WO2022123629A1 - 受信装置、及び受信方法 - Google Patents

受信装置、及び受信方法 Download PDF

Info

Publication number
WO2022123629A1
WO2022123629A1 PCT/JP2020/045482 JP2020045482W WO2022123629A1 WO 2022123629 A1 WO2022123629 A1 WO 2022123629A1 JP 2020045482 W JP2020045482 W JP 2020045482W WO 2022123629 A1 WO2022123629 A1 WO 2022123629A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
signal
unit
variable
mimo
Prior art date
Application number
PCT/JP2020/045482
Other languages
English (en)
French (fr)
Inventor
友規 村上
匡史 岩渕
陸 大宮
智明 小川
泰司 鷹取
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2022567731A priority Critical patent/JPWO2022123629A1/ja
Priority to US18/255,921 priority patent/US20240048217A1/en
Priority to PCT/JP2020/045482 priority patent/WO2022123629A1/ja
Publication of WO2022123629A1 publication Critical patent/WO2022123629A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0802Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection
    • H04B7/0805Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection with single receiver and antenna switching
    • H04B7/0814Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection with single receiver and antenna switching based on current reception conditions, e.g. switching to different antenna when signal level is below threshold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/44Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/44Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
    • H01Q3/446Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element the radiating element being at the centre of one or more rings of auxiliary elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/378Combination of fed elements with parasitic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/18Vertical disposition of the antenna
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems

Definitions

  • the present invention relates to a wireless communication system that performs MIMO (Multiple Input Multiple Output) communication.
  • MIMO Multiple Input Multiple Output
  • Wireless communication traffic continues to increase due to the rapid spread of wireless devices.
  • it is required to increase the capacity of the wireless communication system.
  • MIMO that performs spatial division multiplex transmission at the same frequency and at the same time using a plurality of antennas has been put into practical use.
  • research and development of large-scale (Massive) MIMO using a large number of antennas is underway for further expansion of the capacity realized by MIMO.
  • Massive MIMO requires a large number of antennas in a wireless base station, an RF unit that performs amplification and filtering connected to each antenna, and a conversion unit that converts analog and digital signals. Therefore, there is a problem that the size and cost of the radio base station increase.
  • Non-Patent Document 1 discloses a technique of Virtual Massive MIMO (VM-MIMO).
  • VM-MIMO Virtual Massive MIMO
  • the radio base station in the uplink Massive MIMO, the radio base station has a variable characteristic antenna for signals transmitted from a plurality of antennas at the same frequency and at the same time. Reception is performed while periodically switching the antenna characteristics at high speed. Further, a signal having the same antenna characteristics from the received signal sampled at a higher speed than usual is divided and extracted from the sampled received signal, and the extracted signal is subjected to general multi-user MIMO reception processing. By doing this, it is possible to receive Massive MIMO with a small number of antennas.
  • the VM-MIMO technology enables reception of Massive MIMO with a small number of antennas, so that the size and cost of the wireless base station can be reduced. As a factor that determines the transmission quality of this VM-MIMO, it is necessary to switch the antenna characteristics at high speed synchronized with the sampling frequency.
  • VM-MIMO As one of the means to make the antenna characteristics variable, it is conceivable to change the antenna element length by changing the capacitance using a varicap diode like an EPAR (Electronically Steerable Passive Array Radiator) antenna.
  • EPAR Electrically Steerable Passive Array Radiator
  • VM-MIMO cannot be realized because the variable antenna characteristics due to the above have a problem in high speed. It should be noted that such a problem can occur not only in a wireless base station that performs VM-MIMO reception processing but also in a wireless terminal station that performs VM-MIMO reception processing.
  • the present invention has been made in view of the above points, and in a receiving device that receives MIMO signals transmitted from a plurality of antennas of the transmitting device at the same frequency and at the same time with a variable characteristic antenna, the antenna characteristics are switched at high speed.
  • the purpose is to provide the technology that makes it possible.
  • the antenna control unit and A characteristic variable antenna that receives MIMO signals transmitted from a plurality of antennas while switching antenna characteristics based on the control signal output from the antenna control unit.
  • a conversion unit that samples the received signal received by the variable characteristic antenna at a predetermined sampling cycle, and A signal dividing unit that extracts each signal from a plurality of signals corresponding to the plurality of antenna characteristics obtained by the conversion unit, and a signal dividing unit.
  • a MIMO signal demodulation unit that executes MIMO demodulation processing on the signal output from the signal division unit is provided.
  • the characteristic variable antenna includes a plurality of non-feeding elements, and the antenna control unit provides a receiving device that outputs a control signal to each non-feeding element with a time lag.
  • the antenna characteristics can be switched at high speed.
  • the technology that enables it is provided.
  • a wireless terminal station 1 is used as a transmitting device and a wireless base station 2 is used as a receiving device
  • a wireless base station 2 is used as a transmitting device and wireless as a receiving device. Even when the terminal station 1 is used, the technique according to the present invention can be applied to the receiving device.
  • FIG. 1 shows a configuration example of a wireless communication system according to the present embodiment.
  • the wireless communication system in the present embodiment has a wireless terminal station 1 and a wireless base station 2.
  • the radio terminal station 1 has a plurality of antennas, and the radio base station 2 has one characteristic variable antenna.
  • the number of characteristic variable antennas in the radio base station 2 may be plural.
  • uplink communication from the wireless terminal station 1 to the wireless base station 2 is targeted.
  • the radio base station 2 receives the signal transmitted from one radio terminal station 1, but this is an example.
  • the technique according to the present embodiment can be applied even when the radio base station 2 receives signals transmitted from a plurality of radio terminal stations 1 (that is, in the case of multi-user MIMO). ..
  • the radio base station 2 receives Massive MIMO with one characteristic variable antenna by the technique of Virtual Massive MIMO (VM-MIMO) disclosed in Non-Patent Document 1.
  • VM-MIMO Virtual Massive MIMO
  • the radio base station 2 receives signals transmitted from a plurality of antennas of the radio terminal station 1 at the same frequency and at the same time while periodically changing the antenna characteristics at high speed.
  • the radio base station 2 samples the received signal at a higher speed than usual, divides and extracts the received signal at the timing when the antenna characteristics are the same from the sampled received signal, and extracts the extracted received signal in general.
  • each extracted received signal can be regarded as a signal arriving from different propagation paths, so that the number of antennas can be virtually increased and Massive MIMO can be received.
  • the radio base station 2 receives a signal while periodically changing the four antenna characteristics 1 to 4.
  • the timing signal of the antenna characteristic 1 is indicated by “1”
  • the timing signal of the antenna characteristic 2 is indicated by “2”
  • the timing signal of the antenna characteristic 3 is indicated by "3”
  • the antenna characteristic is indicated.
  • the signal of the timing of 4 is indicated by "4".
  • the antennas with antenna characteristics 1 to 4 are called virtual antennas 1 to 4, respectively.
  • the waveform of the signal indicated by "1" is shown as the waveform of the virtual antenna 1.
  • VM-MIMO By using the VM-MIMO technology, it is possible to demodulate MIMO signals transmitted from a plurality of antennas of the wireless terminal station 1 using one characteristic variable antenna of the wireless base station 2.
  • variable characteristic antenna using a variable phase shifter capable of high-speed switching is used.
  • variable phase shifter capable of high-speed switching
  • FIG. 4 shows a configuration example of the wireless terminal station 1 according to the present embodiment.
  • the radio terminal station 1 has a plurality of antennas 10, a plurality of RF units 11, a plurality of D / A conversion units 12, and a MIMO signal generation unit 13. It should be noted that the functional block generally mounted on the wireless terminal station 1 is omitted.
  • the MIMO signal generation unit 13 generates a plurality of MIMO signals from the transmission data, and inputs each MIMO signal to the D / A conversion unit 12.
  • the D / A conversion unit 12 converts the input digital MIMO signal into an analog signal, and outputs the analog signal to the RF unit 11.
  • the RF unit 11 performs analog processing such as amplification, frequency conversion, and filtering on the analog signal, and outputs the processed signal to each antenna 10. It is assumed that the RF unit 11 here is equipped with the function of the RF front end of a general wireless device.
  • the antenna 10 radiates the input signal into the air as a radio signal.
  • FIG. 5 shows a configuration example of the radio base station 2 in the present embodiment.
  • the radio base station 2 in the present embodiment includes a characteristic variable antenna 20, an RF unit 21, an A / D conversion unit 22, an antenna control unit 23, a signal division unit 24, and a MIMO signal demodulation unit 25.
  • the functional blocks generally mounted on the radio base station are not shown.
  • the functions of each part of the radio base station 2 are as follows.
  • the characteristic variable antenna 20 is an antenna that periodically switches antenna characteristics (directivity, output power, phase, etc.) according to a control signal input from the antenna control unit 23. A detailed configuration example of the variable characteristic antenna 20 will be described later.
  • the RF unit 21 performs processing such as amplification, frequency change, and filtering on the signal input from the characteristic variable antenna 20, and outputs the processed signal to the A / D conversion unit 22. It is assumed that the RF unit 21 here is equipped with the function of the RF front end of a general wireless device.
  • the A / D conversion unit 22 converts an analog signal input from the RF unit 21 into a digital signal by sampling the analog signal, and outputs the digital signal to the signal division unit 24. Further, the A / D conversion unit 22 notifies the antenna control unit 23 of the sampling period.
  • the antenna control unit 23 outputs a control signal synchronized with the sampling cycle of the A / D conversion unit 22 to the characteristic variable antenna 20.
  • the signal division unit 24 divides a plurality of signals with different characteristics input from the A / D conversion unit 22 in synchronization with the sampling cycle, and outputs the divided signal to the MIMO signal demodulation unit 25.
  • the MIMO signal demodulation unit 25 performs the MIMO demodulation processing defined in a general wireless communication system with respect to the signal received from the signal division unit 24.
  • the A / D conversion unit 22 is a general radio base. Signals 1 to 4 corresponding to each antenna characteristic are sampled and output at a sampling period that is four times or more the sampling period of the A / D conversion unit 22 of the station.
  • the antenna control unit 23 selects one of the four virtual antennas in the sampling cycle of the A / D conversion unit 22 and switches the antenna characteristics.
  • the signal dividing unit 24 divides and extracts the signals 1 to 4 corresponding to each antenna characteristic in the same sampling period as the sampling period of the A / D conversion unit 22, and outputs the signals to the MIMO signal demodulation unit 25.
  • signals 1 to 4 having the same antenna characteristics are periodically output to the four output ports of the signal dividing unit 24, respectively.
  • each functional block in the radio base station 2 shown in FIG. 5 may be realized by dedicated hardware (LSI or the like), or other than "characteristic variable antenna 20, RF unit 21, A / D conversion unit 22".
  • a portion (that is, a portion that processes a digital signal) may be realized by a general-purpose computer including a processor (CPU, DSP, etc.) and a memory, and software running on the computer.
  • FIG. 6 shows a configuration example of the wireless base station 2 when the wireless base station 2 is realized by using a computer and software.
  • the radio base station 2 includes a processor 101, a memory 102, an auxiliary storage device 103, an input / output device 104, a characteristic variable antenna 20, an RF unit 21, and an A / D conversion unit 22. Has a configuration connected by a bus.
  • the auxiliary storage device 103 stores a program that realizes the operation of the radio base station 2.
  • the program is read into the memory 102, and the processor 101 reads the program from the memory 102 and executes it.
  • the processor 101 executes the processing of the antenna control unit 23, the signal division unit 24, and the MIMO signal demodulation unit 25 by the program.
  • the input / output device 104 outputs, for example, the signal obtained by the MIMO signal demodulation unit 25. Further, the information set in advance may be input from the input / output device 104.
  • the antenna control unit 23 outputs a control signal synchronized with the sampling cycle of the A / D conversion unit 22 to the characteristic variable antenna 20, and the characteristic variable antenna 20 periodically switches the antenna characteristics according to the antenna control signal. There is. The details of the control by this control signal will be described later.
  • the characteristic variable antenna 20 receives signals transmitted simultaneously from a plurality of antennas of the wireless terminal station 1.
  • the received signal is input to the RF unit 21, and the signal processed by the RF unit 21 is output to the A / D conversion unit 22.
  • the A / D conversion unit 22 performs sampling on the input signal (analog signal) and acquires the sampled signal (digital signal).
  • the "signal” described below is a signal acquired by sampling.
  • the signal obtained by the A / D conversion unit 22 is output to the signal division unit 24.
  • the signal dividing unit 24 divides and extracts the signal input from the A / D conversion unit 22 in the same sampling period as the sampling period of the A / D conversion unit 22, and extracts the extracted signal in the MIMO signal demodulation unit 25. Output to.
  • the MIMO signal demodulation unit 25 performs the MIMO demodulation processing defined in a general wireless communication system with respect to the signal received from the signal division unit 24.
  • Information required for MIMO demodulation processing may be given in advance or may be estimated.
  • FIG. 8 shows a configuration example of the characteristic variable antenna 20 according to the present embodiment.
  • the characteristic variable antenna 20 shown in FIG. 8 is composed of a feeding element arranged in the center and a plurality of non-feeding elements arranged around the antenna, and the antenna control unit 23 changes the characteristics of the feeding element to change the characteristics of the antenna. The characteristics can be changed.
  • the characteristic variable antenna 20 shown in FIG. 8 receives an electromagnetic wave transmitted from the wireless terminal station 1.
  • the characteristic variable antenna 20 can also transmit the electromagnetic wave of the signal including the data to the wireless terminal station 1.
  • the characteristic variable antenna 20 has an antenna element 201, four non-feeding elements 202, four variable phase shifters 203, and a coupling portion 204.
  • the case where the characteristic variable antenna 20 has four non-feeding elements is shown, but the number of non-feeding elements may be three or less or five or more.
  • the antenna element 201 is, for example, a sleeve antenna and has an element length of half a wavelength in the Z-axis direction (height direction in FIG. 8). Then, the antenna element 201 is arranged so as to extend in the Z-axis direction perpendicular to the XY plane of the horizontal plane.
  • the antenna element 201 can transmit a signal including data from the wireless base station 2 to the wireless terminal station 1 by electromagnetic waves via the coupling portion 204. Further, the characteristic variable antenna 20 receives the electromagnetic wave transmitted from the wireless terminal station 1 and outputs the signal of the electromagnetic wave received via the coupling unit 204 into the wireless base station 2.
  • the variable characteristic antenna 20 may be a dipole antenna or the like.
  • the non-feeding element 202 is arranged on the XY plane at equal intervals on the circumference of the radius R with the position where the antenna element 201 is arranged as the center. That is, as shown in FIG. 9, the positions of the non-feeding element 202 are (R, 0), (0, R), ( ⁇ R, 0) when the position of the antenna element 201 is the origin of the XY plane. ) And (0, -R).
  • the radius R is a free space wavelength that can reduce the influence of mutual coupling with the antenna element 201, and is set to a distance of one-eighth or more. Further, a plurality of non-feeding elements 202 other than the four may be arranged.
  • the antenna element 201 and the non-feeding element 202 operate as an antenna unit.
  • the non-feeding element 202 has, for example, a metal member such as columnar copper and a variable phase shifter 203.
  • the metal member is connected via the phase shift variable device 203.
  • the phase of the non-feeding element 202 is adjusted according to the voltage applied to the phase shift variable device 203 from the power supply of the characteristic variable antenna 20 or the power supply included in the radio base station 2. In addition, characteristics other than the phase may be adjusted.
  • the characteristic variable antenna 20 receives a signal (outputs to the radio base station 2) in a certain phase, while a voltage is applied to the variable phase shifter 203. , The characteristic variable antenna 20 receives a signal in a phase different from the above. Further, for example, when a voltage is not applied to the variable phase shifter 203, a signal is radiated in a certain phase, while when a voltage is applied to the variable phase shifter 203, a signal is radiated in a phase different from the above. ..
  • the coupling portion 204 is an antenna connector or the like, and connects the variable characteristic antenna 20 and the wireless base station 2 with a coaxial cable or the like. Then, the coupling unit 204 outputs the signal of the electromagnetic wave received by the characteristic variable antenna 20 to the radio base station 2, and outputs the signal including the data from the radio base station 2 to the characteristic variable antenna 20.
  • FIG. 10 shows an example of a control signal input from the antenna control unit 23 to the characteristic variable antenna 20.
  • a voltage is supplied to the variable phase shifter 203 of the corresponding non-feeding element 202, and when it is "OFF", no voltage is supplied.
  • the vertical axis represents ON / OFF and the horizontal axis represents time.
  • the vertical axis may represent a voltage.
  • FIG. 10A is an example of the conventional control signal shown for comparison, and shows the control signal for two non-feeding elements. As shown in FIG. 10A, four states are periodically changed by controlling ON and OFF of each control signal in synchronization. Each state corresponds to one antenna characteristic of the characteristic variable antenna 20. That is, in the example of FIG. 10A, the timing between the rising edge and the falling edge of each control signal is the same and synchronized.
  • the period (T) shown in FIG. 10 is, for example, the shortest period as a period for changing the characteristics of individual non-feeding elements.
  • the antenna characteristics of the variable characteristic antenna 20 can be changed only in this cycle, and it may not be sufficient to realize VM-MIMO.
  • FIG. 10B is an example of a control signal in the present embodiment.
  • the antenna control unit 23 shifts the output timing of a part of the control signals among the plurality of control signals with respect to the other control signals, so that FIG. 10 (a) shows.
  • the antenna characteristics of the variable characteristic antenna 20 can be changed at a higher speed than in the case of the example shown in. That is, high-speed characteristic variation is realized by providing a time difference between the control signals for the plurality of non-feeding elements.
  • the period T for changing the output timing of the control signal for the non-feeding element # 2 changes the characteristics of each non-feeding element. Only half (T / 2) of the control signal is shifted with respect to the output timing of the control signal for the non-feeding element # 1. As a result, the antenna characteristics of the variable characteristic antenna 20 can be changed at twice the speed as compared with the case where the output timing is not shifted.
  • FIG. 10 shows an example in which two non-feeding elements are used, but in the same manner when three or more non-feeding elements are used, the output timing of the control signal is shifted between the non-feeding elements. Therefore, it is possible to realize a change in the antenna characteristics of the high-speed characteristic variable antenna 20.
  • the output timing of the control signal to the non-feeding element # 2 is shifted by T / 4 from the output timing to the non-feeding element # 1, and the non-feeding element
  • the output timing of the control signal to # 3 is shifted by T / 4 from the output timing to the non-feeding element # 2
  • the output timing of the control signal to the non-feeding element # 4 is T from the output timing to the non-feeding element # 3.
  • the diode switch 205 is used instead of the variable phase shifter 203 in the characteristic variable antenna 20 as shown in FIG. Even when the diode switch 205 is used, the operation by the control signal described with reference to FIG. 10 is the same as the operation in the case of the variable phase shifter 203. Further, even when the diode switch 205 is used, the effect is the same as when the variable phase shifter 203 is used in that the characteristics such as the phase of the transmitted / received signal of the variable characteristic antenna 20 can be changed.
  • variable phase shifter 203 can control a wider variety of patterns than the diode switch 205.
  • the variable phase shifter 203 and the diode switch 205 may be collectively referred to as a phase variable unit.
  • a voltage control type (analog control) attenuator or phase detector is used as the phase variable unit.
  • an analog signal as shown in FIG. 12 can be used instead of the ON / OFF control signal (digital signal) as described with reference to FIG. 10.
  • the state of the antenna characteristics can be changed more, and the speed of the change can be increased by shifting the output timing of the control signal.
  • FIG. 12 (a) and 12 (b) show control signals to each non-feeding element when two non-feeding elements are used as in FIG. 10, respectively.
  • the vertical axis is voltage and the horizontal axis is time.
  • FIG. 12A shows a state in which the timing of the control signal is not shifted
  • FIG. 12B shows a state in which the timing of the control signal is shifted.
  • the control signal of each non-feeding element is staggered. This makes it possible to change the antenna characteristics at high speed.
  • This specification describes at least the receiving device and the receiving method described in each of the following items.
  • (Section 1) Antenna control unit and A characteristic variable antenna that receives MIMO signals transmitted from a plurality of antennas while switching antenna characteristics based on the control signal output from the antenna control unit.
  • a conversion unit that samples the received signal received by the variable characteristic antenna at a predetermined sampling cycle, and
  • a signal dividing unit that extracts each signal from a plurality of signals corresponding to the plurality of antenna characteristics obtained by the conversion unit, and a signal dividing unit.
  • a MIMO signal demodulation unit that executes MIMO demodulation processing on the signal output from the signal division unit is provided.
  • the characteristic variable antenna includes a plurality of non-feeding elements, and the antenna control unit is a receiving device that outputs a control signal to each non-feeding element with a time lag.
  • the antenna control unit is a receiving device that outputs a control signal to each non-feeding element with a time lag.
  • the receiving device according to item 1 wherein each non-feeding element in the characteristic variable antenna includes a phase variable unit, and the control signal controls the phase variable unit.
  • the phase variable unit is a voltage control type phase variable unit, and the control signal is an analog signal.
  • It is a receiving method executed by a receiving device including an antenna control unit and a variable characteristic antenna. A step of receiving MIMO signals transmitted from a plurality of antennas while switching antenna characteristics based on the control signals output from the antenna control unit.
  • a step of sampling the received signal received by the variable characteristic antenna at a predetermined sampling cycle, and A step of extracting each signal from a plurality of signals corresponding to the plurality of antenna characteristics obtained by the sampling, and A step of executing MIMO demodulation processing on the extracted signal is provided.
  • the characteristic variable antenna includes a plurality of non-feeding elements, and the antenna control unit outputs a control signal to each non-feeding element with a time lag.
  • Wireless terminal station 2 Wireless base station 10
  • Antenna 11 RF unit 12 D / A conversion unit 13
  • MIMO signal generation unit 20 Characteristic variable antenna 21 RF unit 22 A / D conversion unit 23
  • Antenna control unit 24 Signal division unit 25
  • MIMO signal demodulation unit 101 Processor 102 Memory 103 Auxiliary storage device 104
  • Input / output device 201 Antenna element 202
  • Variable phase shifter 204 Coupling part 205 Diode switch

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

アンテナ制御部と、前記アンテナ制御部から出力される制御信号に基づいて、複数のアンテナから送信されたMIMO信号を、アンテナ特性を切り替えながら受信する特性可変アンテナと、前記特性可変アンテナにより受信した受信信号に対して所定のサンプリング周期でサンプリングを行う変換部と、前記変換部により得られた複数のアンテナ特性に対応する複数の信号から各信号を抽出する信号分割部と、前記信号分割部から出力された信号に対してMIMO復調処理を実行するMIMO信号復調部と、を備え、前記特性可変アンテナは、複数の無給電素子を備え、前記アンテナ制御部は、制御信号を、時間差をつけて各無給電素子へ出力する受信装置。

Description

受信装置、及び受信方法
本発明は、MIMO(Multiple Input Multiple Output)通信を行う無線通信システムに関連するものである。
 無線デバイスの急速な普及によって無線通信トラヒックが増加し続けている。この無線通信トラヒックを安定的に収容するために、無線通信システムの大容量化が求められている。無線通信システムの大容量化を実現するべく、複数のアンテナを用いて同一周波数かつ同一時刻に空間分割多重伝送を行うMIMOが実用化されている。更に、将来無線通信システムを対象として、MIMOが実現する容量の更なる拡大に向けて、超多数のアンテナを利用した大規模(Massive)MIMOの研究開発が進められている。
 しかしながら、Massive MIMOでは、無線基地局に超多数のアンテナ、各アンテナに接続される増幅やフィルタ等を行うRF部、及びアナログ信号とデジタル信号の変換を行う変換部等の装置が非常に多く必要となることから、無線基地局のサイズ及びコストが大きくなるという課題がある。
 上記課題に対して、非特許文献1には、Virtual Massive MIMO(VM-MIMO)の技術が開示されている。非特許文献1に開示されたVirtual Massive MIMO(VM-MIMO)では、上り回線のMassive MIMOにおいて、複数のアンテナから同一周波数かつ同一時刻に送信される信号に対して、無線基地局が特性可変アンテナにより周期的にアンテナ特性を高速に切り替えながら受信を行う。更に、通常よりも高速にサンプリングした受信信号からアンテナ特性が同等となるタイミングの信号を、サンプリングした受信信号から分割して抽出し、抽出した信号に対して、一般的なマルチユーザMIMOの受信処理を行うことで、少ないアンテナでMassive MIMOの受信を可能としている。
村上他、"将来無線システムにおける時空間信号処理技術"電子情報通信学会 ソサイエティ大会2019
 上記のように、VM-MIMOの技術により、少ないアンテナでMassive MIMOの受信を実現できるので、無線基地局のサイズ及びコストを低減できる。このVM-MIMOの伝送品質を決定する要素として、サンプリング周波数に同期した高速なアンテナ特性の切り替えが必要となる。
 アンテナ特性を可変にさせる手段の一つとして、ESPAR(Electronically Steerable Passive Array Radiator)アンテナのようにバラクタダイオードを用いて容量可変を行うことで、アンテナ素子長を変化させる構成が考えられるが、可変容量によるアンテナ特性可変は高速性に課題があるため、VM-MIMOを実現できない可能性がある。なお、このような課題は、VM-MIMOの受信処理を行う無線基地局のみならず、VM-MIMOの受信処理を行う無線端末局においても生じ得る課題である。
 本発明は上記の点に鑑みてなされたものであり、送信装置の複数のアンテナから同一周波数かつ同一時刻に送信されるMIMO信号を特性可変アンテナで受信する受信装置において、アンテナ特性を高速に切り替えることを可能とする技術を提供することを目的とする。
 開示の技術によれば、アンテナ制御部と、
 前記アンテナ制御部から出力される制御信号に基づいて、複数のアンテナから送信されたMIMO信号を、アンテナ特性を切り替えながら受信する特性可変アンテナと、
 前記特性可変アンテナにより受信した受信信号に対して所定のサンプリング周期でサンプリングを行う変換部と、
 前記変換部により得られた複数のアンテナ特性に対応する複数の信号から各信号を抽出する信号分割部と、
 前記信号分割部から出力された信号に対してMIMO復調処理を実行するMIMO信号復調部と、を備え、
 前記特性可変アンテナは、複数の無給電素子を備え、前記アンテナ制御部は、制御信号を、時間差をつけて各無給電素子へ出力する
 受信装置が提供される。
 開示の技術によれば
 開示の技術によれば、送信装置の複数のアンテナから同一周波数かつ同一時刻に送信されるMIMO信号を特性可変アンテナで受信する受信装置において、アンテナ特性を高速に切り替えることを可能とする技術が提供される。
本発明の実施の形態におけるシステム構成図である。 本発明の実施の形態におけるシステム構成図である。 VM-MIMOの動作を説明するための図である。 無線端末局の構成図である。 無線基地局の構成図である。 無線基地局の構成図である。 無線基地局の動作を示すフローチャートである。 特性可変アンテナの構成図である。 無給電素子の配置を説明するための図である。 制御信号による制御例を説明するための図である。 特性可変アンテナの構成図である。 制御信号による制御例を説明するための図である。
 以下、図面を参照して本発明の実施の形態(本実施の形態)を説明する。以下で説明する実施の形態は一例に過ぎず、本発明が適用される実施の形態は、以下の実施の形態に限られるわけではない。
 なお、以下の説明では、送信装置として無線端末局1を使用し、受信装置として無線基地局2を使用する例を用いているが、送信装置として無線基地局2を使用し、受信装置として無線端末局1を使用する場合にも、受信装置において本発明に係る技術を適用することが可能である。
 (全体構成)
 図1に、本実施の形態における無線通信システムの構成例を示す。図1に示すように、本実施の形態における無線通信システムは、無線端末局1と無線基地局2とを有する。無線端末局1は複数のアンテナを有しており、無線基地局2は1本の特性可変アンテナを有している。無線基地局2における特性可変アンテナの数は複数であってもよい。図示のとおり、本実施の形態では、無線端末局1から無線基地局2への上り方向の通信を対象としている。
 なお、本実施の形態では、図1に示すように、無線基地局2が、1台の無線端末局1から送信された信号を受信することを想定しているが、これは一例である。図2に示すように、無線基地局2が複数の無線端末局1から送信された信号を受信する場合(つまり、マルチユーザMIMOの場合)にも本実施の形態に係る技術を適用可能である。
 (無線通信システムの動作概要)
 無線基地局2は、非特許文献1に開示されたVirtual Massive MIMO(VM-MIMO)の技術により、1本の特性可変アンテナでMassive MIMOの受信を行う。
 すなわち、図3に示すように、無線基地局2は、無線端末局1の複数のアンテナから同一周波数かつ同一時刻に送信される信号を、周期的にアンテナ特性を高速に変化させながら受信する。無線基地局2は、通常よりも高速に受信信号をサンプリングして、サンプリングした受信信号からアンテナ特性が同等となるタイミングの受信信号を分割して抽出し、抽出した受信信号に対して、一般的なMIMOの受信処理を行うことで、1本の特性可変アンテナでMassive MIMOの受信を可能としている。
 理論的には、抽出した各受信信号は、互いに異なる伝搬路から到来する信号とみなすことができるので、仮想的にアンテナを増加させることができ、Massive MIMOの受信が可能となる。
 図3の例では、無線基地局2は、4つのアンテナ特性1~4を周期的に変化させながら信号を受信している。図3の例において、アンテナ特性1のタイミングの信号を"1"ので示し、アンテナ特性2のタイミングの信号を"2"で示し、アンテナ特性3のタイミングの信号を"3"で示し、アンテナ特性4のタイミングの信号を"4"で示している。
 また、アンテナ特性1~4のアンテナをそれぞれ仮想アンテナ1~4と呼んでいる。図3において、"1"で示す信号の波形が仮想アンテナ1の波形として示されている。
 VM-MIMOの技術を用いることで、無線基地局2の1つの特性可変アンテナを用いて無線端末局1の複数のアンテナから送信されるMIMO信号の復調が可能となる。
 しかし、前述したとおり、アンテナ特性を変化させる手段の一つとして、ESPARアンテナのようにバラクタダイオードを用いた場合、高速性に課題が残るため、VM-MIMOを実現できない可能性がある。
 そこで、本実施の形態では、高速切替可能な可変移相器を用いた特性可変アンテナを用いることとしている。以下、各装置の構成と動作について説明する。
 (無線端末局1)
 図4に、本実施の形態における無線端末局1の構成例を示す。図4に示すとおり、無線端末局1は、複数のアンテナ10、複数のRF部11、複数のD/A変換部12、及びMIMO信号生成部13を有する。なお、一般的に無線端末局1に搭載される機能ブロックについては省略している。
 MIMO信号生成部13は、送信データから複数のMIMO信号を生成し、それぞれのMIMO信号をD/A変換部12に入力する。D/A変換部12は、入力されたデジタルのMIMO信号をアナログ信号に変換し、当該アナログ信号をRF部11に出力する。
 RF部11は、アナログ信号に対して、増幅・周波数変換・フィルタリング等のアナログ処理を施し、処理を施した信号を各アンテナ10に出力する。ここでのRF部11として、一般的な無線装置のRFフロントエンドの機能が搭載されることを想定する。アンテナ10は、入力された信号を無線信号として空中に放射する。
 (無線基地局2)
 図5に、本実施の形態における無線基地局2の構成例を示す。図5に示すように、本実施の形態における無線基地局2は、特性可変アンテナ20、RF部21、A/D変換部22、アンテナ制御部23、信号分割部24、MIMO信号復調部25を有する。なお、一般的に無線基地局に搭載される機能ブロックについては図示を省略している。無線基地局2の各部の機能は下記のとおりである。
 特性可変アンテナ20は、アンテナ制御部23から入力する制御信号に応じてアンテナ特性(指向性、出力電力、位相等)を周期的に切り替えるアンテナである。特性可変アンテナ20の詳細構成例については後述する。
 RF部21は、特性可変アンテナ20から入力した信号に対して、増幅・周波数変更・フィルタリング等の処理を行い、処理した信号をA/D変換部22に出力する。ここでのRF部21として、一般的な無線装置のRFフロントエンドの機能が搭載されることを想定する。
 A/D変換部22は、RF部21から入力するアナログ信号をサンプリングすることにより、デジタル信号に変換し、当該デジタル信号を信号分割部24に出力する。また、A/D変換部22は、サンプリング周期をアンテナ制御部23に通知する。
 アンテナ制御部23は、A/D変換部22のサンプリング周期に同期させた制御信号を特性可変アンテナ20に出力する。
 信号分割部24は、A/D変換部22から入力された特性の異なる複数の信号をサンプリング周期に同期して分割し、分割して得られた信号をMIMO信号復調部25に出力する。
 MIMO信号復調部25は、信号分割部24から受信した信号に対して、一般的な無線通信システムで規定されるMIMOの復調処理を行う。
 ここで、特性可変アンテナ20において、例えば4本の仮想アンテナの1つを周期的に選択することによりアンテナ特性を周期的に切り替える場合には、A/D変換部22は、一般的な無線基地局のA/D変換部22のサンプリング周期の4倍以上のサンプリング周期で、各アンテナ特性に対応する信号1~4をサンプリングして出力する。
 アンテナ制御部23は、A/D変換部22のサンプリング周期で4本の仮想アンテナのうちの1つを選択してアンテナ特性を切り替える。
 このとき、信号分割部24は、A/D変換部22のサンプリング周期と同じサンプリング周期で各アンテナ特性に対応する信号1~4を分割して抽出し、MIMO信号復調部25に出力する。その結果、信号分割部24の4つの出力ポートには、それぞれ同じアンテナ特性の信号1~4が周期的に出力される。
 (その他の構成例)
 図5に示す無線基地局2における各機能ブロックの機能を専用のハードウェア(LSI等)で実現してもよいし、「特性可変アンテナ20、RF部21、A/D変換部22」以外の部分(つまり、デジタル信号の処理を行う部分)を、プロセッサ(CPU、DSP等)とメモリとを備える汎用的なコンピュータと、当該コンピュータ上で動作するソフトウェアで実現してもよい。
 コンピュータとソフトウェアを用いて無線基地局2を実現する場合における無線基地局2の構成例を図6に示す。
 図6に示すように、当該無線基地局2は、プロセッサ101、メモリ102、補助記憶装置103、入出力装置104、特性可変アンテナ20、RF部21、A/D変換部22を有し、これらがバスで接続された構成を有する。
 例えば、補助記憶装置103(記憶媒体)に、無線基地局2の動作を実現するプログラムが格納される。無線基地局2の動作時に、当該プログラムがメモリ102に読み込まれ、プロセッサ101がメモリ102からプログラムを読み出して実行する。例えば、プロセッサ101は、当該プログラムにより、アンテナ制御部23、信号分割部24、MIMO信号復調部25の処理を実行する。
 入出力装置104は、例えば、MIMO信号復調部25により得られた信号を出力する。また、入出力装置104から、事前に設定しておく情報を入力することとしてもよい。
 (動作例)
 次に、無線基地局2の時系列の動作例を、図7のフローチャートを参照して説明する。アンテナ制御部23は、A/D変換部22のサンプリング周期に同期させた制御信号を特性可変アンテナ20に出力し、特性可変アンテナ20は、当該アンテナ制御信号に従って、アンテナ特性を周期的に切り替えている。この制御信号による制御の詳細は後述する。
 <S1>
 S1(ステップ1)において、特性可変アンテナ20が無線端末局1の複数のアンテナから同時に送信された信号を受信する。受信した信号はRF部21に入力され、RF部21により処理された信号はA/D変換部22に出力される。
 <S2>
 S2において、A/D変換部22は、入力された信号(アナログ信号)に対してサンプリングを行って、サンプリングされた信号(デジタル信号)を取得する。以降の説明の「信号」は、サンプリングにより取得された信号である。A/D変換部22により得られた信号は、信号分割部24に出力される。
 <S3>
 S3において、信号分割部24は、A/D変換部22から入力された信号をA/D変換部22のサンプリング周期と同じサンプリング周期で分割して抽出し、抽出した信号をMIMO信号復調部25に出力する。
 <S4>
 S4において、MIMO信号復調部25は、信号分割部24から受信した信号に対して、一般的な無線通信システムで規定されるMIMOの復調処理を行う。なお、MIMO復調処理において必要となる情報(無線端末局1のアンテナ数等)は、事前に与えられていることとしてもよいし、推定することとしてもよい。
 (特性可変アンテナの構成例)
 図8に、本実施の形態における特性可変アンテナ20の構成例を示す。図8に示す特性可変アンテナ20は、中心に配置される給電素子と周りに配置される複数の無給電素子で構成され、アンテナ制御部23によって無給電素子の特性を変化させることで、アンテナの特性を変化させることができる。図8に示した特性可変アンテナ20は、無線端末局1から送信された電磁波を受信する。特性可変アンテナ20は、データを含む信号の電磁波を無線端末局1に送信することもできる。
 より具体的には、図8に示すように、特性可変アンテナ20は、アンテナ素子201、4つの無給電素子202、4つの可変移相器203、及び結合部204を有する。なお、本例では特性可変アンテナ20が4本の無給電素子を有する場合の例を示しているが、無給電素子は3本以下や5本以上であっても構わない。
 アンテナ素子201は、例えば、スリーブアンテナであり、Z軸方向(図8の高さ方向)に2分の1波長の素子長を有する。そして、アンテナ素子201は、水平面のXY平面に対して垂直のZ軸方向に延在するように配置される。
 アンテナ素子201は、結合部204を介して、無線基地局2からのデータを含む信号を無線端末局1に電磁波で送信することができる。また、特性可変アンテナ20は、無線端末局1から送信された電磁波を受信し、結合部204を介して受信した電磁波の信号を無線基地局2内に出力する。なお、特性可変アンテナ20は、ダイポールアンテナ等でもよい。
 無給電素子202は、アンテナ素子201が配置された位置を中心にして、半径Rの円周上に等間隔でXY平面に配置される。すなわち、図9に示すように、無給電素子202の各々の位置は、アンテナ素子201の位置をXY平面の原点とする場合、(R,0)、(0,R)、(-R,0)および(0,-R)である。なお、半径Rは、アンテナ素子201との相互結合の影響を低減可能な自由空間波長で8分の1波長以上の距離に設定される。また、4つ以外の複数の無給電素子202が配置されてもよい。アンテナ素子201と無給電素子202とは、アンテナ部として動作する。
 図8に示すように、無給電素子202は、例えば、円柱状の銅等の金属部材と可変移相器203とを有する。金属部材は、移相可変器203を介して接続されている。無給電素子202は、特性可変アンテナ20の電源、又は無線基地局2に含まれる電源から移相可変器203に印加される電圧に応じて位相が調整される。なお、位相以外の特性が調整されてもよい。
 例えば、可変移相器203に電圧が印加されない場合、特性可変アンテナ20は、ある位相で信号を受信(無線基地局2へ出力)し、一方、可変移相部203に電圧が印加される場合、特性可変アンテナ20は、上記とは異なる位相で信号を受信する。また、例えば、可変移相器203に電圧が印加されない場合、ある位相で信号が放射され、一方、可変移相部203に電圧が印加される場合、上記とは異なる位相で信号が放射される。
 結合部204は、アンテナコネクタ等であり、特性可変アンテナ20と無線基地局2とを同軸ケーブル等で接続する。そして、結合部204は、特性可変アンテナ20が受信した電磁波の信号を無線基地局2に出力するとともに、無線基地局2からのデータを含む信号を特性可変アンテナ20に出力する。
 (アンテナ制御例)
 図10に、アンテナ制御部23から特性可変アンテナ20へ入力される制御信号の一例を示す。図10に示す「ON」のときに、該当無給電素子202の可変移相器203に電圧が供給され、「OFF」のときに電圧が供給されない。図10(a)、(b)において、縦軸はON/OFFを表し、横軸は時間を表す。なお、縦軸は電圧を表すとしてもよい。
 図10(a)は、比較のために示した従来の制御信号の例であり、無給電素子2本分の制御信号を示している。この図10(a)に示すように、各制御信号のONとOFFを同期して制御することによって、4つの状態を周期的に変化させている。各状態が、特性可変アンテナ20の1つのアンテナ特性に対応する。つまり、図10(a)の例では、各制御信号の立ち上がりと立ち下がりとの間のタイミングが同一であり、同期している。
 図10に示す周期(T)は、例えば、個々の無給電素子の特性を変化させる周期として最短の周期である。図10(a)の例では、この周期でしか、特性可変アンテナ20のアンテナ特性を変化させることができず、VM-MIMOを実現するには十分でない可能性がある。
 一方で、図10(b)は本実施の形態における制御信号の例である。この図10(b)に示すように、アンテナ制御部23は、複数の制御信号のうちの一部の制御信号の出力タイミングを、他の制御信号に対してずらすことで、図10(a)に示す例の場合よりも高速に特性可変アンテナ20のアンテナ特性を変化させることができる。つまり、複数の無給電素子に対する制御信号間に時間差を設けることで、高速な特性可変を実現している。
 より具体的には、図10(b)の場合、無給電素子#2に対する制御信号の出力タイミング(可変移相器203への入力タイミング)を、個々の無給電素子の特性を変化させる周期Tの半分(T/2)だけ、無給電素子#1に対する制御信号の出力タイミングに対してずらしている。これにより、出力タイミングをずらさない場合に比べて、2倍の速さで特性可変アンテナ20のアンテナ特性を変化させることができる。
 図10は、2本の無給電素子を使用する場合の例であるが、3本以上の無給電素子を使用する場合にも同様にして、制御信号の出力タイミングを、無給電素子間でずらすことで、高速な特性可変アンテナ20のアンテナ特性の変化を実現できる。例えば、4本の無給電素子#1~#4を使用する場合、無給電素子#2への制御信号の出力タイミングを無給電素子#1への出力タイミングからT/4だけずらし、無給電素子#3への制御信号の出力タイミングを無給電素子#2への出力タイミングからT/4だけずらし、無給電素子#4への制御信号の出力タイミングを無給電素子#3への出力タイミングからT/4だけずらすことで、従来技術に比べて4倍の速さで特性可変アンテナ20のアンテナ特性を変化させることができる。
 (変形例)
 以上、基本的な構成を基本例として説明したが、更なる特性改善のために、下記の変形例に説明するような構成及び動作を採用することとしてもよい。変形例のうちの一部又は全部を組み合わせてもよい。また、変形例において説明していない部分は、これまでに説明した基本例が適用される。
 <変形例1>
 変形例1では、特性可変アンテナ20における可変移相器203の代わりに、図11に示すように、ダイオードスイッチ205を用いる。ダイオードスイッチ205を用いる場合でも、図10で説明した制御信号による動作は可変移相器203の場合の動作と同じである。また、ダイオードスイッチ205を用いる場合でも、特性可変アンテナ20の送受信信号の位相等の特性を変化させることができるという点で、可変移相器203を用いる場合と効果は同じである。
 ただし、ダイオードスイッチ205は図10に示すようなON/OFF制御に限定されるのに対し、可変移相器203の場合はダイオードスイッチ205よりも多様なパターンの制御が可能になる。なお、可変移相器203とダイオードスイッチ205とを総称して位相可変部と呼んでもよい。
 <変形例2>
 変形例2では、位相可変部として、電圧制御型(アナログ制御)の減衰器や位相器を用いる。これにより、制御信号として、図10を参照して説明したようなON/OFFの制御信号(デジタル信号)に代えて、図12に示すようなアナログ信号を用いることができる。これにより、より多く、アンテナ特性の状態を変化させることができるとともに、制御信号の出力タイミングをずらすことでその変化の速度も高速化することができる。
 図12(a)、(b)は、図10と同様に2本の無給電素子を使用する場合の各無給電素子への制御信号を示しており、図12(a)、(b)それぞれの縦軸は電圧、横軸は時間である。図12(a)は、制御信号のタイミングをずらしていない状態を示し、図12(b)は、制御信号のタイミングをずらした状態を示している。
 (実施の形態の効果)
 上記のとおり、本実施の形態では、送信装置の複数のアンテナから同一周波数かつ同一時刻に送信されるMIMO信号を特性可変アンテナで受信する受信装置において、各無給電素子の制御信号に時間差をつけることで、アンテナ特性を高速に変化させることが可能となる。
 (付記)
 本明細書には、少なくとも下記の各項に記載した受信装置、受信方法が記載されている。
(第1項)
 アンテナ制御部と、
 前記アンテナ制御部から出力される制御信号に基づいて、複数のアンテナから送信されたMIMO信号を、アンテナ特性を切り替えながら受信する特性可変アンテナと、
 前記特性可変アンテナにより受信した受信信号に対して所定のサンプリング周期でサンプリングを行う変換部と、
 前記変換部により得られた複数のアンテナ特性に対応する複数の信号から各信号を抽出する信号分割部と、
 前記信号分割部から出力された信号に対してMIMO復調処理を実行するMIMO信号復調部と、を備え、
 前記特性可変アンテナは、複数の無給電素子を備え、前記アンテナ制御部は、制御信号を、時間差をつけて各無給電素子へ出力する
 受信装置。
(第2項)
 前記特性可変アンテナにおける各無給電素子は、位相可変部を備え、前記制御信号は、前記位相可変部を制御する
 第1項に記載の受信装置。
(第3項)
 前記位相可変部は電圧制御型の位相可変部であり、前記制御信号はアナログ信号である
 第2項に記載の受信装置。
(第4項)
 アンテナ制御部と特性可変アンテナとを備える受信装置が実行する受信方法であって、
 前記アンテナ制御部から出力される制御信号に基づいて、複数のアンテナから送信されたMIMO信号を、アンテナ特性を切り替えながら受信するステップと、
 前記特性可変アンテナにより受信した受信信号に対して所定のサンプリング周期でサンプリングを行うステップと、
 前記サンプリングにより得られた複数のアンテナ特性に対応する複数の信号から各信号を抽出するステップと、
 前記抽出された信号に対してMIMO復調処理を実行するステップと、を備え、
 前記特性可変アンテナは、複数の無給電素子を備え、前記アンテナ制御部は、制御信号を、時間差をつけて各無給電素子へ出力する
 受信方法。
 以上、本実施の形態について説明したが、本発明はかかる特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
1 無線端末局
2 無線基地局
10 アンテナ
11 RF部
12 D/A変換部
13 MIMO信号生成部
20 特性可変アンテナ
21 RF部
22 A/D変換部
23 アンテナ制御部
24 信号分割部
25 MIMO信号復調部
101 プロセッサ
102 メモリ
103 補助記憶装置
104 入出力装置
201 アンテナ素子
202 無給電素子
203 可変移相器
204 結合部
205 ダイオードスイッチ

Claims (4)

  1.  アンテナ制御部と、
     前記アンテナ制御部から出力される制御信号に基づいて、複数のアンテナから送信されたMIMO信号を、アンテナ特性を切り替えながら受信する特性可変アンテナと、
     前記特性可変アンテナにより受信した受信信号に対して所定のサンプリング周期でサンプリングを行う変換部と、
     前記変換部により得られた複数のアンテナ特性に対応する複数の信号から各信号を抽出する信号分割部と、
     前記信号分割部から出力された信号に対してMIMO復調処理を実行するMIMO信号復調部と、を備え、
     前記特性可変アンテナは、複数の無給電素子を備え、前記アンテナ制御部は、制御信号を、時間差をつけて各無給電素子へ出力する
     受信装置。
  2.  前記特性可変アンテナにおける各無給電素子は、位相可変部を備え、前記制御信号は、前記位相可変部を制御する
     請求項1に記載の受信装置。
  3.  前記位相可変部は電圧制御型の位相可変部であり、前記制御信号はアナログ信号である
     請求項2に記載の受信装置。
  4.  アンテナ制御部と特性可変アンテナとを備える受信装置が実行する受信方法であって、
     前記アンテナ制御部から出力される制御信号に基づいて、複数のアンテナから送信されたMIMO信号を、アンテナ特性を切り替えながら受信するステップと、
     前記特性可変アンテナにより受信した受信信号に対して所定のサンプリング周期でサンプリングを行うステップと、
     前記サンプリングにより得られた複数のアンテナ特性に対応する複数の信号から各信号を抽出するステップと、
     前記抽出された信号に対してMIMO復調処理を実行するステップと、を備え、
     前記特性可変アンテナは、複数の無給電素子を備え、前記アンテナ制御部は、制御信号を、時間差をつけて各無給電素子へ出力する
     受信方法。
PCT/JP2020/045482 2020-12-07 2020-12-07 受信装置、及び受信方法 WO2022123629A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022567731A JPWO2022123629A1 (ja) 2020-12-07 2020-12-07
US18/255,921 US20240048217A1 (en) 2020-12-07 2020-12-07 Receiving apparatus and receiving method
PCT/JP2020/045482 WO2022123629A1 (ja) 2020-12-07 2020-12-07 受信装置、及び受信方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/045482 WO2022123629A1 (ja) 2020-12-07 2020-12-07 受信装置、及び受信方法

Publications (1)

Publication Number Publication Date
WO2022123629A1 true WO2022123629A1 (ja) 2022-06-16

Family

ID=81973169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/045482 WO2022123629A1 (ja) 2020-12-07 2020-12-07 受信装置、及び受信方法

Country Status (3)

Country Link
US (1) US20240048217A1 (ja)
JP (1) JPWO2022123629A1 (ja)
WO (1) WO2022123629A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008215967A (ja) * 2007-03-02 2008-09-18 Toto Ltd 高周波センサ装置
WO2010004739A1 (ja) * 2008-07-08 2010-01-14 パナソニック株式会社 可変指向性アンテナ装置
WO2016020954A1 (ja) * 2014-08-06 2016-02-11 三菱電機株式会社 アンテナ装置およびアレーアンテナ装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008215967A (ja) * 2007-03-02 2008-09-18 Toto Ltd 高周波センサ装置
WO2010004739A1 (ja) * 2008-07-08 2010-01-14 パナソニック株式会社 可変指向性アンテナ装置
WO2016020954A1 (ja) * 2014-08-06 2016-02-11 三菱電機株式会社 アンテナ装置およびアレーアンテナ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WATANABE, ISSEI ET AL.: "A proposal on propagation environmental control by virtual massive array", IEICE TECHNICAL REPORT., vol. 119, no. 61, 23 May 2019 (2019-05-23), XP033692358 *

Also Published As

Publication number Publication date
US20240048217A1 (en) 2024-02-08
JPWO2022123629A1 (ja) 2022-06-16

Similar Documents

Publication Publication Date Title
CN108377161B (zh) 用于下一代无线用户设备硬件设计与方法的分布式相控阵多入多出
JP7211853B2 (ja) 無線中継装置
CN1933358B (zh) 车辆的无线电接收的天线分集装置
US20050179607A1 (en) Method and apparatus for dynamically selecting the best antennas/mode ports for transmission and reception
CN102427379B (zh) 天线装置
JPH11215049A (ja) 指向性制御アンテナ装置
CN109495140B (zh) 一种波束搜索跟踪无线通信系统和波束搜索跟踪方法
JP2008124974A (ja) 無線通信システム及び無線通信装置
WO2013113677A1 (en) Combined power transmission
Nguyen et al. Hybrid relay-reflecting intelligent surface-aided wireless communications: Opportunities, challenges, and future perspectives
CN114124113A (zh) 射频芯片、基带芯片及wlan设备
US11736154B2 (en) Method and system for controlling an antenna array
CN103051363A (zh) 具有一扩充模块的多重输入多重输出的无线通信系统
WO2022123629A1 (ja) 受信装置、及び受信方法
CN102780522B (zh) 一种天线阵列、基于该天线阵列的通信系统以及通信方法
CN102449927A (zh) 带有用于上行链路和下行链路的不同天线分集方法的无线通信系统中的节点
CN107017925B (zh) 一种有源阵列天线的信号处理方法和装置
US11108168B2 (en) Antenna system for portable communication device for millimeter wave communication
JP2012191281A (ja) 無線通信装置
EP2880773A1 (en) Radio-frequency processing circuit and related wireless communication device
WO2022038689A1 (ja) 受信装置、受信方法、プログラム、及び送信装置
CN111509405B (zh) 一种天线模组及电子设备
TWI415407B (zh) Beamforming circuit and communication system
US11804881B2 (en) Radio base station and reception method at radio base station
CN114124286A (zh) 利用p-b相位实现多信道无线复用通信的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20965015

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022567731

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18255921

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20965015

Country of ref document: EP

Kind code of ref document: A1