WO2022122043A1 - 相控阵列天线装置 - Google Patents

相控阵列天线装置 Download PDF

Info

Publication number
WO2022122043A1
WO2022122043A1 PCT/CN2021/137521 CN2021137521W WO2022122043A1 WO 2022122043 A1 WO2022122043 A1 WO 2022122043A1 CN 2021137521 W CN2021137521 W CN 2021137521W WO 2022122043 A1 WO2022122043 A1 WO 2022122043A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
area
electromagnetic wave
unit
region
Prior art date
Application number
PCT/CN2021/137521
Other languages
English (en)
French (fr)
Inventor
姚阿敏
周嵩林
王紫阳
朱尔霓
李业振
杨帆
Original Assignee
华为技术有限公司
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司, 清华大学 filed Critical 华为技术有限公司
Publication of WO2022122043A1 publication Critical patent/WO2022122043A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/02Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole

Definitions

  • the present application relates to the field of antenna technology, and in particular, to a phased array antenna device.
  • the antenna device in practical application can be, for example, the following two types:
  • the number of feeds is one
  • the antenna unit includes a radiation unit and a phase control device
  • the phase control device is used to modulate the radiation unit.
  • the radiation unit can adjust the phase of the electromagnetic wave to radiate the beam in a fixed direction.
  • the modulation parameters are different, and the modulated radiation units adjust the phase of the electromagnetic wave to be different, so as to generate beams in different directions. That is, the antenna device can realize single-beam dynamic scanning.
  • the number of feeds is two, and the structure of the antenna unit is fixed. Therefore, the antenna device can transmit two beams in fixed directions.
  • the above-mentioned antenna device cannot realize multi-beam dynamic scanning.
  • the embodiments of the present application provide a phased array antenna device capable of realizing multi-beam dynamic scanning.
  • An embodiment of the present application provides a phased array antenna device, which includes: a first feed source, a second feed source, and an antenna array.
  • the first feed source is used to generate the first electromagnetic wave.
  • the second feed source is used to generate the second electromagnetic wave.
  • the antenna array includes a plurality of antenna units, and each antenna unit includes a radiation unit and a phase control device. Among them, the phase control device is integrated on the radiation unit for modulating the radiation unit.
  • the modulated radiation unit in the first antenna unit is used to adjust the phase of the first electromagnetic wave to generate the first beam.
  • the first antenna unit belongs to multiple antenna units, and the parameters of the modulated radiation unit in the first antenna unit are determined based on the first electromagnetic wave.
  • the modulated radiation unit in the second antenna unit is used to adjust the phase of the second electromagnetic wave to generate the second beam.
  • the second antenna unit belongs to multiple antenna units, and the parameters of the modulated radiation unit in the second antenna unit are determined based on the second electromagnetic wave.
  • phased array antenna device of the embodiment of the present application at least two feeds are used to provide electromagnetic waves, so that the first antenna element in the phased array antenna device radiates the first beam under the irradiation of the first electromagnetic wave, and the phase control
  • the second antenna unit in the array antenna device radiates the second beam under the irradiation of the second electromagnetic wave, thereby realizing the multi-beam emission function. Since the antenna unit is provided with a phase control device, and the phase control device can modulate the radiation unit, so that the radiation unit radiates beams in different directions, thereby realizing multi-beam dynamic scanning.
  • the first area includes the area where the first antenna unit is located
  • the second area includes the area where the second antenna unit is located. That is to say, the area where the antenna unit is located is superimposed, that is, the antenna unit (ie, the third antenna unit) in the overlapping area can not only realize the function of the first antenna unit, generate the first beam, but also realize the third antenna unit.
  • the function of the two antenna units generates a second beam to improve the utilization of the antenna array.
  • the phase control device of the third antenna unit is configured to determine the first modulation parameter according to the incident parameters of the first electromagnetic wave and the second electromagnetic wave, and modulate the radiation of the third antenna unit according to the first modulation parameter unit.
  • the radiation unit of the third antenna unit is further configured to adjust the phase of the first electromagnetic wave to generate the first beam and adjust the phase of the second electromagnetic wave to generate the second beam under the modulation of the first modulation parameter.
  • the third antenna unit is an antenna unit in the overlapping area.
  • the third antenna unit can generate the first beam under the irradiation of the first electromagnetic wave, and under the irradiation of the second electromagnetic wave
  • the second beam can be generated, and the utilization rate of the antenna unit in the antenna array is improved.
  • the area of the first area is the same as the area of the second area, or the area of the first area and the area of the second area are different, so that the phased array antenna device radiates more energy that meets the performance requirements. This improves the utilization of the antenna array.
  • the first sub-region and the second sub-region are spaced apart.
  • the first sub-region belongs to the region where the first antenna unit is located, and the second sub-region belongs to the region where the second antenna unit is located. That is to say, at least some of the antenna units in the first antenna unit and the second antenna unit are distributed at intervals.
  • the first antenna unit can also generate the first beam, and the second antenna unit can also generate the second beam , which not only meets the needs of practical application scenarios, but also improves the utilization rate of the antenna array.
  • the first sub-area is a partial area of the area where the first antenna unit is located
  • the second sub-area is a partial area of the area where the second antenna unit is located. That is, part of the antenna elements in the first antenna element and part of the antenna elements in the second antenna element are distributed at intervals.
  • the first sub-area is a partial area of the area where the first antenna unit is located
  • the second sub-area is the entire area of the area where the second antenna unit is located. That is, some of the antenna elements in the first antenna element and all the antenna elements in the second antenna element are distributed at intervals.
  • the first sub-area is the entire area of the area where the first antenna unit is located
  • the second sub-area is a partial area of the area where the second antenna unit is located. That is, all the antenna elements in the first antenna element and some of the antenna elements in the second antenna element are distributed at intervals.
  • the first sub-area is the entire area of the area where the first antenna unit is located
  • the second sub-area is the entire area of the area where the second antenna unit is located. That is, all the antenna elements in the first antenna element and all the antenna elements in the second antenna element are distributed at intervals.
  • the area of the first sub-region is the same as the area of the second sub-region, or the area of the first sub-region and the area of the second sub-region are different to meet the requirements of different application scenarios.
  • Fig. 1a is a working principle diagram of an antenna device in the prior art
  • FIG. 1b is a schematic diagram of the phase distribution of an antenna device in the prior art
  • FIG. 2a is a schematic structural diagram of yet another antenna device in the prior art
  • 2b is a schematic diagram of beam radiation of an antenna device in the prior art
  • Fig. 3a is a working principle diagram of a phased array antenna device according to an embodiment of the application.
  • 3b is a top view of an antenna array according to an embodiment of the application.
  • 3c is a cross-sectional view of an antenna array according to an embodiment of the present application.
  • FIG. 3d is a working principle diagram of still another phased array antenna device according to an embodiment of the application.
  • 4a is a schematic diagram of a regional distribution according to an embodiment of the present application.
  • Fig. 4b is another schematic diagram of regional distribution according to an embodiment of the present application.
  • 4c is another schematic diagram of regional distribution according to an embodiment of the present application.
  • 4d is another schematic diagram of regional distribution according to an embodiment of the present application.
  • 5a is another schematic diagram of regional distribution according to an embodiment of the present application.
  • 5b is another schematic diagram of regional distribution according to an embodiment of the present application.
  • Fig. 5c is another schematic diagram of regional distribution according to an embodiment of the present application.
  • FIG. 6a is a schematic diagram of still another phase distribution according to an embodiment of the present application.
  • FIG. 6b is another schematic diagram of phase distribution according to an embodiment of the present application.
  • FIG. 6c is a schematic diagram of still another beam radiation according to an embodiment of the present application.
  • FIG. 6d is a schematic diagram of another beam radiation according to an embodiment of the present application.
  • FIG. 7a is a schematic diagram of another phase distribution according to an embodiment of the present application.
  • FIG. 7b is another schematic diagram of phase distribution according to an embodiment of the present application.
  • FIG. 7c is a schematic diagram of yet another beam radiation according to an embodiment of the present application.
  • FIG. 7d is another schematic diagram of beam radiation according to an embodiment of the present application.
  • FIG. 8a is another schematic diagram of phase distribution according to an embodiment of the present application.
  • FIG. 8b is a schematic diagram of another phase distribution according to an embodiment of the present application.
  • FIG. 8c is another schematic diagram of beam radiation according to an embodiment of the present application.
  • FIG. 8d is a schematic diagram of another beam radiation according to an embodiment of the present application.
  • FIG. 9a is a schematic diagram of yet another beam radiation according to an embodiment of the present application.
  • FIG. 9b is another schematic diagram of beam radiation according to an embodiment of the present application.
  • FIG. 9c is another schematic diagram of beam radiation according to an embodiment of the present application.
  • FIG. 9d is a schematic diagram of another beam radiation according to an embodiment of the present application.
  • FIG. 9e is another schematic diagram of beam radiation according to an embodiment of the present application.
  • FIG. 9f is another schematic diagram of beam radiation according to an embodiment of the present application.
  • first”, second, etc. are only used for descriptive purposes, and should not be understood as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature defined as “first”, “second” etc. may expressly or implicitly include one or more of that feature.
  • orientation terms such as “upper”, “lower”, “left”, “right”, “horizontal” and “vertical” are defined relative to the orientation in which the components in the drawings are schematically placed, It should be understood that these directional terms are relative concepts, and they are used for relative description and clarification, which may vary accordingly depending on the orientation in which components are placed in the drawings.
  • words such as “exemplary” or “for example” are used to represent examples, illustrations or illustrations. Any embodiments or designs described in the embodiments of the present application as “exemplary” or “such as” should not be construed as preferred or advantageous over other embodiments or designs. Rather, the use of words such as “exemplary” or “such as” is intended to present the related concepts in a specific manner.
  • Beam refers to the shape formed on the earth's surface by electromagnetic waves emitted by an antenna device.
  • Beam scanning refers to the process of sequentially transmitting beams in different directions by an antenna device.
  • Antenna device refers to the device used in radio equipment to transmit or receive beams.
  • Example 1 An antenna device based on a phased electromagnetic metasurface array irradiated by a single feed source in the prior art
  • the antenna device includes a feed 11 and a phased electromagnetic metasurface array 12 .
  • the phased electromagnetic metasurface array 12 is an antenna array integrated with a phase shifting function, which can realize a beam scanning function.
  • the phased electromagnetic metasurface array 12 can be arranged on the support, as shown in FIG. 1a.
  • the phased electromagnetic metasurface array 12 includes a plurality of antenna elements 121 .
  • Each antenna element 121 includes a radiating element, a bias circuit and a phase control device.
  • the bias circuit is connected with the radiation unit.
  • the phase control device is integrated on the radiation unit, and the phase control device can be a diode, a field effect transistor or other elements.
  • the diode can be a PIN diode, a varactor diode or a MEMS diode.
  • the working process of the antenna device is as follows: the feed source 11 can generate electromagnetic waves, and the electromagnetic waves are irradiated on the radiation units of the phased electromagnetic metasurface array 12 .
  • the phase control device modulates the radiating element with a modulation parameter.
  • the modulated radiating element adjusts the phase of the electromagnetic wave to obtain a beam propagating in a certain direction.
  • the phase control device can determine different modulation parameters. Under different modulation parameters, the modulated radiating element adjusts the phase of the electromagnetic wave differently, thereby generating beams in different directions.
  • the phase change of a radiating element is between [-180°, +180°], as shown in the figure 1a.
  • a dashed line is used to show the transmission process of the electromagnetic wave at a certain moment.
  • FIG. 1b the phase distribution state of the electromagnetic wave after phase adjustment on each antenna element 121 is shown in FIG. 1b.
  • a square represents an antenna unit, and the gray value of each antenna unit represents the phase of the electromagnetic wave radiated by the antenna unit.
  • the antenna device since the number of feeds 11 is one, the number of beams transmitted by the antenna device at a certain moment is also one. That is to say, the antenna device can realize single-beam dynamic scanning.
  • Example 2 is an antenna device of an electromagnetic metasurface array based on a common aperture of two monopole excitation sources in the prior art
  • the antenna arrangement includes a monopole 21 and an electromagnetic metasurface array 22.
  • the number of the monopoles 21 is two, and the monopoles have the same function as the feed source, and are used to provide electromagnetic waves.
  • Electromagnetic metasurface array 22 includes a plurality of antenna elements, as indicated by each square. The microstrip line structure of each antenna element is fixed.
  • the working process of the antenna device is as follows: the monopole 21 can generate electromagnetic waves, and the electromagnetic waves are irradiated on the antenna unit of the electromagnetic metasurface array 22, and under the action of the antenna unit, a beam transmitted in a certain direction is generated.
  • the radiation condition of the beam is shown in Fig. 2b, and the beam angle radiated by the antenna device has the maximum gain at 0°.
  • the antenna arrangement is capable of transmitting two beams in fixed directions.
  • the above-mentioned antenna device cannot realize multi-beam dynamic scanning.
  • the phased array antenna device includes at least two feeds and an antenna array 33 .
  • the feed source involved may be a horn antenna, or may be an antenna of other forms, such as a microstrip antenna.
  • every adjacent two feeds may be described as "first feed 31" and "second feed 32".
  • the antenna array 33 may be a phased electromagnetic metasurface array.
  • the components of the phased array antenna device are described as follows:
  • the first feed source 31 is used to generate the first electromagnetic wave.
  • the second feed source 32 is used to generate the second electromagnetic wave.
  • the first electromagnetic wave and the second electromagnetic wave are shown as dashed lines in Fig. 3a.
  • the antenna array 33 includes a plurality of antenna elements. Each antenna element includes a radiating element and a phase control device. Among them, the phase control device is integrated on the radiation unit for modulating the radiation unit.
  • the phase control device may be a diode, a field effect transistor or other elements. Wherein, the diode can be a PIN diode, a varactor diode or a MEMS diode.
  • the number of diodes may be one or more (not shown in Figure 3b).
  • the diodes and the radiating elements are both disposed on the first surface of the dielectric plate of the antenna array 33 .
  • One end of the diode is electrically connected to a ground (ground, GND) line, and the other end of the diode is electrically connected to the radiation unit.
  • a power supply circuit is arranged on the second surface of the dielectric plate of the antenna array 33, and the radiation unit can be connected to the power supply circuit through the metal inside the dielectric plate, so as to supply power to the radiation unit.
  • the first electromagnetic wave is irradiated on the radiation unit of the first antenna unit 331 .
  • the phase control device of the first antenna unit 331 determines the modulation parameter 1 to modulate the radiating element of the first antenna unit 331 based on the modulation parameter 1 .
  • the radiation unit modulated by the modulation parameter 1 adjusts the phase of the first electromagnetic wave to generate the first beam.
  • one of the first antenna elements 331 will be described as "antenna element 1".
  • the implementation process of "the phase control device of the antenna unit 1 determines the modulation parameter 1" is as follows: the phase control device of the antenna unit 1 determines the incident parameters of the first electromagnetic wave (such as the incident angle ⁇ 1, the incident amplitude A1), and based on the first electromagnetic wave An incident parameter of an electromagnetic wave determines the modulation parameter 1.
  • modulation parameter 1 satisfies the following formula:
  • W1 represents the modulation parameter 1
  • ⁇ 1 represents the incident angle of the first electromagnetic wave
  • A1 represents the incident amplitude of the first electromagnetic wave.
  • the second electromagnetic wave is irradiated on the radiation unit of the second antenna unit 332 .
  • the phase control device of the second antenna element 332 determines the modulation parameter 2 to modulate the radiating element of the second antenna element 332 based on the modulation parameter 2 .
  • the radiation unit modulated by the modulation parameter 2 adjusts the phase of the second electromagnetic wave to generate the second beam.
  • one of the second antenna units 332 will be described as "antenna unit 2".
  • the implementation process of "the phase control device of the antenna unit 2 determines the modulation parameter 2" is as follows: the phase control device of the antenna unit 2 determines the incident parameters of the second electromagnetic wave (such as the incident angle ⁇ 2, the incident amplitude A2), and based on the first Second, the incident parameters of the electromagnetic wave, determine the modulation parameter 2.
  • the modulation parameter 2 satisfies the following formula:
  • W2 represents the modulation parameter 2
  • ⁇ 2 represents the incident angle of the second electromagnetic wave
  • A2 represents the incident amplitude of the second electromagnetic wave.
  • the working state of the antenna array 33 may be a transmission type or a reflection type.
  • the phased array antenna device is applied to wireless point-to-multipoint (PtMP)
  • the first feed source 31 and the second feed source 32 are located below the antenna array 33, and the antenna array 33 is in the transmission mode working state, as shown in Figure 3d.
  • the phased array antenna device is applied to a high-frequency small station
  • the first feed source 31 and the second feed source 32 are located above the antenna array 33, and the antenna array 33 is in a reflective working state, as shown in Figure 3a. .
  • phased array antenna device of the embodiment of the present application at least two feeds are used to provide electromagnetic waves, so that the first antenna element in the phased array antenna device radiates the first beam under the irradiation of the first electromagnetic wave, and the phase control
  • the second antenna unit in the array antenna device radiates the second beam under the irradiation of the second electromagnetic wave, thereby realizing the multi-beam emission function. Since the antenna unit is provided with a phase control device, and the phase control device can modulate the radiation unit, so that the radiation unit radiates beams in different directions, thereby realizing multi-beam dynamic scanning.
  • the irradiation areas of the first electromagnetic wave and the second electromagnetic wave may or may not overlap.
  • the case where the irradiation areas of the first electromagnetic wave and the second electromagnetic wave do not overlap is shown in FIG. 4 a .
  • the shape of the overlapping area may be a regular shape, such as a parallelogram as shown in FIG. 4b, or an irregular shape (not shown in FIG. 4b). The embodiment does not limit this.
  • the position between the first antenna unit 331 for generating the first beam and the second antenna unit 332 for generating the second beam may satisfy the following two examples:
  • Example 1 There is an overlapping area between the first area and the second area, as shown in FIG. 4b.
  • the first area refers to the area where the first antenna unit 331 is located
  • the second area refers to the area where the second antenna unit 332 is located. That is to say, the antenna unit in the overlapping area (described as "the third antenna unit 333" in the embodiment of this application) can radiate both the first beam and the second beam, so as to save the area of the antenna array and improve the gain of the beam .
  • the shapes of the first area and the second area may be regular images, as shown in FIG. 4b, or irregular shapes (not shown in FIG. 4b).
  • the area of the first region and the area of the second region may be the same, as shown in FIG.
  • the ratio of the area of the overlapping region to the area of the first region satisfies one of the following values: 0.375, 0.500, or 0.625.
  • the first ratio may be the width of the overlapping area and the first ratio. The ratio between the widths of a region.
  • the ratio of the area of the overlapping region to the area of the second region satisfies one of the following values: 0.375, 0.500, or 0.625.
  • the second ratio may be the width of the overlapping area and the length of the second area. The ratio between the widths of the second regions. In this way, the performance of the beam radiated by the phased array antenna device is better, which meets practical application requirements.
  • the working process of the third antenna unit 333 is as follows: the phase control device of the third antenna unit 333 determines the incident parameters of the first electromagnetic wave (such as the incident angle ⁇ 1, the incident amplitude A1) and the incident parameters of the second electromagnetic wave (such as the incident Angle ⁇ 2, incident amplitude A2), and based on the incident parameter of the first electromagnetic wave and the incident parameter of the second electromagnetic wave, determine the modulation parameter 3, and use the modulation parameter 3 to modulate the radiation element of the third antenna unit 333.
  • the radiation unit modulated by the modulation parameter 3 can adjust the phase of the first electromagnetic wave to generate the first beam.
  • the radiation unit modulated by the modulation parameter 3 can also adjust the phase of the second electromagnetic wave to generate the second beam.
  • the modulation parameter 3 satisfies the following formula:
  • W3 represents the modulation parameter 3
  • ⁇ 1 represents the incident angle of the first electromagnetic wave
  • A1 represents the incident amplitude of the first electromagnetic wave
  • ⁇ 2 represents the incident angle of the second electromagnetic wave
  • A2 represents the incident amplitude of the second electromagnetic wave.
  • the overlapping area may be a partial area in the first area, as shown in FIG. 4b.
  • the overlapping area may also be all areas in the first area, as shown in FIG. 4c , which is not limited in this embodiment of the present application.
  • the overlapping area may be a partial area in the second area, as shown in FIG. 4b.
  • the overlapping area may also be all areas in the second area, as shown in FIG. 4d , which is not limited in this embodiment of the present application.
  • Example 2 The first sub-region and the second sub-region are distributed at intervals.
  • the first sub-region belongs to the first region (ie, the region where the first antenna unit 331 is located).
  • the first sub-area may be the entire area of the first area, as shown in FIG. 5a, or may be a partial area of the first area, as shown in FIG. 5b.
  • the ratio of the area of the first sub-region to the area of the first region ie, the third ratio
  • the “area of the first sub-region” refers to the sum of the areas of the first sub-regions on the antenna array 33 . Exemplarily, still taking FIG.
  • the length of the first sub-area is the same as the length of the first area
  • the third ratio may be the first sub-area. The ratio between the width of and the width of the first region.
  • the second sub-region belongs to the second region (ie, the region where the second antenna unit 332 is located).
  • the second sub-area may be the entire area of the second area, as shown in FIG. 5c, or a partial area of the second area, as shown in FIG. 5b.
  • the ratio of the area of the second sub-region to the area of the second region satisfies one of the following values: 0.375, 0.500, or 0.625.
  • the “area of the second sub-region” refers to the sum of the areas of the second sub-regions on the antenna array 33 . Exemplarily, still taking FIG.
  • the length of the second sub-area is the same as the length of the second area, and the fourth ratio may be the second sub-area.
  • the directions of the first sub-region and the second sub-region may be any direction, that is, the direction of the first sub-region and the second sub-region may be a horizontal direction or a vertical direction.
  • the area of the first sub-region and the area of the second sub-region may be the same (as shown in FIG. 5 b ) or different (as shown in FIG. 5 c ), which is not limited in this embodiment of the present application.
  • the values of the above four ratios (that is, the first ratio, the second ratio, the third ratio, or the fourth ratio) are only examples, and the above four ratios may also be 0, 1, or other values between 0 and 1, This embodiment of the present application does not limit this.
  • the focal diameter of the first feed source 31 and the second feed source 32 is 0.75
  • the antenna array 33 includes 16 ⁇ 26 antenna elements, and the area of the first area is equal to the area of the second area” as an example
  • Case 1 In the above example 1, the value of the first ratio and the second ratio is 0.375.
  • the phase distributions of different antenna elements on the antenna array 33 of the first beam and the second beam are shown in Fig. 6a.
  • the value of the third ratio and the fourth ratio is 0.375.
  • the phase distributions of different antenna elements on the antenna array 33 of the first beam and the second beam are shown in Fig. 6b.
  • Example 1 and Example 2 in the case of "the radiation angle of the first beam is -30°", Fig. 6c shows the radiation pattern of the first beam. In the case of "the radiation angle of the second beam is 45°", Fig. 6d shows the radiation pattern of the second beam. It can be seen from FIG. 6c and FIG.
  • the value of the first ratio and the second ratio is 0.500.
  • the phase distributions of the first beam and the second beam at different antenna elements on the antenna array 33 are shown in Fig. 7a.
  • the value of the third ratio and the fourth ratio is 0.500.
  • the phase distributions of different antenna elements on the antenna array 33 of the first beam and the second beam are shown in Fig. 7b.
  • Fig. 7c shows the radiation pattern of the first beam.
  • Fig. 7d shows the radiation pattern of the second beam. It can be seen from Fig. 7c and Fig.
  • the dual beam of Example 2 (ie the first ratio of Example 2)
  • the side lobe gain of the beam and the second beam is smaller than the side lobe gain of the dual beam of Example 1 (ie the first beam and the second beam in Example 1), that is, the dual beam performance of Example 2 is better than the dual beam performance of Example 1.
  • the side lobes of the dual beam in Example 1 and the dual beam in Example 2 are both below -14dB.
  • Case 3 In the above example 1, the value of the first ratio and the second ratio is 0.625.
  • the phase distributions of different antenna elements on the antenna array 33 of the first beam and the second beam are shown in FIG. 8a.
  • the value of the third ratio and the fourth ratio is 0.625.
  • the phase distributions of the first beam and the second beam at different antenna elements on the antenna array 33 are shown in Fig. 8b.
  • Fig. 8c shows the radiation pattern of the first beam.
  • Fig. 8d shows the radiation pattern of the second beam. It can be seen from Fig. 8c and Fig.
  • the value of the first ratio and the second ratio is 0.500.
  • the value of the third ratio and the fourth ratio is 0.500.
  • Fig. 9a shows the radiation pattern of the first beam
  • Figure 9b shows the radiation pattern of the second beam.
  • Fig. 9c shows the radiation pattern of the first beam
  • Fig. 9d shows the radiation pattern of the second beam. Radiation pattern.
  • Fig. 9e shows the radiation pattern of the first beam
  • Fig. 9f shows the radiation pattern of the second beam. Radiation pattern. It can be seen from Fig. 9a to Fig. 9f that the scanning performance of the dual beam of Example 1 (that is, the first beam and the second beam in Example 1) and the dual beam of Example 2 (that is, the first beam and the second beam of Example 2) are It is better in the range of 15° to 60°, and the side lobe performance is below -10dB.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请提供一种相控阵列天线装置,涉及天线技术领域,能够实现多波束动态扫描。该相控阵列天线装置包括第一馈源、第二馈源和天线阵列。其中,天线阵列包括多个天线单元。天线单元包括:辐射单元、相位控制器件。相位控制器件集成在辐射单元上,用于调制辐射单元。第一天线单元中经过调制后的辐射单元,用于调整第一电磁波的相位,以生成第一波束。第二天线单元中经过调制后的辐射单元,用于调整第二电磁波的相位,以生成第二波束。其中,第一天线单元所在的区域与第二天线单元所在的区域之间存在交叠区域,或第一天线单元所在区域中的部分区域与第二天线单元所在区域中的部分区域间隔分布。

Description

相控阵列天线装置
本申请要求于2020年12月11日提交国家知识产权局、申请号为202011460235.0、申请名称为“相控阵列天线装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及天线技术领域,尤其涉及一种相控阵列天线装置。
背景技术
目前,大部分天线装置包括馈源和天线阵列。其中,天线阵列包括多个天线单元。馈源产生的电磁波照射在天线单元上,以辐射出沿固定方向的波束。基于上述结构,实际应用的天线装置可以例如下面两种:
在一种天线装置中,馈源的数量为一个,天线单元包括辐射单元和相位控制器件,相位控制器件用于调制辐射单元。在偏置电路为辐射单元提供偏置电流的情况下,辐射单元能够调整电磁波的相位,以辐射出沿固定方向的波束。其中,调制参数不同,调制后的辐射单元对电磁波调整的相位也不一样,以产生不同方向的波束。即该天线装置能够实现单波束动态扫描。在另一种天线装置中,馈源的数量为两个,且天线单元的结构固定。所以,该天线装置能够传输固定方向的两个波束。
也就是说,上述天线装置无法实现多波束动态扫描。
发明内容
本申请实施例提供一种相控阵列天线装置,能够实现多波束动态扫描。
为达到上述目的,本申请实施例采用如下技术方案:
本申请实施例提供一种相控阵列天线装置,该装置包括:第一馈源、第二馈源和天线阵列。其中,第一馈源用于产生第一电磁波。第二馈源用于产生第二电磁波。天线阵列包括多个天线单元,每个天线单元包括:辐射单元和相位控制器件。其中,相位控制器件集成在辐射单元上,用于调制辐射单元。在相控阵列天线装置处于工作状态时,第一天线单元中经过调制后的辐射单元,用于调整第一电磁波的相位,以生成第一波束。其中,第一天线单元属于多个天线单元,且第一天线单元中调制辐射单元的参数是基于第一电磁波确定的。第二天线单元中经过调制后的辐射单元,用于调整第二电磁波的相位,以生成第二波束。其中,第二天线单元属于多个天线单元,且第二天线单元中调制辐射单元的参数是基于第二电磁波确定的。
在本申请实施例相控阵列天线装置中,采用至少两个馈源提供电磁波,以使相控阵列天线装置中的第一天线单元在第一电磁波的照射下,辐射第一波束,以及相控阵列天线装置中的第二天线单元在第二电磁波的照射下,辐射第二波束,从而实现多波束发射功能。由于天线单元中设置有相位控制器件,且相位控制器件能够调制辐射单元,以使辐射单元辐射不同方向的波束,从而实现多波束动态扫描。
在一种可能的设计中,第一区域与第二区域之间存在交叠区域。其中,第一区域包括 第一天线单元所在的区域,第二区域包括第二天线单元所在的区域。也就是说,天线单元的所处区域存在叠加的情况,即处于交叠区域中的天线单元(即第三天线单元)既能够实现第一天线单元的功能,产生第一波束,也能够实现第二天线单元的功能,产生第二波束,以提高天线阵列的利用率。
在一种可能的设计中,第三天线单元的相位控制器件,用于根据第一电磁波和第二电磁波的入射参数,确定第一调制参数,以及根据第一调制参数调制第三天线单元的辐射单元。第三天线单元的辐射单元,还用于在第一调制参数的调制下,调整第一电磁波的相位,以生成第一波束,以及调整第二电磁波的相位,以生成第二波束。其中,第三天线单元是交叠区域中的一个天线单元。
由于第一调制参数是基于第一电磁波的入射参数和第二电磁波的入射参数所确定的,所以,第三天线单元在第一电磁波的照射下能够产生第一波束,在第二电磁波的照射下能够产生第二波束,提高了天线阵列中天线单元的利用率。
在一种可能的设计中,第一区域的面积与第二区域的面积相同,或者,第一区域的面积与第二区域的面积不同,既使得相控阵列天线装置辐射出满足性能要求的多个波束,又提高了天线阵列的利用率。
在一种可能的设计中,第一子区域与第二子区域间隔分布。其中,第一子区域属于第一天线单元所处区域,第二子区域属于第二天线单元所处区域。也就是说,第一天线单元和第二天线单元中至少存在一部分天线单元是间隔分布的,此种情况下,第一天线单元也能够产生第一波束,第二天线单元也能够产生第二波束,既满足了实际应用场景的需求,也提高了天线阵列的利用率。
在一种可能的设计中,第一子区域与第二子区域的分布情况有多种。例如,第一子区域是第一天线单元所处区域的部分区域,第二子区域是第二天线单元所处区域的部分区域。也就是说,第一天线单元中的部分天线单元和第二天线单元中的部分天线单元是间隔分布的。
再如,第一子区域是第一天线单元所处区域的部分区域,第二子区域是第二天线单元所处区域的全部区域。也就是说,第一天线单元中的部分天线单元和第二天线单元中的全部天线单元是间隔分布的。
又如,第一子区域是第一天线单元所处区域的全部区域,第二子区域是第二天线单元所处区域的部分区域。也就是说,第一天线单元中的全部天线单元和第二天线单元中的部分天线单元是间隔分布的。
又如,第一子区域是第一天线单元所处区域的全部区域,第二子区域是第二天线单元所处区域的全部区域。也就是说,第一天线单元中的全部天线单元和第二天线单元中的全部天线单元是间隔分布的。
在一种可能的设计中,第一子区域的面积与第二子区域的面积相同,或者,第一子区域的面积与第二子区域的面积不同,以满足不同应用场景的需求。
附图说明
图1a为现有技术中一种天线装置的工作原理图;
图1b为现有技术中一种天线装置的相位分布示意图;
图2a为现有技术中再一种天线装置的结构示意图;
图2b为现有技术中一种天线装置的波束辐射示意图;
图3a为本申请实施例的一种相控阵列天线装置的工作原理图;
图3b为本申请实施例的一种天线阵列的俯视图;
图3c为本申请实施例的一种天线阵列的截面图;
图3d为本申请实施例的再一种相控阵列天线装置的工作原理图;
图4a为本申请实施例的一种区域分布示意图;
图4b为本申请实施例的再一种区域分布示意图;
图4c为本申请实施例的又一种区域分布示意图;
图4d为本申请实施例的又一种区域分布示意图;
图5a为本申请实施例的又一种区域分布示意图;
图5b为本申请实施例的又一种区域分布示意图;
图5c为本申请实施例的又一种区域分布示意图;
图6a为本申请实施例的再一种相位分布示意图;
图6b为本申请实施例的又一种相位分布示意图;
图6c为本申请实施例的再一种波束辐射示意图;
图6d为本申请实施例的又一种波束辐射示意图;
图7a为本申请实施例的又一种相位分布示意图;
图7b为本申请实施例的又一种相位分布示意图;
图7c为本申请实施例的又一种波束辐射示意图;
图7d为本申请实施例的又一种波束辐射示意图;
图8a为本申请实施例的又一种相位分布示意图;
图8b为本申请实施例的又一种相位分布示意图;
图8c为本申请实施例的又一种波束辐射示意图;
图8d为本申请实施例的又一种波束辐射示意图;
图9a为本申请实施例的又一种波束辐射示意图;
图9b为本申请实施例的又一种波束辐射示意图;
图9c为本申请实施例的又一种波束辐射示意图;
图9d为本申请实施例的又一种波束辐射示意图;
图9e为本申请实施例的又一种波束辐射示意图;
图9f为本申请实施例的又一种波束辐射示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
其中,在本申请的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B。本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。在本申请的描述中,“多个”是指两个或两个以上。
以下,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示 或者隐含地包括一个或者更多个该特征。
此外,本申请中,“上”、“下”、“左”、“右”、“水平”以及“竖直”等方位术语是相对于附图中的部件示意置放的方位来定义的,应当理解到,这些方向性术语是相对的概念,它们用于相对于的描述和澄清,其可以根据附图中部件所放置的方位的变化而相应地发生变化。
本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
为了使得本申请更加的清楚,首先对本申请提到的部分概念和处理流程作简单介绍。
1、波束(beam)、波束扫描(beam sweeping)
波束,是指由天线装置发射出来的电磁波在地球表面上形成的形状。
波束扫描,是指由天线装置依次发射不同方向的波束的过程。
2、天线(antenna)装置
天线装置,是指在无线电设备中用于发射或接收波束的装置。
下面,给出了现有技术中两种天线装置的介绍:
示例一、现有技术中一种基于单馈源照射的相控电磁超表面阵列的天线装置
参见图1a,该天线装置包括馈源11和相控电磁超表面阵列12。其中,馈源11的数量为一个。相控电磁超表面阵列12是集成有移相功能的天线阵列,可实现波束扫描功能。相控电磁超表面阵列12可以设置于支架上,如图1a所示。相控电磁超表面阵列12包括多个天线单元121。每个天线单元121包括辐射单元、偏置电路和相位控制器件。其中,偏置电路与辐射单元连接。相位控制器件集成在辐射单元上,相位控制器件可以是二极管、场效应管或其他元件。其中,二极管可以是PIN二极管、变容二极管或MEMS二极管。该天线装置的工作过程如下:馈源11能够产生电磁波,且电磁波照射在相控电磁超表面阵列12的辐射单元上。在偏置电路为辐射单元提供偏置电流的情况下,相位控制器件采用调制参数调制辐射单元。经过调制后的辐射单元调整电磁波的相位,以得到沿某一方向传输的波束。在上述工作过程中,相位控制器件可以确定不同的调制参数。在不同的调制参数下,调制后的辐射单元对电磁波调整的相位也不一样,从而产生不同方向的波束,某一个辐射单元的相位变化在[-180°,+180°]之间,如图1a所示。在图1a中,采用虚线示出了某一时刻的电磁波的传输过程。以16X16的相控电磁超表面阵列为例,在某一时刻,经过相位调整后的电磁波在每个天线单元121上的相位分布状态如图1b所示。在图1b中,一个方格表示一个天线单元,每个天线单元的灰度值表示该天线单元辐射出的电磁波的相位。
在该天线装置中,由于馈源11的数量是一个,所以,该天线装置在某一时刻发射波束的数量也是一个。也就是说,该天线装置能够实现单波束动态扫描。
示例二、是现有技术中一种基于两个单极子(monopole)激励源共口径的电磁超表面阵列的天线装置
参见图2a,该天线装置包括单极子21和电磁超表面阵列22。其中,单极子21的数量为两个,单极子与馈源的作用相同,用于提供电磁波。电磁超表面阵列22包括多个天线单元,如每个方格所示。每个天线单元的微带线结构是固定的。该天线装置的工作过程如下:单极子21能够产生电磁波,且电磁波照射于电磁超表面阵列22的天线单元上,在天线单 元的作用下,产生沿某一方向传输的波束。波束的辐射状况如图2b所示,该天线装置辐射的波束角度在0°时增益最大。
在该天线装置中,由于单极子21的数量是两个,所以,该天线装置在某一时刻发射波束的数量也是两个。由于电磁超表面阵列22是未集成有移相功能的天线阵列,所以,该天线装置发射的波束方向是固定的。也就是说,该天线装置能够传输固定方向的两个波束。
也就是说,上述天线装置无法实现多波束动态扫描。
有鉴于此,本申请实施例提供一种相控阵列天线装置,能够实现多波束动态扫描。参见图3a,该相控阵列天线装置包括至少两个馈源和天线阵列33。示例性的,本申请实施例相控阵列天线装置中,涉及的馈源可以是喇叭天线,也可以是其他形式的天线,如微带天线。在至少两个馈源中,每相邻两个馈源可以描述为“第一馈源31”和“第二馈源32”。天线阵列33可以是相控电磁超表面阵列。
其中,本申请实施例相控阵列天线装置的各部件介绍如下:第一馈源31用于产生第一电磁波。第二馈源32用于产生第二电磁波。第一电磁波和第二电磁波如图3a中的虚线所示。天线阵列33包括多个天线单元。每个天线单元包括辐射单元和相位控制器件。其中,相位控制器件集成在辐射单元上,用于调制辐射单元。示例性的,参见图3b,相位控制器件可以是二极管、场效应管或其他元件。其中,二极管可以是PIN二极管、变容二极管或MEMS二极管。二极管的数量可以是一个,也可以是多个(图3b未示出)。参见图3c,二极管和辐射单元均设置在天线阵列33的介质板的第一表面。二极管的一端与地(ground,GND)线电连接,二极管的另一端与辐射单元电连接。天线阵列33的介质板的第二表面布设有供电电路,辐射单元可以通过介质板内部的金属与供电电路连接,从而为辐射单元供电。
其中,本申请实施例相控阵列天线装置的工作过程如下:
第一电磁波照射在第一天线单元331的辐射单元上。第一天线单元331的相位控制器件确定调制参数1,以基于调制参数1调制第一天线单元331的辐射单元。经过调制参数1调制后的辐射单元调整第一电磁波的相位,以生成第一波束。下面,将第一天线单元331中的一个天线单元描述为“天线单元1”。示例性的,“天线单元1的相位控制器件确定调制参数1”的实现过程如下:天线单元1的相位控制器件确定第一电磁波的入射参数(如入射角度φ1、入射幅度A1),并基于第一电磁波的入射参数,确定调制参数1。例如,调制参数1满足如下公式:
W1=Phase(A1exp(jφ1))      公式(1)
其中,W1表示调制参数1,φ1表示第一电磁波的入射角度,A1表示第一电磁波的入射幅度。“天线单元1的相位控制器件确定调制参数1”的具体过程也可以参见现有技术,此处不再赘述。
第二电磁波照射在第二天线单元332的辐射单元上。第二天线单元332的相位控制器件确定调制参数2,以基于调制参数2调制第二天线单元332的辐射单元。经过调制参数2调制后的辐射单元调整第二电磁波的相位,以生成第二波束。下面,将第二天线单元332中的一个天线单元描述为“天线单元2”。示例性的,“天线单元2的相位控制器件确定调制参数2”的实现过程如下:天线单元2的相位控制器件确定第二电磁波的入射参数(如入射角度φ2、入射幅度A2),并基于第二电磁波的入射参数,确定调制参数2。例如,调制参 数2满足如下公式:
W2=Phase(A2exp(jφ2))      公式(2)
其中,W2表示调制参数2,φ2表示第二电磁波的入射角度,A2表示第二电磁波的入射幅度。“天线单元2的相位控制器件确定调制参数2”的具体过程也可以参见现有技术,此处不再赘述。
需要说明的是,在本申请实施例相控阵列天线装置中,天线阵列33的工作状态可以是透射式,也可以反射式。例如,在相控阵列天线装置应用于无线点到多点(point-to-multipoint,PtMP)时,第一馈源31和第二馈源32位于天线阵列33的下方,天线阵列33处于透射式的工作状态,如图3d所示。再如,在相控阵列天线装置应用于高频小站时,第一馈源31和第二馈源32位于天线阵列33的上方,天线阵列33处于反射式的工作状态,如图3a所示。
在本申请实施例相控阵列天线装置中,采用至少两个馈源提供电磁波,以使相控阵列天线装置中的第一天线单元在第一电磁波的照射下,辐射第一波束,以及相控阵列天线装置中的第二天线单元在第二电磁波的照射下,辐射第二波束,从而实现多波束发射功能。由于天线单元中设置有相位控制器件,且相位控制器件能够调制辐射单元,以使辐射单元辐射不同方向的波束,从而实现多波束动态扫描。
在一些实施例中,第一电磁波和第二电磁波的照射区域可以重叠,也可以不重叠。其中,第一电磁波和第二电磁波的照射区域不重叠的情况如图4a所示。在第一电磁波和第二电磁波的照射区域重叠的情况下,重叠区域的形状可以是规则形状,如图4b所示的平行四边形,也可以是不规则形状(图4b未示出),本申请实施例对此不作限定。用于产生第一波束的第一天线单元331和用于产生第二波束的第二天线单元332之间的位置可以满足如下两种示例:
示例一、第一区域与第二区域存在交叠区域,如图4b所示。其中,第一区域是指第一天线单元331所在的区域,第二区域是指第二天线单元332所在的区域。也就是说,处于交叠区域的天线单元(本申请实施例描述为“第三天线单元333”)既能够辐射第一波束,又能够辐射第二波束,以节省天线阵列面积,提高波束的增益。其中,第一区域和第二区域的形状可以是规则图像,如图4b所示,也可以是不规则图形(图4b未示出)。第一区域的面积与第二区域的面积可以相同,如图4b所示,也可以不同(图4b未示出),本申请实施例对此不作限定。作为一种示例,交叠区域的面积与第一区域的面积之比(即第一比值)满足如下数值中的一项:0.375、0.500、或0.625。示例性的,以图4b为例,在第一区域和交叠区域均为矩形的情况下,交叠区域的长度和第一区域的长度相同,第一比值可以是交叠区域的宽度和第一区域的宽度之间的比值。作为另一种示例,交叠区域的面积与第二区域的面积之比(即第二比值)满足如下数值中的一项:0.375、0.500、或0.625。示例性的,仍以图4b为例,在第二区域和交叠区域均为矩形的情况下,交叠区域的长度和第二区域的长度相同,第二比值可以是交叠区域的宽度和第二区域的宽度之间的比值。如此,相控阵列天线装置辐射的波束性能较优,满足实际应用需求。
下面,将交叠区域中的任意一个天线单元描述为“第三天线单元333”。示例性的,第三天线单元333的工作过程如下:第三天线单元333的相位控制器件确定第一电磁波的入射参数(如入射角度φ1、入射幅度A1)和第二电磁波的入射参数(如入射角度φ2、入射幅 度A2),并基于第一电磁波的入射参数和第二电磁波的入射参数,确定调制参数3,采用调制参数3调制第三天线单元333的辐射单元。经过调制参数3调制后的辐射单元能够调整第一电磁波的相位,以生成第一波束。经过调制参数3调制后的辐射单元还能够调整第二电磁波的相位,以生成第二波束。示例性的,调制参数3满足如下公式:
W3=Phase(A1exp(jφ1)+A2exp(jφ2))      公式(3)
其中,W3表示调制参数3,φ1表示第一电磁波的入射角度,A1表示第一电磁波的入射幅度。φ2表示第二电磁波的入射角度,A2表示第二电磁波的入射幅度。
需要说明的是,交叠区域可以是第一区域中的部分区域,如图4b所示。交叠区域也可以是第一区域中的全部区域,如图4c所示,本申请实施例对此不作限定。类似的,交叠区域可以是第二区域中的部分区域,如图4b所示。交叠区域也可以是第二区域中的全部区域,如图4d所示,本申请实施例对此不作限定。
示例二、第一子区域与第二子区域间隔分布。其中,第一子区域属于第一区域(即第一天线单元331所处区域)。第一子区域可以是第一区域的全部区域,如图5a所示,也可以是第一区域的部分区域,如图5b所示。其中,第一子区域的面积与第一区域的面积之比(即第三比值)满足如下数值中的一项:0.375、0.500、或0.625。“第一子区域的面积”是指,天线阵列33上的第一子区域的面积之和。示例性的,仍以图5b为例,在第一区域和第一子区域均为矩形的情况下,第一子区域的长度和第一区域的长度相同,第三比值可以是第一子区域的宽度和第一区域的宽度之间的比值。
第二子区域属于第二区域(即第二天线单元332所处区域)。第二子区域可以是第二区域的全部区域,如图5c所示,也可以是第二区域的部分区域,如图5b所示。其中,第二子区域的面积与第二区域的面积之比(即第四比值)满足如下数值中的一项:0.375、0.500、或0.625。“第二子区域的面积”是指,天线阵列33上的第二子区域的面积之和。示例性的,仍以图5b为例,在第二区域和第二子区域均为矩形的情况下,第二子区域的长度和第二区域的长度相同,第四比值可以是第二子区域的宽度和第二区域的宽度之间的比值。如此,相控阵列天线装置辐射的波束性能较优,满足实际应用需求。
需要说明的是,第一子区域和第二子区域的方向可以是任意方向,即第一子区域和第二子区域的方向可以是水平方向,也可以是竖直方向。第一子区域的面积和第二子区域的面积可以相同(如图5b所示),也可以不同(如图5c所示),本申请实施例对此不作限定。上述四个比值(即第一比值、第二比值、第三比值、或第四比值)的取值仅是示例,上述四个比值也可以是0、1或0到1之间的其他数值,本申请实施例对此不作限定。
下面,以“第一馈源31和第二馈源32的焦径为0.75”,且“天线阵列33包括16X26个天线单元、第一区域的面积与第二区域的面积相等”为例,分四种情况,对示例一和示例二的相控阵列天线装置性能进行说明:
情况一、在上述示例一中,第一比值和第二比值的取值为0.375。第一波束和第二波束在天线阵列33上不同天线单元的相位分布如图6a所示。在上述示例二中,第三比值和第四比值的取值为0.375。第一波束和第二波束在天线阵列33上不同天线单元的相位分布如图6b所示。对于示例一和示例二而言,在“第一波束的辐射角度为-30°”的情况下,图6c示出了第一波束的辐射方向图。在“第二波束的辐射角度为45°”的情况下,图6d示出了第二波束的辐射方向图。由图6c和图6d可知,在四个比值(即第一比值、第二比值、第三比值和第四比 值)均为0.375的情况下,示例一的双波束(即示例一中的第一波束和第二波束)和示例二的双波束(即示例二中的第一波束和第二波束)性能差异不大,旁瓣均在-14dB以下。
情况二、在上述示例一中,第一比值和第二比值的取值为0.500。第一波束和第二波束在天线阵列33上不同天线单元的相位分布如图7a所示。在上述示例二中,第三比值和第四比值的取值为0.500。第一波束和第二波束在天线阵列33上不同天线单元的相位分布如图7b所示。对于示例一和示例二而言,在“第一波束的辐射角度为-30°”的情况下,图7c示出了第一波束的辐射方向图。在“第二波束的辐射角度为45°”的情况下,图7d示出了第二波束的辐射方向图。由图7c和图7d可知,在四个比值(即第一比值、第二比值、第三比值和第四比值)均为0.500的情况下,示例二的双波束(即示例二中的第一波束和第二波束)旁瓣增益小于示例一的双波束(即示例一中的第一波束和第二波束)旁瓣增益,即示例二的双波束性能优于示例一的双波束性能。但示例一的双波束和示例二的双波束旁瓣均在-14dB以下。
情况三、在上述示例一中,第一比值和第二比值的取值为0.625。第一波束和第二波束在天线阵列33上不同天线单元的相位分布如图8a所示。在上述示例二中,第三比值和第四比值的取值为0.625。第一波束和第二波束在天线阵列33上不同天线单元的相位分布如图8b所示。对于示例一和示例二而言,在“第一波束的辐射角度为-30°”的情况下,图8c示出了第一波束的辐射方向图。在“第二波束的辐射角度为45°”的情况下,图8d示出了第二波束的辐射方向图。由图8c和图8d可知,在四个比值(即第一比值、第二比值、第三比值和第四比值)均为0.625的情况下,示例一的双波束(即示例一中的第一波束和第二波束)和示例二的双波束(即示例二中的第一波束和第二波束)旁瓣稍有恶化,增益在-10dB以下。
情况四、在上述示例一中,第一比值和第二比值的取值为0.500。在上述示例二中,第三比值和第四比值的取值为0.500。对于示例一和示例二而言,在“第一波束的辐射角度为-15°、且第二波束的辐射角度为30°”的情况下,图9a示出了第一波束的辐射方向图,图9b示出了第二波束的辐射方向图。在“第一波束的辐射角度为-15°、且第二波束的辐射角度为45°”的情况下,图9c示出了第一波束的辐射方向图,图9d示出了第二波束的辐射方向图。在“第一波束的辐射角度为-15°、且第二波束的辐射角度为60°”的情况下,图9e示出了第一波束的辐射方向图,图9f示出了第二波束的辐射方向图。由图9a至图9f可知,示例一的双波束(即示例一中的第一波束和第二波束)和示例二的双波束(即示例二中的第一波束和第二波束)扫描性能在15°至60°的范围内较优,旁瓣性能均在-10dB以下。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (7)

  1. 一种相控阵列天线装置,其特征在于,包括:
    第一馈源,用于产生第一电磁波;
    第二馈源,用于产生第二电磁波;
    天线阵列,包括多个天线单元,所述天线单元包括:
    辐射单元;
    相位控制器件,集成在所述辐射单元上,用于调制所述辐射单元;
    第一天线单元中经过调制后的辐射单元,用于调整所述第一电磁波的相位,以生成第一波束,其中,所述第一天线单元属于所述多个天线单元,且所述第一天线单元中调制辐射单元的参数是基于所述第一电磁波确定的;
    第二天线单元中经过调制后的辐射单元,用于调整所述第二电磁波的相位,以生成第二波束,其中,所述第二天线单元属于所述多个天线单元,且所述第二天线单元中调制辐射单元的参数是基于所述第二电磁波确定的。
  2. 根据权利要求1所述的装置,其特征在于,第一区域与第二区域之间存在交叠区域;
    其中,所述第一区域包括所述第一天线单元所在的区域,所述第二区域包括所述第二天线单元所在的区域。
  3. 根据权利要求2所述的装置,其特征在于,
    第三天线单元的相位控制器件,用于根据所述第一电磁波和所述第二电磁波的入射参数,确定第一调制参数,以及根据所述第一调制参数调制所述第三天线单元的辐射单元;
    所述第三天线单元的辐射单元,用于在所述第一调制参数的调制下,调整所述第一电磁波的相位,以生成所述第一波束,以及调整所述第二电磁波的相位,以生成所述第二波束;
    其中,所述第三天线单元是所述交叠区域中的一个天线单元。
  4. 根据权利要求2或3所述的装置,其特征在于,
    所述第一区域的面积与所述第二区域的面积相同;
    或者,所述第一区域的面积与所述第二区域的面积不同。
  5. 根据权利要求1所述的装置,其特征在于,第一子区域与第二子区域间隔分布;
    其中,所述第一子区域属于所述第一天线单元所处区域,所述第二子区域属于所述第二天线单元所处区域。
  6. 根据权利要求5所述的装置,其特征在于,
    所述第一子区域是所述第一天线单元所处区域的部分区域或全部区域;
    或,所述第二子区域是所述第二天线单元所处区域的部分区域或全部区域。
  7. 根据权利要求5或6所述的装置,其特征在于,
    所述第一子区域的面积与所述第二子区域的面积相同;
    或者,所述第一子区域的面积与所述第二子区域的面积不同。
PCT/CN2021/137521 2020-12-11 2021-12-13 相控阵列天线装置 WO2022122043A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011460235.0A CN114628916A (zh) 2020-12-11 2020-12-11 相控阵列天线装置
CN202011460235.0 2020-12-11

Publications (1)

Publication Number Publication Date
WO2022122043A1 true WO2022122043A1 (zh) 2022-06-16

Family

ID=81895735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/137521 WO2022122043A1 (zh) 2020-12-11 2021-12-13 相控阵列天线装置

Country Status (2)

Country Link
CN (1) CN114628916A (zh)
WO (1) WO2022122043A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103050782A (zh) * 2013-01-18 2013-04-17 厦门大学 多波束平面贴片透镜天线
CN106129634A (zh) * 2016-07-14 2016-11-16 东南大学 一种基于阵列法的双功能全息反射阵天线的增益优化方法
CN106486784A (zh) * 2016-11-30 2017-03-08 江苏赛博防务技术有限公司 反射式天线阵列及波束扫描方法
CN108964723A (zh) * 2017-05-17 2018-12-07 索尼公司 电子设备和通信方法
CN111819733A (zh) * 2017-09-22 2020-10-23 杜克大学 用可重构的超表面天线增强的mimo通信系统及其使用方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103050782A (zh) * 2013-01-18 2013-04-17 厦门大学 多波束平面贴片透镜天线
CN106129634A (zh) * 2016-07-14 2016-11-16 东南大学 一种基于阵列法的双功能全息反射阵天线的增益优化方法
CN106486784A (zh) * 2016-11-30 2017-03-08 江苏赛博防务技术有限公司 反射式天线阵列及波束扫描方法
CN108964723A (zh) * 2017-05-17 2018-12-07 索尼公司 电子设备和通信方法
CN111819733A (zh) * 2017-09-22 2020-10-23 杜克大学 用可重构的超表面天线增强的mimo通信系统及其使用方法

Also Published As

Publication number Publication date
CN114628916A (zh) 2022-06-14

Similar Documents

Publication Publication Date Title
CA2577659C (en) Antenna device, array antenna device using the antenna device, module, module array and package module
CN108539417A (zh) 一种圆极化轨道角动量反射阵天线
CN110890629B (zh) 一种低剖面宽角扫描的全金属多波束透镜天线
CN111600113A (zh) 无线通信系统的天线模块和包括该天线模块的电子设备
US20020101391A1 (en) Reconfigurable adaptive wideband antenna
JP6536376B2 (ja) ルネベルグレンズアンテナ装置
US11201394B2 (en) Antenna device and electronic device
WO2023000957A1 (zh) 天线阵列、系统及毫米波雷达
JP2002500835A (ja) 高周波無線信号を放射するためのアンテナ
WO2018120197A1 (zh) 一种天线及通信设备
JP2020039122A (ja) ホーンアンテナ、アンテナアレイおよびレーダ
WO2022122043A1 (zh) 相控阵列天线装置
CN111900550A (zh) 一种融合阻抗与相位双重调制的双源超表面高定向性天线
US11329388B2 (en) Antenna for transmitting and/or receiving an electromagnetic wave, and system comprising this antenna
CN111180888B (zh) 一种聚束随机超材料孔径天线
KR20200101814A (ko) 연성인쇄회로기판을 포함하는 안테나 모듈 및 상기 안테나 모듈을 포함하는 전자 장치
KR20170031527A (ko) 소형화된 구조의 반사형 셀 어레이 안테나
JP2003524938A5 (zh)
KR20210073827A (ko) 기생 링 구조를 이용한 광각 배열 안테나
JP3440297B2 (ja) フェーズドアレイアンテナ装置
US11909126B2 (en) Optical system for enhanced wide scan capability of array antennas
KR102607436B1 (ko) 밀리미터파 안테나
WO2022264415A1 (ja) アンテナ装置及び無線通信装置
CN215896707U (zh) 一种毫米波天线模组及通信设备
KR102018778B1 (ko) 평면 렌즈를 이용한 고 이득 안테나

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21902748

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21902748

Country of ref document: EP

Kind code of ref document: A1