리폴리인산(Tri polyphosphoric acid), 폴리(4-비닐피리디니움 클로라이드)(poly(4-vinyl pyridinium chloride)), 폴리(2-비닐피리디니움 클로라이드)(poly(2-vinyl pyridinium chloride)), 폴리(4-비닐-2-하이드록시에틸피리디늄)클로라이드(poly(4-vinyl-2-hydroxyethyl pyridinium) chloride)) 및 폴리[2-비닐-3-(2-설포에틸 이미다졸리늄 베테인)](poly[1-vinyl-3-(2-sulfoethyl imidazolium betaine)])으로 이루어진 군에서 선택된 적어도 하나 이상을 포함할 수 있다. In one embodiment of the present invention, the anionic polymer electrolyte is, PEDOT: PSS (poly(3,4-ethylenedioxythiophene) polystyrene sulfonate), polyacrylic acid (PAA, polyacrylic acid), polymethylacrylic acid (PMA, polymethyl acrylic acid), poly polyvinylsulfonic acid, poly-alpha-methyl sulfonic acid, poly-ethylidene sulfonic acid, polyglutamic acid, polyaspartic acid (poly aspartic acid), tri polyphosphoric acid, poly (4-vinyl pyridinium chloride) (poly (4-vinyl pyridinium chloride)), poly (2-vinyl pyridinium chloride) (poly (2- vinyl pyridinium chloride), poly(4-vinyl-2-hydroxyethyl pyridinium) chloride) and poly[2-vinyl-3-(2-sulfoethyl) It may include at least one selected from the group consisting of imidazolinium betaine)] (poly[1-vinyl-3-(2-sulfoethyl imidazolium betaine)]).
본 발명의 일 예로, 상기 조성물은, 폴리페닐렌, 폴리피롤, 폴리아닐린, 폴리티오펜, 폴리페릴렌(perylene), 폴리(3-알킬-티오펜), 폴리플러렌(fullerene), 폴리플루오렌(polyfluorene), 폴리페닐렌(polyphenylene), 폴리피렌(polypyrene), 폴리아줄렌(polyazulene), 폴리나프탈렌(polynaphthalene), 폴리아세틸렌(polyacetylene, PAC), 폴리-p-페닐렌비닐렌(poly(p-phenylene vinylene, PPV), 폴리피롤(polypyrrole, PPY), 폴리카바졸(polycarbazole), 폴리인돌(polyindole), 폴리아제핀(polyzepine), 폴리티에닐렌비닐렌(poly(thienylene vinylene), 폴리아닐린(polyaniline, PANI), 폴리티오펜(poly(thiophene)), 폴리(p-페닐렌설파이드(poly(p-phenylene sulfide, PPS), 폴리(3,4-에틸렌디옥시티오펜(poly(3,4-ethylenedioxy thiophene, PEDOT), 폴리(3,4-에틸렌디옥시티오펜)-테트라메타크릴레이트(PEDOT-TMA) 및 폴리퓨란(polyfuran)으로 이루어진 군에서 선택된 적어도 하나 이상의 전도성 고분자를 더 포함할 수 있다. In one embodiment of the present invention, the composition includes polyphenylene, polypyrrole, polyaniline, polythiophene, polyperylene, poly(3-alkyl-thiophene), polyfullerene, polyfluorene ), polyphenylene, polypyrene, polyazulene, polynaphthalene, polyacetylene, PAC, poly-p-phenylene vinylene , PPV), polypyrrole (PPY), polycarbazole, polyindole, polyzepine, poly(thienylene vinylene), polyaniline (PANI), poly thiophene (poly (thiophene)), poly (p-phenylene sulfide, PPS), poly (3,4-ethylenedioxy thiophene (poly (3,4-ethylenedioxy thiophene, PEDOT), At least one conductive polymer selected from the group consisting of poly(3,4-ethylenedioxythiophene)-tetramethacrylate (PEDOT-TMA) and polyfuran may be further included.
본 발명의 일 예로, 상기 조성물은, 잔량 또는 적절한 함량으로 수용성 용매를 더 포함할 수 있으며, 예를 들어, 물; 및 메탄올, 에탄올 및 이소프로판올과 같은 수용성 알코올, 아세톤 및 케톤 등의 친수성 용매를 포함할 수 있다. DMF(dimethylformamide), NMP(N-Methyl-2-pyrrolidone), 1,4-다이옥세인(1,4-dioxane), DMSO(dimethyl sulfoxide), 톨루엔, 메틸에틸케톤 등을 더 포함할 수 있다. As an example of the present invention, the composition may further include a water-soluble solvent in a residual amount or an appropriate content, for example, water; and water-soluble alcohols such as methanol, ethanol and isopropanol, and hydrophilic solvents such as acetone and ketone. It may further include dimethylformamide (DMF), N-Methyl-2-pyrrolidone (NMP), 1,4-dioxane, dimethyl sulfoxide (DMSO), toluene, methyl ethyl ketone, and the like.
본 발명의 일 실시예에 따라, 본 발명에 의한 조성물을 포함하거나 또는 상기 조성물로 제조된 막을 제공할 수 있으며, 막은 필름, 시트, 박막 등이며, 상기 막은, 80 % 이상; 90 % 이상 또는 95 % 이상의 광투과도를 나타낼 수 있다. 상기 광투과도는, 자외선 이상의 광파장, 예를 들어, 300 nm 내지 900 nm에 관련된 것이다. 상기 막은, 용액 공정, 증착 또는 이 둘을 이용하여 형성되고, 상기 막의 두께는, 1 nm 이상; 10 nm 이상; 또는 100 nm 이상이며, 바람직하게는 1 nm 내지 30 nm; 1 nm 내지 20 nm, 또는 1 nm 내지 5 nm일 수 있다.According to an embodiment of the present invention, a film comprising or prepared from the composition according to the present invention may be provided, wherein the film is a film, a sheet, a thin film, etc., wherein the film is 80% or more; It may exhibit a light transmittance of 90% or more or 95% or more. The light transmittance is related to a light wavelength greater than or equal to ultraviolet light, for example, 300 nm to 900 nm. The film is formed using a solution process, vapor deposition, or both, and the film has a thickness of 1 nm or more; more than 10 nm; or 100 nm or more, preferably 1 nm to 30 nm; 1 nm to 20 nm, or 1 nm to 5 nm.
본 발명은, 본 발명에 의한 조성물을 포함하는 반도체 소자에 관한 것으로, 본 발명의 일 실시예에 따라, 상기 반도체 소자는, 제1 전극층; 제2 전극층; 상기 제1 전극층 및 제2 전극층 사이에 본 발명에 의한 조성물을 포함하는 정공수송층; 및 상기 정공수송층 상에 형성된 반도체층; 을 포함할 수 있다. The present invention relates to a semiconductor device comprising the composition according to the present invention. According to an embodiment of the present invention, the semiconductor device includes: a first electrode layer; a second electrode layer; a hole transport layer comprising the composition according to the present invention between the first electrode layer and the second electrode layer; and a semiconductor layer formed on the hole transport layer. may include
본 발명의 일 실시예에 따라, 본 발명에 의한 반도체 소자는, 본 발명에 의한 조성물에 의한 p 형 계면 재료를 적용함으로써, 소자 내 p-형 접점을 개선시켜 소자의 성능을 향상시킬 수 있다. According to an embodiment of the present invention, the semiconductor device according to the present invention can improve the performance of the device by improving the p-type contact point in the device by applying the p-type interface material according to the composition according to the present invention.
본 발명의 일 예로, 상기 제1 전극은, 투명 또는 반투명 전극이며, Ti, Zn, Sr, In, Ba, K, Nb, Fe, Ta, W, Sa, Bi, Ni, Cu, Mo, Ce, Pt, Ag, Rh, Ru, V 및 이들의 혼합물로 이루어지는 군에서 선택되는 것을 포함하는 산화물이며, 예를 들어, 인듐 주석 산화물(ITO; indium-tin oxide), 불소함유 산화주석(FTO; Fluorine-doped tin oxide), 인듐 아연 산화물(IZO), 알루미늄이 도핑된 산화아연(AZO; Aluminium-zinc oxide; ZnO:Al), 산화알루미늄주석(ATO; Aluminium-tin oxide; SnO2:Al) 및 주석계 산화물, 산화아연(ZnO)으로 이루어진 군에서 선택된 적어도 하나 이상을 포함할 수 있다. In one embodiment of the present invention, the first electrode is a transparent or semi-transparent electrode, Ti, Zn, Sr, In, Ba, K, Nb, Fe, Ta, W, Sa, Bi, Ni, Cu, Mo, Ce, Oxides including those selected from the group consisting of Pt, Ag, Rh, Ru, V and mixtures thereof, for example, indium-tin oxide (ITO; indium-tin oxide), fluorine-containing tin oxide (FTO; Fluorine- doped tin oxide), indium zinc oxide (IZO), aluminum-doped zinc oxide (AZO; aluminum-zinc oxide; ZnO:Al), aluminum tin oxide (ATO; aluminum-tin oxide; SnO 2 :Al) and tin-based It may include at least one selected from the group consisting of oxides and zinc oxide (ZnO).
본 발명의 일 예로, 상기 제1 전극에서 기판 상에 형성되고, 상기 기판은 유연성을 갖는 플라스틱 등의 유기물, 무기물 또는 금속을 포함할 수 있으며, 예를 들어, Si, SiO2, Ge, GaN, AlN, GaP, InP, GaAs, SiC, Al2O3, LiAlO3, MgO, 석영, 사파이어, 그래파이트, 그래핀, 유기물로서는 폴리이미드(PI), 폴리카보네이트(PC), 폴리에테르설폰(PES), 폴리에테르에테르케톤(PEEK), 폴리부틸렌테레프탈레이트(PBT), 폴리에틸렌테레프탈레이트(PET), 폴리염화비닐(PVC), 폴리에틸렌(PE), 에틸렌 공중합체, 폴리프로필렌(PP), 프로필렌 공중합체, 폴리(4-메틸-1-펜텐)(TPX), 폴리아릴레이트(PAR), 폴리아세탈(POM), 폴리페닐렌옥사이드(PPO), 폴리설폰(PSF), 폴리페닐렌설파이드(PPS), 폴리염화비닐리덴(PVDC), 폴리초산비닐(PVAC), 폴리비닐알콜(PVAL), 폴리비닐아세탈, 폴리스티렌(PS), AS수지, ABS수지, 폴리메틸메타크릴레이트(PMMA), 불소수지, 페놀수지(PF), 멜라민수지(MF), 우레아수지(UF), 불포화폴리에스테르(UP), 에폭시수지(EP), 디알릴프탈레이트수지(DAP), 폴리우레탄(PUR), 폴리아미드(PA) 및 실리콘수지(SI)으로 이루어진 군에서 선택된 적어도 하나 이상을 포함할 수 있다. As an example of the present invention, the first electrode is formed on a substrate, and the substrate may include an organic material such as plastic having flexibility, an inorganic material, or a metal, for example, Si, SiO 2 , Ge, GaN, AlN, GaP, InP, GaAs, SiC, Al 2 O 3 , LiAlO 3 , MgO, quartz, sapphire, graphite, graphene, as an organic material, polyimide (PI), polycarbonate (PC), polyethersulfone (PES), Polyether ether ketone (PEEK), polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polyvinyl chloride (PVC), polyethylene (PE), ethylene copolymer, polypropylene (PP), propylene copolymer, Poly (4-methyl-1-pentene) (TPX), polyarylate (PAR), polyacetal (POM), polyphenylene oxide (PPO), polysulfone (PSF), polyphenylene sulfide (PPS), poly Vylidene chloride (PVDC), polyvinyl acetate (PVAC), polyvinyl alcohol (PVAL), polyvinyl acetal, polystyrene (PS), AS resin, ABS resin, polymethyl methacrylate (PMMA), fluororesin, phenolic resin (PF), melamine resin (MF), urea resin (UF), unsaturated polyester (UP), epoxy resin (EP), diallyl phthalate resin (DAP), polyurethane (PUR), polyamide (PA) and silicone It may include at least one selected from the group consisting of resin (SI).
본 발명의 일 예로, 제2 전극은 제1 전극과 동일하거나 또는 상이하고, 예를 들어, Al, Ag, Au, W, Cu, Ti, Zn, Sr, In, Ba, K, Nb, Fe, Ta, Sa, Bi, Ni, Mo, Ce, Pt, Rh, Ru, V 및 전도성 고분자으로 이루어진 군에서 선택된 적어도 하나 이상을 포함할 수 있다. In one embodiment of the present invention, the second electrode is the same as or different from the first electrode, for example, Al, Ag, Au, W, Cu, Ti, Zn, Sr, In, Ba, K, Nb, Fe, It may include at least one selected from the group consisting of Ta, Sa, Bi, Ni, Mo, Ce, Pt, Rh, Ru, V, and a conductive polymer.
본 발명의 일 예로, 상기 제1 전극과 제2 전극 사이에 정공주입층, 전자차단층, 전자수송층 및 전자주입층으로 이루어진 군에서 선택된 적어도 하나 이상을 더 포함할 수 있으며, 예를 들어, 상기 반도체층, 즉 광활성층과 제2 전극 사이에 전자수송층, 전자주입층, 전자차단층 등을 포함할 수 있으며, 이들의 적층 순서는 적절하게 선택될 수 있다. As an example of the present invention, it may further include at least one or more selected from the group consisting of a hole injection layer, an electron blocking layer, an electron transport layer and an electron injection layer between the first electrode and the second electrode, for example, the An electron transport layer, an electron injection layer, an electron blocking layer, etc. may be included between the semiconductor layer, that is, the photoactive layer and the second electrode, and the stacking order thereof may be appropriately selected.
본 발명의 일 예로, 상기 정공주입층, 전자차단층, 전자수송층 및 전자주입층에 적용되는 재료는 본 발명의 기술분야에서 알려진 재료를 사용될 수 있으며, 예를 들어, 상기 전자수송층(ETL)은, 플러렌(fullerene: C60), 플러렌 유도체, 페릴렌(perylene), PBI(polybenzimidazole), PTCBI(3,4,9,10-perylene-tetracarboxylic bis-benzimidazole) PCBM((6,6)-phenyl-C61-butyric acid-methylester), PCBCR((6,6)-phenyl-C61-butyric acid cholesteryl ester), PCBM((6,6)-phenyl-C61-butyric acid-methylester), PBI(polybenzimidazole), PCBCR((6,6)-phenyl-C61-butyric acid-cholesteryl ester) 및 PTCBI(3,4,9,10-perylene-tetracarboxylic bis-benzimidazole)으로 이루어진 군에서 선택된 적어도 하나 이상을 포함할 수 있으나, 이에 제한되지 않는다. As an example of the present invention, materials known in the art may be used as the material applied to the hole injection layer, the electron blocking layer, the electron transport layer and the electron injection layer, for example, the electron transport layer (ETL) is , fullerene (C60), fullerene derivative, perylene, PBI (polybenzimidazole), PTCBI (3,4,9,10-perylene-tetracarboxylic bis-benzimidazole) PCBM ((6,6)-phenyl-C 61 -butyric acid-methylester), PCBCR((6,6)-phenyl-C61-butyric acid cholesteryl ester), PCBM((6,6)-phenyl-C 61 -butyric acid-methylester), PBI(polybenzimidazole), PCBCR ((6,6)-phenyl-C 61 -butyric acid-cholesteryl ester) and PTCBI (3,4,9,10-perylene-tetracarboxylic bis-benzimidazole) may include at least one selected from the group consisting of , but not limited thereto.
본 발명의 일 예로, 상기 정공수송층은, 상기 반도체층과 p-형 접점을 형성하고, 상기 정공수송층은, 80 % 이상; 90 % 이상 또는 95 % 이상의 광투과도를 나타낼 수 있다. 상기 광투과도는, 자외선 이상의 광파장, 예를 들어, 300 nm 내지 900 nm에 관련된 것이다. 상기 정공수송층의 두께는, 1 nm 이상; 10 nm 이상; 100 nm 이상이며, 바람직하게는 1 nm 내지 30 nm; 1 nm 내지 20 nm 또는 1 nm 내지 5 nm일 수 있다. 상기 두께 및 상기 광투과도를 적용하여 반도체 소자 즉, 광전자 소자의 성능을 개선시킬 수 있다.In one embodiment of the present invention, the hole transport layer, to form a p-type contact point with the semiconductor layer, the hole transport layer, 80% or more; It may exhibit a light transmittance of 90% or more or 95% or more. The light transmittance is related to a light wavelength greater than or equal to ultraviolet light, for example, 300 nm to 900 nm. The thickness of the hole transport layer is 1 nm or more; more than 10 nm; 100 nm or more, preferably 1 nm to 30 nm; 1 nm to 20 nm or 1 nm to 5 nm. Performance of a semiconductor device, that is, an optoelectronic device, may be improved by applying the thickness and the light transmittance.
본 발명의 일 예로, 상기 반도체층은, 광전소자이며, 상기 광전자소자(ptoelectronic device)는, 모두 소자의 구동을 위하여 정공의 주입 또는 수송 물질, 전자의 주입 또는 수송 물질, 또는 발광 물질을 필요로 하는 것이다. In one embodiment of the present invention, the semiconductor layer is an optoelectronic device, and the ptoelectronic device requires a hole injection or transport material, an electron injection or transport material, or a light emitting material to drive the device. will do
본 발명의 일 예로, 광전소자(photoelectronic device)는, 발광소자, 태양전지, 감광체 드럼(organic photo conductor drum), 광센서, 박막 트랜지스터, LED와 같은 유기 및 하이브리드 반도체 장치 등이 있으며, 이들은 모두 소자의 구동을 위하여 정공의 주입 또는 수송 물질, 전자의 주입 또는 수송 물질, 광전 물질(또는, 반도체 물질), 발광 물질(유기 또는 무기) 등을 필요로 한다. 광전자소자(optoelectronic device)라 함은 정공 또는 전자를 이용한 전극과 유기물 또는 무기물 사이에서의 전하 교류를 필요로 하는 소자를 의미할 수 있다. 즉, 상기 광전소자는, 광활성층(또는, 반도체층) 또는 광발광층을 포함할 수 있으며, 상기 광전자 소자는, 발광소자, 태양전지(예를 들어, 인버티드 태양전지, 페로브스카이트 태양전지)일 수 있다. As an example of the present invention, a photoelectronic device includes a light emitting device, a solar cell, an organic photo conductor drum, an optical sensor, a thin film transistor, and an organic and hybrid semiconductor device such as an LED, all of which are devices. A hole injection or transport material, an electron injection or transport material, a photoelectric material (or a semiconductor material), a light emitting material (organic or inorganic), etc. are required to drive the . The optoelectronic device may refer to a device that requires charge exchange between an electrode using holes or electrons and an organic or inorganic material. That is, the photoelectric device may include a photoactive layer (or semiconductor layer) or a photoluminescent layer, and the optoelectronic device includes a light emitting device, a solar cell (eg, an inverted solar cell, a perovskite solar cell). ) can be
본 발명의 일 예로, 상기 광활성층은, 페로브스카이트를 포함하고, ABX3, A2BX4, ABX4 또는 An-1BnX3n+1(n은 2 내지 6사이의 정수)의 구조를 포함하고, 상기 A는 유기암모늄 또는 알칼리금속 물질이고, 상기 B는 금속 물질이고, 상기 X는 할로겐 원소인 것일 수 있다. 상기 유기암모늄은 아미디늄계 유기이온이며, 예를 들어, (CH3NH3)n, ((CxH2x+1)nNH3)2(CH3NH3)n, (RNH3)2, (CnH2n+1NH3)2, (CF3NH3), (CF3NH3)n, ((CxF2x+1)nNH3)2(CF3NH3)n, ((CxF2x+1)nNH3)2 또는 (CnF2n+1NH3)2)이고(n은 1 이상인 정수, x는 1이상인 정수)이며, 상기 알칼리 금속물질은 Na, K, Rb, Cs 또는 Fr이고, 상기 B는 2가의 전이 금속, 희토류 금속, 알칼리 토류 금속, Pb, Sn, Ge, Ga, In, Al, Sb, Bi 및 Po으로 이루어진 군에서 선택된 하나 이상을 포함하고, 상기 X는 Cl, Br 및 I으로 이루어진 군에서 선택된 하나 이상을 포함할 수 있다. In one embodiment of the present invention, the photoactive layer includes perovskite, ABX 3 , A 2 BX 4 , ABX 4 or A n-1 B n X 3n+1 (n is an integer between 2 and 6) Including the structure of, wherein A is an organoammonium or alkali metal material, wherein B is a metal material, and X may be a halogen element. The organic ammonium is an amidinium-based organic ion, for example, (CH 3 NH 3 ) n , ((C x H 2x+1 ) n NH 3 ) 2 (CH 3 NH 3 ) n , (RNH 3 ) 2 , (C n H 2n+1 NH 3 ) 2 , (CF 3 NH 3 ), (CF 3 NH 3 ) n , ((C x F 2x+1 ) n NH 3 ) 2 (CF 3 NH 3 ) n , ((C x F 2x+1 ) n NH 3 ) 2 or (C n F 2n+1 NH 3 ) 2 ) and (n is an integer greater than or equal to 1, x is an integer greater than or equal to 1), and the alkali metal is Na, K, Rb, Cs, or Fr, wherein B is a divalent transition metal, rare earth metal, alkaline earth metal, Pb, Sn, Ge, Ga, In, Al, Sb, Bi, and contains at least one selected from the group consisting of Po And, X may include at least one selected from the group consisting of Cl, Br, and I.
본 발명의 일 예로, 상기 페로브스카이트 나노결정입자는 구형, 원기둥, 타원기둥 또는 다각기둥 형태일 수 있다. As an example of the present invention, the perovskite nanocrystal particles may be in the form of a sphere, a cylinder, an elliptical column, or a polygonal column.
본 발명의 일 예로, 상기 광발광층은, 발광소자에 적용 가능한 유기 또는 무기 발광재료 또는 반도체 물질을 포함할 수 있으며, 본 명세서에는 구체적으로 언급하지 않는다. As an example of the present invention, the light emitting layer may include an organic or inorganic light emitting material or a semiconductor material applicable to a light emitting device, and is not specifically mentioned herein.
본 발명의 일 예로, 상기 반도체층 중 적어도 일부분은 상기 정공수송층과 계면을 형성하고, 상기 계면 또는 상기 계면에 인접한 상기 반도체 영역 이 둘에 p-형 도핑 영역을 포함할 수 있다. In one embodiment of the present invention, at least a portion of the semiconductor layer may form an interface with the hole transport layer, and a p-type doped region may be included in both of the interface or the semiconductor region adjacent to the interface.
본 발명의 일 예로, 상기 반도체층의 표면 거칠기는, 1.00 내지 1.5 RMS이고, 두께는 1.5 내지 20 nm일 수 있다. 예를 들어, 약 1.8 nm 두께에서 RMS 1.29 nm 내지 1.30 nm이고, 약 3.1 nm 두께에서 RMS 1.35 nm 내지 1.38 nm이고, 4.5 nm 두께에서 RMS 1.15 nm 내지 1.18 nm이고, 18.4 nm 두께에서 RMS: 1.37 nm 내지 1.40 nm일 수 있다.As an example of the present invention, the semiconductor layer may have a surface roughness of 1.00 to 1.5 RMS and a thickness of 1.5 to 20 nm. For example, RMS 1.29 nm to 1.30 nm at about 1.8 nm thickness, RMS 1.35 nm to 1.38 nm at about 3.1 nm thickness, RMS 1.15 nm to 1.18 nm at 4.5 nm thickness, and RMS at 18.4 nm thickness: 1.37 nm to 1.40 nm.
본 발명은 본 발명에 의한 반도체 소자의 제조방법에 관한 것으로, 본 발명의 일 실시예에 따라, 상기 제조방법은, 정공수송층을 형성하는 단계; 및 상기 정공수송층 상에 반도체층을 형성하는 단계;를 포함할 수 있다.The present invention relates to a method of manufacturing a semiconductor device according to the present invention. According to an embodiment of the present invention, the manufacturing method includes: forming a hole transport layer; and forming a semiconductor layer on the hole transport layer.
본 발명의 일 예로, 상기 정공수송층을 형성하는 단계는, 본 발명에 의한 조성물을 용액 공정으로 코팅하여 정공수송층을 형성하는 것으로, 폴리스티렌 설폰산 금속염을 준비하는 단계; 음이온성 고분자 전해질을 준비하는 단계; 상기 폴리스티렌 설폰산 금속염 및 상기 음이온성 고분자 전해질을 혼합하는 조성물을 형성하는 단계; 상기 조성물을 용액공정으로 코팅하여 코팅층을 형성하는 단계; 및 상기 코팅층을 어닐링하는 단계;를 포함할 수 있다.In one embodiment of the present invention, the step of forming the hole transport layer, coating the composition according to the present invention in a solution process to form a hole transport layer, the steps of preparing a polystyrene sulfonic acid metal salt; preparing an anionic polymer electrolyte; forming a composition in which the polystyrene sulfonic acid metal salt and the anionic polymer electrolyte are mixed; forming a coating layer by coating the composition with a solution process; and annealing the coating layer.
본 발명의 일 실시예에 따라, 본 발명에 의한 제조방법은, 단순한 용액 공정(solution-processed)을 적용하여 폴리스티렌 설폰산 금속염 및 음이온성 고분자로 구성된 매우 투명하고 비용 효율적인 고분자 전해질 정공수송층(HTL)을 반도체 소자에 도입할 수 있으며, 이는 반도체 소자의 성능 향상 효과를 제공할 수 있다. 예를 들어, PSC 장치 즉 인버티드 페로브스카이트 태양전지(inverted perovskite solar cells)로 적용될 수 있으며, Cu:PSS와 PEDOT:PSS를 포함하는 조성물에서 쉽게 환원된 Cu2+ 반대 이온은 PSS 고분자 전해질 백본의 음전하를 균형 있게 조정하여 페로브스카이트 및 Cu:PSS와의 인터페이스에서 p-도핑을 지원하고 애노드에서 p-형 캐리어의 효율적인 추출을 허용할 수 있다. 더욱이, PSC 장치의 HTL로 Cu:PSS와 PEDOT:PSS의 혼합을 통해서 PCE(변환효율, power conversion efficiency)를 최대 15 % 이상; 19 % 이상; 또는 19.44 %으로 향상시킬 수 있다. According to an embodiment of the present invention, the manufacturing method according to the present invention is a very transparent and cost-effective polyelectrolyte hole transport layer (HTL) composed of a polystyrene sulfonic acid metal salt and an anionic polymer by applying a simple solution-processed method. can be introduced into the semiconductor device, which can provide an effect of improving the performance of the semiconductor device. For example, it can be applied as a PSC device, that is, inverted perovskite solar cells, and in a composition comprising Cu:PSS and PEDOT:PSS, the easily reduced Cu 2+ counter ion is a PSS polyelectrolyte. Balancing the negative charge of the backbone can support p-doping at the interface with perovskite and Cu:PSS and allow efficient extraction of p-type carriers from the anode. Moreover, through the mixing of Cu:PSS and PEDOT:PSS with the HTL of the PSC device, the PCE (power conversion efficiency) was increased by up to 15% or more; 19% or more; or 19.44%.
본 발명의 일 예로, 상기 음이온성 고분자 전해질은 상기 언급한 성분을 준비한다.In one embodiment of the present invention, the anionic polymer electrolyte is prepared by the above-mentioned components.
본 발명의 일 예로, 상기 폴리스티렌 설폰산 금속염을 준비하는 단계는, 금속 전구체 용액을 준비하는 단계; 폴리스티렌 설폰산 용액을 준비하는 단계; 금속 전구체 용액과 폴리스티렌 설폰산 용액을 혼합하면서 반응시키는 단계; 생성물을 분리하는 단계; 및 분리된 생성물을 세척하고 건조하는 단계;를 포함할 수 있다. In one embodiment of the present invention, the preparing of the polystyrene sulfonic acid metal salt may include preparing a metal precursor solution; preparing a polystyrene sulfonic acid solution; reacting while mixing the metal precursor solution and the polystyrene sulfonic acid solution; isolating the product; and washing and drying the separated product.
본 발명의 일 예로, 상기 폴리스티렌 설폰산 금속염을 준비하는 단계는, 하기의 반응식 1에 따라 제조될 수 있다. 상기 반응식 1에서 n은 1 내지 350이며, M+은 상기 언급한 1가 내지 2가의 금속 이온일 수 있다.As an example of the present invention, the step of preparing the polystyrene sulfonic acid metal salt may be prepared according to Scheme 1 below. In Scheme 1, n is 1 to 350, and M + may be the aforementioned monovalent to divalent metal ion.
Figure PCTKR2021010756-appb-img-000002
Figure PCTKR2021010756-appb-img-000002
본 발명의 일 예로, 상기 금속 전구체 용액을 준비하는 단계에서 금속 전구체는, 금속, 금속 산화물 및 규화물, 산화물, 탄산염, 중탄산염, 아세트산염, 질화물, 산질화물, 염화물, 불화물, 산불화물, 수산화물, 옥살산염, 황산염 및 질산염의 금속염;으로 이루어진 군에서 선택된 적어도 하나 이상을 포함할 수 있다. 상기 금속 전구체 용액은, 금속 전구체를 분산 및/또는 용해시킬 수 있는 용매와 혼합된 것으로, 예를 들어, 물, 유기용매 또는 이 둘을 포함할 수 있고, 상기 유기용매는, 수용성 용매일 수 있다. 예를 들어, 상기 수용성 용매는 물; 유기용매 또는 이둘을 포함하고, 메탄올, 에탄올 및 이소프로판올과 같은 수용성 알코올, 아세톤 및 케톤 등의 친수성 용매를 포함할 수 있다. DMF(dimethylformamide), NMP(N-Methyl-2-pyrrolidone), 1,4-다이옥세인(1,4-dioxane), DMSO(dimethyl sulfoxide), 톨루엔, 메틸에틸케톤 등을 더 포함할 수 있다. 상기 금속 전구체의 농도는, 0.005 wt%(0.05mg/ml) 내지 0.1 wt%(1mg/ml)일 수 있다.In one embodiment of the present invention, in the step of preparing the metal precursor solution, the metal precursor is a metal, metal oxide and silicide, oxide, carbonate, bicarbonate, acetate, nitride, oxynitride, chloride, fluoride, oxyfluoride, hydroxide, oxalic acid It may include at least one selected from the group consisting of salts, metal salts of sulfates and nitrates. The metal precursor solution is mixed with a solvent capable of dispersing and/or dissolving the metal precursor, and may include, for example, water, an organic solvent, or both, and the organic solvent may be a water-soluble solvent. . For example, the water-soluble solvent may be water; It may include an organic solvent or both, and a water-soluble alcohol such as methanol, ethanol and isopropanol, and a hydrophilic solvent such as acetone and ketone. It may further include dimethylformamide (DMF), N-Methyl-2-pyrrolidone (NMP), 1,4-dioxane, dimethyl sulfoxide (DMSO), toluene, methyl ethyl ketone, and the like. The concentration of the metal precursor may be 0.005 wt% (0.05 mg/ml) to 0.1 wt% (1 mg/ml).
본 발명의 일 예로, 상기 폴리스티렌 설폰산 용액을 준비하는 단계는, 폴리스티렌 설폰산 및 용매를 혼합하여 pH 3 이하; 2.5 이하; 2 이하; 또는 1 내지 1.5의 용액을 준비하는 단계이다. 상기 폴리스티렌 설폰산의 농도는, 0.01 mol/L 내지 1.02 mol/L일 수 있다. 상기 용매는 상기 폴리스티렌 설폰산을 분산 및/용매 가능한 용매이며, 예를 들어, 물, 유기용매 또는 이 둘을 포함할 수 있다. 상기 유기용매는 수용성 용매일 수 있다. In one embodiment of the present invention, the step of preparing the polystyrene sulfonic acid solution may include mixing polystyrene sulfonic acid and a solvent to have a pH of 3 or less; 2.5 or less; 2 or less; Or preparing a solution of 1 to 1.5. The concentration of the polystyrene sulfonic acid may be 0.01 mol/L to 1.02 mol/L. The solvent is a solvent capable of dispersing and/or solventing the polystyrene sulfonic acid, and may include, for example, water, an organic solvent, or both. The organic solvent may be a water-soluble solvent.
본 발명의 일 예로, 상기 폴리스티렌 설폰산의 분자량은, 100 g/mol 이상; 200 g/mol 이상; 5,000 g/mol 이상; 10,000 g/mol 이상; 50,000 g/mol, 또는 200 내지 75,000 g/mol이고, 중량평균 또는 수평균 분자량일 수 있다.In one embodiment of the present invention, the molecular weight of the polystyrene sulfonic acid is 100 g/mol or more; 200 g/mol or more; 5,000 g/mol or more; 10,000 g/mol or more; 50,000 g/mol, or 200 to 75,000 g/mol, and may have a weight average or number average molecular weight.
본 발명의 일 예로, 상기 금속 전구체 용액과 폴리스티렌 설폰산 용액을 혼합하면서 반응시키는 단계는, 0 ℃내지 60 ℃; 5 ℃ 내지 40 ℃; 10 ℃ 내지 30 ℃; 또는 실온(rt)에서 교반하면서 상기 금속 전구체 용액을 상기 폴리스티렌 설폰산 용액에 적하하여 반응을 진행할 수 있다. In one embodiment of the present invention, the step of reacting while mixing the metal precursor solution and the polystyrene sulfonic acid solution, 0 ℃ to 60 ℃; 5°C to 40°C; 10°C to 30°C; Alternatively, the reaction may proceed by dropping the metal precursor solution to the polystyrene sulfonic acid solution while stirring at room temperature (rt).
본 발명의 일 예로, 생성물을 분리하는 단계; 및 분리된 생성물을 세척하고 건조하는 단계는, 반응 진행 이후에 반응물 혼합물에서 원하는 생성물을 분리하기 위한 것으로, 상기 원하는 생성물이 액체 및/또는 고체(또는, 침전물)인지에 따라 추출, 원심분리, 필터(여과), 감압 등을 적절하게 선택할 수 있다. 여과 이후에 재용해, 침전 또는 이 둘을 적절하게 선택하여 원하는 생성물을 획득하고, 분리, 침전 및/또는 세정 공정으로 통해 불순물, 부산물 등을 제거하고, 건조할 수 있다. 상기 단계는 여러 번 반복적으로 진행될 수 있다. In one embodiment of the present invention, separating the product; And the step of washing and drying the separated product is for separating the desired product from the reactant mixture after the reaction proceeds, depending on whether the desired product is a liquid and/or solid (or precipitate), extraction, centrifugation, filter (Filtration), reduced pressure, etc. can be selected suitably. After filtration, redissolving, precipitation, or both may be appropriately selected to obtain a desired product, and impurities, by-products, etc. may be removed through separation, precipitation and/or washing processes, and dried. This step may be repeated several times.
본 발명의 일 예로, 획득한 생성물은 2 mM 농도 이하에서 pH는 7 이하; 6 이하; 4 이하; 또는 2 이하를 갖는 용액을 제공할 수 있다. As an example of the present invention, the obtained product has a pH of 7 or less at a concentration of 2 mM or less; 6 or less; 4 or less; or 2 or less.
본 발명의 일 예로, 상기 폴리스티렌 설폰산 금속염 및 상기 음이온성 고분자 전해질을 혼합하는 조성물을 형성하는 단계는, 본 발명에 의한 조성물 즉 코팅용액을 제조하는 것으로, 상기 언급한 용매, 상기 폴리스티렌 설폰산 금속염 및 음이온성 고분자 전해질을 혼합할 수 있다. As an example of the present invention, the step of forming a composition in which the polystyrene sulfonic acid metal salt and the anionic polymer electrolyte are mixed is to prepare a composition according to the present invention, that is, a coating solution, the above-mentioned solvent, the polystyrene sulfonic acid metal salt and an anionic polymer electrolyte.
본 발명의 일 예로, 상기 조성물을 용액공정으로 코팅하여 코팅층을 형성하는 단계에서 상기 용액 공정은, 페인트브러싱(Paint Brushing), 스프레이 코팅 (Spray Coating), 닥터블레이드(Doctor Blade), 침지-인상법(Dip-Drawing), 스핀코팅 (Spin Coating), 잉크젯프린팅(inkjet printing), 슬롯다이코팅(slot die coating) 등일 수 있다. As an example of the present invention, in the step of forming a coating layer by coating the composition with a solution process, the solution process is, paint brushing, spray coating, doctor blade, immersion-pulling method It may be (Dip-Drawing), spin coating (Spin Coating), inkjet printing (inkjet printing), slot die coating (slot die coating) and the like.
본 발명의 일 예로, 상기 코팅층을 어닐링하는 단계는, 선택적으로 적용될 수 있으며, 예를 들어, 상기 증착막을 0℃내지 130℃온도, 0분 내지 10분 시간 및 비활성 기체, 에어 및/또는 공기 분위기, 진공 분위기에서 어닐링할 수 있다.As an example of the present invention, the step of annealing the coating layer may be selectively applied, for example, the deposition film at a temperature of 0° C. to 130° C., a time of 0 minutes to 10 minutes, and an inert gas, air and/or air atmosphere. , can be annealed in a vacuum atmosphere.
본 발명의 일 예로, 상기 정공수송층 상에 반도체층을 형성하는 단계는, 상기 정공수송층 상에 반도체 물질의 증착막을 형성하는 단계; 및 상기 증착막을 어닐링하는 단계; 를 포함할 수 있다. In an embodiment of the present invention, the forming of the semiconductor layer on the hole transport layer may include: forming a deposition film of a semiconductor material on the hole transport layer; and annealing the deposited film. may include
본 발명의 일 예로, 상기 증착막을 어닐링하는 단계는, 상기 증착막을 상기 증착막을 0℃내지 130℃온도, 0분 내지 10분 시간 및 비활성 기체, 에어 및/또는 공기 분위기, 진공 분위기에서 어닐링할 수 있다.As an example of the present invention, in the step of annealing the deposited film, the deposited film may be annealed at a temperature of 0° C. to 130° C., 0 minutes to 10 minutes, and inert gas, air and/or air atmosphere, and vacuum atmosphere. have.
본 발명의 일 예로, 상기 정공수송층 상에 반도체 물질의 증착막을 형성하는 단계는, 반도체 물질 전구체, 반도체 물질 및/또는 반도체 물질 소스 등을 이용하여 스핀코팅법, 증착법 또는 인쇄법을 이용할 수 있으며, 예를 들어, 상기 언급한 용액 공정, 잉크젯 프린팅, 그라비아 프린팅, 스프레이 코팅, 닥터 블레이드, 바 코팅, 그라비아 코팅, 브러쉬 페인팅, 슬롯-다이 코팅, 열증착법(thermal evaporation), 전자빔증발법(e-beam evaporation), 스퍼터링법(sputtering), CVD(Chmical vapor deposition), PVD(Physical vapora deposion), ALD(atomic layer deposition), 등의 물리적, 화학적 증착을 이용할 수 있다. As an example of the present invention, the step of forming a deposition film of a semiconductor material on the hole transport layer may use a spin coating method, a deposition method or a printing method using a semiconductor material precursor, a semiconductor material and/or a semiconductor material source, etc., For example, the solution process mentioned above, inkjet printing, gravure printing, spray coating, doctor blade, bar coating, gravure coating, brush painting, slot-die coating, thermal evaporation, e-beam evaporation), sputtering, chemical vapor deposition (CVD), physical vapor deposition (PVD), atomic layer deposition (ALD), etc. may be used.
이하, 본 발명에 대해 실시예 및 도면을 참조하여 구체적으로 설명하도록 한다. 그러나, 본 발명이 이러한 실시예 및 도면에 제한되는 것은 아니다. Hereinafter, the present invention will be described in detail with reference to examples and drawings. However, the present invention is not limited to these examples and drawings.
MAI의 합성 Synthesis of MAI
33 wt% 메틸아민(MA, methylamine) 용액 (2 몰) 250 mL를 1000 mL 플라스크에 붓고 아이스 배스에서 0 ℃까지 냉각하였다. 57 중량% 아이오딘화수소산(hydroiodic acid) 240 mL를 차아인산으로 맑아질 때까지 적정하고 Ar 분위기 하에서 천천히 MA 용액에 첨가하였다. 다음으로 반응 혼합물을 0 ℃에서 1 시간 동안 교반하였다. 다음으로, 플라스크를 실온으로 가온하고 용매를 진공 하에 제거하여 crude MAI를 얻었다. 뜨거운 수조에서 자기 교반과 Ar 흐름 하에서 고체를 완전히 용해시키기에 충분한 메탄올을 첨가하엿다. 이 부피의 두배의 이소프로판올(IPA)을 첨가하고, 용매의 1/2을 진공 하에 제거하였다. 반응 플라스크를 아이스 배스 내에서 2 시간 동안 냉각시켜 MAI를 결정화하였다. 이후, 캐뉼라 여과에 의해 여분의 용매를 제거하였다. 고체 결정을 디에틸에테르(diethyl ether)로 2 회 세척하여 최종 생성물을 획득하였다.250 mL of 33 wt% methylamine (MA, methylamine) solution (2 mol) was poured into a 1000 mL flask and cooled to 0 °C in an ice bath. 240 mL of 57 wt% hydroiodic acid was titrated with hypophosphorous acid until clear, and slowly added to the MA solution under Ar atmosphere. The reaction mixture was then stirred at 0 °C for 1 hour. Next, the flask was warmed to room temperature and the solvent was removed under vacuum to obtain crude MAI. Sufficient methanol was added to completely dissolve the solid under magnetic stirring and Ar flow in a hot water bath. Twice this volume of isopropanol (IPA) was added and 1/2 of the solvent was removed in vacuo. The reaction flask was cooled in an ice bath for 2 hours to crystallize the MAI. Thereafter, excess solvent was removed by cannula filtration. The solid crystal was washed twice with diethyl ether to obtain a final product.
Cu:PSS의 합성 Synthesis of Cu:PSS
Cu(OAc)2를 0.13M 농도의 물 : MeOH 용매 (1 : 1, 부피 기준)에 용해시켰다. 1 몰 당량의 폴리(4-스티렌설폰산) 용액(용액의 pH (1.8 mg /5 mL H2O)는 1.1이다)을 첨가하였다. 혼합물을 10배 부피의 IPA로 침전시키고, 여기에 에틸아세테이트와 몇 방울의 헥산을 순차적으로 첨가하여 생성물의 완전한 침전을 유도하였다. 혼합물을 3000 rpm에서 10 분 동안 원심 분리하여 용액으로부터 생성물을 분리하였다. 원심 분리 후 고밀도의 청록색 겔을 얻었으며 H2O 내에서 다시 용해시켰다. 용액을 IPA, 에틸아세테이트 및 헥산에 다시 침전시켰다. 점성 겔을 잔류 물을 추출하기 위해서 dry IPA 하에 주걱으로 모아서 고체 물질을 얻었으며 추가 IPA 및 헥산으로 세척하고 진공 하에서 건조시켰다. 묽은 용액 (4.8 mg/5 mL H2O)의 pH는 5.9이다. Cu(OAc) 2 was dissolved in 0.13M concentration of water:MeOH solvent (1:1, by volume). 1 molar equivalent of a poly(4-styrenesulfonic acid) solution (the pH of the solution (1.8 mg/5 mL H 2 O) is 1.1) was added. The mixture was precipitated with a 10-fold volume of IPA, and ethyl acetate and a few drops of hexane were sequentially added thereto to induce complete precipitation of the product. The mixture was centrifuged at 3000 rpm for 10 minutes to separate the product from the solution. A dense cyan gel was obtained after centrifugation and re-dissolved in H 2 O. The solution was re-precipitated in IPA, ethyl acetate and hexane. The viscous gel was spatered under dry IPA to extract the residue to give a solid material which was washed with additional IPA and hexanes and dried under vacuum. The dilute solution (4.8 mg/5 mL H 2 O) has a pH of 5.9.
장치의 제작 fabrication of the device
Inverted PSC는 ITO/HTL/MAPbI3/Al의 구조로 제작하였다. ITO 코팅 유리 기판을 세제로 세척한 다음 탈이온수, 아세톤에서 10 분 동안 초음파 처리하였다. 장치를 제작하는데 상이한 HTL이 사용되었습니다. 즉, Cu:PSS, PEDOT:PSS, Cu:PSS와 PEDOT:PSS의 혼합물 및 첨가제로 PEDOT:PSS를 갖는 Cu:PSS를 포함하여 4 가지 다른 유형의 HTL을 사용하였다. Inverted PSC was fabricated in the structure of ITO/HTL/MAPbI3/Al. ITO-coated glass substrates were washed with detergent and then sonicated in deionized water and acetone for 10 minutes. Different HTLs were used to build the device. That is, four different types of HTL were used, including Cu:PSS, PEDOT:PSS, a mixture of Cu:PSS and PEDOT:PSS, and Cu:PSS with PEDOT:PSS as an additive.
Cu:PSS HTL은 0.005, 0.015, 0.025 및 0.035 wt%의 농도의 수용액으로부터 증착되었다. 0.015 wt %의 Cu:PSS는 PEDOT:PSS와의 혼합물 제조에 사용되었다. Cu:PSS HTLs were deposited from aqueous solutions at concentrations of 0.005, 0.015, 0.025 and 0.035 wt%. 0.015 wt % of Cu:PSS was used to prepare the mixture with PEDOT:PSS.
Cu:PSS 및 PEDOT:PSS 혼합물 HTL은 Cu:PSS 및 PEDOT:PSS를 5 가지 혼합 비율(wt/wt)로 제조하였다: (Cu:PSS) : (PEDOT:PSS), (0.9 : 0.1), (0.8 : 0.2), (0.7 : 0.3), (0.6 : 0.4), (0.5 : 0.5). Cu:PSS and PEDOT:PSS mixture HTL was prepared with Cu:PSS and PEDOT:PSS in 5 mixing ratios (wt/wt): (Cu:PSS): (PEDOT:PSS), (0.9: 0.1), ( 0.8 : 0.2), (0.7 : 0.3), (0.6 : 0.4), (0.5 : 0.5).
첨가제로서 PEDOT:PSS를 포함하는 Cu:PSS 용액의 경우, PEDOT:PSS의 부피 (10, 20, 30, 40 및 50 μL)를 1 mL의 Cu:PSS 용액에 첨가하였다. 모든 HTL은 공기 중에서 2000rpm으로 스핀 캐스팅된 후 120 ℃에서 어닐링하였다. 단, PEDOT:PSS는 140 ℃에서 10 분 동안 공기 중에서 어닐링하였다. For Cu:PSS solutions containing PEDOT:PSS as additive, volumes of PEDOT:PSS (10, 20, 30, 40 and 50 μL) were added to 1 mL of Cu:PSS solution. All HTLs were spin cast in air at 2000 rpm and then annealed at 120 °C. However, PEDOT:PSS was annealed in air at 140 °C for 10 min.
어닐링 후, 필름을 공기 중에서 10 분 동안 냉각시킨 다음 추가 처리를 위해 글로브 박스 내로 옯겨졌다. MAPbI3 필름은 이전에 보고된 절차를 사용하여 준비되었습니다(A. Ali, J. H. Kang, J. H. Seo, B. Walker, Adv. Eng. Mater. 2020, 22, 1900976.). 간략하게, 페로브스카이트 필름은 30 초 동안 3,500rpm 및 5 초 동안 6,500 rpm의 두 단계로 전구체 용액을 스핀 코팅하여 용매 공학 방법을 통해 증착되었다. 두 번째 단계에서는 무수 클로로벤젠(45μL)을 기판 중앙에 떨어뜨렸다. After annealing, the film was cooled in air for 10 minutes and then transferred into a glove box for further processing. MAPbI 3 films were prepared using a previously reported procedure (A. Ali, JH Kang, JH Seo, B. Walker, Adv. Eng. Mater. 2020 , 22 , 1900976.). Briefly, perovskite films were deposited via a solvent engineering method by spin coating the precursor solution in two steps of 3,500 rpm for 30 s and 6,500 rpm for 5 s. In the second step, anhydrous chlorobenzene (45 μL) was dropped into the center of the substrate.
준비된 필름을 N2 분위기 하에서 10 분 동안 90 ℃의 핫 플레이트 상에 두었다. 페로브스카이트 층을 증착한 후 PC61BM을 2,000 rpm에서 30 초 동안 스핀 코팅하고 60 ℃에서 10 분 동안 어닐링하였다. 장치를 완성하기 위해 1 Х 10-6 Torr의 진공하에 100 nm의 Al을 증착하였다. The prepared film was placed on a hot plate at 90° C. for 10 minutes under N 2 atmosphere. After deposition of the perovskite layer, PC 61 BM was spin coated at 2,000 rpm for 30 sec and annealed at 60 °C for 10 min. To complete the device, 100 nm of Al was deposited under a vacuum of 1 Х 10 -6 Torr.
특성 분석 Characterization
J-V 곡선은 100 mWㆍcm-2의 조사 강도로 A.M 1.5G 조명 하에서 Keithley 2635 source measure unit을 사용하여 측정되었으며, 테스트 전에 표준 실리콘 기준 태양 전지를 사용하여 보정되었습니다. 재조합 현상을 연구하기 위해 Thorlabs에서 얻은 중성 밀도 필터를 사용하여 다양한 광도 데이터를 수집하였다. 또한, XPS (X-ray photoelectron spectroscopy), UPS (ultraviolet photoelectron spectroscopy), 표면 이미지 및 광투과도를 측정하였다. 그 결과는 표 1 및 도 2a 내지 도 2b, 도 3 a 내지 도 3b, 도 4, 도 5a 내지 도 5d, 도 6a 내지 도 6d 내지 및 7에 나타내었다. JV curves were measured using a Keithley 2635 source measure unit under AM 1.5G illumination with an irradiation intensity of 100 mW·cm -2 and calibrated using standard silicon reference solar cells prior to testing. To study the recombination phenomenon, various luminous intensity data were collected using a neutral density filter obtained from Thorlabs. In addition, X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), surface images, and light transmittance were measured. The results are shown in Table 1 and FIGS. 2A to 2B, 3A to 3B, 4, 5A to 5D, 6A to 6D to and 7 .
Figure PCTKR2021010756-appb-img-000003
Figure PCTKR2021010756-appb-img-000003
도 2a는, PSC 장치에서 HTL로 사용되는 ITO/Cu:PSS 인터페이스의 Cu:PSS의 에너지 레벨 다이어그램을 나타낸 것으로, P형 도핑을 제공하는 것 외에도, Cu 양이온 및 PSS 음이온은 ITO 표면에서 계면 쌍극자(interfacial dipole, △을 생성할 수 있어 ITO의 효과적인 Φ를 증가시킨다. 또한, Cu:PSS가 HTL로 ITO 상에 증착될 때, +0.24 eV 증가된 계면 쌍극자를 형성하고, 오믹 6 p-형 컨택을 생성하고, 정공추출을 용이하게 할 수 있다. Figure 2a shows the energy level diagram of Cu:PSS at the ITO/Cu:PSS interface used as HTL in the PSC device. In addition to providing P-type doping, Cu cations and PSS anions are interfacial dipoles ( can create an interfacial dipole, Δ, increasing the effective Φ of ITO In addition, when Cu:PSS is deposited on ITO with HTL, it forms an interfacial dipole increased by +0.24 eV, and an ohmic 6 p-type contact is formed. and can facilitate hole extraction.
도 2b는, 다양한 두께로 Cu:PSS 필름의 증착 시 ITO 기판의 Φ를 나타낸 것으로, Cu:PSS 필름 두께가 1.8 nm일 때 ITO Φ 값이 4.70 eV에서 4.87 eV로 증가한 것을 확인할 수 있다. 두께가 3.1 nm로 증가함에 따라 Φ는 최대 값이 5.12 eV로 증가하고, 두께가 더욱 증가하면 Φ는 4.5 및 18.4 nm 두께의 필름에 대해 5.05 및 4.97 eV로 약간 감소한다. 즉, 최적의 정공 추출(optimal hole extraction)를 위해서, 에너지 레벨은 ITO의 에너지 레벨과 페로브스카이트 밸런스 밴드 사이에 있고, 최적 Cu:PSS 두께가 3.1 nm일 수 있다. Figure 2b shows the Φ of the ITO substrate when the Cu:PSS film is deposited with various thicknesses, and it can be confirmed that the ITO Φ value increases from 4.70 eV to 4.87 eV when the Cu:PSS film thickness is 1.8 nm. As the thickness increases to 3.1 nm, Φ increases to a maximum of 5.12 eV, and as the thickness increases further, Φ decreases slightly to 5.05 and 4.97 eV for the films of 4.5 and 18.4 nm thickness. That is, for optimal hole extraction, the energy level is between the energy level of ITO and the perovskite balance band, and the optimal Cu:PSS thickness may be 3.1 nm.
도 3a 내지 도 3b에서 PEDOT:PSS를 최적화된 Cu:PSS 용액에 첨가제로서 소량으로 첨가되었다. PEDOT:PSS는 10μL~50μL의 가변 양으로 추가되었고, 이러한 솔루션에서 각 성분 (Cu2+, PEDOT 및 PSS)의 농도(mmol 기준)를 계산하였고, Cu:PSS 용액에 대한 상대농도 (0.35 : 0: 0.70), 및 PEDOT:PSS 첨가제의 각각 10, 20, 30, 40 및 50 μL와 혼합된 Cu:PSS에 대한 상대 농도 (0.35 : 0.13 :1.31), (0.35 : 0.26 : 1.93), (0.35 : 0.40 : 2.55), (0.35 : 0.53 : 3.16) 및 (0.35 : 0.66 : 3.78)이다. 3a to 3b, PEDOT:PSS was added as an additive to the optimized Cu:PSS solution in small amounts. PEDOT:PSS was added in variable amounts from 10 μL to 50 μL, and the concentrations (based on mmol) of each component (Cu 2+ , PEDOT and PSS) in these solutions were calculated, and the relative concentrations (0.35: 0) to the Cu:PSS solution. : 0.70), and relative concentrations (0.35 : 0.13 : 1.31), (0.35 : 0.26 : 1.93), (0.35 : 0.40: 2.55), (0.35: 0.53: 3.16) and (0.35: 0.66: 3.78).
도 3a에서 모든 샘플에서 168 eV 바인딩 에너지인 강한 S 2p 피크가 나타내며, 이는 PSS 설포네이트 모이어티의 황(sulfur)에 관련된다. organic EDOT moiety 내에서 sulfur에 관련된 164.95 및 163.70 eV의 이중 피크를 갖는다. 3a shows a strong S 2p peak with a binding energy of 168 eV in all samples, which is related to the sulfur of the PSS sulfonate moiety. It has double peaks at 164.95 and 163.70 eV related to sulfur in the organic EDOT moiety.
도 3b에서 UPS 스펙트럼에서 Cu:PSS 및 Cu:PSS A의 Φ 값은 각각 5.12 및 5.14 eV이다. Cu:PSS M에서 Φ 는 5.06 eV 감소하고, VOC 는 1.00 V 정로 약간 감소하였다. Cu 없는 PEDOT:PSS 는 5.00 eV 와 같은 낮은 Φ가 관찰되며, 0.89 V의 VOC가 관찰되는 것을 확인할 수 있다.The Φ values of Cu:PSS and Cu:PSS A in the UPS spectrum in FIG. 3b are 5.12 and 5.14 eV, respectively. In Cu:PSS M, Φ decreased by 5.06 eV, and V OC decreased slightly to about 1.00 V. PEDOT:PSS without Cu has a low Φ such as 5.00 eV, and it can be confirmed that a V OC of 0.89 V is observed.
도 4는 Cu:PSS, Cu:PSS 상에 증착된 MAPbI3 막, Cu:PSS/PEDOT:PSS 혼합된 막 상에 증착된 MAPbI3 막의 형태를 SEM(scanning electron microscopy)으로 확인하였다. 4 shows the morphology of the MAPbI3 film deposited on Cu:PSS, Cu:PSS, and Cu:PSS/PEDOT:PSS mixed films by scanning electron microscopy (SEM).
Cu:PSS 및 Cu:PSS와 PEDOT:PSS의 혼합물을 제조하였고, UPS와 XPS으로 특성을 정의하였고, 애노드에서 전자 밴드 구조에 바람직한 영향을 미치는 것을 확인하였다. 즉, XPS (X-ray photoelectron spectroscopy) 및 UPS (ultraviolet photoelectron spectroscopy)에서 Cu:PSS를 통합할 때 애노드의 일함수와 상향 밴드 벤딩 효과(upward band bending effect)의 증가 효과를 확인할 수 있다. Cu:PSS and a mixture of Cu:PSS and PEDOT:PSS were prepared, and the characteristics were defined as UPS and XPS, and it was confirmed that the desired effect on the electron band structure at the anode was confirmed. That is, when integrating Cu:PSS in X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS), it can be confirmed that the work function of the anode and the effect of increasing the upward band bending effect are increased.
도 5a 내지 도 5d 및 도 6a 내지 도 6d에서 단독으로, Cu:PSS는 PSC에서 HTL로 효과적으로 작동하는 것으로 관찰되었으며, PEDOT:PSS와 유사한 장치 매개 변수를 사용했지만 필 팩터 (FF) 값은 더 낮지만, Cu:PSS와 PEDOT:PSS의 혼합물은 PEDOT:PSS 단독에 비해 훨씬 향상된 성능을 보여준다. 5A-5D and 6A-6D alone, Cu:PSS was observed to work effectively from PSC to HTL, using similar device parameters as PEDOT:PSS but with lower fill factor (FF) values. However, the mixture of Cu:PSS and PEDOT:PSS shows much improved performance compared to PEDOT:PSS alone.
즉, Cu:PSS 단독으로 HTL로 사용하면 PEDOT:PSS에 필적하는 PCE 값을 나타낸다. 애노드의 Φ 값을 증가시키는 능력으로 인해 상대적으로 높은 VOC가 달성되었지만 Cu:PSS 단독으로 낮은 FF 값은 Cu:PSS의 낮은 전도도, 전하 재결합 및 얇은 Cu:PSS 층을 통해 ITO 전극으로 전자의 역확산에 기인할 수 있습니다. 서로 다른 비율로 Cu:PSS와 PEDOT:PSS의 혼합물을 사용하면 성능이 크게 향상되었으며, 최적의 조성 (Cu:PSS M)은 1.00 V의 VOC를 생성하며, 이는 PEDOT:PSS (0.89V)를 사용하는 VOC보다 훨씬 높은 것을 확인하였다. That is, when Cu:PSS is used alone as HTL, it shows a PCE value comparable to that of PEDOT:PSS. Relatively high V OC was achieved due to the ability to increase the Φ value of the anode, but the low FF values of Cu:PSS alone resulted in the low conductivity of Cu:PSS, charge recombination, and the reversal of electrons into the ITO electrode through a thin Cu:PSS layer. It could be due to spread. Using a mixture of Cu:PSS and PEDOT:PSS in different ratios significantly improved the performance, and the optimal composition (Cu:PSS M) yielded a V OC of 1.00 V, which produced PEDOT:PSS (0.89 V). It was confirmed that it was much higher than the V OC used.
Cu:PSS/PEDOT:PSS 혼합물로 구성된 최적화된 처리 조건의 경우, 이러한 장치에 대해 이미 보고된 최고 전력 변환 효율(PCE) 중 하나인 inverted(P-I-N) 형태에서 간단한 MAPbI3 활성층을 사용하여 효율을 14.35 %에서 19.44 %로 향상시켰다. For the optimized processing conditions consisting of a Cu:PSS/PEDOT:PSS mixture, the efficiency was reduced to 14.35 using a simple MAPbI 3 active layer in the inverted (PIN) form, one of the highest power conversion efficiencies (PCEs) already reported for these devices. % to 19.44%.
Cu:PSS와 PEDOT:PSS의 조합은 높은 FF 값을 유지하고 최대 19.44 %까지 PCE를 나타내고, 도 7의 투과율 데이터에 따르면, Cu:PSS 및 Cu:PSS/PEDOT:PSS 혼합물은 PEDOT:PSS(95.9 %)보다 상당히 높은 98.8 ~ 99.3 % 범위의 평균 투과율(300 nm 내지 900 nm)을 보였으며, 이는 기생 흡수(parasitic absorption)를 줄이고 JSC 값을 개선시킬 수 있다. The combination of Cu:PSS and PEDOT:PSS maintains high FF values and exhibits PCE up to 19.44%, and according to the transmittance data in FIG. %) showed an average transmittance (300 nm to 900 nm) in the range of 98.8 to 99.3 %, which can reduce parasitic absorption and improve J SC values.
마지막으로, 다양한 광 세기 하에서 소자를 분석한 결과 전하 캐리어 재결합 속도에 대한 Cu:PSS의 영향을 확인하였고, 이는 Cu:PSS/PEDOT:PSS 혼합물에서는 크게 감소한 것을 확인할 수 있다. Finally, as a result of analyzing the device under various light intensities, the effect of Cu:PSS on the charge carrier recombination rate was confirmed, which was significantly reduced in the Cu:PSS/PEDOT:PSS mixture.
본 발명은, 매우 투명하고, 간단한 방법으로 용액 공정으로 제조된 HTM(Cu:PSS)이 적용된 inverted PSC를 제공하고, 이는 쉽게 환원되는 양이온 (Cu2+)을 음이온성 고분자 전해질과 통합하여 인접한 반도체 층에서 p-도핑을 지원할 수 있는 계면재료를 제공할 수 있다. 즉, 이러한 재료가 진성 반도체(intrinsic semiconductor)로부터 전자를 제거하고, 계면층에서 인접한 고분자 전해질층 내에서 과잉의 음전하에 의해 보상된 반도체에 과잉의 p-형 캐리어를 남기며, 정공 추출을 용이하게 할 수 있다.The present invention provides an inverted PSC to which HTM (Cu:PSS) is applied, which is prepared by a solution process in a very transparent and simple way, which integrates easily reduced cations (Cu 2+ ) with an anionic polyelectrolyte to form an adjacent semiconductor It is possible to provide an interfacial material capable of supporting p-doping in the layer. That is, these materials will remove electrons from the intrinsic semiconductor, leaving excess p-type carriers in the semiconductor compensated for by the excess negative charge in the adjacent polyelectrolyte layer in the interfacial layer, and will facilitate hole extraction. can
이상과 같이 실시예들이 비록 한정된 실시예와 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기의 기재로부터 다양한 수정 및 변형이 가능하다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다. 그러므로, 다른 구현들, 다른 실시예들 및 특허청구범위와 균등한 것들도 후술하는 특허청구범위의 범위에 속한다.As described above, although the embodiments have been described with reference to the limited embodiments and drawings, various modifications and variations are possible from the above description by those skilled in the art. For example, even if the described techniques are performed in an order different from the described method, and/or the described components are combined or combined in a different form from the described method, or replaced or substituted by other components or equivalents Appropriate results can be achieved. Therefore, other implementations, other embodiments, and equivalents to the claims are also within the scope of the following claims.

Claims (19)

  1. 폴리스티렌설폰산 금속염; 및 polystyrenesulfonic acid metal salt; and
    음이온성 고분자 전해질; anionic polyelectrolyte;
    을 포함하는, containing,
    조성물. composition.
  2. 제1항에 있어서,According to claim 1,
    상기 폴리스티렌설폰산 금속염의 금속은, 리튬(Li), 마그네슘(Mg), 구리(Cu), 납(Pb), 은(Ag), 니켈(Ni), 팔라듐(Pd), 나트륨(Na), 칼륨(K), 알루미늄(Al), 지르코늄(Zr), 스칸듐(Sc), 티타늄(Ti), 바나듐(V), 크롬(Cr), 망간(Mn), 철(Fe), 아연(Zn), 백금(Pt) 및 금(Au)으로 이루어진 군에서 선택되는 적어도 하나 이상을 포함하는 것인, The metal of the polystyrene sulfonic acid metal salt is lithium (Li), magnesium (Mg), copper (Cu), lead (Pb), silver (Ag), nickel (Ni), palladium (Pd), sodium (Na), potassium (K), aluminum (Al), zirconium (Zr), scandium (Sc), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), zinc (Zn), platinum (Pt) and gold (Au) comprising at least one selected from the group consisting of,
    조성물. composition.
  3. 제1항에 있어서,According to claim 1,
    상기 폴리스티렌설폰산 금속염 대 상기 음이온성 고분자 전해질의 질량비는 10 : 1 내지 1 : 10인 것인, The mass ratio of the polystyrene sulfonic acid metal salt to the anionic polymer electrolyte is 10: 1 to 1: 10,
    조성물. composition.
  4. 제1항에 있어서,According to claim 1,
    상기 음이온성 고분자 전해질은, PEDOT:PSS (poly(3,4-ethylenedioxythiophene) polystyrene sulfonate), 폴리아크릴산(PAA, polyacrylic acid), 폴리메틸아크릴산(PMA, polymethyl acrylic acid), 폴리비닐설폰산(polyvinylsulfonic acid), 폴리-알파-메틸설폰산(poly-Alpha-Methyl sulfonic acid), 폴리-에틸리덴설폰산(poly-ethylidene sulfonic acid), 폴리글루탐산(polyglutamic acid), 폴리아스파르틱산(poly aspartic acid), 트리폴리인산(Tri polyphosphoric acid), 폴리(4-비닐피리디니움 클로라이드)(poly(4-vinyl pyridinium chloride)), 폴리(2-비닐피리디니움 클로라이드)(poly(2-vinyl pyridinium chloride)), 폴리(4-비닐-2-하이드록시에틸피리디늄)클로라이드(poly(4-vinyl-2-hydroxyethyl pyridinium) chloride)) 및 폴리[2-비닐-3-(2-설포에틸 이미다졸리늄 베테인)] poly[1-vinyl-3-(2-sulfoethyl imidazolium betaine)])으로 이루어진 군에서 선택된 적어도 하나 이상을 포함하는 것인, The anionic polymer electrolyte is, PEDOT: PSS (poly (3,4-ethylenedioxythiophene) polystyrene sulfonate), polyacrylic acid (PAA, polyacrylic acid), polymethyl acrylic acid (PMA, polymethyl acrylic acid), polyvinylsulfonic acid (polyvinylsulfonic acid) ), poly-alpha-methylsulfonic acid (poly-Alpha-Methyl sulfonic acid), poly-ethylidene sulfonic acid (poly-ethylidene sulfonic acid), polyglutamic acid (polyglutamic acid), polyaspartic acid (poly aspartic acid), Tri polyphosphoric acid, poly (4-vinyl pyridinium chloride) (poly (4-vinyl pyridinium chloride)), poly (2-vinyl pyridinium chloride) (poly (2-vinyl pyridinium chloride)), poly(4-vinyl-2-hydroxyethyl pyridinium) chloride) and poly[2-vinyl-3-(2-sulfoethyl imidazolinium) betaine )] poly[1-vinyl-3-(2-sulfoethyl imidazolium betaine)]) comprising at least one selected from the group consisting of,
    조성물. composition.
  5. 제1항에 있어서,According to claim 1,
    상기 조성물은, 폴리페닐렌, 폴리피롤, 폴리아닐린, 폴리티오펜, 폴리페릴렌(perylene), 폴리(3-알킬-티오펜), 폴리플러렌(fullerene), 폴리플루오렌(polyfluorene), 폴리페닐렌(polyphenylene), 폴리피렌(polypyrene), 폴리아줄렌(polyazulene), 폴리나프탈렌(polynaphthalene), 폴리아세틸렌(polyacetylene, PAC), 폴리-p-페닐렌비닐렌(poly(p-phenylene vinylene, PPV), 폴리피롤(polypyrrole, PPY), 폴리카바졸(polycarbazole), 폴리인돌(polyindole), 폴리아제핀(polyzepine), 폴리티에닐렌비닐렌(poly(thienylene vinylene), 폴리아닐린(polyaniline, PANI), 폴리티오펜(poly(thiophene)), 폴리(p-페닐렌설파이드(poly(p-phenylene sulfide, PPS), 폴리(3,4-에틸렌디옥시티오펜(poly(3,4-ethylenedioxy thiophene, PEDOT), 폴리(3,4-에틸렌디옥시티오펜)-테트라메타크릴레이트(PEDOT-TMA), 폴리퓨란(polyfuran), PCBM((6,6)-phenyl-C61-butyric acid-methylester), PBI(polybenzimidazole), PCBCR((6,6)-phenyl-C61-butyric acid-cholesteryl ester) 및 PTCBI(3,4,9,10-perylene-tetracarboxylic bis-benzimidazole)으로 이루어진 군에서 선택된 적어도 하나 이상을 포함하는 전도성 고분자를 더 포함하는 것인, The composition includes polyphenylene, polypyrrole, polyaniline, polythiophene, polyperylene, poly(3-alkyl-thiophene), polyfullerene, polyfluorene, polyphenylene ( polyphenylene), polypyrene, polyazulene, polynaphthalene, polyacetylene (PAC), poly-p-phenylene vinylene (PPV), polypyrrole ( polypyrrole, PPY, polycarbazole, polyindole, polyzepine, poly(thienylene vinylene), polyaniline (PANI), poly(thiophene) )), poly(p-phenylene sulfide, PPS), poly(3,4-ethylenedioxy thiophene, PEDOT), poly(3,4- Ethylenedioxythiophene)-tetramethacrylate (PEDOT-TMA), polyfuran (polyfuran), PCBM ((6,6)-phenyl-C 61 -butyric acid-methylester), PBI (polybenzimidazole), PCBCR ((6) ,6)-phenyl-C 61 -butyric acid-cholesteryl ester) and PTCBI (3,4,9,10-perylene-tetracarboxylic bis-benzimidazole) further comprising a conductive polymer comprising at least one selected from the group consisting of that is,
    조성물. composition.
  6. 제1항에 있어서,According to claim 1,
    상기 조성물은, 반도체 물질에 p-형 도펀트를 제공하는 것인, wherein the composition provides a p-type dopant to the semiconductor material,
    조성물.composition.
  7. 제1항에 있어서,According to claim 1,
    상기 조성물은, 수용성 용매를 더 포함하고,The composition further comprises a water-soluble solvent,
    상기 수용성 용매는, 물을 포함하는 것인, The water-soluble solvent will include water,
    조성물.composition.
  8. 제1항에 있어서,The method of claim 1,
    상기 조성물은, 반도체 소자의 정공수송층 제조에 사용되는 것인,The composition is used for manufacturing the hole transport layer of the semiconductor device,
    조성물.composition.
  9. 제1항에 있어서,According to claim 1,
    상기 조성물은, 90 % 이상의 광투과도를 갖는 막을 제공하는 것인,The composition will provide a film having a light transmittance of 90% or more,
    조성물. composition.
  10. 제1 전극층;a first electrode layer;
    제2 전극층; a second electrode layer;
    상기 제1 전극층 및 제2 전극층 사이에 제1항의 조성물을 포함하는 정공수송층; 및 A hole transport layer comprising the composition of claim 1 between the first electrode layer and the second electrode layer; and
    상기 정공수송층 상에 형성된 반도체층;a semiconductor layer formed on the hole transport layer;
    을 포함하는, containing,
    반도체 소자.semiconductor device.
  11. 제10항에 있어서,11. The method of claim 10,
    상기 정공수송층은, 1 nm 내지 50 nm 두께를 포함하는 것인, The hole transport layer, comprising a thickness of 1 nm to 50 nm,
    반도체 소자.semiconductor device.
  12. 제10항에 있어서,11. The method of claim 10,
    상기 정공수송층은, 90 % 이상의 광투과도를 갖는 것인, The hole transport layer will have a light transmittance of 90% or more,
    반도체 소자.semiconductor device.
  13. 제10항에 있어서,11. The method of claim 10,
    상기 반도체층 중 적어도 일부분은 상기 정공수송층과 계면을 형성하고, At least a portion of the semiconductor layer forms an interface with the hole transport layer,
    상기 계면 또는 상기 계면에 인접한 상기 반도체 영역 이 둘에 p-형 도핑 영역을 포함하는 것인, wherein the interface or the semiconductor region adjacent to the interface comprises a p-type doped region in both.
    반도체 소자.semiconductor device.
  14. 제10항에 있어서,11. The method of claim 10,
    상기 반도체층의 표면 거칠기는, 1.00 RMS 내지 1.5 RMS인 것인, The surface roughness of the semiconductor layer, 1.00 RMS to 1.5 RMS,
    반도체 소자.semiconductor device.
  15. 제10항에 있어서,11. The method of claim 10,
    상기 반도체층은, 페로브스카이트를 포함하고, The semiconductor layer includes perovskite,
    상기 페로브스카이트는, ABX3, A2BX4, ABX4 또는 An- 1BnX3n +1(n은 2 내지 6사이의 정수)의 구조를 포함하고,The perovskite includes a structure of ABX 3 , A 2 BX 4 , ABX 4 or A n- 1 B n X 3n +1 (n is an integer between 2 and 6),
    상기 A는 유기암모늄 또는 알칼리금속 물질이고, 상기 B는 금속 물질이고, 상기 X는 할로겐 원소인 것인, Wherein A is an organoammonium or alkali metal material, B is a metal material, and X is a halogen element,
    반도체 소자.semiconductor device.
  16. 제10항에 있어서,11. The method of claim 10,
    상기 반도체 소자는, 광전자 소자이며,The semiconductor device is an optoelectronic device,
    상기 반도체층은, 광활성층 또는 광발광층이며, The semiconductor layer is a photoactive layer or a photoluminescent layer,
    상기 광전자 소자는, 발광소자 또는 태양전지인 것인,The optoelectronic device is a light emitting device or a solar cell,
    반도체 소자.semiconductor device.
  17. 제1항의 조성물을 용액 공정으로 코팅하여 정공수송층을 형성하는 단계; 및 Forming a hole transport layer by coating the composition of claim 1 in a solution process; and
    상기 정공수송층 상에 반도체층을 형성하는 단계; forming a semiconductor layer on the hole transport layer;
    를 포함하는,containing,
    반도체 소자의 제조방법.A method of manufacturing a semiconductor device.
  18. 제17항에 있어서,18. The method of claim 17,
    상기 정공수송층을 형성하는 단계는, 상기 조성물을 코팅한 이후에 0 ℃내지 130 ℃온도에서 어닐링하는 단계;Forming the hole transport layer may include annealing at a temperature of 0 °C to 130 °C after coating the composition;
    를 포함하는 것인, which includes,
    반도체 소자의 제조방법.A method of manufacturing a semiconductor device.
  19. 제17항에 있어서,18. The method of claim 17,
    상기 정공수송층 상에 반도체층을 형성하는 단계는,The step of forming a semiconductor layer on the hole transport layer,
    상기 정공수송층 상에 반도체 물질의 증착막을 형성하는 단계;forming a deposition film of a semiconductor material on the hole transport layer;
    상기 증착막을 0 ℃내지 130 ℃온도에서 어닐링하는 단계;annealing the deposited film at a temperature of 0 °C to 130 °C;
    를 포함하는 것인,which includes,
    반도체 소자의 제조방법.A method of manufacturing a semiconductor device.
PCT/KR2021/010756 2020-12-08 2021-08-12 Composition comprising polystyrene sulfonic acid metal salt, semiconductor device, and method for manufacturing same WO2022124523A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200170607A KR102502861B1 (en) 2020-12-08 2020-12-08 Composition comprising metal salts of polystyrene sulfonic acid, semiconductor device and manufacturing method thereof
KR10-2020-0170607 2020-12-08

Publications (1)

Publication Number Publication Date
WO2022124523A1 true WO2022124523A1 (en) 2022-06-16

Family

ID=81974608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/010756 WO2022124523A1 (en) 2020-12-08 2021-08-12 Composition comprising polystyrene sulfonic acid metal salt, semiconductor device, and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR102502861B1 (en)
WO (1) WO2022124523A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102557855B1 (en) * 2022-07-20 2023-07-24 한국과학기술원 Liquid metal solution, ink containing the same and electronic deivce comprising the ink

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060019907A (en) * 2004-08-30 2006-03-06 한국화학연구원 Preparation method of micro line of aqueous metal nano sol on surface-modified ito glass for inkjet method
KR101184781B1 (en) * 2004-02-10 2012-09-20 하.체. 스타르크 게엠베하 Polythiophene formulations for improving organic light-emitting diodes
KR102018978B1 (en) * 2018-03-23 2019-09-04 중앙대학교 산학협력단 Charge transport layer and method of fabricating thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101184781B1 (en) * 2004-02-10 2012-09-20 하.체. 스타르크 게엠베하 Polythiophene formulations for improving organic light-emitting diodes
KR20060019907A (en) * 2004-08-30 2006-03-06 한국화학연구원 Preparation method of micro line of aqueous metal nano sol on surface-modified ito glass for inkjet method
KR102018978B1 (en) * 2018-03-23 2019-09-04 중앙대학교 산학협력단 Charge transport layer and method of fabricating thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ALI AZMAT, AHN YOHAN, KHAWAJA KAUSAR ALI, KANG JU HWAN, PARK YU JUNG, SEO JUNG HWA, WALKER BRIGHT: "A Simple Cu(II) Polyelectrolyte as a Method to Increase the Work Function of Electrodes and Form Effective p ‐Type Contacts in Perovskite Solar Cells", ADVANCED FUNCTIONAL MATERIALS, vol. 31, no. 26, 1 June 2021 (2021-06-01), DE , pages 1 - 10, XP055942014, ISSN: 1616-301X, DOI: 10.1002/adfm.202009246 *
CHUANTIAN ZUO, LIMING DING: "Modified PEDOT Layer Makes a 1. 52 V Voc for Perovskite/PCBM Solar Cells", ADVANCED ENERGY MATERIALS, vol. 7, 1 January 2017 (2017-01-01), pages 1 - 6, XP055636674, DOI: 10.1002/aenm.201601193 *
LI WEI, WANG HUAXIN, HU XIAOFEI, CAI WENSI, ZHANG CONG, WANG MING, ZANG ZHIGANG: "Sodium Benzenesulfonate Modified Poly (3,4‐Ethylenedioxythiophene):Polystyrene Sulfonate with Improved Wettability and Work Function for Efficient and Stable Perovskite Solar Cells", SOLAR RRL, vol. 5, no. 1, 1 January 2021 (2021-01-01), pages 1 - 10, XP055942009, ISSN: 2367-198X, DOI: 10.1002/solr.202000573 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102557855B1 (en) * 2022-07-20 2023-07-24 한국과학기술원 Liquid metal solution, ink containing the same and electronic deivce comprising the ink

Also Published As

Publication number Publication date
KR20220081106A (en) 2022-06-15
KR102502861B1 (en) 2023-02-24

Similar Documents

Publication Publication Date Title
US11800726B1 (en) Method of formulating perovskite solar cell materials
WO2014109610A1 (en) Method for manufacturing high-efficiency inorganic-organic hybrid solar cell
EP2321861B1 (en) Novel photoactive co- polymers
WO2011102677A2 (en) Method for manufacturing a nanostructured inorganic/organic heterojunction solar cell
WO2011102673A2 (en) All-solid-state heterojunction solar cell
EP3005376B1 (en) Improved electron transfer composition for use in an electron injection layer for organic electronic devices
US11264572B2 (en) Non-fullerene acceptors (NFAS) as interfacial layers in perovskite semiconductor devices
WO2019039779A1 (en) Organic solar cell
WO2022124523A1 (en) Composition comprising polystyrene sulfonic acid metal salt, semiconductor device, and method for manufacturing same
WO2023234601A1 (en) Coating agent for forming large-area perovskite thin film and method for forming perovskite thin film using same
WO2020130561A1 (en) Method for manufacturing device comprising charge transport layer
WO2022124522A1 (en) Polystyrene sulfonate metal salt, production method thereof, and composition including same
WO2023167441A1 (en) Method for producing high-purity cesium halide, and perovskite composite material
WO2022097963A1 (en) Coating agent for electron transfer layer of inverted perovskite solar cell, and inverted perovskite solar cell
KR101306070B1 (en) Conductive Polymer Compound and Organic Solar Cells with the Same
WO2023136442A1 (en) Perovskite solar cell and method for producing same
WO2022220449A1 (en) Perovskite solar cell and manufacturing method therefor
WO2023171916A1 (en) Perovskite solar cell and manufacturing method therefor
WO2022045847A1 (en) Wide-bandgap perovskite light absorption layer
WO2024025103A1 (en) Method for synthesizing delta-phase perovskite crystal, and delta-phase perovskite crystal produced thereby
WO2024039134A1 (en) Perovskite solar cell comprising interace layer and manufacturing method therefor
WO2023054989A1 (en) Hole transport material for perovskite solar cell and perovskite solar cell including same
WO2022010326A1 (en) Organic hole transport material doped with acid-base by-product, and optical device using same
US20220278280A1 (en) Peel-off Patterning Method for Fabrication of Organic Optoelectronic Devices
JP2012134337A (en) Organic photoelectric conversion element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21903570

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21903570

Country of ref document: EP

Kind code of ref document: A1