WO2022124251A1 - Battery cooling device - Google Patents

Battery cooling device Download PDF

Info

Publication number
WO2022124251A1
WO2022124251A1 PCT/JP2021/044644 JP2021044644W WO2022124251A1 WO 2022124251 A1 WO2022124251 A1 WO 2022124251A1 JP 2021044644 W JP2021044644 W JP 2021044644W WO 2022124251 A1 WO2022124251 A1 WO 2022124251A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
tubes
battery
refrigerant
cooling device
Prior art date
Application number
PCT/JP2021/044644
Other languages
French (fr)
Japanese (ja)
Inventor
鳴笛 王
禹 王
明彦 高野
Original Assignee
株式会社ヴァレオジャパン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ヴァレオジャパン filed Critical 株式会社ヴァレオジャパン
Publication of WO2022124251A1 publication Critical patent/WO2022124251A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6569Fluids undergoing a liquid-gas phase change or transition, e.g. evaporation or condensation

Definitions

  • the present invention relates to a battery cooling device that cools a battery that becomes hot during operation.
  • Vehicles that use a motor as a drive source are generally known. Such a vehicle is equipped with a battery that stores and discharges electric power for operating a motor, and a battery cooling device for cooling the battery. As a battery cooling device that cools a battery using a refrigerant, there is a technique disclosed in Patent Document 1.
  • the cooling device disclosed in Patent Document 1 can branch a flow path by arranging a branch portion in the flow path through which the refrigerant flows, and allow the refrigerant to flow through a plurality of heat exchangers.
  • the refrigerant in a gas-liquid mixed state is branched so that the same cooling capacity is always exhibited due to the inclination of the vehicle due to changes in the road surface condition and the influence of acceleration due to the start and stop of the vehicle. It is difficult to make them. That is, it is difficult to branch the refrigerant in the gas-liquid mixed state so as to always exhibit the same cooling capacity not only in the vehicle but also in the battery cooling device whose usage conditions can change constantly. If the flow rate of the refrigerant is biased, the cooling capacity may be biased in the cooled portion of the battery.
  • An object of the present invention is to provide a battery cooling device capable of cooling the entire battery more uniformly.
  • a battery capable of flowing a refrigerant inside a plurality of tubes (25A to 25D) having the same length arranged in parallel with each other and cooling the battery (Ba) by heat exchange with the refrigerant.
  • the cooling device (20; 20A; 20B) Upstream of the tube (25A to 25D) with reference to the flow of the refrigerant, an expansion portion (21) that decompresses and expands the refrigerant into a gas-liquid mixed state, and the expansion portion (21) that decompresses and expands the refrigerant.
  • a branch portion (22) for branching the flow path (30) of the refrigerant is provided.
  • the flow path (30) is branched into two flow paths, a first flow path (31) and a second flow path (32). Downstream of the first flow path (31) and the second flow path (32), a merging portion (26) that joins the first flow path (31) and the second flow path (32) is provided.
  • the first flow path (31) is located at the upstream portion (31a) of the first flow path in which the refrigerant flows from one end side to the other end side of the tube, and downstream of the upstream portion (31a) of the first flow path.
  • the tube (25A to 25D) includes a first flow path downstream portion (31c) through which the refrigerant flows from the other end side toward one end side.
  • the second flow path (32) includes an upstream portion (32a) of the second flow path in which the refrigerant flows from one end side to the other end side of the tube (25A to 25D) and an upstream portion of the second flow path (32a).
  • 32a including a second flow path downstream portion (32c) in which the refrigerant flows from the other end side to one end side of the tube (25A to 25D).
  • the first flow path upstream portion (31a) and the second flow path downstream portion (32c) are arranged adjacent to each other.
  • a battery cooling device is provided in which the downstream portion (31c) of the first flow path and the upstream portion (32a) of the second flow path are arranged adjacent to each other.
  • FIG. 1 It is a schematic diagram of the cooling circuit in which the battery cooling device according to Example 1 is used.
  • 2A is a diagram for explaining the operation of the battery cooling device according to the comparative example
  • 2B is a diagram for explaining the operation of the battery cooling device according to the embodiment. It is a figure explaining the cooling apparatus by Example 2.
  • FIG. It is a figure explaining the cooling apparatus by Example 3.
  • the battery cooling device 20 (hereinafter referred to as “cooling device 20”) is mounted on a vehicle whose drive source is a motor, and cools a battery Ba that stores and discharges electric power for operating the motor.
  • Each battery Ba is composed of a plurality of battery cells.
  • the refrigeration cycle 10 includes a compressor 12 that compresses and sends the refrigerant on the flow path 30 in which the refrigerant flows, a condenser 13 that cools the high-temperature and high-pressure refrigerant that has passed through the compressor 12, and the condenser 13.
  • a cooling device 20 that cools the battery after decompressing the cooled high-pressure refrigerant into a low-temperature low-pressure refrigerant, and an accumulator 16 that separates gas and liquid through the heat-exchanged refrigerant in the cooling device 20. Is arranged.
  • the condenser 13 is provided with a fan 13a in the vicinity so that air can pass through.
  • the refrigeration cycle 10 can share a part of the vehicle air conditioner.
  • the excess refrigerant in the flow path 30 is stored between the condenser 13 and the cooling device 20, and the refrigerant flowing out of the condenser 13 is separated into a gaseous component and a liquid component to separate the liquid refrigerant.
  • a liquid tank for draining can also be provided.
  • a liquid tank may be provided in place of the accumulator 16.
  • the cooling device 20 has an expansion unit 21 that reduces the pressure of the refrigerant sent from the condenser 13 to a low temperature and a low pressure, a branch portion 22 that branches the refrigerant that has passed through the expansion unit 21 into two flow paths 31 and 32, and this branch.
  • first flow path 31 one flow path branched at the branch portion 22 is referred to as a first flow path 31, and the other flow path is referred to as a second flow path 32.
  • second flow path 32 the other flow path is referred to as a second flow path 32.
  • the four tubes 25A to 25D form a part of the first flow path 31 or the second flow path 32, respectively.
  • any two of these flow paths may be designated as the first flow path 31 and the second flow path 32. can.
  • the branching portion 22 is decompressed by the expanding portion 21 and the refrigerant in the gas-liquid mixed state flows in, and the refrigerant is distributed to each flow path.
  • a well-known configuration is adopted so that the refrigerant is distributed as evenly as possible to each flow path connected to the downstream side of the branch portion 22.
  • the first flow path 31 has a first flow path upstream portion 31a extending from the branch portion 22 through one end of the tube 25A (the end on the side closer to the branch portion 22) to the other end of the tube 25A, and the other end of the tube 25A. It is composed of a first flow path folded portion 31b extending from the other end of the tube 25C to the other end of the tube 25C, and a first flow path downstream portion 31c extending from the other end of the tube 25C to the merging portion 26.
  • the second flow path 32 has a second flow path upstream portion 32a extending from the branch portion 22 through one end of the tube 25D (the end on the side closer to the branch portion 22) to the other end of the tube 25D, and the other end of the tube 25D. It is composed of a second flow path folded portion 32b extending from the other end of the tube 25B to the other end of the tube 25B, and a second flow path downstream portion 32c extending from the other end of the tube 25B to the merging portion 26.
  • the first flow path upstream portion 31a (tube 25A), the second flow path downstream portion 32c (tube 25B), the first flow path downstream portion 31c (tube 25C), and the second flow path upstream portion 32a (tube 25D) are batteries. They are arranged adjacent to Ba and Ba in this order.
  • the first flow path upstream portion 31a and the second flow path downstream portion 32c are arranged adjacent to each other, and the first flow path downstream portion 31c and the second flow path upstream portion 32a are arranged adjacent to each other. It can also be said that it has been done.
  • the second flow path downstream portion 32c (tube 25B), the first flow path upstream portion 31a (tube 25A), the second flow path upstream portion 32a (tube 25D), and the first flow path with respect to the batteries Ba and Ba. It may be arranged adjacent to each other in the order of the downstream portion 31c (tube 25C).
  • Aluminum alloy or aluminum is used as the material for the tubes 25A to 25D, respectively, and a flow path through which the refrigerant can pass is formed inside. Further, the tubes 25A to 25D are arranged in parallel with each other and formed to have the same length, and are provided so as to be heat exchangeable with the battery Ba.
  • the cross-sectional shape of the tubes 25A to 25D is not particularly specified, such as a circle, an ellipse, a square, or a rectangle, but a flat shape is preferable.
  • the surface area with respect to the cross-sectional area of the flow path can be increased, and the efficiency of heat exchange can be improved.
  • the merging portion 26 is provided downstream of the first flow path 31 and the second flow path 32.
  • the refrigerant flowing through the first flow path 31 and the refrigerant flowing through the second flow path 32 merge at the merging portion 26.
  • FIG. 2A shows a main part of the cooling device 120 according to a comparative example.
  • the first flow path upstream portion 131a and the first flow path downstream portion 131c are adjacent to each other, and the second flow path upstream portion 132a and the second flow path downstream portion 132c are adjacent to each other.
  • One battery Ba (battery Ba on the right side of the figure) is provided on the upper surfaces of the tubes 25A and 25B, and the other battery Ba (battery Ba on the left side of the figure) is provided on the upper surfaces of the tubes 25C and 25D.
  • One battery Ba is cooled only by the refrigerant flowing through the first flow path 131, and the other battery Ba is cooled only by the refrigerant flowing through the second flow path 132.
  • the cooling device 120 inevitably has a dimensional error for each product.
  • the first flow path 131 and the second flow path 132 always exhibit the same cooling capacity due to the inclination of the vehicle due to changes in the road surface condition, the influence of acceleration due to the start and stop of the vehicle, and the like.
  • FIG. 2B shows a main part of the cooling device 20 according to the embodiment.
  • the first flow path upstream portion 31a and the second flow path downstream portion 32c are arranged adjacent to each other, and the first flow path downstream portion 31c and the second flow path upstream portion 32a are arranged adjacent to each other.
  • the first flow path 31 and the second flow path 32 which may have different cooling capacities, are adjacent to each other, and the directions of the refrigerants flowing in the adjacent flow paths are reversed. Further, the refrigerant flowing through the upstream portion 31a of the first flow path reaches the other end side of the tube 25A while cooling the battery Ba, and flows to the downstream portion 31c of the first flow path via the folded portion 31b of the first flow path.
  • the enthalpy gradually increases and the cooling capacity decreases, so that the upstream portion 31a of the first flow path is a battery rather than the downstream portion 31c of the first flow path. Ba can be cooled.
  • the second flow path upstream portion 32a and the second flow path downstream portion 32c can cool the battery Ba more than the second flow path downstream portion 32c. That is, the first flow path 31 and the second flow path 32 having different cooling capacities are adjacent to each other, and the upstream portion of one of the flow paths having a relatively high cooling capacity (for example, the upstream portion 31a of the first flow path) is relative to each other.
  • a mode in which the directions of the refrigerants are reversed and adjacent to each other is sometimes called a counterflow.
  • first flow path upstream portion 31a, the second flow path downstream portion 32c, the first flow path downstream portion 31c, and the second flow path upstream portion 32a are arranged adjacent to the battery Ba in this order. .. That is, the first flow path 31 and the second flow path 32 are alternately arranged with respect to the battery Ba.
  • the flow path length of the entire first flow path 31 including the parts other than the tubes 25A to 25D extending from the branch portion 22 to the confluence portion 26 can be made closer to the flow path length of the entire second flow path 32. It is possible to reduce the difference in cooling capacity between the first flow path 31 and the second flow path 32. As a result, the entire battery Ba can be further cooled more uniformly. Even when the second flow path downstream portion 32c, the first flow path upstream portion 31a, the second flow path upstream portion 32a, and the first flow path downstream portion 31c are arranged adjacent to the battery Ba in this order. The same is true.
  • both ends of the tubes 25A to 25D are supported by header pipes 41A and 42A, respectively.
  • the battery Ba is composed of a long battery cell arranged across all the tubes 25A to 25D and a short battery cell arranged across the tubes 25A, 25B or the tubes 25C, 25D.
  • the insides of the header pipes 41A and 42A are each divided into four regions by the partition member S.
  • the first flow path upstream portion 31a is branched into two tubes 25A and 25A.
  • the refrigerant that has passed through the tubes 25A and 25A joins in the other first section 42A1 that is a part of the other header pipe 42A.
  • the refrigerant flowing out of the other section 42A1 and passing through the first flow path folding portion 31b is branched in the other third section 42A3, which is a part of the other header pipe 42A, and flows through the tubes 25C and 25C.
  • the refrigerant that has passed through the tubes 25C and 25C joins in the third section 41A3 while being a part of one header pipe 41A.
  • the second flow path upstream portion 32a is branched into two tubes 25D and 25D.
  • the refrigerants that have passed through the tubes 25D and 25D merge in the other fourth section 42A4, which is a part of the other header pipe 42A.
  • the refrigerant flowing out of the other fourth section 42A4 and passing through the second flow path folded portion 32b is branched in the other second section 42A2, which is a part of the other header pipe 42A, and flows through the tubes 25B and 25B.
  • the refrigerant that has passed through the tubes 25B and 25B joins in the second section 41A2 while being a part of one header pipe 41A.
  • the first flow path upstream portion 31a includes two tubes 25A and 25A arranged in parallel, respectively.
  • the first flow path downstream portion 31c, the second flow path upstream portion 32a, and the second flow path downstream portion 32c also include two tubes 25B to 25D arranged in parallel.
  • the first flow path upstream portion 31a and the second flow path downstream portion 32c are arranged adjacent to each other, and the first flow path downstream portion is downstream.
  • the portion 31c and the second flow path upstream portion 32a are arranged adjacent to each other.
  • first flow path upstream portion 31a, the second flow path downstream portion 32c, the first flow path downstream portion 31c, and the second flow path upstream portion 32a are arranged adjacent to the battery Ba in this order. ..
  • the second flow path downstream portion 32c, the first flow path upstream portion 31a, the second flow path upstream portion 32a, and the first flow path downstream portion 31c are arranged adjacent to the battery Ba in this order. Is also good.
  • the cooling device 20A described above also has the predetermined effect of the present invention.
  • the cooling device 20B according to the third embodiment has a different arrangement of the tubes 25A to 25D from the cooling device 20A used for the cooling device 20A according to the second embodiment (see FIG. 3). Further, the inside of the header pipe 41B is divided into five regions by a partition member S arranged in a portion different from the header pipe 41A of the cooling device 20A. The inside of the header pipe 42B is divided into eight regions by a partition member S arranged so as to further partition the four regions provided in the header pipe 42A of the cooling device 20A. Further, the battery Ba is composed of only long battery cells arranged across all the tubes 25A to 25D.
  • Example 2 Other basic configurations are the same as the cooling device according to Example 1 and / or Example 2.
  • the reference numerals are used and detailed description thereof will be omitted.
  • the first flow path upstream portion 31a is branched into two tubes 25A and 25A.
  • the refrigerant that has passed through the tubes 25A and 25A does not merge in the other header pipe 42B, and is the first flow from the other second section 42B2 that is a part of the other header pipe 42B and the other third section 42B3 that is adjacent thereto. It flows to the road turn-back portions 31b and 31b.
  • the refrigerant flows through the tubes 25C and 25C from the first flow path folded portions 31b and 31b, respectively.
  • the tubes 25C and 25C can be arranged separately from each other. Thereby, the tubes 25C and 25C can be arranged so as to sandwich the tubes 25D and 25D.
  • the refrigerant flowing through the one tube 25C flows into the third section 41B3 while being a part of the one header pipe 41B.
  • the refrigerant flowing through the other tube 25C flows into the fifth section 41B5 while being a part of the one header pipe 41B.
  • the refrigerants that have passed through the third section 41B3 and the fifth section 41B5 merge at the merging section 26.
  • the second flow path upstream portion 32a is branched into two tubes 25D and 25D.
  • the refrigerant that has passed through the tubes 25D and 25D does not merge in the other header pipe 42B, and is a second stream from the other sixth section 42B6 that is a part of the other header pipe 42B and the other seventh section 42B7 that is adjacent thereto. It flows to the road turn-back portions 32b and 32b.
  • the refrigerant flows through the tubes 25B and 25B from the second flow path folded portions 32b and 32b, respectively.
  • the tubes 25B and 25B can be arranged apart from each other. Thereby, the tubes 25C and 25C can be arranged so as to sandwich the tubes 25A and 25A.
  • the two tubes 25A and 25A constituting the first flow path upstream portion 31a are sandwiched between the two tubes 25B and 25B constituting the second flow path downstream portion 32c, and also constitute the second flow path upstream portion 32a.
  • the two tubes 25D and 25D are sandwiched between the two tubes 25C and 25C constituting the first flow path downstream portion 31c.
  • a part of the first flow path downstream portion 31c and a part of the second flow path downstream part 32c may be merged.
  • the refrigerant flowing through the one tube 25B flows into the first section 41B1 which is a part of the one header pipe 41B.
  • the refrigerant flowing through the other tube 25B flows into the third section 41B3 while being a part of the one header pipe 41B.
  • the refrigerants that have passed through the first section 41B1 and the third section 41B3 merge at the merging section 26.
  • the cooling device described above also has the predetermined effect of the present invention.
  • the two tubes 25A and 25A constituting the upstream portion 31a of the first flow path are sandwiched by the two tubes 25B and 25B constituting the downstream portion 32c of the second flow path, and the upstream portion of the second flow path.
  • the two tubes 25D and 25D constituting the 32a are sandwiched between the two tubes 25C and 25C constituting the first flow path downstream portion 31c.
  • the longitudinal direction of the cells of the substantially rectangular battery Ba can be arranged along the longitudinal direction of the tube 25, and many cells can be cooled without uneven temperature.
  • the battery cell may be arranged so as to be orthogonal to the longitudinal direction of the tube 25 with respect to the tube 25. According to the configuration of the third embodiment, the degree of freedom in the arrangement direction of the battery cells can be increased, which is preferable.
  • the two tubes 25A and 25A constituting the upstream portion 31a of the first flow path and the two tubes 25D and 25D constituting the upstream portion 32a of the second flow path each constitute the downstream portion 32c of the second flow path. It is sandwiched between the two tubes 25B and 25B and the tubes 25C and 25C constituting the first flow path downstream portion 31c. Therefore, the first flow path downstream portion 31c and the second flow path downstream portion 32c, which have relatively low cooling capacity, can be arranged at both ends. Both ends of the battery Ba are easily in contact with the outside air and are relatively easy to cool. By arranging the first flow path upstream portion 31a and the second flow path upstream portion 32a having a relatively high cooling capacity in a portion where heat is likely to be trapped, the battery Ba can be efficiently cooled.
  • the cooling device according to the present invention is not limited to the one mounted on the vehicle.
  • the cooling device can be used as long as it is equipped with a battery such as a vehicle other than a vehicle or a construction machine.
  • the battery Ba can be equipped with various types of batteries.
  • the battery Ba shown in FIGS. 3 and 4 can be cooled by the cooling device of FIG.
  • the present invention is not limited to the examples as long as the actions and effects of the present invention are exhibited.
  • the cooling device of the present invention is suitable for mounting on a vehicle whose drive source is a motor.

Abstract

[Problem] To provide a battery cooling device that can cool an entire battery more evenly. [Solution] A flow channel (30) of a battery cooling device (20) is divided into a first flow channel (31) and a second flow channel (32) at a branch part (22). The first flow channel (31) includes: a first flow channel upstream section (31a) in which a coolant flows from one end side to the other end side of tubes (25A-25D); and a first flow channel downstream section (31c) which is located downstream of the first flow channel upstream section (31a) and in which the coolant flows from the other end side to the one end side of the tubes (25A-25D). Similarly, the second flow channel (32) includes a second flow channel upstream section (32a) and a second flow channel downstream section (32c). The first flow channel upstream section (31a) and the second flow channel downstream section (32c) are disposed adjacent to each other. The first flow channel downstream section (31c) and the second flow channel upstream section (32a) are disposed adjacent to each other.

Description

バッテリ冷却装置Battery cooling device
 本発明は、作動中に高温となるバッテリを冷却するバッテリ冷却装置に関する。 The present invention relates to a battery cooling device that cools a battery that becomes hot during operation.
 モータを駆動源とする車両が一般に知られている。このような車両には、モータを作動させるための電力を蓄電及び放電するバッテリと、バッテリを冷却するためのバッテリ冷却装置が搭載されている。冷媒を用いてバッテリを冷却するバッテリ冷却装置として、特許文献1に開示される技術がある。 Vehicles that use a motor as a drive source are generally known. Such a vehicle is equipped with a battery that stores and discharges electric power for operating a motor, and a battery cooling device for cooling the battery. As a battery cooling device that cools a battery using a refrigerant, there is a technique disclosed in Patent Document 1.
 特許文献1に開示された冷却装置は、冷媒の流れる流路中に分岐部を配置することにより流路を分岐し、複数の熱交換器に冷媒を流すことができる。 The cooling device disclosed in Patent Document 1 can branch a flow path by arranging a branch portion in the flow path through which the refrigerant flows, and allow the refrigerant to flow through a plurality of heat exchangers.
特開2015-096416号公報JP-A-2015-09614
 例えば、バッテリ冷却装置を車両に用いた場合、路面状況の変化による車両の傾斜、車両の発進や停止による加速度の影響等から、常に同じ冷房能力を発揮するように気液混合状態の冷媒を分岐させることは困難である。つまり、車両に限らず、使用条件が常に変化し得るバッテリ冷却装置において、常に同じ冷房能力を発揮するように気液混合状態の冷媒を分岐させることは困難である。冷媒の流量に偏りがあると、バッテリの冷却される部位に冷却能力の偏りが生じる虞がある。 For example, when a battery cooling device is used in a vehicle, the refrigerant in a gas-liquid mixed state is branched so that the same cooling capacity is always exhibited due to the inclination of the vehicle due to changes in the road surface condition and the influence of acceleration due to the start and stop of the vehicle. It is difficult to make them. That is, it is difficult to branch the refrigerant in the gas-liquid mixed state so as to always exhibit the same cooling capacity not only in the vehicle but also in the battery cooling device whose usage conditions can change constantly. If the flow rate of the refrigerant is biased, the cooling capacity may be biased in the cooled portion of the battery.
 バッテリの全体をより均一に冷却することができるバッテリ冷却装置の提供が望まれる。 It is desired to provide a battery cooling device that can cool the entire battery more uniformly.
 本発明は、バッテリの全体をより均一に冷却することができるバッテリ冷却装置の提供を課題とする。 An object of the present invention is to provide a battery cooling device capable of cooling the entire battery more uniformly.
 以下の説明では、本発明の理解を容易にするために添付図面中の参照符号を括弧書きで付記するが、それによって本発明は図示の形態に限定されるものではない。 In the following description, reference numerals in the accompanying drawings are added in parentheses to facilitate understanding of the present invention, but the present invention is not limited to the illustrated form.
 本発明によれば、互いに並行に配置された長さの等しい複数のチューブ(25A~25D)の内部に冷媒を流し、前記冷媒との熱交換によってバッテリ(Ba)を冷却することが可能なバッテリ冷却装置(20;20A;20B)において、
 前記冷媒の流れを基準として、前記チューブ(25A~25D)の上流には、前記冷媒を気液混合状態に減圧膨張する膨張部(21)と、この膨張部(21)において減圧膨張された前記冷媒の流路(30)を分岐する分岐部(22)と、が設けられ、
 前記分岐部(22)において前記流路(30)は、第1流路(31)と第2流路(32)の2つの流路に分岐され、
 前記第1流路(31)と前記第2流路(32)の下流には、前記第1流路(31)と前記第2流路(32)を合流する合流部(26)が設けられ、
 前記第1流路(31)は、前記チューブの一端側から他端側に向かって前記冷媒が流れる第1流路上流部(31a)と、この第1流路上流部(31a)の下流であって前記チューブ(25A~25D)の他端側から一端側に向かって前記冷媒が流れる第1流路下流部(31c)と、を含み、
 前記第2流路(32)は、前記チューブ(25A~25D)の一端側から他端側に向かって前記冷媒が流れる第2流路上流部(32a)と、この第2流路上流部(32a)の下流であって前記チューブ(25A~25D)の他端側から一端側に向かって前記冷媒が流れる第2流路下流部(32c)と、を含み、
 前記第1流路上流部(31a)と、前記第2流路下流部(32c)とは、互いに隣接して配置され、
 前記第1流路下流部(31c)と、前記第2流路上流部(32a)とは、互いに隣接して配置されている、バッテリ冷却装置が提供される。
According to the present invention, a battery capable of flowing a refrigerant inside a plurality of tubes (25A to 25D) having the same length arranged in parallel with each other and cooling the battery (Ba) by heat exchange with the refrigerant. In the cooling device (20; 20A; 20B)
Upstream of the tube (25A to 25D) with reference to the flow of the refrigerant, an expansion portion (21) that decompresses and expands the refrigerant into a gas-liquid mixed state, and the expansion portion (21) that decompresses and expands the refrigerant. A branch portion (22) for branching the flow path (30) of the refrigerant is provided.
In the branch portion (22), the flow path (30) is branched into two flow paths, a first flow path (31) and a second flow path (32).
Downstream of the first flow path (31) and the second flow path (32), a merging portion (26) that joins the first flow path (31) and the second flow path (32) is provided. ,
The first flow path (31) is located at the upstream portion (31a) of the first flow path in which the refrigerant flows from one end side to the other end side of the tube, and downstream of the upstream portion (31a) of the first flow path. The tube (25A to 25D) includes a first flow path downstream portion (31c) through which the refrigerant flows from the other end side toward one end side.
The second flow path (32) includes an upstream portion (32a) of the second flow path in which the refrigerant flows from one end side to the other end side of the tube (25A to 25D) and an upstream portion of the second flow path (32a). 32a), including a second flow path downstream portion (32c) in which the refrigerant flows from the other end side to one end side of the tube (25A to 25D).
The first flow path upstream portion (31a) and the second flow path downstream portion (32c) are arranged adjacent to each other.
A battery cooling device is provided in which the downstream portion (31c) of the first flow path and the upstream portion (32a) of the second flow path are arranged adjacent to each other.
 本発明では、バッテリの全体をより均一に冷却することができるバッテリ冷却装置を提供することができる。 In the present invention, it is possible to provide a battery cooling device capable of cooling the entire battery more uniformly.
実施例1によるバッテリ冷却装置が用いられる冷却回路の模式図である。It is a schematic diagram of the cooling circuit in which the battery cooling device according to Example 1 is used. 2Aは、比較例によるバッテリ冷却装置の作用を説明する図、2Bは、実施例によるバッテリ冷却装置の作用を説明する図である。2A is a diagram for explaining the operation of the battery cooling device according to the comparative example, and 2B is a diagram for explaining the operation of the battery cooling device according to the embodiment. 実施例2による冷却装置を説明する図である。It is a figure explaining the cooling apparatus by Example 2. FIG. 実施例3による冷却装置を説明する図である。It is a figure explaining the cooling apparatus by Example 3. FIG.
 本発明の実施の形態を添付図に基づいて以下に説明する。 An embodiment of the present invention will be described below with reference to the attached figure.
<実施例1>
 図1を参照する。バッテリ冷却装置20(以下、「冷却装置20」という。)は、例えば、モータを駆動源とする車両に搭載され、モータを作動させるための電力を蓄電及び放電するバッテリBaを冷却する。バッテリBaは、それぞれ複数のバッテリセルによって構成されている。
<Example 1>
See FIG. The battery cooling device 20 (hereinafter referred to as “cooling device 20”) is mounted on a vehicle whose drive source is a motor, and cools a battery Ba that stores and discharges electric power for operating the motor. Each battery Ba is composed of a plurality of battery cells.
 冷凍サイクル10は、内部に冷媒の流れる流路30上に、冷媒を圧縮すると共に送る圧縮機12と、この圧縮機12を通過した高温高圧の冷媒を冷却する凝縮器13と、この凝縮器13において冷却された高圧の冷媒を減圧し低温低圧の冷媒にした上でバッテリを冷却する冷却装置20と、冷却装置20において熱交換された冷媒が通過し気体と液体とを分離するアキュムレータ16と、が配置されてなる。 The refrigeration cycle 10 includes a compressor 12 that compresses and sends the refrigerant on the flow path 30 in which the refrigerant flows, a condenser 13 that cools the high-temperature and high-pressure refrigerant that has passed through the compressor 12, and the condenser 13. A cooling device 20 that cools the battery after decompressing the cooled high-pressure refrigerant into a low-temperature low-pressure refrigerant, and an accumulator 16 that separates gas and liquid through the heat-exchanged refrigerant in the cooling device 20. Is arranged.
 凝縮器13は、近傍にファン13aが設けられ、空気の通過が可能とされている。 The condenser 13 is provided with a fan 13a in the vicinity so that air can pass through.
 なお、冷凍サイクル10は、車両用空調装置の一部を共用することができる。 The refrigeration cycle 10 can share a part of the vehicle air conditioner.
 また、凝縮器13と冷却装置20との間には、流路30内の余剰冷媒を貯留するとともに、凝縮器13から流出した冷媒を気体状成分と液状成分とに分離し、液状の冷媒を流出させるリキッドタンクを設けることもできる。アキュムレータ16に代えて、リキッドタンクが設けられる場合もある。 Further, the excess refrigerant in the flow path 30 is stored between the condenser 13 and the cooling device 20, and the refrigerant flowing out of the condenser 13 is separated into a gaseous component and a liquid component to separate the liquid refrigerant. A liquid tank for draining can also be provided. A liquid tank may be provided in place of the accumulator 16.
 冷却装置20は、凝縮器13から送られる冷媒を減圧し低温低圧にする膨張部21と、この膨張部21を通過した冷媒を2つの流路31、32に分岐させる分岐部22と、この分岐部22において分岐された2つの流路31、32上に配置されバッテリBaに熱的に結合されている4本のチューブ25A~25D(A~Dは、4つのチューブ25を区別するための添え字。以下同じ。)と、これらのチューブ25A~25Dを通過した冷媒が合流する合流部26と、を有している。 The cooling device 20 has an expansion unit 21 that reduces the pressure of the refrigerant sent from the condenser 13 to a low temperature and a low pressure, a branch portion 22 that branches the refrigerant that has passed through the expansion unit 21 into two flow paths 31 and 32, and this branch. Four tubes 25A to 25D arranged on the two flow paths 31 and 32 branched in the portion 22 and thermally coupled to the battery Ba (A to D are appendices for distinguishing the four tubes 25). It has a character (the same applies hereinafter) and a confluence portion 26 in which the refrigerants that have passed through these tubes 25A to 25D merge.
 以下、分岐部22において分岐される一方の流路を第1流路31、他方の流路を第2流路32という。4本のチューブ25A~25Dは、それぞれ第1流路31又は第2流路32の一部を構成する。 Hereinafter, one flow path branched at the branch portion 22 is referred to as a first flow path 31, and the other flow path is referred to as a second flow path 32. The four tubes 25A to 25D form a part of the first flow path 31 or the second flow path 32, respectively.
 なお、分岐部22において流路30が3つ以上の流路に分岐される場合には、これらのうちの任意の2つの流路を第1流路31及び第2流路32とすることができる。 When the flow path 30 is branched into three or more flow paths in the branch portion 22, any two of these flow paths may be designated as the first flow path 31 and the second flow path 32. can.
 分岐部22は、膨張部21により減圧され気液混合状態となった冷媒が流入し、各流路に冷媒を分配する。分岐部22の下流側に接続された各流路になるべく冷媒が均等に分配されるよう、周知の構成が採用される。 The branching portion 22 is decompressed by the expanding portion 21 and the refrigerant in the gas-liquid mixed state flows in, and the refrigerant is distributed to each flow path. A well-known configuration is adopted so that the refrigerant is distributed as evenly as possible to each flow path connected to the downstream side of the branch portion 22.
 第1流路31は、分岐部22からチューブ25Aの一端(分岐部22に近い側の端部)を通過しチューブ25Aの他端まで延びる第1流路上流部31aと、チューブ25Aの他端から異なるチューブ25Cの他端まで延びる第1流路折り返し部31bと、チューブ25Cの他端から合流部26まで延びる第1流路下流部31cと、からなる。 The first flow path 31 has a first flow path upstream portion 31a extending from the branch portion 22 through one end of the tube 25A (the end on the side closer to the branch portion 22) to the other end of the tube 25A, and the other end of the tube 25A. It is composed of a first flow path folded portion 31b extending from the other end of the tube 25C to the other end of the tube 25C, and a first flow path downstream portion 31c extending from the other end of the tube 25C to the merging portion 26.
 第2流路32は、分岐部22からチューブ25Dの一端(分岐部22に近い側の端部)を通過しチューブ25Dの他端まで延びる第2流路上流部32aと、チューブ25Dの他端から異なるチューブ25Bの他端まで延びる第2流路折り返し部32bと、チューブ25Bの他端から合流部26まで延びる第2流路下流部32cと、からなる。 The second flow path 32 has a second flow path upstream portion 32a extending from the branch portion 22 through one end of the tube 25D (the end on the side closer to the branch portion 22) to the other end of the tube 25D, and the other end of the tube 25D. It is composed of a second flow path folded portion 32b extending from the other end of the tube 25B to the other end of the tube 25B, and a second flow path downstream portion 32c extending from the other end of the tube 25B to the merging portion 26.
 第1流路上流部31a(チューブ25A)、第2流路下流部32c(チューブ25B)、第1流路下流部31c(チューブ25C)、第2流路上流部32a(チューブ25D)は、バッテリBa、Baに対して、この順に隣接して配置されている。第1流路上流部31aと、第2流路下流部32cとは、互いに隣接して配置され、第1流路下流部31cと、第2流路上流部32aとは、互いに隣接して配置されている、ということもできる。 The first flow path upstream portion 31a (tube 25A), the second flow path downstream portion 32c (tube 25B), the first flow path downstream portion 31c (tube 25C), and the second flow path upstream portion 32a (tube 25D) are batteries. They are arranged adjacent to Ba and Ba in this order. The first flow path upstream portion 31a and the second flow path downstream portion 32c are arranged adjacent to each other, and the first flow path downstream portion 31c and the second flow path upstream portion 32a are arranged adjacent to each other. It can also be said that it has been done.
 なお、バッテリBa、Baに対して、第2流路下流部32c(チューブ25B)、第1流路上流部31a(チューブ25A)、第2流路上流部32a(チューブ25D)、第1流路下流部31c(チューブ25C)の順に隣接して配置されていてもよい。 The second flow path downstream portion 32c (tube 25B), the first flow path upstream portion 31a (tube 25A), the second flow path upstream portion 32a (tube 25D), and the first flow path with respect to the batteries Ba and Ba. It may be arranged adjacent to each other in the order of the downstream portion 31c (tube 25C).
 チューブ25A~25Dは、それぞれ素材にアルミニウム合金又はアルミニウムが用いられ、内部に冷媒が通過可能な流路が形成されている。また、チューブ25A~25Dは、互いに並行に配置されていると共に同じ長さに形成され、それぞれバッテリBaと熱交換可能に設けられている。また、チューブ25A~25Dの断面形状は円形や楕円形、正方形、長方形など、特に指定は無いが、扁平形状であることが好ましい。流路断面積に対する表面積を増やすことができ、熱交換の効率を向上できる。 Aluminum alloy or aluminum is used as the material for the tubes 25A to 25D, respectively, and a flow path through which the refrigerant can pass is formed inside. Further, the tubes 25A to 25D are arranged in parallel with each other and formed to have the same length, and are provided so as to be heat exchangeable with the battery Ba. The cross-sectional shape of the tubes 25A to 25D is not particularly specified, such as a circle, an ellipse, a square, or a rectangle, but a flat shape is preferable. The surface area with respect to the cross-sectional area of the flow path can be increased, and the efficiency of heat exchange can be improved.
 合流部26は、第1流路31と第2流路32の下流に設けられている。第1流路31を流れる冷媒と第2流路32を流れる冷媒は、合流部26において合流する The merging portion 26 is provided downstream of the first flow path 31 and the second flow path 32. The refrigerant flowing through the first flow path 31 and the refrigerant flowing through the second flow path 32 merge at the merging portion 26.
 冷却装置20の作用及び効果について説明する。 The operation and effect of the cooling device 20 will be described.
 図2Aを参照する。図2Aには、比較例による冷却装置120の要部が示されている。冷却装置120は、第1流路上流部131aと第1流路下流部131cが隣接し、第2流路上流部132aと第2流路下流部132cが隣接している。一方のバッテリBa(図右側のバッテリBa)は、チューブ25A、25Bの上面に設けられ、他方のバッテリBa(図左側のバッテリBa)は、チューブ25C、25Dの上面に設けられている。一方のバッテリBaは、第1流路131を流れる冷媒のみによって冷却され、他方のバッテリBaは、第2流路132を流れる冷媒のみによって冷却される。 Refer to FIG. 2A. FIG. 2A shows a main part of the cooling device 120 according to a comparative example. In the cooling device 120, the first flow path upstream portion 131a and the first flow path downstream portion 131c are adjacent to each other, and the second flow path upstream portion 132a and the second flow path downstream portion 132c are adjacent to each other. One battery Ba (battery Ba on the right side of the figure) is provided on the upper surfaces of the tubes 25A and 25B, and the other battery Ba (battery Ba on the left side of the figure) is provided on the upper surfaces of the tubes 25C and 25D. One battery Ba is cooled only by the refrigerant flowing through the first flow path 131, and the other battery Ba is cooled only by the refrigerant flowing through the second flow path 132.
 ところで、冷却装置120は、不可避的に製品ごとに寸法の誤差が生じる。また、車両の走行中には、路面状況の変化による車両の傾斜、車両の発進や停止による加速度の影響等から、第1流路131と第2流路132とが常に同じ冷房能力を発揮するように気液混合状態の冷媒を分岐させることは困難である。このため、第2流路132よりも第1流路131に多くの冷媒が流れることやこの逆のことが生じ得る。例えば、第1流路131に多く冷媒が流れると、第2流路132に流れる冷媒によって冷却されるバッテリBaが十分に冷却されない虞がある。また、全てのチューブ25A~25Dに架け渡されるセルの長いバッテリの場合(すべてのチューブ25A~25Dを横断するようにチューブの上または下に配置されるバッテリの場合)、よく冷却される部位とあまり冷却されない部位が生じる虞がある。 By the way, the cooling device 120 inevitably has a dimensional error for each product. Further, while the vehicle is running, the first flow path 131 and the second flow path 132 always exhibit the same cooling capacity due to the inclination of the vehicle due to changes in the road surface condition, the influence of acceleration due to the start and stop of the vehicle, and the like. As described above, it is difficult to branch the refrigerant in the gas-liquid mixed state. Therefore, more refrigerant may flow in the first flow path 131 than in the second flow path 132, and vice versa. For example, if a large amount of refrigerant flows in the first flow path 131, the battery Ba cooled by the refrigerant flowing in the second flow path 132 may not be sufficiently cooled. Also, in the case of a long cell battery spanning all tubes 25A-25D (in the case of a battery placed above or below the tubes across all tubes 25A-25D), the area to be cooled well. There is a risk that some parts will not be cooled very much.
 図2Bを参照する。図2Bには、実施例による冷却装置20の要部が示されている。第1流路上流部31aと、第2流路下流部32cとは、互いに隣接して配置され、第1流路下流部31cと、第2流路上流部32aとは、互いに隣接して配置されている。それぞれ冷房能力が異なることのある第1流路31と第2流路32とを隣接させると共に、隣接している流路内に流れる冷媒の方向を逆にすることとした。さらに、第1流路上流部31aを流れる冷媒は、バッテリBaを冷却しながらチューブ25Aの他端側に達し、第1流路折り返し部31bを経由して第1流路下流部31cへ流れる。冷媒は、第1流路上流部31aを流れる際にエンタルピが徐々に上昇して冷房能力が低下していくため、第1流路上流部31aの方が第1流路下流部31cよりもバッテリBaを冷却することができる。第2流路上流部32aと、第2流路下流部32cについても同様に、第2流路上流部32aの方が第2流路下流部32cよりもバッテリBaを冷却することができる。つまり、冷房能力が異なる第1流路31と第2流路32とを隣接させること、相対的に冷房能力の高い一方の流路の上流部(例えば、第1流路上流部31a)を相対的に冷房能力の低い他方の流路の下流部(例えば、第2流路下流部32c)に隣接させること、且つ、隣接する流路同士内を流れる冷媒の方向を逆にすることの全てを満たすことにより、バッテリBaの全体をより均一に冷却することができる。冷媒の方向を逆にして隣接させる態様は、カウンターフローと呼ばれることがある。 Refer to FIG. 2B. FIG. 2B shows a main part of the cooling device 20 according to the embodiment. The first flow path upstream portion 31a and the second flow path downstream portion 32c are arranged adjacent to each other, and the first flow path downstream portion 31c and the second flow path upstream portion 32a are arranged adjacent to each other. Has been done. The first flow path 31 and the second flow path 32, which may have different cooling capacities, are adjacent to each other, and the directions of the refrigerants flowing in the adjacent flow paths are reversed. Further, the refrigerant flowing through the upstream portion 31a of the first flow path reaches the other end side of the tube 25A while cooling the battery Ba, and flows to the downstream portion 31c of the first flow path via the folded portion 31b of the first flow path. When the refrigerant flows through the upstream portion 31a of the first flow path, the enthalpy gradually increases and the cooling capacity decreases, so that the upstream portion 31a of the first flow path is a battery rather than the downstream portion 31c of the first flow path. Ba can be cooled. Similarly, for the second flow path upstream portion 32a and the second flow path downstream portion 32c, the second flow path upstream portion 32a can cool the battery Ba more than the second flow path downstream portion 32c. That is, the first flow path 31 and the second flow path 32 having different cooling capacities are adjacent to each other, and the upstream portion of one of the flow paths having a relatively high cooling capacity (for example, the upstream portion 31a of the first flow path) is relative to each other. To be adjacent to the downstream part of the other flow path having a low cooling capacity (for example, the downstream part 32c of the second flow path), and to reverse the direction of the refrigerant flowing in the adjacent flow paths. By filling, the entire battery Ba can be cooled more uniformly. A mode in which the directions of the refrigerants are reversed and adjacent to each other is sometimes called a counterflow.
 また、第1流路上流部31a、第2流路下流部32c、第1流路下流部31c、第2流路上流部32aは、バッテリBaに対して、この順に隣接して配置されている。つまり、バッテリBaに対して、第1流路31と第2流路32とが交互に並べられている。これにより、分岐部22から合流部26にわたる、チューブ25A~25D以外の部分も含めた第1流路31全体の流路長さと第2流路32全体の流路長さとをより近似させることができ、第1流路31と第2流路32の冷房能力の差の縮小をはかることができる。これにより、さらにバッテリBaの全体をより均一に冷却することができる。バッテリBaに対して、第2流路下流部32c、第1流路上流部31a、第2流路上流部32a、第1流路下流部31cがこの順に隣接して配置されている場合にも同様である。 Further, the first flow path upstream portion 31a, the second flow path downstream portion 32c, the first flow path downstream portion 31c, and the second flow path upstream portion 32a are arranged adjacent to the battery Ba in this order. .. That is, the first flow path 31 and the second flow path 32 are alternately arranged with respect to the battery Ba. As a result, the flow path length of the entire first flow path 31 including the parts other than the tubes 25A to 25D extending from the branch portion 22 to the confluence portion 26 can be made closer to the flow path length of the entire second flow path 32. It is possible to reduce the difference in cooling capacity between the first flow path 31 and the second flow path 32. As a result, the entire battery Ba can be further cooled more uniformly. Even when the second flow path downstream portion 32c, the first flow path upstream portion 31a, the second flow path upstream portion 32a, and the first flow path downstream portion 31c are arranged adjacent to the battery Ba in this order. The same is true.
<実施例2>
 次に、実施例2による冷却装置20Aを図面に基づいて説明する。
<Example 2>
Next, the cooling device 20A according to the second embodiment will be described with reference to the drawings.
 図3を参照する。実施例2による冷却装置20Aは、それぞれのチューブ25A~25Dの両端部がヘッダパイプ41A、42Aによって支持されてなる。また、バッテリBaは、全てのチューブ25A~25Dに跨って配置される長いバッテリセルと、チューブ25A、25B又はチューブ25C、25Dに跨って配置される短いバッテリセルとによって構成されている。ヘッダパイプ41A、42Aの内部は、仕切部材Sによってそれぞれ4つの領域に区画されている。 Refer to FIG. In the cooling device 20A according to the second embodiment, both ends of the tubes 25A to 25D are supported by header pipes 41A and 42A, respectively. Further, the battery Ba is composed of a long battery cell arranged across all the tubes 25A to 25D and a short battery cell arranged across the tubes 25A, 25B or the tubes 25C, 25D. The insides of the header pipes 41A and 42A are each divided into four regions by the partition member S.
 その他の基本的な構成については、実施例1による冷却装置20(図1参照)と共通する。実施例1と共通する部分については、符号を流用すると共に、詳細な説明を省略する。 Other basic configurations are the same as the cooling device 20 according to the first embodiment (see FIG. 1). For the parts common to the first embodiment, reference numerals are used and detailed description thereof will be omitted.
 一方のヘッダパイプ41A(分岐部22に近いヘッダパイプ41A)の一部である一方第1区画41A1において第1流路上流部31aは、2つのチューブ25A、25Aに分岐される。チューブ25A、25Aを通過した冷媒は、他方のヘッダパイプ42Aの一部である他方第1区画42A1において合流する。他方第1区画42A1から流出し第1流路折り返し部31bを通過した冷媒は、他方のヘッダパイプ42Aの一部である他方第3区画42A3において分岐され、チューブ25C、25Cを流れる。チューブ25C、25Cを通過した冷媒は、一方のヘッダパイプ41Aの一部である一方第3区画41A3において合流する。 In the first section 41A1 which is a part of one header pipe 41A (header pipe 41A near the branch portion 22), the first flow path upstream portion 31a is branched into two tubes 25A and 25A. The refrigerant that has passed through the tubes 25A and 25A joins in the other first section 42A1 that is a part of the other header pipe 42A. The refrigerant flowing out of the other section 42A1 and passing through the first flow path folding portion 31b is branched in the other third section 42A3, which is a part of the other header pipe 42A, and flows through the tubes 25C and 25C. The refrigerant that has passed through the tubes 25C and 25C joins in the third section 41A3 while being a part of one header pipe 41A.
 また、一方のヘッダパイプ41Aの一部である一方第4区画41A4において第2流路上流部32aは、2つのチューブ25D、25Dに分岐される。チューブ25D、25Dを通過した冷媒は、他方のヘッダパイプ42Aの一部である他方第4区画42A4において合流する。他方第4区画42A4から流出し第2流路折り返し部32bを通過した冷媒は、他方のヘッダパイプ42Aの一部である他方第2区画42A2において分岐され、チューブ25B、25Bを流れる。チューブ25B、25Bを通過した冷媒は、一方のヘッダパイプ41Aの一部である一方第2区画41A2において合流する。 Further, in the fourth section 41A4, which is a part of one header pipe 41A, the second flow path upstream portion 32a is branched into two tubes 25D and 25D. The refrigerants that have passed through the tubes 25D and 25D merge in the other fourth section 42A4, which is a part of the other header pipe 42A. The refrigerant flowing out of the other fourth section 42A4 and passing through the second flow path folded portion 32b is branched in the other second section 42A2, which is a part of the other header pipe 42A, and flows through the tubes 25B and 25B. The refrigerant that has passed through the tubes 25B and 25B joins in the second section 41A2 while being a part of one header pipe 41A.
 第1流路上流部31aは、それぞれ並列に配置された2つのチューブ25A、25Aを含む。第1流路下流部31c、第2流路上流部32a、第2流路下流部32cについても同様に、それぞれ並列に配置された2つのチューブ25B~25Dを含む。 The first flow path upstream portion 31a includes two tubes 25A and 25A arranged in parallel, respectively. Similarly, the first flow path downstream portion 31c, the second flow path upstream portion 32a, and the second flow path downstream portion 32c also include two tubes 25B to 25D arranged in parallel.
 冷却装置20Aも上述の冷却装置20(図1参照)と同様、第1流路上流部31aと、第2流路下流部32cとは、互いに隣接して配置され、且つ、第1流路下流部31cと、第2流路上流部32aとは、互いに隣接して配置されている。 As for the cooling device 20A, similarly to the above-mentioned cooling device 20 (see FIG. 1), the first flow path upstream portion 31a and the second flow path downstream portion 32c are arranged adjacent to each other, and the first flow path downstream portion is downstream. The portion 31c and the second flow path upstream portion 32a are arranged adjacent to each other.
 また、第1流路上流部31a、第2流路下流部32c、第1流路下流部31c、第2流路上流部32aは、バッテリBaに対して、この順に隣接して配置されている。 Further, the first flow path upstream portion 31a, the second flow path downstream portion 32c, the first flow path downstream portion 31c, and the second flow path upstream portion 32a are arranged adjacent to the battery Ba in this order. ..
 なお、バッテリBaに対して、第2流路下流部32c、第1流路上流部31a、第2流路上流部32a、第1流路下流部31cが、この順に隣接して配置されていても良い。 The second flow path downstream portion 32c, the first flow path upstream portion 31a, the second flow path upstream portion 32a, and the first flow path downstream portion 31c are arranged adjacent to the battery Ba in this order. Is also good.
 以上に説明した冷却装置20Aも本発明所定の効果を奏する。 The cooling device 20A described above also has the predetermined effect of the present invention.
<実施例3>
 次に、実施例3による冷却装置20Bを図面に基づいて説明する。
<Example 3>
Next, the cooling device 20B according to the third embodiment will be described with reference to the drawings.
 図4を参照する。実施例3による冷却装置20Bは、実施例2による冷却装置20A(図3参照)に用いた冷却装置20Aとは、チューブ25A~25Dの配置が異なる。また、ヘッダパイプ41Bの内部は、冷却装置20Aのヘッダパイプ41Aとは異なる部分に配置された仕切部材Sによって、5つの領域に区画されている。ヘッダパイプ42Bの内部は、冷却装置20Aのヘッダパイプ42Aで設けられた4つの領域をさらに区画するように配置された仕切部材Sによって、8つの領域に区画されている。また、バッテリBaは、全てのチューブ25A~25Dに跨って配置される長いバッテリセルのみによって構成されている。 Refer to FIG. The cooling device 20B according to the third embodiment has a different arrangement of the tubes 25A to 25D from the cooling device 20A used for the cooling device 20A according to the second embodiment (see FIG. 3). Further, the inside of the header pipe 41B is divided into five regions by a partition member S arranged in a portion different from the header pipe 41A of the cooling device 20A. The inside of the header pipe 42B is divided into eight regions by a partition member S arranged so as to further partition the four regions provided in the header pipe 42A of the cooling device 20A. Further, the battery Ba is composed of only long battery cells arranged across all the tubes 25A to 25D.
 その他の基本的な構成については、実施例1及び/又は実施例2による冷却装置と共通する。実施例1及び/又は実施例2と共通する部分については、符号を流用すると共に、詳細な説明を省略する。 Other basic configurations are the same as the cooling device according to Example 1 and / or Example 2. For the parts common to the first and / or the second embodiment, the reference numerals are used and detailed description thereof will be omitted.
 一方のヘッダパイプ41Bの一部である一方第2区画41B2において第1流路上流部31aは、2つのチューブ25A、25Aに分岐される。チューブ25A、25Aを通過した冷媒は、他方のヘッダパイプ42Bにおいて合流せず、他方のヘッダパイプ42Bの一部である他方第2区画42B2及びこれに隣接する他方第3区画42B3からそれぞれ第1流路折り返し部31b、31bに流れる。冷媒は、第1流路折り返し部31b、31bからそれぞれチューブ25C、25Cを流れる。 In the second section 41B2, which is a part of one header pipe 41B, the first flow path upstream portion 31a is branched into two tubes 25A and 25A. The refrigerant that has passed through the tubes 25A and 25A does not merge in the other header pipe 42B, and is the first flow from the other second section 42B2 that is a part of the other header pipe 42B and the other third section 42B3 that is adjacent thereto. It flows to the road turn- back portions 31b and 31b. The refrigerant flows through the tubes 25C and 25C from the first flow path folded portions 31b and 31b, respectively.
 他方のヘッダパイプ42Bにおいて合流させないことにより、チューブ25C、25Cをそれぞれ離間して配置することができる。これにより、チューブ25D、25Dを挟むようにして、チューブ25C、25Cを配置することができる。 By not merging in the other header pipe 42B, the tubes 25C and 25C can be arranged separately from each other. Thereby, the tubes 25C and 25C can be arranged so as to sandwich the tubes 25D and 25D.
 一方のチューブ25Cを流れた冷媒は、一方のヘッダパイプ41Bの一部である一方第3区画41B3に流入する。他方のチューブ25Cを流れた冷媒は、一方のヘッダパイプ41Bの一部である一方第5区画41B5に流入する。一方第3区画41B3および一方第5区画41B5を通過した冷媒は、合流部26にて合流する。 The refrigerant flowing through the one tube 25C flows into the third section 41B3 while being a part of the one header pipe 41B. The refrigerant flowing through the other tube 25C flows into the fifth section 41B5 while being a part of the one header pipe 41B. On the other hand, the refrigerants that have passed through the third section 41B3 and the fifth section 41B5 merge at the merging section 26.
 一方のヘッダパイプ41Bの一部である一方第4区画41B4において第2流路上流部32aは、2つのチューブ25D、25Dに分岐される。チューブ25D、25Dを通過した冷媒は、他方のヘッダパイプ42Bにおいて合流せず、他方のヘッダパイプ42Bの一部である他方第6区画42B6及びこれに隣接する他方第7区画42B7からそれぞれ第2流路折り返し部32b、32bに流れる。冷媒は、第2流路折り返し部32b、32bからそれぞれチューブ25B、25Bを流れる。 In the fourth section 41B4, which is a part of one header pipe 41B, the second flow path upstream portion 32a is branched into two tubes 25D and 25D. The refrigerant that has passed through the tubes 25D and 25D does not merge in the other header pipe 42B, and is a second stream from the other sixth section 42B6 that is a part of the other header pipe 42B and the other seventh section 42B7 that is adjacent thereto. It flows to the road turn- back portions 32b and 32b. The refrigerant flows through the tubes 25B and 25B from the second flow path folded portions 32b and 32b, respectively.
 他方のヘッダパイプ42Bにおいて合流させないことにより、チューブ25B、25Bをそれぞれ離間して配置することができる。これにより、チューブ25A、25Aを挟むようにして、チューブ25C、25Cを配置することができる。 By not merging in the other header pipe 42B, the tubes 25B and 25B can be arranged apart from each other. Thereby, the tubes 25C and 25C can be arranged so as to sandwich the tubes 25A and 25A.
 第1流路上流部31aを構成する2つのチューブ25A、25Aは、第2流路下流部32cを構成する2つのチューブ25B、25Bによって挟まれていると共に、第2流路上流部32aを構成する2つのチューブ25D、25Dは、第1流路下流部31cを構成する2つのチューブ25C、25Cによって挟まれている。 The two tubes 25A and 25A constituting the first flow path upstream portion 31a are sandwiched between the two tubes 25B and 25B constituting the second flow path downstream portion 32c, and also constitute the second flow path upstream portion 32a. The two tubes 25D and 25D are sandwiched between the two tubes 25C and 25C constituting the first flow path downstream portion 31c.
 なお、一方のヘッダパイプ42Bの一部である一方第3区画41B3において、第1流路下流部31cの一部と第2流路下流部32cの一部とを合流させても良い。 In the third section 41B3, which is a part of one header pipe 42B, a part of the first flow path downstream portion 31c and a part of the second flow path downstream part 32c may be merged.
 一方のチューブ25Bを流れた冷媒は、一方のヘッダパイプ41Bの一部である一方第1区画41B1に流入する。他方のチューブ25Bを流れた冷媒は、一方のヘッダパイプ41Bの一部である一方第3区画41B3に流入する。一方第1区画41B1および一方第3区画41B3を通過した冷媒は、合流部26にて合流する。 The refrigerant flowing through the one tube 25B flows into the first section 41B1 which is a part of the one header pipe 41B. The refrigerant flowing through the other tube 25B flows into the third section 41B3 while being a part of the one header pipe 41B. On the other hand, the refrigerants that have passed through the first section 41B1 and the third section 41B3 merge at the merging section 26.
 以上に説明した冷却装置も本発明所定の効果を奏する。 The cooling device described above also has the predetermined effect of the present invention.
 加えて、第1流路上流部31aを構成する2つのチューブ25A、25Aは、第2流路下流部32cを構成する2つのチューブ25B、25Bによって挟まれていると共に、第2流路上流部32aを構成する2つのチューブ25D、25Dは、第1流路下流部31cを構成する2つのチューブ25C、25Cによって挟まれている。これにより、第1流路上流部31aと第2流路下流部32cとが隣接する部分、および第2流路上流部32aと第1流路下流部31cとが隣接する部分を増やすことができるので、略長方体のバッテリBaのセルの長手方向をチューブ25の長手方向に沿う方向に配置して、多くのセルを温度の不均一なく冷却することができる。チューブ25に対してバッテリセルを、チューブ25の長手方向に直交するように配置してもよい。実施例3の構成によれば、バッテリセルの配置方向の自由度を増すことができ、好ましい。 In addition, the two tubes 25A and 25A constituting the upstream portion 31a of the first flow path are sandwiched by the two tubes 25B and 25B constituting the downstream portion 32c of the second flow path, and the upstream portion of the second flow path. The two tubes 25D and 25D constituting the 32a are sandwiched between the two tubes 25C and 25C constituting the first flow path downstream portion 31c. As a result, it is possible to increase the portion where the upstream portion 31a of the first flow path and the downstream portion 32c of the second flow path are adjacent to each other, and the portion where the upstream portion 32a of the second flow path and the downstream portion 31c of the first flow path are adjacent to each other. Therefore, the longitudinal direction of the cells of the substantially rectangular battery Ba can be arranged along the longitudinal direction of the tube 25, and many cells can be cooled without uneven temperature. The battery cell may be arranged so as to be orthogonal to the longitudinal direction of the tube 25 with respect to the tube 25. According to the configuration of the third embodiment, the degree of freedom in the arrangement direction of the battery cells can be increased, which is preferable.
 また、第1流路上流部31aを構成する2つのチューブ25A、25Aと、第2流路上流部32aを構成する2つのチューブ25D、25Dとは、それぞれ、第2流路下流部32cを構成する2つのチューブ25B、25Bと、第1流路下流部31cを構成するチューブ25C、25Cとによって挟まれている。このため、冷却能力が相対的に低い第1流路下流部31cと、第2流路下流部32cとを両端に配置することができる。バッテリBaの両端は、外気に接触しやすく、比較的冷却が容易である。熱の篭りやすい部位に相対的に冷却能力が高い第1流路上流部31aと第2流路上流部32aとを配置することにより、効率よくバッテリBaを冷却することができる。 Further, the two tubes 25A and 25A constituting the upstream portion 31a of the first flow path and the two tubes 25D and 25D constituting the upstream portion 32a of the second flow path each constitute the downstream portion 32c of the second flow path. It is sandwiched between the two tubes 25B and 25B and the tubes 25C and 25C constituting the first flow path downstream portion 31c. Therefore, the first flow path downstream portion 31c and the second flow path downstream portion 32c, which have relatively low cooling capacity, can be arranged at both ends. Both ends of the battery Ba are easily in contact with the outside air and are relatively easy to cool. By arranging the first flow path upstream portion 31a and the second flow path upstream portion 32a having a relatively high cooling capacity in a portion where heat is likely to be trapped, the battery Ba can be efficiently cooled.
 尚、本発明による冷却装置は、車両に搭載されるものに限られるものではない。冷却装置は、車両以外の乗り物や建機等バッテリを搭載するものであれば、用いることができる。 The cooling device according to the present invention is not limited to the one mounted on the vehicle. The cooling device can be used as long as it is equipped with a battery such as a vehicle other than a vehicle or a construction machine.
 また、バッテリBaは、様々な種類のバッテリを搭載することが可能である。例えば、図3や図4に示したバッテリBaを図1の冷却装置で冷却することも可能である。 In addition, the battery Ba can be equipped with various types of batteries. For example, the battery Ba shown in FIGS. 3 and 4 can be cooled by the cooling device of FIG.
 本発明の作用及び効果を奏する限りにおいて、本発明は、実施例に限定されるものではない。 The present invention is not limited to the examples as long as the actions and effects of the present invention are exhibited.
 本発明の冷却装置は、モータを駆動源とする車両に搭載するのに好適である。 The cooling device of the present invention is suitable for mounting on a vehicle whose drive source is a motor.
 20…バッテリ冷却装置
 21…膨張部
 22…分岐部
 25A~25D…チューブ
 30…流路
 31…第1流路、31a…第1流路上流部、31c…第1流路下流部
 32…第2流路、32a…第2流路上流部、32c…第2流路下流部
 Ba…バッテリ
 
20 ... Battery cooling device 21 ... Expansion part 22 ... Branch part 25A to 25D ... Tube 30 ... Flow path 31 ... First flow path, 31a ... First flow path upstream part, 31c ... First flow path downstream part 32 ... Second Flow path, 32a ... Upstream part of the second flow path, 32c ... Downstream part of the second flow path Ba ... Battery

Claims (3)

  1.  互いに並行に配置された長さの等しい複数のチューブ(25A~25D)の内部に冷媒を流し、前記冷媒との熱交換によってバッテリ(Ba)を冷却することが可能なバッテリ冷却装置(20;20A;20B)において、
     前記冷媒の流れを基準として、前記チューブ(25A~25D)の上流には、前記冷媒を気液混合状態に減圧膨張する膨張部(21)と、この膨張部(21)において減圧膨張された前記冷媒の流路(30)を分岐する分岐部(22)と、が設けられ、
     前記分岐部(22)において前記流路(30)は、第1流路(31)と第2流路(32)の2つの流路に分岐され、
     前記第1流路(31)と前記第2流路(32)の下流には、前記第1流路(31)と前記第2流路(32)を合流する合流部(26)が設けられ、
     前記第1流路(31)は、前記チューブの一端側から他端側に向かって前記冷媒が流れる第1流路上流部(31a)と、この第1流路上流部(31a)の下流であって前記チューブ(25A~25D)の他端側から一端側に向かって前記冷媒が流れる第1流路下流部(31c)と、を含み、
     前記第2流路(32)は、前記チューブ(25A~25D)の一端側から他端側に向かって前記冷媒が流れる第2流路上流部(32a)と、この第2流路上流部(32a)の下流であって前記チューブ(25A~25D)の他端側から一端側に向かって前記冷媒が流れる第2流路下流部(32c)と、を含み、
     前記第1流路上流部(31a)と、前記第2流路下流部(32c)とは、互いに隣接して配置され、
     前記第1流路下流部(31c)と、前記第2流路上流部(32a)とは、互いに隣接して配置されている、バッテリ冷却装置。
    A battery cooling device (20; 20A) capable of flowing a refrigerant into a plurality of tubes (25A to 25D) having the same length arranged in parallel with each other and cooling the battery (Ba) by heat exchange with the refrigerant. In 20B)
    Upstream of the tube (25A to 25D) with reference to the flow of the refrigerant, an expansion portion (21) that decompresses and expands the refrigerant into a gas-liquid mixed state, and the expansion portion (21) that decompresses and expands the refrigerant. A branch portion (22) for branching the flow path (30) of the refrigerant is provided.
    In the branch portion (22), the flow path (30) is branched into two flow paths, a first flow path (31) and a second flow path (32).
    Downstream of the first flow path (31) and the second flow path (32), a merging portion (26) that joins the first flow path (31) and the second flow path (32) is provided. ,
    The first flow path (31) is located at the upstream portion (31a) of the first flow path in which the refrigerant flows from one end side to the other end side of the tube, and downstream of the upstream portion (31a) of the first flow path. The tube (25A to 25D) includes a first flow path downstream portion (31c) through which the refrigerant flows from the other end side toward one end side.
    The second flow path (32) includes an upstream portion (32a) of the second flow path in which the refrigerant flows from one end side to the other end side of the tube (25A to 25D) and an upstream portion of the second flow path (32a). 32a), including a second flow path downstream portion (32c) in which the refrigerant flows from the other end side to one end side of the tube (25A to 25D).
    The first flow path upstream portion (31a) and the second flow path downstream portion (32c) are arranged adjacent to each other.
    A battery cooling device in which the downstream portion (31c) of the first flow path and the upstream portion (32a) of the second flow path are arranged adjacent to each other.
  2.  前記第1流路上流部(31a)、前記第2流路下流部(32c)、前記第1流路下流部(31c)、前記第2流路上流部(32a)は、前記バッテリ(Ba)に対して、この順に隣接して配置され、
     又は、前記第2流路下流部(32c)、前記第1流路上流部(31a)、前記第2流路上流部(32a)、前記第1流路下流部(31c)は、前記バッテリ(Ba)に対して、この順に隣接して配置されている、請求項1記載のバッテリ冷却装置。
    The first flow path upstream portion (31a), the second flow path downstream portion (32c), the first flow path downstream portion (31c), and the second flow path upstream portion (32a) are the battery (Ba). In contrast to, they are placed adjacent to each other in this order.
    Alternatively, the second flow path downstream portion (32c), the first flow path upstream portion (31a), the second flow path upstream portion (32a), and the first flow path downstream portion (31c) are the battery ( The battery cooling device according to claim 1, which is arranged adjacent to Ba) in this order.
  3.  前記第1流路上流部(31a)、前記第1流路下流部(31c)、前記第2流路上流部(32a)、前記第2流路下流部(32c)は、それぞれ並列に配置された2つの前記チューブ(25A~25D)を含み、
     前記第1流路上流部(31a)を構成する2つの前記チューブ(25A、25A)は、前記第2流路下流部(32c)を構成する2つの前記チューブ(25B、25B)によって挟まれていると共に、
     前記第2流路上流部(32a)を構成する2つの前記チューブ(25D、25D)は、前記第1流路下流部(31c)を構成する2つの前記チューブ(25C、25C)によって挟まれている、請求項1記載のバッテリ冷却装置。
     
    The first flow path upstream portion (31a), the first flow path downstream portion (31c), the second flow path upstream portion (32a), and the second flow path downstream portion (32c) are arranged in parallel. Includes two of the tubes (25A-25D)
    The two tubes (25A, 25A) constituting the first flow path upstream portion (31a) are sandwiched between the two tubes (25B, 25B) constituting the second flow path downstream portion (32c). With
    The two tubes (25D, 25D) constituting the second flow path upstream portion (32a) are sandwiched between the two tubes (25C, 25C) constituting the first flow path downstream portion (31c). The battery cooling device according to claim 1.
PCT/JP2021/044644 2020-12-11 2021-12-06 Battery cooling device WO2022124251A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-205463 2020-12-11
JP2020205463 2020-12-11

Publications (1)

Publication Number Publication Date
WO2022124251A1 true WO2022124251A1 (en) 2022-06-16

Family

ID=81973248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/044644 WO2022124251A1 (en) 2020-12-11 2021-12-06 Battery cooling device

Country Status (1)

Country Link
WO (1) WO2022124251A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110174004A1 (en) * 2008-07-29 2011-07-21 Thomas Heckenberger Device for cooling a heat source of a motor vehicle
JP2015096416A (en) * 2013-10-30 2015-05-21 ヴァレオ クリマジステーメ ゲーエムベーハー Refrigerant distributor for hybrid or electric vehicle and refrigerant circuit having refrigerant distributor
WO2020179651A1 (en) * 2019-03-01 2020-09-10 株式会社ヴァレオジャパン Cooling module for cooling vehicle battery
WO2020241431A1 (en) * 2019-05-24 2020-12-03 株式会社ヴァレオジャパン Battery cooling system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110174004A1 (en) * 2008-07-29 2011-07-21 Thomas Heckenberger Device for cooling a heat source of a motor vehicle
JP2015096416A (en) * 2013-10-30 2015-05-21 ヴァレオ クリマジステーメ ゲーエムベーハー Refrigerant distributor for hybrid or electric vehicle and refrigerant circuit having refrigerant distributor
WO2020179651A1 (en) * 2019-03-01 2020-09-10 株式会社ヴァレオジャパン Cooling module for cooling vehicle battery
WO2020241431A1 (en) * 2019-05-24 2020-12-03 株式会社ヴァレオジャパン Battery cooling system

Similar Documents

Publication Publication Date Title
JP5796563B2 (en) Heat exchanger
US9625214B2 (en) Heat exchanger
JP5772672B2 (en) Heat exchanger
JP5626194B2 (en) Heat exchange system
US9410745B2 (en) Heat exchanger
US9156333B2 (en) System for the heating, ventilation, and/or air conditioning of a vehicle, comprising at least one heat exchanger through which a heat-transfer fluid flows
JP5413433B2 (en) Heat exchanger
JP5413313B2 (en) Heat exchanger
JP5983387B2 (en) Heat exchanger
JP2002243374A (en) Inter-cooler and air conditioner for co2 refrigerant vehicle
WO2020179651A1 (en) Cooling module for cooling vehicle battery
CN113167512B (en) Heat exchanger and refrigeration cycle device
JP2006097911A (en) Heat exchanger
JP2009210138A (en) Refrigerating cycle system
WO2022124251A1 (en) Battery cooling device
JP2008051474A (en) Supercritical refrigerating cycle device
JP2002205535A (en) Condenser for automobile
JP2004189069A (en) Refrigeration cycle device
JP2002130963A (en) Intercooler and air conditioning device for co2 refrigerant vehicle
WO2024024443A1 (en) Manifold
CN220809061U (en) Indirect reversible air conditioning system for electric vehicle and vehicle
JP4355604B2 (en) Heat exchange system
JP2010190541A (en) Air conditioning device
JP2006118795A (en) Heat exchanger
JP6151961B2 (en) Air conditioner for vehicles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21903354

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21903354

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP