WO2024039134A1 - Perovskite solar cell comprising interace layer and manufacturing method therefor - Google Patents

Perovskite solar cell comprising interace layer and manufacturing method therefor Download PDF

Info

Publication number
WO2024039134A1
WO2024039134A1 PCT/KR2023/011816 KR2023011816W WO2024039134A1 WO 2024039134 A1 WO2024039134 A1 WO 2024039134A1 KR 2023011816 W KR2023011816 W KR 2023011816W WO 2024039134 A1 WO2024039134 A1 WO 2024039134A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
layer
perovskite solar
perovskite
transport layer
Prior art date
Application number
PCT/KR2023/011816
Other languages
French (fr)
Korean (ko)
Inventor
전남중
신성식
유정완
김영윤
김범수
홍순일
박은영
이진원
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Publication of WO2024039134A1 publication Critical patent/WO2024039134A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K99/00Subject matter not provided for in other groups of this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a perovskite solar cell including an interfacial layer and a method of manufacturing the same.
  • the present invention relates to a perovskite solar cell including an interfacial layer and a heat treatment process for forming a perovskite light absorption layer.
  • the present invention relates to a perovskite solar cell that can be heat treated even at high temperatures without deteriorating efficiency, thereby improving durability and photoelectric conversion efficiency, and a method of manufacturing the same.
  • Organometallic halides with a perovskite structure also referred to as organic-inorganic perovskite compounds or organometal halide perovskite compounds, contain an organic cation (A), a metal cation (M), and a halogen anion. It is composed of (X) and is a substance represented by the chemical formula of AMX3.
  • Perovskite compounds have high absorbance in the visible light range and can generate sufficient charge even in thin films. In addition, electrons and holes can be effectively separated due to the high extinction coefficient and small exciton binding energy, and it can be manufactured through a low-temperature process, which is economically advantageous.
  • titanium oxide was mainly used as the electron transport layer of perovskite solar cells, but tin oxide has a wider band gap than titanium oxide, high light transmittance in visible light, high electron mobility, excellent stability, non-toxicity, and perovskite. It is attracting attention as a material for the electron transport layer of high-efficiency perovskite solar cells because it has the advantages of better energy alignment with the layer and low-temperature processing.
  • the purpose is to provide a method for manufacturing a low-level solar cell.
  • the perovskite solar cell according to the present invention contains tin oxide as an electron transport layer, has an interface layer containing a pyrophosphate compound or a residue derived therefrom on the electron transport layer, and contains a perovskite compound.
  • the light absorption layer is located on the interface layer.
  • the pyrophosphate compound may have the composition of Formula 1.
  • R is independently selected from alkali metal and hydrogen, and at least one R is an alkali metal.
  • the pyrophosphate compound may have the composition of Formula 2 below.
  • the X-ray photoelectron spectroscopy (XPS) spectrum of the interface layer may include a peak of phosphorus (P) detected at a binding energy of 185 eV to 190 eV. there is.
  • the phosphorus (P) content in the interface layer may be 0.5 to 1.2 atomic%.
  • the thickness of the interfacial layer may be less than 5 nm.
  • a perovskite solar cell according to an embodiment of the present invention can satisfy Equation 1 below.
  • PCE 1 is the photoelectric conversion efficiency of the perovskite solar cell including the interface layer
  • PCE 0 refers to the photoelectric conversion efficiency of the perovskite solar cell not including the interface layer.
  • a perovskite solar cell according to an embodiment of the present invention can satisfy Equation 2 below in the linear attenuation section of time-resolved fluorescence spectroscopy (TCSPC, time-correlated single photon counting).
  • Equation 2 ⁇ 1 refers to the carrier life of a perovskite solar cell including an interface layer, and ⁇ 0 refers to the carrier life of a perovskite solar cell not including an interface layer.
  • the perovskite compound may have an AMX3 composition, A may be a monovalent cation, M may be a divalent cation, and X may be a halide anion.
  • the perovskite solar cell according to the present invention includes a hole transport layer located on top of the light absorption layer; A first electrode connected to the lower part of the electron transport layer; and a second electrode connected to the top of the hole transport layer.
  • the present invention includes a method for manufacturing the above-described perovskite solar cell.
  • the method of manufacturing a perovskite solar cell according to the present invention includes forming an interface layer containing a pyrophosphate compound or a residue derived therefrom on an electron transport layer containing tin oxide; Forming a first material layer by applying and drying a perovskite precursor solution on the interface layer; and heat-treating the first material layer to form a perovskite light absorption layer.
  • the heat treatment temperature of the first material layer may be 130°C or higher.
  • the method of manufacturing an interface layer includes applying a solution containing a pyrophosphate compound on the electron transport layer; and heat treatment.
  • an interfacial layer containing a pyrophosphate compound or a residue derived therefrom is located at the interface between an electron transport layer containing tin oxide and a light absorption layer containing a perovskite compound.
  • the thermal instability of the perovskite solar cell can be resolved by increasing the heat treatment temperature without reducing efficiency, resulting in excellent durability and improved stability and efficiency.
  • Figure 1 is a diagram showing a current density-voltage graph according to the heat treatment temperature of the first material layer when manufacturing a perovskite solar cell according to Comparative Example 2.
  • Figure 2 is a diagram showing a current density-voltage graph of perovskite solar cells manufactured according to Example 1, Comparative Example 1, and Comparative Example 2.
  • Figure 3 shows the open-circuit voltage (V OC ), short-circuit current density (J SC ), fill factor (FF), and photoelectric conversion efficiency of perovskite solar cells manufactured according to Example 1, Comparative Example 1, and Comparative Example 2 ( This is a diagram showing PCE).
  • FIG. 4 is a graph showing changes in time-correlated single photon counting (TCSPC) of perovskite solar cells manufactured according to Example 1, Comparative Example 1, and Comparative Example 2.
  • TCSPC time-correlated single photon counting
  • Figure 5 is a diagram showing the XPS analysis spectrum of the interfacial layer in the perovskite solar cell manufactured according to Example 1 and Comparative Example 2.
  • a perovskite solar cell providing an interfacial layer containing a pyrophosphate compound or a residue derived therefrom according to the present invention and a method for manufacturing the same will be described in detail.
  • the terms used in this specification are general terms that are currently widely used as much as possible while considering the function of the present invention, but this may vary depending on the intention or precedent of a technician working in the related field, the emergence of new technology, etc. Unless otherwise defined, the technical and scientific terms used may have meanings commonly understood by those skilled in the art in the technical field to which this invention belongs.
  • the numerical range used in this specification includes the lower limit and upper limit and all values within the range, increments logically derived from the shape and width of the defined range, all double-defined values, and the upper limit of the numerical range defined in different forms. and all possible combinations of the lower bounds. Unless otherwise specified in the specification of the present invention, values outside the numerical range that may occur due to experimental error or rounding of values are also included in the defined numerical range.
  • the efficiency refers to photoelectric conversion efficiency (Power Conversion Efficiency, PCE).
  • the present invention provides a perovskite solar cell, wherein the perovskite solar cell includes an electron transport layer containing tin oxide; An interface layer located on the electron transport layer; A light absorption layer located on the interface layer and containing a perovskite compound, wherein the interface layer includes a pyrophosphate compound or a residue derived therefrom.
  • the perovskite compound of the light absorption layer refers to an organic metal halide with a perovskite structure.
  • perovskite compounds can satisfy the chemical formula of AMX 3 based on monovalent organic cations (A), divalent metal cations (M), and halogen anions (X), but AMX 4 , A 2 MX 4 , A 3 Examples that satisfy chemical formulas such as MX 5 are not excluded.
  • perovskite compounds can have a three-dimensional structure in which A combines with 12 That is not the case.
  • the perovskite compound satisfies the formula AMX 3 , wherein A is a monovalent organic cation, M is a divalent metal ion, and X is selected from I - , Br - , F - and Cl - There may be one or two or more types.
  • M, a divalent metal ion include Cu 2+ , Ni 2+ , Co 2+ , Fe 2+ , Mn 2+ , Cr 2+ , Pd 2+ , Cd 2+ , Ge 2+ , Sn 2+ , Pb
  • One or two or more types selected from 2+ and Yb 2+ may be mentioned, but are not limited thereto.
  • A may be an amidinium group ion, an organic ammonium ion, or an amidinium group ion and an organic ammonium ion.
  • A may be represented by the formula of (R 1 -NH 3 + )X, where R 1 is C1-C24 alkyl, C3-C20 cycloalkyl, or C6 - C20 aryl, and It means one or more halogen anions selected from Br - , F - and I - .
  • R 2 -C 3 H 3 N 2 + -R 3 )X where R 2 is C1-C24 alkyl, C3-C20 cycloalkyl, or C6-C20 aryl.
  • R 3 is hydrogen or C1-C24 alkyl
  • X means one or more halogen anions selected from Cl - , Br - , F - and I - .
  • R 1 may be C1-C24 alkyl, preferably C1-C7 alkyl, and more preferably methyl.
  • R 2 may be C1-C24 alkyl
  • R 3 may be hydrogen or C1-C24 alkyl, preferably R 2 may be C1-C7 alkyl and R 3 may be hydrogen or C1-C7 alkyl, , more preferably, R 2 may be methyl and R 3 may be hydrogen.
  • A is a monovalent organic ion that contains both organic ammonium ions and amidinium ions
  • A is A ⁇ 1-x A ⁇ x
  • a ⁇ x (A ⁇ is the monovalent organic ammonium ion described above, and A ⁇ is It is an amidinium-based ion, and x can satisfy the real number 0 ⁇ x ⁇ 1, preferably a real number 0.05 ⁇ x ⁇ 0.3).
  • the tin oxide of the electron transport layer may be tin oxide (SnO2), and the thickness of the thin film may be 10 nm to 500 nm, but the present invention is not limited by the thickness of the electron transport layer.
  • a perovskite solar cell is manufactured by forming an electron transport layer containing tin oxide and then forming a light absorption layer containing a perovskite compound, followed by heat treatment.
  • Heat treatment at a high temperature of 130°C or higher is preferred to suppress defects in the light absorption layer and improve PCE.
  • defects such as oxygen vacancies are generated at the interface between the electron transport layer and the light absorption layer. It acts as a trap to confine charges and does not prevent holes from moving toward the electron transport layer, causing recombination of electrons and holes.
  • an electron transport layer containing tin oxide is formed, and then a perovskite precursor solution is applied and dried to form a light absorption layer, and then heat treatment is performed at a low temperature of 100°C or lower.
  • the low-temperature heat treatment process inevitably causes defects in the light absorption layer, which may lead to a decrease in PCE performance.
  • the pyrophosphate compound included in the interface layer may be represented by the following formula (1).
  • R is independently selected from alkali metal and hydrogen, and at least one R is an alkali metal.
  • the alkali metal may be one or more selected from the group including lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), and francium (Fr). It may be potassium (K).
  • the pyrophosphate compound is included in the interface layer between the electron transport layer and the light absorption layer, and as subsequent heat treatment is performed, the structure of the pyrophosphate compound is not maintained in the interface layer, but is converted to the form of a residue derived from the pyrophosphate compound. It can exist.
  • the residue derived from the pyrophosphate compound essentially includes phosphorus (P), but may optionally have a structure in which oxygen (O) or an oxygen-containing ligand (OR) is covalently bonded to phosphorus.
  • the interface layer has a clear interface between the electron transport layer and the light absorption layer and may not necessarily exist.
  • at least a portion of the pyrophosphate compound penetrates into the interface between the electron transport layer and the light absorption layer, so that the pyrophosphate compound or a residue derived therefrom has the highest concentration in the interface layer, and the electron transport layer in the interface layer
  • the light absorption layer may be a layer that exists with a concentration gradient in the form of a concentration decrease due to mutual diffusion as the distance in each direction increases.
  • the pyrophosphate compound penetrates both the electron transport layer and the light absorption layer, so that the interface layer in which only the pyrophosphate compound exists is substantially absent, and the pyrophosphate compound penetrates into both the electron transport layer and the light absorption layer at a certain depth of the electron transport layer and the light absorption layer in the thickness direction. It may be a layer in which a pyrophosphate compound exists with a concentration gradient.
  • this does not mean that the pyrophosphate compound of the interfacial layer or a residue derived therefrom penetrates into the entire volume of the electron transport layer and the light absorption layer, and does not mean that the thickness direction of the entire volume of each layer of the electron transport layer and the light absorption layer This means that it penetrates only through a portion of the thickness and has a concentration gradient due to mutual diffusion.
  • the pyrophosphate compound may be represented by the following formula (2).
  • the pyrophosphate compound is selected as the potassium pyrophosphate salt represented by Formula 2, the generation of defects such as oxygen vacancies can be effectively suppressed and the photoelectric conversion efficiency can be further improved through high temperature heat treatment of 130°C or higher.
  • the X-ray photoelectron spectroscopy (XPS) spectrum of the interface layer may include a peak of phosphorus (P) detected at a binding energy of 185 eV to 190 eV. Specifically, a peak for 2S phosphorus (P) can be detected at about 188 eV.
  • the content of phosphorus (P) in the interface layer may be 0.5 atomic% to 1.2 atomic%, specifically 0.6 atomic% to 1.1 atomic%, and more specifically 0.7 atomic% to 1.0 atomic%.
  • it may be 0.5 atomic% or more, 0.6 atomic% or more, or 0.7 atomic% or more, and the upper limit may be 1.2 atomic% or less, 1.1 atomic% or less, 1.0 atomic% or less, and 0.9 atomic% or less, and may be substantially 0.8 atomic%.
  • analyzing the materials and element concentrations contained in the interface layer through X-ray photoelectron spectroscopy (XPS), it can be confirmed that the interface layer containing phosphorus (P) was formed with a concentration gradient.
  • XPS X-ray photoelectron spectroscopy
  • the thickness of the interfacial layer may be less than 5 nm, specifically less than 3 nm, and more specifically less than 1 nm, and may exist with a concentration gradient at a partial thickness without substantially having a clear interface.
  • the thickness of the interface layer satisfies the above range, it effectively contributes to the suppression of defect generation, and the pyrophosphate compound of the interface layer or residues derived therefrom do not excessively penetrate into the entire volume of the electron transport layer and light absorption layer, thereby preventing photoelectric energy. This can be particularly advantageous in terms of conversion efficiency.
  • equation 1 may be satisfied.
  • PCE 1 is the photoelectric conversion efficiency of the perovskite solar cell including the interface layer
  • PCE 0 refers to the photoelectric conversion efficiency of the perovskite solar cell not including the interface layer.
  • Advantageously PCE 1 /PCE 0 may be at least 1.5, at least 1.6, at least 1.7 or at least 1.8, and without limitation, at most 2.0.
  • a perovskite precursor solution is applied and dried without including an interface layer to form a light absorption layer, and then heat treated at 150°C, pyrophosphate
  • an interface layer containing is further included and heat treated at 150° C., both open-circuit voltage and fill factor are improved, and photoelectric conversion efficiency can be significantly improved.
  • Equation 2 can be satisfied in the linear attenuation section of time-correlated single photon counting (TCSPC).
  • Equation 2 ⁇ 1 refers to the carrier life of a perovskite solar cell including an interface layer, and ⁇ 0 refers to the carrier life of a perovskite solar cell not including an interface layer.
  • the time-resolved fluorescence spectral characteristics (TCSPC, Time-correlated single photon counting) of the perovskite solar cell can be measured by Edinburgh Instruments, FL920, and the sample was excited at 470 nm and the PL decay was at 800 nm. It was detected.
  • Carrier lifetime ( ⁇ ) refers to a value calculated by measuring the slope of the attenuation section through a mono-exponential fit based on time-resolved fluorescence spectral characteristics.
  • the carrier life of the perovskite solar cell according to the present invention may be 2000 nsec or more, specifically 2500 nsec or more, or 2800 nsec or more, and may be indefinitely 3000 nsec or less.
  • the perovskite solar cell according to the present invention may further include a hole transport layer on top of the light absorption layer, and may further include a first electrode below the electron transport layer and a second electrode on top of the hole transport layer. That is, the perovskite solar cell according to one embodiment includes a first electrode; An electron transport layer located on the first electrode; An interfacial layer located on the electron transport layer; A light absorption layer located on the interface layer; A hole transport layer located on the light absorption layer; And it may include a second electrode located on the hole transport layer.
  • the first electrode may be a transparent conductive electrode that is ohmic bonded to the electron transport layer.
  • the materials of the transparent conductive electrode include fluorine-doped tin oxide (FTO), indium-doped tin oxide (ITO), ZnO, carbon nanotube, and graphene. ) and complexes thereof may be any one or two or more selected from the group, but are not limited thereto.
  • a transparent substrate (support) that is a rigid substrate (support) or a flexible substrate (support) may be located below the first electrode.
  • a transparent substrate is polyethylene terephthalate (PET). ), polyethylene naphthalate (PEN), polyimide (PI), polycarbonate (PC), polypropylene (PP), triacetylcellulose (TAC), or polyethersulfone (PES) substrate, etc., but the present invention is applicable to the substrate. It is not limited to concrete materials.
  • the hole transport layer may be an organic hole transport layer, and the organic hole transport material of the organic hole transport layer may be a single molecule or a high molecule organic hole transport material.
  • Non-limiting examples of single to low molecule organic hole transport materials include pentacene, coumarin 6, 3-(2-benzothiazolyl)-7-(diethylamino)coumarin), ZnPC (zinc phthalocyanine), CuPC(copper phthalocyanine), TiOPC(titanium oxide phthalocyanine), Spiro-MeOTAD(2,2',7,7'-tetrakis(N,N-p-dimethoxyphenylamino)-9,9'-spirobifluorene), F16CuPC(copper(II) 1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25-hexadecafluoro-29H,31H-phthalocyanine), SubPc (boron subphthalocyanine chloride) and N3( One or more substances selected from cis-di(thiocyanato)-bis(2,2'-bipyridyl-4,4'-dica
  • the organic hole transport material is a polymer (hole conductive polymer), which not only ensures stable operation of the solar cell, but also allows for improved power generation efficiency through energy matching with the light absorber.
  • the hole-conducting polymer may include one or a combination of two or more selected from the group consisting of thiophene-based polymers, paraphenylenevinylene-based polymers, carbazole-based polymers, and triphenylamine-based polymers, and thiophene-based polymers or Triphenylamine-based polymers are preferred, and more preferably, triphenylamine-based polymers may be used.
  • Non-limiting examples of polymeric organic hole transport materials include P3HT (poly[3-hexylthiophene]), MDMO-PPV (poly[2-methoxy-5-(3',7'- dimethyloctyloxyl)]-1,4-phenylene vinylene), MEH-PPV(poly[2-methoxy -5-(2''-ethylhexyloxy)-p-phenylene vinylene]), P3OT(poly(3-octylthiophene)), POT(poly(octylthiophene)), P3DT( poly(3-decyl thiophene)), P3DDT(poly(3-dodecyl thiophene)), PPV(poly(p-phenylene vinylene)), TFB(poly(9,9'-dioctylfluorene-co-N-(4-butylphenyl) )diphen
  • the hole transporter may be a thin film of an organic hole transport material, and the thickness of the thin film may be 10 nm to 500 nm, but the present invention is not limited thereto.
  • the hole transport layer is TBP (tertiary butyl pyridine), LiTFSI (Lithium Bis(Trifluoro methanesulfonyl)Imide), HTFSI (bis(trifluoromethane)sulfonimide), 2,6-lutidine, and Tris(2-(1H -pyrazol-1-yl)pyridine. ) Of course, it may further contain known additives such as cobalt(III).
  • the second electrode may be a conductive electrode that is ohmic bonded to the hole transporter, and any material commonly used as the electrode material for the front or back electrode in solar cells can be used.
  • the second electrode when the second electrode is the electrode material of the back electrode, the second electrode is one of gold, silver, platinum, palladium, copper, aluminum, carbon, cobalt sulfide, copper sulfide, nickel oxide, and composites thereof. It may be any material selected above.
  • the material of the second electrode may be fluorine-doped tin oxide (FTO), indium-doped tin oxide (ITO), ZnO, or CNT.
  • FTO fluorine-doped tin oxide
  • ITO indium-doped tin oxide
  • ZnO or CNT.
  • It may be an inorganic conductive electrode such as (carbon nanotube) or graphene, or it may be an organic conductive material such as PEDOT:PSS.
  • the materials, structures, shapes, and sizes of the first electrode, second electrode, electron transport layer, light absorption layer, interface layer, and hole transport layer are the perovskite described above.
  • the manufacturing method of the perovskite solar cell according to the present invention includes all the contents previously described for the perovskite solar cell.
  • the method for manufacturing a perovskite solar cell according to the present invention includes forming an interface layer containing a pyrophosphate compound or a residue derived therefrom on an electron transport layer containing tin oxide; Forming a first material layer by applying and drying a perovskite precursor solution on the interface layer; and heat-treating the first material layer to form a perovskite light absorption layer.
  • Methods for forming an electron transport layer containing tin oxide include spin coating, bar coating, gravure coating, blade coating and roll coating, spray coating, chemical solution growth method, slot-die coating, chemical solution deposition method, atomic layer deposition method, and thermal evaporation method. , may be performed by one or more selected from the group including electron beam evaporation, magnetron sputtering, and pulse laser deposition.
  • tin oxide precursor may be manufactured by applying a solution containing a tin oxide precursor onto the first electrode and heat treating it.
  • Precursors such as tin salt (SnCl2, SnCl4) or tin hydrate (SnCl2 ⁇ 2H2O, SnCl4 ⁇ 5H2O) or tin nanoparticles are dissolved in a polar solvent such as deionized water, ethanol, or isopropanol for spin coating, bar coating, gravure coating, and blade.
  • a polar solvent such as deionized water, ethanol, or isopropanol for spin coating, bar coating, gravure coating, and blade.
  • the electron transport layer can be formed by applying a tin oxide precursor solution using coating, roll coating, spray coating, and slot-die coating methods and heat treating it.
  • an electron transport layer containing tin oxide can be manufactured by chemical bath deposition (CBD).
  • CBD chemical bath deposition
  • the solution used in CBD to deposit tin oxide is one from the group containing a tin precursor in deionized water and urea, mercaptoic acid, and hydrochloric acid, which act as a binder and stabilizer, respectively. It can be prepared by adding a specific acid selected above.
  • An electron transport layer containing tin oxide may be formed through a chemical reaction by immersing the first electrode in the prepared solution.
  • the electron transport layer can be manufactured by heat treatment below °C.
  • a thermal evaporation method in which liquid or solid tin is evaporated under high vacuum and a high temperature of 1630°C or higher and deposited on the first electrode, and a high-voltage electron beam is irradiated to a tin oxide target to deposit the evaporated tin oxide on the first electrode.
  • the tin oxide electron transport layer can be manufactured by one or more methods selected from the pulse laser deposition method for forming a tin thin film, but the present invention is not limited by the method of manufacturing the electron transport layer.
  • a step of forming an interface layer may be performed.
  • a solution containing a pyrophosphate compound is applied on the electron transport layer by methods such as spin coating, bar coating, gravure coating, blade coating, roll coating, spray coating, chemical solution growth method, and slot-die coating, It can be manufactured by heat treatment, but the present invention is not limited by the method of applying the solution.
  • the light absorption layer can be manufactured by spontaneous crystallization (self-assembly) as the solvent is removed from a solution (hereinafter referred to as perovskite solution) containing the ions that make up the perovskite compound and the desired additive(s). Accordingly, the above-described perovskite compound film can be manufactured using a solution application method conventionally used to prepare perovskite compounds.
  • the perovskite solution contains amidinium group ions, organic ammonium ions, or monovalent organic cations containing both amidinium group ions and organic ammonium ions, Cu 2+ , Ni 2+ , and Co 2+ , Fe 2+ , Mn 2+ , Cr 2+ , Pd 2+ , Cd 2+ , Ge 2+ , Sn 2+ , Pb 2+ and Yb 2+ , one or more types of divalent metal ions selected from It can be prepared by mixing a perovskite compound containing one or more monovalent halogen anions selected from I - , Br - , F -, and Cl - with a polar organic solvent.
  • the perovskite solution may contain additives commonly used to improve the film quality of the perovskite compound being produced or to improve the interface properties between the perovskite compound and other components such as electron transporters.
  • additives commonly used to improve the film quality of the perovskite compound being produced or to improve the interface properties between the perovskite compound and other components such as electron transporters.
  • the present invention cannot be limited by the specific type and content of the additive.
  • the solvent of the perovskite solution may be a polar organic solvent in which the ion source and additives are easily dissolved and can be easily volatilized and removed when dried.
  • the solvent is gamma-butyrolactone, formamide, N,N-dimethylformamide, diformamide, acetonitrile, tetrahydrofuran, dimethyl sulfoxide, diethylene glycol, 1-methyl-2- Pyrrolidone, N,N-dimethylacetamide, acetone, ⁇ -terpineol, ⁇ -terpineol, dihydro terpineol, 2-methoxy ethanol, acetylacetone, methanol, ethanol, propanol, butanol, It may be one or two or more selected from pentanol, hexanol, ketone, methyl isobutyl ketone, etc., but the present invention is not limited by the specific substance of the solvent.
  • the perovskite solution can be done through inkjet printing, microcontact printing, imprinting, gravure printing, gravure-offset printing, flexography printing, offset printing, reverse offset printing, slot die coating, bar coating, blade coating, and spray coating. , dip coating, roll coating, etc., but is not limited thereto.
  • the perovskite compound film can be manufactured using a solution application method of applying a perovskite solution, and further, solvent-non-solvent application by sequentially applying a perovskite solution and a non-solvent. It can be manufactured using this method.
  • solution application methods and solvent-non-solvent application methods can be performed with reference to the applicant's Korean Patent No. 10-1547877 or 10-1547870.
  • a step of forming a perovskite light absorption layer by heat treating the first material layer may be further performed.
  • the heat treatment temperature may be 130°C or higher, 135°C or higher, 140°C or higher, 145°C or higher, or 150°C or higher, and may be substantially 200°C or lower.
  • the hole transport layer may be formed by applying and drying a solution containing an organic hole transport material on the light absorption layer.
  • the solvent used to form the hole transport layer may be any solvent that dissolves the organic hole transport material and does not chemically react with the perovskite compound and the materials of the electron transport layer.
  • the solvent used to form the hole transport layer may be a non-polar solvent, but is not limited thereto.
  • the first electrode and the second electrode may be formed through a deposition process such as physical vapor deposition or chemical vapor deposition.
  • FTO substrate first electrode
  • FTO substrate first electrode
  • the FTO substrate was cleaned by sonication in Hellmanex solution, deionized water, acetone, and isopropyl alcohol (IPA) for 10 minutes each.
  • CBD solution reaction solution
  • reaction solution was prepared by mixing 625 mg of urea, 625 ⁇ L of HCl, 12.5 ⁇ L of thioglycolic acid (TGA), and 137.5 mg of SnCl 2 ⁇ 2H 2 O per 50 mL of deionized water.
  • TGA thioglycolic acid
  • SnCl 2 ⁇ 2H 2 O per 50 mL of deionized water.
  • one edge of the cleaned FTO substrate was taped with Kapton tape.
  • the taped FTO substrate and CBD solution were loaded into a glass reaction vessel (Hellendahl staining dish, ⁇ 170 mL vessel volume) and reacted at 90°C for 4 hours to form tin oxide.
  • the FTO substrate on which the tin oxide layer was formed by chemical solution growth was annealed at 170°C for 60 minutes at 15-30% relative humidity, and then spin-coated with deionized water containing 10mM KCl dissolved at 3000 rpm for 30 seconds.
  • An electron transport layer was prepared by heat treatment again at 100°C for 10 minutes.
  • a solution was prepared by dissolving 10 mg of potassium pyrophosphate in 1 ml of water and quantifying it. This was applied on the electron transport layer, spin-coated at 3000 rpm for 30 seconds, and then heat-treated at 100°C for 3 minutes to form an interface layer. did.
  • An amidinium-based perovskite compound layer was formed on the tin oxide layer using a perovskite solution on the prepared interface layer.
  • the composition of lead iodide is excessive by about 9 mol% compared to the stoichiometric ratio (ABX 3 standard stoichiometric ratio), and methylammonium chloride (MACl) is used to stabilize the intermediate phase and improve the orientation of the perovskite compound. ; Methylammonium Chloride) was used as an additive.
  • the perovskite solution is a mixture of dimethylformamide and dimethyl sulfoxide in an 8:1 (V/V) ratio, 1.53M lead iodide (PbI 2) , and 1.4M formamidinium aiodide. It was prepared by mixing 0.0122M (0.8 mol%) methylammonium lead bromide (MAPbBr3; methylammonium lead bromide) with (FAI; formamidinium iodide) and 0.5M methylammonium chloride (MACl; Methylammonium Chloride). The prepared perovskite solution was spin-coated at 1000 rpm for 10 seconds, followed by 5000 rpm for 30 seconds.
  • MAPbBr3 methylammonium lead bromide
  • FAI formamidinium iodide
  • MACl Methylammonium Chloride
  • Measurement conditions To measure the current-voltage characteristics of the manufactured solar cell, an artificial solar device (ORIEL class A solar simulator, Newport, model 91195A) and a source-meter (source-meter, Kethley, model 2420) were used. Illumination was set to AM 1.5G and calibrated to 100 mW/cm 2 using a calibrated silicon reference cell. The step voltage was 10mV and the delay time was 50ms. Measurements of time correlated single photon counting (TCSPC) were performed by Edinburgh Instruments, FL920.
  • ORIEL class A solar simulator Newport, model 91195A
  • source-meter source-meter
  • TCSPC time correlated single photon counting
  • a perovskite solar cell containing no interface layer was manufactured in the same manner as Example 1, except that the interface layer was not formed on the electron transport layer.
  • An interface layer was prepared in the same manner as in Example 1, except that the solution containing the pyrophosphate compound was not applied to the electron transport layer, but a solution of potassium chloride dissolved in water was applied to the electron transport layer to form the interface layer.
  • a perovskite solar cell was manufactured.
  • a perovskite solar cell was manufactured in the same manner as in Example 1, but without forming an interface layer on the electron transport layer, and by adding phosphoric acid when manufacturing the electron transport layer containing tin oxide. did. Specifically, 7.4 at% phosphoric acid was added to the tin oxide precursor solution (sol), spin-coated at 5000 rpm for 30 seconds, dried at 100°C for 10 minutes, and then heat treated at 180°C for 30 minutes under nitrogen to form an electron transport layer. did. Afterwards, formamidinium lead iodide (FAPbI3) and methylammonium lead bromide (MAPbBr3) were spin-coated at a molar ratio of 0.85:0.15 to form a light absorption layer.
  • a perovskite solar cell containing a pyrophosphoric acid compound was manufactured by depositing an 80 nm thick silver electrode on the hole transport layer containing Spiro-OMeTAD to form a second electrode.
  • Table 1 shows the open-circuit voltage (V OC ), short-circuit current density (J SC ), fill factor (FF), and This is a summary of the photoelectric conversion efficiency (PCE).
  • Example 1 As can be seen in Table 1, it can be seen that the open-circuit voltage, short-circuit current density, fill factor, and photoelectric conversion efficiency of Example 1 are all significantly improved compared to Comparative Examples 1 and 2.
  • the interface layer containing potassium pyrophosphate of Example 1 it is possible to provide the effect of preventing deterioration of the perovskite light-absorbing layer even when heat-treated at 150°C.
  • crystal defects in the perovskite layer are alleviated, providing a perovskite solar cell with improved stability and durability.
  • Comparative Example 3 which provides a perovskite solar cell doped with phosphoric acid in the tin oxide electron transport layer rather than the interface layer
  • the performance may be improved to some extent compared to Comparative Examples 1 and 2, but the performance of Example 1 It can be seen that the degree of improvement is not significant compared to the perovskite solar cell manufactured using this method.
  • Figure 1 is a diagram showing current density-voltage graphs when the heat treatment temperature of the first material layer is 100°C and 150°C when manufacturing perovskite by the method of Comparative Example 2.
  • the efficiency did not decrease, showing an open circuit voltage of 1.2V.
  • the open circuit voltage decreased to 1V due to a defect in the electron transport layer, indicating a decrease in efficiency. You can check it.
  • Figure 2 is a diagram showing a current density-voltage graph of perovskite solar cells manufactured according to Example 1, Comparative Example 1, and Comparative Example 2 when heat treatment of the first material layer is performed at 150°C.
  • the open-circuit voltage is only about 1V, whereas when potassium pyrophosphate is included in the interface layer (Example 1 ), it can be seen that the open-circuit voltage has significantly improved to 1.2V.
  • Figure 3 shows the open-circuit voltage (V OC ), short-circuit current density (J SC ), fill factor (FF), and photoelectric conversion efficiency of perovskite solar cells prepared according to Example 1, Comparative Example 1, and Comparative Example 2 ( This is a diagram showing the characteristics of PCE measured as a box and whisker plot (center line, average; box limit, standard deviation; whisker, outlier).
  • Ref is a perovskite solar cell manufactured by the method of Comparative Example 1
  • KCl is a perovskite solar cell manufactured by the method of Comparative Example 2
  • KPP is a perovskite solar cell manufactured by the method of Example 1. This refers to a perovskite solar cell manufactured by .
  • the open-circuit voltage was about 1.01V
  • the short-circuit current density was about 24.42mA/cm2
  • the fill factor was about 64%
  • the photoelectric conversion efficiency was about 15.8%.
  • potassium chloride was included in the interface layer (Comparative Example 2)
  • the open-circuit voltage was about 1.02V
  • the short-circuit current density was about 24.42mA/cm2
  • the fill factor was about 74%
  • the photoelectric conversion efficiency was about 18.5%.
  • Figure 4 is a graph showing changes in time-correlated single photon counting (TCSPC) of perovskite solar cells manufactured according to Example 1, Comparative Example 1, and Comparative Example 2, and carrier life (carrier life). Lifetime, ⁇ ) may be calculated through a mono-exponential fit based on time-resolved fluorescence spectral characteristics. As shown in Figure 4, when the interface layer is not included (Comparative Example 1), the carrier life is 366 nsec, when potassium chloride is added (Comparative Example 2), the carrier life is 150 nsec, and when potassium pyrophosphate is added (Example 1) ) It can be seen that the carrier life is significantly increased when a compound containing potassium pyrophosphate is applied to the interface layer at 2825 nsec.
  • TCSPC time-correlated single photon counting
  • Figure 5 shows an XPS analysis spectrum (blue dotted line) of the interfacial layer of the perovskite solar cell prepared according to Example 1.
  • a peak was detected at 185 to 190 eV that was not detected in the XPS spectrum (black dotted line) of the interfacial layer of the perovskite solar cell prepared according to Comparative Example 2.
  • P phosphorus

Abstract

The present invention relates to a perovskite solar cell and a manufacturing method therefor, the solar cell comprising: an electron transport layer containing tin oxide; an interface layer positioned on the electron transport layer; and a light absorption layer, which is positioned on the interface layer and contains a perovskite compound, wherein the interface layer includes a pyrophosphate compound and residue derived therefrom. During a heat treatment process for forming a perovskite light absorption layer, efficiency does not decline even during high-temperature heat treatment such that thermal instability of a perovskite solar cell is solved, and thus excellent durability is provided and stability and efficiency can be enhanced.

Description

계면층을 포함하는 페로브스카이트 태양전지 및 이의 제조방법Perovskite solar cell including an interfacial layer and method for manufacturing the same
본 발명은 계면층을 포함하는 페로브스카이트 태양전지 및 이의 제조방법에 관한 것으로, 상세하게는 계면층을 포함하는 페로브스카이트 태양전지를 제공하여 페로브스카이트 광흡수층 형성을 위한 열처리 공정 시, 효율 저하 없이 고온에서도 열처리가 가능하여 내구성 및 광전변환효율을 향상시킨 페로브스카이트 태양전지 및 이의 제조방법에 관한 것이다.The present invention relates to a perovskite solar cell including an interfacial layer and a method of manufacturing the same. In particular, the present invention relates to a perovskite solar cell including an interfacial layer and a heat treatment process for forming a perovskite light absorption layer. The present invention relates to a perovskite solar cell that can be heat treated even at high temperatures without deteriorating efficiency, thereby improving durability and photoelectric conversion efficiency, and a method of manufacturing the same.
화석 연료의 고갈 및 화석연료로 인한 환경오염으로 기후위기가 가속화되고 있음에 따라 친환경 대체 에너지에 대한 필요성이 대두되며 태양전지의 수요 또한 증가하고 있다. 그 중에서도 기존의 실리콘 태양전지와 비슷한 효율을 나타내면서도 저비용의 페로브스카이트 태양전지가 각광을 받고 있다. As the climate crisis is accelerating due to the depletion of fossil fuels and environmental pollution caused by fossil fuels, the need for eco-friendly alternative energy is emerging, and the demand for solar cells is also increasing. Among them, low-cost perovskite solar cells, which have similar efficiency to existing silicon solar cells, are attracting attention.
유무기 페로브스카이트 화합물 또는 오가노메탈 할라이드 페로브스카이트 화합물(Organometal halide perovskite compound)로도 지칭되는 페로브스카이트 구조의 유기금속할라이드는 유기 양이온(A), 금속 양이온(M) 및 할로겐 음이온(X)으로 이루어지며, AMX₃의 화학식으로 대표되는 물질이다. 페로브스카이트 화합물은 가시광선 영역에서 흡광도가 높아 얇은 박막에서도 충분한 전하를 발생시킬 수 있다. 뿐만 아니라 높은 흡광계수와 작은 엑시톤 결합에너지에 의해 전자와 정공이 효과적으로 분리 될 수 있으며, 저온공정으로 제조가 가능하여 경제적으로 유리한 장점이 있다.Organometallic halides with a perovskite structure, also referred to as organic-inorganic perovskite compounds or organometal halide perovskite compounds, contain an organic cation (A), a metal cation (M), and a halogen anion. It is composed of (X) and is a substance represented by the chemical formula of AMX₃. Perovskite compounds have high absorbance in the visible light range and can generate sufficient charge even in thin films. In addition, electrons and holes can be effectively separated due to the high extinction coefficient and small exciton binding energy, and it can be manufactured through a low-temperature process, which is economically advantageous.
페로브스카이트 태양전지의 전자수송층으로 종래에는 티타늄산화물을 주로 사용하였으나, 주석산화물이 티타늄산화물에 비해 밴드갭이 넓어 가시광에서 높은 광 투과율, 높은 전자 이동도, 우수한 안정성, 무독성 및 페로브스카이트 층과 더 나은 에너지 정렬 및 저온 공정으로 진행되는 장점을 가지고 있어 고효율 페로브스카이트 태양전지의 전자수송층 소재로 주목받고 있다.Conventionally, titanium oxide was mainly used as the electron transport layer of perovskite solar cells, but tin oxide has a wider band gap than titanium oxide, high light transmittance in visible light, high electron mobility, excellent stability, non-toxicity, and perovskite. It is attracting attention as a material for the electron transport layer of high-efficiency perovskite solar cells because it has the advantages of better energy alignment with the layer and low-temperature processing.
그러나, 저온 용액 공정 특성상 형성되는 표면 및 계면의 결함을 완화하기 위해 진행되는 고온 열처리 공정으로 인해 발생하는 주석산화물을 포함하는 전자수송층의 결함 및 페로브스카이트 태양전지의 열화현상이 성능 저하의 요인으로 작용하고 있음에 따라, 보다 우수한 내구성 및 안정성으로 향상된 성능을 제공하는 페로브스카이트 태양전지에 대한 연구가 필요한 실정이다.However, due to the nature of the low-temperature solution process, defects in the electron transport layer containing tin oxide and deterioration of the perovskite solar cell caused by the high-temperature heat treatment process conducted to alleviate surface and interface defects formed are factors in performance degradation. As a result, there is a need for research on perovskite solar cells that provide improved performance with better durability and stability.
본 발명은 페로브스카이트 광흡수층 형성을 위한 열처리 공정 시, 고온에서도 열화현상에 의한 결함이 발생하지 않아, 고온에서도 열처리가 가능하여 우수한 내구성과 향상된 효율 및 안정성의 페로브스카이트 태양전지 및 페로브스카이트 태양전지의 제조 방법을 제공하는 것이다.In the present invention, during the heat treatment process for forming the perovskite light absorption layer, no defects due to deterioration phenomenon occur even at high temperatures, and heat treatment is possible even at high temperatures, thereby producing perovskite solar cells and solar cells with excellent durability, improved efficiency, and stability. The purpose is to provide a method for manufacturing a low-level solar cell.
본 발명에 따른 페로브스카이트 태양전지는 전자수송층으로 주석산화물을 함유하고, 전자수송층 상에 피로인산염 화합물 또는 이로부터 유래된 잔기를 포함하는 계면층이 위치하며, 페로브스카이트 화합물을 함유하는 광흡수층은 계면층 상에 위치한다. The perovskite solar cell according to the present invention contains tin oxide as an electron transport layer, has an interface layer containing a pyrophosphate compound or a residue derived therefrom on the electron transport layer, and contains a perovskite compound. The light absorption layer is located on the interface layer.
본 발명에 따른 페로브스카이트 태양전지에 있어, 피로인산염 화합물은 화학식 1의 조성을 가질 수 있다.In the perovskite solar cell according to the present invention, the pyrophosphate compound may have the composition of Formula 1.
[화학식 1][Formula 1]
P(=O)(OR)₂-O-P(=O)(OR)₂P(=O)(OR)₂-O-P(=O)(OR)₂
화학식 1에서 R은 서로 독립적으로 알칼리 금속 및 수소에서 선택되되, 적어도 하나 이상의 R은 알칼리 금속이다.In Formula 1, R is independently selected from alkali metal and hydrogen, and at least one R is an alkali metal.
본 발명의 일 실시예에 따른 페로브스카이트 태양전지에 있어, 피로인산염 화합물은 하기 화학식 2의 조성을 가질 수 있다.In the perovskite solar cell according to an embodiment of the present invention, the pyrophosphate compound may have the composition of Formula 2 below.
[화학식 2][Formula 2]
P(=O)(OK)₂-O-P(=O)(OK)₂P(=O)(OK)₂-O-P(=O)(OK)₂
본 발명의 일 실시예에 따른 페로브스카이트 태양전지에 있어, 상기 계면층의 X선 광전자 분광 분석(XPS) 스펙트럼은 185eV 내지 190eV의 결합에너지에서 검출되는 인(P)의 피크를 포함할 수 있다.In the perovskite solar cell according to an embodiment of the present invention, the X-ray photoelectron spectroscopy (XPS) spectrum of the interface layer may include a peak of phosphorus (P) detected at a binding energy of 185 eV to 190 eV. there is.
본 발명의 일 실시예에 따른 페로브스카이트 태양전지에 있어, 상기 계면층에서 인(P)의 함유량은 0.5 내지 1.2원자%일 수 있다.In the perovskite solar cell according to an embodiment of the present invention, the phosphorus (P) content in the interface layer may be 0.5 to 1.2 atomic%.
본 발명의 일 실시예에 따른 페로브스카이트 태양전지에 있어, 계면층의 두께는 5nm 미만일 수 있다.In the perovskite solar cell according to an embodiment of the present invention, the thickness of the interfacial layer may be less than 5 nm.
본 발명의 일 실시예에 따른 페로브스카이트 태양전지는 하기 식 1을 만족할 수 있다. A perovskite solar cell according to an embodiment of the present invention can satisfy Equation 1 below.
[식 1][Equation 1]
PCE1/PCE0 > 1.4PCE 1 /PCE 0 > 1.4
식 1에서 PCE1은 계면층을 포함하는 페로브스카이트 태양전지의 광전변환효율이며, PCE0는 계면층을 포함하지 않는 페로브스카이트 태양전지의 광전변환효율을 의미한다.In Equation 1, PCE 1 is the photoelectric conversion efficiency of the perovskite solar cell including the interface layer, and PCE 0 refers to the photoelectric conversion efficiency of the perovskite solar cell not including the interface layer.
본 발명의 일 실시예에 따른 페로브스카이트 태양전지는 시간분해 형광분광법(TCSPC, Time-correlated single photon counting)의 선형 감쇠구간 상에서 하기 식 2를 만족할 수 있다. A perovskite solar cell according to an embodiment of the present invention can satisfy Equation 2 below in the linear attenuation section of time-resolved fluorescence spectroscopy (TCSPC, time-correlated single photon counting).
[식 2][Equation 2]
τ10 > 7.0τ 10 > 7.0
식 2에서 τ1는 계면층을 포함하는 페로브스카이트 태양전지의 캐리어 수명을 의미하며, τ0는 계면층을 포함하지 않는 페로브스카이트 태양전지의 캐리어 수명을 의미한다.In Equation 2, τ 1 refers to the carrier life of a perovskite solar cell including an interface layer, and τ 0 refers to the carrier life of a perovskite solar cell not including an interface layer.
본 발명의 일 실시예에 따른 페로브스카이트 태양전지에 있어, 페로브스카이트 화합물은 AMX₃ 조성을 가지며, A는 1가 양이온이고, M은 2가 양이온이고, X는 할라이드 음이온일 수 있다.In the perovskite solar cell according to an embodiment of the present invention, the perovskite compound may have an AMX₃ composition, A may be a monovalent cation, M may be a divalent cation, and X may be a halide anion.
본 발명에 따른 페로브스카이트 태양전지는 광흡수층의 상부에 위치하는 정공수송층; 전자수송층의 하부에 연결된 제1전극; 및 정공수송층의 상부에 연결된 제2전극;을 더 포함한다.The perovskite solar cell according to the present invention includes a hole transport layer located on top of the light absorption layer; A first electrode connected to the lower part of the electron transport layer; and a second electrode connected to the top of the hole transport layer.
본 발명은 상술한 페로브스카이트 태양전지의 제조방법을 포함한다.The present invention includes a method for manufacturing the above-described perovskite solar cell.
본 발명에 따른 페로브스카이트 태양전지의 제조방법은 주석산화물을 함유하는 전자수송층 위에 피로인산염 화합물 또는 이로부터 유래한 잔기를 포함하는 계면층을 형성하는 단계; 계면층 위에 페로브스카이트 전구체 용액을 도포 및 건조하여 제1물질층을 형성하는 단계; 및 제1물질층을 열처리하여 페로브스카이트 광흡수층을 형성하는 단계;를 포함한다.The method of manufacturing a perovskite solar cell according to the present invention includes forming an interface layer containing a pyrophosphate compound or a residue derived therefrom on an electron transport layer containing tin oxide; Forming a first material layer by applying and drying a perovskite precursor solution on the interface layer; and heat-treating the first material layer to form a perovskite light absorption layer.
본 발명의 일 실시예에 따른 페로브스카이트 태양전지의 제조방법에 있어, 제1물질층의 열처리 온도는 130℃ 이상일 수 있다.In the method of manufacturing a perovskite solar cell according to an embodiment of the present invention, the heat treatment temperature of the first material layer may be 130°C or higher.
본 발명의 일 실시예에 따른 페로브스카이트 태양전지의 제조방법에 있어, 계면층의 제조방법은 피로인산염 화합물을 포함하는 용액을 상기 전자수송층 상에 도포하는 단계; 및 열처리하는 단계;를 포함할 수 있다.In the method of manufacturing a perovskite solar cell according to an embodiment of the present invention, the method of manufacturing an interface layer includes applying a solution containing a pyrophosphate compound on the electron transport layer; and heat treatment.
본 발명에 따른 페로브스카이트 태양전지는, 주석산화물을 포함하는 전자수송층과 페로브스카이트 화합물을 포함하는 광흡수층 사이 계면에 피로인산염 화합물 또는 이로부터 유래한 잔기를 포함하는 계면층이 위치하여 페로브스카이트 광흡수층을 형성하기 위한 열처리 공정 시, 효율 저하 없이 열처리 온도를 상승시킴으로써 페로브스카이트 태양전지의 열적 불안정성을 해소하여 우수한 내구성과 향상된 안정성 및 효율을 가질 수 있다.In the perovskite solar cell according to the present invention, an interfacial layer containing a pyrophosphate compound or a residue derived therefrom is located at the interface between an electron transport layer containing tin oxide and a light absorption layer containing a perovskite compound. During the heat treatment process to form the perovskite light absorption layer, the thermal instability of the perovskite solar cell can be resolved by increasing the heat treatment temperature without reducing efficiency, resulting in excellent durability and improved stability and efficiency.
도 1은 비교예 2에 따른 페로브스카이트 태양전지 제조 시, 제1물질층의 열처리 온도에 따른 전류밀도-전압 그래프를 도시한 도면이다. Figure 1 is a diagram showing a current density-voltage graph according to the heat treatment temperature of the first material layer when manufacturing a perovskite solar cell according to Comparative Example 2.
도 2는 실시예 1, 비교예 1 및 비교예 2에 따라 제조된 페로브스카이트 태양전지의 전류밀도-전압 그래프를 도시한 도면이다. Figure 2 is a diagram showing a current density-voltage graph of perovskite solar cells manufactured according to Example 1, Comparative Example 1, and Comparative Example 2.
도 3은 실시예 1, 비교예 1 및 비교예 2에 따라 제조된 페로브스카이트 태양전지의 개방전압(VOC), 단락전류밀도(JSC), 필 팩터(FF) 및 광전변환효율(PCE)에 대해 도시한 도면이다. Figure 3 shows the open-circuit voltage (V OC ), short-circuit current density (J SC ), fill factor (FF), and photoelectric conversion efficiency of perovskite solar cells manufactured according to Example 1, Comparative Example 1, and Comparative Example 2 ( This is a diagram showing PCE).
도 4는 실시예 1, 비교예 1 및 비교예 2에 따라 제조된 페로브스카이트 태양전지의 시간분해 형광분광법(TCSPC, Time-Correlated Single Photon Counting)의 변화를 도시한 그래프이다. Figure 4 is a graph showing changes in time-correlated single photon counting (TCSPC) of perovskite solar cells manufactured according to Example 1, Comparative Example 1, and Comparative Example 2.
도 5는 실시예 1 및 비교예 2에 따라 제조된 페로브스카이트 태양전지에서 계면층의 XPS 분석 스펙트럼을 도시한 도면이다.Figure 5 is a diagram showing the XPS analysis spectrum of the interfacial layer in the perovskite solar cell manufactured according to Example 1 and Comparative Example 2.
본 발명에 따른 피로인산염 화합물 또는 이로부터 유래된 잔기를 포함하는 계면층을 제공하는 페로브스카이트 태양전지 및 이의 제조방법을 상세히 설명한다. 본 명세서에서 사용되는 용어는 본 발명의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어들을 선택하였으나, 이는 관련 분야에 종사하는 기술자의 의도 또는 판례, 새로운 기술의 출현 등에 따라 달라질 수 있다. 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가질 수 있다.A perovskite solar cell providing an interfacial layer containing a pyrophosphate compound or a residue derived therefrom according to the present invention and a method for manufacturing the same will be described in detail. The terms used in this specification are general terms that are currently widely used as much as possible while considering the function of the present invention, but this may vary depending on the intention or precedent of a technician working in the related field, the emergence of new technology, etc. Unless otherwise defined, the technical and scientific terms used may have meanings commonly understood by those skilled in the art in the technical field to which this invention belongs.
본 발명의 실시를 위한 구체적인 내용을 첨부된 도면을 참조하여 상세히 설명한다. 다만, 이하의 설명에서는 본 발명의 요지를 불필요하게 흐릴 우려가 있는 경우, 널리 알려진 기능이나 구성에 관한 구체적 설명은 생략한다.Specific details for implementing the present invention will be described in detail with reference to the attached drawings. However, in the following description, detailed descriptions of well-known functions or configurations will be omitted if there is a risk of unnecessarily obscuring the gist of the present invention.
본 명세서 및 첨부된 특허청구범위에서 사용하는 단수의 표현은 문맥상 명백하게 단수인 것으로 특정하지 않는 한, 복수의 표현을 포함한다. 또한, 복수의 표현은 문맥상 명백하게 복수인 것으로 특정하지 않는 한, 단수의 표현을 포함한다.As used in this specification and the appended claims, singular expressions include plural expressions, unless the context clearly dictates the singular. Additionally, plural expressions include singular expressions, unless the context clearly specifies plural expressions.
본 명세서 및 첨부된 특허청구범위에서 제1, 제2 등의 용어는 한정적인 의미가 아니라 하나의 구성 요소를 다른 구성 요소와 구별하는 목적으로 사용된다. In this specification and the appended claims, terms such as first and second are used not in a limiting sense but for the purpose of distinguishing one component from another component.
본 명세서 및 첨부된 특허청구범위에서 “포함하다” 또는 “가지다” 등의 용어는 명세서상에 기재된 특징, 또는 구성요소가 존재함을 의미하는 것이고, 특별히 한정하지 않는 한, 하나 이상의 다른 특징들 또는 구성요소가 부가될 가능성을 미리 배제하는 것은 아니다. In this specification and the appended patent claims, terms such as “include” or “have” mean the presence of features or components described in the specification, and, unless specifically limited, one or more other features or This does not preclude the possibility of additional components.
또한, 본 명세서에서 사용되는 수치 범위는 하한치와 상한치와 그 범위 내에서의 모든 값, 정의되는 범위의 형태와 폭에서 논리적으로 유도되는 증분, 이중 한정된 모든 값 및 서로 다른 형태로 한정된 수치 범위의 상한 및 하한의 모든 가능한 조합을 포함한다. 본 발명의 명세서에서 특별한 정의가 없는 한 실험 오차 또는 값의 반올림으로 인해 발생할 가능성이 있는 수치범위 외의 값 역시 정의된 수치범위에 포함된다.In addition, the numerical range used in this specification includes the lower limit and upper limit and all values within the range, increments logically derived from the shape and width of the defined range, all double-defined values, and the upper limit of the numerical range defined in different forms. and all possible combinations of the lower bounds. Unless otherwise specified in the specification of the present invention, values outside the numerical range that may occur due to experimental error or rounding of values are also included in the defined numerical range.
본 명세서 및 첨부된 특허청구범위에서 막(층), 영역, 구성 요소 등의 부분이 다른 부분 위에 또는 상에 있다고 할 때, 다른 부분과 접하여 바로 위에 있는 경우뿐만 아니라, 그 중간에 다른 막(층), 다른 영역, 다른 구성 요소 등이 개재되어 있는 경우도 포함한다. In this specification and the appended patent claims, when a part of a film (layer), region, component, etc. is said to be on or on another part, it is not only a case where it is directly on top of another part in contact with another part, but also when there is another film (layer) in the middle. ), also includes cases where other areas, other components, etc. are involved.
본 명세서 및 첨부된 특허청구범위에서 사용되는 정도의 용어 "약" 등은 허용오차가 존재할 때 허용오차를 포괄하는 의미로 사용된 것이다.The terms "about" and the like used in this specification and the appended claims are used to encompass tolerance when tolerance exists.
본 명세서 및 첨부된 특허청구범위에서 별다른 추가 설명 없이 단순히 효율로만 기재되어 있는 경우, 해당 효율은 광전변환효율(Power Conversion Efficiency, PCE)을 의미한다. In this specification and the appended patent claims, when efficiency is simply described without any additional explanation, the efficiency refers to photoelectric conversion efficiency (Power Conversion Efficiency, PCE).
본 발명은 페로브스카이트 태양전지를 제공하며, 상기 페로브스카이트 태양전지는 주석산화물을 함유하는 전자수송층; 상기 전자수송층 상에 위치하는 계면층; 상기 계면층 상에 위치하며, 페로브스카이트 화합물을 함유하는 광흡수층;을 포함하며, 상기 계면층은 피로인산염 화합물 또는 이로부터 유래된 잔기를 포함한다.The present invention provides a perovskite solar cell, wherein the perovskite solar cell includes an electron transport layer containing tin oxide; An interface layer located on the electron transport layer; A light absorption layer located on the interface layer and containing a perovskite compound, wherein the interface layer includes a pyrophosphate compound or a residue derived therefrom.
광흡수층의 페로브스카이트 화합물은 페로브스카이트 구조의 유기금속할로겐화물을 의미한다. 대표적으로, 페로브스카이트 화합물은 1가 유기 양이온(A), 2가 금속 양이온(M) 및 할로겐 음이온(X) 기준 AMX3의 화학식을 만족할 수 있으나, AMX4, A2MX4, A3MX5 등의 화학식을 만족하는 예를 배제하는 것은 아니다. 또한, 페로브스카이트 화합물은 A가 AX12로 12개의 X와 결합하여 입방 팔면체 구조를 형성하고 M은 MX6로 X와 팔면체 구조로 결합한 3차원 구조를 가질 수 있으나, 2차원 구조를 배제하는 것은 아니다. The perovskite compound of the light absorption layer refers to an organic metal halide with a perovskite structure. Typically, perovskite compounds can satisfy the chemical formula of AMX 3 based on monovalent organic cations (A), divalent metal cations (M), and halogen anions (X), but AMX 4 , A 2 MX 4 , A 3 Examples that satisfy chemical formulas such as MX 5 are not excluded. In addition, perovskite compounds can have a three-dimensional structure in which A combines with 12 That is not the case.
일 구체예에서, 페로브스카이트 화합물은 AMX3의 화학식을 만족하되, A는 1가의 유기 양이온이며, M는 2가의 금속 이온이며, X는 I-, Br-, F- 및 Cl-에서 선택되는 1종 또는 2종 이상일 수 있다. 2가의 금속 이온인 M의 예로, Cu2+, Ni2+, Co2+, Fe2+, Mn2+, Cr2+, Pd2+, Cd2+, Ge2+, Sn2+, Pb2+ 및 Yb2+에서 선택되는 1종 또는 2종 이상을 들 수 있으나, 이에 한정되는 것은 아니다. A는 아미디니움계(amidinium group) 이온, 유기 암모늄 이온 또는 아미디니움계 이온과 유기 암모늄 이온일 수 있다. 구체적으로 A는 (R1-NH3 +)X의 화학식으로 표시될 수 있고, 상기 R1은 C1-C24의 알킬, C3-C20의 시클로알킬 또는 C6-C20의 아릴이며, X는 Cl-, Br-, F- 및 I-에서 하나 또는 둘 이상 선택된 할로겐 음이온을 의미한다. 또한 A는 (R2-C3H3N2 +-R3)X의 화학식으로 표시될 수 있고, 상기 R2는 C1-C24의 알킬, C3-C20의 시클로알킬 또는 C6-C20의 아릴이며, R3은 수소 또는 C1-C24의 알킬이며, X는 Cl-, Br-, F- 및 I-에서 하나 또는 둘 이상 선택된 할로겐 음이온을 의미한다. 비 한정적이며 구체적인 일 예로, R1은 C1-C24의 알킬, 좋게는 C1-C7 알킬, 보다 좋게는 메틸일 수 있다. R2는 C1-C24의 알킬일 수 있고, R3는 수소 또는 C1-C24의 알킬일 수 있으며, 좋게는 R2는 C1-C7 알킬일 수 있고 R3는 수소 또는 C1-C7 알킬일 수 있으며, 보다 좋게는 R2는 메틸일 수 있고 R3는 수소일 수 있다. 구체적이며 비 한정적인 일 예로, 아미디니움계 이온은 포름아미디니움(formamidinium, NH2CH=NH2 +) 이온, 아세트아미디니움(acetamidinium, NH2C(CH3)=NH2 +) 또는 구아미디니움(Guamidinium, NH2C(NH2)=NH2 +)등을 들 수 있다. A가 1가의 유기이온이 유기 암모늄 이온과 아미디니움계 이온을 모두 포함하는 경우, A는 A´1-xx(A˝는 상술한 1가의 유기 암모늄 이온이며, A´는 상술한 아미디니움계 이온이고, x는 0<x<1인 실수, 좋게는 0.05≤x≤의0.3인 실수)를 만족할 수 있다.In one embodiment, the perovskite compound satisfies the formula AMX 3 , wherein A is a monovalent organic cation, M is a divalent metal ion, and X is selected from I - , Br - , F - and Cl - There may be one or two or more types. Examples of M, a divalent metal ion, include Cu 2+ , Ni 2+ , Co 2+ , Fe 2+ , Mn 2+ , Cr 2+ , Pd 2+ , Cd 2+ , Ge 2+ , Sn 2+ , Pb One or two or more types selected from 2+ and Yb 2+ may be mentioned, but are not limited thereto. A may be an amidinium group ion, an organic ammonium ion, or an amidinium group ion and an organic ammonium ion. Specifically, A may be represented by the formula of (R 1 -NH 3 + )X, where R 1 is C1-C24 alkyl, C3-C20 cycloalkyl, or C6 - C20 aryl, and It means one or more halogen anions selected from Br - , F - and I - . In addition, A may be represented by the formula (R 2 -C 3 H 3 N 2 + -R 3 )X, where R 2 is C1-C24 alkyl, C3-C20 cycloalkyl, or C6-C20 aryl. , R 3 is hydrogen or C1-C24 alkyl, and X means one or more halogen anions selected from Cl - , Br - , F - and I - . As a non-limiting and specific example, R 1 may be C1-C24 alkyl, preferably C1-C7 alkyl, and more preferably methyl. R 2 may be C1-C24 alkyl, R 3 may be hydrogen or C1-C24 alkyl, preferably R 2 may be C1-C7 alkyl and R 3 may be hydrogen or C1-C7 alkyl, , more preferably, R 2 may be methyl and R 3 may be hydrogen. As a specific and non-limiting example, amidinium-based ions include formamidinium (NH 2 CH=NH 2 + ) ion and acetamidinium (NH 2 C(CH 3 )=NH 2 + ). Or Guamidinium (NH 2 C(NH 2 )=NH 2 + ), etc. may be mentioned. If A is a monovalent organic ion that contains both organic ammonium ions and amidinium ions, A is A´ 1-xx (A˝ is the monovalent organic ammonium ion described above, and A´ is It is an amidinium-based ion, and x can satisfy the real number 0<x<1, preferably a real number 0.05≤x≤0.3).
전자수송층의 주석산화물은 산화주석(SnO₂)일 수 있으며, 박막의 두께는 10nm 내지 500nm일 수 있으나, 본 발명이 전자수송층의 두께에 의해 한정되는 것은 아니다.The tin oxide of the electron transport layer may be tin oxide (SnO₂), and the thickness of the thin film may be 10 nm to 500 nm, but the present invention is not limited by the thickness of the electron transport layer.
일반적으로, 주석산화물을 포함하는 전자수송층을 형성하고 이어서 페로브스카이트 화합물을 함유하는 광흡수층을 형성한 후 열처리를 통해 페로브스카이트 태양전지가 제조된다. 열처리는 광흡수층에서 결함의 억제 및 PCE의 향상을 위해 130℃ 이상의 고온 열처리가 선호되지만, 130℃ 이상의 고온에서 열처리하는 경우, 전자수송층과 광흡수층 계면에 생성되는 산소 공공(vacancy)과 같은 결함이 전하를 가두는 트랩으로 작용하여 정공이 전자수송층을 향해 이동하는 것을 막지 못해 전자와 정공의 재결합을 야기한다. 이에 따라, 주석산화물을 포함하는 전자수송층을 형성하고 이어서 페로브스카이트 전구체 용액을 도포 및 건조하여 광흡수층을 형성한 후 100℃ 이하의 저온에서 열처리를 수행하여왔다. 그러나, 상술한 바와 같이 저온 열처리 공정은 필연적으로 광흡수층에서 결함을 유발하고, 이에 따른 PCE 성능의 저하로 이어지는 문제를 야기시킬 수 있다.In general, a perovskite solar cell is manufactured by forming an electron transport layer containing tin oxide and then forming a light absorption layer containing a perovskite compound, followed by heat treatment. Heat treatment at a high temperature of 130℃ or higher is preferred to suppress defects in the light absorption layer and improve PCE. However, when heat treatment is performed at a high temperature of 130℃ or higher, defects such as oxygen vacancies are generated at the interface between the electron transport layer and the light absorption layer. It acts as a trap to confine charges and does not prevent holes from moving toward the electron transport layer, causing recombination of electrons and holes. Accordingly, an electron transport layer containing tin oxide is formed, and then a perovskite precursor solution is applied and dried to form a light absorption layer, and then heat treatment is performed at a low temperature of 100°C or lower. However, as described above, the low-temperature heat treatment process inevitably causes defects in the light absorption layer, which may lead to a decrease in PCE performance.
그러나 전자수송층과 광흡수층 사이에 피로인산염 화합물 또는 그로부터 유래된 잔기를 포함하는 계면층을 더 포함함에 따라 130℃ 이상의 고온에서 열처리가 가능하게 되며, 이러한 고온 열처리를 함에도 불구하고 전자수송층은 계면층에 의해 보호되어 산소 공공(vacancy)과 같은 결함 생성을 억제하고, 전자와 정공의 재결합을 효과적으로 억제할 수 있으며, 내구성이 향상되는 효과를 제공할 수 있다.However, by further including an interface layer containing a pyrophosphate compound or a residue derived therefrom between the electron transport layer and the light absorption layer, heat treatment at a high temperature of 130°C or higher becomes possible. Despite this high temperature heat treatment, the electron transport layer is attached to the interface layer. It can suppress the creation of defects such as oxygen vacancies, effectively suppress the recombination of electrons and holes, and provide the effect of improving durability.
구체적으로, 계면층에 포함되는 피로인산염 화합물은 하기 화학식 1로 표시될 수 있다.Specifically, the pyrophosphate compound included in the interface layer may be represented by the following formula (1).
[화학식 1][Formula 1]
P(=O)(OR)₂-O-P(=O)(OR)₂P(=O)(OR)₂-O-P(=O)(OR)₂
상기 화학식 1에서 R은 서로 독립적으로 알칼리 금속 및 수소에서 선택되되, 적어도 하나 이상의 R은 알칼리 금속이다. 구체적으로, 알칼리 금속은 리튬(Li), 나트륨(Na), 칼륨(K), 루비듐(Rb), 세슘(Cs) 및 프랑슘(Fr)을 포함하는 군에서 하나 이상 선택될 수 있으며, 보다 구체적으로 칼륨(K)일 수 있다.In Formula 1, R is independently selected from alkali metal and hydrogen, and at least one R is an alkali metal. Specifically, the alkali metal may be one or more selected from the group including lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), and francium (Fr). It may be potassium (K).
상기 피로인산염 화합물은 전자수송층과 광흡수층 사이의 계면층에 포함되고, 후속적인 열처리가 수행됨에 따라 상기 계면층에는 피로인산염 화합물의 구조를 유지하지 않고 피로인산염 화합물로부터 유래된 잔기의 형태로 전환되어 존재할 수 있다. 피로인산염 화합물로부터 유래된 잔기로는 인(P)을 필수적으로 포함하되, 선택적으로 산소(O) 또는 산소 함유 리간드(OR)가 인에 공유결합되어 있는 구조일 수 있다.The pyrophosphate compound is included in the interface layer between the electron transport layer and the light absorption layer, and as subsequent heat treatment is performed, the structure of the pyrophosphate compound is not maintained in the interface layer, but is converted to the form of a residue derived from the pyrophosphate compound. It can exist. The residue derived from the pyrophosphate compound essentially includes phosphorus (P), but may optionally have a structure in which oxygen (O) or an oxygen-containing ligand (OR) is covalently bonded to phosphorus.
상기 계면층은 상기 전자수송층과 광흡수층의 사이에 명확한 경계면을 가지며 반드시 존재하는 것은 아닐 수 있다. 예시적인 일 양태로는, 전자수송층과 광흡수층 각각의 계면으로 상기 피로인산염 화합물의 적어도 일부가 침투되어 계면층에서 피로인산염 화합물 또는 이로부터 유래된 잔기가 가장 높은 농도를 가지며, 계면층에서 전자수송층 및 광흡수층 각각의 방향으로 멀어질수록 상호확산에 따라 농도가 감소하는 형태의 농도구배를 가지며 존재하는 층일 수 있다. 또 다른 예시적 일 양태로는 상기 피로인산염 화합물이 전자수송층과 광흡수층으로 모두 침투되어 피로인산염 화합물만이 존재하는 계면층은 실질적으로 존재하지 않고 두께 방향으로 전자수송층과 광흡수층의 일부 깊이에서 상기 피로인산염 화합물이 농도구배를 가지며 존재하는 층일 수 있다. 그러나 예시적 모든 양태에서도 계면층의 피로인산염 화합물 또는 이로부터 유래된 잔기가 전자수송층 및 광흡수층의 전체 부피로 침투되는 것을 의미하지 않으며, 전자수송층 및 광흡수층의 각 층의 전체 부피에 대해 두께 방향으로 일부의 두께로만 침투되어 상호확산에 따른 농도구배를 가지는 것을 의미한다.The interface layer has a clear interface between the electron transport layer and the light absorption layer and may not necessarily exist. In an exemplary embodiment, at least a portion of the pyrophosphate compound penetrates into the interface between the electron transport layer and the light absorption layer, so that the pyrophosphate compound or a residue derived therefrom has the highest concentration in the interface layer, and the electron transport layer in the interface layer And the light absorption layer may be a layer that exists with a concentration gradient in the form of a concentration decrease due to mutual diffusion as the distance in each direction increases. In another exemplary embodiment, the pyrophosphate compound penetrates both the electron transport layer and the light absorption layer, so that the interface layer in which only the pyrophosphate compound exists is substantially absent, and the pyrophosphate compound penetrates into both the electron transport layer and the light absorption layer at a certain depth of the electron transport layer and the light absorption layer in the thickness direction. It may be a layer in which a pyrophosphate compound exists with a concentration gradient. However, in all exemplary embodiments, this does not mean that the pyrophosphate compound of the interfacial layer or a residue derived therefrom penetrates into the entire volume of the electron transport layer and the light absorption layer, and does not mean that the thickness direction of the entire volume of each layer of the electron transport layer and the light absorption layer This means that it penetrates only through a portion of the thickness and has a concentration gradient due to mutual diffusion.
일 실시예에 따르면, 피로인산염 화합물은 하기 화학식 2로 표시될 수 있다.According to one embodiment, the pyrophosphate compound may be represented by the following formula (2).
[화학식 2][Formula 2]
P(=O)(OK)₂-O-P(=O)(OK)₂P(=O)(OK)₂-O-P(=O)(OK)₂
피로인산염 화합물이 화학식 2로 표시되는 피로인산 칼륨염으로 선택됨에 따라 130℃ 이상의 고온 열처리를 통해 산소 공공(vacancy)과 같은 결함 생성이 효과적으로 억제되고 광전변환효율이 보다 더 향상될 수 있다.As the pyrophosphate compound is selected as the potassium pyrophosphate salt represented by Formula 2, the generation of defects such as oxygen vacancies can be effectively suppressed and the photoelectric conversion efficiency can be further improved through high temperature heat treatment of 130°C or higher.
일 실시예에 따르면, 계면층의 X선 광전자 분광 분석(XPS) 스펙트럼은 185eV 내지 190eV의 결합에너지에서 검출되는 인(P)의 피크를 포함할 수 있다. 구체적으로 약 188eV에서 2S의 인(P)에 대한 피크가 검출될 수 있다.According to one embodiment, the X-ray photoelectron spectroscopy (XPS) spectrum of the interface layer may include a peak of phosphorus (P) detected at a binding energy of 185 eV to 190 eV. Specifically, a peak for 2S phosphorus (P) can be detected at about 188 eV.
일 실시예에 따르면, 계면층에서 인(P)의 함유량은 0.5원자% 내지 1.2원자%, 구체적으로 0.6원자% 내지 1.1원자%, 보다 구체적으로 0.7원자% 내지 1.0원자%일수 있다. 또는, 0.5원자% 이상, 0.6원자% 이상, 0.7원자% 이상일 수 있으며, 상한으로는 1.2원자% 이하, 1.1원자% 이하, 1.0원자% 이하, 0.9원자% 이하일 수 있으며, 실질적으로 0.8원자%일 수 있다. X선 광전자 분광 분석(XPS)을 통해 계면층이 포함하는 물질 및 원소농도에 대한 분석으로 인(P)을 포함하는 계면층이 농도구배를 가지며 형성되었음을 확인할 수 있다. According to one embodiment, the content of phosphorus (P) in the interface layer may be 0.5 atomic% to 1.2 atomic%, specifically 0.6 atomic% to 1.1 atomic%, and more specifically 0.7 atomic% to 1.0 atomic%. Alternatively, it may be 0.5 atomic% or more, 0.6 atomic% or more, or 0.7 atomic% or more, and the upper limit may be 1.2 atomic% or less, 1.1 atomic% or less, 1.0 atomic% or less, and 0.9 atomic% or less, and may be substantially 0.8 atomic%. You can. By analyzing the materials and element concentrations contained in the interface layer through X-ray photoelectron spectroscopy (XPS), it can be confirmed that the interface layer containing phosphorus (P) was formed with a concentration gradient.
일 실시예에 따르면, 계면층의 두께는 5 nm 미만, 구체적으로 3 nm 미만, 더 구체적으로는 1 nm 미만일 수 있으며, 실질적으로 명확한 경계면을 갖지 않고 일부 두께로 농도구배를 가지며 존재할 수 있다. 계면층의 두께가 상기와 같은 범위를 만족함에 따라 결함 생성의 억제에 효과적으로 기여하고, 계면층의 피로인산염 화합물 또는 이로부터 유래된 잔기가 전자수송층 및 광흡수층의 전체 부피로 과도하게 침투되지 않아 광전변환효율에서 특히 유리할 수 있다.According to one embodiment, the thickness of the interfacial layer may be less than 5 nm, specifically less than 3 nm, and more specifically less than 1 nm, and may exist with a concentration gradient at a partial thickness without substantially having a clear interface. As the thickness of the interface layer satisfies the above range, it effectively contributes to the suppression of defect generation, and the pyrophosphate compound of the interface layer or residues derived therefrom do not excessively penetrate into the entire volume of the electron transport layer and light absorption layer, thereby preventing photoelectric energy. This can be particularly advantageous in terms of conversion efficiency.
일 실시예에 따르면, 하기 식 1을 만족할 수 있다. According to one embodiment, the following equation 1 may be satisfied.
[식 1][Equation 1]
PCE1/PCE0 > 1.4PCE 1 /PCE 0 > 1.4
식 1에서 PCE1은 계면층을 포함하는 페로브스카이트 태양전지의 광전변환효율이며, PCE0는 계면층을 포함하지 않는 페로브스카이트 태양전지의 광전변환효율을 의미한다. 유리하게는 PCE1/PCE0는 1.5 이상, 1.6 이상, 1.7 이상 또는 1.8 이상일 수 있으며, 비한정적으로 2.0 이하일 수 있다.In Equation 1, PCE 1 is the photoelectric conversion efficiency of the perovskite solar cell including the interface layer, and PCE 0 refers to the photoelectric conversion efficiency of the perovskite solar cell not including the interface layer. Advantageously PCE 1 /PCE 0 may be at least 1.5, at least 1.6, at least 1.7 or at least 1.8, and without limitation, at most 2.0.
구체적으로, 주석산화물을 포함하는 전자수송층을 형성한 후, 계면층을 포함하지 않고 페로브스카이트 전구체 용액을 도포 및 건조하여 광흡수층을 형성한 후 150℃에서 열처리하는 경우와 비교하여, 피로인산염을 포함하는 계면층을 더 포함하고 150℃에서 열처리 하는 경우, 개방전압 및 필 팩터가 모두 개선되어 광전변환효율이 현저하게 향상될 수 있다.Specifically, compared to the case where an electron transport layer containing tin oxide is formed, a perovskite precursor solution is applied and dried without including an interface layer to form a light absorption layer, and then heat treated at 150°C, pyrophosphate When an interface layer containing is further included and heat treated at 150° C., both open-circuit voltage and fill factor are improved, and photoelectric conversion efficiency can be significantly improved.
일 실시예에 따르면, 시간분해 형광분광법(TCSPC, Time-Correlated Single Photon Counting)의 선형 감쇠구간 상에서 하기 식 2를 만족할 수 있다. According to one embodiment, Equation 2 below can be satisfied in the linear attenuation section of time-correlated single photon counting (TCSPC).
[식 2][Equation 2]
τ10 > 7.0τ 10 > 7.0
식 2에서 τ1은 계면층을 포함하는 페로브스카이트 태양전지의 캐리어 수명을 의미하며, τ0은 계면층을 포함하지 않는 페로브스카이트 태양전지의 캐리어 수명을 의미한다. In Equation 2, τ 1 refers to the carrier life of a perovskite solar cell including an interface layer, and τ 0 refers to the carrier life of a perovskite solar cell not including an interface layer.
이때, 페로브스카이트 태양전지의 시간분해 형광분광 특성(TCSPC, Time-correlated single photon counting)은 Edinburgh Instruments, FL920에 의해 측정될 수 있으며, 샘플은 470nm에서 여기되었고 PL 감쇠(decay)는 800nm에서 감지되었다. 캐리어 수명(carrier lifetime, τ)은 시간분해 형광분광 특성에 기반하여 모노-익스포넨샬 핏(mono-exponential fit)을 통해 감쇠구간의 기울기를 측정하여 산출된 값을 의미한다. At this time, the time-resolved fluorescence spectral characteristics (TCSPC, Time-correlated single photon counting) of the perovskite solar cell can be measured by Edinburgh Instruments, FL920, and the sample was excited at 470 nm and the PL decay was at 800 nm. It was detected. Carrier lifetime (τ) refers to a value calculated by measuring the slope of the attenuation section through a mono-exponential fit based on time-resolved fluorescence spectral characteristics.
일 구체예에 따르면, 본 발명에 따른 페로브스카이트 태양전지의 캐리어 수명은 2000nsec 이상, 구체적으로 2500nsec 이상, 또는 2800nsec 이상일 수 있으며, 비한정적으로 3000nsec 이하일 수 있다.According to one embodiment, the carrier life of the perovskite solar cell according to the present invention may be 2000 nsec or more, specifically 2500 nsec or more, or 2800 nsec or more, and may be indefinitely 3000 nsec or less.
이는 피로인산염 화합물 또는 이로부터 유래한 잔기를 포함하는 계면층으로 인해 광흡수층과 전자수송층의 계면의 결함이 억제되어 전하 트랩으로 작용하는 결함이 감소한 것을 의미한다. 이에 따라 광흡수층에서 광 여기된 정공이 전자수송층으로 이동하는 것을 효과적으로 막을 수 있어 광흡수층과 전자수송층의 계면에서 정공과 전자의 비방사 재결합(Non-radiative recombination)이 저해되고, 정공과 전자가 재결합하는 시간이 지연되어 전자와 정공이 증가하면서 향상된 캐리어 수명 및 성능을 제공할 수 있다. This means that defects at the interface between the light absorption layer and the electron transport layer are suppressed due to the interfacial layer containing the pyrophosphate compound or a residue derived therefrom, thereby reducing defects that act as charge traps. Accordingly, it is possible to effectively prevent holes photo-excited in the light absorption layer from moving to the electron transport layer, thereby inhibiting non-radiative recombination of holes and electrons at the interface between the light absorption layer and the electron transport layer, and recombining holes and electrons. As the time is delayed, electrons and holes increase, providing improved carrier lifespan and performance.
본 발명에 따른 페로브스카이트 태양전지는 광흡수층의 상부에 정공수송층을 더 포함할 수 있으며, 또한 전자수송층의 하부에 제1전극 및 정공수송층의 상부에 제2전극을 더 포함할 수 있다. 즉, 일 실시예에 따른 페로브스카이트 태양전지는 제1전극; 제1전극 상 위치하는 전자수송층; 전자수송층 상 위치하는 계면층; 계면층 상 위치하는 광흡수층; 광흡수층 상 위치하는 정공수송층; 및 정공수송층 상 위치하는 제2전극을 포함할 수 있다.The perovskite solar cell according to the present invention may further include a hole transport layer on top of the light absorption layer, and may further include a first electrode below the electron transport layer and a second electrode on top of the hole transport layer. That is, the perovskite solar cell according to one embodiment includes a first electrode; An electron transport layer located on the first electrode; An interfacial layer located on the electron transport layer; A light absorption layer located on the interface layer; A hole transport layer located on the light absorption layer; And it may include a second electrode located on the hole transport layer.
제1전극은 전자수송층과 오믹 접합되는 투명 전도성 전극이면 무방하다. 구체적인 일 예로, 투명 전도성 전극의 소재는 불소 함유 산화주석(FTO; Fluorine doped Tin Oxide), 인듐 함유 산화주석(ITO; Indium doped Tin Oxide), ZnO, 탄소나노튜브(carbon nanotube), 그래핀(graphene) 및 이들의 복합물에서 선택되는 어느 하나 또는 둘 이상일 수 있으나, 이에 한정되는 것은 아니다.The first electrode may be a transparent conductive electrode that is ohmic bonded to the electron transport layer. As a specific example, the materials of the transparent conductive electrode include fluorine-doped tin oxide (FTO), indium-doped tin oxide (ITO), ZnO, carbon nanotube, and graphene. ) and complexes thereof may be any one or two or more selected from the group, but are not limited thereto.
이때, 제1전극 하부에는 딱딱한(rigid) 기판(지지체) 또는 유연성(flexible) 기판(지지체)인 투명 기판(지지체)이 위치할 수 있음은 물론이며, 투명 기판의 일 예로, 폴리에틸렌 테레프탈레이트(PET), 폴리에틸렌나프탈레이트(PEN), 폴리이미드(PI), 폴리카보네이트(PC), 폴리프로필렌(PP), 트리아세틸셀룰로오스(TAC) 또는 폴리에테르술폰(PES) 기판 등일 수 있으나, 본 발명이 기판의 구체 물질에 한정되는 것은 아니다.At this time, of course, a transparent substrate (support) that is a rigid substrate (support) or a flexible substrate (support) may be located below the first electrode. An example of a transparent substrate is polyethylene terephthalate (PET). ), polyethylene naphthalate (PEN), polyimide (PI), polycarbonate (PC), polypropylene (PP), triacetylcellulose (TAC), or polyethersulfone (PES) substrate, etc., but the present invention is applicable to the substrate. It is not limited to concrete materials.
정공수송층은 유기 정공수송층일 수 있으며, 유기 정공수송층의 유기 정공전달물질은 단분자 내지 고분자 유기 정공전달물질일 수 있다.The hole transport layer may be an organic hole transport layer, and the organic hole transport material of the organic hole transport layer may be a single molecule or a high molecule organic hole transport material.
단분자 내지 저분자 유기 정공전달물질의 비 한정적인 일 예로, 펜타센(pentacene), 쿠마린 6(coumarin 6, 3-(2-benzothiazolyl)-7-(diethylamino)coumarin)), ZnPC(zinc phthalocyanine), CuPC(copper phthalocyanine), TiOPC(titanium oxide phthalocyanine), Spiro-MeOTAD(2,2',7,7'-tetrakis(N,N-p-dimethoxyphenylamino)-9,9'-spirobifluorene), F16CuPC(copper(II) 1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25-hexadecafluoro-29H,31H-phthalocyanine), SubPc(boron subphthalocyanine chloride) 및 N3(cis-di(thiocyanato)-bis(2,2'-bipyridyl-4,4'-dicarboxylic acid)-ruthenium(II))중에서 하나 또는 둘 이상 선택되는 물질을 들 수 있으나, 이에 한정되는 것은 아니다. Non-limiting examples of single to low molecule organic hole transport materials include pentacene, coumarin 6, 3-(2-benzothiazolyl)-7-(diethylamino)coumarin), ZnPC (zinc phthalocyanine), CuPC(copper phthalocyanine), TiOPC(titanium oxide phthalocyanine), Spiro-MeOTAD(2,2',7,7'-tetrakis(N,N-p-dimethoxyphenylamino)-9,9'-spirobifluorene), F16CuPC(copper(II) 1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25-hexadecafluoro-29H,31H-phthalocyanine), SubPc (boron subphthalocyanine chloride) and N3( One or more substances selected from cis-di(thiocyanato)-bis(2,2'-bipyridyl-4,4'-dicarboxylic acid)-ruthenium(II)) may be included, but are not limited thereto.
유기 정공전달물질은 고분자(정공전도성 고분자)인 것이 좋은데, 이를 통해 안정적인 태양전지의 구동이 담보될 수 있을 뿐만 아니라, 광흡수체와의 에너지 매칭에 의해 보다 향상된 발전 효율을 가질 수 있다. 구체적으로, 정공전도성 고분자로, 티오펜계 고분자, 파라페닐렌비닐렌계 고분자, 카바졸계 고분자 및 트리페닐아민계 고분자로 이루어지는 군에서 선택되는 하나 또는 둘 이상의 조합을 들 수 있으며, 티오펜계 고분자 또는 트리페닐아민계 고분자가 좋고, 보다 좋게는 트리페닐아민계 고분자일 수 있다. 고분자 유기 정공전달물질의 비 한정적인 일 예로, P3HT(poly[3-hexylthiophene]), MDMO-PPV(poly[2-methoxy-5-(3',7'- dimethyloctyloxyl)]-1,4-phenylene vinylene), MEH-PPV(poly[2-methoxy -5-(2''-ethylhexyloxy)-p-phenylene vinylene]), P3OT(poly(3-octylthiophene)), POT(poly(octylthiophene)), P3DT(poly(3-decyl thiophene)), P3DDT(poly(3-dodecyl thiophene)), PPV(poly(p-phenylene vinylene)), TFB(poly(9,9'-dioctylfluorene-co-N-(4-butylphenyl)diphenylamine)), Polyaniline, Spiro-MeOTAD([2,22′,7,77′-tetrkis (N,N-di-p-methoxyphenyl amine)-9,9,9′-spirobifluorine]), PCPDTBTPoly[2,1,3-benzothiadiazole-4,7-diyl[4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b:3,4-b']dithiophene-2,6-diyl]]), Si-PCPDTBT(poly[(4,4′-bis(2-ethylhexyl)dithieno[3,2-b:2′,3′-d]silole)-2,6-diyl-alt-(2,1,3-benzothiadiazole)-4,7-diyl]), PBDTTPD(poly((4,8-diethylhexyloxyl) benzo([1,2-b:4,5-b']dithiophene)-2,6-diyl)-alt-((5-octylthieno[3,4-c]pyrrole-4,6-dione)-1,3-diyl)), PFDTBT(poly[2,7-(9-(2-ethylhexyl)-9-hexyl-fluorene)-alt-5,5-(4',7,-di-2-thienyl-2',1',3'-benzothiadiazole)]), PFO-DBT(poly[2,7-.9,9-(dioctyl-fluorene)-alt-5,5-(4',7'-di-2-.thienyl-2',1',3'-benzothiadiazole)]), PSiFDTBT(poly[(2,7-dioctylsilafluorene)-2,7-diyl-alt-(4,7-bis(2-thienyl)-2,1,3-benzothiadiazole)-5,5′-diyl]), PSBTBT(poly[(4,4′-bis(2-ethylhexyl)dithieno[3,2-b:2′,3′-d]silole)-2,6-diyl-alt-(2,1,3-benzothiadiazole)-4,7-diyl]), PCDTBT(Poly [[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl -2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl]), PFB(poly(9,9‘-dioctylfluorene-co-bis(N,N′-(4,butylphenyl))bis(N,N′-phenyl-1,4-phenylene)diamine), F8BT(poly(9,9‘-dioctylfluorene-co-benzothiadiazole), PEDOT (poly(3,4-ethylenedioxythiophene)), PEDOT:PSS (poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate)), PTAA (poly(triarylamine)), Poly(4-butylphenyl-diphenyl-amine) 및 이들의 공중합체에서 하나 또는 둘 이상 선택된 물질을 들 수 있다. It is preferable that the organic hole transport material is a polymer (hole conductive polymer), which not only ensures stable operation of the solar cell, but also allows for improved power generation efficiency through energy matching with the light absorber. Specifically, the hole-conducting polymer may include one or a combination of two or more selected from the group consisting of thiophene-based polymers, paraphenylenevinylene-based polymers, carbazole-based polymers, and triphenylamine-based polymers, and thiophene-based polymers or Triphenylamine-based polymers are preferred, and more preferably, triphenylamine-based polymers may be used. Non-limiting examples of polymeric organic hole transport materials include P3HT (poly[3-hexylthiophene]), MDMO-PPV (poly[2-methoxy-5-(3',7'- dimethyloctyloxyl)]-1,4-phenylene vinylene), MEH-PPV(poly[2-methoxy -5-(2''-ethylhexyloxy)-p-phenylene vinylene]), P3OT(poly(3-octylthiophene)), POT(poly(octylthiophene)), P3DT( poly(3-decyl thiophene)), P3DDT(poly(3-dodecyl thiophene)), PPV(poly(p-phenylene vinylene)), TFB(poly(9,9'-dioctylfluorene-co-N-(4-butylphenyl) )diphenylamine)), Polyaniline, Spiro-MeOTAD([2,22′,7,77′-tetrkis (N,N-di-p-methoxyphenyl amine)-9,9,9′-spirobifluorine]), PCPDTBTPoly[2 ,1,3-benzothiadiazole-4,7-diyl[4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b:3,4-b']dithiophene-2,6-diyl]] ), Si-PCPDTBT(poly[(4,4′-bis(2-ethylhexyl)dithieno[3,2-b:2′,3′-d]silole)-2,6-diyl-alt-(2, 1,3-benzothiadiazole)-4,7-diyl]), PBDTTPD(poly((4,8-diethylhexyloxyl) benzo([1,2-b:4,5-b']dithiophene)-2,6-diyl )-alt-((5-octylthieno[3,4-c]pyrrole-4,6-dione)-1,3-diyl)), PFDTBT(poly[2,7-(9-(2-ethylhexyl)- 9-hexyl-fluorene)-alt-5,5-(4',7,-di-2-thienyl-2',1',3'-benzothiadiazole)]), PFO-DBT(poly[2,7- .9,9-(dioctyl-fluorene)-alt-5,5-(4',7'-di-2-.thienyl-2',1',3'-benzothiadiazole)]), PSiFDTBT(poly[( 2,7-dioctylsilafluorene)-2,7-diyl-alt-(4,7-bis(2-thienyl)-2,1,3-benzothiadiazole)-5,5′-diyl]), PSBTBT(poly[( 4,4′-bis(2-ethylhexyl)dithieno[3,2-b:2′,3′-d]silole)-2,6-diyl-alt-(2,1,3-benzothiadiazole)-4, 7-diyl]), PCDTBT(Poly [[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl -2,1,3-benzothiadiazole-4,7-diyl- 2,5-thiophenediyl]), PFB(poly(9,9'-dioctylfluorene-co-bis(N,N′-(4,butylphenyl))bis(N,N′-phenyl-1,4-phenylene)diamine ), F8BT(poly(9,9'-dioctylfluorene-co-benzothiadiazole), PEDOT (poly(3,4-ethylenedioxythiophene)), PEDOT:PSS (poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate)), PTAA ( One or more materials may be selected from poly(triarylamine)), poly(4-butylphenyl-diphenyl-amine), and copolymers thereof.
비 한정적이며 구체적인 일 예로, 정공수송체는 유기 정공전달물질의 박막일 수 있으며, 박막의 두께는 10 nm 내지 500 nm일 수 있으나, 본 발명이 이에 한정되는 것은 아니다.As a non-limiting and specific example, the hole transporter may be a thin film of an organic hole transport material, and the thickness of the thin film may be 10 nm to 500 nm, but the present invention is not limited thereto.
정공수송층은 TBP(tertiary butyl pyridine), LiTFSI(Lithium Bis(Trifluoro methanesulfonyl)Imide), HTFSI(bis(trifluoromethane)sulfonimide), 2,6-lutidine 및 Tris(2-(1H -pyrazol-1-yl)pyridine)cobalt(III) 등과 같은 알려진 첨가제를 더 함유할 수 있음은 물론이다. The hole transport layer is TBP (tertiary butyl pyridine), LiTFSI (Lithium Bis(Trifluoro methanesulfonyl)Imide), HTFSI (bis(trifluoromethane)sulfonimide), 2,6-lutidine, and Tris(2-(1H -pyrazol-1-yl)pyridine. ) Of course, it may further contain known additives such as cobalt(III).
제2전극은 정공수송체와 오믹 접합되는 전도성 전극이면 무방하며, 태양전지에서 전면전극 또는 후면전극의 전극물질로 통상적으로 사용되는 물질이면 사용 가능하다. 비 한정적인 일 예로, 제2전극이 후면전극의 전극물질인 경우, 제2전극은 금, 은, 백금, 팔라듐, 구리, 알루미늄, 탄소, 황화코발트, 황화구리, 산화니켈 및 이들의 복합물에서 하나 이상 선택된 물질일 수 있다. 비 한정적인 일 예로, 제2전극이 투명전극일 경우, 제2전극의 소재는 불소 함유 산화주석(FTO; Fluorine doped Tin Oxide), 인듐 함유 산화주석(ITO; Indium doped Tin Oxide), ZnO, CNT(카본 나노튜브), 그래핀(Graphene)과 같은 무기계 전도성 전극일 수 있으며, 또는 PEDOT:PSS와 같은 유기계 전도성 소재일 수 있다.The second electrode may be a conductive electrode that is ohmic bonded to the hole transporter, and any material commonly used as the electrode material for the front or back electrode in solar cells can be used. As a non-limiting example, when the second electrode is the electrode material of the back electrode, the second electrode is one of gold, silver, platinum, palladium, copper, aluminum, carbon, cobalt sulfide, copper sulfide, nickel oxide, and composites thereof. It may be any material selected above. As a non-limiting example, if the second electrode is a transparent electrode, the material of the second electrode may be fluorine-doped tin oxide (FTO), indium-doped tin oxide (ITO), ZnO, or CNT. It may be an inorganic conductive electrode such as (carbon nanotube) or graphene, or it may be an organic conductive material such as PEDOT:PSS.
페로브스카이트 태양전지의 제조방법을 상술함에 있어, 제1전극, 제2전극, 전자수송층, 광흡수층, 계면층 및 정공수송층의 물질, 구조 및 형상이나 크기 등은 앞서 상술한 페로브스카이트 태양전지와 동일 내지 유사함에 따라, 본 발명에 따른 페로브스카이트 태양전지의 제조방법은 앞서 페로브스카이트 태양전지에서 상술한 모든 내용을 포함한다.In detailing the manufacturing method of a perovskite solar cell, the materials, structures, shapes, and sizes of the first electrode, second electrode, electron transport layer, light absorption layer, interface layer, and hole transport layer are the perovskite described above. As it is the same or similar to the solar cell, the manufacturing method of the perovskite solar cell according to the present invention includes all the contents previously described for the perovskite solar cell.
본 발명에 따른 페로브스카이트 태양전지의 제조방법은 주석산화물을 함유하는 전자수송층 상에 피로인산염 화합물 또는 이로부터 유래된 잔기를 포함하는 계면층을 형성하는 단계; 계면층 상에 페로브스카이트 전구체 용액을 도포 및 건조하여 제1물질층을 형성하는 단계; 및 제1물질층을 열처리하여 페로브스카이트 광흡수층을 형성하는 단계;를 포함한다.The method for manufacturing a perovskite solar cell according to the present invention includes forming an interface layer containing a pyrophosphate compound or a residue derived therefrom on an electron transport layer containing tin oxide; Forming a first material layer by applying and drying a perovskite precursor solution on the interface layer; and heat-treating the first material layer to form a perovskite light absorption layer.
주석산화물을 포함하는 전자수송층의 형성방법은 스핀코팅, 바 코팅, 그라비아 코팅, 블레이드 코팅 및 롤 코팅, 스프레이코팅, 화학적 용액 성장법, 슬롯-다이 코팅, 화학적 용액 증착법, 원자 층 증착법, 열증발법, 전자 빔 증발법, 마그네트론 스퍼터링 및 펄스 레이저 증착법 등을 포함하는 군에서 하나 이상 선택되는 것에 의해 수행될 수 있다.Methods for forming an electron transport layer containing tin oxide include spin coating, bar coating, gravure coating, blade coating and roll coating, spray coating, chemical solution growth method, slot-die coating, chemical solution deposition method, atomic layer deposition method, and thermal evaporation method. , may be performed by one or more selected from the group including electron beam evaporation, magnetron sputtering, and pulse laser deposition.
비한정적으로, 산화주석 전구체를 함유한 용액을 제1전극 상에 도포하고, 열처리 하여 제조될 수 있다. 주석 염(SnCl₂, SnCl₄) 또는 주석 수화물(SnCl₂·2H₂O, SnCl₄·5H₂O) 등의 전구체 또는 주석나노입자를 탈이온수, 에탄올 또는 이소프로판올 등의 극성용매에 용해시켜 스핀코팅, 바 코팅, 그라비아 코팅, 블레이드 코팅, 롤 코팅, 스프레이코팅 및 슬롯-다이 코팅법을 사용해 산화주석 전구체 용액을 도포하고, 열처리하여 전자수송층을 형성할 수 있다. Without limitation, it may be manufactured by applying a solution containing a tin oxide precursor onto the first electrode and heat treating it. Precursors such as tin salt (SnCl₂, SnCl₄) or tin hydrate (SnCl₂·2H₂O, SnCl₄·5H₂O) or tin nanoparticles are dissolved in a polar solvent such as deionized water, ethanol, or isopropanol for spin coating, bar coating, gravure coating, and blade. The electron transport layer can be formed by applying a tin oxide precursor solution using coating, roll coating, spray coating, and slot-die coating methods and heat treating it.
일 실시예에 따르면, 화학적 용액 성장법(CBD; chemical bath deposition)에 의해 산화주석을 포함하는 전자수송층을 제조할 수 있다. 주석산화물을 증착하기 위해 CBD에 사용되는 용액은 탈이온수에 주석 전구체와 각각 결합제 및 안정제로 작용하는 요소(urea), 머캅투르산(mercaptoic acid) 및 염산(hydrochloric acid)등을 포함하는 군에서 하나 이상 선택되는 특정 산을 첨가하여 제조할 수 있다. 제1전극을 제조한 용액에 담가 화학반응에 의해 주석산화물을 포함하는 전자수송층이 형성될 수 있다. According to one embodiment, an electron transport layer containing tin oxide can be manufactured by chemical bath deposition (CBD). The solution used in CBD to deposit tin oxide is one from the group containing a tin precursor in deionized water and urea, mercaptoic acid, and hydrochloric acid, which act as a binder and stabilizer, respectively. It can be prepared by adding a specific acid selected above. An electron transport layer containing tin oxide may be formed through a chemical reaction by immersing the first electrode in the prepared solution.
Tetrakis dimethylamino Tin(TDMASn) 및 DBDTA((CH₃CO₂)₂Sn[(CH₂)₃CH₃]₂) 등에서 하나 이상 선택되는 주석산화물을 함유하는 화합물을 아르곤 가스와 산소 또는 오존 가스 하에서 원자층 증착법으로 증착한 후, 120℃이하에서 열처리하여 전자수송층을 제조할 수 있다. After depositing a compound containing tin oxide selected from one or more of tetrakis dimethylamino Tin (TDMASn) and DBDTA ((CH₃CO₂)₂Sn[(CH₂)₃CH₃]₂) by atomic layer deposition under argon gas and oxygen or ozone gas, 120 The electron transport layer can be manufactured by heat treatment below ℃.
고 진공 및 1630℃ 이상의 고온 하에서 액상 또는 고상의 주석을 증발시켜 제1전극 상에 증착시키는 열증발법, 산화주석 타겟에 고전압의 전자 빔을 조사하여 증발된 산화주석을 제1전극 상에 증착하는 전자 빔 증발법, 고에너지의 입자를 타겟에 충돌시켜 방출된 주석과 산소 원자들을 기판에 증착시키는 마그네트론 스퍼터링 및 레이저 펄스를 타겟에 조사하여 방출된 기체상태의 주석과 산소 입자가 기판에 증착되어 산화주석 박막을 형성하는 펄스 레이저 증착법 등에서 하나 이상 선택되는 방법에 의해 주석산화물 전자수송층을 제조할 수 있으나, 본 발명이 전자수송층의 제조 방법에 의해 한정되는 것은 아니다.A thermal evaporation method in which liquid or solid tin is evaporated under high vacuum and a high temperature of 1630°C or higher and deposited on the first electrode, and a high-voltage electron beam is irradiated to a tin oxide target to deposit the evaporated tin oxide on the first electrode. Electron beam evaporation, magnetron sputtering, which deposits tin and oxygen atoms released by colliding high-energy particles into a target and irradiating a laser pulse to the target, causes the emitted gaseous tin and oxygen particles to deposit on the substrate and oxidize them. The tin oxide electron transport layer can be manufactured by one or more methods selected from the pulse laser deposition method for forming a tin thin film, but the present invention is not limited by the method of manufacturing the electron transport layer.
주석산화물 전자수송층 형성 후, 계면층을 형성하는 단계가 수행될 수 있다. 계면층은 피로인산염 화합물을 포함하는 용액을 상기 전자수송층 상에 스핀코팅, 바 코팅, 그라비아 코팅, 블레이드 코팅 및 롤 코팅, 스프레이코팅, 화학적 용액 성장법, 슬롯-다이 코팅 등의 방법으로 도포하고, 열처리하여 제조될 수 있으나, 본 발명이 용액의 도포 방법에 의해 한정되는 것은 아니다.After forming the tin oxide electron transport layer, a step of forming an interface layer may be performed. For the interface layer, a solution containing a pyrophosphate compound is applied on the electron transport layer by methods such as spin coating, bar coating, gravure coating, blade coating, roll coating, spray coating, chemical solution growth method, and slot-die coating, It can be manufactured by heat treatment, but the present invention is not limited by the method of applying the solution.
광흡수층은 페로브스카이트 화합물을 이루는 이온들과 목적하는 첨가제(들)을 함유하는 용액(이하, 페로브스카이트 용액)에서 용매가 제거됨에 따른 자발적 결정화(자기조립)에 의해 제조될 수 있음에 따라, 종래 페로브스카이트 화합물 제조를 위해 사용된 용액 도포법을 이용하여 상술한 페로브스카이트 화합물 막이 제조될 수 있다.The light absorption layer can be manufactured by spontaneous crystallization (self-assembly) as the solvent is removed from a solution (hereinafter referred to as perovskite solution) containing the ions that make up the perovskite compound and the desired additive(s). Accordingly, the above-described perovskite compound film can be manufactured using a solution application method conventionally used to prepare perovskite compounds.
페로브스카이트 용액은 아미디니움계(amidinium group) 이온, 유기 암모늄 이온 또는 아미디니움계 이온과 유기 암모늄 이온을 모두 포함하는 1가 유기양이온과, Cu2+, Ni2+, Co2+, Fe2+, Mn2+, Cr2+, Pd2+, Cd2+, Ge2+, Sn2+, Pb2+ 및 Yb2+에서 1종 또는 2종 이상 선택되는 2가의 금속 이온을 포함하며, I-, Br-, F- 및 Cl-에서 1종 또는 2종 이상 선택되는 1가 할로겐 음이온을 포함하는 페로브스카이트 화합물과 극성 유기 용매를 혼합하여 제조할 수 있다.The perovskite solution contains amidinium group ions, organic ammonium ions, or monovalent organic cations containing both amidinium group ions and organic ammonium ions, Cu 2+ , Ni 2+ , and Co 2+ , Fe 2+ , Mn 2+ , Cr 2+ , Pd 2+ , Cd 2+ , Ge 2+ , Sn 2+ , Pb 2+ and Yb 2+ , one or more types of divalent metal ions selected from It can be prepared by mixing a perovskite compound containing one or more monovalent halogen anions selected from I - , Br - , F -, and Cl - with a polar organic solvent.
선택적으로, 페로브스카이트 용액은 제조되는 페로브스카이트 화합물의 막질을 향상시키거나 페로브스카이트 화합물과 전자수송체 등과 같은 다른 구성요소와의 계면 특성을 향상시키는데 통상적으로 사용되는 첨가제를 더 함유할 수 있으나, 본 발명이 첨가제의 구체 종류와 함량에 의해 한정될 수 없음은 물론이다.Optionally, the perovskite solution may contain additives commonly used to improve the film quality of the perovskite compound being produced or to improve the interface properties between the perovskite compound and other components such as electron transporters. However, it goes without saying that the present invention cannot be limited by the specific type and content of the additive.
페로브스카이트 용액의 용매는 이온 공급원과 첨가제들이 용이하게 용해되며, 건조시 용이하게 휘발 제거될 수 있는 극성 유기 용매이면 무방하다. 일 예로, 용매는 감마-부티로락톤, 포름아마이드, N,N-다이메틸포름아마이드, 다이포름아마이드, 아세토나이트릴, 테트라하이드로퓨란, 다이메틸설폭사이드, 다이에틸렌글리콜, 1-메틸-2-피롤리돈, N,N-다이메틸아세트아미드, 아세톤, α-터피네올, β-터피네올, 다이하이드로 터피네올, 2-메톡시 에탄올, 아세틸아세톤, 메탄올, 에탄올, 프로판올, 부탄올, 펜탄올, 헥산올, 케톤, 메틸 이소부틸 케톤 등에서 하나 또는 둘 이상 선택된 것일 수 있으나, 본 발명이 용매의 구체 물질에 의해 제한되는 것은 아니다. The solvent of the perovskite solution may be a polar organic solvent in which the ion source and additives are easily dissolved and can be easily volatilized and removed when dried. For example, the solvent is gamma-butyrolactone, formamide, N,N-dimethylformamide, diformamide, acetonitrile, tetrahydrofuran, dimethyl sulfoxide, diethylene glycol, 1-methyl-2- Pyrrolidone, N,N-dimethylacetamide, acetone, α-terpineol, β-terpineol, dihydro terpineol, 2-methoxy ethanol, acetylacetone, methanol, ethanol, propanol, butanol, It may be one or two or more selected from pentanol, hexanol, ketone, methyl isobutyl ketone, etc., but the present invention is not limited by the specific substance of the solvent.
페로브스카이트 용액의 도포는 잉크젯 프린팅, 미세 접촉 프린팅, 임프린팅, 그라비아 프린팅, 그라비아-옵셋 프린팅, 플렉소그래피 프린팅, 오프셋 프린팅, 리버스 오프셋 프린팅, 슬롯 다이 코팅, 바 코팅, 블레이드 코팅, 스프레이 코팅, 딥코팅, 롤 코팅 등에 의해 수행될 수 있으나, 이에 한정되는 것은 아니다. 상술한 바와 같이, 페로브스카이트 화합물 막은 페로브스카이트 용액을 도포하는 용액도포법을 이용하여 제조될 수 있으며, 나아가, 페로브스카이트 용액과 비용매를 순차적으로 도포하는 용매-비용매 도포법을 이용하여 제조될 수 있다. 이러한 용액도포법 및 용매-비용매 도포법은 본 출원인의 대한민국등록특허 제10-1547877호 또는 제10-1547870호를 참고하여 수행될 수 있다. Application of the perovskite solution can be done through inkjet printing, microcontact printing, imprinting, gravure printing, gravure-offset printing, flexography printing, offset printing, reverse offset printing, slot die coating, bar coating, blade coating, and spray coating. , dip coating, roll coating, etc., but is not limited thereto. As described above, the perovskite compound film can be manufactured using a solution application method of applying a perovskite solution, and further, solvent-non-solvent application by sequentially applying a perovskite solution and a non-solvent. It can be manufactured using this method. These solution application methods and solvent-non-solvent application methods can be performed with reference to the applicant's Korean Patent No. 10-1547877 or 10-1547870.
페로브스카이트 전구체 용액 도포 및 건조 후, 제1물질층을 열처리 하여 페로브스카이트 광흡수층을 형성하는 단계가 더 수행될 수 있다. 열처리 온도는 130℃ 이상, 135℃ 이상, 140℃ 이상, 145℃ 이상 또는 150℃ 이상일 수 있으며, 실질적으로 200℃ 이하일 수 있다. After applying and drying the perovskite precursor solution, a step of forming a perovskite light absorption layer by heat treating the first material layer may be further performed. The heat treatment temperature may be 130°C or higher, 135°C or higher, 140°C or higher, 145°C or higher, or 150°C or higher, and may be substantially 200°C or lower.
정공수송층은 광흡수층 상에 유기 정공수송물질을 함유하는 용액을 도포 및 건조하여 수행될 수 있다. 정공수송층 형성을 위해 사용되는 용매는 유기 정공수송물질이 용해되며, 페로브스카이트 화합물 및 전자수송층의 물질과 화학적으로 반응하지 않는 용매이면 무방하다. 일 예로, 정공수송층 형성을 위해 사용되는 용매는 무극성 용매일 수 있으나, 이에 한정되는 것은 아니다.The hole transport layer may be formed by applying and drying a solution containing an organic hole transport material on the light absorption layer. The solvent used to form the hole transport layer may be any solvent that dissolves the organic hole transport material and does not chemically react with the perovskite compound and the materials of the electron transport layer. For example, the solvent used to form the hole transport layer may be a non-polar solvent, but is not limited thereto.
제1전극 및 제2전극은 물리적 증착(physical vapor deposition) 또는 화학적 증착(chemical vapor deposition) 등의 증착 공정을 통해 형성될 수 있다. The first electrode and the second electrode may be formed through a deposition process such as physical vapor deposition or chemical vapor deposition.
(실시예 1)(Example 1)
불소 함유 산화주석이 코팅된 유리 기판(FTO; F-doped SnO₂, 8 ohms/㎠, Pilkington, 이하 FTO 기판(제1전극))을 25 x 25 ㎜ 크기로 절단한 후, 끝부분을 에칭하여 부분적으로 FTO를 제거하였다.A glass substrate coated with fluorine-containing tin oxide (FTO; F-doped SnO₂, 8 ohms/㎠, Pilkington, hereinafter referred to as FTO substrate (first electrode)) is cut to a size of 25 x 25 mm, and then the end is partially etched. FTO was removed.
FTO 기판은 헬마넥스(Hellmanex) 용액, 탈이온수, 아세톤 및 이소프로필알콜(IPA)에서 각각 10분 동안 초음파 처리하여 세척하였다. CBD 용액(반응 용액)은 탈이온수 50mL당 요소(urea) 625mg, HCl 625μL, 티오글리콜산(TGA) 12.5μL 및 SnCl2·2H2O 137.5mg을 혼합하여 제조하였다. SnO2의 증착을 방지하기 위해 세척된 FTO 기판의 한쪽 가장자리를 캡톤 테이프로 테이핑하였다. 테이핑된 FTO 기판 및 CBD 용액을 유리 반응 용기(Hellendahl staining dish, ~170mL 용기 부피)에 로딩하고 4시간동안 90°C에서 반응시켜 산화주석을 형성하였다.The FTO substrate was cleaned by sonication in Hellmanex solution, deionized water, acetone, and isopropyl alcohol (IPA) for 10 minutes each. CBD solution (reaction solution) was prepared by mixing 625 mg of urea, 625 μL of HCl, 12.5 μL of thioglycolic acid (TGA), and 137.5 mg of SnCl 2 ·2H 2 O per 50 mL of deionized water. To prevent deposition of SnO 2 , one edge of the cleaned FTO substrate was taped with Kapton tape. The taped FTO substrate and CBD solution were loaded into a glass reaction vessel (Hellendahl staining dish, ~170 mL vessel volume) and reacted at 90°C for 4 hours to form tin oxide.
화학적 용액 성장에 의한 산화주석층이 형성된 FTO 기판을 15-30% 상대습도 하 170℃에서 60분 동안 어닐링한 후, 10mM 농도로 KCl이 용해된 탈이온수를 3000rpm으로 30초 동안 스핀 코팅한 후, 다시 100℃에서 10분 동안 열처리하여 전자수송층을 제조하였다. The FTO substrate on which the tin oxide layer was formed by chemical solution growth was annealed at 170°C for 60 minutes at 15-30% relative humidity, and then spin-coated with deionized water containing 10mM KCl dissolved at 3000 rpm for 30 seconds. An electron transport layer was prepared by heat treatment again at 100°C for 10 minutes.
10mg의 피로인산칼륨을 물 1ml에 용해하고 정량하여 용액을 제조하였으며, 이를 전자수송층 상에 도포하고, 3000rpm으로 30초 동안 스핀코팅한 후, 100℃의 온도에서 3분 동안 열처리하여 계면층을 형성하였다.A solution was prepared by dissolving 10 mg of potassium pyrophosphate in 1 ml of water and quantifying it. This was applied on the electron transport layer, spin-coated at 3000 rpm for 30 seconds, and then heat-treated at 100°C for 3 minutes to form an interface layer. did.
제조된 계면층 상에 페로브스카이트 용액을 이용하여 산화주석층 상에 아미디니움계 페로브스카이트 화합물층을 형성하였다. 알려진 바와 같이, 성능 향상을 위해 화학양론비(ABX3 기준 화학양론비) 대비 9mol% 정도 과량의 요오드화납 조성을 갖도록 하고, 중간상을 안정화시키고 페로브스카이트 화합물의 방향성을 향상시키는 염화메틸암모늄(MACl; Methylammonium Chloride)을 첨가제로 사용하였다. 상세하게, 페로브스카이트 용액은 다이메틸포름아미드와 다이메틸 설폭사이드가 8:1(V/V)로 혼합된 혼합액에 1.53M 요오드화납(PbI2), 1.4M 포름아미디늄 아요다이드(FAI; formamidinium iodide) 및 0.5M 염화메틸암모늄(MACl; Methylammonium Chloride)과 함께, 0.0122M(0.8mol%) 메틸암모늄 리드 브로마이드(MAPbBr₃; methylammonium lead bromide)를 혼합하여 제조하였다. 제조된 페로브스카이트 용액을 1000rpm, 10초 이후 5000rpm, 30초의 조건으로 스핀코팅하되, 스핀 코팅시 5000rpm 10 초 시점에서 600 μL의 디에틸에테르가 주입되었다. 페로브스카이트 용액의 스핀 코팅에 의해 페로브스카이트 화합물층을 형성한 후, 100℃의 온도 및 상압 조건에서 1시간 동안 열처리한 후, 이어서 150℃의 온도 및 상압 조건에서 4분간 열처리하여 광흡수층을 형성하였다. An amidinium-based perovskite compound layer was formed on the tin oxide layer using a perovskite solution on the prepared interface layer. As is known, in order to improve performance, the composition of lead iodide is excessive by about 9 mol% compared to the stoichiometric ratio (ABX 3 standard stoichiometric ratio), and methylammonium chloride (MACl) is used to stabilize the intermediate phase and improve the orientation of the perovskite compound. ; Methylammonium Chloride) was used as an additive. In detail, the perovskite solution is a mixture of dimethylformamide and dimethyl sulfoxide in an 8:1 (V/V) ratio, 1.53M lead iodide (PbI 2) , and 1.4M formamidinium aiodide. It was prepared by mixing 0.0122M (0.8 mol%) methylammonium lead bromide (MAPbBr₃; methylammonium lead bromide) with (FAI; formamidinium iodide) and 0.5M methylammonium chloride (MACl; Methylammonium Chloride). The prepared perovskite solution was spin-coated at 1000 rpm for 10 seconds, followed by 5000 rpm for 30 seconds. During spin coating, 600 μL of diethyl ether was injected at 5000 rpm for 10 seconds. After forming a perovskite compound layer by spin coating a perovskite solution, heat treatment was performed at 100°C and normal pressure for 1 hour, followed by heat treatment at 150°C and normal pressure for 4 minutes to form a light absorption layer. was formed.
이후, 광흡수층 상에 50mg의 Spiro-OMeTAD, 19.5μL의 4-tert-뷰틸피리딘(tBP; 4-tert-butylpyridine), 5μL의 Co(III) 트리플루오로메탄설포닐이미드(TFSI; trifluoromethanesulfonyl imide) 용액(아세토니트릴 중 0.25M), 11.5μL의 리튬-트리플루오로메탄설포닐이미드(Li-TFSI) 및 클로로벤젠 547 μL로 이루어진 정공수송층 용액을 준비한 후, 70 μL의 정공수송층 용액을 페로브스카이트 화합물 층 상에 로딩하고 20초 동안 4000 rpm에서 스핀 코팅하여 정공수송층을 형성하였다.Then, 50 mg of Spiro-OMeTAD, 19.5 μL of 4-tert-butylpyridine (tBP; 4-tert-butylpyridine), and 5 μL of Co(III) trifluoromethanesulfonyl imide (TFSI; trifluoromethanesulfonyl imide) were placed on the light absorption layer. ) solution (0.25M in acetonitrile), 11.5 μL of lithium-trifluoromethanesulfonylimide (Li-TFSI), and 547 μL of chlorobenzene. After preparing the hole transport layer solution, 70 μL of the hole transport layer solution was applied. A hole transport layer was formed by loading on the lovskite compound layer and spin coating at 4000 rpm for 20 seconds.
이후, 정공수송층 상에 열 증착(thermal evaporation)을 이용하여 Au를 진공증착하여 100nm의 제2전극을 형성하여 페로브스카이트 태양전지를 제조하였다. Afterwards, Au was vacuum deposited on the hole transport layer using thermal evaporation to form a second electrode of 100 nm, thereby manufacturing a perovskite solar cell.
측정 조건: 제조된 태양전지의 전류-전압 특성을 측정하기 위해, 인공태양장치(ORIEL class A solar simulator, Newport, model 91195A)와 소스-미터(source-meter, Kethley, model 2420)를 사용하였다. 조명은 AM 1.5G로 설정되었고 보정된 실리콘 기준 셀을 사용하여 100mW/cm2로 보정되었다. 스텝 전압은 10mV였고, 지연 시간은 50ms였다. 시간 상관 단일 광자 계수(TCSPC; time correlated single photon counting)의 측정은 Edinburgh Instruments, FL920에 의해 수행되었다. Measurement conditions : To measure the current-voltage characteristics of the manufactured solar cell, an artificial solar device (ORIEL class A solar simulator, Newport, model 91195A) and a source-meter (source-meter, Kethley, model 2420) were used. Illumination was set to AM 1.5G and calibrated to 100 mW/cm 2 using a calibrated silicon reference cell. The step voltage was 10mV and the delay time was 50ms. Measurements of time correlated single photon counting (TCSPC) were performed by Edinburgh Instruments, FL920.
(비교예 1)(Comparative Example 1)
전자수송층 상에 계면층을 형성하지 않는 것을 제외하고, 실시예 1과 동일한 방법으로 계면층을 포함하지 않는 페로브스카이트 태양전지를 제조하였다.A perovskite solar cell containing no interface layer was manufactured in the same manner as Example 1, except that the interface layer was not formed on the electron transport layer.
(비교예 2)(Comparative Example 2)
전자수송층 상에 피로인산염 화합물을 함유하는 용액을 도포하지 않고, 전자수송층 상에 염화칼륨을 물에 용해한 용액을 도포하여 계면층을 형성한 것을 제외하고, 실시예 1과 동일한 방법으로 계면층을 포함하는 페로브스카이트 태양전지를 제조하였다.An interface layer was prepared in the same manner as in Example 1, except that the solution containing the pyrophosphate compound was not applied to the electron transport layer, but a solution of potassium chloride dissolved in water was applied to the electron transport layer to form the interface layer. A perovskite solar cell was manufactured.
(비교예 3)(Comparative Example 3)
실시예 1과 동일한 방법으로 페로브스카이트 태양전지를 제조하되, 전자수송층 상에 계면층을 형성하지 않고, 주석산화물을 함유하는 전자수송층 제조 시, 인산을 첨가하여 페로브스카이트 태양전지를 제조하였다. 구체적으로, 산화주석 전구체 용액(졸)에 7.4at%의 인산을 첨가하여 5000rpm으로 30초간 스핀코팅하고, 100℃에서 10분 동안 건조한 후, 질소 하에서 180°C로 30분간 열처리하여 전자수송층을 형성하였다. 그 후 포름아미디니움 리드 아요다이드(formamidinium lead iodide, FAPbI₃) : 메틸암모늄 리드 브로마이드(methylammonium lead bromide, MAPbBr₃)를 0.85 : 0.15의 몰 비로 스핀코팅하여 광흡수층을 형성하였다. Spiro-OMeTAD를 포함하는 정공수송층 상에 80nm 두께의 은 전극을 증착해 제2전극을 형성하여 피로인산 화합물을 포함하는 페로브스카이트 태양전지를 제조하였다. A perovskite solar cell was manufactured in the same manner as in Example 1, but without forming an interface layer on the electron transport layer, and by adding phosphoric acid when manufacturing the electron transport layer containing tin oxide. did. Specifically, 7.4 at% phosphoric acid was added to the tin oxide precursor solution (sol), spin-coated at 5000 rpm for 30 seconds, dried at 100°C for 10 minutes, and then heat treated at 180°C for 30 minutes under nitrogen to form an electron transport layer. did. Afterwards, formamidinium lead iodide (FAPbI₃) and methylammonium lead bromide (MAPbBr₃) were spin-coated at a molar ratio of 0.85:0.15 to form a light absorption layer. A perovskite solar cell containing a pyrophosphoric acid compound was manufactured by depositing an 80 nm thick silver electrode on the hole transport layer containing Spiro-OMeTAD to form a second electrode.
표 1은 실시예 1과 비교예 1, 비교예 2 및 비교예 3을 통해 제조된 페로브스카이트 태양전지의 개방전압(VOC), 단락전류밀도(JSC), 필 팩터(FF) 및 광전변환효율(PCE)을 정리 도시한 것이다.Table 1 shows the open-circuit voltage (V OC ), short-circuit current density (J SC ), fill factor (FF), and This is a summary of the photoelectric conversion efficiency (PCE).
VOC(V)V OC (V) JSC(mA/cm²)J SC (mA/cm²) FF(%)FF(%) PCE(%)PCE(%)
실시예 1Example 1 1.21.2 24.724.7 80.580.5 23.723.7
비교예 1Comparative Example 1 1.011.01 24.4224.42 6464 15.815.8
비교예 2Comparative Example 2 1.021.02 24.4224.42 7474 18.518.5
비교예 3Comparative Example 3 1.141.14 22.6122.61 76.7176.71 19.7219.72
표 1에서 알 수 있듯이, 비교예 1 및 비교예 2에 비해 실시예 1의 경우, 개방전압, 단락전류밀도, 필 팩터 및 광전변환효율이 모두 현저하게 향상된 것을 확인할 수 있다. 실시예 1의 피로인산칼륨을 포함하는 계면층을 도입함으로써 150℃로 열처리하는 경우에도 페로브스카이트 광흡수층의 열화현상을 방지해주는 효과를 제공할 수 있다. 또한, 열처리 온도가 상승하면서 페로브스카이트층의 결정결함을 완화하여 안정성 및 내구성이 향상된 페로브스카이트 태양전지를 제공하는 것을 알 수 있다. As can be seen in Table 1, it can be seen that the open-circuit voltage, short-circuit current density, fill factor, and photoelectric conversion efficiency of Example 1 are all significantly improved compared to Comparative Examples 1 and 2. By introducing the interface layer containing potassium pyrophosphate of Example 1, it is possible to provide the effect of preventing deterioration of the perovskite light-absorbing layer even when heat-treated at 150°C. In addition, it can be seen that as the heat treatment temperature increases, crystal defects in the perovskite layer are alleviated, providing a perovskite solar cell with improved stability and durability.
계면층이 아닌, 주석산화물 전자수송층에 인산을 도핑한 페로브스카이트 태양전지를 제공하는 비교예 3의 경우, 비교예 1 및 비교예 2 대비 어느 정도 성능이 향상될 수 있으나, 실시예 1의 방법으로 제조한 페로브스카이트 태양전지에 비해 향상 정도가 크지 않음을 알 수 있다. In the case of Comparative Example 3, which provides a perovskite solar cell doped with phosphoric acid in the tin oxide electron transport layer rather than the interface layer, the performance may be improved to some extent compared to Comparative Examples 1 and 2, but the performance of Example 1 It can be seen that the degree of improvement is not significant compared to the perovskite solar cell manufactured using this method.
도 1은 비교예 2의 방법으로 페로브스카이트 제조 시, 제1물질층의 열처리 온도가 100℃인 경우와 150℃인 경우의 전류밀도-전압 그래프를 도시한 도면이다. 제1물질층의 열처리 온도가 100℃일 때는 효율이 감소하지 않아 1.2V의 개방전압을 나타내었지만, 열처리 온도가 150℃일 때는 전자수송층의 결함으로 개방전압이 1V로 감소하며 효율이 저하된 것을 확인할 수 있다.Figure 1 is a diagram showing current density-voltage graphs when the heat treatment temperature of the first material layer is 100°C and 150°C when manufacturing perovskite by the method of Comparative Example 2. When the heat treatment temperature of the first material layer was 100℃, the efficiency did not decrease, showing an open circuit voltage of 1.2V. However, when the heat treatment temperature was 150℃, the open circuit voltage decreased to 1V due to a defect in the electron transport layer, indicating a decrease in efficiency. You can check it.
도 2는 150℃에서 제1물질층의 열처리를 진행하는 경우, 실시예 1, 비교예 1 및 비교예 2에 따라 제조된 페로브스카이트 태양전지의 전류밀도-전압 그래프를 도시한 도면이다. 계면층을 포함하지 않는 경우(비교예 1)와 계면층에 염화칼륨을 포함하는 경우(비교예 2)는 개방전압이 약 1V에 그친 반면, 피로인산칼륨을 계면층에 포함하는 경우(실시예 1)에는 개방전압이 1.2V로 현저하게 성능이 향상된 것을 확인할 수 있다. Figure 2 is a diagram showing a current density-voltage graph of perovskite solar cells manufactured according to Example 1, Comparative Example 1, and Comparative Example 2 when heat treatment of the first material layer is performed at 150°C. In the case where the interface layer is not included (Comparative Example 1) and when potassium chloride is included in the interface layer (Comparative Example 2), the open-circuit voltage is only about 1V, whereas when potassium pyrophosphate is included in the interface layer (Example 1 ), it can be seen that the open-circuit voltage has significantly improved to 1.2V.
도 3은 실시예 1, 비교예 1 및 비교예 2에 따라 제조된 페로브스카이트 태양전지의 개방전압(VOC), 단락전류밀도(JSC), 필 팩터(FF) 및 광전변환효율(PCE)에 대한 특성을 측정하여 상자 수염 그림(중앙선, 평균; 상자 한계, 표준편차; 수염, 이상치)으로 도시한 도면이다. 도 3에서 “Ref”는 비교예 1의 방법으로 제조한 페로브스카이트 태양전지, “KCl“은 비교예 2의 방법으로 제조한 페로브스카이트 태양전지 및 “KPP”는 실시예 1의 방법으로 제조한 페로브스카이트 태양전지를 의미한다. 계면층을 포함하지 않는 경우(비교예 1), 약 1.01V의 개방전압, 약 24.42mA/cm²의 단락전류밀도, 약 64%의 필 팩터 및 약 15.8%의 광전변환효율을 나타냈다. 계면층에 염화칼륨을 포함하는 경우(비교예 2), 약 1.02V의 개방전압, 약 24.42mA/cm²의 단락전류밀도, 약 74%의 필 팩터 및 약 18.5%의 광전변환효율을 나타냈으며, 계면층에 피로인산칼륨을 첨가한 경우(실시예 1), 약 1.2V의 개방전압, 약 24.7mA/cm²의 단락전류밀도, 약 80%의 필 팩터 및 약 23.7%의 광전변환효율을 나타냈다. 피로인산칼륨을 포함하는 계면층을 도입하여 개방전압, 단락전류밀도, 필 팩터 및 광전변환효율을 포함한 모든 방면에서 현저하게 성능이 향상된 것을 알 수 있다. Figure 3 shows the open-circuit voltage (V OC ), short-circuit current density (J SC ), fill factor (FF), and photoelectric conversion efficiency of perovskite solar cells prepared according to Example 1, Comparative Example 1, and Comparative Example 2 ( This is a diagram showing the characteristics of PCE measured as a box and whisker plot (center line, average; box limit, standard deviation; whisker, outlier). In Figure 3, “Ref” is a perovskite solar cell manufactured by the method of Comparative Example 1, “KCl” is a perovskite solar cell manufactured by the method of Comparative Example 2, and “KPP” is a perovskite solar cell manufactured by the method of Example 1. This refers to a perovskite solar cell manufactured by . When the interface layer was not included (Comparative Example 1), the open-circuit voltage was about 1.01V, the short-circuit current density was about 24.42mA/cm², the fill factor was about 64%, and the photoelectric conversion efficiency was about 15.8%. When potassium chloride was included in the interface layer (Comparative Example 2), the open-circuit voltage was about 1.02V, the short-circuit current density was about 24.42mA/cm², the fill factor was about 74%, and the photoelectric conversion efficiency was about 18.5%. When potassium pyrophosphate was added to the layer (Example 1), an open-circuit voltage of about 1.2V, a short-circuit current density of about 24.7mA/cm², a fill factor of about 80%, and a photoelectric conversion efficiency of about 23.7% were achieved. It can be seen that the introduction of an interface layer containing potassium pyrophosphate significantly improved performance in all aspects, including open-circuit voltage, short-circuit current density, fill factor, and photoelectric conversion efficiency.
도 4는 실시예 1, 비교예 1 및 비교예 2에 따라 제조된 페로브스카이트 태양전지의 시간분해 형광분광법 (TCSPC, Time-Correlated Single Photon Counting) 변화를 도시한 그래프이며, 캐리어 수명(carrier lifetime, τ)은 시간분해 형광분광 특성에 기반하여 모노-익스포넨샬 핏(mono-exponential fit)을 통해 산출한 것일 수 있다. 도 4에 도시한 바와 같이, 계면층을 포함하지 않는 경우(비교예 1) 캐리어 수명은 366nsec, 염화칼륨이 첨가된 경우는(비교예 2) 150nsec 및 피로인산칼륨이 첨가된 경우는(실시예 1) 2825nsec으로 계면층에 피로인산칼륨을 포함한 화합물을 도포한 경우 현저하게 상승한 캐리어 수명을 가짐을 알 수 있다. Figure 4 is a graph showing changes in time-correlated single photon counting (TCSPC) of perovskite solar cells manufactured according to Example 1, Comparative Example 1, and Comparative Example 2, and carrier life (carrier life). Lifetime, τ) may be calculated through a mono-exponential fit based on time-resolved fluorescence spectral characteristics. As shown in Figure 4, when the interface layer is not included (Comparative Example 1), the carrier life is 366 nsec, when potassium chloride is added (Comparative Example 2), the carrier life is 150 nsec, and when potassium pyrophosphate is added (Example 1) ) It can be seen that the carrier life is significantly increased when a compound containing potassium pyrophosphate is applied to the interface layer at 2825 nsec.
도 5는 실시예 1에 따라 제조된 페로브스카이트 태양전지의 계면층의 XPS 분석 스펙트럼(파란색 점선)을 도시하였다. 실시예 1의 스펙트럼에서는 비교예 2에 따라 제조된 페로브스카이트 태양전지의 계면층의 XPS 스펙트럼(검정색 점선)에서 검출되지 않은 185 내지 190eV에서 피크가 검출되었다. 이를 통해 인(P)을 포함하는 계면층이 형성된 것을 확인할 수 있다.Figure 5 shows an XPS analysis spectrum (blue dotted line) of the interfacial layer of the perovskite solar cell prepared according to Example 1. In the spectrum of Example 1, a peak was detected at 185 to 190 eV that was not detected in the XPS spectrum (black dotted line) of the interfacial layer of the perovskite solar cell prepared according to Comparative Example 2. Through this, it can be confirmed that an interfacial layer containing phosphorus (P) has been formed.
이상과 같이 본 발명에서는 특정된 사항들과 한정된 실시예 및 도면에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. As described above, the present invention has been described with specific details, limited embodiments, and drawings, but these are provided only to facilitate a more general understanding of the present invention, and the present invention is not limited to the above embodiments, and the present invention Anyone skilled in the art can make various modifications and variations from this description.
따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위 뿐만 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.Accordingly, the spirit of the present invention should not be limited to the described embodiments, and the scope of the patent claims described below as well as all modifications that are equivalent or equivalent to the scope of this patent claim shall fall within the scope of the spirit of the present invention. .

Claims (13)

  1. 주석산화물을 함유하는 전자수송층;An electron transport layer containing tin oxide;
    상기 전자수송층 상에 위치하는 계면층; 및An interface layer located on the electron transport layer; and
    상기 계면층 상에 위치하며, 페로브스카이트 화합물을 함유하는 광흡수층;을 포함하며, It includes a light absorption layer located on the interface layer and containing a perovskite compound,
    상기 계면층은 피로인산염 화합물 또는 이로부터 유래된 잔기를 포함하는 페로브스카이트 태양전지.A perovskite solar cell wherein the interfacial layer includes a pyrophosphate compound or a residue derived therefrom.
  2. 제1항에 있어서,According to paragraph 1,
    상기 피로인산염 화합물은 하기 화학식 1로 표시되는 것인, 페로브스카이트 태양전지.A perovskite solar cell wherein the pyrophosphate compound is represented by the following formula (1).
    [화학식 1][Formula 1]
    P(=O)(OR)₂-O-P(=O)(OR)₂P(=O)(OR)₂-O-P(=O)(OR)₂
    (상기 R은 서로 독립적으로 알칼리 금속 및 수소에서 선택되되, 적어도 하나 이상의 R은 알칼리 금속이다.)(The R is independently selected from alkali metal and hydrogen, but at least one R is an alkali metal.)
  3. 제2항에 있어서,According to paragraph 2,
    상기 피로인산염 화합물은 하기 화학식 2로 표시되는 것인, 페로브스카이트 태양전지.A perovskite solar cell wherein the pyrophosphate compound is represented by the following formula (2).
    [화학식 2][Formula 2]
    P(=O)(OK)₂-O-P(=O)(OK)₂P(=O)(OK)₂-O-P(=O)(OK)₂
  4. 제1항에 있어서,According to paragraph 1,
    상기 계면층의 X선 광전자 분광 분석(XPS) 스펙트럼은 185eV 내지 190eV의 결합에너지에서 검출되는 인(P)의 피크를 포함하는 페로브스카이트 태양전지.A perovskite solar cell in which the X-ray photoelectron spectroscopy (XPS) spectrum of the interface layer includes a phosphorus (P) peak detected at a binding energy of 185 eV to 190 eV.
  5. 제1항에 있어서,According to paragraph 1,
    상기 계면층에서 인(P)의 상대 원소 농도는 0.5 내지 1.2원자%인 페로브스카이트 태양전지.A perovskite solar cell in which the relative element concentration of phosphorus (P) in the interface layer is 0.5 to 1.2 atomic%.
  6. 제1항에 있어서,According to paragraph 1,
    상기 계면층의 두께는 5nm 미만인 페로브스카이트 태양전지.A perovskite solar cell wherein the thickness of the interfacial layer is less than 5 nm.
  7. 제1항에 있어서,According to paragraph 1,
    상기 페로브스카이트 태양전지는 하기 식 1을 만족하는 페로브스카이트 태양전지. The perovskite solar cell is a perovskite solar cell that satisfies the following equation 1.
    [식 1][Equation 1]
    PCE1/PCE0 > 1.4PCE 1 /PCE 0 > 1.4
    (상기 PCE1은 상기 계면층을 포함하는 페로브스카이트 태양전지의 광전변환효율을 의미하며, PCE0는 상기 계면층을 포함하지 않는 페로브스카이트 태양전지의 광전변환효율을 의미한다.)(PCE 1 refers to the photoelectric conversion efficiency of the perovskite solar cell including the interface layer, and PCE 0 refers to the photoelectric conversion efficiency of the perovskite solar cell not including the interface layer.)
  8. 제1항에 있어서,According to paragraph 1,
    시간분해 형광분광법(TCSPC, Time-correlated single photon counting)의 선형 감쇠구간 상, 상기 페로브스카이트 태양전지는 하기 식 2를 만족하는 페로브스카이트 태양전지. On the linear attenuation section of time-resolved fluorescence spectroscopy (TCSPC, Time-correlated single photon counting), the perovskite solar cell satisfies Equation 2 below.
    [식 2][Equation 2]
    τ10 > 7.0τ 10 > 7.0
    (상기 τ1은 상기 계면층을 포함하는 페로브스카이트 태양전지의 캐리어 수명을 의미하며, τ0은 상기 계면층을 포함하지 않는 페로브스카이트 태양전지의 캐리어 수명을 의미한다.)(The τ 1 refers to the carrier life of the perovskite solar cell including the interface layer, and τ 0 refers to the carrier life of the perovskite solar cell not including the interface layer.)
  9. 제1항에 있어서,According to paragraph 1,
    상기 페로브스카이트 화합물은 AMX₃ 조성을 가지며, A는 1가 양이온이고, M은 2가 양이온이고, X는 할라이드 음이온인 페로브스카이트 태양전지.The perovskite compound has an AMX₃ composition, A is a monovalent cation, M is a divalent cation, and X is a halide anion.
  10. 제1항에 있어서,According to paragraph 1,
    상기 광흡수층의 상부에 위치하는 정공수송층;A hole transport layer located on top of the light absorption layer;
    상기 전자수송층의 하부에 연결된 제1전극; 및 a first electrode connected to the lower part of the electron transport layer; and
    상기 정공수송층의 상부에 연결된 제2전극;을 더 포함하는 페로브스카이트 태양전지.A perovskite solar cell further comprising a second electrode connected to the top of the hole transport layer.
  11. 주석산화물을 함유하는 전자수송층 위에 피로인산염 화합물 또는 이로부터 유래한 잔기를 포함하는 계면층을 형성하는 단계;forming an interfacial layer containing a pyrophosphate compound or a residue derived therefrom on an electron transport layer containing tin oxide;
    상기 계면층 위에 페로브스카이트 전구체 용액을 도포 및 건조하여 제1물질층을 형성하는 단계; 및forming a first material layer by applying and drying a perovskite precursor solution on the interface layer; and
    상기 제1물질층을 열처리하여 페로브스카이트 광흡수층을 형성하는 단계;를 포함하는 페로브스카이트 태양전지의 제조방법.A method of manufacturing a perovskite solar cell comprising: heat-treating the first material layer to form a perovskite light absorption layer.
  12. 제11항에 있어서,According to clause 11,
    상기 열처리 시, 온도가 130℃ 이상인 것을 특징으로 하는 페로브스카이트 태양전지의 제조방법.A method of manufacturing a perovskite solar cell, characterized in that the temperature is 130°C or higher during the heat treatment.
  13. 제11항에 있어서,According to clause 11,
    상기 계면층 형성 시, 피로인산염 화합물을 포함하는 용액을 상기 전자수송층 상에 도포하는 단계; 및When forming the interface layer, applying a solution containing a pyrophosphate compound onto the electron transport layer; and
    열처리하는 단계;를 포함하는 페로브스카이트 태양전지의 제조방법.A method of manufacturing a perovskite solar cell comprising the step of heat treatment.
PCT/KR2023/011816 2022-08-18 2023-08-10 Perovskite solar cell comprising interace layer and manufacturing method therefor WO2024039134A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220103425A KR20240025334A (en) 2022-08-18 2022-08-18 A perovskite solar cell including an interfacial layer and the Fabrication Method Thereof
KR10-2022-0103425 2022-08-18

Publications (1)

Publication Number Publication Date
WO2024039134A1 true WO2024039134A1 (en) 2024-02-22

Family

ID=89941828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/011816 WO2024039134A1 (en) 2022-08-18 2023-08-10 Perovskite solar cell comprising interace layer and manufacturing method therefor

Country Status (2)

Country Link
KR (1) KR20240025334A (en)
WO (1) WO2024039134A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101958930B1 (en) * 2017-11-22 2019-03-19 한국과학기술연구원 Monolithic solar cell and fabricating method thereof
KR20190110268A (en) * 2018-03-20 2019-09-30 주식회사 엘지화학 Organic-inorganic complex solar cell
KR20200020435A (en) * 2018-08-17 2020-02-26 국민대학교산학협력단 Perovskite solar cells improved photoelectric conversion efficiency and long-term stability and the method for manufacturing the same
KR102106643B1 (en) * 2019-03-20 2020-05-04 한국전력공사 Method for the fabrication of perovskite solar cell and perovskite solar cell using the same
KR102228799B1 (en) * 2019-10-18 2021-03-18 울산과학기술원 High-efficiency and large area-perovskite solar cells and manufacturing method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101958930B1 (en) * 2017-11-22 2019-03-19 한국과학기술연구원 Monolithic solar cell and fabricating method thereof
KR20190110268A (en) * 2018-03-20 2019-09-30 주식회사 엘지화학 Organic-inorganic complex solar cell
KR20200020435A (en) * 2018-08-17 2020-02-26 국민대학교산학협력단 Perovskite solar cells improved photoelectric conversion efficiency and long-term stability and the method for manufacturing the same
KR102106643B1 (en) * 2019-03-20 2020-05-04 한국전력공사 Method for the fabrication of perovskite solar cell and perovskite solar cell using the same
KR102228799B1 (en) * 2019-10-18 2021-03-18 울산과학기술원 High-efficiency and large area-perovskite solar cells and manufacturing method therefor

Also Published As

Publication number Publication date
KR20240025334A (en) 2024-02-27

Similar Documents

Publication Publication Date Title
KR101962168B1 (en) Method for preparing inorganic/organic hybrid perovskite compound film
Huang et al. Interface engineering of perovskite solar cells with multifunctional polymer interlayer toward improved performance and stability
EP2466664B1 (en) Method for producing a hole blocking layer and method for manufacturing a photoelectric conversion element comprising the hole blocking layer
US11373813B2 (en) Perovskite solar cell with wide band-gap and fabrication method thereof
KR101810155B1 (en) Preparation method of perovskite compound-based film with high efficiency and solar cell comprising same
Jhuo et al. Inverted perovskite solar cells with inserted cross-linked electron-blocking interlayers for performance enhancement
Jeong et al. A fluorinated polythiophene hole-transport material for efficient and stable perovskite solar cells
WO2017090861A1 (en) Perovskite, method for producing same, and solar battery comprising same
KR102472294B1 (en) Inorganic-organic Perovskite Compound Having Improved Stability
KR101609588B1 (en) Coating composition for manufacturing photoactive layer and method for manufacturing solar cell usng the same
KR101863866B1 (en) Perovskite solar cell with excellent photo-stability, and method of manufacturing the same
KR20180101827A (en) Polymer and organic solar cell comprising the same
WO2024039134A1 (en) Perovskite solar cell comprising interace layer and manufacturing method therefor
KR101991665B1 (en) Assembled Structure for Perovskite Solar Cell, Perovskite Solar Cell Having Improved Photo-stability and the Fabrication Method thereof
KR102092272B1 (en) Electron Transport Body, Perovskite Solar Cell including the Same, and the Fabrication Method Thereof
WO2022045847A1 (en) Wide-bandgap perovskite light absorption layer
KR102404027B1 (en) Perovskite Compound Having Improved Stability
WO2022010326A1 (en) Organic hole transport material doped with acid-base by-product, and optical device using same
WO2023058979A1 (en) Hole transport material including ptaa and pif8, and optical device using same
KR102119406B1 (en) Perovskite Compound Solution
WO2023171916A1 (en) Perovskite solar cell and manufacturing method therefor
WO2022019618A1 (en) Optical element having protective layer
KR20230138732A (en) Fabrication method of Perovskite thin film, Device comprising Perovskite thin film fabricated thereby and Manufacturing method of Solar cell using the same
KR20220115545A (en) Electron Transport Layer, Perovskite Solar Cell including the Same and the Fabrication Method Thereof
Girish et al. Materials Today Sustainability

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23855101

Country of ref document: EP

Kind code of ref document: A1