WO2022123032A1 - Systeme, procede et ensemble pour la culture cellulaire - Google Patents

Systeme, procede et ensemble pour la culture cellulaire Download PDF

Info

Publication number
WO2022123032A1
WO2022123032A1 PCT/EP2021/085241 EP2021085241W WO2022123032A1 WO 2022123032 A1 WO2022123032 A1 WO 2022123032A1 EP 2021085241 W EP2021085241 W EP 2021085241W WO 2022123032 A1 WO2022123032 A1 WO 2022123032A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
axis
liquid
radius
cell culture
Prior art date
Application number
PCT/EP2021/085241
Other languages
English (en)
Inventor
Olivier DETOURNAY
Patrice MEUNIER
Original Assignee
Université d’Aix Marseille
Centre National De La Recherche Scientifique
Centrale Marseille
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Université d’Aix Marseille, Centre National De La Recherche Scientifique, Centrale Marseille filed Critical Université d’Aix Marseille
Priority to CA3201907A priority Critical patent/CA3201907A1/fr
Priority to US18/266,242 priority patent/US20240026273A1/en
Priority to EP21835276.3A priority patent/EP4259768A1/fr
Publication of WO2022123032A1 publication Critical patent/WO2022123032A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/04Filters; Permeable or porous membranes or plates, e.g. dialysis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/06Tubular
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/22Transparent or translucent parts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/36Means for collection or storage of gas; Gas holders
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/10Rotating vessel
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M31/00Means for providing, directing, scattering or concentrating light
    • C12M31/10Means for providing, directing, scattering or concentrating light by light emitting elements located inside the reactor, e.g. LED or OLED

Definitions

  • the present invention relates to a cell culture system and a cell culture method using such a system.
  • the present invention relates particularly to a cell culture system comprising a first element open on an upper part, a membrane for diffusing a gas into a liquid by dissolution, the membrane and the first element forming a container, an enclosure capable of retaining a volume of gas, a drive member of the receptacle, the receptacle being inclined at an angle ⁇ that is non-zero and less than 30° with respect to the vertical direction.
  • the present invention also relates to a cell culture method using a system as described previously, the method comprising a step of supplying a liquid comprising a species to be cultivated and rotation of the container by the driving member.
  • cell culture can be industrialized through the use of vessels such as bioreactors.
  • Cell culture in a bioreactor makes it possible to place the cells in an ideal medium for the growth of cell populations and thus makes it possible to obtain large quantities of these molecules of interest.
  • the cells in culture can be of any origin, for example animal, plant, bacterial or even yeast.
  • dinoflagellate type micro-algae naturally contain anti-cancer molecules or analgesic molecules.
  • toxins are of major interest for carrying out toxicology studies.
  • Some of these species require a large supply of carbon dioxide or oxygen for a population to be maintained or developed.
  • Current cell culture methods make it possible to meet this demand by bubbling or by strong mixing using paddles.
  • these methods of supply are not suitable for the culture of all types of species because they generate high shear which destroys certain cells or creates significant cellular stress, greatly reducing productivity. This is for example the case with certain micro-algae.
  • Patent application US2015/0087049 A1 describes a photobioreactor for extremely high cell density growth of an axenic culture of cyanobacteria and microalgae exposed to high light intensities.
  • a first gas-permeable hydrophobic membrane is located at the bottom of a reaction chamber for the entry of CO2 into the cell suspension. Turbulent flow in suspended cells is necessary to achieve high yield and is achieved by shaking at least 100 rpm and creating a high shear rate, increasing CO2 uptake.
  • patent US6902902 B2 describes a process for the production of recombinant polypeptides by using transformed mammalian cells in a low-shear horizontal culture chamber in which oxygenation is carried out via an external exchange membrane. gas in the flow.
  • Application WO2017/149034 A1 discloses a device without a blade and without injecting air bubbles allowing a liquid to be mixed with a low shear rate within the liquid and a low risk of pollution of the liquid in comparison with a blade. which must be cleaned regularly, while avoiding the use of a complex device for injecting air bubbles.
  • such systems do not allow a sufficient supply of gas in the liquid for the cell culture, the exchange surface between the liquid and the air being insufficient.
  • a cell culture system is then sought which makes it possible to mix a liquid in order to obtain a homogeneous distribution of the cells in the liquid while preventing the cells from blocking a large supply of gas, for example oxygen or dioxide. of carbon, without reaching a shear rate that would prevent or reduce the production of molecules of interest.
  • gas for example oxygen or dioxide. of carbon
  • the objective is in particular to obtain a production yield at least greater than that obtained by previous methods, e.g. by reducing the cost of obtaining these molecules and/or by increasing the quantity produced of these molecules. this.
  • the invention relates to a cell culture system comprising: a first cylindrical or frustoconical element with axis A and having a first radius, the first element being open at the top and comprising at least one opening at the bottom, a membrane for diffusing a gas into a liquid by dissolution, the membrane being arranged at the lower part of the first element, and positioned so as to cover the at least one opening of said first element, the first element and the membrane being configured to form a container capable of retaining a liquid at a height H of said liquid measured along the axis A, an enclosure capable of retaining a volume of gas, the enclosure being assembled to the container and arranged so that the volume of gas can diffuse into the liquid via the membrane, and a drive member of the receptacle according to a rotational movement along the axis A, the receptacle being inclined so that the axis A forms a non-zero angle a less than or equal to 30° with respect to the vertical direction.
  • vertical direction it is meant a direction parallel to the direction of gravity in a terrestrial frame of reference.
  • height H measured along axis A it is understood that the height H of the liquid is measured along axis A and the intersection of the surface of the liquid with axis A and/or along an axis A being vertical.
  • a container capable of retaining a liquid at a height H measured along the axis A it is understood that the container has a sufficiently high height so that the liquid, when the container is tilted so as to form an angle a non-zero less than or equal to 30° relative to the vertical direction, is retained in the container.
  • the container does not include blades. This absence of blades can be applied to all embodiments of the present invention.
  • the first element is cylindrical.
  • the first element of said system is transparent to visible light.
  • a first transparent element of said system allows the cell culture to receive light, this light being able to be used by certain cell cultures as an energy source.
  • a transparent system also allows monitoring of the liquid in the first element.
  • the first transparent element also allows monitoring of the surface of the membrane in contact with the cellular liquid.
  • the container has an optical transmission factor or a total optical transmittance of at least 80%, preferably of at least 90%.
  • the first element is made of polycarbonate, allowing all wavelengths of light to pass.
  • the first element of said system is transparent to UV A and/or B and/or C.
  • said system comprising the first transparent element comprises at least one light source arranged outside the first element and adapted to be directed towards the container.
  • the at least one light source may include light emitting diodes, organic light emitting diodes, an incandescent bulb, or any other type of suitable light source.
  • Such systems allow an energetic illumination particularly adapted to the cell culture of species requiring a supply of light.
  • the first element of said system is opaque to visible light.
  • a first opaque element of said system allows the cell culture not to receive light, this light possibly representing for certain cell cultures a source of stress which can induce mechanisms contrary to cell development and multiplication.
  • opaque it is understood that the container has an optical transmission factor or a total optical transmittance of less than 2%, preferably zero.
  • the first radius R1 of said first element is between 5 cm and 100 cm.
  • the membrane is a porous membrane having pores with a diameter of less than 75 nm or is a dense membrane.
  • the diffusion membrane of a gas in a liquid by dissolution of the invention is preferably impermeable to the liquid.
  • dense membrane is meant a membrane free of porosity at the very end of which the transport of ions and molecules takes place by solubilization-diffusion.
  • porous membrane is meant a membrane comprising porosities, the porosities being filled with gas in the case of hydrophobic membranes or with liquids in the case of hydrophilic membranes. In such a case, the gas is diffused through the gas or liquid present in the pores due to the concentration gradient and dissolves into liquid by entering the liquid comprised in the container.
  • the dense membrane is made of polypropylene, polytetrafluoroethylene, polyvinylidene fluoride, cellulose ester, silicone or a combination of at least two of these materials.
  • the membrane is preferably a microporous or mesoporous membrane, preferably made of fluoropolymer, polyurethane, polyethylene, polypropylene or a combination of at least two of these materials.
  • mesoporous membrane is meant a membrane whose pore size is of the order of 2 to 50 nm.
  • microporous membrane is meant a membrane whose pore size is less than 2 nm.
  • the membranes of the invention are biologically inert and non-toxic for cells.
  • the membranes of the invention may have undergone a surface treatment so that they are particularly suitable for cell culture.
  • the container has a height H1 measured along the axis A suitable for retaining the liquid at a height H measured along the axis A, even while being inclined at the angle a, H1 being at least equal to H +R1*tan(a).
  • the system comprises a second cylindrical or frustoconical element arranged inside the first element, having a second radius R2, said second radius being less than the first radius R1, the height H2 of the second element, measured according to the axis A, being substantially identical to the height H1 of the first element, and the central axis of the second element being substantially identical to the axis A of the first element, the container capable of retaining the liquid being formed by the crown between the first and the second element.
  • a system comprising a second element makes it possible to increase the surface of the container which can come into contact with a liquid, also making it possible to increase the diffusion of light in the reactor.
  • the second element of said system is transparent to visible light, which makes it possible in particular to increase the volume of liquid illuminated by the light.
  • the second element is made of a material identical to the first element.
  • the second element is cylindrical.
  • the difference between the second radius R2 and the first radius R1 is less than 30 cm, preferably less than 20 cm.
  • said system comprises at least one light source arranged inside the second element and able to be directed towards the container.
  • Such a system makes it possible in particular to illuminate the cell culture liquid from inside the system and from outside the system and makes it possible to improve the supply of light into the cell liquid.
  • Such systems allow an energetic illumination particularly adapted to the cell culture of species requiring a supply of light.
  • the invention also relates to a cell culture system comprising: a first cylindrical or frustoconical element with axis A, having a first radius R1, the first element having a height H1 measured along the axis A; a second cylindrical or frustoconical element arranged inside the first element, having a second radius R2, the central axis of the second element being substantially identical to the axis A of the first element, the said second radius R2 being less than the first radius R1 , the second element having a height H2 substantially identical to the height H1 of the first element; the first element and the second element forming a container in the form of a crown open at the top and capable of retaining the liquid at a height H measured along the axis A; and a member for driving the receptacle according to a rotational movement along the axis A, the receptacle being inclined so that the axis A forms a non-zero angle a less than or equal to 30° with respect to the vertical direction .
  • Such a system comprising a second element and forming a container in the form of an open crown makes it possible to increase the surface of the container which can be exposed to light and thus allows the cell culture in suspension in the liquid contained in the container to catch more light.
  • the first element and the second element are transparent to visible light and the system comprises at least a first light source arranged outside the first element and able to be directed towards the container and at least a second light source arranged inside the second element and adapted to be directed towards the container.
  • the ratio of aspect H/R1 is between 0.5 and 2.
  • the aspect ratio H/R1 makes it possible to resonate the first inertial mode when the aspect ratio H/R1 and the ratio of the rays R2/R1 are defined according to the curve of the graph of FIG. 5.
  • the aspect ratio H/R1 is between 1.2 and 1.5, preferably between 1.3 and 1.4. Even more preferentially, it is 1.35.
  • the aspect ratio between the height of the water H and the radius R1 is between the values indicated above, the number of rotations of the reactor according to the present invention is significantly reduced as shown in the graph of Figure 7.
  • the first radius R1 of said first cylindrical or frustoconical element is between 5 cm and 100 cm.
  • the first element and the second element have a height H1 measured along the axis A adapted to retain the liquid at a height H measured along the axis A, even while being inclined at the angle a, H1 being at least equal to H+R1*tan(a).
  • the second element is made of a material identical to the first element.
  • the first element and the second element are cylindrical (cylinder of revolution).
  • the difference between the second radius R2 and the first radius R1 is less than 30 cm, preferably less than 20 cm.
  • the invention also relates to a cell culture method using a system as described above, the method comprising a step of supplying a liquid comprising a species to be cultivated in the container up to a height H measured according to the axis A and a step of rotating the container by the drive member.
  • the cell culture can be a culture of mammalian cells (human or non-human) such as mesenchymal stem cells, embryonic stem cells, induced pluripotent stem cells, hematopoietic stem cells, T lymphocytes (cart-T) or others.
  • mammalian cells human or non-human
  • mesenchymal stem cells embryonic stem cells
  • induced pluripotent stem cells hematopoietic stem cells
  • hematopoietic stem cells hematopoietic stem cells
  • T lymphocytes (cart-T) T lymphocytes
  • the cell culture can comprise at least one species to be cultivated among the microphytes.
  • the cell culture is a culture of dinophytes.
  • the cell culture comprises at least one species to be cultivated from among Alexandrium, Amphidinium, Azadinium, Dinophysis, Gambierdiscus toxicus, Gonyaulax, Gymnodinium mikimotoi, Karenia brevis, Lingulodinium, Ostreopsis, Prorocentrum and Protoceratium.
  • the aspect ratio H/R1 is between 0.56 and 0.68, between 0.86 and 1.06 or between 1.79 and 2 ,19.
  • Such aspect ratios particularly make it possible to generate resonance phenomena and allow effective mixing with a very low shear rate.
  • the rotational movement has an angular speed of rotation Q such that (Q*R1 2 *a)/v, where v is the kinematic viscosity of the liquid, is greater than 1000.
  • Q angular speed of rotation
  • v is the kinematic viscosity of the liquid
  • the invention also relates to an assembly comprising a system as described above and a liquid comprising a species to be cultivated in the container of the system.
  • Figure 1 illustrates a sectional view along a vertical plane of a first embodiment of a system for cell culture comprising a container formed by a first element and a membrane.
  • Figure 2 illustrates a sectional view along a vertical plane of a second embodiment of a system for cell culture comprising a container formed by a first element and a membrane and at least one light source.
  • FIG. 3 illustrates a sectional view along a vertical plane of a third embodiment of a system for cell culture comprising a container formed by a first element, a second element and a membrane, the system also comprising at least two light sources.
  • Figure 4 illustrates a top view of a system for cell culture according to the third embodiment comprising a container formed by a first element, a second element and a membrane, the system also comprising light sources.
  • FIG. 5 illustrates a graph representing aspect ratios as a function of the ratios between the second ray and the first ray of a system for cell culture comprising a container formed by a first element, a second element and a membrane according to the present invention.
  • FIG. 6 illustrates a sectional view along a vertical plane of a fourth embodiment of a system for cell culture comprising a container formed by a first element and a second element forming a crown, the system also comprising at least two light sources.
  • FIG. 7 corresponds to a graph representing the mixing time QT as a function of the H/r ratio with h the height of water in the crown formed by the first element and the second element and measured along the axis A and rie ratio of the radius R1 of the first element to the radius R2 of the second element.
  • the systems and methods of the present invention are suitable for enabling cell culture by mixing the liquid in which the cells are located with a turbulent flow by resonance phenomena.
  • the shear between the liquid comprising the cell culture and the first element allows the generation of inertial waves thanks to the Coriolis force. These waves are reflected between the walls and the bottom of the container and create an overall movement of the liquid in the container, the particles in the liquid following an elliptical movement.
  • the systems and methods of the present invention make it possible in particular to maintain a cell culture in suspension with a homogeneous distribution of the cells in the liquid while promoting gas exchange and preventing the cells from blocking the supply of gas, for example oxygen or carbon dioxide. Also, the mixing of the cell culture carried out by the systems and methods of the present invention makes it possible not to cause a rate of shearing which could damage the cells, reduce their multiplication, their cellular development and which would prevent or reduce the production of molecules of interests by the species or species cultivated.
  • the systems and methods of the present invention thus make it possible to improve the yield compared to current methods.
  • the system reduces, among other things, the cost of obtaining molecules of interest by increasing the quantity produced of these for a cost equal to or lower than the costs of previous methods.
  • the systems and methods of the present invention do not include blades.
  • Mixing paddles in cell culture vessels cause excessive shear rate in cell culture fluid for many species and prevent or reduce growth or maintenance of a population of a cultivated species or the production of molecules of interest by a cultivated species.
  • the radius R1 is advantageously between 5 cm and 30 cm. In one embodiment adapted to the culture of microphytes, the radius R1 is advantageously between 10 cm and 100 cm.
  • Figure 1 illustrates a sectional view along a vertical plane of a system 10 for cell culture comprising a container formed by a first element 11a and a membrane 13.
  • the first element 11a is cylindrical and has a first radius R1 and an axis A.
  • the first element 11a is also open at the top and comprises at least one opening 12 at the bottom.
  • the upper part of the first element extends to a plane perpendicular to the A axis and the lower part of the first element extends to a plane perpendicular to the A axis, but other shapes are possible.
  • the first element has a height H1.
  • the upper part of the first element corresponds to the upper end of the first element which does not come into contact with the liquid when the container is rotating, while the lower part of the first element corresponds to the part of the first element that comes into contact with the liquid when the container is rotating.
  • at least one opening of the first element can be located on the part of the first element which is parallel to the axis A, that is to say in the side wall of the lower part of the first and /or the second element.
  • the membrane covers this at least one opening and is therefore at least partially parallel to the axis A.
  • the membrane makes it possible to increase the gas exchange surface and the flow of gas from the enclosure to the liquid by dissolution.
  • the systems of the present invention may comprise a first frustoconical element with axis A of first radius R1, the first radius R1 of which corresponds to the largest radius of the first frustoconical element.
  • the system 10 for cell culture comprises a membrane 13 for diffusing a gas into the liquid 15 by dissolution.
  • the membrane 13 is arranged at the level of the lower part of the first element 11a, and positioned so as to cover at least one opening 12 of the first element and so as to form a container 14 capable of retaining the liquid 15 at a height H of liquid measured along the axis A.
  • the height H1 of the container 14 of FIG. to H+R1*tan(a) because the free surface 15a of the liquid 15 intersects the axis A at the height H of liquid as it was previously defined and the container 14 must have a sufficient height to retain the liquid 15 in the container 14, even when it is tilted at an angle a.
  • the shape of the membrane has a surface allowing the diffusion of the gas towards the liquid medium.
  • the membrane is circular and in the form of a disc, making it possible to improve the diffusion surface between the gas and the liquid.
  • the first element can have in the lower part an opening of a different shape and a membrane whose shape corresponds to the shape of the opening so as to form the container.
  • the opening may have a square shape in a plane perpendicular to the axis A and circumscribed to the first cylindrical element.
  • the membrane covers at least the square-shaped opening.
  • the first element may comprise several openings and the membrane may comprise several elements covering the openings of said first element.
  • the system 10 for cell culture comprises an enclosure 16a capable of retaining a volume of gas 16b, the enclosure being assembled to the container 14 and arranged so that the volume of gas 16b can diffuse into the liquid 15 by the intermediary of the membrane 13.
  • the enclosure 16a of FIG. 1 has the shape of a cylinder and is assembled to the container via the intermediary of the membrane 13. In general, the enclosure has a cylindrical or frustoconical shape because it It is a shape suitable for rotation, however other shapes are possible.
  • the enclosure 16a of Figure 1 is arranged under the membrane 13 but other arrangements are possible depending on the arrangement of the membrane and the first element.
  • the enclosure 16a is capable of retaining a volume of gas which may be air, O 2 , CO 2 , or any other gas whose diffusion in the liquid would allow the development of the cell culture in the container.
  • the gas can comprise CO 2 , for example at a partial pressure of the order of 1 percent.
  • Those skilled in the art will be able to adapt the composition of the gas in the enclosure 16a and the partial pressures of the various gases so as to optimize the contributions for the cell culture by diffusion of the gas in the liquid via the membrane .
  • the system 10 for cell culture comprises a drive member 17 of the container 14 according to a rotational movement along the axis A.
  • the drive member 17 has a disc shape but can take any form.
  • the drive member 17 is arranged under the container 14 and under the enclosure 16a, however other arrangements are possible.
  • the container 14 of the cell culture system 10 is tilted so that the axis A forms an angle ⁇ of 30° with respect to the vertical direction 18, however the container of the present invention can be tilted according to a non-zero angle a less than or equal to 30°.
  • the system 10 of FIG. 1 comprises a tilting member 19 making it possible to tilt the container 14 according to the desired angle.
  • the tilt member 19 is located under the drive member, however other arrangements are possible.
  • the tilt member can also serve as a support for the system 10 of the present invention.
  • Figure 2 illustrates a sectional view along a vertical plane of a system 20 for cell culture comprising a container 24 formed by a first element 21a and a membrane 23 covering the opening 22 of the first element 21a, the system 20 also comprising at least one light source 29.
  • a liquid 25 having a free surface 25a is placed in the container 24.
  • the light sources 29 of FIG. 2 are placed around the first element 21a, e.g. at a distance of A greater than the radius R1 .
  • the membrane 23, the enclosure 26a capable of retaining a volume of gas, the drive member 27 and the vertical direction 28 are similar to the system 10 of FIG.
  • the system 20 of Figure 2 does not include a tilt member, however a tilt member can be added to the system 20.
  • the first element has a height H1.
  • FIG. 3 illustrates a sectional view along a vertical plane of a system 30 for cell culture comprising a container formed by a first element 31a, a second element 31b and a membrane 33, the system 30 also comprising at least two light sources 39a and 39b.
  • the light source 39a is arranged around the first element 31a, eg at a distance from A greater than the radius R1.
  • the light source 39b is placed inside the second element, eg at a distance from A smaller than the radius R2.
  • Many shapes of light sources for example rings or columns, can be used in the systems of the present invention.
  • Such a container may be referred to as an annular container.
  • the first element 31a is similar to elements 11a and 21a of Figures 1 and 2 respectively.
  • the second element 31b is cylindrical and has a radius R2 smaller than the radius R1.
  • the upper part of the first element extends to a plane perpendicular to the axis A and the lower part of the first element extends to a plane perpendicular to the A axis, but other shapes are possible.
  • the systems of the present invention may comprise a first frustoconical element with axis A of first radius R1, the first radius R1 of which corresponds to the largest radius of the first frustoconical element and a second element of second radius R2, whose second radius R2 corresponds to the largest radius of the second frustoconical element.
  • the height H1 of the first element 31a is substantially identical to the height H2 of the second element 31b measured along the axis A.
  • the central axis of the second element 31b is also substantially identical to the central axis A of the first element 31 a.
  • the container formed by the first element 31a, the second element 31b and the membrane 33 of the system 30 has a crown shape between the first and the second element.
  • the opening 32 although seen in section, has the shape of a flat ring corresponding to a disk of outer radius R1, of center A and of inner radius R2.
  • the membrane 33 covers the opening 32 and therefore has a shape corresponding to this opening 32. Other shapes of openings and membranes are possible.
  • FIG. 4 illustrates a top view of a system 30 for cell culture in a liquid comprising a container formed by a first element 31a, a second element 31b and a membrane 33, forming an annular container, the system also comprising light sources 39a and 39b.
  • the light sources 39a are arranged outside the annular container and the light sources 39b are arranged inside the annular container of Figure 4.
  • the system of the present invention may comprise other light sources and/or light sources of different shapes, for example in the shape of a ring around the first element 31a and/or in the shape ring inside the second element 31 b.
  • the liquid in the container is not represented in FIG. 4, which makes it possible to observe the gas enclosure 36 although this is located under the container of FIG. 4.
  • the membrane 33 of the container is also visible , the latter forming in the case of Figure 4 the bottom of the container. If a liquid were to be placed in the system 30, this would be placed in the container, that is to say above the membrane 33, in the crown-shaped space between the first element 31 a and the second element 31 b.
  • FIG. 5 illustrates a graph representing aspect ratios as a function of the ratios between the internal radius and the external radius of a system for cell culture comprising a container formed by a first element, a second element and a membrane according to the present invention.
  • a system comprising an annular container
  • particular aspect ratios H/R1 particularly make it possible to generate resonance phenomena and allowing effective mixing with a very low shear rate is determined from the ratio of the internal radius, corresponding to R2 , on the external radius, corresponding to R1 .
  • the membrane allowing the diffusion of a gas in the liquid by dissolution is a laminated membrane with different types of fibers.
  • a membrane can be used in combination with all embodiments of the invention.
  • the system of the present invention comprises at least one means for determining at least one parameter of the liquid, one parameter being able to be chosen from temperature, pH, turbidity, viscosity, the partial pressure of O2, CO2 or another gas. These means of determining can be used in combination with all embodiments of the invention.
  • the system comprises a means for mixing the gas in the enclosure capable of retaining a volume of gas.
  • Mixing the gas in the enclosure makes it possible to homogenize the gas in the enclosure and to reduce pH fluctuations in the liquid by diffusion of the gas from the enclosure to the liquid. This can be done for example by recirculating the gas in the enclosure by means of an external pump connected to two ports of the enclosure.
  • Such recirculation of gas in the gas enclosure makes it possible to maintain a flow of gas towards the liquid by dissolution through the entire membrane. Without recirculation, parts of the membrane might not be in continuous contact with the gas which must be diffused by dissolution in the liquid.
  • the system comprises a first transparent cylindrical element having a first radius of 50 cm, a second cylindrical and concentric element, transparent and having a second radius of 70 cm, LEDs on the outside of the first element and the LEDs inside on the second element.
  • a system allows an energetic illumination particularly adapted to the culture of species requiring a supply of light.
  • an irradiance particularly suited to the growth of dinoflagellates for example according to a determined wavelength and according to an irradiance of between 250 and 300 pmol.m ⁇ 2 .s ⁇ 1 .
  • such a system of 200 to 1000 liters and comprising a cell culture of dinoflagellates allows a duration of duplication of the dinoflagellates of 0.95 days and a productivity of 2.4 g. L 1 .day 1 of dinoflagellates, which is significantly higher than the productivity according to methods using photobioreactors of the art for which a productivity of 0.16 g. L -1 .day -1 and a duplication time of 5.87 days have been suggested (Fuentes-Grunewald, et al., 2012).
  • the first element and/or the second element comprises at least one opening parallel to the axis A, that is to say in the side wall of the lower part of the first and/or of the second element, this opening being covered by a membrane for diffusing a gas into the liquid by dissolution.
  • the enclosure capable of retaining a volume of gas is assembled to the first element and/or to the second element at least by the parts of the first and/or second element which are parallel to the axis A and which include the at least one opening, that is to say in a manner peripheral to outside the first element and/or inside the second element.
  • the system can also comprise means for recirculating the gas in the enclosure capable of retaining a volume of gas.
  • Figure 6 illustrates a sectional view along a vertical plane of a fourth embodiment of a system for cell culture according to the present invention.
  • the system comprises a first cylindrical or frustoconical element 61a with axis A, having a first radius R1, the first element 61a having a height H1 measured along the axis A; a second cylindrical or frustoconical element 61b arranged inside the first element 61a, having a second radius R2, the central axis of the second element being substantially identical to the axis A of the first element 61a, said second radius R2 being less than the first radius R1, the second element 61b having a height H2 substantially identical to the height H1 of the first element 61a.
  • the first element 61a and the second element 61b form a container in the form of a crown open at the top and capable of retaining a liquid 65 at a height H measured along the axis A.
  • the system also comprises a drive member 67 of the container according to a rotational movement along the axis A, the container being inclined so that the axis A forms a non-zero angle a less than or equal to 30° with respect to the vertical direction 68.
  • the first element 61 has and the second element 61b are transparent to visible light and the system comprises at least one first light source 69a arranged outside the first element and able to be directed towards the container and at least one second light source 39b arranged inside the second element 31b and adapted to be directed towards the container.
  • the mixing time QT varies according to the aspect ratio H/R1 , such that the rotation time necessary to obtain an effective mixture is of the order of 200 to 400 rotations except when the aspect ratio H/R1 is between 1.2 and 1.5 where the mixing time is significantly less, in particular less than 100 or even being of the order of 10.
  • the aspect ratio H/R1 is comprised between 1.3 and 1.4.
  • the aspect ratio H/R1 is approximately 1.35, corresponding to the theoretical optimal aspect ratio indicated by a vertical line in solid line and taken from FIG. 5.
  • the angle a is 3° however other angles can be used for the system of the present invention, which will still exhibit significantly lower mixing times to effective mixing due to the included H/R1 aspect ratio between 1.2 and 1.5.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Clinical Laboratory Science (AREA)
  • Molecular Biology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

La présente invention concerne un système (10, 20, 30) de culture cellulaire comprenant un premier élément (11a, 21a, 31a) comprenant une ouverture (12, 22, 32) en partie basse, une membrane (13, 23, 33) de diffusion d'un gaz dans un liquide (15, 25, 35) par dissolution,, une enceinte (16a, 26, 36) apte à retenir un volume de gaz (16b) pouvant se diffuser dans le liquide (15, 25, 35) par l'intermédiaire de la membrane (13, 23, 33), et un organe d'entraînement (17, 27, 37) du récipient, le récipient (14, 24) étant incliné selon un angle α non nul inférieur ou égal à 30°. La présente invention concerne également un système (60) de culture cellulaire comprenant un premier élément (61a) et un second élément (62a) formant un récipient en forme de couronne et un organe d'entraînement, le récipient étant incliné selon un angle α non nul inférieur ou égal à 30°. La présente invention concerne également un procédé utilisant un système de l'invention et un ensemble comprenant un système de l'invention et un liquide comprenant une espèce à cultiver.

Description

DESCRIPTION
Titre de l’invention : Système, procédé et ensemble pour la culture cellulaire
Domaine de l’invention
[0001 ] La présente invention concerne un système de culture cellulaire et un procédé de culture cellulaire utilisant un tel système. La présente invention concerne particulièrement un système de culture cellulaire comprenant un premier élément ouvert sur une partie haute, une membrane de diffusion d’un gaz dans un liquide par dissolution, la membrane et le premier élément formant un récipient, une enceinte apte à retenir un volume de gaz, un organe d’entraînement du récipient, le récipient étant incliné de manière selon un angle a non nul et inférieur à 30° par rapport à la direction verticale. La présente invention concerne également un procédé de culture cellulaire utilisant un système tel que décrit précédemment, le procédé comprenant une étape de fourniture d’un liquide comprenant une espèce à cultiver et une mise en rotation du récipient par l’organe d’entraînement.
Art antérieur
[0002] Il existe un enjeu économique important en culture cellulaire concernant la production à grande échelles de cellules fragiles. Certaines cellules peuvent être utilisées directement pour la thérapie cellulaire et d’autres peuvent être utilisées pour la production de molécules d’intérêt à haute valeur ajoutée. En effet, certaines espèces sont capables de produire des molécules d’intérêt de manière naturelle ou bien suite à une modification de l’espèce pour la production de protéine recombinante. Particulièrement, la culture cellulaire peut être industrialisée par l’utilisation de récipients tels que des bioréacteurs. La culture cellulaire en bioréacteur permet de placer les cellules dans un milieu idéal pour la croissance des populations cellulaires et ainsi permet l’obtention de grandes quantités de ces molécules d’intérêt. Les cellules en culture peuvent être de toutes origines, par exemple animale, végétale, bactérienne ou encore des levures. Par exemple, les micro-algues de type dinoflagellés contiennent de manière naturelle des molécules anti-cancéreuses ou des molécules antalgiques. Egalement, la production de toxines est d’un intérêt majeur pour procéder à des études de toxicologie. [0003] Certaines de ces espèces nécessitent un gros apport en dioxyde de carbone ou en oxygène pour qu’une population se maintienne ou se développe. Les méthodes actuelles de culture cellulaire permettent de répondre à cette demande par bullage ou par un fort mélange grâce à des pales. Cependant, ces méthodes d’apport ne conviennent pas à la culture de tous les types d’espèces car elles engendrent un fort cisaillement qui détruit certaines cellules ou crée un stress cellulaire important, réduisant fortement la productivité. C’est par exemple le cas chez certaines micro-algues.
[0004] Certains dispositifs de l’art permettent l’apport de gaz par d’autres moyens que le bullage. La demande de brevet US2015/0087049 A1 décrit un photobioréacteur pour la croissance à extrêmement haute densité cellulaire de culture axénique de cyanobactéries et micro-algues exposée à des hautes intensités de lumière. Une première membrane hydrophobique perméable au gaz est située au bas d’une chambre de réaction pour l’entrée de CO2 dans la suspension cellulaire. Un flux turbulent dans les cellules en suspension est nécessaire pour atteindre un rendement élevé et est obtenu par agitation à au moins 100 rpm et création d’un fort taux de cisaillement, augmentant l’absorption de CO2.
[0005] Cependant, l’obtention de flux turbulent par une telle méthode d’agitation entraîne un taux de cisaillement trop élevé pour maintenir ou permettre le développement de populations de nombreuses espèces végétales ou animales. De plus, un tel taux de cisaillement crée pour de nombreuses espèces un état de stress cellulaire qui empêche d’atteindre les conditions optimales pour la production de molécules d’intérêts. Ainsi de tels dispositifs sont limités industriellement et ne permettent pas la croissance de nombreuses espèces industriellement intéressantes.
[0006] Des procédés de l’art utilisent d’autres dispositifs pour la culture cellulaire. En effet, le brevet US6902902 B2 décrit un procédé pour la production de polypeptides recombinants par utilisation de cellules mammaliennes transformées dans une enceinte de culture horizontale à faible cisaillement dans lequel l’oxygénation est faite par l’intermédiaire d’une membrane externe d’échange de gaz dans l’écoulement.
[0007] Pourtant, une telle enceinte horizontale ne permet pas de produire une turbulence suffisamment importante du liquide dans lequel se trouve la culture cellulaire, ce qui a pour conséquence d’obstruer rapidement la membrane d’échange de gaz à laquelle les cellules vont se fixer. Egalement, le flux de liquide créé par un tel système empêche une homogénéisation de la distribution de la culture cellulaire dans le liquide et ne permet pas d’optimiser les surfaces d’échanges entre les cellules et le liquide ou d’améliorer la diffusion de la lumière dans le liquide. Ainsi de tels dispositifs ne sont pas viables industriellement.
[0008] La demande WO2017/149034 A1 divulgue un dispositif sans pale et sans injection de bulle d’air permettant de mélanger un liquide avec un faible taux de cisaillement au sein du liquide et un faible risque de pollution du liquide en comparaison avec une pale qui doit être nettoyée régulièrement, tout en s'affranchissant de l'utilisation d'un dispositif complexe d'injection de bulles d'air. Cependant de tels systèmes ne permettent pas un apport suffisant en gaz dans le liquide pour la culture cellulaire, la surface d’échange entre le liquide et l’air étant insuffisante.
[0009] Il est alors recherché un système de culture cellulaire qui permette de mélanger un liquide afin d’obtenir une distribution homogène des cellules dans le liquide tout en empêchant les cellules de bloquer un grand apport de gaz, par exemple en oxygène ou en dioxyde de carbone, sans atteindre un taux de cisaillement qui empêcherait ou réduirait la production de molécules d’intérêts.
[0010] L’objectif est en particulier d’obtenir un rendement de production au moins plus grand que celui obtenu par les méthodes antérieures, e.g. en réduisant le coût d’obtention de ces molécules et/ou en augmentant la quantité produite de celles-ci.
Description brève de l’invention
[0011] L’invention concerne un système de culture cellulaire comprenant : un premier élément cylindrique ou tronconique d’axe A et présentant un premier rayon, le premier élément étant ouvert en partie haute et comprenant au moins une ouverture en partie basse, une membrane de diffusion d’un gaz dans un liquide par dissolution, la membrane étant disposée au niveau de la partie basse du premier élément, et positionnée de manière à couvrir l’au moins une ouverture dudit premier élément, le premier élément et la membrane étant configurés pour former un récipient apte à retenir un liquide à une hauteur H dudit liquide mesurée suivant l’axe A, une enceinte apte à retenir un volume de gaz, l’enceinte étant assemblée au récipient et disposée de manière à ce que le volume de gaz puisse diffuser dans le liquide par l’intermédiaire de la membrane, et un organe d’entraînement du récipient selon un mouvement de rotation suivant l’axe A, le récipient étant incliné de manière à ce que l’axe A forme un angle a non nul inférieur ou égal à 30° par rapport à la direction verticale.
[0012] Par « direction verticale », il est entendu une direction parallèle à la direction de la pesanteur dans un référentiel terrestre.
[0013] Par « hauteur H mesurée suivant l’axe A, il est entendu que la hauteur H du liquide est mesurée selon l’axe A et l’intersection de la surface du liquide avec l’axe A et/ou selon un axe A étant vertical. Par « un récipient apte à retenir un liquide à une hauteur H mesurée suivant l’axe A >>, il est entendu que le récipient a une hauteur suffisamment élevée pour que le liquide, lorsque le récipient est incliné de manière à former un angle a non nul inférieur ou égal à 30° par rapport à la direction verticale, soit retenu dans le récipient.
[0014] Avantageusement, le récipient ne comprend pas de pales. Cette absence de pales peut s’appliquer à tous les modes de réalisation de la présente invention.
[0015] Préférentiellement, le premier élément est cylindrique.
[0016] Avantageusement, le premier élément dudit système est transparent à la lumière visible. Un premier élément transparent dudit système permet à la culture cellulaire de recevoir une lumière, cette lumière pouvant être utilisée par certaines cultures cellulaires comme une source énergétique. Un système transparent permet également une surveillance du liquide dans le premier élément. Dans le cas d’une culture cellulaire suffisamment limpide, le premier élément transparent permet également une surveillance de la surface de la membrane en contact avec le liquide cellulaire. Par transparent, il est entendu que le récipient a un facteur de transmission optique ou une transmittance optique totale d’au moins 80 %, préférentiellement d’au moins 90 %. Avantageusement, le premier élément est en polycarbonate, permettant de laisser passer toutes les longueurs d’ondes de lumière.
[0017] Egalement ou alternativement, le premier élément dudit système est transparent aux UV A et/ou B et/ou C.
[0018] Avantageusement, ledit système comprenant le premier élément transparent comprend au moins une source de lumière disposée à l’extérieur du premier élément et apte à être dirigée vers le récipient. L’au moins une source de lumière peut comprendre des diodes électroluminescentes, des diodes électroluminescentes organiques, une ampoule à incandescence, ou tout autre type de source de lumière adaptée. De tels systèmes permettent un éclairement énergétique particulièrement adapté à la culture cellulaire d’espèces nécessitant un apport de lumière.
[0019] Alternativement, le premier élément dudit système est opaque à la lumière visible. Un premier élément opaque dudit système permet à la culture cellulaire de ne pas recevoir de lumière, cette lumière pouvant représenter pour certaines cultures cellulaires une source de stress pouvant induire des mécanismes contraires au développement et à la multiplication cellulaire. Par opaque, il est entendu que le récipient a un facteur de transmission optique ou une transmittance optique totale inférieur à 2%, préférentiellement nul.
[0020] Avantageusement, le premier rayon R1 dudit premier élément est compris entre 5 cm et 100 cm.
[0021 ] Avantageusement, la membrane est une membrane poreuse ayant des pores d’un diamètre inférieur à 75 nm ou bien est une membrane dense.
[0022] La membrane de diffusion d’un gaz dans un liquide par dissolution de l’invention est préférentiellement imperméable au liquide. Par « membrane dense », il est entendu une membrane exempte de porosité au très de laquelle le transport des ions et molécules a lieu par solubilisation-diffusion. Par « membrane poreuse >> il est entendu une membrane comprenant des porosités, les porosités étant remplies de gaz dans le cas de membranes hydrophobiques ou de liquides dans le cas de membranes hydrophiles. Dans un tel cas, le gaz est diffusé au travers du gaz ou du liquide présent dans les pores en raison du gradient de concentration et se dissout en liquide en rentrant dans le liquide compris dans le récipient.
[0023] Dans l’alternative d’une membrane dense, la membrane dense est en polypropylène, en polytétrafluoroéthylène, en polyfluorure de vinylidène, en ester de cellulose, en silicone ou une combinaison d’au moins deux de ces matériaux.
[0024] Dans l’alternative d’une membrane poreuse, la membrane est préférentiellement une membrane microporeuse ou mésoporeuse, de préférence en fluoropolymère, polyuréthane, polyéthylène, polypropylène ou une combinaison d’au moins deux de ces matériaux. Par membrane mésoporeuse l’on entend une membrane dont la taille des pores est de l’ordre de 2 à 50 nm. Par membrane microporeuse l’on entend une membrane dont la taille des pores est inférieure à 2 nm.
[0025] Avantageusement, les membranes de l’invention sont biologiquement inertes et non toxiques pour les cellules. Avantageusement, les membranes de l’invention pourront avoir subi un traitement de surface de manière à ce qu’elles soient particulièrement adaptées pour la culture cellulaire.
[0026] Avantageusement, le récipient a une hauteur H1 mesurée suivant l’axe A adaptée pour retenir le liquide à une hauteur H mesurée suivant l’axe A, même en étant incliné selon l’angle a, H1 étant au moins égale à H+R1*tan(a).
[0027] Avantageusement, le système comprend un second élément cylindrique ou tronconique disposé à l’intérieur du premier élément, présentant un second rayon R2, ledit second rayon étant inférieur au premier rayon R1 , la hauteur H2 du second élément, mesurée suivant l’axe A, étant sensiblement identique à la hauteur H1 du premier élément, et l’axe central du second élément étant sensiblement identique à l’axe A du premier élément, le récipient apte à retenir le liquide étant formé par la couronne comprise entre le premier et le second élément. Un tel système comprenant un second élément permet d’augmenter la surface du récipient qui peut entrer en contact avec un liquide, permettant également d’augmenter la diffusion de la lumière dans le réacteur. Avantageusement, le second élément dudit système est transparent à la lumière visible, ce qui permet notamment d’augmenter le volume de liquide éclairé par la lumière.
[0028] Préférentiellement, le second élément est en un matériau identique au premier élément. Préférentiellement, le second élément est cylindrique.
[0029] Avantageusement, concernant les systèmes comprenant un second élément cylindrique ou tronconique disposé à l’intérieur du premier élément, la différence entre le second rayon R2 et le premier rayon R1 est inférieure à 30 cm, de préférence inférieure à 20 cm. Un tel système permet notamment d’optimiser l’apport de la lumière dans le liquide de culture cellulaire en réduisant la distance à traverser par la lumière, permettant également une meilleure diffusion de la lumière dans le milieu de culture cellulaire. [0030] Avantageusement, concernant les systèmes comprenant un second élément cylindrique ou tronconique disposé à l’intérieur du premier élément, ledit système comprend au moins une source de lumière disposée à l’intérieur du second élément et apte à être dirigée vers le récipient. Un tel système permet notamment d’éclairer le liquide de culture cellulaire depuis l’intérieur du système et depuis l’extérieur du système et permet d’améliorer l’apport en lumière dans le liquide cellulaire. De tels systèmes permettent un éclairement énergétique particulièrement adapté à la culture cellulaire d’espèces nécessitant un apport de lumière.
[0031] L’invention concerne également un système de culture cellulaire comprenant : un premier élément cylindrique ou tronconique d’axe A, présentant un premier rayon R1 , le premier élément ayant une hauteur H1 mesurée suivant l’axe A ; un second élément cylindrique ou tronconique disposé à l’intérieur du premier élément, présentant un second rayon R2, l’axe central du second élément étant sensiblement identique à l’axe A du premier élément, ledit second rayon R2 étant inférieur au premier rayon R1 , le second élément ayant une hauteur H2 sensiblement identique à la hauteur H1 du premier élément ; le premier élément et le second élément formant un récipient en forme de couronne ouverte en partie haute et apte à retenir le liquide à une hauteur H mesurée suivant l’axe A ; et un organe d’entraînement du récipient selon un mouvement de rotation suivant l’axe A, le récipient étant incliné de manière à ce que l’axe A forme un angle a non nul inférieur ou égal à 30° par rapport à la direction verticale.
[0032] Un tel système comprenant un second élément et formant un récipient en forme de couronne ouverte permet d’augmenter la surface du récipient qui peut être exposée à la lumière et permet ainsi à la culture cellulaire en suspension dans le liquide contenu dans le récipient de capter plus de lumière.
[0033] Avantageusement, le premier élément et le second élément sont transparents à la lumière visible et le système comprend au moins une première source de lumière disposée à l’extérieur du premier élément et apte à être dirigée vers le récipient et au moins une seconde source de lumière disposée à l’intérieur du second élément et apte à être dirigée vers le récipient.
[0034] Avantageusement et concernant les systèmes comprenant un second élément cylindrique ou tronconique disposé à l’intérieur du premier élément, le rapport d’aspect H/R1 est compris entre 0,5 et 2. Préférentiellement, la hauteur H est choisie de manière à faire résonner un mode inertiel du fluide en rotation, c’est-à-dire que la hauteur H respecte l’équation (1 ) suivante :
Figure imgf000010_0001
où n est un entier naturel non nul et où la fonction Pm(x) est définie par :
Figure imgf000010_0002
pour m = 0, 1 , 2 et avec Jm la fonction de Bessel de première espèce d’ordre m et Ym la fonction de Bessel de seconde espèce d’ordre m.
[0035] Avantageusement, le rapport d’aspect H/R1 permet de faire résonner le premier mode inertiel lorsque le rapport d’aspect H/R1 et le rapport des rayons R2/R1 sont définis selon la courbe du graphique de la figure 5. Préférentiellement, pour un rapport de rayons R2/R1 =0,333, le rapport d’aspect H/R1 est compris entre 1 ,2 et 1 ,5, préférentiellement entre 1 ,3 et 1 ,4. Encore plus préférentiellement, il est de 1 ,35. Lorsque le rapport d’aspect entre la hauteur de l’eau H et le rayon R1 est compris entre les valeurs indiquées précédemment, le nombre de rotations du réacteur selon la présente invention est significativement réduit comme le montre le graphique de la figure 7.
[0036] Avantageusement, le premier rayon R1 dudit premier élément cylindrique ou tronconique est compris entre 5 cm et 100 cm.
[0037] Avantageusement, le premier élément et le second élément ont une hauteur H1 mesurée suivant l’axe A adaptée pour retenir le liquide à une hauteur H mesurée suivant l’axe A, même en étant incliné selon l’angle a, H1 étant au moins égale à H+R1*tan(a).
[0038] Préférentiellement, le second élément est en un matériau identique au premier élément. Préférentiellement, le premier élément et le second élément sont cylindriques (cylindre de révolution).
[0039] Avantageusement, concernant les systèmes comprenant un second élément cylindrique ou tronconique disposé à l’intérieur du premier élément, la différence entre le second rayon R2 et le premier rayon R1 est inférieure à 30 cm, de préférence inférieure à 20 cm. Un tel système permet notamment d’optimiser l’apport de la lumière dans le liquide de culture cellulaire en réduisant la distance à traverser par la lumière, permettant également une meilleure diffusion de la lumière dans le milieu de culture cellulaire.
[0040] L’invention concerne également un procédé de culture cellulaire utilisant un système tel que décrit précédemment, le procédé comprenant une étape de fourniture d’un liquide comprenant une espèce à cultiver dans le récipient jusqu’à une hauteur H mesurée suivant l’axe A et une étape de mise en rotation du récipient par l’organe d’entraînement.
[0041] Avantageusement, la culture cellulaire peut être une culture de cellules de mammifère (humaines ou non-humaines) telles que des cellules souches mésenchymateuse, cellules souches embryonnaires, cellules souches pluripotentes induites, cellules souches hématopoïétiques, lymphocytes T (cart-T) ou autres. Dans le cas de cellules souches embryonnaires humaines, celles-ci sont obtenues seulement sans destruction de l’embryon dont elles sont issues et ne sont pas de nature à induire le processus de développement d’un être humain.
[0042] Avantageusement, la culture cellulaire peut comprendre au moins une espèce à cultiver parmi les microphytes. Préférentiellement, la culture cellulaire est une culture de dinophytes. Encore plus préférentiellement, la culture cellulaire comprend au moins une espèce à cultiver parmi Alexandrium, Amphidinium, Azadinium, Dinophysis, Gambierdiscus toxicus, Gonyaulax, Gymnodinium mikimotoi, Karenia brevis, Lingulodinium, Ostreopsis, Prorocentrum et Protoceratium.
[0043] Avantageusement et concernant les systèmes comprenant un seul élément cylindrique ou tronconique, le rapport d’aspect H/R1 est compris entre 0,56 et 0,68, entre 0,86 et 1 ,06 ou entre 1 ,79 et 2,19. De tels rapports d’aspect permettent particulièrement de générer des phénomènes de résonance et permettent un mélange efficace avec un taux de cisaillement très faible.
[0044] Avantageusement, le mouvement de rotation a une vitesse angulaire de rotation Q telle que (Q*R12*a)/v, où v est la viscosité cinématique du liquide, est supérieur à 1000. Une telle vitesse angulaire de rotation permet particulièrement de provoquer dans le liquide une résonance instable qui améliore encore le mélange du liquide.
[0045] L’invention concerne également un ensemble comprenant un système tel que décrit précédemment et un liquide comprenant une espèce à cultiver dans le récipient du système.
Brève description des figures
[0046] D’autres caractéristiques, détails et avantages de l’invention ressortiront à la lecture de la description faite en référence aux dessins annexés donnés à titre d’exemple et qui représentent, respectivement :
[0047] La figure 1 illustre une vue en coupe selon un plan vertical d’un premier mode de réalisation d’un système pour la culture cellulaire comprenant un récipient formé par un premier élément et une membrane.
[0048] La figure 2 illustre une vue en coupe selon un plan vertical d’un second mode de réalisation d’un système pour la culture cellulaire comprenant un récipient formé par un premier élément et une membrane et au moins une source de lumière.
[0049] La figure 3 illustre une vue en coupe selon un plan vertical d’un troisième mode de réalisation d’un système pour la culture cellulaire comprenant un récipient formé par un premier élément, un second élément et une membrane, le système comprenant également au moins deux sources de lumière.
[0050] La figure 4 illustre une vue de dessus d’un système pour la culture cellulaire selon le troisième mode de réalisation comprenant un récipient formé par un premier élément, un second élément et une membrane, le système comprenant également des sources de lumière.
[0051] La figure 5 illustre un graphique représentant des ratios d’aspect en fonction des ratios entre le second rayon et le premier rayon d’un système pour la culture cellulaire comprenant un récipient formé par un premier élément, un second élément et une membrane selon la présente invention.
[0052] La figure 6 illustre une vue en coupe selon un plan vertical d’un quatrième mode de réalisation d’un système pour la culture cellulaire comprenant un récipient formé par un premier élément et un second élément formant une couronne, le système comprenant également au moins deux sources de lumière. [0053] La figure 7 correspond à un graphique représentant le temps de mélange QT en fonction du rapport H/r avec h la hauteur d’eau dans la couronne formée par le premier élément et le second élément et mesurée selon l’axe A et rie rapport du rayon R1 du premier élément sur le rayon R2 du second élément.
Description détaillée de l’invention
[0054] Les systèmes et procédés de la présente invention sont adaptés pour permettre la culture cellulaire en mélangeant le liquide dans lequel se trouvent les cellules avec un écoulement turbulent par des phénomènes de résonance. Notamment, le cisaillement entre le liquide comprenant la culture cellulaire et le premier élément permet la génération d’ondes inertielles grâce à la force de Coriolis. Ces ondes se réfléchissent entre les parois et le fond du récipient et créent un mouvement global du liquide dans le récipient, les particules dans le liquide suivant un mouvement elliptique.
[0055] Les systèmes et procédés de la présente invention permettent notamment de maintenir une culture cellulaire en suspension avec une distribution homogène des cellules dans le liquide tout en favorisant les échanges gazeux et en empêchant les cellules de bloquer l’apport de gaz, par exemple en oxygène ou en dioxyde de carbone. Egalement, le mélange de la culture cellulaire effectué par les systèmes et procédés de la présente invention permet de ne pas provoquer un taux de cisaillement qui pourrait endommager les cellules, réduire leur multiplication, leur développement cellulaire et qui empêcherait ou réduirait la production de molécules d’intérêts par la ou les espèces cultivées.
[0056] Les systèmes et les procédés de la présente invention permettent ainsi d’améliorer le rendement en comparaison aux méthodes actuelles. Ainsi, le système réduit entre autres le coût d’obtention de molécules d’intérêt en augmentant la quantité produite de celles-ci pour un coût égal ou inférieur aux coûts des méthodes antérieures.
[0057] Dans certains modes de réalisation de l’invention, les systèmes et les procédés de la présente invention ne comprennent pas de pales. Les pales permettant le mélange dans des récipients pour la culture cellulaire sont à l’origine d’un taux de cisaillement trop important dans le liquide de culture cellulaire pour de nombreuses espèces et empêchent ou réduisent le développement ou le maintien d’une population d’une espèce cultivée ou la production de molécules d’intérêts par une espèce cultivée.
[0058] Dans un mode de réalisation adapté à la culture de cellules souches, le rayon R1 est avantageusement compris entre 5 cm et 30 cm. Dans un mode de réalisation adapté à la culture de microphytes, le rayon R1 est avantageusement compris entre 10 cm et 100 cm.
[0059] La figure 1 illustre une vue en coupe selon un plan vertical d’un système 10 pour la culture cellulaire comprenant un récipient formé par un premier élément 11 a et une membrane 13. Le premier élément 11 a est cylindrique et présente un premier rayon R1 et un axe A. Le premier élément 11 a est également ouvert en partie haute et comprend au moins une ouverture 12 en partie basse. De manière générale, la partie haute du premier élément s’étend jusqu’à un plan perpendiculaire à l’axe A et la partie basse du premier élément s’étend jusqu’à un plan perpendiculaire à l’axe A, mais d’autres formes sont possibles. Egalement, le premier élément a une hauteur H1. Dans certains modes de réalisation, la partie haute du premier élément correspond à l’extrémité haute du premier élément qui n’entre pas en contact avec le liquide lorsque le récipient est en rotation tandis que la partie basse du premier élément correspond à la partie du premier élément qui entre en contact avec le liquide lorsque le récipient est en rotation. Dans de tels modes de réalisation, au moins une ouverture du premier élément peut être située sur la partie du premier élément qui est parallèle à l’axe A, c’est-à-dire dans la paroi latérale de la partie basse du premier et/ou du second élément. Dans de tels modes de réalisation, la membrane couvre cette au moins une ouverture et est donc au moins partiellement parallèle à l’axe A. Dans de tels modes de réalisation la membrane permet d’augmenter la surface d’échange gazeux et le flux de gaz de l’enceinte vers le liquide par dissolution.
[0060] Egalement, les systèmes de la présente invention peuvent comprendre un premier élément tronconique d’axe A de premier rayon R1 , dont le premier rayon R1 correspond au plus grand rayon du premier élément tronconique.
[0061 ] Le système 10 pour la culture cellulaire comprend une membrane 13 de diffusion d’un gaz dans le liquide 15 par dissolution. La membrane 13 est disposée au niveau de la partie basse du premier élément 11 a, et positionnée de manière à couvrir l’au moins une ouverture 12 du premier élément et de manière à former un récipient 14 apte à retenir le liquide 15 à une hauteur H de liquide mesurée suivant l’axe A. La hauteur H1 du récipient 14 de la figure 1 est supérieure à H+R1*tan(a) car la surface libre 15a du liquide 15 coupe l’axe A à la hauteur H de liquide telle qu’elle a été définie précédemment et le récipient 14 doit avoir une hauteur suffisante pour retenir le liquide 15 dans le récipient 14, même lorsqu’il est incliné selon un angle a.
[0062] De manière générale, la forme de la membrane présente une surface permettant la diffusion du gaz vers le milieu liquide. Préférentiellement la membrane est circulaire et sous forme de disque, permettant d’améliorer la surface de diffusion entre le gaz et le liquide. Cependant d’autres formes sont possibles et le premier élément peut avoir en partie basse une ouverture d’une forme différente et une membrane dont la forme correspond à la forme de l’ouverture de manière à former le récipient. Par exemple, l’ouverture peut avoir une forme carrée dans un plan perpendiculaire à l’axe A et circonscrite au premier élément cylindrique. Dans un tel exemple, la membrane couvre au moins l’ouverture de forme carrée.
[0063] Dans d’autres modes de réalisations, le premier élément peut comprendre plusieurs ouvertures et la membrane peut comprendre plusieurs éléments couvrant les ouvertures dudit premier élément.
[0064] Le système 10 pour la culture cellulaire comprend une enceinte 16a apte à retenir un volume de gaz 16b, l’enceinte étant assemblée au récipient 14 et disposée de manière à ce que le volume de gaz 16b puisse diffuser dans le liquide 15 par l’intermédiaire de la membrane 13. L’enceinte 16a de la figure 1 a une forme de cylindre et est assemblée au récipient par l’intermédiaire de la membrane 13. De manière générale, l’enceinte a une forme cylindrique ou tronconique car c’est une forme adaptée à la rotation cependant d’autres formes sont possibles. L’enceinte 16a de la figure 1 est disposée sous la membrane 13 mais d’autres dispositions sont possibles selon la disposition de la membrane et du premier élément.
[0065] L’enceinte 16a est apte à retenir un volume de gaz qui peut être de l’air, de l’O2, du CO2, ou tout autre gaz dont la diffusion dans le liquide permettrait le développement de la culture cellulaire dans le récipient. Par exemple, le gaz peut comprendre du CO2, par exemple à une pression partielle de l’ordre de 1 pourcent. L’homme du métier sera capable d’adapter la composition du gaz dans l’enceinte 16a et les pressions partielles des différents gaz de manière à optimiser les apports pour la culture cellulaire par diffusion du gaz dans le liquide par l’intermédiaire de la membrane.
[0066] Le système 10 pour la culture cellulaire comprend un organe d’entraînement 17 du récipient 14 selon un mouvement de rotation suivant l’axe A. L’organe d’entraînement 17 a une forme de disque mais peut prendre n’importe quelle forme. L’organe d’entraînement 17 est disposé sous le récipient 14 et sous l’enceinte 16a cependant d’autres dispositions sont possibles.
[0067] Le récipient 14 du système 10 de culture cellulaire est incliné de manière à ce que l’axe A forme un angle a de 30° par rapport à la direction verticale 18, cependant le récipient de la présente invention peut être incliné selon un angle a non nul inférieur ou égal à 30°. Le système 10 de la figure 1 comprend un organe d’inclinaison 19 permettant d’incliner le récipient 14 selon l’angle souhaite. L’organe d’inclinaison 19 est situé sous l’organe d’entraînement, cependant d’autres dispositions sont possibles. L’organe d’inclinaison peut également servir de support au système 10 de la présente invention.
[0068] La figure 2 illustre une vue en coupe selon un plan vertical d’un système 20 pour la culture cellulaire comprenant un récipient 24 formé par un premier élément 21 a et une membrane 23 couvrant l’ouverture 22 du premier élément 21 a, le système 20 comprenant également au moins une source de lumière 29. Un liquide 25 ayant une surface libre 25a est disposé dans le récipient 24. Les sources de lumière 29 de la figure 2 sont disposées autour du premier élément 21 a, e.g. à une distance de A plus grande que le rayon R1 . La membrane 23, l’enceinte 26a apte à retenir un volume de gaz, l’organe d’entraînement 27 et la direction verticale 28 sont similaires au système 10 de la figure 1 . Le système 20 de la figure 2 ne comprend pas d’organe d’inclinaison, cependant un organe d’inclinaison peut être ajouté au système 20. Egalement, le premier élément a une hauteur H1 .
[0069] La figure 3 illustre une vue en coupe selon un plan vertical d’un système 30 pour la culture cellulaire comprenant un récipient formé par un premier élément 31 a, un second élément 31 b et une membrane 33, le système 30 comprenant également au moins deux sources de lumière 39a et 39b. La source de lumière 39a est disposée autour du premier élément 31a, e.g. à une distance de A plus grande que le rayon R1 . La source de lumière 39b est disposée à l’intérieur du second élément, e.g. à une distance de A plus petite que le rayon R2. De nombreuses formes de sources de lumières, par exemple des anneaux ou des colonnes, peuvent être utilisés dans les systèmes de la présente invention. Il peut être fait référence à un tel récipient par le terme de récipient annulaire. Le premier élément 31 a est similaire aux éléments 11 a et 21 a des figures 1 et 2 respectivement. Le second élément 31 b est cylindrique et a un rayon R2 inférieur au rayon R1. De manière générale, dans le cas d’un récipient annulaire, la partie haute du premier élément s’étend jusqu’à un plan perpendiculaire à l’axe A et la partie basse du premier élément s’étend jusqu’à un plan perpendiculaire à l’axe A, mais d’autres formes sont possibles.
[0070] Alternativement, dans le cas d’un récipient annulaire, les systèmes de la présente invention peuvent comprendre un premier élément tronconique d’axe A de premier rayon R1 , dont le premier rayon R1 correspond au plus grand rayon du premier élément tronconique et un second élément de second rayon R2, dont le second rayon R2 correspond au plus grand rayon du second élément tronconique.
[0071] La hauteur H1 du premier élément 31 a est sensiblement identique à la hauteur H2 du second élément 31 b mesurée suivant l’axe A. L’axe central du second élément 31 b est également sensiblement identique à l’axe central A du premier élément 31 a.
[0072] Le récipient formé par le premier élément 31 a, le second élément 31 b et la membrane 33 du système 30 a une forme de couronne comprise entre le premier et le second élément. L’ouverture 32, bien que vue en coupe, a une forme d’anneau plat correspondant à un disque de rayon extérieur R1 , de centre A et de rayon intérieur R2. La membrane 33 couvre l’ouverture 32 et a donc une forme correspondante à cette ouverture 32. D’autres formes d’ouvertures et de membranes sont possibles.
[0073] L’enceinte 36 apte à retenir un volume de gaz est disposée sous le récipient et sous la membrane 33. L’enceinte 36 a une forme de disque et non d’anneau, mais une enceinte ayant une forme d’anneau est également possible. L’organe d’entraînement 37 et la direction verticale 38 sont similaires aux organes d’entraînement et aux directions verticales des figures 1 et 2. [0074] La figure 4 illustre une vue de dessus d’un système 30 pour la culture cellulaire dans un liquide comprenant un récipient formé par un premier élément 31 a, un second élément 31 b et une membrane 33, formant un récipient annulaire, le système comprenant également des sources de lumière 39a et 39b.
[0075] Les sources de lumière 39a sont disposées à l’extérieur du récipient annulaire et les sources de lumière 39b sont disposées à l’intérieur du récipient annulaire de la figure 4. Bien qu’il soit décrit quatre sources de lumière extérieures 39a et quatre sources de lumière intérieures 39b, le système de la présente invention peut comprendre d’autres sources de lumière et/ou des sources de lumière de formes différentes, par exemple en forme d’anneau autour du premier élément 31 a et/ou en forme d’anneau à l’intérieur du second élément 31 b. Le liquide dans le récipient n’est pas représenté dans la figure 4, ce qui permet d’observer l’enceinte de gaz 36 bien que celle-ci se situe sous le récipient de la figure 4. La membrane 33 du récipient est également visible, celle-ci formant dans le cas de la figure 4 le fond du récipient. Si un liquide devait être disposé dans le système 30, celui-ci serait disposé dans le récipient, c’est-à-dire au-dessus de la membrane 33, dans l’espace en forme de couronne entre le premier élément 31 a et le second élément 31 b.
[0076] La figure 5 illustre un graphique représentant des ratios d’aspect en fonction des ratios entre le rayon interne et le rayon externe d’un système pour la culture cellulaire comprenant un récipient formé par un premier élément, un second élément et une membrane selon la présente invention. Dans un système comprenant un récipient annulaire, des rapports d’aspect H/R1 particuliers permettent particulièrement de générer des phénomènes de résonance et permettant un mélange efficace avec un taux de cisaillement très faible est déterminé à partir du ratio du rayon interne, correspondant à R2, sur le rayon externe, correspondant à R1 . Ce ratio correspond à la plus grande hauteur H vérifiant l’équation (1 ) avec n = 1 .
[0077] De la figure 5, et notamment de la courbe du graphique de la figure 5, plusieurs ratios d’aspect H/R1 peuvent être déterminés en fonction du rapport du rayon R2 sur le rayon R1 , R2/R1 n’étant pas nul. Plusieurs exemples sont présentés dans la table 1 ci-dessous :
[0078] [Tablel]
Figure imgf000018_0001
Figure imgf000019_0001
[0079] Des exemples de molécules d’intérêt sont présentés en fonction de l’espèce de microphytes à cultiver dans la table 2 ci-dessous :
[0080] [Table 2]
Figure imgf000019_0002
[0081] Dans un mode de réalisation particulier, la membrane permettant la diffusion d’un gaz dans le liquide par dissolution est une membrane laminée avec différents types de fibres. Une telle membrane peut être utilisée en combinaison avec tous les modes de réalisation de l’invention.
[0082] Dans un mode de réalisation particulier, le système de la présente invention comprend au moins un moyen de détermination d’au moins un paramètre du liquide, un paramètre pouvant être choisi parmi la température, le pH, la turbidité, la viscosité, la pression partielle en O2, en CO2 ou un autre gaz. Ces moyens de détermination peuvent être utilisés en combinaison avec tous les modes de réalisation de l’invention.
[0083] Dans un mode de réalisation particulier, le système comprend un moyen de brassage du gaz dans l’enceinte apte à retenir un volume de gaz. Brasser le gaz dans l’enceinte permet d’homogénéiser le gaz dans l’enceinte et de réduire les fluctuations de pH dans le liquide par diffusion du gaz depuis l’enceinte vers le liquide. Ceci peut être effectué par exemple par une recirculation du gaz dans l’enceinte au moyen d’une pompe extérieure connectée à deux orifices de l’enceinte. Une telle recirculation de gaz dans l’enceinte de gaz permet de maintenir un flux de gaz vers le liquide par dissolution au travers de l’ensemble de la membrane. Sans recirculation, des parties de la membrane pourraient ne pas être continuellement en contact avec le gaz qui doit être diffusé par dissolution dans le liquide.
[0084] Dans un mode de réalisation particulier, le système comprend un premier élément cylindrique transparent et présentant un premier rayon de 50 cm, un second élément cylindrique et concentrique, transparent et présentant un second rayon de 70 cm, des LEDs à l’extérieur du premier élément et des LEDs à l’intérieur sur second élément. Un tel système permet un éclairement énergétique particulièrement adapté à la culture d’espèces nécessitant un apport de lumière. Par exemple un tel système permet un éclairement énergétique particulièrement adapté à la croissance des dinoflagellés, par exemple selon une longueur d’onde déterminée et selon un éclairement énergétique compris entre 250 et 300 pmol.m-2.s-1. Par exemple, un tel système de 200 à 1000 litres et comprenant une culture cellulaire de dinoflagellés permet une durée de duplication des dinoflagellés de 0,95 jours et une productivité de 2,4 g. L 1.jour 1 de dinoflagellés, ce qui est significativement plus élevé que la productivité selon des méthodes utilisant des photobioréacteurs de l’art pour lesquels une productivité de 0,16 g. L-1.jour-1 et une durée de duplication de 5,87 jours ont été avancées (Fuentes-Grunewald, et al., 2012).
[0085] Dans un mode de réalisation particulier qui peut être combiné avec les autres modes de réalisation, le premier élément et/ou le second élément comprend au moins une ouverture parallèle à l’axe A, c’est-à-dire dans la paroi latérale de la partie basse du premier et/ou du second élément, cette ouverture étant couverte par une membrane de diffusion d’un gaz dans le liquide par dissolution. Selon un tel mode de réalisation, l’enceinte apte à retenir un volume de gaz est assemblée au premier élément et/ou au second élément au moins par les parties du premier et/ou second élément qui sont parallèles à l’axe A et qui comprennent l’au moins une ouverture, c’est-à-dire d’une manière périphérique à l’extérieur du premier élément et/ou à l’intérieur du second élément. Dans un tel mode de réalisation, le système peut également comprendre des moyens de recirculation du gaz dans l’enceinte apte à retenir un volume de gaz.
[0086] La figure 6 illustre une vue en coupe selon un plan vertical d’un quatrième mode de réalisation d’un système pour la culture cellulaire selon la présente invention. Le système comprend un premier élément 61 a cylindrique ou tronconique d’axe A, présentant un premier rayon R1 , le premier élément 61a ayant une hauteur H1 mesurée suivant l’axe A ; un second élément 61 b cylindrique ou tronconique disposé à l’intérieur du premier élément 61 a, présentant un second rayon R2, l’axe central du second élément étant sensiblement identique à l’axe A du premier élément 61 a, ledit second rayon R2 étant inférieur au premier rayon R1 , le second élément 61 b ayant une hauteur H2 sensiblement identique à la hauteur H1 du premier élément 61 a. Le premier élément 61a et le second élément 61 b forment un récipient en forme de couronne ouverte en partie haute et apte à retenir un liquide 65 à une hauteur H mesurée suivant l’axe A. Le système comprend également un organe d’entraînement 67 du récipient selon un mouvement de rotation suivant l’axe A, le récipient étant incliné de manière à ce que l’axe A forme un angle a non nul inférieur ou égal à 30° par rapport à la direction verticale 68. Le premier élément 61 a et le second élément 61 b sont transparents à la lumière visible et le système comprend au moins une première source de lumière 69a disposée à l’extérieur du premier élément et apte à être dirigée vers le récipient et au moins une seconde source de lumière 39b disposée à l’intérieur du second élément 31 b et apte à être dirigée vers le récipient.
[0087] La figure 7 correspond à un graphique représentant le temps de mélange T multiplié par la vitesse angulaire Q en fonction du rapport H/R1 avec H la hauteur d’eau dans la couronne formée par le premier élément et le second élément et mesurée selon l’axe A pour un rapport de rayon r=R2/R1 du second élément sur le premier élément égal à 0.333. Selon ce graphique, le temps de mélange QT varie en fonction du rapport d’aspect H/R1 , de telle sorte que le temps de rotation nécessaire pour obtenir un mélange efficace est de l’ordre 200 à 400 rotations sauf lorsque le rapport d’aspect H/R1 est compris entre 1 ,2 et 1 ,5 où le temps de mélange est significativement inférieur, notamment inférieur à 100 voire étant de l’ordre de 10. Préférentiellement le rapport d’aspect H/R1 est compris entre 1 ,3 et 1 ,4. Encore plus préférentiellement le rapport d’aspect H/R1 est environ de 1 ,35, correspondant au rapport d’aspect optimal théorique indiqué par une ligne verticale en trait plein et issu de la figure 5. Particulièrement dans le cas de ce graphique, l’angle a est de 3° cependant d’autres angles peuvent être utilisés pour le système de la présente invention, qui présentera tout de même des temps de mélange pour obtenir un mélange efficace significativement inférieurs en raison du rapport d’aspect H/R1 compris entre 1 ,2 et 1 ,5.
[0088] Les différents modes de réalisation présentés dans cette description ne sont pas limitatifs et peuvent être combinés entre eux. En outre, la présente invention n'est pas limitée aux modes de réalisation précédemment décrits mais s'étend à tout mode de réalisation entrant dans la portée des revendications.

Claims

REVENDICATIONS
1. Système (10, 20, 30) de culture cellulaire comprenant :
- un premier élément (11 a, 21a, 31 a) cylindrique ou tronconique d’axe A et présentant un premier rayon R1 , le premier élément étant ouvert en partie haute et comprenant au moins une ouverture (12, 22, 32) en partie basse,
- une membrane (13, 23, 33) de diffusion d’un gaz dans un liquide (15, 25, 35) par dissolution, la membrane étant disposée au niveau de la partie basse du premier élément (11 a, 21 a, 31a), et positionnée de manière à couvrir l’au moins une ouverture (12, 22, 32) dudit premier élément, le premier élément (11 a, 21 a, 31 a) et la membrane (13, 23, 33) étant configurés pour former un récipient (14, 24) apte à retenir un liquide (15, 25, 35) à une hauteur H dudit liquide mesurée suivant l’axe A,
- une enceinte (16a, 26, 36) apte à retenir un volume de gaz (16b), l’enceinte étant assemblée au récipient (14, 24) et disposée de manière à ce que le volume de gaz puisse diffuser dans le liquide (15, 25, 35) par l’intermédiaire de la membrane (13, 23, 33), et
- un organe d’entraînement (17, 27, 37) du récipient selon un mouvement de rotation suivant l’axe A, le récipient (14, 24) étant incliné de manière à ce que l’axe A forme un angle a non nul inférieur ou égal à 30° par rapport à la direction verticale (18, 28, 38).
2. Le système (10, 20, 30) selon la revendication 1 , le premier élément (11 a, 21 a, 31 a) étant transparent à la lumière visible.
3. Le système (20, 30) selon la revendication 2, comprenant au moins une source de lumière (29, 39a) disposée à l’extérieur du premier élément et apte à être dirigée vers le récipient.
4. Le système (10) selon la revendication 1 , le premier élément (11 a) étant opaque à la lumière visible.
5. Le système (10, 20, 30) selon l’une des revendications précédentes, le premier rayon R1 étant compris entre 5 cm et 100 cm.
6. Le système (10, 20, 30) selon l’une des revendications précédentes, la membrane (13, 23, 33) étant une membrane poreuse ayant des pores d’un diamètre inférieur à 75 nm ou bien étant une membrane dense.
7. Le système (10, 20, 30) selon l’une des revendications précédentes, le récipient (14, 24) ayant une hauteur H1 mesurée suivant l’axe A adaptée pour retenir le liquide (15, 25, 35) à une hauteur H mesurée suivant l’axe A, même en étant incliné selon l’angle a, H1 étant au moins égale à H+R1*tan(a).
8. Le système (30) selon l’une des revendications précédentes, comprenant un second élément (31 b) cylindrique ou tronconique disposé à l’intérieur du premier élément (31 a), présentant un second rayon R2, ledit second rayon étant inférieur au premier rayon R1 , la hauteur H2 du second élément étant sensiblement identique à la hauteur H1 du premier élément, et l’axe central du second élément étant sensiblement identique à l’axe A du premier élément, le récipient apte à retenir le liquide (35) étant formé par la couronne comprise entre le premier et le second élément.
9. Le système (30) selon la revendication 8, la différence entre le second rayon R2 et le premier rayon R1 étant inférieure à 30 cm, de préférence inférieure à 20 cm.
10. Le système (30) selon l’une des revendications 8 ou 9, ledit système comprenant au moins une source de lumière (39b) disposée à l’intérieur du second élément (31 b) et apte à être dirigée vers le récipient.
11 . Système (60) de culture cellulaire comprenant :
- un premier élément (61a) cylindrique ou tronconique d’axe A, présentant un premier rayon R1 , le premier élément (61 a) ayant une hauteur H1 mesurée suivant l’axe A
- un second élément (61 b) cylindrique ou tronconique disposé à l’intérieur du premier élément (61 a), présentant un second rayon R2, l’axe central du second élément étant sensiblement identique à l’axe A du premier élément, ledit second rayon R2 étant inférieur au premier rayon R1 , le second élément (61 b) ayant une hauteur H2 sensiblement identique à la hauteur H1 du premier élément
- le premier élément (61 a) et le second élément (61 b) formant un récipient en forme de couronne ouverte en partie haute et apte à retenir un liquide (65) à une hauteur H mesurée suivant l’axe A, et
- un organe d’entraînement (67) du récipient selon un mouvement de rotation suivant l’axe A, le récipient étant incliné de manière à ce que l’axe A forme un angle a non nul inférieur ou égal à 30° par rapport à la direction verticale (68).
12. Système (60) de culture cellulaire selon la revendication 11 , le premier élément (61 a) et le second élément (61 b) étant transparents à la lumière visible et le système comprenant au moins une première source de lumière (69a) disposée à l’extérieur du premier élément et apte à être dirigée vers le récipient et au moins une seconde source de lumière (39b) disposée à l’intérieur du second élément (31 b) et apte à être dirigée vers le récipient.
13. Système (60) de culture cellulaire selon l’une des revendications 11 ou 12, la hauteur H étant choisie de manière à vérifier l’équation (1 ) suivante :
Figure imgf000025_0001
où n est un entier naturel non nul et où la fonction Pm(x) est définie par :
Figure imgf000025_0002
pour m = 0, 1 , 2 et avec Jm la fonction de Bessel de première espèce d’ordre m et Ym la fonction de Bessel de seconde espèce d’ordre m.
14. Système (60) de culture cellulaire selon la revendication 13, le rapport d’aspect H/R1 et le rapport de rayons R2/R1 étant définis suivant la courbe du graphique de la figure 5, R2/R1 n’étant pas nul.
15. Système (60) de culture cellulaire selon l’une des revendications 11 à 14, le rapport de rayons R2/R1 étant égal à 0,333 et le rapport d’aspect H/R1 étant compris entre 1 ,2 et 1 ,5, préférentiellement étant compris entre 1 ,3 et 1 ,4, encore plus préférentiellement étant de 1 ,35.
16. Procédé de culture cellulaire utilisant un système selon l’une des revendications précédentes, le procédé comprenant :
- une étape de fourniture d’un liquide comprenant une espèce à cultiver dans le récipient jusqu’à une hauteur H mesurée suivant l’axe A,
- une étape de mise en rotation du récipient par l’organe d’entraînement.
17. Le procédé selon la revendication 16 et utilisant un système selon l’une des revendications 1 à 7, le rapport d’aspect H/R1 étant compris entre 0,56 et 0,68, entre 0,86 et 1 ,06 ou entre 1 ,79 et 2,19.
18. Le procédé selon l’une des revendications 16 ou 17, le mouvement de rotation ayant une vitesse angulaire de rotation Q telle que (Q*R12*a)/v, où v est la viscosité cinématique du liquide, est supérieur à 1000.
19. Le procédé selon la revendication 16 et utilisant un système selon l’une des revendications 8 à 15, le rapport d’aspect H/(R1) étant compris entre 0,5 et 2.
20. Ensemble comprenant un système (10, 20, 30, 60) selon l’une des revendications 1 à 15 et un liquide (15, 25, 35, 65) comprenant une espèce à cultiver dans le récipient (14,24) du système.
PCT/EP2021/085241 2020-12-11 2021-12-10 Systeme, procede et ensemble pour la culture cellulaire WO2022123032A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA3201907A CA3201907A1 (fr) 2020-12-11 2021-12-10 Systeme, procede et ensemble pour la culture cellulaire
US18/266,242 US20240026273A1 (en) 2020-12-11 2021-12-10 Cell culture system, method and assembly
EP21835276.3A EP4259768A1 (fr) 2020-12-11 2021-12-10 Systeme, procede et ensemble pour la culture cellulaire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2013039 2020-12-11
FR2013039A FR3117505A1 (fr) 2020-12-11 2020-12-11 Système, procédé et ensemble pour la culture cellulaire

Publications (1)

Publication Number Publication Date
WO2022123032A1 true WO2022123032A1 (fr) 2022-06-16

Family

ID=74871547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/085241 WO2022123032A1 (fr) 2020-12-11 2021-12-10 Systeme, procede et ensemble pour la culture cellulaire

Country Status (5)

Country Link
US (1) US20240026273A1 (fr)
EP (1) EP4259768A1 (fr)
CA (1) CA3201907A1 (fr)
FR (1) FR3117505A1 (fr)
WO (1) WO2022123032A1 (fr)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995007344A1 (fr) * 1993-09-09 1995-03-16 Schwarz Ray P Bioreacteur permeable aux gaz et son procede d'utilisation
JPH0838156A (ja) * 1994-07-28 1996-02-13 Maruha Corp 藻類の培養方法およびその装置
US6902902B2 (en) 2001-11-27 2005-06-07 Arena Pharmaceuticals, Inc. Human G protein-coupled receptors and modulators thereof for the treatment of metabolic-related disorders
WO2009152175A1 (fr) * 2008-06-09 2009-12-17 Solix Biofuels, Inc. Membranes perméables dans des photo-bioréacteurs en film
WO2013155060A1 (fr) * 2012-04-09 2013-10-17 Goodwin Thomas J Appareil de culture à chambres multiples à résonance magnétique ionique alternative (aimr) et procédés d'utilisation
US20150087049A1 (en) 2013-09-25 2015-03-26 Celldeg GbR Research Photobioreactor
WO2017149034A1 (fr) 2016-03-01 2017-09-08 Centre National De La Recherche Scientifique Cnrs Melangeur sans pale et procede
FR3093442A1 (fr) * 2019-03-05 2020-09-11 Centre National De La Recherche Scientifique Méthode de mélange d'un liquide visqueux par un mélangeur à récipient rotatif exempt d'organe de brassage du liquide.

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995007344A1 (fr) * 1993-09-09 1995-03-16 Schwarz Ray P Bioreacteur permeable aux gaz et son procede d'utilisation
JPH0838156A (ja) * 1994-07-28 1996-02-13 Maruha Corp 藻類の培養方法およびその装置
US6902902B2 (en) 2001-11-27 2005-06-07 Arena Pharmaceuticals, Inc. Human G protein-coupled receptors and modulators thereof for the treatment of metabolic-related disorders
WO2009152175A1 (fr) * 2008-06-09 2009-12-17 Solix Biofuels, Inc. Membranes perméables dans des photo-bioréacteurs en film
WO2013155060A1 (fr) * 2012-04-09 2013-10-17 Goodwin Thomas J Appareil de culture à chambres multiples à résonance magnétique ionique alternative (aimr) et procédés d'utilisation
US20150087049A1 (en) 2013-09-25 2015-03-26 Celldeg GbR Research Photobioreactor
WO2017149034A1 (fr) 2016-03-01 2017-09-08 Centre National De La Recherche Scientifique Cnrs Melangeur sans pale et procede
FR3093442A1 (fr) * 2019-03-05 2020-09-11 Centre National De La Recherche Scientifique Méthode de mélange d'un liquide visqueux par un mélangeur à récipient rotatif exempt d'organe de brassage du liquide.

Also Published As

Publication number Publication date
CA3201907A1 (fr) 2022-06-16
EP4259768A1 (fr) 2023-10-18
FR3117505A1 (fr) 2022-06-17
US20240026273A1 (en) 2024-01-25

Similar Documents

Publication Publication Date Title
EP2411500B1 (fr) Procédé pour la culture de microorganismes photosynthétiques
EP1121414B1 (fr) Procede pour ameliorer le rendement d'un photobioreacteur
FR2974814A1 (fr) Photobioreacteur en milieu ferme pour la culture de micro-organismes photosynthetiques
FR2946362A1 (fr) Photobioreacteur,notamment pour la croissance et le developpement de microorganismes photosynthetiques
FR2971255A1 (fr) Bioreacteur pour la culture cellulaire sur substrat tridimensionnel
EP3728546A1 (fr) Photobioreacteur
EP1297104B1 (fr) Procede pour ameliorer le transfert dans une chambre de bioreaction
EP2705132A1 (fr) Procédé pour la récolte de microalgues et dispositif pour la mise en oeuvre de ce procédé
WO2022123032A1 (fr) Systeme, procede et ensemble pour la culture cellulaire
EP2483384B1 (fr) Photo-bioréacteur couche mince à haute productivité volumique
EP3871760A1 (fr) Système d agitation et bassin muni d'un tel système d agitation
FR2968094A1 (fr) Photobioreacteur solaire a dilution controlee du flux en volume
CH700388A2 (fr) Photobioréacteur-digesteur pour la culture de microorganismes photosynthétiques et la production de biogaz.
WO2009087567A2 (fr) Photobioréacteur pour la culture de microorganismes photosynthétiques
KR101663108B1 (ko) 광합성 자기영양 생물 배양을 위한 광생물 반응기용 광튜브
WO2001014514A1 (fr) Dispositif a usage biologique, notamment pour la culture cellulaire
KR101663109B1 (ko) 다양한 형상의 집광부를 구비하는 광생물 반응기용 광튜브
FR2724180A1 (fr) Bioreacteur, en particulier pour micro-gravite
BE1004599A5 (fr) Procede et dispositif de separation de particules a partir d'un milieu fluide.
CA2742699A1 (fr) Procede de culture de micro-organismes, bioreacteur de mise en oeuvre et procede de fabrication d'un tel bioreacteur
FR2678946A1 (fr) Photoreacteur pour la culture en masse de microorganismes en conditions photocontrolees.
FR2679248A1 (fr) Bioreacteur et dispositif pour la culture de cellules animales.
FR2643385A1 (fr) Biophotoreacteur a materiel photosynthetique immobilise
FR2887539A1 (fr) Bio reacteur, pour le traitement des effluents par chenal d'aeration
FR2643384A1 (fr) Biophotoreacteur a eclairage interne pour fibres optiques

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21835276

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18266242

Country of ref document: US

ENP Entry into the national phase

Ref document number: 3201907

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021835276

Country of ref document: EP

Effective date: 20230711