WO2022124173A1 - Combine, determination system, determination method, determination program, and recording medium - Google Patents

Combine, determination system, determination method, determination program, and recording medium Download PDF

Info

Publication number
WO2022124173A1
WO2022124173A1 PCT/JP2021/044187 JP2021044187W WO2022124173A1 WO 2022124173 A1 WO2022124173 A1 WO 2022124173A1 JP 2021044187 W JP2021044187 W JP 2021044187W WO 2022124173 A1 WO2022124173 A1 WO 2022124173A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow rate
yield
work
grains
grain
Prior art date
Application number
PCT/JP2021/044187
Other languages
French (fr)
Japanese (ja)
Inventor
齊藤直
林壮太郎
堀高範
植田圭一
山岡京介
Original Assignee
株式会社クボタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クボタ filed Critical 株式会社クボタ
Priority to CN202180075321.6A priority Critical patent/CN116419669A/en
Priority to KR1020237014028A priority patent/KR20230118072A/en
Publication of WO2022124173A1 publication Critical patent/WO2022124173A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D41/00Combines, i.e. harvesters or mowers combined with threshing devices
    • A01D41/12Details of combines
    • A01D41/127Control or measuring arrangements specially adapted for combines
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01FPROCESSING OF HARVESTED PRODUCE; HAY OR STRAW PRESSES; DEVICES FOR STORING AGRICULTURAL OR HORTICULTURAL PRODUCE
    • A01F12/00Parts or details of threshing apparatus
    • A01F12/46Mechanical grain conveyors

Definitions

  • the present invention is a combine provided with a transport device for transporting grains obtained by a threshing device from the threshing device to a grain tank, and a flow rate measuring device for measuring the flow rate of grains transported by the transport device.
  • a transport device for transporting grains obtained by a threshing device from the threshing device to a grain tank
  • a flow rate measuring device for measuring the flow rate of grains transported by the transport device.
  • Patent Document 1 the yield of grains stored in the grain tank (“Glen tank” in Patent Document 1) (Patent Document 1 states “ “Yield”) is detected, and the position where the grain tank is full in the field is predicted based on the yield.
  • the yield of grains is, for example, as shown in Japanese Patent Application Laid-Open No. 2020-000107 (Patent Document 2), a load cell for measuring the weight of a grain tank (“grain tank” in Patent Document 2) (Patent Document 2). In 2, it is detected by a "weight measuring instrument”).
  • the position where the grain tank is full in the field is predicted based on the yield. For example, the grain tank is full.
  • various operations based on a specific yield for example, grain discharge operation and maintenance work according to the yield
  • the load cell is used depending on how the grains are accumulated in the grain tank (for example, when the grains are accumulated in a front-rear direction or a left-right direction). Since the detected values of may differ, improving the detection accuracy of the yield is an issue.
  • An object of the present invention is to provide a combine capable of accurately calculating the amount of work required to reach a specific yield according to needs.
  • the threshing device for threshing the crop, the grain tank for storing the grains obtained by the threshing device, and the grains obtained by the threshing device are transferred from the threshing device to the grains.
  • the present invention is provided with a yield receiving unit, for example, an operator or a manager can specify a specific yield according to needs through the yield receiving unit. Therefore, in the present invention, for example, even before the grain tank is full, various operations based on a specific yield (for example, grain discharge operation and maintenance work according to the yield) are required. It is possible to calculate the amount of work until it becomes.
  • the flow rate of grains transported by the transfer device is measured by the flow rate measuring device, and the amount of work required to reach the specified yield value is calculated based on the flow rate. That is, it is possible to calculate the amount of work without being influenced by how the grains are accumulated in the grain tank (for example, when the grains are accumulated unevenly in the front-rear direction or the left-right direction). As a result, a combine that can accurately calculate the amount of work required to reach a specific yield according to needs is realized.
  • the above-mentioned technical features of the harvester can also be applied to the calculation system.
  • the calculation system in this case is based on a flow rate measuring device that measures the flow rate of grains transported from the threshing device to the grain tank via the transport device, a yield receiving unit that accepts a specific yield value, and the flow rate. It is characterized by being provided with a work amount calculation unit for calculating the work amount required for the yield of grains obtained by the harvesting work to reach the specific yield value.
  • the calculation method is based on a flow rate measuring step for measuring the flow rate of grains transported from the threshing device to the grain tank via the transport device, a yield receiving step for accepting a specific yield value, and the above-mentioned flow rate. It is characterized by comprising a work amount calculation step for calculating the work amount required for the yield of grains obtained by the harvesting work to reach the specific yield value.
  • the above-mentioned technical features of the harvester can also be applied to the calculation program.
  • a recording medium such as an optical disk, a magnetic disk, or a semiconductor memory in which a calculation program having this technical feature is recorded is also included in the above-mentioned technical feature.
  • the calculation program in this case is based on a flow rate measurement function that measures the flow rate of grains transported from the threshing device to the grain tank via a transfer device, a yield reception function that accepts a specific yield value, and the above-mentioned flow rate. It is characterized in that a computer is made to execute a work amount calculation function for calculating the work amount required for the yield of grains obtained by the harvesting work to reach the specific yield value.
  • the work amount calculation unit calculates the yield by integrating the flow rate.
  • the yield is calculated by integrating the flow rate, regardless of how the grains are accumulated in the grain tank (for example, when the grains are accumulated unevenly in the front-rear direction or the left-right direction).
  • the yield can be calculated. From this, the accuracy of yield detection is improved as compared with the configuration in which the yield of grains is measured by, for example, measuring the weight of the grain tank with a load cell.
  • the work amount calculation unit calculates the average yield per unit time based on the flow rate, and the value obtained by subtracting the yield from the specific yield value is divided by the average yield. It is preferable to calculate the working time as the working amount. Further, in the present invention, the work amount calculation unit calculates the average yield per unit mileage based on the flow rate, and the value obtained by subtracting the yield from the specific yield value is the average yield. It is preferable to divide and calculate the work mileage as the work amount.
  • the working amount is the working amount until the grains corresponding to the specific yield value are stored in the grain tank.
  • the amount of work is calculated based on the state of storage of grains in the grain tank, so that the operator or manager can perform specific work such as grain discharge work and the specific work. You can plan the harvesting work until you need a lot of work.
  • the arm portion in which the grain to be conveyed comes into contact with the flow rate measuring device and swings, the sensor portion for detecting the swing angle of the arm portion, and the swing angle detected by the sensor portion. It is preferable that a calculation unit for calculating the flow rate based on the above is provided.
  • the arm part swings, and the swing angle of the arm part is detected by the sensor part.
  • the sensor part for example, the load cell
  • the influence of the resonance on the load detection by the sensor part becomes large. It tends to be.
  • the sensor part detects the swing angle of the arm part, the resonance depends on the sensor part. The effect on the detection of the swing angle is small.
  • the flow rate measuring device is less susceptible to the vibration of the combine, for example, as compared with a configuration in which the sensor unit detects the load applied to the arm unit. That is, since the magnitude of the swing angle of the arm portion is not easily affected by the vibration of the combine, the calculation unit can accurately calculate the flow rate of the grain according to the magnitude of the swing angle. As a result, the flow rate measuring device can accurately detect the yield of grains.
  • the combine according to the present invention is configured to be able to appropriately store grains selected from threshed crops.
  • the combine of the present embodiment will be described by taking a normal combine as an example.
  • FIG. 1 is a right side view of the combine
  • FIG. 2 is a plan view of the combine.
  • front direction of arrow “F” shown in FIG. 1
  • rear direction of arrow “B” shown in FIG. 1
  • up direction of arrow “U” shown in FIG. 1
  • down direction of arrow “D” shown in FIG. 1
  • the left-right direction or the lateral direction is the aircraft crossing direction (aircraft width direction) orthogonal to the aircraft front-rear direction, that is, "left” (direction of the arrow “L” shown in FIG. 2) and “right” (shown in FIG. 2).
  • the direction of the arrow “R”) shall mean the left and right directions of the aircraft, respectively.
  • the combine includes a crawler-type traveling device 3, an aircraft frame 2 supported by the traveling device 3, a cutting section 4 for cutting field crops (various crops such as rice, wheat, soybeans, and rapeseed), and a feeder 11. , A grain removal device 1, a grain tank 12, and a grain discharge device 14 are provided.
  • the cutting unit 4 includes a scraping reel 5 for scraping crops, a clipper-type cutting device 6 for cutting crops in the field, and an auger 7 for laterally feeding the cut crops to the feeder 11.
  • the crops cut by the cutting unit 4 are transported to the threshing device 1 by the feeder 11 and threshed and sorted by the threshing device 1.
  • the sorted product that has been threshed and sorted by the threshing device 1 is stored in the grain tank 12, and is appropriately discharged to the outside of the machine by the grain discharging device 14.
  • the driving section 9 is provided side by side with the feeder 11, and the driving section 9 is provided in a state of being biased to the right side of the machine body.
  • the driving unit 9 is covered by the cabin 10.
  • An engine room ER is provided below the driving unit 9, and an engine E, a cooling fan, a radiator, and the like, which are not particularly shown, are housed in the engine room ER.
  • the power of the engine E is transmitted to the traveling device 3 and working devices such as the cutting unit 4 and the threshing device 1 by a power transmission mechanism (not shown).
  • a satellite positioning module 83 is provided in the cabin 10.
  • the satellite positioning module 83 receives a GNSS (Global Navigation Satellite System) signal (including a GPS signal) from an artificial satellite (not shown) and acquires a vehicle position.
  • GNSS Global Navigation Satellite System
  • an inertial navigation unit incorporating a gyro acceleration sensor and a magnetic orientation sensor is incorporated in the satellite positioning module 83.
  • the inertial navigation unit may be arranged at a different location from the satellite positioning module 83 in the combine harvester.
  • the threshing device 1 is provided on the machine frame 2, and includes a threshing unit 41 for threshing crops by a handling cylinder 22, and a sorting unit 42 for rocking and sorting the threshed product.
  • the threshing unit 41 is arranged in the upper region of the threshing device 1, a receiving net 23 is provided below the threshing unit 41, and a sorting unit 42 is provided below the receiving net 23.
  • the sorting unit 42 sorts the threshed product leaked from the receiving net 23 into a sorting product containing grains to be collected and a waste product such as straw.
  • the threshing section 41 includes a handling chamber 21 surrounded by left and right side walls of the threshing device 1, a top plate 53, and a receiving net 23.
  • the handling chamber 21 is provided with a handling cylinder 22 for threshing crops by rotation and a plurality of dust feeding valves 53a.
  • the handling cylinder 22 rotates around the rotation axis X.
  • the crops transported by the feeder 11 are put into the handling chamber 21 and threshed by the handling cylinder 22.
  • the crops carried by the handling cylinder 22 are transferred backward by the feeding action of the dust feeding valve 53a.
  • the dust valve 53a has a plate shape and is provided on the inner surface (lower surface) of the top plate 53 at predetermined intervals along the front-rear direction.
  • the dust feed valve 53a is provided in a posture of being inclined with respect to the rotation axis X in a plan view. Therefore, each dust feed valve 53a exerts a force to move the harvested culm that rotates together with the handling cylinder 22 to the rear side in the handling chamber 21. Further, the dust feed valve 53a can adjust the inclination angle with respect to the rotary shaft core X. The speed at which the crop is sent backward in the handling cylinder 22 is determined by the inclination angle of the dust sending valve 53a.
  • the threshing efficiency at which the crop is threshed is also affected by the speed at which the crop is sent through the handling barrel 22.
  • the processing capacity at which the crop is threshed can be adjusted using various means, but changing the tilt angle of the dust valve 53a can be adjusted as one means.
  • a dust feed valve control mechanism capable of changing and controlling the tilt posture of the dust feed valve 53a is provided, and the tilt angle of the dust feed valve 53a can be automatically changed.
  • the threshing device 1 includes a first item recovery unit 26, a second item collection unit 27, and a second item reduction device 32.
  • the sorting unit 42 includes a swing sorting device 24 having a sheave case 33 and a wall insert 19.
  • the wall insert 19 is provided in the lower region of the front region of the sorting unit 42, and generates a sorting wind from the front side to the rear of the swing sorting device 24 along the transport direction of the processed material.
  • the sorting wind has a function of sending out straw and the like having a relatively light specific density toward the rear side of the sheave case 33. Further, in the swing sorting device 24, the sheave case 33 swings due to the swing drive mechanism 43, so that the threshing processed product inside the sheave case 33 is transferred backward and the swing sorting process is performed.
  • the upstream side in the transport direction of the processed material is referred to as a front end or a front side
  • the downstream side is referred to as a rear end or a rear side.
  • the wall insert 19 can change the strength (air volume, wind speed) of the sorting wind.
  • the sorting wind is strong, the threshed product can be easily sent backward and the sorting speed becomes high.
  • the wall insert 19 can adjust the sorting efficiency (sorting accuracy and sorting speed) of the swing sorting device 24 by changing the strength of the sorting wind.
  • a wall insert control mechanism capable of changing and controlling the strength of the sorting wind of the wall insert 19 is provided, and the strength of the wall insert 19 can be automatically changed.
  • the first half of the sheave case 33 is provided with the first chaff sheave 38, and the second half of the sheave case 33 is provided with the second chaff sheave 39.
  • the sheave case 33 is provided with a grain pan and a grain sheave 40 in addition to the first chaff sheave 38 and the like.
  • the threshed product leaking from the receiving net 23 falls on the first chaff sheave 38 and the second chaff sheave 39. Most of the threshed product leaks from the receiving net 23 to the first half portion of the sheave case 33 including the first chaff sheave 38, and is roughly sorted and finely sorted by the first half portion of the sheave case 33.
  • Some threshed products may leak from the receiving net 23 to the second chaff sheave 39, or may be transferred from the first chaff sheave 38 to the second chaff sheave 39 without leaking downward, at the second chaff sheave 39. Asava is sorted.
  • the above-mentioned Glen Sheave 40 is provided below the first Chaf Sheave 38. That is, the swing sorting device 24 includes a grain sheave 40 provided below the first chaff sheave 38.
  • the grain sheave 40 is composed of a porous member such as a punching metal or a reticular formation, and receives and sorts the threshed product leaked from the first chaff sheave 38.
  • a screw-type first item collection unit 26 is provided below the first half of the sheave case 33, and a screw-type second item collection unit 27 is provided below the second half of the sheave case 33.
  • the first product that has been sorted and leaked by the first half of the sheave case 33 that is, the first product among the sorted products sorted by the sorting unit 42, is collected by the first product collection unit 26. It is transported toward the side of the grain tank 12 (right side in the left-right direction of the machine body).
  • the second product that has been sorted and leaked by the latter half of the sheave case 33 (second chaff sheave 39) (generally, the sorting treatment accuracy is low and the ratio of cut straw etc. is high), that is, among the sorted products.
  • the second product is collected by the second product collection unit 27.
  • the second product corresponds to the threshed product that was not selected as the threshed product among the threshed products.
  • the second product collected by the second product collection unit 27 is reduced to the front portion of the sorting unit 42 by the second product reducing device 32, and is re-sorted by the sheave case 33.
  • the first chaf sheave 38 is provided with a plurality of plate-shaped chaflip provided side by side along the transfer (transport) direction (front-back direction) of the threshed product.
  • Each chaflip is arranged in an inclined posture toward the rear end side diagonally upward.
  • the tilt angle of the chaflip is variable, and the steeper the tilt angle, the wider the distance between adjacent chaflips, and the easier it is for the threshed product to leak. That is, the leakage opening degree can be changed by changing the postures of the plurality of chaflip. Therefore, the sorting efficiency (sorting accuracy and sorting speed) of the swing sorting device 24 can be adjusted by adjusting the tilt angle of the chaflip.
  • a lip control mechanism capable of changing and controlling the tilting posture of the chaflip is provided, and the tilting angle of the chaflip can be automatically changed.
  • the second chaf sheave 39 has the same configuration as the first chaf sheave 38.
  • An angle control mechanism capable of changing and controlling the tilting posture of the chaflip of the second chaf sheave 39 is also provided, and the tilting angle of the chaflip can be automatically changed.
  • FIG. 4 is a front view of the grain tank 12, the grain raising device 29, and the threshing device 1
  • FIG. 5 is a vertical sectional right side view of the grain raising device 29.
  • a grain raising device 29 is provided for transporting the sorted processed product collected by the first product collecting unit 26 to the grain tank 12.
  • the grain frying device 29 is arranged between the threshing device 1 and the grain tank 12, and is erected in a posture along the vertical direction.
  • the grain frying device 29 is configured as a bucket conveyor type.
  • the sorting processed product transported by the grain raising device 29 is delivered to the lateral feed transport device 30 at the upper end portion of the grain raising device 29.
  • the lateral feed transport device 30 is connected to the grain frying device 29 in a state of being adjacent to each other.
  • the lateral feed transport device 30 is configured as a screw conveyor type, and is thrust into the inside of the grain tank 12 from the wall portion on the left side of the front portion of the grain tank 12.
  • the lateral feed transport device 30 has a screw portion 30S that rotates around the machine body lateral axis Y1.
  • a grain release device 30A is provided at the end of the lateral feed transfer device 30 on the inner side of the tank.
  • the grain releasing device 30A includes a plate-shaped releasing rotating body 30B, and rotates integrally with the screw portion 30S.
  • the sorted product (grain) is laterally fed by the lateral feed transport device 30, and finally thrown into the grain tank 12 by the grain release device 30A. That is, the horizontal feed transport device 30 receives the grains transported by the grain frying device 29, feeds them laterally, and puts them into the grain tank 12.
  • the grain frying device 29 and the lateral feed transport device 30 are the "transport devices" of the present invention.
  • the grain raising device 29 has a plurality of buckets 31 for lifting the grains obtained by the threshing device 1.
  • the grain raising device 29 includes a feeding path 29D in which the bucket 31 containing the sorting processed product rises, and a return path 29E in which the bucket 31 descends after discharging the sorted processed material into the lateral feed transport device 30.
  • the feed path 29D and the return path 29E are arranged side by side along the left side wall 12b of the grain tank 12 so that the feed path 29D is on the rear side.
  • the first thing sensor 60 is provided between the grain frying device 29 and the lateral feed transport device 30.
  • the first object sensor 60 is the "flow rate measuring device" of the present invention.
  • the first item sensor 60 is arranged so as to measure the amount of the sorting processed material delivered from the bucket 31 to the lateral feed transport device 30.
  • the first product sensor 60 measures the flow rate Fv1 (see FIG. 17) of the grains transported by the grain raising device 29 and the lateral feed transport device 30.
  • the arm unit 63, the first sensor unit 64 (“sensor unit” of the present invention), and the first flow rate calculation unit 81A (see FIG. 17), in which the grain to be conveyed comes into contact with the first sensor 60 and swings.
  • the “calculation unit” of the present invention The first sensor unit 64 detects the swing angle ⁇ 1 of the arm unit 63 (see FIGS. 8, 9, and 17).
  • the first flow rate calculation unit 81A calculates the flow rate Fv1 based on the detected swing angle ⁇ 1.
  • the bucket 31 moves upward along the feeding path 29D, and the grains are loaded on the bucket 31 and transported from the first item collecting unit 26 to the upper end portion of the grain raising device 29.
  • a discharge port 29h is formed at the upper end of the grain frying device 29.
  • the discharge port 29h is provided on the side portion of the upper end portion of the grain raising device 29 where the return path 29E is located, which is opposite to the feed path 29D.
  • the bucket 31 swivels 180 degrees (or approximately 180 degrees) around the axis of rotation of the driven sprocket 29B, and centrifugal force acts on the grains loaded on the bucket 31. Then, at the discharge port 29h, the bucket 31 throws grains during the turning operation. In other words, the grain is thrown at the discharge port 29h by the bucket 31 that reverses its posture from the ascending posture to the descending posture at the upper end portion of the grain raising device 29.
  • the upper end of the grain frying device 29, that is, the upper ends of the feed path 29D and the return path 29E, respectively, is covered with the top plate 61. Further, the lateral feed transport device 30 is connected to the discharge port 29h.
  • a delivery space between the grain raising device 29 and the horizontal feed transport device 30 is formed on the outside of the discharge port 29h and above the lateral feed transport device 30.
  • a bulging portion 65 is provided on the top plate 61 of the grain raising device 29.
  • the bulging portion 65 bulges upward from the surface portion of the top plate 61, and an internal space 62 is formed inside the bulging portion 65.
  • the first object sensor 60 is supported by the bulging portion 65.
  • the first sensor 60 measures the flow rate Fv1 of the grains thrown from the bucket 31.
  • the first sensor 60 is provided with an arm unit 63, a first sensor unit 64, and a rotation shaft 66.
  • the rotating shaft 66 is supported by the bulging portion 65.
  • the arm portion 63 is attached to the rotating shaft 66 so that it can rotate integrally with the rotating shaft 66.
  • the arm portion 63 extends downward from the rotation shaft 66.
  • the arm portion 63 is swingably supported around the swing shaft core Y2 of the rotary shaft 66.
  • the arm portion 63 is located on the throwing path of the grains thrown from the bucket 31 (throwing path area S1), and swings when the grains thrown by the bucket 31 come into contact with each other.
  • the arm portion 63 is provided in a hanging posture facing the discharge port 29h in a state where the grains are not in contact with each other, and is configured to be shorter than the vertical length of the discharge port 29h.
  • the bulging portion 65 is formed so that the portion of the bulging portion 65 located directly above the rotation shaft 66 is at the highest position.
  • an inclined surface 65a is formed on the front portion of the machine body of the bulging portion 65, and the inclined surface 65a approaches the top plate 61 toward the front side of the machine body. In order to show the arm portion 63 in an easy-to-understand manner, the inclined surface 65a in FIG. 6 shows only the front lower portion.
  • a flange portion 65b is formed on the left side of the bulging portion 65, and a stay 67 is connected to the flange portion 65b by a bolt Bo.
  • the central region of the stay 67 in the longitudinal direction protrudes from both ends of the stay 67 in the longitudinal direction toward the side away from the bulging portion 65.
  • the first sensor unit 64 is supported in the central region of the stay 67 in the longitudinal direction.
  • the first sensor unit 64 is located outside the grain frying device 29 with the flange portion 65b of the bulging portion 65 interposed therebetween. That is, the first sensor unit 64 is provided in a state of being separated from the throwing path region S1 at a position outside the throwing path region S1 of the grains thrown from the bucket 31.
  • a through hole is formed in the flange portion 65b of the bulging portion 65, and the rotating shaft 66 penetrates the through hole.
  • a link arm 66A is provided at an end of the rotating shaft 66 on the side opposite to the side where the arm portion 63 is located with the flange portion 65b of the bulging portion 65 interposed therebetween, and the link arm 66A is provided on the radial outer side of the rotating shaft 66. Extend to. Further, a through hole is formed in the central region of the stay 67 in the longitudinal direction, and the rotation shaft portion 64A of the first sensor portion 64 penetrates the through hole.
  • the link arm 64B is connected to the tip end portion of the rotation shaft portion 64A of the first sensor portion 64, and the link arm 64B extends outward in the radial direction.
  • the link arm 66A and the link arm 64B are pin-connected.
  • the arm unit 63 that rotates integrally with the rotation shaft 66 and the first sensor unit 64 are interlocked and connected via the link arm 66A, the link arm 64B, and the pin 99.
  • the first sensor unit 64 is less likely to receive an impact from the arm unit 63, and the first sensor unit 64 is less likely to fail, as compared with the configuration in which the first sensor unit 64 and the rotating shaft 66 are directly connected. ..
  • the first sensor unit 64 detects the swing angle ⁇ 1 (see FIG.
  • a first flow rate calculation unit 81A for calculating the flow rate Fv1 based on the swing angle ⁇ 1 is provided (see FIG. 17).
  • a map or an equation showing the relationship between the swing angle ⁇ 1 and the flow rate Fv1 is stored in advance in the first flow rate calculation unit 81A. Maps and equations showing the relationship between the swing angle ⁇ 1 and the flow rate Fv1 are obtained in advance by experiments and calculations (experiments or calculations). Then, the first flow rate calculation unit 81A calculates the flow rate Fv1 based on the map or the formula.
  • a long hole is formed in one of the link arm 66A and the link arm 64B, and a round hole is formed in the other of the link arm 66A and the link arm 64B.
  • the elongated hole extends along one of the longitudinal directions.
  • the link arm 66A and the link arm 64B are pin-connected by inserting one pin 99 into the one long hole and the other round hole. Since a long hole is formed in one of the link arm 66A and the link arm 64B, an error in centering in the pin connection between the link arm 66A and the link arm 64B is allowed. With this configuration, it is not necessary to precisely align the rotating shaft portion of the first sensor unit 64 and the rotating shaft 66 on the same axis, and the assembly of the first sensor unit 64 in the first sensor 60 becomes easy.
  • Insertion holes for inserting bolts Bo are formed at the left and right ends of the stay 67, and the diameter of the insertion holes is larger than the nominal diameter of the bolt Bo (for example, about 3 mm larger than the nominal diameter) and the bolt Bo. It is formed so as to be smaller than the diameter of the head of the head. This configuration facilitates the alignment of the rotating shaft portion of the first sensor portion 64 with respect to the rotating shaft 66. That is, the assembly of the first sensor unit 64 in the first object sensor 60 becomes easy.
  • the stay 67 is provided with a spring receiving portion 67a.
  • a coil spring 68 is stretched over the free end portion of the link arm 66A and the spring receiving portion 67a.
  • the arm portion 63 is oscillated and urged to approach the grain raising device 29 by the pulling force of the coil spring 68.
  • the region of the arm portion 63 on the swing base end side abuts on the locking portion 69, and the position is held in a downward standby posture against the spring urging force of the coil spring 68. If the arm portion 63 is in contact with the locking portion 69 and the urging force of the coil spring 68 acts on the arm portion 63, vibration due to unevenness in the field, vibration from the engine, or the like is transmitted to the arm portion 63. However, the arm portion 63 is held in a downward standby posture without being affected by vibration.
  • the arm portion 63 is configured to be swingable within the range of the position of the downward posture and the front and lower end portions of the inclined surface 65a.
  • the swing angle ⁇ 1 of the arm portion 63 is set to, for example, 40 degrees.
  • a receiving portion 30d is formed at the starting end portion in the transport direction of a tubular case that covers the screw portion 30S, and the receiving portion 30d receives grains thrown from the bucket 31.
  • the receiving portion 30d extends from the screw portion 30S of the lateral feed transporting device 30 to the side where the grain raising device 29 is located.
  • the receiving portion 30d is inclined so as to be located on the lower side toward the side where the screw portion 30S is located.
  • the region where the extension tip portion of the receiving portion 30d is located is indicated by the virtual line L1 in the side view of the machine body, and the arm portion 63 is the screw portion of the lateral feed transport device 30 rather than the virtual line L1. It is arranged on the side where 30S is located. Further, in the side view of the machine body, the portion of the screw portion 30S where the machine body lateral axis Y1 is located is indicated by the virtual line L2, and the arm portion 63 is lifted above the virtual line L2 in a state where the grains extend downward without colliding with each other. It is arranged on the side where the grain device 29 is located.
  • the arm portion 63 is arranged in the region between the virtual line L1 and the virtual line L2 in a state where the grains extend downward without colliding with each other.
  • the arm portion 63 is located at a position higher than the screw portion 30S in the transfer space between the grain raising device 29 and the lateral feed transport device 30, and in the direction in which the grain frying device 29 and the lateral feed transport device 30 are adjacent to each other.
  • It is configured to swing around a swinging shaft core Y2 provided at a position between the discharge port 29h and the machine body lateral shaft core Y1.
  • the grain collides with the arm portion 63
  • the grain falls downward due to the repulsive force from the arm portion 63. From this, the grains that collide with the arm portion 63 are more likely to fall into the return path 29E than the grains that do not collide with the arm portion 63.
  • the arm portion 63 is arranged on the side where the screw portion 30S of the lateral feed transport device 30 is located with respect to the extension tip portion of the receiving portion 30d. Therefore, most of the grains that collide with the arm portion 63 and are bounced off are received by the receiving portion 30d and guided into the grain tank 12 by the lateral feed transport device 30. As a result, the grains colliding with the arm portion 63 are less likely to fall into the return path 29E.
  • the arm portion 63 is formed so that the width of the arm portion 63 is less than half the width of the bucket 31. Since the grains are thrown substantially uniformly from the bucket 31 in the width direction of the bucket 31, more than half of the grains thrown from the bucket 31 are received by the receiving portion 30d without colliding with the arm portion 63. As a result, the possibility that the grains are repelled by the arm portion 63 and fall into the return path 29E is reduced. That is, the width of the arm portion 63 is set to be narrower than the width of the opening of the bucket 31.
  • the arm portion 63 is arranged on the side where the grain raising device 29 is located rather than the virtual line L2 in a state where the grains extend downward without colliding with each other. Therefore, the grain collides strongly with the arm portion 63 as compared with the configuration in which the arm portion 63 is arranged on the side opposite to the side where the grain raising device 29 is located with respect to the virtual line L2. From this, even if the amount of grains thrown from the bucket 31 is small, the first product sensor 60 can accurately measure the flow rate Fv1 of the grains.
  • the grains when the grains are thrown from the bucket 31, the grains fall into the side where the receiving portion 30d is located while forming a continuous strip shape up and down and drawing a parabola.
  • the arm portion 63 is located on the throwing path of the grains (throwing path region S1), and the grains located on the upper side of the vertically continuous band-shaped grains come into contact with the arm portion 63.
  • the arm portion 63 swings in a direction away from the bucket 31 where the grain is thrown against the urging force of the coil spring 68 due to the pressing force thereof.
  • the swinging base end portion of the arm portion 63 is off the upper side of the throwing path region S1 of the grain. That is, the arm portion 63 is configured to swing around the swing shaft core Y2 provided at a position deviating from the throwing path region S1 of the grains thrown from the bucket 31.
  • FIG. 5 shows the virtual line L3.
  • the virtual line L3 extends downward from the swing axis Y2 and intersects in a direction orthogonal to the upper end line of the throwing path region S1.
  • the free end portion of the arm portion 63 is located on the side where the virtual line L2 is located rather than the virtual line L3 in a state where the grains extend downward without colliding with each other. From this, the more the arm portion 63 swings toward the side where the virtual line L2 is located, the more portion of the arm portion 63 that protrudes outside the range of the throwing path region S1. That is, the arm portion 63 is configured so that the larger the swing angle ⁇ 1, the greater the proportion of the arm portion 63 protruding outside the throwing path region S1.
  • the arm portion 63 swings. Then, when most of the grains thrown from the bucket 31 have passed through the region where the arm portion 63 is located, the arm portion 63 is returned to the downward posture side by the urging force of the coil spring 68.
  • 20 to 30 buckets 31 pass through the upper end of the grain raising device 29 per second, and grains are thrown from the bucket 31 at intervals of 1/20 to 1/30 seconds at the discharge port 29h. To. For this reason, the arm portion 63 swings (vibrates) in a cycle of 1/20 second to 1/30 second.
  • the amount of grains thrown from the bucket 31 is larger than that in the example shown in FIG.
  • the amount of grains thrown from the bucket 31 increases, the thrown grains become lumpy at the discharge port 29h and increase in thickness.
  • the amount of grains thrown from the bucket 31 increases, and the swing angle ⁇ 1 of the arm portion 63 increases.
  • the number of grains thrown from the bucket 31 increases, the grains become lumpy at the discharge port 29h and increase in thickness, so that the time required for the lumpy grains to pass through the throwing path region S1 becomes long. Therefore, there is almost no time for the arm portion 63 to be returned to the downward posture side, and the swing angle ⁇ 1 remains largely maintained.
  • the swing of the arm portion 63 stops. In other words, when the arm portion 63 and the front lower end portion of the inclined surface 65a come into contact with each other, the swing of the arm portion 63 is maximized. In this state, substantially the entire arm portion 63 other than the free end portion is housed in the internal space 62. At this time, since the grains thrown in a parabolic shape along the inner peripheral side surface portion of the top plate 61 touch only the free end portion of the arm portion 63, most of the grains do not touch the arm portion 63 and are lateral to each other. It is guided to the receiving portion 30d of the feed transport device 30.
  • the second product is reduced to the upstream side, which is the front portion of the swing sorting device 24, by the second product reducing device 32.
  • the second product discharge port 32A of the second product reduction device 32 is located at a position outside the radial direction in the arc-shaped receiving net 23 (the second material is on the side of the receiving net 23, and the second product is the receiving net 23). It is provided at a position that does not pass through), and the second item is discharged at this position.
  • the threshing device 1 is provided with a second product sensor 70 for measuring the flow rate Fv2 (second product reduction amount, see FIG. 17) of the second product thus reduced. 10 to 13 show an arrangement form of such a second product discharge port 32A.
  • the second product discharge port 32A is provided toward the receiving net 23 side.
  • a rotary blade 32B that rotates together with the screw constituting the second product reduction device 32 is provided and is conveyed by the second product reduction device 32.
  • the second product is discharged radially outward from the second product discharge port 32A by the rotary blade 32B through an insertion hole formed in the side wall 50 of the threshing portion 41, and is discharged as shown by the broken line arrow in FIG. To.
  • the second product discharge port 32A is provided with a guide unit 32C that guides the released second product toward the upper side in the processed material transfer direction of the rocking sorting device 24.
  • the guide portion 32C is configured to exhibit a part of a cylinder having an inner peripheral surface facing the second object discharge port 32A.
  • the guide portion 32C has a shape in which the strip is bent into an arc shape.
  • the inner peripheral surface of the guide portion 32C regulates the discharge direction of the second object discharged by the rotary blade 32B.
  • the second sensor 70 is supported by the inner side portion of the side wall 50 in the threshing section 41.
  • the second product sensor 70 is configured to measure the flow rate Fv2 of the second product that is reduced in contact with the second product emitted by the rotary blade 32B in the second product reduction device 32.
  • the second object sensor 70 is located on the emission extension of the second object emitted by the second object reduction device 32 and swings by the contact of the emitted second object with the swing arm 72 and the swing arm 72.
  • a second sensor unit 73 that measures the flow rate Fv2 of the second object based on the swing angle ⁇ 2 of the arm 72 (see FIG. 17), and a support frame 74 that supports the second sensor unit 73 and the swing arm 72.
  • a cover body 75 that covers the upper part of the number sensor 70 is provided.
  • the second sensor unit 73 has a potentiometer built in the case and is fastened and fixed to the inner side of the support frame 74 with bolts.
  • the second sensor unit 73 is provided with the rotation shaft 76 protruding outward (side of the side wall 50) through the support frame 74, and the swing arm 72 is attached to the rotation shaft 76 so as to be integrally rotatable. ..
  • the swing arm 72 extends downward from the rotation shaft 76, and is provided in a state of being located in a guide path in which the second object is guided by the guide portion 32C.
  • the swing arm 72 is swingably supported around the axis of the rotating shaft 76.
  • the cover body 75 is configured to cover above each of the swing arm 72, the second sensor portion 73, and the support frame 74.
  • the cover body 75 can prevent fine dust from the threshed material leaking through the receiving net 23 from falling on the swing arm 72 and the second sensor unit 73 and hindering the measurement operation.
  • the swing arm 72 has an extending portion extending above the rotating shaft 76, and a coil spring 78 is stretched over the extending portion and the spring receiving portion 77.
  • the swing arm 72 is swing-forced so as to approach the second discharge port 32A by the pulling force of the coil spring 78.
  • the upper end of the swing arm 72 abuts on the locking portion 79, and the position of the swing arm 72 is held in a downward standby posture against the force of the spring.
  • the swing arm 72 When the second object discharged by the rotary blade 32B through the second object discharge port 32A comes into contact with the swing arm 72, the swing arm 72 resists the urging force of the coil spring 78 due to the pressing force of the second object discharge port 32A. Swings in the direction away from.
  • the swing angle ⁇ 2 at this time is measured by the second sensor unit 73, and the second flow rate calculation unit 81B (see FIG. 17) calculates the flow rate Fv2 of the second product based on the measurement result of the second sensor unit 73. ..
  • a map or formula showing the relationship between the swing angle ⁇ 2 and the flow rate Fv2 of the second product is stored in the second flow rate calculation unit 81B, and the flow rate Fv2 of the second product is stored based on the map or formula. It is preferable to calculate.
  • a rubber hump 30e is bolted to the protruding tip of the receiving portion 30d.
  • the hump 30e is positioned so as to be in contact with the bucket 31.
  • the impact of contact between the hump 30e and the bucket 31 causes the grains left in the bucket 31 to be ejected and guided to the receiving portion 30d.
  • the hump 30e elastically deforms downward, and the bucket 31 swings upward.
  • the hump 30e and the bucket 31 are separated from each other. At this time, the elastic energy of the hump 30e is released, and the hump 30e vigorously returns to its original shape.
  • the first flow rate calculation unit 81A calculates the flow rate Fv1 of the grains flowing through the grain raising device 29 and the lateral feed transport device 30 based on the swing angle ⁇ 1 of the arm unit 63 measured by the first sensor unit 64.
  • the correlation between the swing angle ⁇ 1 and the grain flow rate Fv1 can be obtained, for example, by experimental data or a learning algorithm.
  • the data of the correlation between the experimental data and the swing angle ⁇ 1 obtained by the learning algorithm and the grain flow rate Fv1 are stored in a storage device (not shown) or the like.
  • the first flow rate calculation unit 81A can calculate the flow rate Fv1 of the grains in a sampling cycle of, for example, 1/20 second to 1/30 second. From this, the first flow rate calculation unit 81A can calculate the flow rate Fv1 of the grains flowing through the grain raising device 29 and the lateral feed transport device 30 in real time (or substantially real time).
  • the second flow rate calculation unit 81B calculates the flow rate Fv2 of the second product discharged from the second product discharge port 32A based on the swing angle ⁇ 2 of the swing arm 72 measured by the second sensor unit 73.
  • the correlation between the swing angle ⁇ 2 and the flow rate Fv2 of the second object can be obtained, for example, by experimental data or a learning algorithm.
  • the data of the correlation between the experimental data and the swing angle ⁇ 2 obtained by the learning algorithm and the flow rate Fv2 of the second object are stored in a storage device (not shown) or the like. Similar to the first flow rate calculation unit 81A, the second flow rate calculation unit 81B can calculate the flow rate Fv2 of the second product discharged from the second product discharge port 32A in real time (or substantially real time).
  • the correction unit 80 corrects the grain flow rate Fv1 calculated by the first flow rate calculation unit 81A with the second flow rate Fv2 calculated by the second flow rate calculation unit 81B.
  • FIG. 18 is an example of the detection amount regarding the flow rate Fv1 of the grain and the flow rate Fv2 of the second product in the present embodiment. Specifically, the correction unit 80 corrects by adding the second flow rate Fv2 to the grain flow rate Fv1 from the start of the harvesting work in the work target area until the grain flow rate Fv1 reaches a predetermined amount. do.
  • the work target area is an area where the combine harvests crops in the field. As shown in FIG.
  • the correction unit 80 corrects the detection result of the first sensor 60 by adding the second flow rate Fv2 to the flow rate Fv1 of the grain detected by the first sensor 60 from the start of cutting to t1.
  • the correction unit 80 corrects by subtracting the flow rate Fv2 of the second product from the flow rate Fv1 of the grains.
  • the work target area means after the combine harvester 4 runs through the area where the crop is cut in the field.
  • the flow rate Fv1 of the grain increases sharply (suddenly) and then gradually decreases.
  • the flow rate Fv2 of the product gradually decreases.
  • the correction unit 80 subtracts the flow rate Fv2 of the second grain from the flow rate Fv1 of the grain detected by the first grain sensor 60 after t2 after a predetermined time has elapsed from the cutting, and the correction unit 80 of the first grain sensor 60. Correct the detection result.
  • the flow rate Fv1 of the grain corrected by the correction unit 80 is sent to the work amount calculation unit 84.
  • the yield reception unit 85 receives a specific yield value Vd.
  • a specific yield value Vd a yield value corresponding to a known capacity of the grain tank 12, a yield value corresponding to the capacity (or remaining amount) that can be carried by a carrier, and a dryer of a drying facility can be dried.
  • An example is a yield value corresponding to the capacity.
  • the specific yield value Vd may be configured to read out the capacity of the grain tank 12 stored in advance in a storage device (not shown) or the like, or may be configured by the operator on the operation panel of the operation unit 9. May be there. Further, the specific yield value Vd may be configured to receive data from the outside through the wireless communication network.
  • the specific yield value Vd received by the yield reception unit 85 is sent to the work amount calculation unit 84.
  • the aircraft position calculation unit 88 calculates the position coordinates of the aircraft over time based on the positioning data output by the satellite positioning module 83. That is, the aircraft position calculation unit 88 calculates the aircraft position using satellite positioning. The calculated position coordinates of the machine over time are sent to the work amount calculation unit 84.
  • the work amount calculation unit 84 calculates the total amount of grains stored in the grain tank 12 by integrating the flow rate Fv1 of the grains calculated by the first flow rate calculation unit 81A and corrected by the correction unit 80. That is, the yield Vi is calculated in real time. Since the grain flow rate Fv1 is sent one after another from the first flow rate calculation unit 81A, for example, every 1/20 second to 1/30 second, the work amount calculation unit 84 is a unit based on the grain flow rate Fv1. The average yield Vt per hour can be calculated.
  • the work amount calculation unit 84 receives the temporal position coordinates of the aircraft calculated by the aircraft position calculation unit 88, the mileage and speed can be calculated by calculating the difference in the temporal position coordinates of the aircraft. Is. From this, the work amount calculation unit 84 can calculate the average yield Vr per unit mileage based on the flow rate Fv1 of the grains.
  • the work amount calculation unit 84 calculates various work amounts based on the specific yield value Vd, the grain flow rate Fv1, and the position coordinates of the machine body calculated by the machine body position calculation unit 88. It is configured.
  • the various working amounts are the working amounts until the grains corresponding to the specific yield value Vd are stored in the grain tank 12. For example, if the specific yield value Vd is the capacity of the grain tank 12, the work amount calculation unit 84 calculates the work amount until the grain tank 12 is full. Further, for example, if the specific yield value Vd is the transportable capacity (or remaining amount) of the carrier, the work amount calculation unit 84 determines the work amount corresponding to the transportable capacity (or remaining amount) of the carrier. calculate.
  • the work amount calculation unit 84 calculates the remaining amount value Vre as the work amount by the following formula.
  • Vre Vd-Vi
  • the remaining amount value Vre is a value obtained by subtracting the yield Vi from the specific yield value Vd.
  • the working time Tw is a value obtained by dividing the remaining value Vre, which is obtained by subtracting the yield Vi from the specific yield value Vd, by the average yield Vt per unit time.
  • the work amount calculation unit 84 calculates the work mileage Dw as the work amount by the following formula.
  • the working mileage Dw Vre / Vr
  • the working mileage Dw is a value obtained by dividing the remaining value Vre, which is obtained by subtracting the yield Vi from the specific yield value Vd, by the average yield Vr per unit mileage.
  • the work amount calculation unit 84 calculates the work amount required for the yield Vi of the grains obtained by the harvesting work to reach a specific yield value Vd based on the flow rate Fv1 of the grains.
  • the work amount calculated by the work amount calculation unit 84 (for example, remaining amount value Vre, work time Tw, work mileage Dw, etc.) is notified to the operator or the like by the notification unit 87.
  • the notification unit 87 is, for example, a liquid crystal monitor provided in the operation unit 9, the calculation results of the first flow rate calculation unit 81A and the work amount calculation unit 84 are displayed on the liquid crystal monitor.
  • the notification unit 87 may be an LED lamp, a buzzer, voice guidance, or the like.
  • the discharge amount calculation unit 86 calculates the amount of grains discharged from the grain tank 12 based on the rotation speed Rv of the screw conveyor 14A of the grain discharge device 14.
  • the rotation speed Rv of the screw conveyor 14A is detected by the rotation speed detection unit 14B.
  • the amount of grains discharged by the grain discharge device 14 per unit time is proportional (or substantially proportional) to the rotation speed Rv of the screw conveyor 14A. Therefore, by multiplying the rotation speed Rv of the screw conveyor 14A by time, the amount of grains discharged is calculated in real time.
  • the yield Vi of the grains stored in the grain tank 12 before the grains are discharged to the outside of the machine is calculated by the work amount calculation unit 84. Therefore, the discharge amount calculation unit 86 calculates the remaining amount of grains left inside the grain tank 12 in real time by subtracting the integrated discharge amount from the yield Vi during the discharge of the grains. Is also good.
  • the calculation result of the emission amount calculation unit 86 is notified to the operator and the like by the notification unit 87.
  • the notification unit 87 is a liquid crystal monitor
  • the calculation result of the emission amount calculation unit 86 is displayed on the liquid crystal monitor.
  • the grains stored in the grain tank 12 tend to accumulate in a mountain shape, but in this configuration, the first thing sensor 60 between the grain raising device 29 and the lateral feed transport device 30 is the flow rate of the grains. Detects Fv1. Due to the configuration in which the first product sensor 60 detects the flow rate Fv1 of the grains between the grain raising device 29 and the lateral feed transport device 30, the shape of the grain pool inside the grain tank 12 is not affected. It is possible to calculate the amount of work with high accuracy.
  • the flow rate Fv1 of the grains corrected by the correction unit 80 is transmitted to the control unit 82.
  • the control unit 82 controls the threshing device 1 based on the corrected flow rate Fv1 of the grain and the flow rate Fv2 of the second product. Specifically, as shown in FIG. 19, in the control unit 82, if the flow rate Fv1 of the grains exceeds the first threshold value and the flow rate Fv2 of the second product exceeds the second threshold value, the sorting unit 42 The leakage opening degree of at least one of the first chaff sheave 38 and the second chaff sheave 39 is reduced.
  • the flow rate Fv1 of the grains can be reduced, the flow rate Fv2 of the second product can be increased, the amount of the threshed product to be sorted by the threshing device 1 can be increased, and the sorting accuracy can be further improved. Therefore, it is possible to reduce the amount of impurities mixed in the first substance.
  • control unit 82 it is preferable to increase the leakage opening degree of the chaff sheave when the flow rate Fv1 of the grain becomes smaller than the third threshold value smaller than the preset first threshold value. Thereby, when the flow rate Fv1 of the grain is not more than a predetermined amount, the flow rate Fv1 of the grain can be increased.
  • the state in which the flow rate Fv1 of the grains is larger than the first threshold value continues, or It is assumed that the state in which the flow rate Fv2 of the second product is below the second threshold value continues or the ratio of the flow rate Fv2 of the second product to the flow rate Fv1 of the grains does not decrease, but this is supplied to the threshing device 1. This is due to too much crop being produced.
  • the traveling control of the machine frame 2 is performed particularly when the flow rate Fv2 of the second product is larger than the second threshold value. It is preferable that the traveling device 3 reduces the traveling speed of the machine frame 2. This makes it possible to reduce the amount of crops supplied to the threshing device 1 and reduce the amount of threshing and sorting in the threshing device 1. Therefore, for example, when the flow rate Fv2 of the second product is increased due to the state in which the threshed product is clogged in the Glen Sheave 40, it is possible to eliminate the state in which the threshed product is clogged. ..
  • Such a traveling device 3 can also be configured to automatically travel the machine frame 2. In such a case, it is possible to reduce the traveling speed of the airframe frame 2 or stop the vehicle based on the first threshold value and the second threshold value.
  • the flow rate Fv2 of the second product with respect to the flow rate Fv1 of the grain is from the time when the leakage opening degree of the first chaf sheave 38 and the second chaf sheave 39 is increased to the time when a preset time elapses.
  • the traveling is performed. It is preferable that the device 3 stops the airframe frame 2.
  • the supply of crops to the threshing device 1 can be temporarily interrupted, so that the load related to the threshing process and the sorting process in the threshing device 1 can be reduced. Therefore, at present, it is possible to process the crop in the threshing device 1 and eliminate the state in which the threshed product in the Glenshive 40 is clogged.
  • tilting posture of the dust feed valve 53a can be changed, it is also possible to change the tilting angle based on the flow rate Fv1 of the grain and the flow rate Fv2 of the second product.
  • the combine may be a head-feeding combine.
  • the configuration of the first sensor 60 shown in the above embodiment is also applicable to a head-feeding combine.
  • the first product sensor 91 may be supported by the top plate 12t of the grain tank 12.
  • a vertically extending grain raising device 90 is supported on the left side wall 12b of the grain tank 12, a screw conveyor 90A is provided in the grain raising device 90, and the screw conveyor 90A rotates clockwise in a plan view.
  • a discharge port 12h is formed at a position on the left side wall 12b where the upper end of the grain raising device 90 is located, and the discharge port 12h communicates with the internal space of the grain raising device 90.
  • the screw conveyor 90A vertically conveys grains from the bottom of the threshing device 1, and a rotary blade 90B is provided at the upper end of the screw conveyor 90A.
  • the rotary blade 90B rotates integrally with the screw conveyor 90A.
  • the discharge port 12h is provided at a position where the rotary blade 90B is located.
  • the first object sensor 91 is provided with an arm unit 92 and a sensor unit 93.
  • the swing angle ⁇ 1 of the arm unit 92 is measured by the sensor unit 93, and the flow rate Fv1 of the grains is calculated based on the measurement result.
  • a bulging portion 95 is formed on the top plate 12t of the grain tank 12.
  • the bulging portion 95 bulges upward from the surface portion of the top plate 12t, and a bulging space is formed inside the bulging portion 95.
  • the rotation shaft 94 of the arm portion 92 is supported by the bulging portion 95.
  • the bulging portion 95 is formed so that the portion of the bulging portion 95 located directly above the rotation shaft 94 is at the highest position.
  • an inclined surface 95a is formed on the front portion of the machine body of the bulging portion 95, and the inclined surface 95a approaches the top plate 12t toward the front side of the machine body.
  • FIG. 20 shows the virtual line L3.
  • the virtual line L3 extends downward from the swing axis Y2 and intersects in a direction orthogonal to the upper end line of the throwing path region S1.
  • the free end portion of the arm portion 92 is located on the side opposite to the side where the discharge port 12h is located with respect to the virtual line L3 in a state where the grains extend downward without colliding with each other. From this, the more the arm portion 92 swings to the side opposite to the side where the discharge port 12h is located, the more portion of the arm portion 92 that protrudes out of the throwing path region S1. That is, the arm portion 92 is configured so that the larger the swing angle ⁇ 1, the greater the proportion of the arm portion 92 protruding outside the throwing path region S1.
  • the arm portion 92 swings upward greatly.
  • the swing base end portion side of the arm portion 92 is located above the top plate 12t and is housed in the bulging portion 95. That is, when the amount of the most matter discharged from the discharge port 12h is large, the arm portion 92 swings upward greatly, and the ratio of the portion of the arm portion 92 that deviates above the throwing path region S1 of the grain is increased. Will increase. Further, the larger the arm portion 92 swings upward, the larger the proportion of the portion of the arm portion 92 that is housed in the bulging portion 95. Therefore, most of the first thing diffuses into the inside of the grain tank 12 along the parabola without coming into contact with the arm portion 92.
  • the traveling device 3 that controls the traveling of the machine frame 2 is the machine frame 2.
  • the present invention is not limited to this embodiment.
  • the leakage opening degree of the first chaff sheave 38 is set to be small, the flow rate Fv1 of the grains is reduced, and the reduced amount of the flow rate Fv1 of the grains is collected as the second item by the second item collection unit 27 for further sorting. The accuracy is improved.
  • the control unit 82 increases the leakage opening degree of the first chaff sheave 38. May be. As a result, the leakage of the sorted product from the first chaff sheave 38 is promoted, the flow rate Fv1 of the grains increases, and the amount collected by the second product collection unit 27 decreases, so that the second product collection unit 27 The risk of the second item overflowing is reduced.
  • the control unit 82 may use the control unit 82.
  • the leakage opening degree of the first chaff sheave 38 is increased, and the traveling speed of the airframe is reduced.
  • the control unit 82 reduces the traveling speed of the aircraft, but does not increase the leakage opening degree of the first chaff sheave 38. .. Then, when the flow rate Fv2 of the second object is larger than the second threshold value and larger than the fourth threshold value, the control unit 82 increases the leakage opening degree of the first chaff sheave 38 and the traveling speed of the aircraft. To reduce.
  • control unit 82 increases the leakage opening degree of the first chaff sheave 38 and changes the traveling speed of the aircraft. It may be configured to return to the previous state.
  • the control unit 82 increases the leakage opening degree of the first chaff sheave 38, but does not reduce the traveling speed of the aircraft. .. Then, when the flow rate Fv2 of the second object is larger than the fourth threshold value and larger than the second threshold value, the control unit 82 increases the leakage opening degree of the first chaff sheave 38 and the traveling speed of the aircraft. To reduce.
  • control unit 82 reduces the traveling speed of the machine body and changes the leakage opening degree of the first chaff sheave 38. It may be configured to return to the previous state.
  • the correction unit 80 corrects the grain flow rate Fv1 calculated by the first flow rate calculation unit 81A with the second flow rate Fv2 calculated by the second flow rate calculation unit 81B. , Not limited to this embodiment.
  • the correction unit 80 may not be provided, and the flow rate Fv1 of the grains may not be corrected by the correction unit 80.
  • the amount of work may be an adjustment value of the leakage opening degree of the chaff sheave.
  • the work amount calculation unit 84 may be configured to output the adjustment value of the leakage opening degree to the control unit 82 based on the flow rate Fv1 of the grains.
  • the control unit 82 may be configured to adjust the leakage opening degree of the first chaff sheave 38 and the second chaff sheave 39 based on the adjustment value received from the work amount calculation unit 84.
  • the working time Tw as the working amount is a value obtained by subtracting the yield Vi from the specific yield value Vd and dividing the remaining value Vre by the average yield Vt per unit time. It is not limited to the form.
  • the work mileage Dw as the work amount is a value obtained by dividing the remaining value Vre obtained by subtracting the yield Vi from the specific yield value Vd by the average yield Vr per unit mileage. It is not limited to the embodiment.
  • the working amount may be a value obtained by dividing the remaining value Vre, which is obtained by subtracting the yield Vi from the specific yield value Vd, by the flow rate Fv1 (instantaneous value).
  • the working amount is the working amount until the grain corresponding to the specific yield value Vd is stored in the grain tank 12, but is not limited to this embodiment.
  • the amount of work may be the amount of work until grains corresponding to a specific yield value Vd are stored in a truck for transporting grains. Further, the amount of work may be the amount of work until the grains corresponding to the specific yield value Vd are stored in the dryer of the drying facility.
  • the first sensor 60 is configured to detect the swing angle ⁇ 1 of the arm portion 63 by the first sensor portion 64, but is not limited to this embodiment.
  • the first object sensor 60 may be provided with a plate portion and a load cell.
  • the load cell may be configured to detect the load from the plate portion when the grains collide with the plate portion.
  • the combine is provided with a first flow rate calculation unit 81A, a second flow rate calculation unit 81B, a work amount calculation unit 84, a yield reception unit 85, an emission amount calculation unit 86, and the like. It is not limited to the embodiment.
  • a computer one or more computers, deferred in which the first flow rate calculation unit 81A, the second flow rate calculation unit 81B, the work amount calculation unit 84, the yield reception unit 85, the emission amount calculation unit 86, etc. are not mounted on the combine. It may be any of the portable devices).
  • a calculation system may be configured in which each of the computer and the harvester is provided with a separate calculation function, and each calculation function can perform data communication (for example, wired / wireless Internet communication) with each other.
  • the present invention can be used for a combine that cuts a planted grain culm in a field and performs a threshing sorting process of the cut grain culm by a threshing device. Further, the technical features of the combine of the present invention can also be applied to a calculation system. Therefore, the above-described embodiment can be configured as a calculation system. In addition, the technical features of the combine of the present invention can also be applied to the calculation method. Therefore, the above-described embodiment can be configured as a calculation method. In addition, the technical features of the combine of the present invention are also applicable to calculation programs. Therefore, the above-described embodiment can be configured as a calculation program. Further, a recording medium such as an optical disk, a magnetic disk, or a semiconductor memory in which a calculation program having this technical feature is recorded is also included in the configuration of the above-described embodiment.
  • a recording medium such as an optical disk, a magnetic disk, or a semiconductor memory in which a calculation program having this technical feature is recorded is also included in the configuration
  • Threshing device 12 Grain tank 29: Grain raising device (transport device) 30: Horizontal feed transfer device (transport device) 60: First object sensor (flow rate measuring device) 63: Arm part 64: First sensor part (sensor part) 81A: First flow rate calculation unit (calculation unit) 84: Work amount calculation unit 85: Yield reception unit Fv1: Grain flow rate Vi: Grain yield Vd: Specific yield value Vr: Average yield per unit mileage Vt: Average yield per unit time Dw: Work travel Distance (work load) Tw: Working time (work amount) ⁇ 1: Swing angle of the arm

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Threshing Machine Elements (AREA)
  • Combines (AREA)

Abstract

This combine comprises: a threshing device for threshing a crop; a grain tank for storing grain that has been obtained by the threshing device; a conveyance device for conveying, from the threshing device to the grain tank, the grain that has been obtained by the threshing device; a flow rate measurement device 81A for measuring the flow rate Fv1 of the grain conveyed by the conveyance device; a yield reception unit 85 for receiving a specific yield value Vd; and a work quantity determination unit 84 for determining, on the basis of the flow rate Fv1, the work quantity required for the yield Vi of the grain that has been obtained by harvesting work to reach the specific yield value Vd.

Description

コンバイン、算定システム、算定方法、算定プログラム、及び、記録媒体Combine, calculation system, calculation method, calculation program, and recording medium
 本発明は、脱穀装置によって得られた穀粒を脱穀装置から穀粒タンクへ搬送する搬送装置と、搬送装置によって搬送される穀粒の流量を計測する流量計測装置と、が備えられたコンバイン、算定システム、算定方法、算定プログラム、及び、記録媒体に関する。 The present invention is a combine provided with a transport device for transporting grains obtained by a threshing device from the threshing device to a grain tank, and a flow rate measuring device for measuring the flow rate of grains transported by the transport device. Regarding the calculation system, calculation method, calculation program, and recording medium.
 例えば日本国特開2019-216744号公報(特許文献1)に開示されたコンバインでは、穀粒タンク(特許文献1では「グレンタンク」)内に貯留された穀粒の収量(特許文献1では「収穫量」)が検出され、圃場において穀粒タンクが満杯になる位置が収量に基づいて予測される。穀粒の収量は、例えば日本国特開2020-000107号公報(特許文献2)に示されるように、穀粒タンク(特許文献2では「穀粒タンク」)の重量を測定するロードセル(特許文献2では「重量測定器」)によって検出される。 For example, in the combine disclosed in Japanese Patent Application Laid-Open No. 2019-216744 (Patent Document 1), the yield of grains stored in the grain tank (“Glen tank” in Patent Document 1) (Patent Document 1 states “ "Yield") is detected, and the position where the grain tank is full in the field is predicted based on the yield. The yield of grains is, for example, as shown in Japanese Patent Application Laid-Open No. 2020-000107 (Patent Document 2), a load cell for measuring the weight of a grain tank (“grain tank” in Patent Document 2) (Patent Document 2). In 2, it is detected by a "weight measuring instrument").
日本国特開2019-216744号公報Japanese Patent Application Laid-Open No. 2019-216744 日本国特開2020-000107号公報Japanese Patent Application Laid-Open No. 2020-000107
 ところで日本国特開2019-216744号公報に開示されたコンバインでは、圃場において穀粒タンクが満杯になる位置が収量に基づいて予測される構成となっているが、例えば穀粒タンクが満杯となる前であっても、特定の収量に基づく種々の作業(例えば穀粒の排出作業や、収量に応じたメンテナンス作業)が必要な場合も考えられる。このため、特定の収量に到達するまでの作業量を算定可能な構成であることが望ましい。また、このような特定の収量に到達するまでの作業量を算定するために、収量が精度よく検出されることが重要である。しかし、日本国特開2020-000107号公報に示された構成だと、穀粒タンク内における穀粒の溜まり方(例えば、前後一方寄りや左右一方寄りに偏倚して溜まる場合等)によってはロードセルの検出値が異なる場合もあるため、収量の検出精度の向上が課題である。 By the way, in the combine disclosed in Japanese Patent Application Laid-Open No. 2019-216744, the position where the grain tank is full in the field is predicted based on the yield. For example, the grain tank is full. Even before, various operations based on a specific yield (for example, grain discharge operation and maintenance work according to the yield) may be required. Therefore, it is desirable to have a configuration that can calculate the amount of work required to reach a specific yield. In addition, it is important that the yield is detected accurately in order to calculate the amount of work required to reach such a specific yield. However, according to the configuration shown in Japanese Patent Application Laid-Open No. 2020-000107, depending on how the grains are accumulated in the grain tank (for example, when the grains are accumulated in a front-rear direction or a left-right direction), the load cell is used. Since the detected values of may differ, improving the detection accuracy of the yield is an issue.
 本発明の目的は、ニーズに応じた特定の収量に到達するまでの作業量を精度良く算定可能なコンバインを提供することにある。 An object of the present invention is to provide a combine capable of accurately calculating the amount of work required to reach a specific yield according to needs.
 本発明によるコンバインでは、作物を脱穀処理する脱穀装置と、前記脱穀装置によって得られた穀粒を貯留する穀粒タンクと、前記脱穀装置によって得られた穀粒を、前記脱穀装置から前記穀粒タンクへ搬送する搬送装置と、前記搬送装置によって搬送される穀粒の流量を計測する流量計測装置と、特定の収量値を受け付ける収量受付部と、前記流量に基づいて、収穫作業によって得られた穀粒の収量が前記特定の収量値に到達するために必要な作業量を算定する作業量算定部と、が備えられていることを特徴とする。 In the combine according to the present invention, the threshing device for threshing the crop, the grain tank for storing the grains obtained by the threshing device, and the grains obtained by the threshing device are transferred from the threshing device to the grains. A transfer device for transporting to a tank, a flow rate measuring device for measuring the flow rate of grains transported by the transfer device, a yield receiving unit for receiving a specific yield value, and a harvesting operation obtained based on the flow rate. It is characterized by being provided with a work amount calculation unit for calculating the work amount required for the grain yield to reach the specific yield value.
 本発明では収量受付部が備えられているため、例えばオペレータや管理者は、収量受付部を介してニーズに応じた特定の収量を指定できる。このため、本発明であれば、例えば穀粒タンクが満杯となる前であっても、特定の収量に基づく種々の作業(例えば穀粒の排出作業や、収量に応じたメンテナンス作業)が必要となるまでの作業量を算定が可能となる。また、搬送装置によって搬送される穀粒の流量が流量計測装置によって計測され、記特定の収量値に到達するために必要な作業量が当該流量に基づいて算定される。つまり、穀粒タンク内における穀粒の溜まり方(例えば、前後一方寄りや左右一方寄りに偏倚して溜まる場合等)に左右されることなく、作業量の算定が可能となる。これにより、ニーズに応じた特定の収量に到達するまでの作業量を精度良く算定可能なコンバインが実現される。 Since the present invention is provided with a yield receiving unit, for example, an operator or a manager can specify a specific yield according to needs through the yield receiving unit. Therefore, in the present invention, for example, even before the grain tank is full, various operations based on a specific yield (for example, grain discharge operation and maintenance work according to the yield) are required. It is possible to calculate the amount of work until it becomes. In addition, the flow rate of grains transported by the transfer device is measured by the flow rate measuring device, and the amount of work required to reach the specified yield value is calculated based on the flow rate. That is, it is possible to calculate the amount of work without being influenced by how the grains are accumulated in the grain tank (for example, when the grains are accumulated unevenly in the front-rear direction or the left-right direction). As a result, a combine that can accurately calculate the amount of work required to reach a specific yield according to needs is realized.
 上述した収穫機の技術的特徴は、算定システムにも適用可能である。この場合における算定システムは、脱穀装置から搬送装置を介して穀粒タンクへ搬送される穀粒の流量を計測する流量計測装置と、特定の収量値を受け付ける収量受付部と、前記流量に基づいて、収穫作業によって得られた穀粒の収量が前記特定の収量値に到達するために必要な前記作業量を算定する作業量算定部と、が備えられていることを特徴とする。 The above-mentioned technical features of the harvester can also be applied to the calculation system. The calculation system in this case is based on a flow rate measuring device that measures the flow rate of grains transported from the threshing device to the grain tank via the transport device, a yield receiving unit that accepts a specific yield value, and the flow rate. It is characterized by being provided with a work amount calculation unit for calculating the work amount required for the yield of grains obtained by the harvesting work to reach the specific yield value.
 上述した収穫機の技術的特徴は、算定方法にも適用可能である。この場合における算定方法は、脱穀装置から搬送装置を介して穀粒タンクへ搬送される穀粒の流量を計測する流量計測ステップと、特定の収量値を受け付ける収量受付ステップと、前記流量に基づいて、収穫作業によって得られた穀粒の収量が前記特定の収量値に到達するために必要な前記作業量を算定する作業量算定ステップと、を備えることを特徴とする。 The above-mentioned technical features of the harvester can also be applied to the calculation method. In this case, the calculation method is based on a flow rate measuring step for measuring the flow rate of grains transported from the threshing device to the grain tank via the transport device, a yield receiving step for accepting a specific yield value, and the above-mentioned flow rate. It is characterized by comprising a work amount calculation step for calculating the work amount required for the yield of grains obtained by the harvesting work to reach the specific yield value.
 上述した収穫機の技術的特徴は、算定プログラムにも適用可能である。さらに、この技術的特徴を有する算定プログラムが記録された光ディスクや磁気ディスク、半導体メモリ等の記録媒体も上述した技術的特徴に含まれる。この場合における算定プログラムは、脱穀装置から搬送装置を介して穀粒タンクへ搬送される穀粒の流量を計測する流量計測機能と、特定の収量値を受け付ける収量受付機能と、前記流量に基づいて、収穫作業によって得られた穀粒の収量が前記特定の収量値に到達するために必要な前記作業量を算定する作業量算定機能と、をコンピュータに実行させることを特徴とする。 The above-mentioned technical features of the harvester can also be applied to the calculation program. Further, a recording medium such as an optical disk, a magnetic disk, or a semiconductor memory in which a calculation program having this technical feature is recorded is also included in the above-mentioned technical feature. The calculation program in this case is based on a flow rate measurement function that measures the flow rate of grains transported from the threshing device to the grain tank via a transfer device, a yield reception function that accepts a specific yield value, and the above-mentioned flow rate. It is characterized in that a computer is made to execute a work amount calculation function for calculating the work amount required for the yield of grains obtained by the harvesting work to reach the specific yield value.
 本発明において、前記作業量算定部は、前記流量を積算することによって前記収量を算定すると好適である。 In the present invention, it is preferable that the work amount calculation unit calculates the yield by integrating the flow rate.
 本構成によると、流量を積算することによって収量が算出されるため、穀粒タンク内における穀粒の溜まり方(例えば、前後一方寄りや左右一方寄りに偏倚して溜まる場合等)に関係なく、収量の算出が可能となる。このことから、例えば穀粒タンクの重量をロードセルで測定することによって穀粒の収量が計測される構成と比較して、収量の検出精度が向上する。 According to this configuration, since the yield is calculated by integrating the flow rate, regardless of how the grains are accumulated in the grain tank (for example, when the grains are accumulated unevenly in the front-rear direction or the left-right direction). The yield can be calculated. From this, the accuracy of yield detection is improved as compared with the configuration in which the yield of grains is measured by, for example, measuring the weight of the grain tank with a load cell.
 本発明において、前記作業量算定部は、前記流量に基づいて単位時間あたりの平均収量を算出し、前記特定の収量値から前記収量を減算して得られた値を前記平均収量で除算して、前記作業量として、作業時間を算定すると好適である。また、本発明において、前記作業量算定部は、前記流量に基づいて単位走行距離あたりの平均収量を算出し、前記特定の収量値から前記収量を減算して得られた値を前記平均収量で除算して、前記作業量として、作業走行距離を算定すると好適である。 In the present invention, the work amount calculation unit calculates the average yield per unit time based on the flow rate, and the value obtained by subtracting the yield from the specific yield value is divided by the average yield. It is preferable to calculate the working time as the working amount. Further, in the present invention, the work amount calculation unit calculates the average yield per unit mileage based on the flow rate, and the value obtained by subtracting the yield from the specific yield value is the average yield. It is preferable to divide and calculate the work mileage as the work amount.
 本構成によって、オペレータや管理者は、作業量として算定された作業時間と作業走行距離との少なくとも一方に基づいて、圃場における収穫作業を計画できる。 With this configuration, operators and managers can plan harvesting work in the field based on at least one of the working time calculated as the amount of work and the working mileage.
 本発明において、前記作業量は、前記穀粒タンクに前記特定の収量値に対応する穀粒が貯留されるまでの作業量であると好適である。 In the present invention, it is preferable that the working amount is the working amount until the grains corresponding to the specific yield value are stored in the grain tank.
 本構成であれば、作業量が穀粒タンク内における穀粒の貯留状態に基づいて算定されるため、オペレータや管理者は、例えば穀粒の排出作業等の具体的な作業と、当該具体的な作業が必要となるまでの収穫作業と、を計画できる。 In this configuration, the amount of work is calculated based on the state of storage of grains in the grain tank, so that the operator or manager can perform specific work such as grain discharge work and the specific work. You can plan the harvesting work until you need a lot of work.
 本発明において、前記流量計測装置に、搬送される穀粒が接触して揺動するアーム部と、前記アーム部の揺動角度を検出するセンサ部と、前記センサ部によって検出された揺動角度に基づいて前記流量を算出する算出部と、が備えられていると好適である。 In the present invention, the arm portion in which the grain to be conveyed comes into contact with the flow rate measuring device and swings, the sensor portion for detecting the swing angle of the arm portion, and the swing angle detected by the sensor portion. It is preferable that a calculation unit for calculating the flow rate based on the above is provided.
 本構成によると、穀粒がアーム部と接触するとアーム部が揺動し、アーム部の揺動角度がセンサ部によって検出される。コンバインの振動に起因してアーム部が共振する場合、例えばアーム部に掛かる荷重をセンサ部(例えばロードセル)が検出する構成であると、当該共振がセンサ部による荷重の検出に及ぼす影響は大きくなりがちである。一方、アーム部が共振しても、共振のみに起因してアーム部が揺動するわけではないため、センサ部がアーム部の揺動角度を検出する構成であれば、当該共振がセンサ部による揺動角度の検出に及ぼす影響は小さい。このことから、例えばアーム部に掛かる荷重をセンサ部が検出する構成と比較して、流量計測装置がコンバインの振動の影響を受け難くなる。つまり、アーム部の揺動角度の大小は、コンバインの振動の影響を受け難いため、算出部は揺動角度の大小に応じて穀粒の流量を精度良く算出できる。これにより、流量計測装置は穀粒の収量を精度良く検出できる。 According to this configuration, when the grain comes into contact with the arm part, the arm part swings, and the swing angle of the arm part is detected by the sensor part. When the arm part resonates due to the vibration of the combine, for example, if the sensor part (for example, the load cell) detects the load applied to the arm part, the influence of the resonance on the load detection by the sensor part becomes large. It tends to be. On the other hand, even if the arm part resonates, the arm part does not swing due to the resonance alone. Therefore, if the sensor part detects the swing angle of the arm part, the resonance depends on the sensor part. The effect on the detection of the swing angle is small. For this reason, the flow rate measuring device is less susceptible to the vibration of the combine, for example, as compared with a configuration in which the sensor unit detects the load applied to the arm unit. That is, since the magnitude of the swing angle of the arm portion is not easily affected by the vibration of the combine, the calculation unit can accurately calculate the flow rate of the grain according to the magnitude of the swing angle. As a result, the flow rate measuring device can accurately detect the yield of grains.
コンバインの全体右側面図である。It is the whole right side view of the combine. コンバインの全体平面図である。It is the whole plan view of a combine. 脱穀装置の縦断左側面図である。It is a vertical sectional left side view of a threshing device. 穀粒タンク、揚穀装置、及び脱穀装置の正面図である。It is a front view of a grain tank, a grain frying device, and a threshing device. 一番物センサを示す揚穀装置の縦断右側面図である。It is a vertical sectional right side view of the grain raising device which shows the first thing sensor. 一番物センサを示す平面図である。It is a top view which shows the first thing sensor. 一番物センサを示す機体前後方向視の縦断面図である。It is a vertical cross-sectional view of the aircraft in the front-rear direction view showing the first object sensor. 一番物センサが穀粒を検出する状態を示す揚穀装置の縦断右側面図である。It is a vertical cross-sectional right side view of the grain raising device which shows the state which the first thing sensor detects a grain. 一番物センサが穀粒を検出する状態を示す揚穀装置の縦断右側面図である。It is a vertical cross-sectional right side view of the grain raising device which shows the state which the first thing sensor detects a grain. 二番物センサ及び二番物排出口の配置図である。It is a layout drawing of the 2nd thing sensor and the 2nd thing discharge port. 二番物センサ及び二番物排出口の配置図である。It is a layout drawing of the 2nd thing sensor and the 2nd thing discharge port. 二番物センサ及び二番物排出口の配置図である。It is a layout drawing of the 2nd thing sensor and the 2nd thing discharge port. 二番物センサの側面図である。It is a side view of the second thing sensor. バケットがハンプと接触する状態を示す揚穀装置の縦断右側面図である。It is a vertical right side view of the grain raising device which shows the state which a bucket is in contact with a hump. バケットがハンプと接触する状態を示す揚穀装置の縦断右側面図である。It is a vertical right side view of the grain raising device which shows the state which a bucket is in contact with a hump. バケットがハンプと接触する状態を示す揚穀装置の縦断右側面図である。It is a vertical right side view of the grain raising device which shows the state which a bucket is in contact with a hump. 作業量の算定、及び脱穀処理物の量の測定に係る機能部を示すブロック図である。It is a block diagram which shows the functional part which concerns on the calculation of the work amount, and the measurement of the amount of threshing processed matter. 一番物回収量及び二番物還元量の検出結果を示す図である。It is a figure which shows the detection result of the 1st substance recovery amount and the 2nd substance reduction amount. 脱穀制御に係る制御状態を示す図である。It is a figure which shows the control state which concerns on threshing control. 自脱型コンバインにおける一番物センサを示す穀粒タンク側壁の側面図である。It is a side view of the side wall of a grain tank which shows the first thing sensor in a head-feeding combine. 一番物回収量及び二番物還元量の検出結果を示す図である。It is a figure which shows the detection result of the 1st substance recovery amount and the 2nd substance reduction amount. 作業量の算定、及び脱穀処理物の量の測定に係る機能部を示すブロック図である。It is a block diagram which shows the functional part which concerns on the calculation of the work amount, and the measurement of the amount of threshing processed matter.
 本発明に係るコンバインは、脱穀された作物から選別された穀粒を適切に貯留することができるように構成される。以下、本実施形態のコンバインについて、普通型コンバインを例に挙げて説明する。 The combine according to the present invention is configured to be able to appropriately store grains selected from threshed crops. Hereinafter, the combine of the present embodiment will be described by taking a normal combine as an example.
 図1はコンバインの右側面図であり、図2はコンバインの平面図である。ここで、理解を容易にするために、本実施形態では、特に断りがない限り、「前」(図1に示す矢印「F」の方向)は機体前後方向(走行方向)における前方を意味し、「後」(図1に示す矢印「B」の方向)は機体前後方向(走行方向)における後方を意味するものとする。また、「上」(図1に示す矢印「U」の方向)及び「下」(図1に示す矢印「D」の方向)は、機体の鉛直方向(垂直方向)での位置関係であり、地上高さにおける関係を示すものとする。更に、左右方向または横方向は、機体前後方向に直交する機体横断方向(機体幅方向)、すなわち、「左」(図2に示す矢印「L」の方向)及び「右」(図2に示す矢印「R」の方向)は、夫々、機体の左方向及び右方向を意味するものとする。 FIG. 1 is a right side view of the combine, and FIG. 2 is a plan view of the combine. Here, in order to facilitate understanding, in the present embodiment, unless otherwise specified, "front" (direction of arrow "F" shown in FIG. 1) means front in the front-rear direction (traveling direction) of the aircraft. , "Rear" (direction of arrow "B" shown in FIG. 1) shall mean rearward in the front-rear direction (traveling direction) of the aircraft. Further, "up" (direction of arrow "U" shown in FIG. 1) and "down" (direction of arrow "D" shown in FIG. 1) are positional relationships in the vertical direction (vertical direction) of the aircraft. It shall indicate the relationship at the height above the ground. Further, the left-right direction or the lateral direction is the aircraft crossing direction (aircraft width direction) orthogonal to the aircraft front-rear direction, that is, "left" (direction of the arrow "L" shown in FIG. 2) and "right" (shown in FIG. 2). The direction of the arrow "R") shall mean the left and right directions of the aircraft, respectively.
 コンバインには、クローラ式の走行装置3と、走行装置3によって支持された機体フレーム2と、圃場の作物(稲、麦、大豆、菜種などの各種作物)を刈り取る刈取部4と、フィーダ11と、脱穀装置1と、穀粒タンク12と、穀粒排出装置14と、が備えられている。 The combine includes a crawler-type traveling device 3, an aircraft frame 2 supported by the traveling device 3, a cutting section 4 for cutting field crops (various crops such as rice, wheat, soybeans, and rapeseed), and a feeder 11. , A grain removal device 1, a grain tank 12, and a grain discharge device 14 are provided.
 刈取部4は、作物を掻き込む掻き込みリール5と、圃場の作物を切断するバリカン型の切断装置6と、刈り取られた作物をフィーダ11まで横送りするオーガ7と、を備える。刈取部4によって刈り取られた作物は、フィーダ11によって脱穀装置1に搬送され、脱穀装置1によって脱穀選別処理される。脱穀装置1によって脱穀選別処理された選別処理物は、穀粒タンク12に貯留され、適宜、穀粒排出装置14によって機外に排出される。 The cutting unit 4 includes a scraping reel 5 for scraping crops, a clipper-type cutting device 6 for cutting crops in the field, and an auger 7 for laterally feeding the cut crops to the feeder 11. The crops cut by the cutting unit 4 are transported to the threshing device 1 by the feeder 11 and threshed and sorted by the threshing device 1. The sorted product that has been threshed and sorted by the threshing device 1 is stored in the grain tank 12, and is appropriately discharged to the outside of the machine by the grain discharging device 14.
 刈取部4の後方に、フィーダ11と横並び状態で運転部9が備えられ、運転部9は機体右側に偏倚した状態で設けられている。運転部9は、キャビン10によって覆われている。運転部9の下方にはエンジンルームERが備えられ、エンジンルームERにはエンジンEや、特に図示はしないが、冷却ファンやラジエータ等が収容されている。エンジンEの動力は、不図示の動力伝達機構によって、走行装置3と、刈取部4や脱穀装置1等の作業装置と、に伝達される。 Behind the cutting section 4, the driving section 9 is provided side by side with the feeder 11, and the driving section 9 is provided in a state of being biased to the right side of the machine body. The driving unit 9 is covered by the cabin 10. An engine room ER is provided below the driving unit 9, and an engine E, a cooling fan, a radiator, and the like, which are not particularly shown, are housed in the engine room ER. The power of the engine E is transmitted to the traveling device 3 and working devices such as the cutting unit 4 and the threshing device 1 by a power transmission mechanism (not shown).
 キャビン10に衛星測位モジュール83が設けられている。衛星測位モジュール83は、人工衛星(不図示)からのGNSS(Global Navigation Satellite System)の信号(GPS信号を含む)を受信して、自車位置を取得する。なお、衛星測位モジュール83による衛星航法を補完するために、ジャイロ加速度センサや磁気方位センサを組み込んだ慣性航法ユニットが衛星測位モジュール83に組み込まれている。なお、慣性航法ユニットは、コンバインにおいて衛星測位モジュール83と別の箇所に配置されても良い。 A satellite positioning module 83 is provided in the cabin 10. The satellite positioning module 83 receives a GNSS (Global Navigation Satellite System) signal (including a GPS signal) from an artificial satellite (not shown) and acquires a vehicle position. In addition, in order to complement the satellite navigation by the satellite positioning module 83, an inertial navigation unit incorporating a gyro acceleration sensor and a magnetic orientation sensor is incorporated in the satellite positioning module 83. The inertial navigation unit may be arranged at a different location from the satellite positioning module 83 in the combine harvester.
 次に、図3に示される脱穀装置1の縦断左側面図を用いて、脱穀装置1の構成を説明する。脱穀装置1は機体フレーム2に設けられ、扱胴22によって作物を脱穀する脱穀部41と、脱穀処理物を揺動選別処理する選別部42と、を備える。脱穀部41は、脱穀装置1における上部領域に配置され、脱穀部41の下方に、受網23が設けられ、選別部42は、受網23の下方に設けられている。選別部42は、受網23から漏下してきた脱穀処理物を、回収すべき穀粒を含む選別処理物と、排藁等の排出物とに選別する。 Next, the configuration of the threshing device 1 will be described with reference to the left side view of the vertical section of the threshing device 1 shown in FIG. The threshing device 1 is provided on the machine frame 2, and includes a threshing unit 41 for threshing crops by a handling cylinder 22, and a sorting unit 42 for rocking and sorting the threshed product. The threshing unit 41 is arranged in the upper region of the threshing device 1, a receiving net 23 is provided below the threshing unit 41, and a sorting unit 42 is provided below the receiving net 23. The sorting unit 42 sorts the threshed product leaked from the receiving net 23 into a sorting product containing grains to be collected and a waste product such as straw.
 脱穀部41は、脱穀装置1の左右の側壁と、天板53と、受網23とに囲われた扱室21を備える。扱室21には、回転によって作物を脱穀処理する扱胴22と、複数の送塵弁53aと、が備えられている。扱胴22は回転軸芯Xまわりに回転する。フィーダ11によって搬送された作物は、扱室21に投入され、扱胴22によって脱穀処理される。扱胴22によって連れ回される作物は、送塵弁53aの送り作用によって後方に向けて移送される。 The threshing section 41 includes a handling chamber 21 surrounded by left and right side walls of the threshing device 1, a top plate 53, and a receiving net 23. The handling chamber 21 is provided with a handling cylinder 22 for threshing crops by rotation and a plurality of dust feeding valves 53a. The handling cylinder 22 rotates around the rotation axis X. The crops transported by the feeder 11 are put into the handling chamber 21 and threshed by the handling cylinder 22. The crops carried by the handling cylinder 22 are transferred backward by the feeding action of the dust feeding valve 53a.
 送塵弁53aはプレート状であり、天板53の内面(下面)に前後方向に沿って所定の間隔で設けられる。送塵弁53aは、平面視で回転軸芯Xに対して傾斜する姿勢で設けられる。そのため、夫々の送塵弁53aは、扱室21において扱胴22とともに回転する刈取穀稈を後側に移動させる力を作用させる。また、送塵弁53aは、回転軸芯Xに対する傾斜角度を調整することができる。扱胴22内を作物が後方に送られる速度は、送塵弁53aの傾斜角度によって決まる。また、作物が脱穀される脱穀効率は、作物が扱胴22内を送られる速度にも影響される。その結果、作物が脱穀される処理能力は、様々な手段を用いて調整することができるが、送塵弁53aの傾斜角度を変更することを1つの手段として調整することができる。特に図示はしないが、送塵弁53aの傾斜姿勢を変更制御可能な送塵弁制御機構が備えられており、送塵弁53aの傾斜角度を自動的に変更することができる。 The dust valve 53a has a plate shape and is provided on the inner surface (lower surface) of the top plate 53 at predetermined intervals along the front-rear direction. The dust feed valve 53a is provided in a posture of being inclined with respect to the rotation axis X in a plan view. Therefore, each dust feed valve 53a exerts a force to move the harvested culm that rotates together with the handling cylinder 22 to the rear side in the handling chamber 21. Further, the dust feed valve 53a can adjust the inclination angle with respect to the rotary shaft core X. The speed at which the crop is sent backward in the handling cylinder 22 is determined by the inclination angle of the dust sending valve 53a. The threshing efficiency at which the crop is threshed is also affected by the speed at which the crop is sent through the handling barrel 22. As a result, the processing capacity at which the crop is threshed can be adjusted using various means, but changing the tilt angle of the dust valve 53a can be adjusted as one means. Although not particularly shown, a dust feed valve control mechanism capable of changing and controlling the tilt posture of the dust feed valve 53a is provided, and the tilt angle of the dust feed valve 53a can be automatically changed.
 脱穀装置1は、一番物回収部26と、二番物回収部27と、二番物還元装置32と、を備える。選別部42は、シーブケース33を有する揺動選別装置24と唐箕19とを備える。 The threshing device 1 includes a first item recovery unit 26, a second item collection unit 27, and a second item reduction device 32. The sorting unit 42 includes a swing sorting device 24 having a sheave case 33 and a wall insert 19.
 唐箕19は、選別部42の前部領域の下部領域に設けられ、揺動選別装置24の前側から後方に向かって、処理物の搬送方向に沿って選別風を発生させる。選別風は、比較的比重の軽い排藁等をシーブケース33の後側に向けて送り出す作用を有する。また、揺動選別装置24においては、揺動駆動機構43によってシーブケース33が揺動することによって、シーブケース33の内部の脱穀処理物が後方に移送されながら揺動選別処理が行われる。このような理由から、以下の説明では、揺動選別装置24において、処理物の搬送方向の上流側が前端あるいは前側と称され、下流側が後端あるいは後側と称される。なお、唐箕19は選別風の強度(風量、風速)を変更することができる。選別風を強くすると、脱穀処理物を後方に送り出し易くなり、選別速度が高速になる。逆に、選別風を弱くすると、脱穀処理物が長くシーブケース33内に留まり、選別精度が高くなる。そのため、唐箕19は選別風の強度を変更することによって、揺動選別装置24の選別効率(選別精度や選別速度)を調整できる。特に図示はしないが、唐箕19の選別風の強度を変更制御可能な唐箕制御機構が備えられており、唐箕19の選別風の強度を自動的に変更することができる。 The wall insert 19 is provided in the lower region of the front region of the sorting unit 42, and generates a sorting wind from the front side to the rear of the swing sorting device 24 along the transport direction of the processed material. The sorting wind has a function of sending out straw and the like having a relatively light specific density toward the rear side of the sheave case 33. Further, in the swing sorting device 24, the sheave case 33 swings due to the swing drive mechanism 43, so that the threshing processed product inside the sheave case 33 is transferred backward and the swing sorting process is performed. For this reason, in the following description, in the swing sorting device 24, the upstream side in the transport direction of the processed material is referred to as a front end or a front side, and the downstream side is referred to as a rear end or a rear side. The wall insert 19 can change the strength (air volume, wind speed) of the sorting wind. When the sorting wind is strong, the threshed product can be easily sent backward and the sorting speed becomes high. On the contrary, when the sorting wind is weakened, the threshed product stays in the sheave case 33 for a long time, and the sorting accuracy is improved. Therefore, the wall insert 19 can adjust the sorting efficiency (sorting accuracy and sorting speed) of the swing sorting device 24 by changing the strength of the sorting wind. Although not shown in particular, a wall insert control mechanism capable of changing and controlling the strength of the sorting wind of the wall insert 19 is provided, and the strength of the wall insert 19 can be automatically changed.
 シーブケース33の前半部分には、第一チャフシーブ38が備えられ、シーブケース33の後半部分には、第二チャフシーブ39が備えられている。一般的な構成であるため特に説明はしないが、シーブケース33には、第一チャフシーブ38等以外に、グレンパンやグレンシーブ40が備えられている。受網23を漏下した脱穀処理物は、第一チャフシーブ38や第二チャフシーブ39に落下する。脱穀処理物のほとんどは、受網23から第一チャフシーブ38を含むシーブケース33の前半部分へ漏下し、シーブケース33の前半部分によって粗選別及び精選別される。一部の脱穀処理物は、受網23から第二チャフシーブ39へ漏下したり、第一チャフシーブ38から下方へ漏下せずに第二チャフシーブ39まで移送されたりして、第二チャフシーブ39において漏下選別される。 The first half of the sheave case 33 is provided with the first chaff sheave 38, and the second half of the sheave case 33 is provided with the second chaff sheave 39. Although not particularly described because it has a general configuration, the sheave case 33 is provided with a grain pan and a grain sheave 40 in addition to the first chaff sheave 38 and the like. The threshed product leaking from the receiving net 23 falls on the first chaff sheave 38 and the second chaff sheave 39. Most of the threshed product leaks from the receiving net 23 to the first half portion of the sheave case 33 including the first chaff sheave 38, and is roughly sorted and finely sorted by the first half portion of the sheave case 33. Some threshed products may leak from the receiving net 23 to the second chaff sheave 39, or may be transferred from the first chaff sheave 38 to the second chaff sheave 39 without leaking downward, at the second chaff sheave 39. Asava is sorted.
 第一チャフシーブ38の下方には、上記グレンシーブ40が備えられている。すなわち、揺動選別装置24は、第一チャフシーブ38の下方に設けられたグレンシーブ40を備えている。グレンシーブ40は、パンチングメタルや網体等の多孔部材によって構成され、第一チャフシーブ38から漏下してきた脱穀処理物を受け止めて漏下選別する。 The above-mentioned Glen Sheave 40 is provided below the first Chaf Sheave 38. That is, the swing sorting device 24 includes a grain sheave 40 provided below the first chaff sheave 38. The grain sheave 40 is composed of a porous member such as a punching metal or a reticular formation, and receives and sorts the threshed product leaked from the first chaff sheave 38.
 シーブケース33の前半部分の下方に、スクリュー式の一番物回収部26が備えられ、シーブケース33の後半部分の下方に、スクリュー式の二番物回収部27が備えられている。シーブケース33の前半部分によって選別処理されて漏下してきた一番物、すなわち、選別部42によって選別された選別処理物のうちの一番物は、一番物回収部26によって回収されて、穀粒タンク12の側(機体左右方向右側)に向けて搬送される。シーブケース33の後半部分(第二チャフシーブ39)によって選別処理されて漏下してきた二番物(一般的に選別処理精度が低く、切藁などの比率が高い)、すなわち、選別処理物のうちの二番物は、二番物回収部27によって回収される。二番物は、脱穀処理物のうち、選別処理物として選別されなかった脱穀処理物が相当する。二番物回収部27によって回収された二番物は、二番物還元装置32によって選別部42の前部に還元され、シーブケース33によって再選別される。 A screw-type first item collection unit 26 is provided below the first half of the sheave case 33, and a screw-type second item collection unit 27 is provided below the second half of the sheave case 33. The first product that has been sorted and leaked by the first half of the sheave case 33, that is, the first product among the sorted products sorted by the sorting unit 42, is collected by the first product collection unit 26. It is transported toward the side of the grain tank 12 (right side in the left-right direction of the machine body). The second product that has been sorted and leaked by the latter half of the sheave case 33 (second chaff sheave 39) (generally, the sorting treatment accuracy is low and the ratio of cut straw etc. is high), that is, among the sorted products. The second product is collected by the second product collection unit 27. The second product corresponds to the threshed product that was not selected as the threshed product among the threshed products. The second product collected by the second product collection unit 27 is reduced to the front portion of the sorting unit 42 by the second product reducing device 32, and is re-sorted by the sheave case 33.
 第一チャフシーブ38には、脱穀処理物の移送(搬送)方向(前後方向)に沿って並んで設けられた複数の板状のチャフリップが備えられている。各チャフリップは、後端側ほど斜め上方に向かう傾斜姿勢で配置されている。チャフリップの傾斜角度は可変であり、傾斜角度を急にするほど、隣り合うチャフリップ同士の間隔が広がり、脱穀処理物が漏下し易くなる。すなわち、複数のチャフリップの姿勢を変更することで漏下開度を変更可能に構成されている。そのため、チャフリップの傾斜角度を調整することによって、揺動選別装置24の選別効率(選別精度や選別速度)を調整することができる。チャフリップの傾斜姿勢を変更制御可能なリップ制御機構が備えられており、チャフリップの傾斜角度を自動的に変更することができる。 The first chaf sheave 38 is provided with a plurality of plate-shaped chaflip provided side by side along the transfer (transport) direction (front-back direction) of the threshed product. Each chaflip is arranged in an inclined posture toward the rear end side diagonally upward. The tilt angle of the chaflip is variable, and the steeper the tilt angle, the wider the distance between adjacent chaflips, and the easier it is for the threshed product to leak. That is, the leakage opening degree can be changed by changing the postures of the plurality of chaflip. Therefore, the sorting efficiency (sorting accuracy and sorting speed) of the swing sorting device 24 can be adjusted by adjusting the tilt angle of the chaflip. A lip control mechanism capable of changing and controlling the tilting posture of the chaflip is provided, and the tilting angle of the chaflip can be automatically changed.
 第二チャフシーブ39も、第一チャフシーブ38と同様の構成である。第二チャフシーブ39のチャフリップの傾斜姿勢を変更制御可能な角度制御機構も備えられており、チャフリップの傾斜角度を自動的に変更することができる。 The second chaf sheave 39 has the same configuration as the first chaf sheave 38. An angle control mechanism capable of changing and controlling the tilting posture of the chaflip of the second chaf sheave 39 is also provided, and the tilting angle of the chaflip can be automatically changed.
 図4は穀粒タンク12、揚穀装置29、及び脱穀装置1の正面図であり、図5は揚穀装置29の縦断右側面図である。図4及び図5に示すように、一番物回収部26によって回収された選別処理物を穀粒タンク12に搬送する揚穀装置29が備えられている。揚穀装置29は、脱穀装置1と穀粒タンク12との間に配置され、上下方向に沿った姿勢で立設されている。揚穀装置29は、バケットコンベア式に構成されている。揚穀装置29によって揚送された選別処理物は、揚穀装置29の上端部において、横送り搬送装置30に受け渡される。横送り搬送装置30は揚穀装置29に隣り合う状態で連結されている。横送り搬送装置30は、スクリューコンベア式に構成され、穀粒タンク12の前部左側の壁部から穀粒タンク12の内部に突っ込まれている。横送り搬送装置30は、機体横向き軸芯Y1まわりに回転するスクリュー部30Sを有する。横送り搬送装置30のタンク内部側の端部に、穀粒放出装置30Aが備えられている。穀粒放出装置30Aは、板状の放出回転体30Bを備えており、スクリュー部30Sと一体回転する。選別処理物(穀粒)は、横送り搬送装置30によって横送りされ、最終的に、穀粒放出装置30Aによって穀粒タンク12内に投擲される。つまり、横送り搬送装置30は、揚穀装置29によって搬送された穀粒を受け取って横送りし、穀粒タンク12に投入する。揚穀装置29及び横送り搬送装置30は、本発明の『搬送装置』である。 FIG. 4 is a front view of the grain tank 12, the grain raising device 29, and the threshing device 1, and FIG. 5 is a vertical sectional right side view of the grain raising device 29. As shown in FIGS. 4 and 5, a grain raising device 29 is provided for transporting the sorted processed product collected by the first product collecting unit 26 to the grain tank 12. The grain frying device 29 is arranged between the threshing device 1 and the grain tank 12, and is erected in a posture along the vertical direction. The grain frying device 29 is configured as a bucket conveyor type. The sorting processed product transported by the grain raising device 29 is delivered to the lateral feed transport device 30 at the upper end portion of the grain raising device 29. The lateral feed transport device 30 is connected to the grain frying device 29 in a state of being adjacent to each other. The lateral feed transport device 30 is configured as a screw conveyor type, and is thrust into the inside of the grain tank 12 from the wall portion on the left side of the front portion of the grain tank 12. The lateral feed transport device 30 has a screw portion 30S that rotates around the machine body lateral axis Y1. A grain release device 30A is provided at the end of the lateral feed transfer device 30 on the inner side of the tank. The grain releasing device 30A includes a plate-shaped releasing rotating body 30B, and rotates integrally with the screw portion 30S. The sorted product (grain) is laterally fed by the lateral feed transport device 30, and finally thrown into the grain tank 12 by the grain release device 30A. That is, the horizontal feed transport device 30 receives the grains transported by the grain frying device 29, feeds them laterally, and puts them into the grain tank 12. The grain frying device 29 and the lateral feed transport device 30 are the "transport devices" of the present invention.
 揚穀装置29においては、図4及び図5に示すように、駆動スプロケット29Aと従動スプロケット29Bとにわたって巻き掛けられた無端回動チェーン29Cの外周側に複数のバケット31が一定間隔で取り付けられている。つまり、揚穀装置29は、脱穀装置1で得られた穀粒を揚送する複数のバケット31を有する。揚穀装置29は、選別処理物が収納されたバケット31が上昇する送り経路29Dと、選別処理物を横送り搬送装置30に排出した後のバケット31が下降する戻り経路29Eと、を備える。送り経路29Dと戻り経路29Eとは、送り経路29Dが後側になるように、穀粒タンク12の左側壁12bに沿って並んで配置される。 In the grain raising device 29, as shown in FIGS. 4 and 5, a plurality of buckets 31 are attached to the outer peripheral side of the endless rotating chain 29C wound over the drive sprocket 29A and the driven sprocket 29B at regular intervals. There is. That is, the grain raising device 29 has a plurality of buckets 31 for lifting the grains obtained by the threshing device 1. The grain raising device 29 includes a feeding path 29D in which the bucket 31 containing the sorting processed product rises, and a return path 29E in which the bucket 31 descends after discharging the sorted processed material into the lateral feed transport device 30. The feed path 29D and the return path 29E are arranged side by side along the left side wall 12b of the grain tank 12 so that the feed path 29D is on the rear side.
〔一番物センサの構成〕
 揚穀装置29と横送り搬送装置30との間に一番物センサ60が備えられている。一番物センサ60は、本発明の『流量計測装置』である。揚穀装置29の上端部において、バケット31から横送り搬送装置30に受け渡される選別処理物の量を測定するように、一番物センサ60が配置される。一番物センサ60は、揚穀装置29及び横送り搬送装置30によって搬送される穀粒の流量Fv1(図17参照)を計測する。一番物センサ60に、搬送される穀粒が接触して揺動するアーム部63と、第一センサ部64(本発明の『センサ部』)と、第一流量算出部81A(図17参照、本発明の『算出部』)と、が備えられている。第一センサ部64は、アーム部63の揺動角度θ1(図8、図9、図17参照)を検出する。第一流量算出部81Aは、検出された揺動角度θ1に基づいて流量Fv1を算出する。
[Structure of the first sensor]
The first thing sensor 60 is provided between the grain frying device 29 and the lateral feed transport device 30. The first object sensor 60 is the "flow rate measuring device" of the present invention. At the upper end of the grain frying device 29, the first item sensor 60 is arranged so as to measure the amount of the sorting processed material delivered from the bucket 31 to the lateral feed transport device 30. The first product sensor 60 measures the flow rate Fv1 (see FIG. 17) of the grains transported by the grain raising device 29 and the lateral feed transport device 30. The arm unit 63, the first sensor unit 64 (“sensor unit” of the present invention), and the first flow rate calculation unit 81A (see FIG. 17), in which the grain to be conveyed comes into contact with the first sensor 60 and swings. , The "calculation unit" of the present invention). The first sensor unit 64 detects the swing angle θ1 of the arm unit 63 (see FIGS. 8, 9, and 17). The first flow rate calculation unit 81A calculates the flow rate Fv1 based on the detected swing angle θ1.
 図5に示されるように、バケット31が送り経路29Dに沿って上向きに移動し、穀粒はバケット31に積載され、一番物回収部26から揚穀装置29の上端部へ搬送される。揚穀装置29の上端部に吐出口29hが形成されている。吐出口29hは、揚穀装置29の上端部における戻り経路29Eの位置する側部分のうちの送り経路29Dとは反対側の側部に備えられている。揚穀装置29の上端部においてバケット31が送り経路29Dから戻り経路29Eへ移動する際に、バケット31は上昇姿勢から下降姿勢に姿勢反転する。このとき、バケット31は従動スプロケット29Bの回動軸芯まわりに180度(または略180度)旋回動作し、バケット31に積載された穀粒に遠心力が作用する。そして、吐出口29hにおいてバケット31は当該旋回動作時に穀粒を投擲する。換言すると、揚穀装置29の上端部において上昇姿勢から下降姿勢に姿勢反転するバケット31によって、穀粒が吐出口29hで投擲される。揚穀装置29の上端部、即ち送り経路29D及び戻り経路29Eの夫々の上端部は、天板61に覆われている。また、横送り搬送装置30は吐出口29hに連結されている。即ち、吐出口29hの外側かつ横送り搬送装置30の上方に、揚穀装置29と横送り搬送装置30との受け渡し空間が形成されている。穀粒は、バケット31から投擲されると、天板61の下方空間で放物線を描きながら、横送り搬送装置30へ投入される。 As shown in FIG. 5, the bucket 31 moves upward along the feeding path 29D, and the grains are loaded on the bucket 31 and transported from the first item collecting unit 26 to the upper end portion of the grain raising device 29. A discharge port 29h is formed at the upper end of the grain frying device 29. The discharge port 29h is provided on the side portion of the upper end portion of the grain raising device 29 where the return path 29E is located, which is opposite to the feed path 29D. When the bucket 31 moves from the feed path 29D to the return path 29E at the upper end of the grain frying device 29, the bucket 31 reverses its posture from the ascending posture to the descending posture. At this time, the bucket 31 swivels 180 degrees (or approximately 180 degrees) around the axis of rotation of the driven sprocket 29B, and centrifugal force acts on the grains loaded on the bucket 31. Then, at the discharge port 29h, the bucket 31 throws grains during the turning operation. In other words, the grain is thrown at the discharge port 29h by the bucket 31 that reverses its posture from the ascending posture to the descending posture at the upper end portion of the grain raising device 29. The upper end of the grain frying device 29, that is, the upper ends of the feed path 29D and the return path 29E, respectively, is covered with the top plate 61. Further, the lateral feed transport device 30 is connected to the discharge port 29h. That is, a delivery space between the grain raising device 29 and the horizontal feed transport device 30 is formed on the outside of the discharge port 29h and above the lateral feed transport device 30. When the grains are thrown from the bucket 31, they are thrown into the lateral feed transport device 30 while drawing a parabola in the space below the top plate 61.
 図5、図6及び図7に示されるように、揚穀装置29における天板61に膨出部65が設けられている。膨出部65は天板61の表面部分よりも上側に膨出し、膨出部65の内部に内部空間62が形成されている。一番物センサ60は膨出部65に支持される。一番物センサ60は、バケット31から投擲された穀粒の流量Fv1を測定する。一番物センサ60に、アーム部63と、第一センサ部64と、回転軸66と、が備えられている。 As shown in FIGS. 5, 6 and 7, a bulging portion 65 is provided on the top plate 61 of the grain raising device 29. The bulging portion 65 bulges upward from the surface portion of the top plate 61, and an internal space 62 is formed inside the bulging portion 65. The first object sensor 60 is supported by the bulging portion 65. The first sensor 60 measures the flow rate Fv1 of the grains thrown from the bucket 31. The first sensor 60 is provided with an arm unit 63, a first sensor unit 64, and a rotation shaft 66.
 膨出部65に回転軸66が支持される。回転軸66と一体回動可能なようにアーム部63が回転軸66に取り付けられている。アーム部63は、回転軸66から下方に向けて延出している。アーム部63は回転軸66の揺動軸芯Y2まわりで揺動可能に支持されている。 The rotating shaft 66 is supported by the bulging portion 65. The arm portion 63 is attached to the rotating shaft 66 so that it can rotate integrally with the rotating shaft 66. The arm portion 63 extends downward from the rotation shaft 66. The arm portion 63 is swingably supported around the swing shaft core Y2 of the rotary shaft 66.
 アーム部63は、バケット31から投擲される穀粒の投擲経路上(投擲経路領域S1)に位置し、バケット31によって投擲された穀粒が接触することで揺動する。アーム部63は、穀粒が接触していない状態で、吐出口29hの対向する垂下姿勢で設けられ、かつ、吐出口29hの上下長さよりも短く構成されている。膨出部65のうち、回転軸66の真上に位置する部分が最も高い位置となるように、膨出部65は形成されている。また、膨出部65の機体前部に傾斜面65aが形成され、傾斜面65aは機体前側ほど天板61に近付く。なお、アーム部63を判り易く示すため、図6の傾斜面65aは、前下側の部分のみを示している。 The arm portion 63 is located on the throwing path of the grains thrown from the bucket 31 (throwing path area S1), and swings when the grains thrown by the bucket 31 come into contact with each other. The arm portion 63 is provided in a hanging posture facing the discharge port 29h in a state where the grains are not in contact with each other, and is configured to be shorter than the vertical length of the discharge port 29h. The bulging portion 65 is formed so that the portion of the bulging portion 65 located directly above the rotation shaft 66 is at the highest position. Further, an inclined surface 65a is formed on the front portion of the machine body of the bulging portion 65, and the inclined surface 65a approaches the top plate 61 toward the front side of the machine body. In order to show the arm portion 63 in an easy-to-understand manner, the inclined surface 65a in FIG. 6 shows only the front lower portion.
 膨出部65の機体左方にフランジ部65bが形成され、フランジ部65bにステー67がボルトBoによって連結されている。平面視において、ステー67の長手方向中央領域はステー67の長手方向両端部よりも膨出部65から離れる側へ突出する。ステー67の長手方向中央領域に第一センサ部64が支持される。第一センサ部64は、膨出部65のフランジ部65bを挟んで揚穀装置29よりも外側に位置する。つまり、第一センサ部64は、バケット31から投擲された穀粒の投擲経路領域S1から外れた位置において、投擲経路領域S1と区画された状態で設けられている。 A flange portion 65b is formed on the left side of the bulging portion 65, and a stay 67 is connected to the flange portion 65b by a bolt Bo. In a plan view, the central region of the stay 67 in the longitudinal direction protrudes from both ends of the stay 67 in the longitudinal direction toward the side away from the bulging portion 65. The first sensor unit 64 is supported in the central region of the stay 67 in the longitudinal direction. The first sensor unit 64 is located outside the grain frying device 29 with the flange portion 65b of the bulging portion 65 interposed therebetween. That is, the first sensor unit 64 is provided in a state of being separated from the throwing path region S1 at a position outside the throwing path region S1 of the grains thrown from the bucket 31.
 膨出部65のフランジ部65bに貫通孔が形成され、回転軸66は当該貫通孔を貫通する。回転軸66のうち、膨出部65のフランジ部65bを挟んでアーム部63の位置する側と反対側の端部にリンクアーム66Aが備えられ、リンクアーム66Aは回転軸66の径方向外方に延びる。また、ステー67の長手方向中央領域に貫通孔が形成され、第一センサ部64の回転軸部64Aは当該貫通孔を貫通する。第一センサ部64の回転軸部64Aの先端部にリンクアーム64Bが連結され、リンクアーム64Bは径方向外方に延びている。リンクアーム66Aとリンクアーム64Bとがピン連結される。これにより、回転軸66と一体回転するアーム部63と、第一センサ部64と、がリンクアーム66Aとリンクアーム64Bとピン99とを介して連動連結される。この構成によって、第一センサ部64と回転軸66とが直接連結される構成と比較して、第一センサ部64がアーム部63から衝撃を受け難く、第一センサ部64が故障し難くなる。第一センサ部64は、アーム部63の揺動角度θ1(図17参照)を検出する。また、揺動角度θ1に基づいて流量Fv1を算出する第一流量算出部81Aが備えられている(図17参照)。例えば、揺動角度θ1と流量Fv1との関係を示すマップや式が第一流量算出部81Aに予め記憶されている。揺動角度θ1と流量Fv1との関係を示すマップや式は、実験及び計算(実験または計算)によって予め取得される。そして第一流量算出部81Aは、当該マップや式に基づいて流量Fv1を算出する。 A through hole is formed in the flange portion 65b of the bulging portion 65, and the rotating shaft 66 penetrates the through hole. A link arm 66A is provided at an end of the rotating shaft 66 on the side opposite to the side where the arm portion 63 is located with the flange portion 65b of the bulging portion 65 interposed therebetween, and the link arm 66A is provided on the radial outer side of the rotating shaft 66. Extend to. Further, a through hole is formed in the central region of the stay 67 in the longitudinal direction, and the rotation shaft portion 64A of the first sensor portion 64 penetrates the through hole. The link arm 64B is connected to the tip end portion of the rotation shaft portion 64A of the first sensor portion 64, and the link arm 64B extends outward in the radial direction. The link arm 66A and the link arm 64B are pin-connected. As a result, the arm unit 63 that rotates integrally with the rotation shaft 66 and the first sensor unit 64 are interlocked and connected via the link arm 66A, the link arm 64B, and the pin 99. With this configuration, the first sensor unit 64 is less likely to receive an impact from the arm unit 63, and the first sensor unit 64 is less likely to fail, as compared with the configuration in which the first sensor unit 64 and the rotating shaft 66 are directly connected. .. The first sensor unit 64 detects the swing angle θ1 (see FIG. 17) of the arm unit 63. Further, a first flow rate calculation unit 81A for calculating the flow rate Fv1 based on the swing angle θ1 is provided (see FIG. 17). For example, a map or an equation showing the relationship between the swing angle θ1 and the flow rate Fv1 is stored in advance in the first flow rate calculation unit 81A. Maps and equations showing the relationship between the swing angle θ1 and the flow rate Fv1 are obtained in advance by experiments and calculations (experiments or calculations). Then, the first flow rate calculation unit 81A calculates the flow rate Fv1 based on the map or the formula.
 リンクアーム66Aとリンクアーム64Bとの一方に長孔が形成され、リンクアーム66Aとリンクアーム64Bとの他方に丸孔が形成されている。長孔は当該一方の長手方向に沿って延びる。そして、当該一方の長孔と当該他方の丸孔とに一本のピン99が挿通されることによって、リンクアーム66Aとリンクアーム64Bとがピン連結される。リンクアーム66Aとリンクアーム64Bとの一方に長孔が形成されているため、リンクアーム66Aとリンクアーム64Bとのピン連結における芯出しの誤差が許容される。この構成によって、第一センサ部64の回転軸部と回転軸66とを同一軸芯上に精密に合わせる必要がなく、一番物センサ60における第一センサ部64の組付けが容易になる。 A long hole is formed in one of the link arm 66A and the link arm 64B, and a round hole is formed in the other of the link arm 66A and the link arm 64B. The elongated hole extends along one of the longitudinal directions. Then, the link arm 66A and the link arm 64B are pin-connected by inserting one pin 99 into the one long hole and the other round hole. Since a long hole is formed in one of the link arm 66A and the link arm 64B, an error in centering in the pin connection between the link arm 66A and the link arm 64B is allowed. With this configuration, it is not necessary to precisely align the rotating shaft portion of the first sensor unit 64 and the rotating shaft 66 on the same axis, and the assembly of the first sensor unit 64 in the first sensor 60 becomes easy.
 ステー67の左右端部にボルトBoを挿通するための挿通孔が形成され、当該挿通孔の径はボルトBoの呼び径よりも大きく(例えば当該呼び径よりも3mm程度大きい)、かつ、ボルトBoの頭部の径よりも小さくなるように形成されている。この構成によって、回転軸66に対する第一センサ部64の回転軸部の位置合わせが容易になる。即ち、一番物センサ60における第一センサ部64の組付けが容易になる。 Insertion holes for inserting bolts Bo are formed at the left and right ends of the stay 67, and the diameter of the insertion holes is larger than the nominal diameter of the bolt Bo (for example, about 3 mm larger than the nominal diameter) and the bolt Bo. It is formed so as to be smaller than the diameter of the head of the head. This configuration facilitates the alignment of the rotating shaft portion of the first sensor portion 64 with respect to the rotating shaft 66. That is, the assembly of the first sensor unit 64 in the first object sensor 60 becomes easy.
 ステー67にバネ受け部67aが設けられている。リンクアーム66Aの遊端部とバネ受け部67aとにわたってコイルバネ68が張設される。アーム部63は、コイルバネ68の引っ張り付勢力によって揚穀装置29に近づくように揺動付勢されている。アーム部63における揺動基端部側の領域が係止部69に接当して、コイルバネ68のバネ付勢力に抗して下向き待機姿勢で位置保持される。アーム部63が係止部69に接当し、かつ、アーム部63にコイルバネ68の付勢力が作用する構成であれば、圃場の凹凸による振動やエンジンからの振動等がアーム部63に伝わっても、アーム部63は振動の影響を殆ど受けずに下向き待機姿勢に保持される。 The stay 67 is provided with a spring receiving portion 67a. A coil spring 68 is stretched over the free end portion of the link arm 66A and the spring receiving portion 67a. The arm portion 63 is oscillated and urged to approach the grain raising device 29 by the pulling force of the coil spring 68. The region of the arm portion 63 on the swing base end side abuts on the locking portion 69, and the position is held in a downward standby posture against the spring urging force of the coil spring 68. If the arm portion 63 is in contact with the locking portion 69 and the urging force of the coil spring 68 acts on the arm portion 63, vibration due to unevenness in the field, vibration from the engine, or the like is transmitted to the arm portion 63. However, the arm portion 63 is held in a downward standby posture without being affected by vibration.
 以上の構成によって、アーム部63は、下向き姿勢の位置と、傾斜面65aの前下端部と、の範囲で揺動可能に構成されている。この場合のアーム部63の揺動角度θ1は、例えば40度に設定されている。 With the above configuration, the arm portion 63 is configured to be swingable within the range of the position of the downward posture and the front and lower end portions of the inclined surface 65a. In this case, the swing angle θ1 of the arm portion 63 is set to, for example, 40 degrees.
 横送り搬送装置30のうち、スクリュー部30Sを覆う筒状ケースの搬送方向始端部に受け部30dが形成され、受け部30dは、バケット31から投擲された穀粒を受け入れる。受け部30dは横送り搬送装置30のスクリュー部30Sよりも揚穀装置29の位置する側へ延出する。受け部30dは、スクリュー部30Sの位置する側ほど下側に位置するように傾斜する。 In the lateral feed transport device 30, a receiving portion 30d is formed at the starting end portion in the transport direction of a tubular case that covers the screw portion 30S, and the receiving portion 30d receives grains thrown from the bucket 31. The receiving portion 30d extends from the screw portion 30S of the lateral feed transporting device 30 to the side where the grain raising device 29 is located. The receiving portion 30d is inclined so as to be located on the lower side toward the side where the screw portion 30S is located.
 図5に示されるように、機体側面視において受け部30dの延出先端部の位置する領域が仮想線L1で示され、アーム部63は、仮想線L1よりも横送り搬送装置30のスクリュー部30Sの位置する側に配置されている。また、機体側面視においてスクリュー部30Sの機体横向き軸芯Y1の位置する部分が仮想線L2で示され、アーム部63は、穀粒が衝突せずに下向きに延びる状態で仮想線L2よりも揚穀装置29の位置する側に配置されている。つまり、アーム部63は、穀粒が衝突せずに下向きに延びる状態で、仮想線L1と仮想線L2との間の領域に配置されている。換言すると、アーム部63は、揚穀装置29と横送り搬送装置30との受け渡し空間において、スクリュー部30Sよりも高い位置、かつ、揚穀装置29と横送り搬送装置30とが隣り合う方向において、吐出口29hと機体横向き軸芯Y1との間の位置に設けられた揺動軸芯Y2まわりに揺動するように構成されている。 As shown in FIG. 5, the region where the extension tip portion of the receiving portion 30d is located is indicated by the virtual line L1 in the side view of the machine body, and the arm portion 63 is the screw portion of the lateral feed transport device 30 rather than the virtual line L1. It is arranged on the side where 30S is located. Further, in the side view of the machine body, the portion of the screw portion 30S where the machine body lateral axis Y1 is located is indicated by the virtual line L2, and the arm portion 63 is lifted above the virtual line L2 in a state where the grains extend downward without colliding with each other. It is arranged on the side where the grain device 29 is located. That is, the arm portion 63 is arranged in the region between the virtual line L1 and the virtual line L2 in a state where the grains extend downward without colliding with each other. In other words, the arm portion 63 is located at a position higher than the screw portion 30S in the transfer space between the grain raising device 29 and the lateral feed transport device 30, and in the direction in which the grain frying device 29 and the lateral feed transport device 30 are adjacent to each other. , It is configured to swing around a swinging shaft core Y2 provided at a position between the discharge port 29h and the machine body lateral shaft core Y1.
 穀粒がアーム部63に衝突すると、穀粒はアーム部63からの反発力によって下方へ落下する。このことから、アーム部63に衝突する穀粒は、アーム部63に衝突しない穀粒と比較して、戻り経路29Eへ落下する可能性が高い。本実施形態であれば、アーム部63は、受け部30dの延出先端部よりも横送り搬送装置30のスクリュー部30Sの位置する側に配置されている。このため、アーム部63に衝突して跳ね返される穀粒の多くが受け部30dに受け止められ、横送り搬送装置30によって穀粒タンク12内へ案内される。この結果、アーム部63に衝突する穀粒が戻り経路29Eへ落下し難くなる。 When the grain collides with the arm portion 63, the grain falls downward due to the repulsive force from the arm portion 63. From this, the grains that collide with the arm portion 63 are more likely to fall into the return path 29E than the grains that do not collide with the arm portion 63. In the present embodiment, the arm portion 63 is arranged on the side where the screw portion 30S of the lateral feed transport device 30 is located with respect to the extension tip portion of the receiving portion 30d. Therefore, most of the grains that collide with the arm portion 63 and are bounced off are received by the receiving portion 30d and guided into the grain tank 12 by the lateral feed transport device 30. As a result, the grains colliding with the arm portion 63 are less likely to fall into the return path 29E.
 アーム部63の幅は、バケット31の幅の半分以下となるように、アーム部63は形成されている。バケット31の幅方向において、穀粒はバケット31から概ね均一に投擲されるため、バケット31から投擲される穀粒の半分以上がアーム部63に衝突せずに受け部30dに受け止められる。この結果、穀粒がアーム部63によって跳ね返されて戻り経路29Eへ落下する虞が軽減される。即ち、アーム部63の横幅は、バケット31の開口の横幅よりも狭く設定されている。 The arm portion 63 is formed so that the width of the arm portion 63 is less than half the width of the bucket 31. Since the grains are thrown substantially uniformly from the bucket 31 in the width direction of the bucket 31, more than half of the grains thrown from the bucket 31 are received by the receiving portion 30d without colliding with the arm portion 63. As a result, the possibility that the grains are repelled by the arm portion 63 and fall into the return path 29E is reduced. That is, the width of the arm portion 63 is set to be narrower than the width of the opening of the bucket 31.
 また、アーム部63は、穀粒が衝突せずに下向きに延びる状態で仮想線L2よりも揚穀装置29の位置する側に配置されている。このため、アーム部63が仮想線L2よりも揚穀装置29の位置する側と反対側に配置される構成と比較して、穀粒がアーム部63に強く衝突する。このことから、バケット31から投擲される穀粒の量が少量であっても、一番物センサ60は穀粒の流量Fv1を精度よく測定できる。 Further, the arm portion 63 is arranged on the side where the grain raising device 29 is located rather than the virtual line L2 in a state where the grains extend downward without colliding with each other. Therefore, the grain collides strongly with the arm portion 63 as compared with the configuration in which the arm portion 63 is arranged on the side opposite to the side where the grain raising device 29 is located with respect to the virtual line L2. From this, even if the amount of grains thrown from the bucket 31 is small, the first product sensor 60 can accurately measure the flow rate Fv1 of the grains.
 図8及び図9に示されるように、穀粒がバケット31から投擲されると、穀粒は上下に連続する帯状となって放物線を描きながら受け部30dの位置する側へ落下する。アーム部63は穀粒の投擲経路上(投擲経路領域S1)に位置し、上下に連続する帯状の穀粒のうち上側に位置する穀粒がアーム部63と接触する。バケット31から投擲された穀粒がアーム部63に接触すると、その押圧力によってアーム部63がコイルバネ68の付勢力に抗して穀粒を投擲したバケット31から離間する方向に揺動する。アーム部63に衝突した穀粒は、アーム部63からの反発力によって下方へ落下し、受け部30dに受け止められてスクリュー部30Sの位置する側へ案内される。アーム部63の揺動基端部は、穀粒の投擲経路領域S1よりも上側に外れている。つまり、アーム部63は、バケット31から投擲された穀粒の投擲経路領域S1から外れた位置に設けられた揺動軸芯Y2まわりに揺動するように構成されている。 As shown in FIGS. 8 and 9, when the grains are thrown from the bucket 31, the grains fall into the side where the receiving portion 30d is located while forming a continuous strip shape up and down and drawing a parabola. The arm portion 63 is located on the throwing path of the grains (throwing path region S1), and the grains located on the upper side of the vertically continuous band-shaped grains come into contact with the arm portion 63. When the grain thrown from the bucket 31 comes into contact with the arm portion 63, the arm portion 63 swings in a direction away from the bucket 31 where the grain is thrown against the urging force of the coil spring 68 due to the pressing force thereof. The grains that collide with the arm portion 63 fall downward due to the repulsive force from the arm portion 63, are received by the receiving portion 30d, and are guided to the side where the screw portion 30S is located. The swinging base end portion of the arm portion 63 is off the upper side of the throwing path region S1 of the grain. That is, the arm portion 63 is configured to swing around the swing shaft core Y2 provided at a position deviating from the throwing path region S1 of the grains thrown from the bucket 31.
 図5に仮想線L3が示される。仮想線L3は、揺動軸芯Y2から下方に延び、投擲経路領域S1の上端線に対して直交する方向で交わる。アーム部63の遊端部は、穀粒が衝突せずに下向きに延びる状態で、仮想線L3よりも仮想線L2の位置する側に位置する。このことから、アーム部63が仮想線L2の位置する側に揺動するほど、アーム部63のうちの投擲経路領域S1の範囲外にはみ出る部分が多くなる。つまり、アーム部63は、揺動角度θ1が大きいほど、投擲経路領域S1の外にはみ出る割合が多くなるように構成されている。 FIG. 5 shows the virtual line L3. The virtual line L3 extends downward from the swing axis Y2 and intersects in a direction orthogonal to the upper end line of the throwing path region S1. The free end portion of the arm portion 63 is located on the side where the virtual line L2 is located rather than the virtual line L3 in a state where the grains extend downward without colliding with each other. From this, the more the arm portion 63 swings toward the side where the virtual line L2 is located, the more portion of the arm portion 63 that protrudes outside the range of the throwing path region S1. That is, the arm portion 63 is configured so that the larger the swing angle θ1, the greater the proportion of the arm portion 63 protruding outside the throwing path region S1.
 図8に示されるように、穀粒がバケット31から投擲されてアーム部63と接触すると、アーム部63が揺動する。そして、バケット31から投擲される穀粒の多くがアーム部63の位置する領域を通過し終えると、アーム部63はコイルバネ68の付勢力によって下向き姿勢側へ戻される。本実施形態では、1秒間に20~30個のバケット31が揚穀装置29の上端部を通過し、吐出口29hにおいて穀粒が1/20秒~1/30秒間隔でバケット31から投擲される。このことから、アーム部63は1/20秒~1/30秒の周期で揺動(振動)する。 As shown in FIG. 8, when the grain is thrown from the bucket 31 and comes into contact with the arm portion 63, the arm portion 63 swings. Then, when most of the grains thrown from the bucket 31 have passed through the region where the arm portion 63 is located, the arm portion 63 is returned to the downward posture side by the urging force of the coil spring 68. In the present embodiment, 20 to 30 buckets 31 pass through the upper end of the grain raising device 29 per second, and grains are thrown from the bucket 31 at intervals of 1/20 to 1/30 seconds at the discharge port 29h. To. For this reason, the arm portion 63 swings (vibrates) in a cycle of 1/20 second to 1/30 second.
 図9に示される例では、図8に示される例よりもバケット31から投擲される穀粒の量が多くなっている。バケット31から投擲される穀粒の量が多くなると、投擲される穀粒が吐出口29hにおいて塊状になって厚みを増す。バケット31から投擲される穀粒の量が多くなって、アーム部63の揺動角度θ1が大きくなる。また、バケット31から投擲される穀粒が多くなると、穀粒は吐出口29hにおいて塊状になって厚みを増すため、投擲経路領域S1を塊状の穀粒が通過するのに要する時間が長くなる。このため、アーム部63が下向き姿勢側に戻される間も殆どなく、揺動角度θ1が大きく保持されたままとなる。 In the example shown in FIG. 9, the amount of grains thrown from the bucket 31 is larger than that in the example shown in FIG. When the amount of grains thrown from the bucket 31 increases, the thrown grains become lumpy at the discharge port 29h and increase in thickness. The amount of grains thrown from the bucket 31 increases, and the swing angle θ1 of the arm portion 63 increases. Further, when the number of grains thrown from the bucket 31 increases, the grains become lumpy at the discharge port 29h and increase in thickness, so that the time required for the lumpy grains to pass through the throwing path region S1 becomes long. Therefore, there is almost no time for the arm portion 63 to be returned to the downward posture side, and the swing angle θ1 remains largely maintained.
 アーム部63と傾斜面65aの前下端部とが当接すると、アーム部63の揺動が止まる。換言すると、アーム部63と傾斜面65aの前下端部とが当接することによって、アーム部63の揺動が最大に振り切れる。この状態で、アーム部63のうち遊端部以外の略全体が、内部空間62に収納される。このとき、天板61の内周側面部に沿って放物線状に投擲された穀粒は、アーム部63の遊端部のみに触れるため、穀粒の多くがアーム部63と触れることなく、横送り搬送装置30の受け部30dへ案内される。 When the arm portion 63 and the front lower end portion of the inclined surface 65a come into contact with each other, the swing of the arm portion 63 stops. In other words, when the arm portion 63 and the front lower end portion of the inclined surface 65a come into contact with each other, the swing of the arm portion 63 is maximized. In this state, substantially the entire arm portion 63 other than the free end portion is housed in the internal space 62. At this time, since the grains thrown in a parabolic shape along the inner peripheral side surface portion of the top plate 61 touch only the free end portion of the arm portion 63, most of the grains do not touch the arm portion 63 and are lateral to each other. It is guided to the receiving portion 30d of the feed transport device 30.
〔二番物センサの構成〕
 上述したように、二番物は二番物還元装置32によって揺動選別装置24の前部である上流側に還元される。具体的には、二番物還元装置32の二番物排出口32Aは、円弧状の受網23における径方向外側の位置(受網23の側方であって、二番物が受網23を通らない位置)に設けられ、この位置において二番物が排出される。脱穀装置1には、このように還元される二番物の流量Fv2(二番物還元量、図17参照)を測定する二番物センサ70が備えられている。図10~図13には、このような二番物排出口32Aの配置形態が示される。
[Structure of second sensor]
As described above, the second product is reduced to the upstream side, which is the front portion of the swing sorting device 24, by the second product reducing device 32. Specifically, the second product discharge port 32A of the second product reduction device 32 is located at a position outside the radial direction in the arc-shaped receiving net 23 (the second material is on the side of the receiving net 23, and the second product is the receiving net 23). It is provided at a position that does not pass through), and the second item is discharged at this position. The threshing device 1 is provided with a second product sensor 70 for measuring the flow rate Fv2 (second product reduction amount, see FIG. 17) of the second product thus reduced. 10 to 13 show an arrangement form of such a second product discharge port 32A.
 本実施形態では、図10に示されるように、二番物排出口32Aは受網23側に向けて設けられる。図11及び図12に示されるように、二番物排出口32Aの近傍には、二番物還元装置32を構成するスクリューとともに回転する回転羽根32Bが設けられ、二番物還元装置32によって搬送された二番物は、脱穀部41の側壁50に形成された挿通孔を通して回転羽根32Bによって二番物排出口32Aから径方向外側に放出され、図12の破線矢印で示されるように排出される。 In the present embodiment, as shown in FIG. 10, the second product discharge port 32A is provided toward the receiving net 23 side. As shown in FIGS. 11 and 12, in the vicinity of the second product discharge port 32A, a rotary blade 32B that rotates together with the screw constituting the second product reduction device 32 is provided and is conveyed by the second product reduction device 32. The second product is discharged radially outward from the second product discharge port 32A by the rotary blade 32B through an insertion hole formed in the side wall 50 of the threshing portion 41, and is discharged as shown by the broken line arrow in FIG. To.
 二番物排出口32Aには、放出された二番物を揺動選別装置24の処理物移送方向上手側に向けて案内する案内部32Cが設けられる。案内部32Cは、二番物排出口32Aに対向する内周面を有する筒状の一部を呈する形状で構成される。換言すると、案内部32Cは、帯板を円弧状に曲げた形状となっている。このような案内部32Cの内周面によって、回転羽根32Bによって放出された二番物の排出方向が規制される。 The second product discharge port 32A is provided with a guide unit 32C that guides the released second product toward the upper side in the processed material transfer direction of the rocking sorting device 24. The guide portion 32C is configured to exhibit a part of a cylinder having an inner peripheral surface facing the second object discharge port 32A. In other words, the guide portion 32C has a shape in which the strip is bent into an arc shape. The inner peripheral surface of the guide portion 32C regulates the discharge direction of the second object discharged by the rotary blade 32B.
 図11及び図12に示すように、二番物センサ70は、脱穀部41における側壁50の内部側部分に支持される。二番物センサ70は、二番物還元装置32における回転羽根32Bによって放出された二番物に接触して還元される二番物の流量Fv2を測定するように構成されている。二番物センサ70は、二番物還元装置32によって放出される二番物の放出延長上に位置して放出された二番物が接触することによって揺動する揺動アーム72と、揺動アーム72の揺動角度θ2(図17参照)に基づいて二番物の流量Fv2を測定する第二センサ部73と、第二センサ部73及び揺動アーム72を支持する支持フレーム74と、二番物センサ70の上方を覆うカバー体75と、を備えている。 As shown in FIGS. 11 and 12, the second sensor 70 is supported by the inner side portion of the side wall 50 in the threshing section 41. The second product sensor 70 is configured to measure the flow rate Fv2 of the second product that is reduced in contact with the second product emitted by the rotary blade 32B in the second product reduction device 32. The second object sensor 70 is located on the emission extension of the second object emitted by the second object reduction device 32 and swings by the contact of the emitted second object with the swing arm 72 and the swing arm 72. A second sensor unit 73 that measures the flow rate Fv2 of the second object based on the swing angle θ2 of the arm 72 (see FIG. 17), and a support frame 74 that supports the second sensor unit 73 and the swing arm 72. A cover body 75 that covers the upper part of the number sensor 70 is provided.
 第二センサ部73は、ケースにポテンショメータが内装され、支持フレーム74の内方側箇所に対してボルトによる締結固定されている。第二センサ部73は、回転軸76が支持フレーム74を挿通して外方側(側壁50側)に突出して設けられ、回転軸76に一体回動可能に揺動アーム72が取り付けられている。揺動アーム72は、回転軸76から下方に向けて延びており、案内部32Cによって二番物が案内される案内経路内に位置する状態で備えられている。揺動アーム72は回転軸76の軸芯まわりで揺動可能に支持されている。 The second sensor unit 73 has a potentiometer built in the case and is fastened and fixed to the inner side of the support frame 74 with bolts. The second sensor unit 73 is provided with the rotation shaft 76 protruding outward (side of the side wall 50) through the support frame 74, and the swing arm 72 is attached to the rotation shaft 76 so as to be integrally rotatable. .. The swing arm 72 extends downward from the rotation shaft 76, and is provided in a state of being located in a guide path in which the second object is guided by the guide portion 32C. The swing arm 72 is swingably supported around the axis of the rotating shaft 76.
 カバー体75は、揺動アーム72、第二センサ部73、及び支持フレーム74の夫々の上方を覆うように構成されている。このカバー体75によって、受網23を通して漏下する脱穀処理物のうち細かな塵埃が揺動アーム72や第二センサ部73に降りかかって計測動作を阻害することを防止できる。 The cover body 75 is configured to cover above each of the swing arm 72, the second sensor portion 73, and the support frame 74. The cover body 75 can prevent fine dust from the threshed material leaking through the receiving net 23 from falling on the swing arm 72 and the second sensor unit 73 and hindering the measurement operation.
 図13に示されるように、揺動アーム72は回転軸76よりも上方に延出する延出部を有し、延出部とバネ受け部77とにわたってコイルバネ78が張設される。揺動アーム72は、コイルバネ78の引っ張り付勢力によって二番物排出口32Aに近づくように揺動付勢されている。揺動アーム72は、上端部が係止部79に接当して、バネ付勢力に抗して下向き待機姿勢で位置保持される。 As shown in FIG. 13, the swing arm 72 has an extending portion extending above the rotating shaft 76, and a coil spring 78 is stretched over the extending portion and the spring receiving portion 77. The swing arm 72 is swing-forced so as to approach the second discharge port 32A by the pulling force of the coil spring 78. The upper end of the swing arm 72 abuts on the locking portion 79, and the position of the swing arm 72 is held in a downward standby posture against the force of the spring.
 二番物排出口32Aを通して回転羽根32Bによって放出された二番物が揺動アーム72に接触すると、その押圧力によって揺動アーム72がコイルバネ78の付勢力に抗して二番物排出口32Aから離間する方向に揺動する。この時の揺動角度θ2が第二センサ部73によって計測され、第二流量算出部81B(図17参照)が、第二センサ部73の計測結果に基づいて二番物の流量Fv2を算定する。具体的には、揺動角度θ2と二番物の流量Fv2との関係を示すマップや式を第二流量算出部81Bに記憶しておき、当該マップや式に基づいて二番物の流量Fv2を算定すると好適である。 When the second object discharged by the rotary blade 32B through the second object discharge port 32A comes into contact with the swing arm 72, the swing arm 72 resists the urging force of the coil spring 78 due to the pressing force of the second object discharge port 32A. Swings in the direction away from. The swing angle θ2 at this time is measured by the second sensor unit 73, and the second flow rate calculation unit 81B (see FIG. 17) calculates the flow rate Fv2 of the second product based on the measurement result of the second sensor unit 73. .. Specifically, a map or formula showing the relationship between the swing angle θ2 and the flow rate Fv2 of the second product is stored in the second flow rate calculation unit 81B, and the flow rate Fv2 of the second product is stored based on the map or formula. It is preferable to calculate.
〔バケットと接触するハンプの構成〕
 図5に示されたハンプ30eの詳細に関して、図14、図15及び図16に基づいて説明する。上述の通り、吐出口29hにおいてバケット31は従動スプロケット29Bの回動軸芯まわりに180度(または略180度)旋回動作しながら穀粒を放出する。しかし、例えばバケット31の内側に穀粒がこびり付いたりする虞が考えられる。バケット31の内側にこびり付いた穀粒は、バケット31の旋回動作だけでは穀粒がバケット31から放出されない虞がある。このことから、バケット31の内側に穀粒がこびり付くと、揚穀装置29の搬送効率の低下、穀粒の収量ロス等に繋がる虞がある。このような不都合を軽減するため、受け部30dの突出先端部にゴム製のハンプ30eがボルト連結されている。ハンプ30eはバケット31と接触するように位置する。ハンプ30eとバケット31とが接触した衝撃で、バケット31に残された穀粒が弾き出されて受け部30dへ案内される。そしてバケット31が下方へ移動すると、ハンプ30eが下向きに弾性変形しながら、バケット31は上向きに揺動する。バケット31が戻り経路29Eを更に下方へ移動すると、ハンプ30eとバケット31とが離れる。このとき、ハンプ30eの弾性エネルギーは解放され、ハンプ30eは勢いよく元の形状に戻る。また、バケット31も、ハンプ30eと離れるときに、ハンプ30eの弾性エネルギーに起因する衝撃がバケット31に伝達され、バケット31に残された穀粒が弾き出されて下方へ落下する。下方へ落下した穀粒は、戻り経路29Eを伝って一番物回収部26へ戻される。この構成によって、バケット31の内部に穀粒がこびり付く虞が軽減される。
[Composition of hump in contact with bucket]
The details of the hump 30e shown in FIG. 5 will be described with reference to FIGS. 14, 15 and 16. As described above, at the discharge port 29h, the bucket 31 discharges grains while rotating 180 degrees (or approximately 180 degrees) around the axis of rotation of the driven sprocket 29B. However, for example, there is a possibility that grains may stick to the inside of the bucket 31. The grains stuck to the inside of the bucket 31 may not be released from the bucket 31 only by the swirling motion of the bucket 31. For this reason, if grains stick to the inside of the bucket 31, there is a risk that the transport efficiency of the grain frying device 29 will decrease, the yield of grains will be lost, and the like. In order to reduce such inconvenience, a rubber hump 30e is bolted to the protruding tip of the receiving portion 30d. The hump 30e is positioned so as to be in contact with the bucket 31. The impact of contact between the hump 30e and the bucket 31 causes the grains left in the bucket 31 to be ejected and guided to the receiving portion 30d. Then, when the bucket 31 moves downward, the hump 30e elastically deforms downward, and the bucket 31 swings upward. When the bucket 31 moves further downward on the return path 29E, the hump 30e and the bucket 31 are separated from each other. At this time, the elastic energy of the hump 30e is released, and the hump 30e vigorously returns to its original shape. Further, when the bucket 31 is separated from the hump 30e, the impact caused by the elastic energy of the hump 30e is transmitted to the bucket 31, and the grains left in the bucket 31 are ejected and fall downward. The grains that have fallen downward are returned to the first item collection unit 26 along the return path 29E. With this configuration, the risk of grains sticking to the inside of the bucket 31 is reduced.
〔作業量の算出について〕
 作業量の算出に関して図17に基づいて説明する。第一流量算出部81Aは、第一センサ部64によって計測されたアーム部63の揺動角度θ1に基づいて、揚穀装置29及び横送り搬送装置30を流れる穀粒の流量Fv1を算出する。揺動角度θ1と穀粒の流量Fv1との相関関係は、例えば実験データや学習アルゴリズムによって得られる。実験データや学習アルゴリズムによって得られた揺動角度θ1と穀粒の流量Fv1との相関関係のデータが記憶装置(不図示)等に記憶される。本実施形態では、第一流量算出部81Aは、穀粒の流量Fv1を、例えば1/20秒~1/30秒のサンプリング周期で算出可能である。このことから、第一流量算出部81Aは、揚穀装置29及び横送り搬送装置30を流れる穀粒の流量Fv1をリアルタイム(または略リアルタイム)に算出可能である。
[Calculation of workload]
The calculation of the work amount will be described with reference to FIG. The first flow rate calculation unit 81A calculates the flow rate Fv1 of the grains flowing through the grain raising device 29 and the lateral feed transport device 30 based on the swing angle θ1 of the arm unit 63 measured by the first sensor unit 64. The correlation between the swing angle θ1 and the grain flow rate Fv1 can be obtained, for example, by experimental data or a learning algorithm. The data of the correlation between the experimental data and the swing angle θ1 obtained by the learning algorithm and the grain flow rate Fv1 are stored in a storage device (not shown) or the like. In the present embodiment, the first flow rate calculation unit 81A can calculate the flow rate Fv1 of the grains in a sampling cycle of, for example, 1/20 second to 1/30 second. From this, the first flow rate calculation unit 81A can calculate the flow rate Fv1 of the grains flowing through the grain raising device 29 and the lateral feed transport device 30 in real time (or substantially real time).
 第二流量算出部81Bは、第二センサ部73によって計測された揺動アーム72の揺動角度θ2に基づいて、二番物排出口32Aから排出される二番物の流量Fv2を算出する。揺動角度θ2と二番物の流量Fv2との相関関係は、例えば実験データや学習アルゴリズムによって得られる。実験データや学習アルゴリズムによって得られた揺動角度θ2と二番物の流量Fv2との相関関係のデータが記憶装置(不図示)等に記憶される。第一流量算出部81Aと同じように、第二流量算出部81Bは、二番物排出口32Aから排出される二番物の流量Fv2をリアルタイム(または略リアルタイム)に算出可能である。 The second flow rate calculation unit 81B calculates the flow rate Fv2 of the second product discharged from the second product discharge port 32A based on the swing angle θ2 of the swing arm 72 measured by the second sensor unit 73. The correlation between the swing angle θ2 and the flow rate Fv2 of the second object can be obtained, for example, by experimental data or a learning algorithm. The data of the correlation between the experimental data and the swing angle θ2 obtained by the learning algorithm and the flow rate Fv2 of the second object are stored in a storage device (not shown) or the like. Similar to the first flow rate calculation unit 81A, the second flow rate calculation unit 81B can calculate the flow rate Fv2 of the second product discharged from the second product discharge port 32A in real time (or substantially real time).
 補正部80は、第一流量算出部81Aによって算出された穀粒の流量Fv1を、第二流量算出部81Bによって算出された二番物の流量Fv2で補正する。図18は、本実施形態における穀粒の流量Fv1及び二番物の流量Fv2に関する検出量の一例である。具体的には、補正部80は、作業対象領域において収穫作業を開始してから穀粒の流量Fv1が所定量に達するまでは、穀粒の流量Fv1に二番物の流量Fv2を加えて補正する。作業対象領域とは、コンバインが圃場において作物の刈取作業を行う領域である。図18に示されるように、作物の収穫作業を開始してから穀粒の流量Fv1が所定量(所定値)に達するまで、すなわち、図18における刈始からt1までは穀粒の流量Fv1は次第に増大し、二番物の流量Fv2は急激に(急峻に)増大した後、次第に減少する。そこで、補正部80は、刈始からt1までは一番物センサ60によって検出された穀粒の流量Fv1に二番物の流量Fv2を加えて、一番物センサ60の検出結果を補正する。 The correction unit 80 corrects the grain flow rate Fv1 calculated by the first flow rate calculation unit 81A with the second flow rate Fv2 calculated by the second flow rate calculation unit 81B. FIG. 18 is an example of the detection amount regarding the flow rate Fv1 of the grain and the flow rate Fv2 of the second product in the present embodiment. Specifically, the correction unit 80 corrects by adding the second flow rate Fv2 to the grain flow rate Fv1 from the start of the harvesting work in the work target area until the grain flow rate Fv1 reaches a predetermined amount. do. The work target area is an area where the combine harvests crops in the field. As shown in FIG. 18, from the start of crop harvesting until the grain flow rate Fv1 reaches a predetermined amount (predetermined value), that is, from the start of cutting to t1 in FIG. 18, the grain flow rate Fv1 is It gradually increases, and the flow rate Fv2 of the second product increases sharply (steeply) and then gradually decreases. Therefore, the correction unit 80 corrects the detection result of the first sensor 60 by adding the second flow rate Fv2 to the flow rate Fv1 of the grain detected by the first sensor 60 from the start of cutting to t1.
 一方、補正部80は、作業対象領域を刈り抜けた後は、穀粒の流量Fv1から二番物の流量Fv2を減じて補正する。作業対象領域を刈り抜けた後とは、コンバインの刈取部4が圃場において作物の刈取作業を行う領域を走り抜けた後をいう。このような状態にあっては、図18に示されるように、刈抜から所定時間経過したt2の後は、穀粒の流量Fv1は急激に(急峻に)増大した後、次第に減少し、二番物の流量Fv2は次第に減少する。そこで、補正部80は、刈抜から所定時間経過したt2の後は、一番物センサ60によって検出された穀粒の流量Fv1から二番物の流量Fv2を減じて、一番物センサ60の検出結果を補正する。補正部80によって補正された穀粒の流量Fv1は、作業量算定部84へ送られる。 On the other hand, after cutting through the work target area, the correction unit 80 corrects by subtracting the flow rate Fv2 of the second product from the flow rate Fv1 of the grains. After cutting through the work target area, it means after the combine harvester 4 runs through the area where the crop is cut in the field. In such a state, as shown in FIG. 18, after t2 after a predetermined time has passed from cutting, the flow rate Fv1 of the grain increases sharply (suddenly) and then gradually decreases. The flow rate Fv2 of the product gradually decreases. Therefore, the correction unit 80 subtracts the flow rate Fv2 of the second grain from the flow rate Fv1 of the grain detected by the first grain sensor 60 after t2 after a predetermined time has elapsed from the cutting, and the correction unit 80 of the first grain sensor 60. Correct the detection result. The flow rate Fv1 of the grain corrected by the correction unit 80 is sent to the work amount calculation unit 84.
 収量受付部85は特定の収量値Vdを受け付ける。特定の収量値Vdとして、穀粒タンク12の既知の容量に対応した収量値や、運搬車が運搬可能な容量(または残量)に対応した収量値や、乾燥施設の乾燥機が乾燥可能な容量に対応した収量値等が例示される。特定の収量値Vdは、例えば、予め記憶装置(不図示)等に記憶された穀粒タンク12の容量を読み出す構成であっても良いし、運転部9の操作パネルにおいてオペレータが設定する構成であっても良い。また、特定の収量値Vdは、無線通信ネットワークを通じて外部からデータを受信する構成であっても良い。収量受付部85によって受け付けられた特定の収量値Vdは、作業量算定部84へ送られる。 The yield reception unit 85 receives a specific yield value Vd. As a specific yield value Vd, a yield value corresponding to a known capacity of the grain tank 12, a yield value corresponding to the capacity (or remaining amount) that can be carried by a carrier, and a dryer of a drying facility can be dried. An example is a yield value corresponding to the capacity. The specific yield value Vd may be configured to read out the capacity of the grain tank 12 stored in advance in a storage device (not shown) or the like, or may be configured by the operator on the operation panel of the operation unit 9. May be there. Further, the specific yield value Vd may be configured to receive data from the outside through the wireless communication network. The specific yield value Vd received by the yield reception unit 85 is sent to the work amount calculation unit 84.
 機体位置算出部88は、衛星測位モジュール83によって出力された測位データに基づいて、機体の位置座標を経時的に算出する。即ち、機体位置算出部88は、衛星測位を用いて機体位置を算出する。算出された機体の経時的な位置座標は、作業量算定部84へ送られる。 The aircraft position calculation unit 88 calculates the position coordinates of the aircraft over time based on the positioning data output by the satellite positioning module 83. That is, the aircraft position calculation unit 88 calculates the aircraft position using satellite positioning. The calculated position coordinates of the machine over time are sent to the work amount calculation unit 84.
 作業量算定部84は、第一流量算出部81Aによって算出され、かつ、補正部80によって補正された穀粒の流量Fv1を積算することによって、穀粒タンク12に貯留された穀粒の総量、即ち収量Viをリアルタイムに算定する。穀粒の流量Fv1は、例えば1/20秒~1/30秒毎に第一流量算出部81Aから次々に送られてくるため、作業量算定部84は、穀粒の流量Fv1に基づいて単位時間あたりの平均収量Vtを算出可能である。 The work amount calculation unit 84 calculates the total amount of grains stored in the grain tank 12 by integrating the flow rate Fv1 of the grains calculated by the first flow rate calculation unit 81A and corrected by the correction unit 80. That is, the yield Vi is calculated in real time. Since the grain flow rate Fv1 is sent one after another from the first flow rate calculation unit 81A, for example, every 1/20 second to 1/30 second, the work amount calculation unit 84 is a unit based on the grain flow rate Fv1. The average yield Vt per hour can be calculated.
 また、作業量算定部84は、機体位置算出部88によって算出された機体の経時的な位置座標を受け取るため、機体の経時的な位置座標の差分を算出することによって走行距離や速度を算出可能である。このことから、作業量算定部84は、穀粒の流量Fv1に基づいて単位走行距離あたりの平均収量Vrを算出可能である。 Further, since the work amount calculation unit 84 receives the temporal position coordinates of the aircraft calculated by the aircraft position calculation unit 88, the mileage and speed can be calculated by calculating the difference in the temporal position coordinates of the aircraft. Is. From this, the work amount calculation unit 84 can calculate the average yield Vr per unit mileage based on the flow rate Fv1 of the grains.
 更に、作業量算定部84は、特定の収量値Vdと、穀粒の流量Fv1と、機体位置算出部88によって算出された機体の位置座標と、に基づいて種々の作業量を算定するように構成されている。本実施形態では、種々の作業量は、穀粒タンク12に特定の収量値Vdに対応する穀粒が貯留されるまでの作業量である。例えば特定の収量値Vdが穀粒タンク12の容量であれば、作業量算定部84は、穀粒タンク12が満杯になるまでの作業量を算出する。また、例えば特定の収量値Vdが運搬車の運搬可能な容量(または残量)であれば、作業量算定部84は、運搬車の運搬可能な容量(または残量)に対応する作業量を算出する。 Further, the work amount calculation unit 84 calculates various work amounts based on the specific yield value Vd, the grain flow rate Fv1, and the position coordinates of the machine body calculated by the machine body position calculation unit 88. It is configured. In the present embodiment, the various working amounts are the working amounts until the grains corresponding to the specific yield value Vd are stored in the grain tank 12. For example, if the specific yield value Vd is the capacity of the grain tank 12, the work amount calculation unit 84 calculates the work amount until the grain tank 12 is full. Further, for example, if the specific yield value Vd is the transportable capacity (or remaining amount) of the carrier, the work amount calculation unit 84 determines the work amount corresponding to the transportable capacity (or remaining amount) of the carrier. calculate.
 具体例として、作業量算定部84は、作業量として残量値Vreを下記の式で算出する。
 Vre=Vd-Vi
 残量値Vreは、特定の収量値Vdから収量Viを減算した値である。また、作業量算定部84は、作業量として作業時間Twを下記の式で算出する。
 Tw=Vre/Vt
 作業時間Twは、特定の収量値Vdから収量Viを減算した残量値Vreを単位時間あたりの平均収量Vtで除算した値である。加えて、作業量算定部84は、作業量として作業走行距離Dwを下記の式で算出する。
 Dw=Vre/Vr
 作業走行距離Dwは、特定の収量値Vdから収量Viを減算した残量値Vreを単位走行距離あたりの平均収量Vrで除算した値である。このように、作業量算定部84は、穀粒の流量Fv1に基づいて、収穫作業によって得られた穀粒の収量Viが特定の収量値Vdに到達するために必要な作業量を算定する。
As a specific example, the work amount calculation unit 84 calculates the remaining amount value Vre as the work amount by the following formula.
Vre = Vd-Vi
The remaining amount value Vre is a value obtained by subtracting the yield Vi from the specific yield value Vd. Further, the work amount calculation unit 84 calculates the work time Tw as the work amount by the following formula.
Tw = Vre / Vt
The working time Tw is a value obtained by dividing the remaining value Vre, which is obtained by subtracting the yield Vi from the specific yield value Vd, by the average yield Vt per unit time. In addition, the work amount calculation unit 84 calculates the work mileage Dw as the work amount by the following formula.
Dw = Vre / Vr
The working mileage Dw is a value obtained by dividing the remaining value Vre, which is obtained by subtracting the yield Vi from the specific yield value Vd, by the average yield Vr per unit mileage. In this way, the work amount calculation unit 84 calculates the work amount required for the yield Vi of the grains obtained by the harvesting work to reach a specific yield value Vd based on the flow rate Fv1 of the grains.
 作業量算定部84によって算定された作業量(例えば、残量値Vre、作業時間Tw、作業走行距離Dw等)が報知部87によってオペレータ等に報知される。報知部87が、例えば運転部9に設けられた液晶モニタである場合、第一流量算出部81Aと作業量算定部84との夫々の算出結果が当該液晶モニタに表示される。なお、報知部87は、LEDランプ、ブザー、音声案内等であっても良い。 The work amount calculated by the work amount calculation unit 84 (for example, remaining amount value Vre, work time Tw, work mileage Dw, etc.) is notified to the operator or the like by the notification unit 87. When the notification unit 87 is, for example, a liquid crystal monitor provided in the operation unit 9, the calculation results of the first flow rate calculation unit 81A and the work amount calculation unit 84 are displayed on the liquid crystal monitor. The notification unit 87 may be an LED lamp, a buzzer, voice guidance, or the like.
 穀粒排出装置14のスクリューコンベア14Aが回転すると、穀粒タンク12に貯留された穀粒が機外に排出される。排出量算出部86は、穀粒排出装置14のスクリューコンベア14Aの回転速度Rvに基づいて穀粒タンク12から排出された穀粒の量を算出する。本実施形態では、スクリューコンベア14Aの回転速度Rvは回転数検出部14Bによって検出される。穀粒排出装置14によって排出される穀粒の単位時間当たりの排出量は、スクリューコンベア14Aの回転速度Rvと比例関係(または略比例関係)にある。このため、スクリューコンベア14Aの回転速度Rvに時間を掛けることによって、穀粒の排出量がリアルタイムに算出される。穀粒が機外に排出される前に、穀粒タンク12に貯留された穀粒の収量Viは作業量算定部84によって算出されている。このため、排出量算出部86は、穀粒の排出中に、収量Viから積算排出量を減算することによって、穀粒タンク12の内部に残された穀粒の残量をリアルタイムに算出しても良い。排出量算出部86の算出結果は報知部87によってオペレータ等に報知される。報知部87が液晶モニタである場合、排出量算出部86の算出結果が当該液晶モニタに表示される。 When the screw conveyor 14A of the grain discharge device 14 rotates, the grains stored in the grain tank 12 are discharged to the outside of the machine. The discharge amount calculation unit 86 calculates the amount of grains discharged from the grain tank 12 based on the rotation speed Rv of the screw conveyor 14A of the grain discharge device 14. In the present embodiment, the rotation speed Rv of the screw conveyor 14A is detected by the rotation speed detection unit 14B. The amount of grains discharged by the grain discharge device 14 per unit time is proportional (or substantially proportional) to the rotation speed Rv of the screw conveyor 14A. Therefore, by multiplying the rotation speed Rv of the screw conveyor 14A by time, the amount of grains discharged is calculated in real time. The yield Vi of the grains stored in the grain tank 12 before the grains are discharged to the outside of the machine is calculated by the work amount calculation unit 84. Therefore, the discharge amount calculation unit 86 calculates the remaining amount of grains left inside the grain tank 12 in real time by subtracting the integrated discharge amount from the yield Vi during the discharge of the grains. Is also good. The calculation result of the emission amount calculation unit 86 is notified to the operator and the like by the notification unit 87. When the notification unit 87 is a liquid crystal monitor, the calculation result of the emission amount calculation unit 86 is displayed on the liquid crystal monitor.
 穀粒タンク12に貯留された穀粒は山状に溜まりがちであるが、本構成であれば、揚穀装置29と横送り搬送装置30との間で一番物センサ60が穀粒の流量Fv1を検出する。揚穀装置29と横送り搬送装置30との間で一番物センサ60が穀粒の流量Fv1を検出する構成によって、穀粒タンク12の内部における穀粒の溜まり形状に左右されることなく、精度良い作業量の算定が可能となる。 The grains stored in the grain tank 12 tend to accumulate in a mountain shape, but in this configuration, the first thing sensor 60 between the grain raising device 29 and the lateral feed transport device 30 is the flow rate of the grains. Detects Fv1. Due to the configuration in which the first product sensor 60 detects the flow rate Fv1 of the grains between the grain raising device 29 and the lateral feed transport device 30, the shape of the grain pool inside the grain tank 12 is not affected. It is possible to calculate the amount of work with high accuracy.
〔チャフシーブの漏下開度の調整について〕
 図17に示されるように、補正部80によって補正された穀粒の流量Fv1は制御ユニット82に伝達される。制御ユニット82は、補正された穀粒の流量Fv1と、二番物の流量Fv2と、に基づいて、脱穀装置1を制御する。具体的には、図19に示されるように、制御ユニット82は、穀粒の流量Fv1が第1閾値を超え、且つ、二番物の流量Fv2が第2閾値以下であれば、選別部42における第一チャフシーブ38及び第二チャフシーブ39の少なくともいずれか一方の漏下開度を小さくする。これにより、穀粒の流量Fv1を低減して、二番物の流量Fv2を増大させ、脱穀装置1において選別する脱穀処理物の量を増大させ、より選別精度を高めることができる。したがって、一番物に混入する夾雑物の量を低減することが可能となる。
[Adjustment of leakage opening of chaff sheave]
As shown in FIG. 17, the flow rate Fv1 of the grains corrected by the correction unit 80 is transmitted to the control unit 82. The control unit 82 controls the threshing device 1 based on the corrected flow rate Fv1 of the grain and the flow rate Fv2 of the second product. Specifically, as shown in FIG. 19, in the control unit 82, if the flow rate Fv1 of the grains exceeds the first threshold value and the flow rate Fv2 of the second product exceeds the second threshold value, the sorting unit 42 The leakage opening degree of at least one of the first chaff sheave 38 and the second chaff sheave 39 is reduced. As a result, the flow rate Fv1 of the grains can be reduced, the flow rate Fv2 of the second product can be increased, the amount of the threshed product to be sorted by the threshing device 1 can be increased, and the sorting accuracy can be further improved. Therefore, it is possible to reduce the amount of impurities mixed in the first substance.
 また、制御ユニット82は、穀粒の流量Fv1が予め設定された第1閾値よりも小さい第3閾値よりも小さくなると、チャフシーブの漏下開度を大きくすると好適である。これにより、穀粒の流量Fv1が所定量以下の場合に穀粒の流量Fv1を増大させることができる。 Further, in the control unit 82, it is preferable to increase the leakage opening degree of the chaff sheave when the flow rate Fv1 of the grain becomes smaller than the third threshold value smaller than the preset first threshold value. Thereby, when the flow rate Fv1 of the grain is not more than a predetermined amount, the flow rate Fv1 of the grain can be increased.
 また、場合によっては、第一チャフシーブ38及び第二チャフシーブ39の漏下開度が小さくされた場合であっても、穀粒の流量Fv1が第1閾値よりも大きい状態が継続したり、あるいは、二番物の流量Fv2が第2閾値以下である状態が継続したり、穀粒の流量Fv1に対する二番物の流量Fv2の比率が小さくならないことが想定されるが、これは脱穀装置1に供給される作物の量が多過ぎることに起因する。そこで、第一チャフシーブ38及び第二チャフシーブ39の漏下開度が大きくされた場合であっても、特に二番物の流量Fv2が第2閾値よりも大きいときには、機体フレーム2の走行制御を行う走行装置3が、機体フレーム2の走行速度を低減させると好適である。これにより、脱穀装置1に供給される作物の量を少なくし、脱穀装置1における脱穀量及び選別量を低減することが可能となる。したがって、例えばグレンシーブ40において脱穀処理物が詰まっている状態となることによって二番物の流量Fv2が増大している場合には、当該脱穀処理物が詰まっている状態を解消することが可能となる。 Further, in some cases, even when the leakage opening degree of the first chaff sheave 38 and the second chaff sheave 39 is reduced, the state in which the flow rate Fv1 of the grains is larger than the first threshold value continues, or It is assumed that the state in which the flow rate Fv2 of the second product is below the second threshold value continues or the ratio of the flow rate Fv2 of the second product to the flow rate Fv1 of the grains does not decrease, but this is supplied to the threshing device 1. This is due to too much crop being produced. Therefore, even when the leakage opening degree of the first chaff sheave 38 and the second chaff sheave 39 is increased, the traveling control of the machine frame 2 is performed particularly when the flow rate Fv2 of the second product is larger than the second threshold value. It is preferable that the traveling device 3 reduces the traveling speed of the machine frame 2. This makes it possible to reduce the amount of crops supplied to the threshing device 1 and reduce the amount of threshing and sorting in the threshing device 1. Therefore, for example, when the flow rate Fv2 of the second product is increased due to the state in which the threshed product is clogged in the Glen Sheave 40, it is possible to eliminate the state in which the threshed product is clogged. ..
 このような走行装置3は、機体フレーム2を自動走行させるように構成することも可能である。係る場合には、上記第1閾値や第2閾値に基づいて、機体フレーム2の走行速度を低減させたり、停車させたりすることが可能となる。 Such a traveling device 3 can also be configured to automatically travel the machine frame 2. In such a case, it is possible to reduce the traveling speed of the airframe frame 2 or stop the vehicle based on the first threshold value and the second threshold value.
 更に、予期しない理由によって、第一チャフシーブ38及び第二チャフシーブ39の漏下開度が大きくされてから予め設定された時間が経過するまでに、穀粒の流量Fv1に対する二番物の流量Fv2の比率が小さくならないときや、機体フレーム2の走行速度が低減されてから予め設定された時間が経過するまでに、穀粒の流量Fv1に対する二番物の流量Fv2の比率が小さくならないときは、走行装置3は、機体フレーム2を停止させると好適である。これにより、脱穀装置1への作物の供給を、一旦、中断することができるので、脱穀装置1における脱穀処理及び選別処理に係る負荷を低減することが可能となる。したがって、現在、脱穀装置1内における作物に対する処理を行い、グレンシーブ40における脱穀処理物が詰まっている状態を解消することが可能となる。 Further, for an unexpected reason, the flow rate Fv2 of the second product with respect to the flow rate Fv1 of the grain is from the time when the leakage opening degree of the first chaf sheave 38 and the second chaf sheave 39 is increased to the time when a preset time elapses. When the ratio does not decrease, or when the ratio of the flow rate Fv2 of the second product to the flow rate Fv1 of the grains does not decrease by the time when the preset time elapses after the traveling speed of the machine frame 2 is reduced, the traveling is performed. It is preferable that the device 3 stops the airframe frame 2. As a result, the supply of crops to the threshing device 1 can be temporarily interrupted, so that the load related to the threshing process and the sorting process in the threshing device 1 can be reduced. Therefore, at present, it is possible to process the crop in the threshing device 1 and eliminate the state in which the threshed product in the Glenshive 40 is clogged.
 なお、送塵弁53aの傾斜姿勢を変更可能である場合には、穀粒の流量Fv1と二番物の流量Fv2とに基づいて当該傾斜角度を変更するように構成することも可能である。 If the tilting posture of the dust feed valve 53a can be changed, it is also possible to change the tilting angle based on the flow rate Fv1 of the grain and the flow rate Fv2 of the second product.
〔その他の実施形態〕
 本発明は、上述の実施形態に例示された構成に限定されるものではなく、以下、本発明の代表的な別実施形態を例示する。
[Other embodiments]
The present invention is not limited to the configuration exemplified in the above-described embodiment, and the following will exemplify another typical embodiment of the present invention.
(1)上記実施形態では、コンバインが普通型コンバインである場合の例を挙げて説明したが、コンバインは自脱型コンバインであっても良い。上記実施形態に示された一番物センサ60の構成は、自脱型コンバインにも適用可能である。例えば、図20に示されているように、一番物センサ91が穀粒タンク12の天板12tに支持される構成であっても良い。穀粒タンク12の左側壁12bに、上下に延びる揚穀装置90が支持され、揚穀装置90に、スクリューコンベア90Aが備えられ、スクリューコンベア90Aは平面視において時計回りに回転する。左側壁12bのうち、揚穀装置90の上端部の位置する箇所に吐出口12hが形成され、吐出口12hは揚穀装置90の内部空間と連通する。 (1) In the above embodiment, an example of the case where the combine is a normal type combine has been described, but the combine may be a head-feeding combine. The configuration of the first sensor 60 shown in the above embodiment is also applicable to a head-feeding combine. For example, as shown in FIG. 20, the first product sensor 91 may be supported by the top plate 12t of the grain tank 12. A vertically extending grain raising device 90 is supported on the left side wall 12b of the grain tank 12, a screw conveyor 90A is provided in the grain raising device 90, and the screw conveyor 90A rotates clockwise in a plan view. A discharge port 12h is formed at a position on the left side wall 12b where the upper end of the grain raising device 90 is located, and the discharge port 12h communicates with the internal space of the grain raising device 90.
 スクリューコンベア90Aは、脱穀装置1の底部から穀粒を垂直に搬送し、スクリューコンベア90Aの上端部に回転羽根90Bが備えられている。回転羽根90Bはスクリューコンベア90Aと一体回転する。吐出口12hは、回転羽根90Bの位置する箇所に設けられている。 The screw conveyor 90A vertically conveys grains from the bottom of the threshing device 1, and a rotary blade 90B is provided at the upper end of the screw conveyor 90A. The rotary blade 90B rotates integrally with the screw conveyor 90A. The discharge port 12h is provided at a position where the rotary blade 90B is located.
 一番物センサ91に、アーム部92とセンサ部93とが備えられている。吐出口12hから穀粒が放出されると、穀粒の幾らかがアーム部92と接触し、アーム部92が揺動する。センサ部93によってアーム部92の揺動角度θ1が計測され、その計測結果に基づいて穀粒の流量Fv1が算出される。 The first object sensor 91 is provided with an arm unit 92 and a sensor unit 93. When the grains are discharged from the discharge port 12h, some of the grains come into contact with the arm portion 92, and the arm portion 92 swings. The swing angle θ1 of the arm unit 92 is measured by the sensor unit 93, and the flow rate Fv1 of the grains is calculated based on the measurement result.
 穀粒タンク12の天板12tに膨出部95が形成されている。膨出部95は天板12tの表面部分よりも上側に膨出し、膨出部95の内部に膨出空間が形成されている。膨出部95にアーム部92の回転軸94が支持される。膨出部95のうち、回転軸94の真上に位置する部分が最も高い位置となるように、膨出部95は形成されている。また、膨出部95の機体前部に傾斜面95aが形成され、傾斜面95aは機体前側ほど天板12tに近付く。 A bulging portion 95 is formed on the top plate 12t of the grain tank 12. The bulging portion 95 bulges upward from the surface portion of the top plate 12t, and a bulging space is formed inside the bulging portion 95. The rotation shaft 94 of the arm portion 92 is supported by the bulging portion 95. The bulging portion 95 is formed so that the portion of the bulging portion 95 located directly above the rotation shaft 94 is at the highest position. Further, an inclined surface 95a is formed on the front portion of the machine body of the bulging portion 95, and the inclined surface 95a approaches the top plate 12t toward the front side of the machine body.
 図20に仮想線L3が示される。仮想線L3は、揺動軸芯Y2から下方に延び、投擲経路領域S1の上端線に対して直交する方向で交わる。アーム部92の遊端部は、穀粒が衝突せずに下向きに延びる状態で、仮想線L3よりも吐出口12hの位置する側と反対側に位置する。このことから、アーム部92が吐出口12hの位置する側と反対側に揺動するほど、アーム部92のうちの投擲経路領域S1の範囲外にはみ出る部分が多くなる。つまり、アーム部92は、揺動角度θ1が大きいほど、投擲経路領域S1の外にはみ出る割合が多くなるように構成されている。 FIG. 20 shows the virtual line L3. The virtual line L3 extends downward from the swing axis Y2 and intersects in a direction orthogonal to the upper end line of the throwing path region S1. The free end portion of the arm portion 92 is located on the side opposite to the side where the discharge port 12h is located with respect to the virtual line L3 in a state where the grains extend downward without colliding with each other. From this, the more the arm portion 92 swings to the side opposite to the side where the discharge port 12h is located, the more portion of the arm portion 92 that protrudes out of the throwing path region S1. That is, the arm portion 92 is configured so that the larger the swing angle θ1, the greater the proportion of the arm portion 92 protruding outside the throwing path region S1.
 吐出口12hから放出される一番物の量が多くなると、アーム部92が上向きに大きく揺動する。このとき、アーム部92のうち揺動基端部側が、天板12tよりも上側に位置し、膨出部95に収納される。つまり、吐出口12hから放出される一番物の量が多くなると、アーム部92が上向きに大きく揺動し、アーム部92のうち穀粒の投擲経路領域S1よりも上側に外れる部分の割合が多くなる。また、アーム部92が上向きに大きく揺動するほど、アーム部92のうち膨出部95に収納される部分の割合が多くなる。このため、一番物の多くがアーム部92と接触することなく、放物線に沿って穀粒タンク12の内部へ拡散する。 When the amount of the most matter discharged from the discharge port 12h becomes large, the arm portion 92 swings upward greatly. At this time, the swing base end portion side of the arm portion 92 is located above the top plate 12t and is housed in the bulging portion 95. That is, when the amount of the most matter discharged from the discharge port 12h is large, the arm portion 92 swings upward greatly, and the ratio of the portion of the arm portion 92 that deviates above the throwing path region S1 of the grain is increased. Will increase. Further, the larger the arm portion 92 swings upward, the larger the proportion of the portion of the arm portion 92 that is housed in the bulging portion 95. Therefore, most of the first thing diffuses into the inside of the grain tank 12 along the parabola without coming into contact with the arm portion 92.
(2)上記実施形態では、二番物センサ70によって検出された二番物の流量Fv2が第2閾値よりも大きいときに、機体フレーム2の走行制御を行う走行装置3が、機体フレーム2の走行速度を低減させる構成が示されているが、この実施形態に限定されない。第一チャフシーブ38の漏下開度が小さく設定されると、穀粒の流量Fv1が低減し、穀粒の流量Fv1の低減分が二番物として二番物回収部27に回収され、より選別精度が高められる。一方、二番物回収部27に回収される量が増大し過ぎると、二番物回収部27から二番物が溢れ出し、排藁等とともにそのまま排出されて収穫ロスとなる。このような不都合を回避するため、例えば図21に示されるように、二番物の流量Fv2が第4閾値よりも大きいときに、制御ユニット82が第一チャフシーブ38の漏下開度を大きくしても良い。これにより、第一チャフシーブ38からの選別処理物の漏下が促されて穀粒の流量Fv1が増大し、二番物回収部27に回収される量が低減するため、二番物回収部27から二番物が溢れ出す虞が軽減される。 (2) In the above embodiment, when the flow rate Fv2 of the second object detected by the second object sensor 70 is larger than the second threshold value, the traveling device 3 that controls the traveling of the machine frame 2 is the machine frame 2. Although a configuration for reducing the traveling speed is shown, the present invention is not limited to this embodiment. When the leakage opening degree of the first chaff sheave 38 is set to be small, the flow rate Fv1 of the grains is reduced, and the reduced amount of the flow rate Fv1 of the grains is collected as the second item by the second item collection unit 27 for further sorting. The accuracy is improved. On the other hand, if the amount collected by the second product collection unit 27 increases too much, the second product overflows from the second product collection unit 27 and is discharged as it is together with the straw and the like, resulting in a harvest loss. In order to avoid such inconvenience, for example, as shown in FIG. 21, when the flow rate Fv2 of the second product is larger than the fourth threshold value, the control unit 82 increases the leakage opening degree of the first chaff sheave 38. May be. As a result, the leakage of the sorted product from the first chaff sheave 38 is promoted, the flow rate Fv1 of the grains increases, and the amount collected by the second product collection unit 27 decreases, so that the second product collection unit 27 The risk of the second item overflowing is reduced.
 図18に示される第2閾値と、図21に示される第4閾値と、が同じであれば、二番物の流量Fv2が第2閾値及び第4閾値よりも大きい場合、制御ユニット82は、第一チャフシーブ38の漏下開度を大きくし、かつ、機体の走行速度を低減させる。 If the second threshold value shown in FIG. 18 and the fourth threshold value shown in FIG. 21 are the same, and if the flow rate Fv2 of the second product is larger than the second threshold value and the fourth threshold value, the control unit 82 may use the control unit 82. The leakage opening degree of the first chaff sheave 38 is increased, and the traveling speed of the airframe is reduced.
 図21に示される第4閾値が図18に示される第2閾値よりも大きい場合について説明する。二番物の流量Fv2が第2閾値よりも大きく、かつ、第4閾値よりも小さい場合、制御ユニット82は、機体の走行速度を低減させるが、第一チャフシーブ38の漏下開度を大きくしない。そして、二番物の流量Fv2が第2閾値よりも大きく、かつ、第4閾値よりも大きくなると、制御ユニット82は、第一チャフシーブ38の漏下開度を大きくし、かつ、機体の走行速度を低減させる。また、二番物の流量Fv2が第2閾値よりも大きく、かつ、第4閾値よりも大きくなると、制御ユニット82は、第一チャフシーブ38の漏下開度を大きくし、機体の走行速度を変更前の状態に戻す構成であっても良い。 A case where the fourth threshold value shown in FIG. 21 is larger than the second threshold value shown in FIG. 18 will be described. When the flow rate Fv2 of the second object is larger than the second threshold value and smaller than the fourth threshold value, the control unit 82 reduces the traveling speed of the aircraft, but does not increase the leakage opening degree of the first chaff sheave 38. .. Then, when the flow rate Fv2 of the second object is larger than the second threshold value and larger than the fourth threshold value, the control unit 82 increases the leakage opening degree of the first chaff sheave 38 and the traveling speed of the aircraft. To reduce. Further, when the flow rate Fv2 of the second object is larger than the second threshold value and larger than the fourth threshold value, the control unit 82 increases the leakage opening degree of the first chaff sheave 38 and changes the traveling speed of the aircraft. It may be configured to return to the previous state.
 図21に示される第4閾値が図18に示される第2閾値よりも小さい場合について説明する。二番物の流量Fv2が第4閾値よりも大きく、かつ、第2閾値よりも小さい場合、制御ユニット82は、第一チャフシーブ38の漏下開度を大きくするが、機体の走行速度を低減させない。そして、二番物の流量Fv2が第4閾値よりも大きく、かつ、第2閾値よりも大きくなると、制御ユニット82は、第一チャフシーブ38の漏下開度を大きくし、かつ、機体の走行速度を低減させる。また、二番物の流量Fv2が第4閾値よりも大きく、かつ、第2閾値よりも大きくなると、制御ユニット82は、機体の走行速度を低減させ、第一チャフシーブ38の漏下開度を変更前の状態に戻す構成であっても良い。 A case where the fourth threshold value shown in FIG. 21 is smaller than the second threshold value shown in FIG. 18 will be described. When the flow rate Fv2 of the second object is larger than the fourth threshold value and smaller than the second threshold value, the control unit 82 increases the leakage opening degree of the first chaff sheave 38, but does not reduce the traveling speed of the aircraft. .. Then, when the flow rate Fv2 of the second object is larger than the fourth threshold value and larger than the second threshold value, the control unit 82 increases the leakage opening degree of the first chaff sheave 38 and the traveling speed of the aircraft. To reduce. Further, when the flow rate Fv2 of the second product is larger than the fourth threshold value and larger than the second threshold value, the control unit 82 reduces the traveling speed of the machine body and changes the leakage opening degree of the first chaff sheave 38. It may be configured to return to the previous state.
(3)上記実施形態では、補正部80は、第一流量算出部81Aによって算出された穀粒の流量Fv1を、第二流量算出部81Bによって算出された二番物の流量Fv2で補正するが、この実施形態に限定されない。例えば、補正部80が備えられず、穀粒の流量Fv1が補正部80によって補正されない構成であっても良い。 (3) In the above embodiment, the correction unit 80 corrects the grain flow rate Fv1 calculated by the first flow rate calculation unit 81A with the second flow rate Fv2 calculated by the second flow rate calculation unit 81B. , Not limited to this embodiment. For example, the correction unit 80 may not be provided, and the flow rate Fv1 of the grains may not be corrected by the correction unit 80.
(4)作業量は、チャフシーブの漏下開度の調整値であっても良い。例えば、図22に示されるように、作業量算定部84が、穀粒の流量Fv1に基づいて漏下開度の調整値を制御ユニット82へ出力する構成であっても良い。そして制御ユニット82は、作業量算定部84から受信した調整値に基づいて第一チャフシーブ38及び第二チャフシーブ39の漏下開度を調整する構成であっても良い。 (4) The amount of work may be an adjustment value of the leakage opening degree of the chaff sheave. For example, as shown in FIG. 22, the work amount calculation unit 84 may be configured to output the adjustment value of the leakage opening degree to the control unit 82 based on the flow rate Fv1 of the grains. The control unit 82 may be configured to adjust the leakage opening degree of the first chaff sheave 38 and the second chaff sheave 39 based on the adjustment value received from the work amount calculation unit 84.
(5)上記実施形態では、作業量としての作業時間Twは、特定の収量値Vdから収量Viを減算した残量値Vreを単位時間あたりの平均収量Vtで除算した値であるが、この実施形態に限定されない。また、上記実施形態では、作業量としての作業走行距離Dwは、特定の収量値Vdから収量Viを減算した残量値Vreを単位走行距離あたりの平均収量Vrで除算した値であるが、この実施形態に限定されない。例えば、作業量は、特定の収量値Vdから収量Viを減算した残量値Vreを流量Fv1(瞬時値)で除算した値であっても良い。 (5) In the above embodiment, the working time Tw as the working amount is a value obtained by subtracting the yield Vi from the specific yield value Vd and dividing the remaining value Vre by the average yield Vt per unit time. It is not limited to the form. Further, in the above embodiment, the work mileage Dw as the work amount is a value obtained by dividing the remaining value Vre obtained by subtracting the yield Vi from the specific yield value Vd by the average yield Vr per unit mileage. It is not limited to the embodiment. For example, the working amount may be a value obtained by dividing the remaining value Vre, which is obtained by subtracting the yield Vi from the specific yield value Vd, by the flow rate Fv1 (instantaneous value).
(6)上記実施形態では、作業量は、穀粒タンク12に特定の収量値Vdに対応する穀粒が貯留されるまでの作業量であるが、この実施形態に限定されない。例えば、作業量は、穀粒搬送用のトラックに特定の収量値Vdに対応する穀粒が貯留されるまでの作業量であっても良い。また、作業量は、乾燥施設の乾燥機に特定の収量値Vdに対応する穀粒が貯留されるまでの作業量であっても良い。 (6) In the above embodiment, the working amount is the working amount until the grain corresponding to the specific yield value Vd is stored in the grain tank 12, but is not limited to this embodiment. For example, the amount of work may be the amount of work until grains corresponding to a specific yield value Vd are stored in a truck for transporting grains. Further, the amount of work may be the amount of work until the grains corresponding to the specific yield value Vd are stored in the dryer of the drying facility.
(7)上述の実施形態では、一番物センサ60は、アーム部63の揺動角度θ1を第一センサ部64で検出するように構成されているが、この実施形態に限定されない。例えば、一番物センサ60に、板部分とロードセルとが備えられる構成であっても良い。板部分に穀粒が衝突し、ロードセルは板部分からの荷重を検出する構成であっても良い。 (7) In the above-described embodiment, the first sensor 60 is configured to detect the swing angle θ1 of the arm portion 63 by the first sensor portion 64, but is not limited to this embodiment. For example, the first object sensor 60 may be provided with a plate portion and a load cell. The load cell may be configured to detect the load from the plate portion when the grains collide with the plate portion.
(8)上述の実施形態では、第一流量算出部81A、第二流量算出部81B、作業量算定部84、収量受付部85、排出量算出部86等がコンバインに備えられているが、この実施形態に限定されない。例えば、第一流量算出部81A、第二流量算出部81B、作業量算定部84、収量受付部85、排出量算出部86等がコンバインに搭載されないコンピュータ(一台または複数のコンピュータで、据え置き、携帯のいずれであっても良い)に備えられる構成であっても良い。この場合、当該コンピュータと収穫機との夫々に各別の算定機能が備えられ、夫々の算定機能が相互にデータ通信(例えば有線/無線インターネット通信)を可能な算定システムが構成されても良い。 (8) In the above-described embodiment, the combine is provided with a first flow rate calculation unit 81A, a second flow rate calculation unit 81B, a work amount calculation unit 84, a yield reception unit 85, an emission amount calculation unit 86, and the like. It is not limited to the embodiment. For example, a computer (one or more computers, deferred) in which the first flow rate calculation unit 81A, the second flow rate calculation unit 81B, the work amount calculation unit 84, the yield reception unit 85, the emission amount calculation unit 86, etc. are not mounted on the combine. It may be any of the portable devices). In this case, a calculation system may be configured in which each of the computer and the harvester is provided with a separate calculation function, and each calculation function can perform data communication (for example, wired / wireless Internet communication) with each other.
 なお、上述の実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能である。また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。 It should be noted that the configuration disclosed in the above embodiment (including another embodiment, the same shall apply hereinafter) can be applied in combination with the configuration disclosed in other embodiments as long as there is no contradiction. Moreover, the embodiment disclosed in the present specification is an example, and the embodiment of the present invention is not limited to this, and can be appropriately modified without departing from the object of the present invention.
 本発明は、圃場の植立穀稈を刈り取り、脱穀装置によって刈取穀稈の脱穀選別処理を行うコンバインに用いることが可能である。また、本発明のコンバインの技術的特徴は、算定システムにも適用可能である。このため、上述の実施形態は算定システムとして構成できる。加えて、本発明のコンバインの技術的特徴は、算定方法にも適用可能である。このため、上述の実施形態は算定方法として構成できる。加えて、本発明のコンバインの技術的特徴は、算定プログラムにも適用可能である。そのため、上述の実施形態は算定プログラムとして構成できる。さらに、この技術的特徴を有する算定プログラムが記録された光ディスクや磁気ディスク、半導体メモリ等の記録媒体も上述の実施形態の構成に含まれる。 The present invention can be used for a combine that cuts a planted grain culm in a field and performs a threshing sorting process of the cut grain culm by a threshing device. Further, the technical features of the combine of the present invention can also be applied to a calculation system. Therefore, the above-described embodiment can be configured as a calculation system. In addition, the technical features of the combine of the present invention can also be applied to the calculation method. Therefore, the above-described embodiment can be configured as a calculation method. In addition, the technical features of the combine of the present invention are also applicable to calculation programs. Therefore, the above-described embodiment can be configured as a calculation program. Further, a recording medium such as an optical disk, a magnetic disk, or a semiconductor memory in which a calculation program having this technical feature is recorded is also included in the configuration of the above-described embodiment.
 1     :脱穀装置
 12    :穀粒タンク
 29    :揚穀装置(搬送装置)
 30    :横送り搬送装置(搬送装置)
 60    :一番物センサ(流量計測装置)
 63    :アーム部
 64    :第一センサ部(センサ部)
 81A   :第一流量算出部(算出部)
 84    :作業量算定部
 85    :収量受付部
 Fv1   :穀粒の流量
 Vi    :穀粒の収量
 Vd    :特定の収量値
 Vr    :単位走行距離あたりの平均収量
 Vt    :単位時間あたりの平均収量
 Dw    :作業走行距離(作業量)
 Tw    :作業時間(作業量)
 θ1    :アーム部の揺動角度
1: Threshing device 12: Grain tank 29: Grain raising device (transport device)
30: Horizontal feed transfer device (transport device)
60: First object sensor (flow rate measuring device)
63: Arm part 64: First sensor part (sensor part)
81A: First flow rate calculation unit (calculation unit)
84: Work amount calculation unit 85: Yield reception unit Fv1: Grain flow rate Vi: Grain yield Vd: Specific yield value Vr: Average yield per unit mileage Vt: Average yield per unit time Dw: Work travel Distance (work load)
Tw: Working time (work amount)
θ1: Swing angle of the arm

Claims (10)

  1.  作物を脱穀処理する脱穀装置と、
     前記脱穀装置によって得られた穀粒を貯留する穀粒タンクと、
     前記脱穀装置によって得られた穀粒を、前記脱穀装置から前記穀粒タンクへ搬送する搬送装置と、
     前記搬送装置によって搬送される穀粒の流量を計測する流量計測装置と、
     特定の収量値を受け付ける収量受付部と、
     前記流量に基づいて、収穫作業によって得られた穀粒の収量が前記特定の収量値に到達するために必要な作業量を算定する作業量算定部と、が備えられているコンバイン。
    A threshing device that threshes crops,
    A grain tank for storing grains obtained by the threshing device, and
    A transport device for transporting the grains obtained by the threshing device from the threshing device to the grain tank, and a transport device.
    A flow rate measuring device that measures the flow rate of grains transported by the transport device, and
    A yield reception section that accepts specific yield values, and
    A combine that includes a work amount calculation unit that calculates the amount of work required for the yield of grains obtained by the harvesting work to reach the specific yield value based on the flow rate.
  2.  前記作業量算定部は、前記流量を積算することによって前記収量を算定する請求項1に記載のコンバイン。 The combine according to claim 1, wherein the work amount calculation unit calculates the yield by integrating the flow rates.
  3.  前記作業量算定部は、前記流量に基づいて単位時間あたりの平均収量を算出し、前記特定の収量値から前記収量を減算して得られた値を前記平均収量で除算して、前記作業量として、作業時間を算定する請求項1または2に記載のコンバイン。 The work amount calculation unit calculates the average yield per unit time based on the flow rate, subtracts the yield from the specific yield value, and divides the obtained value by the average yield to obtain the work amount. The combine according to claim 1 or 2, which calculates the working time.
  4.  前記作業量算定部は、前記流量に基づいて単位走行距離あたりの平均収量を算出し、前記特定の収量値から前記収量を減算して得られた値を前記平均収量で除算して、前記作業量として、作業走行距離を算定する請求項1または2に記載のコンバイン。 The work amount calculation unit calculates the average yield per unit mileage based on the flow rate, subtracts the yield from the specific yield value, and divides the obtained value by the average yield to perform the work. The combine according to claim 1 or 2, which calculates the working mileage as an amount.
  5.  前記作業量は、前記穀粒タンクに前記特定の収量値に対応する穀粒が貯留されるまでの作業量である請求項1から4の何れか一項に記載のコンバイン。 The combine according to any one of claims 1 to 4, wherein the work amount is the work amount until the grains corresponding to the specific yield value are stored in the grain tank.
  6.  前記流量計測装置に、搬送される穀粒が接触して揺動するアーム部と、前記アーム部の揺動角度を検出するセンサ部と、前記センサ部によって検出された揺動角度に基づいて前記流量を算出する算出部と、が備えられている請求項1から5の何れか一項に記載のコンバイン。 The arm portion in which the grain to be transported is in contact with the flow rate measuring device and swings, the sensor portion for detecting the swing angle of the arm portion, and the swing angle detected by the sensor portion are used. The combine according to any one of claims 1 to 5, further comprising a calculation unit for calculating a flow rate.
  7.  コンバインの作業量を算定する算定システムであって、
     脱穀装置から搬送装置を介して穀粒タンクへ搬送される穀粒の流量を計測する流量計測装置と、
     特定の収量値を受け付ける収量受付部と、
     前記流量に基づいて、収穫作業によって得られた穀粒の収量が前記特定の収量値に到達するために必要な前記作業量を算定する作業量算定部と、が備えられている算定システム。
    It is a calculation system that calculates the amount of work of the combine.
    A flow rate measuring device that measures the flow rate of grains transported from the threshing device to the grain tank via the transport device,
    A yield reception section that accepts specific yield values, and
    A calculation system including a work amount calculation unit for calculating the work amount required for the yield of grains obtained by the harvesting work to reach the specific yield value based on the flow rate.
  8.  コンバインの作業量を算定する算定方法であって、
     脱穀装置から搬送装置を介して穀粒タンクへ搬送される穀粒の流量を計測する流量計測ステップと、
     特定の収量値を受け付ける収量受付ステップと、
     前記流量に基づいて、収穫作業によって得られた穀粒の収量が前記特定の収量値に到達するために必要な前記作業量を算定する作業量算定ステップと、を備える算定方法。
    It is a calculation method to calculate the amount of work of the combine.
    A flow rate measurement step that measures the flow rate of grains transported from the threshing device to the grain tank via the transfer device, and
    A yield acceptance step that accepts a specific yield value, and
    A calculation method comprising a work amount calculation step for calculating the work amount required for the yield of grains obtained by the harvesting work to reach the specific yield value based on the flow rate.
  9.  コンバインの作業量を算定する算定プログラムであって、
     脱穀装置から搬送装置を介して穀粒タンクへ搬送される穀粒の流量を計測する流量計測機能と、
     特定の収量値を受け付ける収量受付機能と、
     前記流量に基づいて、収穫作業によって得られた穀粒の収量が前記特定の収量値に到達するために必要な前記作業量を算定する作業量算定機能と、をコンピュータに実行させる算定プログラム。
    It is a calculation program that calculates the amount of work of the combine.
    A flow rate measurement function that measures the flow rate of grains transported from the threshing device to the grain tank via the transfer device, and
    A yield reception function that accepts specific yield values, and
    A calculation program that causes a computer to execute a work amount calculation function for calculating the work amount required for the yield of grains obtained by the harvesting work to reach the specific yield value based on the flow rate.
  10.  コンバインの作業量を算定する算定プログラムが記録されている記録媒体において、
     脱穀装置から搬送装置を介して穀粒タンクへ搬送される穀粒の流量を計測する流量計測機能と、
     特定の収量値を受け付ける収量受付機能と、
     前記流量に基づいて、収穫作業によって得られた穀粒の収量が前記特定の収量値に到達するために必要な前記作業量を算定する作業量算定機能と、をコンピュータに実行させる算定プログラムが記録されている記録媒体。
    In the recording medium on which the calculation program for calculating the amount of work of the combine is recorded.
    A flow rate measurement function that measures the flow rate of grains transported from the threshing device to the grain tank via the transfer device, and
    A yield reception function that accepts specific yield values, and
    A calculation program that causes a computer to execute a work amount calculation function that calculates the work amount required for the yield of grains obtained by the harvesting work to reach the specific yield value based on the flow rate is recorded. The recording medium that has been used.
PCT/JP2021/044187 2020-12-11 2021-12-02 Combine, determination system, determination method, determination program, and recording medium WO2022124173A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180075321.6A CN116419669A (en) 2020-12-11 2021-12-02 Combine harvester, estimating system, estimating method, estimating program, and recording medium
KR1020237014028A KR20230118072A (en) 2020-12-11 2021-12-02 Combine, counting system, counting method, counting program, and recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-206138 2020-12-11
JP2020206138A JP2022093059A (en) 2020-12-11 2020-12-11 combine

Publications (1)

Publication Number Publication Date
WO2022124173A1 true WO2022124173A1 (en) 2022-06-16

Family

ID=81973174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/044187 WO2022124173A1 (en) 2020-12-11 2021-12-02 Combine, determination system, determination method, determination program, and recording medium

Country Status (4)

Country Link
JP (1) JP2022093059A (en)
KR (1) KR20230118072A (en)
CN (1) CN116419669A (en)
WO (1) WO2022124173A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60196123A (en) * 1984-03-19 1985-10-04 株式会社クボタ Reaming harvester
JP2003070339A (en) * 2001-09-06 2003-03-11 Mitsubishi Agricult Mach Co Ltd Yield-measuring device in combine harvester
JP2006034232A (en) * 2004-07-29 2006-02-09 Iseki & Co Ltd Storage indication device for grain tank by cell phone
JP2020000028A (en) * 2018-06-25 2020-01-09 株式会社クボタ Combine and grain discharge yield calculation method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6952652B2 (en) 2018-06-28 2021-10-20 株式会社クボタ combine
JP2019216744A (en) 2019-09-03 2019-12-26 ヤンマー株式会社 Combine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60196123A (en) * 1984-03-19 1985-10-04 株式会社クボタ Reaming harvester
JP2003070339A (en) * 2001-09-06 2003-03-11 Mitsubishi Agricult Mach Co Ltd Yield-measuring device in combine harvester
JP2006034232A (en) * 2004-07-29 2006-02-09 Iseki & Co Ltd Storage indication device for grain tank by cell phone
JP2020000028A (en) * 2018-06-25 2020-01-09 株式会社クボタ Combine and grain discharge yield calculation method

Also Published As

Publication number Publication date
CN116419669A (en) 2023-07-11
KR20230118072A (en) 2023-08-10
JP2022093059A (en) 2022-06-23

Similar Documents

Publication Publication Date Title
WO2017110818A1 (en) Combine harvester and grain yield management system for combine harvester
WO2022124173A1 (en) Combine, determination system, determination method, determination program, and recording medium
WO2022124250A1 (en) Combine harvester
CN107072150B (en) Combine harvester
JP7391005B2 (en) combine
KR101902671B1 (en) Combine
JP4280149B2 (en) Flow rate detector in grain conveyor
JP2022093245A (en) combine
WO2020003882A1 (en) Combine, yield calculation method, yield calculation system, yield calculation program, recording medium having yield calculation program recorded thereon, grain discharge yield calculation method, grain discharge yield calculation system, grain discharge yield calculation program, recording medium having grain discharge yield calculation program recorded thereon, irregular inflow detection system, irregular inflow detection program, recording medium having irregular inflow detection program recorded thereon, irregular inflow detection method, and storage level detection system
JP2003189733A (en) Moisture content measuring apparatus in combine harvester
JP7399037B2 (en) combine
JP7399036B2 (en) combine
JP2021058166A (en) Combine harvester
WO2021261115A1 (en) Combine harvester
JP7399038B2 (en) combine
US20220217911A1 (en) Threshing Apparatus
JP2022175696A (en) management system
JP2023175132A (en) Harvesting machine
JP3427835B2 (en) Work vehicle
JP2023175131A (en) Harvesting machine
JP2022175695A (en) support system
WO2021261282A1 (en) Harvester and harvesting device
JP2022072503A (en) combine
JP2021087417A (en) Thresher
JPH11289842A (en) Grain reload judgment device of harvest work vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21903277

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21903277

Country of ref document: EP

Kind code of ref document: A1