WO2022123174A1 - Hybrid manufacturing process for producing a turbomachine component comprising an internal cooling circuit - Google Patents

Hybrid manufacturing process for producing a turbomachine component comprising an internal cooling circuit Download PDF

Info

Publication number
WO2022123174A1
WO2022123174A1 PCT/FR2021/052238 FR2021052238W WO2022123174A1 WO 2022123174 A1 WO2022123174 A1 WO 2022123174A1 FR 2021052238 W FR2021052238 W FR 2021052238W WO 2022123174 A1 WO2022123174 A1 WO 2022123174A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
cooling circuit
manufacturing
internal cooling
turbomachine
Prior art date
Application number
PCT/FR2021/052238
Other languages
French (fr)
Inventor
Filippo PAGNONI
Romain Pierre CARIOU
Léandre OSTINO
Sylvain Paquin
Adrien Bernard Vincent ROLLINGER
Original Assignee
Safran
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran filed Critical Safran
Publication of WO2022123174A1 publication Critical patent/WO2022123174A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/005Sealing means between non relatively rotating elements
    • F01D11/006Sealing the gap between rotor blades or blades and rotor
    • F01D11/008Sealing the gap between rotor blades or blades and rotor by spacer elements between the blades, e.g. independent interblade platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/04Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/04Making specific metal objects by operations not covered by a single other subclass or a group in this subclass turbine or like blades from several pieces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/62Treatment of workpieces or articles after build-up by chemical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/66Treatment of workpieces or articles after build-up by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/001Turbines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/147Construction, i.e. structural features, e.g. of weight-saving hollow blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • F05D2220/321Application in turbines in gas turbines for a special turbine stage
    • F05D2220/3212Application in turbines in gas turbines for a special turbine stage the first stage of a turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/10Manufacture by removing material
    • F05D2230/14Micromachining
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/21Manufacture essentially without removing material by casting
    • F05D2230/211Manufacture essentially without removing material by casting by precision casting, e.g. microfusing or investment casting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/22Manufacture essentially without removing material by sintering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/23Manufacture essentially without removing material by permanently joining parts together
    • F05D2230/232Manufacture essentially without removing material by permanently joining parts together by welding
    • F05D2230/234Laser welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • F05D2230/31Layer deposition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/80Platforms for stationary or moving blades
    • F05D2240/81Cooled platforms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/10Two-dimensional
    • F05D2250/18Two-dimensional patterned
    • F05D2250/185Two-dimensional patterned serpentine-like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/204Heat transfer, e.g. cooling by the use of microcircuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer
    • F05D2260/2212Improvement of heat transfer by creating turbulence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer
    • F05D2260/2214Improvement of heat transfer by increasing the heat transfer surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer
    • F05D2260/2214Improvement of heat transfer by increasing the heat transfer surface
    • F05D2260/22141Improvement of heat transfer by increasing the heat transfer surface using fins or ribs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • This presentation relates to a manufacturing process for a turbomachine component comprising an internal cooling circuit, and more particularly a manufacturing process combining foundry manufacturing and additive manufacturing.
  • turbomachine components such as for example turbomachine blade platforms
  • turbomachine blade platforms can be subjected to significant thermal stresses.
  • components can be equipped with one or more internal cooling circuits within which a cooling fluid, for example air, can circulate to reduce these thermal stresses undergone by said component.
  • One embodiment relates to a method of manufacturing a turbomachine component, comprising an internal cooling circuit, in which an intermediate part from a foundry is provided, and one forms, from the intermediate part, all or part of the rest of the component by metallic deposition by laser while forming all or part of the internal cooling circuit
  • cooling circuit means “internal cooling circuit”.
  • component is meant “turbomachine component” and by “remainder” is meant “remainder of the turbomachine component”.
  • axial direction corresponds to the direction of the axis of rotation of the turbomachine (or of the disk of the fan), and a radial direction is a direction perpendicular to this axis.
  • the remainder corresponds to the entire part of the component which is not present in the intermediate part.
  • the rest can be manufactured solely by metal deposition by laser, or else by metal deposition by laser (in one or more steps) and at least one other manufacturing/machining step different from the metal deposition by laser, this at least one other step possibly intervene before, after or be interposed with respect to the metal deposition step(s) by laser.
  • the intermediate part may comprise an internal cooling circuit, but not necessarily.
  • This cooling circuit can be separate from, or be connected to, the cooling circuit of the rest.
  • the intermediate part can comprise none, a single one, or several internal cooling circuits while the rest comprises at least one internal cooling circuit.
  • the intermediate part can comprise at least one internal cooling circuit configured to cool the part of the component corresponding to the intermediate part, but not necessarily, while the rest comprises at least one internal cooling circuit configured to cool the part of the component corresponding to the rest.
  • cooling circuit is meant the cooling circuit of the remainder.
  • the manufacturing process that is the subject of this exhibit combines, via the supply of the intermediate part, manufacturing by foundry and manufacturing by additive manufacturing, for example by metal deposition by laser.
  • Metal deposition by laser, or Laser Metal Deposition in English (also known as under the acronym "LMD") is an additive manufacturing process well known as such by those skilled in the art.
  • the method may include an initial step of manufacturing the intermediate part by foundry, but not necessarily.
  • the process according to the present description can be limited to the simple supply of the intermediate part from foundry, this intermediate part being manufactured elsewhere (ie manufactured by foundry by a process distinct from the present process), and to the manufacture of all or part of the rest of the component by laser metal deposition.
  • Such a manufacturing process combining two stages of two distinct processes makes it possible to reduce manufacturing costs and lead times (thanks to the stage of supplying the intermediate part from the foundry), while making it possible to obtain a complex and improved structure in terms of cooling for the cooling circuit (thanks to the manufacturing step by metal deposition by laser).
  • the rest of the component is formed, including the internal cooling circuit, by laser metal deposition.
  • the intermediate part can be a blade (fixed or moving) or an inter-blade platform foot, and the rest can be the entire inter-blade platform.
  • At least a portion of a wall of the intermediate piece forms at least a bottom of at least one passage of the internal cooling circuit, and the rest of the component is formed, including the the other walls of at least one passage of the internal cooling circuit, by metal deposition by laser.
  • passage means “at least one passage”.
  • a wall of the passage is formed by a portion of the wall of the intermediate piece.
  • the wall may have a groove resulting from foundry, during the manufacture of the intermediate part, and the groove may form a first face of the square of the section and any or part of the two faces contiguous to the first face.
  • the intermediate part can comprise an internal or external wall of an inter-blade platform (ie wall radially internal or external with respect to a radial direction of a rotor or of a stator within which the component is configured to be mounted, also known to those skilled in the art as the internal or external bottom of the platform), said wall being configured to extend between two adjacent blades, while the rest comprises the entire rest of the platform (ie the entire platform with the exception of said internal or external wall).
  • At least one groove defining a part of at least one passage of the internal cooling circuit is formed by shrinking material in a wall of the intermediate piece before manufacturing the remaining part of the rest of the component. , including the remaining part of the internal cooling circuit, by laser metal deposition.
  • the rest includes the groove formed by removal of material (i.e. part of the rest) and all the portion manufactured by metallic deposition by laser (i.e. the remaining part of the rest)
  • the machining can be milling, electro-erosion, or any other suitable known process.
  • the groove can form a first face of the square of the section and all or part of the two faces contiguous to the first face. The last face (facing the first face) of the square section and any remaining portions of the two adjoining faces are formed when the rest is manufactured by metal deposition by laser.
  • the intermediate part can comprise an internal or external wall of an inter-blade platform (ie wall radially internal or external with respect to a radial direction of a rotor or of a stator within which the component is configured to be mounted, also known to those skilled in the art as the internal or external bottom of the platform), said wall being configured to extend between two adjacent blades, this face being machined beforehand by removing material to then form the rest , the latter comprising all the rest of the platform (ie the entire platform with the exception of said internal or external machined wall).
  • an inter-blade platform ie wall radially internal or external with respect to a radial direction of a rotor or of a stator within which the component is configured to be mounted, also known to those skilled in the art as the internal or external bottom of the platform
  • said wall being configured to extend between two adjacent blades, this face being machined beforehand by removing material to then form the rest , the latter comprising all the rest of the platform (ie the entire platform with the exception of said internal or external
  • disruptors configured to disrupt a cooling flow flow within the internal cooling circuit are formed, by metal deposition by laser.
  • the internal cooling circuit comprises several passages together forming at least one winding channel.
  • the sinuous channel forms at least one loop portion having a main dimension in a longitudinal direction, the loop portion being formed by two passages extending straight in the longitudinal direction and by a part of connection connecting the two passages.
  • the longitudinal direction corresponds to the axial direction.
  • the method according to the present description it becomes possible to form sinuous (or serpentine) channels to improve the parietal heat exchanges.
  • the method according to the present disclosure makes it possible to manufacture complex internal cooling circuits to optimize parietal heat exchange.
  • the method comprises surface treatment of all or part of a portion manufactured by metal deposition by laser.
  • the surface treatment can be, for example, machining (eg deburring, sanding, etc.), electroerosion treatment, chemical treatment, etc.
  • the intermediate part comprises a turbine engine blade (fixed or mobile) or a turbomachine inter-blade platform foot, and the rest of the component comprises all or part of an inter-blade platform of turbomachine comprising an internal cooling circuit.
  • the remainder may comprise all or part of the platform, including all or part of the internal cooling circuit.
  • the component is a high pressure turbine blade.
  • a blade is an assembly comprising one or more fixed or mobile blades in rotation around the axis of the turbomachine.
  • One embodiment relates to a high pressure turbine comprising a turbomachine component manufactured according to a method according to any one of the embodiments according to the present disclosure.
  • FIG. 1 represents a step for supplying an intermediate part for a method of manufacturing a turbomachine component according to a first embodiment
  • FIG. 2 represents a metal deposition step by laser for the manufacturing method of a turbomachine component according to the first embodiment
  • Figure 3 represents a turbomachine component
  • FIG. 4 represents a step for supplying an intermediate part for a method of manufacturing a turbomachine component according to a second embodiment
  • FIG. 5 represents a metal deposition step by laser for the manufacturing method of a turbomachine component according to the second embodiment
  • FIG. 6 represents a step for supplying an intermediate part for a method of manufacturing a turbomachine component according to a first variant of the second embodiment
  • FIG. 7 represents a metal deposition step by laser for the manufacturing method of a turbomachine component according to the first variant of the second embodiment
  • FIG. 8 represents a step for supplying an intermediate part for a method of manufacturing a turbomachine component according to a second variant of the second embodiment
  • FIG. 9 represents a metal deposition step by laser for the manufacturing method of a turbomachine component according to the second variant of the second embodiment
  • FIG. 10 represents a step for supplying an intermediate part for a method of manufacturing a turbomachine component according to a third embodiment
  • FIG. 11 represents a step of forming a groove by removing material for the method of manufacturing a turbomachine component according to the third embodiment
  • FIG. 12 represents a metal deposition step by laser for the method of manufacturing a turbomachine component according to the third embodiment. Description of embodiments
  • the turbomachine component 100 is a high-pressure turbine blade comprising a single blade, for example a moving blade, equipped with an inter-blade platform 50, the platform comprising an internal cooling circuit 60.
  • the component can be a platform fitted with a platform foot, or any other turbomachine component comprising an internal cooling circuit.
  • FIG. 1 represents a step for supplying an intermediate part 10 from a foundry, in this example a turbomachine blade (or a blade without a platform, i.e. a blade comprising a root and an aerodynamic profile).
  • the intermediate piece 10 is then fixed on a gripping tool (not shown) to ensure that it is held in position and to be able to proceed with the following steps.
  • Figure 2 shows the manufacture of all the rest of the component 100, in this example the entire platform 50, including the internal cooling circuit 60, by metal deposition by laser.
  • a tool 200 is brought closer to the intermediate part 10 to carry out the metal deposition by laser.
  • the tool 200 comprises a head provided with a laser beam emitter and nozzle(s) for emitting metal powder. It is noted that such a tool is well known to those skilled in the art and that it is represented schematically in FIG. 2. Successive layers of molten metal powder are deposited by virtue of the heat flux generated by the laser beam.
  • the mobility of the tool 200 makes it possible to have adaptive scanning and thus to manufacture the platform 50, including the cooling circuit 60.
  • FIG. 2 represents the platform 50 during manufacture, the portion represented in continuous lines representing the portion already manufactured by metal deposition by laser (as well as the intermediate piece 10), while the portion shown in broken lines represents the portion of the platform 50 which is not yet manufactured.
  • Figure 2 is a schematic representation and principle of manufacturing by metal deposition by laser, which is not necessarily representative of the actual configuration of such manufacturing by metal deposition by laser, which is in itself well known to man of career.
  • the internal cooling circuit 60 comprises several passages 60A together forming a winding channel 60B. Furthermore, as can be seen in the magnifying glass of FIG. 2, the internal cooling circuit 60 comprises disturbers 62 configured to intensify the parietal heat exchanges carried out by the cooling flow.
  • Figure 3 shows the finished turbomachine component 100.
  • the internal cooling circuit 60 is represented by transparency in broken lines.
  • the rest in this example the platform 50
  • a second embodiment of the method of manufacturing a turbomachine component according to this presentation is described with reference to Figures 4 and 5.
  • the common elements between the first and the second embodiment have the same reference signs . Unless otherwise indicated, the steps described with reference to the first embodiment are also carried out in the second embodiment and are not described again.
  • FIG. 4 represents a step for supplying an intermediate part 12 from a foundry, in this example a turbine engine blade comprising an internal wall 13 of an inter-blade platform.
  • a portion 61 of the internal wall 13 forms a bottom 61 of the passages 60A of the internal cooling circuit 60 (in this example a bottom of the entire circuit 60).
  • Figure 5 shows the manufacture of the rest 52 of the component 100, including the other walls of at least one passage of the internal cooling circuit 60, by metal deposition by laser.
  • the remainder 52 comprises only part of the platform 50, including only part of the cooling circuit 60.
  • FIG. 5 represents the platform 50 during manufacture, the portion shown in solid lines representing the portion already manufactured by metal deposition by laser (as well as the intermediate part 12) while the portion shown in broken lines represents the portion which is not yet manufactured.
  • the component 100 obtained at the end of the process is identical to that obtained by the process according to the first embodiment, and is represented in FIG. 3.
  • Figures 6 and 7 show a first variant of the method according to the second embodiment where the intermediate piece 12 'has an outer wall 14 of inter-blade platform instead of an inner wall 13 of inter-blade platform.
  • a portion 61′ of the outer wall 14 of the inter-blade platform of the intermediate piece 12′ forms a bottom 61′ of the passages 60A of the internal cooling circuit 60 (in this example a bottom of the entire circuit 60).
  • the underside of the platform 50 (radially internal part) is manufactured by laser metal deposition rather than the top of the platform 50 (radially external part).
  • the component 100 obtained at the end of this variant is identical to that obtained by the method according to the first embodiment, and is shown in Figure 3.
  • Figures 8 and 9 show a second variant of the method according to the second embodiment where the intermediate part 12" has an internal wall 13' of the inter-blade platform comprising a groove 16 from casting, this groove 16 forming a part of the walls of the internal cooling circuit 60, and in particular a bottom 61”.
  • groove 16 is closed (of course while retaining the internal cavity of groove 16) so as to form an internal channel in platform 50 forming all or part of the internal circuit 60.
  • the intermediate part may comprise an outer wall of the inter-blade platform comprising a groove resulting from casting instead of an inner wall of the platform inter-blades.
  • the component 100 obtained at the end of these variants is identical to that obtained by the method according to the first embodiment, and is represented in FIG. 3.
  • a third embodiment of the method for manufacturing a turbomachine component according to the present description is described with reference to FIGS. 10, 11 and 12.
  • the common elements between the first, the second and the third embodiment present the same reference signs. Unless specified On the contrary, the steps described with reference to the first embodiment are also carried out in the second embodiment and are not described again.
  • FIG. 10 represents a step for supplying an intermediate part 18 from a foundry, in this example a turbine engine blade comprising an internal wall 20 of an inter-blade platform.
  • FIG. 11 represents a step of forming at least one groove 22 defining part of at least one passage of the internal cooling circuit 60 by shrinking material in a wall of the intermediate piece. In this example, the material is removed by milling, using a milling cutter 210.
  • the groove 22 forms in this example part of the rest 54 of the component 100, namely part of the circuit 60.
  • FIG. 12 represents a step of manufacturing the remaining part of the rest 54 of the component 100, including the remaining part of the internal cooling circuit 60, by metal deposition by laser.
  • FIG. 11 represents a step of forming at least one groove 22 defining part of at least one passage of the internal cooling circuit 60 by shrinking material in a wall of the intermediate piece. In this example, the material is removed by milling, using a milling cutter 210.
  • the groove 22 forms in this example part of the rest 54
  • the component 100 obtained at the end of the process is identical to that obtained by the process according to the first embodiment, and is shown in Figure 3.
  • the figures represent a circuit having an output on a side edge of a platform (ie an edge which extends in a radial direction).
  • a side edge of a platform ie an edge which extends in a radial direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Laser Beam Processing (AREA)

Abstract

The invention relates to a manufacturing process for producing a turbomachine component (100) comprising an internal cooling circuit (60), wherein a cast intermediate workpiece (10) is provided and all or part of the remainder (50) of the component (100) is formed on the basis of the intermediate workpiece (10) by laser metal deposition, while forming all or part of the internal cooling circuit (60).

Description

Procédé de fabrication mixte d'un composant de turbomachine comprenant un circuit interne de refroidissement Mixed method of manufacturing a turbomachine component comprising an internal cooling circuit
Domaine Technique Technical area
[0001 ] Le présent exposé concerne un procédé de fabrication d’un composant de turbomachine comprenant un circuit interne de refroidissement, et plus particulièrement un procédé de fabrication combinant de la fabrication par fonderie et de la fabrication additive. [0001] This presentation relates to a manufacturing process for a turbomachine component comprising an internal cooling circuit, and more particularly a manufacturing process combining foundry manufacturing and additive manufacturing.
Technique antérieure Prior technique
[0002] Certains composants de turbomachine, comme par exemple les plateformes d’aube de turbomachine, peuvent être soumis à d’importantes contraintes thermiques. Aussi, de tels composants peuvent être équipés d’un ou plusieurs circuits internes de refroidissement au sein desquels un fluide de refroidissement, par exemple de l’air, peut circuler pour diminuer ces contraintes thermiques subies par ledit composant. [0002] Certain turbomachine components, such as for example turbomachine blade platforms, can be subjected to significant thermal stresses. Also, such components can be equipped with one or more internal cooling circuits within which a cooling fluid, for example air, can circulate to reduce these thermal stresses undergone by said component.
[0003] Toutefois, prévoir un circuit interne de refroidissement est particulièrement complexe et les possibilités limités si ce composant est fabriqué par fonderie. Alternativement, on peut fabriquer un tel composant par fabrication additive, qui permet notamment d’obtenir des structures beaucoup plus complexes et efficaces en terme de refroidissement pour le circuit interne de refroidissement. Cependant, un tel procédé est particulièrement long et coûteux. Il existe donc un besoin en ce sens. [0003] However, providing an internal cooling circuit is particularly complex and the possibilities are limited if this component is manufactured by foundry. Alternatively, such a component can be manufactured by additive manufacturing, which notably makes it possible to obtain much more complex and efficient structures in terms of cooling for the internal cooling circuit. However, such a process is particularly long and costly. So there is a need for that.
Exposé de l’invention Disclosure of Invention
[0004] Un mode de réalisation concerne un procédé de fabrication d’un composant de turbomachine, comprenant un circuit interne de refroidissement, dans lequel on fournit une pièce intermédiaire issue de fonderie, et on forme, à partir de la pièce intermédiaire, tout ou partie du reste du composant par dépôt métallique par laser tout en formant tout ou partie du circuit interne de refroidissement[0004] One embodiment relates to a method of manufacturing a turbomachine component, comprising an internal cooling circuit, in which an intermediate part from a foundry is provided, and one forms, from the intermediate part, all or part of the rest of the component by metallic deposition by laser while forming all or part of the internal cooling circuit
[0005] Par la suite et sauf indication contraire, par « circuit de refroidissement » on entend « circuit interne de refroidissement ». Par la suite, et sauf indication contraire, par « composant » on entend « composant de turbomachine » et par « reste » on entend « reste du composant de turbomachine ». Par ailleurs, dans le présent exposé, la direction axiale correspond à la direction de l'axe de rotation de la turbomachine (ou du disque de la soufflante), et une direction radiale est une direction perpendiculaire à cet axe. [0005] Hereafter and unless otherwise indicated, the term “cooling circuit” means “internal cooling circuit”. Hereafter, and unless otherwise indicated, by “component” is meant “turbomachine component” and by “remainder” is meant “remainder of the turbomachine component”. Furthermore, in the present description, the axial direction corresponds to the direction of the axis of rotation of the turbomachine (or of the disk of the fan), and a radial direction is a direction perpendicular to this axis.
[0006] Au sens du présent exposé, le reste correspond à toute la partie du composant qui n’est pas présente dans la pièce intermédiaire. Le reste peut être fabriqué uniquement par dépôt métallique par laser, ou bien par dépôt métallique par laser (en une ou plusieurs étapes) et au moins une autre étape de fabrication/usinage différente du dépôt métallique par laser, cette au moins une autre étape pouvant intervenir avant, après ou être intercalée par rapport à la ou les étapes de dépôt métallique par laser. [0006] Within the meaning of the present presentation, the remainder corresponds to the entire part of the component which is not present in the intermediate part. The rest can be manufactured solely by metal deposition by laser, or else by metal deposition by laser (in one or more steps) and at least one other manufacturing/machining step different from the metal deposition by laser, this at least one other step possibly intervene before, after or be interposed with respect to the metal deposition step(s) by laser.
[0007] La pièce intermédiaire peut comprendre un circuit interne de refroidissement, mais pas nécessairement. Ce circuit de refroidissement peut être distinct du, ou bien être connecté au, circuit de refroidissement du reste. En d’autres termes, la pièce intermédiaire peut comprendre aucun, un unique, ou plusieurs circuits internes de refroidissement tandis que le reste comprend au moins un circuit interne de refroidissement. Autrement dit, la pièce intermédiaire peut comprendre au moins un circuit interne de refroidissement configuré pour refroidir la partie du composant correspondant à la pièce intermédiaire, mais pas nécessairement, tandis que le reste comprend au moins un circuit interne de refroidissement configuré pour refroidir la partir du composant correspondant au reste. Par la suite et sauf indication contraire, par « circuit de refroidissement » on entend le circuit de refroidissement du reste. [0007] The intermediate part may comprise an internal cooling circuit, but not necessarily. This cooling circuit can be separate from, or be connected to, the cooling circuit of the rest. In other words, the intermediate part can comprise none, a single one, or several internal cooling circuits while the rest comprises at least one internal cooling circuit. In other words, the intermediate part can comprise at least one internal cooling circuit configured to cool the part of the component corresponding to the intermediate part, but not necessarily, while the rest comprises at least one internal cooling circuit configured to cool the part of the component corresponding to the rest. Hereafter and unless otherwise indicated, by "cooling circuit" is meant the cooling circuit of the remainder.
[0008] Le procédé de fabrication objet du présent expose combine, via la fourniture de la pièce intermédiaire, de la fabrication par fonderie et de la fabrication par fabrication additive, par exemple par dépôt métallique par laser. Le dépôt métallique par laser, ou Laser Metal Deposition en anglais (également connu sous l’acronyme « LMD >>) est un procédé de fabrication additive bien connu en tant que tel par l’homme du métier. Dans certains modes de réalisation, le procédé peut comprendre une étape initiale de fabrication de la pièce intermédiaire par fonderie, mais pas nécessairement. Autrement dit, le procédé selon le présent exposé peut être limité à la simple fourniture de la pièce intermédiaire issue de fonderie, cette pièce intermédiaire étant fabriquée par ailleurs (i.e. fabriquée par fonderie par un procédé distinct du présent procédé), et à la fabrication de tout ou partie du reste du composant par dépôt métallique laser. [0008] The manufacturing process that is the subject of this exhibit combines, via the supply of the intermediate part, manufacturing by foundry and manufacturing by additive manufacturing, for example by metal deposition by laser. Metal deposition by laser, or Laser Metal Deposition in English (also known as under the acronym "LMD") is an additive manufacturing process well known as such by those skilled in the art. In some embodiments, the method may include an initial step of manufacturing the intermediate part by foundry, but not necessarily. In other words, the process according to the present description can be limited to the simple supply of the intermediate part from foundry, this intermediate part being manufactured elsewhere (ie manufactured by foundry by a process distinct from the present process), and to the manufacture of all or part of the rest of the component by laser metal deposition.
[0009] Un tel procédé de fabrication combinant deux étapes de deux procédés distincts, permet de réduire les coûts et les délais de fabrication (grâce à l’étape de fourniture de la pièce intermédiaire issue de fonderie), tout en permettant d’obtenir une structure complexe et améliorée en terme de refroidissement pour le circuit de refroidissement (grâce à l’étape de fabrication par dépôt métallique par laser). [0009] Such a manufacturing process combining two stages of two distinct processes makes it possible to reduce manufacturing costs and lead times (thanks to the stage of supplying the intermediate part from the foundry), while making it possible to obtain a complex and improved structure in terms of cooling for the cooling circuit (thanks to the manufacturing step by metal deposition by laser).
[0010] Dans certains modes de réalisation, on forme tout le reste du composant, y compris le circuit interne de refroidissement, par dépôt métallique par laser. [0010] In certain embodiments, the rest of the component is formed, including the internal cooling circuit, by laser metal deposition.
[0011 ] Ceci permet une grande souplesse de fabrication et une grande complexité de structure pour fabriquer le reste, notamment le circuit de refroidissement. Par exemple, la pièce intermédiaire peut être une aube (fixe ou mobile) ou un pied de plateforme inter-aubes, et le reste pouvant être l’intégralité de la plateforme interaubes. [0011] This allows great manufacturing flexibility and great structural complexity to manufacture the rest, in particular the cooling circuit. For example, the intermediate part can be a blade (fixed or moving) or an inter-blade platform foot, and the rest can be the entire inter-blade platform.
[0012] Dans certains modes de réalisation, au moins une portion d’une paroi de la pièce intermédiaire forme au moins un fond d’au moins un passage du circuit interne de refroidissement, et on forme le reste du composant, y compris la ou les autres parois du au moins un passage du circuit interne de refroidissement, par dépôt métallique par laser. In some embodiments, at least a portion of a wall of the intermediate piece forms at least a bottom of at least one passage of the internal cooling circuit, and the rest of the component is formed, including the the other walls of at least one passage of the internal cooling circuit, by metal deposition by laser.
[0013] Par la suite, et sauf indication contraire, par « passage » on entend « au moins un passage ». [0013] Thereafter, and unless otherwise indicated, the term “passage” means “at least one passage”.
[0014] En d’autres termes, on vient s’appuyer sur la paroi de la pièce intermédiaire pour fabriquer le reste, et une paroi du passage est formée par une portion de la paroi de la pièce intermédiaire. Par exemple, dans le cas où le passage présenterait une section carrée, une face du carrée de la section est formée par une portion de la paroi de la pièce intermédiaire sur laquelle on forme le reste. Selon un autre exemple, dans le cas où le passage présenterait une section carrée, la paroi peut présenter une rainure issue de fonderie, lors de la fabrication de la pièce intermédiaire, et la rainure peut former une première face du carrée de la section et tout ou partie des deux faces contiguës à la première face. La dernière face (en vis-à-vis de la première face) de la section carrée et les éventuelles portions restantes des deux faces contiguës sont formées lorsqu’on fabrique le reste par dépôt métallique par laser. Par exemple, la pièce intermédiaire peut comprendre une paroi interne ou externe d’une plateforme inter-aubes (i.e. paroi radialement interne ou externe par rapport à une direction radiale d’un rotor ou d’un stator au sein duquel le composant est configuré pour être monté, également connu par l’homme du métier sous le nom de fond interne ou externe de plateforme), ladite paroi étant configurée pour s’étendre entre deux aubes adjacentes, tandis que le reste comprend tout le reste de la plateforme (i.e. l’intégralité de la plateforme à l’exception de ladite paroi interne ou externe). [0014] In other words, it is based on the wall of the intermediate piece to manufacture the rest, and a wall of the passage is formed by a portion of the wall of the intermediate piece. For example, in the case where the passage would have a square section, one face of the square of the section is formed by a portion of the wall of the intermediate piece on which the rest is formed. According to another example, in the case where the passage would have a square section, the wall may have a groove resulting from foundry, during the manufacture of the intermediate part, and the groove may form a first face of the square of the section and any or part of the two faces contiguous to the first face. The last face (facing the first face) of the square section and any remaining portions of the two adjoining faces are formed when the rest is manufactured by metal deposition by laser. For example, the intermediate part can comprise an internal or external wall of an inter-blade platform (ie wall radially internal or external with respect to a radial direction of a rotor or of a stator within which the component is configured to be mounted, also known to those skilled in the art as the internal or external bottom of the platform), said wall being configured to extend between two adjacent blades, while the rest comprises the entire rest of the platform (ie the entire platform with the exception of said internal or external wall).
[0015] Ceci permet de faciliter la fabrication de la portion du composant fabriqué par fonderie, et limiter le temps de fabrication de la portion de la pièce fabriquée par dépôt métallique par laser. [0015] This facilitates the manufacture of the portion of the component manufactured by foundry, and limits the manufacturing time of the portion of the part manufactured by metal deposition by laser.
[0016] Dans certains modes de réalisation, on forme au moins une rainure définissant une partie d’au moins un passage du circuit interne de refroidissement par retrait de matière dans une paroi de la pièce intermédiaire avant de fabriquer la partie restante du reste du composant, y compris la partie restante du circuit interne de refroidissement, par dépôt métallique par laser. In certain embodiments, at least one groove defining a part of at least one passage of the internal cooling circuit is formed by shrinking material in a wall of the intermediate piece before manufacturing the remaining part of the rest of the component. , including the remaining part of the internal cooling circuit, by laser metal deposition.
[0017] Dans cet exemple, on comprend que le reste comprend la rainure formée par retrait de matière (i.e. une partie du reste) et toute la portion fabriquée par dépôt métallique par laser (i.e. la partie restante du reste) In this example, it is understood that the rest includes the groove formed by removal of material (i.e. part of the rest) and all the portion manufactured by metallic deposition by laser (i.e. the remaining part of the rest)
[0018] En d’autres termes, on vient d’abord usiner la paroi de la pièce intermédiaire sur laquelle on s’appuie pour fabriquer le reste, pour former une rainure. Par exemple, l’usinage peut être un fraisage, de l’électroérosion, ou tout autre procédé adapté connu. Par exemple, dans le cas où le passage présenterait une section carrée, la rainure peut former une première face du carrée de la section et tout ou partie des deux faces contiguës à la première face. La dernière face (en vis-à-vis de la première face) de la section carrée et les éventuelles portions restantes des deux faces contiguës sont formée lorsqu’on fabrique le reste par dépôt métallique par laser. Par exemple, la pièce intermédiaire peut comprendre une paroi interne ou externe d’une plateforme inter-aubes (i.e. paroi radialement interne ou externe par rapport à une direction radiale d’un rotor ou d’un stator au sein duquel le composant est configuré pour être monté, également connu par l’homme du métier sous le nom de fond interne ou externe de plateforme), ladite paroi étant configurée pour s’étendre entre deux aubes adjacentes, cette face étant préalablement usinée par retrait de matière pour ensuite former le reste, ce dernier comprenant tout le reste de la plateforme (i.e. l’intégralité de la plateforme à l’exception de ladite paroi interne ou externe usinée). [0018] In other words, we first machine the wall of the intermediate piece on which we rely to manufacture the rest, to form a groove. For example, the machining can be milling, electro-erosion, or any other suitable known process. For example, in the case where the passage would have a square section, the groove can form a first face of the square of the section and all or part of the two faces contiguous to the first face. The last face (facing the first face) of the square section and any remaining portions of the two adjoining faces are formed when the rest is manufactured by metal deposition by laser. For example, the intermediate part can comprise an internal or external wall of an inter-blade platform (ie wall radially internal or external with respect to a radial direction of a rotor or of a stator within which the component is configured to be mounted, also known to those skilled in the art as the internal or external bottom of the platform), said wall being configured to extend between two adjacent blades, this face being machined beforehand by removing material to then form the rest , the latter comprising all the rest of the platform (ie the entire platform with the exception of said internal or external machined wall).
[0019] Ceci permet de limiter la portion du composant fabriquée par dépôt métallique par laser. [0019] This makes it possible to limit the portion of the component manufactured by metal deposition by laser.
[0020] Dans certains modes de réalisation, on forme des perturbateurs configurés pour perturber un écoulement de flux de refroidissement au sein du circuit interne de refroidissement, par dépôt métallique par laser. [0020] In certain embodiments, disruptors configured to disrupt a cooling flow flow within the internal cooling circuit are formed, by metal deposition by laser.
[0021] Grâce au procédé selon le présent exposé, il devient possible de former de tels perturbateurs pour déstabiliser la couche limite, intensifier le mélange convectif dans l’écoulement de refroidissement et, en conséquence, augmenter les échanges thermiques pariétaux. Thanks to the method according to the present presentation, it becomes possible to form such disturbers to destabilize the boundary layer, intensify the convective mixing in the cooling flow and, consequently, increase the parietal heat exchanges.
[0022] Dans certains modes de réalisation, le circuit interne de refroidissement comprend plusieurs passages formant ensemble au moins un canal sinueux. In some embodiments, the internal cooling circuit comprises several passages together forming at least one winding channel.
[0023] Dans certains modes de réalisation, le canal sinueux forme au moins une portion de boucle présentant une dimension principale selon une direction longitudinale, la portion de boucle étant formée par deux passages s’étendant rectilignement selon la direction longitudinale et par une partie de raccordement raccordant les deux passages. Optionnellement, la direction longitudinale correspond à la direction axiale. In some embodiments, the sinuous channel forms at least one loop portion having a main dimension in a longitudinal direction, the loop portion being formed by two passages extending straight in the longitudinal direction and by a part of connection connecting the two passages. Optionally, the longitudinal direction corresponds to the axial direction.
[0024] Grâce au procédé selon le présent exposé, il devient possible de former des canaux sinueux (ou en serpentin) pour améliorer les échanges thermiques pariétaux. En d’autres termes, le procédé selon le présent exposé permet de fabriquer des circuits internes de refroidissement complexes permettant d’optimiser les échanges thermiques pariétaux. Thanks to the method according to the present description, it becomes possible to form sinuous (or serpentine) channels to improve the parietal heat exchanges. In other words, the method according to the present disclosure makes it possible to manufacture complex internal cooling circuits to optimize parietal heat exchange.
[0025] Dans certains modes de réalisation, le procédé comprend un traitement de surface de tout ou partie d’une portion fabriquée par dépôt métallique par laser. [0025] In certain embodiments, the method comprises surface treatment of all or part of a portion manufactured by metal deposition by laser.
[0026] Le traitement de surface peut être par exemple un usinage (par ex. ébarbage, ponçage, etc.), un traitement pas électroérosion, un traitement chimique, etc. [0026] The surface treatment can be, for example, machining (eg deburring, sanding, etc.), electroerosion treatment, chemical treatment, etc.
[0027] Dans certains modes de réalisation, la pièce intermédiaire comprend une aube (fixe ou mobile) de turbomachine ou un pied de plateforme inter-aubes de turbomachine, et le reste du composant comprend tout ou partie d’une plateforme inter-aubes de turbomachine comprenant un circuit interne de refroidissement. [0027] In certain embodiments, the intermediate part comprises a turbine engine blade (fixed or mobile) or a turbomachine inter-blade platform foot, and the rest of the component comprises all or part of an inter-blade platform of turbomachine comprising an internal cooling circuit.
[0028] Le reste peut comprendre tout ou partie de la plateforme, y compris tout ou partie du circuit interne de refroidissement. The remainder may comprise all or part of the platform, including all or part of the internal cooling circuit.
[0029] Dans certains modes de réalisation, le composant est un aubage de turbine haute pression. [0029] In some embodiments, the component is a high pressure turbine blade.
[0030] Un aubage est un ensemble comprenant une ou plusieurs aubes fixes ou mobiles en rotation autour de l’axe de la turbomachine. [0030] A blade is an assembly comprising one or more fixed or mobile blades in rotation around the axis of the turbomachine.
[0031 ] Un mode de réalisation concerne une turbine haute pression comprenant un composant de turbomachine fabriqué selon procédé selon l’un quelconque des modes de réalisation selon le présent exposé. [0031] One embodiment relates to a high pressure turbine comprising a turbomachine component manufactured according to a method according to any one of the embodiments according to the present disclosure.
Brève description des dessins Brief description of the drawings
[0032] L’objet du présent exposé et ses avantages seront mieux compris à la lecture de la description détaillée faite ci-après de différents modes de réalisation donnés à titre d’exemples non limitatifs. Cette description fait référence aux pages de figures annexées, sur lesquelles : The object of this presentation and its advantages will be better understood on reading the detailed description given below of various embodiments given by way of non-limiting examples. This description refers to the pages of appended figures, on which:
[0033] [Fig. 1 ] La figure 1 représente une étape de fourniture de pièce intermédiaire pour un procédé de fabrication d’un composant de turbomachine selon un premier mode de réalisation, [0034] [Fig. 2] La figure 2 représente une étape de dépôt métallique par laser pour le procédé de fabrication d’un composant de turbomachine selon le premier mode de réalisation, [0033] [Fig. 1] FIG. 1 represents a step for supplying an intermediate part for a method of manufacturing a turbomachine component according to a first embodiment, [0034] [Fig. 2] FIG. 2 represents a metal deposition step by laser for the manufacturing method of a turbomachine component according to the first embodiment,
[0035] [Fig. 3] La figure 3 représente un composant de turbomachine, [0035] [Fig. 3] Figure 3 represents a turbomachine component,
[0036] [Fig. 4] La figure 4 représente une étape de fourniture de pièce intermédiaire pour un procédé de fabrication d’un composant de turbomachine selon un deuxième mode de réalisation, [0036] [Fig. 4] FIG. 4 represents a step for supplying an intermediate part for a method of manufacturing a turbomachine component according to a second embodiment,
[0037] [Fig. 5] La figure 5 représente une étape de dépôt métallique par laser pour le procédé de fabrication d’un composant de turbomachine selon le deuxième mode de réalisation, [0037] [Fig. 5] FIG. 5 represents a metal deposition step by laser for the manufacturing method of a turbomachine component according to the second embodiment,
[0038] [Fig. 6] La figure 6 représente une étape de fourniture de pièce intermédiaire pour un procédé de fabrication d’un composant de turbomachine selon une première variante du deuxième mode de réalisation, [0038] [Fig. 6] FIG. 6 represents a step for supplying an intermediate part for a method of manufacturing a turbomachine component according to a first variant of the second embodiment,
[0039] [Fig. 7] La figure 7 représente une étape de dépôt métallique par laser pour le procédé de fabrication d’un composant de turbomachine selon la première variante du deuxième mode de réalisation, [0039] [Fig. 7] FIG. 7 represents a metal deposition step by laser for the manufacturing method of a turbomachine component according to the first variant of the second embodiment,
[0040] [Fig. 8] La figure 8 représente une étape de fourniture de pièce intermédiaire pour un procédé de fabrication d’un composant de turbomachine selon une deuxième variante du deuxième mode de réalisation, [0040] [Fig. 8] FIG. 8 represents a step for supplying an intermediate part for a method of manufacturing a turbomachine component according to a second variant of the second embodiment,
[0041] [Fig. 9] La figure 9 représente une étape de dépôt métallique par laser pour le procédé de fabrication d’un composant de turbomachine selon la deuxième variante du deuxième mode de réalisation, [0041] [Fig. 9] FIG. 9 represents a metal deposition step by laser for the manufacturing method of a turbomachine component according to the second variant of the second embodiment,
[0042] [Fig. 10] La figure 10 représente une étape de fourniture de pièce intermédiaire pour un procédé de fabrication d’un composant de turbomachine selon un troisième mode de réalisation, [0042] [Fig. 10] FIG. 10 represents a step for supplying an intermediate part for a method of manufacturing a turbomachine component according to a third embodiment,
[0043] [Fig. 11] La figure 11 représente une étape de formation de rainure par retrait de matière pour le procédé de fabrication d’un composant de turbomachine selon le troisième mode de réalisation, et [0043] [Fig. 11] FIG. 11 represents a step of forming a groove by removing material for the method of manufacturing a turbomachine component according to the third embodiment, and
[0044] [Fig. 12] La figure 12 représente une étape de dépôt métallique par laser pour le procédé de fabrication d’un composant de turbomachine selon le troisième mode de réalisation. Description des modes de réalisation [0044] [Fig. 12] FIG. 12 represents a metal deposition step by laser for the method of manufacturing a turbomachine component according to the third embodiment. Description of embodiments
[0045] Dans tous les exemples suivants, le composant de turbomachine 100 est un aubage de turbine haute pression comprenant une unique aube, par exemple une aube mobile, équipée d’une plateforme inter-aubes 50, la plateforme comprenant un circuit interne de refroidissement 60. Selon une variante, le composant peut être une plateforme équipée d’un pied de plateforme, ou tout autre composant de turbomachine comprenant un circuit interne de refroidissement. [0045] In all the following examples, the turbomachine component 100 is a high-pressure turbine blade comprising a single blade, for example a moving blade, equipped with an inter-blade platform 50, the platform comprising an internal cooling circuit 60. According to a variant, the component can be a platform fitted with a platform foot, or any other turbomachine component comprising an internal cooling circuit.
[0046] Un premier mode de réalisation du procédé de fabrication d’un composant de turbomachine selon le présent exposé est décrit en référence aux figures 1 à 3. A first embodiment of the method for manufacturing a turbomachine component according to this presentation is described with reference to Figures 1 to 3.
[0047] La figure 1 représente une étape de fourniture d’une pièce intermédiaire 10 issue de fonderie, dans cet exemple une aube de turbomachine (ou une aube sans plateforme, i.e. une aube comprenant un pied et un profil aérodynamique). La pièce intermédiaire 10 est ensuite fixée sur un outil de préhension (non- représenté) pour assurer son maintien en position et pouvoir procéder aux étapes suivantes. [0047] FIG. 1 represents a step for supplying an intermediate part 10 from a foundry, in this example a turbomachine blade (or a blade without a platform, i.e. a blade comprising a root and an aerodynamic profile). The intermediate piece 10 is then fixed on a gripping tool (not shown) to ensure that it is held in position and to be able to proceed with the following steps.
[0048] La figure 2 représente la fabrication de tout le reste du composant 100, dans cet exemple l’intégralité de la plateforme 50, y compris le circuit interne de refroidissement 60, par dépôt métallique par laser. Pour ce faire, on approche un outillage 200 de la pièce intermédiaire 10 pour réaliser le dépôt métallique par laser. Dans cet exemple l’outillage 200 comprend une tête munie d’un émetteur de faisceau laser et de buse(s) d’émission de poudre métallique. On note qu’un tel outillage est bien connu par l’homme du métier et qu’il est représenté schématiquement sur la figure 2. On dépose des couches successives de poudre métallique fondue grâce au flux de chaleur généré par le faisceau laser. La mobilité de l’outillage 200 permet d’avoir un balayage adaptatif et ainsi de fabriquer la plateforme 50, y compris le circuit de refroidissement 60. La figure 2 représente la plateforme 50 en cours de fabrication, la portion représentée en traits continus représentant la portion déjà fabriquée par dépôt métallique par laser (ainsi que la pièce intermédiaire 10), tandis que la portion représentée en traits discontinus représente la portion de la plateforme 50 qui n’est pas encore fabriquée. La figure 2 est une représentation schématique et de principe de fabrication par dépôt métallique par laser, qui n’est pas forcément représentative de la configuration réelle d’une telle fabrication par dépôt métallique par laser, qui est en soit bien connu par l’homme du métier. Figure 2 shows the manufacture of all the rest of the component 100, in this example the entire platform 50, including the internal cooling circuit 60, by metal deposition by laser. To do this, a tool 200 is brought closer to the intermediate part 10 to carry out the metal deposition by laser. In this example, the tool 200 comprises a head provided with a laser beam emitter and nozzle(s) for emitting metal powder. It is noted that such a tool is well known to those skilled in the art and that it is represented schematically in FIG. 2. Successive layers of molten metal powder are deposited by virtue of the heat flux generated by the laser beam. The mobility of the tool 200 makes it possible to have adaptive scanning and thus to manufacture the platform 50, including the cooling circuit 60. FIG. 2 represents the platform 50 during manufacture, the portion represented in continuous lines representing the portion already manufactured by metal deposition by laser (as well as the intermediate piece 10), while the portion shown in broken lines represents the portion of the platform 50 which is not yet manufactured. Figure 2 is a schematic representation and principle of manufacturing by metal deposition by laser, which is not necessarily representative of the actual configuration of such manufacturing by metal deposition by laser, which is in itself well known to man of career.
[0049] On note que dans cet exemple, le circuit interne de refroidissement 60 comprend plusieurs passages 60A formant ensemble un canal sinueux 60B. Par ailleurs, comme cela est visible sur la loupe de la figure 2, le circuit interne de refroidissement 60 comprend des perturbateurs 62 configurés pour intensifier les échanges thermiques pariétaux menés par l’écoulement de refroidissement. Note that in this example, the internal cooling circuit 60 comprises several passages 60A together forming a winding channel 60B. Furthermore, as can be seen in the magnifying glass of FIG. 2, the internal cooling circuit 60 comprises disturbers 62 configured to intensify the parietal heat exchanges carried out by the cooling flow.
[0050] La figure 3 représente le composant de turbomachine 100 fini. Le circuit interne de refroidissement 60 est représenté par transparence en traits discontinus. Dans cet exemple, le reste (dans cet exemple la plateforme 50) a reçu un traitement de surface, par exemple un ébarbage. Figure 3 shows the finished turbomachine component 100. The internal cooling circuit 60 is represented by transparency in broken lines. In this example, the rest (in this example the platform 50) has received a surface treatment, for example deburring.
[0051] Un deuxième mode de réalisation du procédé de fabrication d’un composant de turbomachine selon le présent exposé est décrit en référence aux figures 4 et 5. Les éléments communs entre le premier et le deuxième mode de réalisation présentent les mêmes signes de référence. Sauf indication contraire, les étapes décrites en référence au premier mode de réalisation sont également effectuées dans le deuxième mode de réalisation et ne sont pas décrites de nouveau. A second embodiment of the method of manufacturing a turbomachine component according to this presentation is described with reference to Figures 4 and 5. The common elements between the first and the second embodiment have the same reference signs . Unless otherwise indicated, the steps described with reference to the first embodiment are also carried out in the second embodiment and are not described again.
[0052] La figure 4 représente une étape de fourniture d’une pièce intermédiaire 12 issue de fonderie, dans cet exemple une aube de turbomachine comprenant une paroi interne 13 de plateforme inter-aubes. Dans cet exemple, une portion 61 de la paroi interne 13 forme un fond 61 des passages 60A du circuit interne de refroidissement 60 (dans cet exemple un fond de tout le circuit 60). [0052] FIG. 4 represents a step for supplying an intermediate part 12 from a foundry, in this example a turbine engine blade comprising an internal wall 13 of an inter-blade platform. In this example, a portion 61 of the internal wall 13 forms a bottom 61 of the passages 60A of the internal cooling circuit 60 (in this example a bottom of the entire circuit 60).
[0053] La figure 5 représente la fabrication du reste 52 du composant 100, y compris les autres parois du au moins un passage du circuit interne de refroidissement 60, par dépôt métallique par laser. Dans cet exemple, le reste 52 comprend une partie seulement de la plateforme 50, y compris une partie seulement du circuit de refroidissement 60. La figure 5 représente la plateforme 50 en cours de fabrication, la portion représentée en traits continus représentant la portion déjà fabriquée par dépôt métallique par laser (ainsi que la pièce intermédiaire 12) tandis que la portion représentée en traits discontinus représente la portion qui n’est pas encore fabriquée. Le composant 100 obtenu à l’issu du procédé est identique à celui obtenu par le procédé selon le premier mode de réalisation, et est représenté sur la figure 3. [0053] Figure 5 shows the manufacture of the rest 52 of the component 100, including the other walls of at least one passage of the internal cooling circuit 60, by metal deposition by laser. In this example, the remainder 52 comprises only part of the platform 50, including only part of the cooling circuit 60. FIG. 5 represents the platform 50 during manufacture, the portion shown in solid lines representing the portion already manufactured by metal deposition by laser (as well as the intermediate part 12) while the portion shown in broken lines represents the portion which is not yet manufactured. The component 100 obtained at the end of the process is identical to that obtained by the process according to the first embodiment, and is represented in FIG. 3.
[0054] Les figures 6 et 7 représentent une première variante du procédé selon le deuxième mode de réalisation où la pièce intermédiaire 12’ présente une paroi externe 14 de plateforme inter-aubes au lieu d’une paroi interne 13 de plateforme inter-aubes. Une portion 61 ’ de la paroi externe 14 de plateforme inter-aubes de la pièce intermédiaire 12’ forme un fond 61 ’des passages 60A du circuit interne de refroidissement 60 (dans cet exemple un fond de tout le circuit 60). Aussi, la principale différence avec l’exemple des figures 4 et 5 est qu’on fabrique par dépôt métallique par laser le dessous de la plateforme 50 (partie radialement interne) plutôt au lieu du dessus de la plateforme 50 (partie radialement externe). Le composant 100 obtenu à l’issu de cette variante est identique à celui obtenu par le procédé selon le premier mode de réalisation, et est représenté sur la figure 3. Figures 6 and 7 show a first variant of the method according to the second embodiment where the intermediate piece 12 'has an outer wall 14 of inter-blade platform instead of an inner wall 13 of inter-blade platform. A portion 61′ of the outer wall 14 of the inter-blade platform of the intermediate piece 12′ forms a bottom 61′ of the passages 60A of the internal cooling circuit 60 (in this example a bottom of the entire circuit 60). Also, the main difference with the example of Figures 4 and 5 is that the underside of the platform 50 (radially internal part) is manufactured by laser metal deposition rather than the top of the platform 50 (radially external part). The component 100 obtained at the end of this variant is identical to that obtained by the method according to the first embodiment, and is shown in Figure 3.
[0055] Les figures 8 et 9 représentent une deuxième variante du procédé selon le deuxième mode de réalisation où la pièce intermédiaire 12” présente une paroi interne 13’ de plateforme inter-aubes comprenant une rainure 16 issue de fonderie, cette rainure 16 formant une partie des parois du circuit interne de refroidissement 60, et notamment un fond 61 ”. Dans cet exemple, lors de la fabrication du reste 52” du composant 100, on vient fermer la rainure 16 (bien entendu tout en conservant la cavité interne de la rainure 16) de manière à former un canal interne à la plateforme 50 formant tout ou partie du circuit interne 60. Selon une troisième variante non représenté, et de manière similaire à la première variante, la pièce intermédiaire peut comprendre une paroi externe de plateforme inter-aubes comprenant une rainure issue de fonderie au lieu d’une paroi interne de plateforme inter-aubes. Le composant 100 obtenu à l’issu de ces variantes est identique à celui obtenu par le procédé selon le premier mode de réalisation, et est représenté sur la figure 3. [0055] Figures 8 and 9 show a second variant of the method according to the second embodiment where the intermediate part 12" has an internal wall 13' of the inter-blade platform comprising a groove 16 from casting, this groove 16 forming a part of the walls of the internal cooling circuit 60, and in particular a bottom 61”. In this example, during manufacture of the remainder 52” of component 100, groove 16 is closed (of course while retaining the internal cavity of groove 16) so as to form an internal channel in platform 50 forming all or part of the internal circuit 60. According to a third variant, not shown, and similarly to the first variant, the intermediate part may comprise an outer wall of the inter-blade platform comprising a groove resulting from casting instead of an inner wall of the platform inter-blades. The component 100 obtained at the end of these variants is identical to that obtained by the method according to the first embodiment, and is represented in FIG. 3.
[0056] Un troisième mode de réalisation du procédé de fabrication d’un composant de turbomachine selon le présent exposé est décrit en référence aux figures 10, 11 et 12. Les éléments communs entre le premier, le deuxième et le troisième mode de réalisation présentent les mêmes signes de référence. Sauf indication contraire, les étapes décrites en référence au premier mode de réalisation sont également effectuées dans le deuxième mode de réalisation et ne sont pas décrites de nouveau. A third embodiment of the method for manufacturing a turbomachine component according to the present description is described with reference to FIGS. 10, 11 and 12. The common elements between the first, the second and the third embodiment present the same reference signs. Unless specified On the contrary, the steps described with reference to the first embodiment are also carried out in the second embodiment and are not described again.
[0057] La figure 10 représente une étape de fourniture d’une pièce intermédiaire 18 issue de fonderie, dans cet exemple une aube de turbomachine comprenant une paroi interne 20 de plateforme inter-aubes. La figure 1 1 représente une étape de formation d’au moins une rainure 22 définissant une partie d’au moins un passage du circuit interne de refroidissement 60 par retrait de matière dans une paroi de la pièce intermédiaire. Dans cet exemple, le retrait de matière est effectué par fraisage, à l’aide d’une fraise 210. La rainure 22 forme dans cet exemple une partie du reste 54 du composant 100, à savoir un partie du circuit 60. La figure 12 représente une étape de fabrication de la partie restante du reste 54 du composant 100, y compris la partie restante du circuit interne de refroidissement 60, par dépôt métallique par laser. La figure 11 représente la plateforme 50 en cours de fabrication, la portion représentée en traits continus représentant la portion déjà fabriquée par dépôt métallique par laser (ainsi que la pièce intermédiaire 18 ayant subi le retrait de matière) tandis que la portion représentée en traits discontinus représente la portion qui n’est pas encore fabriquée. Le composant 100 obtenu à l’issu du procédé est identique à celui obtenu par le procédé selon le premier mode de réalisation, et est représenté sur la figure 3. FIG. 10 represents a step for supplying an intermediate part 18 from a foundry, in this example a turbine engine blade comprising an internal wall 20 of an inter-blade platform. FIG. 11 represents a step of forming at least one groove 22 defining part of at least one passage of the internal cooling circuit 60 by shrinking material in a wall of the intermediate piece. In this example, the material is removed by milling, using a milling cutter 210. The groove 22 forms in this example part of the rest 54 of the component 100, namely part of the circuit 60. FIG. 12 represents a step of manufacturing the remaining part of the rest 54 of the component 100, including the remaining part of the internal cooling circuit 60, by metal deposition by laser. FIG. 11 represents the platform 50 during manufacture, the portion represented in continuous lines representing the portion already manufactured by metal deposition by laser (as well as the intermediate part 18 having undergone the removal of material) while the portion represented in broken lines represents the portion that is not yet manufactured. The component 100 obtained at the end of the process is identical to that obtained by the process according to the first embodiment, and is shown in Figure 3.
[0058] Bien que la présente invention ait été décrite en se référant à des modes de réalisation spécifiques, il est évident que des modifications et des changements peuvent être effectués sur ces exemples sans sortir de la portée générale de l'invention telle que définie par les revendications. En particulier, des caractéristiques individuelles des différents modes de réalisation illustrés/mentionnés peuvent être combinées dans des modes de réalisation additionnels. Par conséquent, la description et les dessins doivent être considérés dans un sens illustratif plutôt que restrictif. Although the present invention has been described with reference to specific embodiments, it is obvious that modifications and changes can be made to these examples without departing from the general scope of the invention as defined by the revendications. In particular, individual features of the different illustrated/mentioned embodiments can be combined in additional embodiments. Accordingly, the description and the drawings should be considered in an illustrative rather than restrictive sense.
[0059] Notamment, les figures représentent un circuit présentant une sortie sur un bord latéral d’une plateforme (i.e. un bord qui s’étend selon une direction radiale). Bien entendu, il peut y avoir une ou plusieurs sorties, chaque sortie pouvant être disposée à n’importe quelle position, sur un bord latéral et/ou sur une face radialement interne ou externe de la plateforme, du côté amont ou du côté aval par rapport au sens d’écoulement du fluide au sein de l’aubage. In particular, the figures represent a circuit having an output on a side edge of a platform (ie an edge which extends in a radial direction). Of course, there can be one or more outputs, each output being able to be arranged at any position, on a side edge and/or on a face. radially internal or external of the platform, on the upstream side or on the downstream side with respect to the direction of flow of the fluid within the blading.
[0060] Il est également évident que toutes les caractéristiques décrites en référence à un procédé sont transposables, seules ou en combinaison, à un dispositif, et inversement, toutes les caractéristiques décrites en référence à un dispositif sont transposables, seules ou en combinaison, à un procédé. It is also obvious that all the characteristics described with reference to a method can be transposed, alone or in combination, to a device, and conversely, all the characteristics described with reference to a device can be transposed, alone or in combination, to a method.

Claims

Revendications Claims
[Revendication 1] Procédé de fabrication d'un composant de turbomachine (100) comprenant un circuit interne de refroidissement (60), dans lequel on fournit une pièce intermédiaire (10, 12, 12', 12", 18) issue de fonderie, on forme, à partir de la pièce intermédiaire (10, 12, 12', 12", 18), tout ou partie du reste (50, 52, 52", 54) du composant (100) par dépôt métallique par laser tout en formant tout ou partie du circuit interne de refroidissement (60), caractérisé en ce que le circuit interne de refroidissement (60) comprend plusieurs passages (60A) formant ensemble au moins un canal sinueux (60B). [Claim 1] Method of manufacturing a turbomachine component (100) comprising an internal cooling circuit (60), in which an intermediate part (10, 12, 12', 12", 18) from a foundry is provided, all or part of the rest (50, 52, 52", 54) of the component (100) is formed from the intermediate piece (10, 12, 12', 12", 18) by metal deposition by laser while forming all or part of the internal cooling circuit (60), characterized in that the internal cooling circuit (60) comprises several passages (60A) together forming at least one sinuous channel (60B).
[Revendication 2] Procédé de fabrication d'un composant de turbomachine (100) selon la revendication 1, dans lequel on forme tout le reste (50) du composant, y compris le circuit interne de refroidissement (60), par dépôt métallique par laser. [Claim 2] A method of manufacturing a turbomachine component (100) according to claim 1, in which all the rest (50) of the component, including the internal cooling circuit (60), is formed by metallic deposition by laser .
[Revendication 3] Procédé de fabrication d'un composant de turbomachine (100) selon la revendication 1, dans lequel au moins une portion d'une paroi (13, 14, 13') de la pièce intermédiaire (12, 12', 12") forme au moins un fond (61, 61', 61") d'au moins un passage (60A) du circuit interne de refroidissement (60), et dans lequel on forme le reste (52, 52") du composant (100), y compris la ou les autres parois du au moins un passage du circuit interne de refroidissement (60), par dépôt métallique par laser. [Claim 3] A method of manufacturing a turbomachine component (100) according to claim 1, wherein at least a portion of a wall (13, 14, 13') of the intermediate piece (12, 12', 12 ") forms at least one bottom (61, 61', 61") of at least one passage (60A) of the internal cooling circuit (60), and in which the rest (52, 52") of the component ( 100), including the other wall(s) of at least one passage of the internal cooling circuit (60), by laser metal deposition.
[Revendication 4] Procédé de fabrication d'un composant de turbomachine (100) selon la revendication 1, dans lequel on forme au moins une rainure (22) définissant une partie d'au moins un passage (60A) du circuit interne de refroidissement (60) par retrait de matière dans une paroi (20) de la pièce intermédiaire (18) avant de fabriquer la partie restante du reste (54) du composant (100), y compris la partie restante du circuit interne de refroidissement (60), par dépôt métallique par laser. [Claim 4] A method of manufacturing a turbomachine component (100) according to claim 1, in which at least one groove (22) is formed defining part of at least one passage (60A) of the internal cooling circuit ( 60) by removing material from a wall (20) of the intermediate part (18) before manufacturing the remaining part of the rest (54) of the component (100), including the remaining part of the internal cooling circuit (60), by laser metal deposition.
[Revendication 5] Procédé de fabrication d'un composant de turbomachine (100) selon l'une quelconque des revendications 1 à 4, dans lequel le canal sinueux (60B) forme au moins une portion de boucle présentant une dimension principale selon une direction longitudinale, la portion de boucle étant formée par deux passages (60A) s'étendant rectilignement selon la direction longitudinale et par une partie de raccordement raccordant les deux passages (60A). [Claim 5] A method of manufacturing a turbomachine component (100) according to any one of claims 1 to 4, wherein the sinuous channel (60B) forms at least one loop portion having a main dimension along a longitudinal direction, the loop portion being formed by two passages (60A) extending straight along the longitudinal direction and by a connecting part connecting the two passages (60A).
[Revendication 6] Procédé de fabrication d'un composant de turbomachine (100) selon la revendication 5, dans lequel la direction longitudinale correspond à la direction axiale. [Claim 6] A method of manufacturing a turbomachine component (100) according to claim 5, wherein the longitudinal direction corresponds to the axial direction.
[Revendication 7] Procédé de fabrication d'un composant de turbomachine (100) selon l'une quelconque des revendications 1 à 6, dans lequel on forme des perturbateurs (62) configurés pour perturber un écoulement de flux de refroidissement au sein du circuit interne de refroidissement (60), par dépôt métallique par laser. [Claim 7] A method of manufacturing a turbomachine component (100) according to any one of claims 1 to 6, in which disturbers (62) configured to disturb a flow of cooling flux within the internal circuit are formed. cooling (60), by metal deposition by laser.
[Revendication 8] Procédé de fabrication d'un composant de turbomachine (100) selon l'une quelconque des revendications 1 à 7, comprenant un traitement de surface de tout ou partie d'une portion fabriquée par dépôt métallique par laser. [Claim 8] A method of manufacturing a turbomachine component (100) according to any one of claims 1 to 7, comprising surface treatment of all or part of a portion manufactured by metal deposition by laser.
[Revendication 9] Procédé de fabrication d'un composant de turbomachine (100) selon l'une quelconque des revendications 1 à 8, dans lequel la pièce intermédiaire comprend une aube de turbomachine (10, 12, 12', 12", 18) ou un pied de plateforme inter-aubes de turbomachine, et le reste du composant comprend tout ou partie d'une plateforme inter-aubes (50) de turbomachine comprenant un circuit interne de refroidissement (60). [Claim 9] A method of manufacturing a turbomachine component (100) according to any one of claims 1 to 8, wherein the intermediate piece comprises a turbomachine blade (10, 12, 12', 12", 18) or a turbomachine inter-blade platform foot, and the rest of the component comprises all or part of a turbomachine inter-blade platform (50) comprising an internal cooling circuit (60).
[Revendication 10] Procédé de fabrication d'un composant de turbomachine selon l'une quelconque des revendications 1 à 9, dans lequel le composant est un aubage (100) de turbine haute pression. [Claim 10] A method of manufacturing a turbomachine component according to any one of claims 1 to 9, wherein the component is a high pressure turbine blade (100).
[Revendication 11] Turbine haute pression comprenant un composant de turbomachine (100) fabriqué selon un procédé selon l'une quelconque des revendications 1 à 10. [Claim 11] A high pressure turbine comprising a turbine engine component (100) manufactured by a method according to any one of claims 1 to 10.
PCT/FR2021/052238 2020-12-10 2021-12-08 Hybrid manufacturing process for producing a turbomachine component comprising an internal cooling circuit WO2022123174A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2012961 2020-12-10
FR2012961A FR3117533B1 (en) 2020-12-10 2020-12-10 Mixed manufacturing process for a turbomachine component comprising an internal cooling circuit

Publications (1)

Publication Number Publication Date
WO2022123174A1 true WO2022123174A1 (en) 2022-06-16

Family

ID=75438877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2021/052238 WO2022123174A1 (en) 2020-12-10 2021-12-08 Hybrid manufacturing process for producing a turbomachine component comprising an internal cooling circuit

Country Status (2)

Country Link
FR (1) FR3117533B1 (en)
WO (1) WO2022123174A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160032766A1 (en) * 2013-03-14 2016-02-04 General Electric Company Components with micro cooled laser deposited material layer and methods of manufacture
EP3093087A1 (en) * 2015-05-14 2016-11-16 General Electric Company Additive manufacturing of 3-d components
FR3037972A1 (en) * 2015-06-29 2016-12-30 Snecma PROCESS SIMPLIFYING THE CORE USED FOR THE MANUFACTURE OF A TURBOMACHINE BLADE
US20180238180A1 (en) * 2017-02-20 2018-08-23 General Electric Company Turbine components and methods of manufacturing
EP3409894A1 (en) * 2017-05-31 2018-12-05 General Electric Company Adaptive cover for cooling pathway by additive manufacture

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160032766A1 (en) * 2013-03-14 2016-02-04 General Electric Company Components with micro cooled laser deposited material layer and methods of manufacture
EP3093087A1 (en) * 2015-05-14 2016-11-16 General Electric Company Additive manufacturing of 3-d components
FR3037972A1 (en) * 2015-06-29 2016-12-30 Snecma PROCESS SIMPLIFYING THE CORE USED FOR THE MANUFACTURE OF A TURBOMACHINE BLADE
US20180238180A1 (en) * 2017-02-20 2018-08-23 General Electric Company Turbine components and methods of manufacturing
EP3409894A1 (en) * 2017-05-31 2018-12-05 General Electric Company Adaptive cover for cooling pathway by additive manufacture

Also Published As

Publication number Publication date
FR3117533A1 (en) 2022-06-17
FR3117533B1 (en) 2024-01-05

Similar Documents

Publication Publication Date Title
EP1623792B1 (en) Method for manufacturing the component parts of a hollow fan blade by rolling
EP0765711B1 (en) Method of fabricating a hollow turbine blade
EP3313597B1 (en) Method for manufacturing a blade comprising a squealer tip integrating a small wall
EP1481756B1 (en) Method of fabricating a hollow turbine blade
KR20170135687A (en) Method of manufacturing a component of a rotary machine and component manufactured using said method
EP1721698A1 (en) Method of manufacturing a hollow blade comprising a squealer tip and method of repairing such a blade
FR2894497A3 (en) Milling procedure and tool for flat surface machining, e.g. for engine crankcase, uses blank machining stage made up of sub-stages with successive axial increments
FR3107460A1 (en) Improved groove machining process for aircraft parts
FR3067955A1 (en) METHOD FOR POSITIONING A HOLLOW PIECE
WO2022123174A1 (en) Hybrid manufacturing process for producing a turbomachine component comprising an internal cooling circuit
WO2013088078A1 (en) Flow straightener sector for a turbomachine compressor which is produced by brazing a platform of its vanes to a shell ring
CA2719354C (en) Method for producing a one-piece bladed disc by abrasive water-jet cutting
FR2855440A1 (en) PROCESS FOR THE MANUFACTURE OF A HOLLOW BLADE FOR A TURBOMACHINE.
EP3581298B1 (en) Method of manufacturing a turbine, in particular for a turbo pump
EP3683450B1 (en) Turbine engine rotor assembly
EP3963282A1 (en) Method for the dimensional inspection of a turbomachine component
FR3089439A1 (en) TURNING TOOL, METHOD FOR MANUFACTURING PISTON AND PISTON
EP3556484B1 (en) Integrated tooling for abrasive flow machining
FR3137006A1 (en) METHOD FOR MANUFACTURING A PLURALITY OF TURBOMACHINE BLADES
FR3111702A1 (en) Method of balancing the unbalance of a shaft-wheel assembly
FR3136391A1 (en) SIMPLIFIED MANUFACTURING METHOD FOR RECTIFIER ARMS OF DIFFERENT TYPES
FR3116298A1 (en) DISC FOR MOBILE WHEEL OF AIRCRAFT TURBOMACHINE MODULE, INCLUDING AN AXIAL BLADE RETENTION STOP INTEGRATED IN THE DISC
WO2021023927A1 (en) Movable vane for a wheel of a turbine engine
FR3128245A1 (en) METHOD FOR MANUFACTURING A TURBOMACHINE ROTOR PART COMPRISING OPTIMIZED ROUNDED PORTIONS AND CORRESPONDING TURBOMACHINE PART
EP3980201A1 (en) Improved method for forming a wax model for a turbine blade

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21851813

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21851813

Country of ref document: EP

Kind code of ref document: A1