WO2022121958A1 - 带有温补层的声波谐振器和滤波器以及电子设备 - Google Patents
带有温补层的声波谐振器和滤波器以及电子设备 Download PDFInfo
- Publication number
- WO2022121958A1 WO2022121958A1 PCT/CN2021/136534 CN2021136534W WO2022121958A1 WO 2022121958 A1 WO2022121958 A1 WO 2022121958A1 CN 2021136534 W CN2021136534 W CN 2021136534W WO 2022121958 A1 WO2022121958 A1 WO 2022121958A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resonator
- electrode
- acoustic wave
- thickness
- layer
- Prior art date
Links
- 230000004888 barrier function Effects 0.000 claims description 8
- 238000005530 etching Methods 0.000 claims description 8
- 238000004364 calculation method Methods 0.000 abstract description 5
- 239000010410 layer Substances 0.000 description 54
- 239000000463 material Substances 0.000 description 20
- 239000013078 crystal Substances 0.000 description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 7
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 239000011777 magnesium Substances 0.000 description 6
- 239000010936 titanium Substances 0.000 description 6
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 5
- 229910052749 magnesium Inorganic materials 0.000 description 5
- 235000012239 silicon dioxide Nutrition 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 4
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- 239000011651 chromium Substances 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- 229910052737 gold Inorganic materials 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 229910052741 iridium Inorganic materials 0.000 description 4
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 4
- 229910052750 molybdenum Inorganic materials 0.000 description 4
- 239000011733 molybdenum Substances 0.000 description 4
- 229910052762 osmium Inorganic materials 0.000 description 4
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 4
- 229910052761 rare earth metal Inorganic materials 0.000 description 4
- 229910052707 ruthenium Inorganic materials 0.000 description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 4
- 229910052721 tungsten Inorganic materials 0.000 description 4
- 239000010937 tungsten Substances 0.000 description 4
- 239000002131 composite material Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 239000011787 zinc oxide Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- WSMQKESQZFQMFW-UHFFFAOYSA-N 5-methyl-pyrazole-3-carboxylic acid Chemical compound CC1=CC(C(O)=O)=NN1 WSMQKESQZFQMFW-UHFFFAOYSA-N 0.000 description 1
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910002601 GaN Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229910052773 Promethium Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- KJZYNXUDTRRSPN-UHFFFAOYSA-N holmium atom Chemical compound [Ho] KJZYNXUDTRRSPN-UHFFFAOYSA-N 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 1
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 description 1
- OHSVLFRHMCKCQY-UHFFFAOYSA-N lutetium atom Chemical compound [Lu] OHSVLFRHMCKCQY-UHFFFAOYSA-N 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- UKDIAJWKFXFVFG-UHFFFAOYSA-N potassium;oxido(dioxo)niobium Chemical compound [K+].[O-][Nb](=O)=O UKDIAJWKFXFVFG-UHFFFAOYSA-N 0.000 description 1
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 1
- VQMWBBYLQSCNPO-UHFFFAOYSA-N promethium atom Chemical compound [Pm] VQMWBBYLQSCNPO-UHFFFAOYSA-N 0.000 description 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- GZCRRIHWUXGPOV-UHFFFAOYSA-N terbium atom Chemical compound [Tb] GZCRRIHWUXGPOV-UHFFFAOYSA-N 0.000 description 1
- FRNOGLGSGLTDKL-UHFFFAOYSA-N thulium atom Chemical compound [Tm] FRNOGLGSGLTDKL-UHFFFAOYSA-N 0.000 description 1
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/02007—Details of bulk acoustic wave devices
- H03H9/02157—Dimensional parameters, e.g. ratio between two dimension parameters, length, width or thickness
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/02007—Details of bulk acoustic wave devices
- H03H9/02086—Means for compensation or elimination of undesirable effects
- H03H9/02102—Means for compensation or elimination of undesirable effects of temperature influence
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/15—Constructional features of resonators consisting of piezoelectric or electrostrictive material
- H03H9/17—Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/15—Constructional features of resonators consisting of piezoelectric or electrostrictive material
- H03H9/17—Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
- H03H9/19—Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator consisting of quartz
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/46—Filters
- H03H9/54—Filters comprising resonators of piezoelectric or electrostrictive material
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/46—Filters
- H03H9/54—Filters comprising resonators of piezoelectric or electrostrictive material
- H03H9/56—Monolithic crystal filters
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/46—Filters
- H03H9/54—Filters comprising resonators of piezoelectric or electrostrictive material
- H03H9/58—Multiple crystal filters
Definitions
- the present invention relates to the field of electronic technology, in particular to an acoustic wave resonator and filter with a temperature compensation layer, and an electronic device.
- the acoustic wave resonator is the basic unit of the bulk acoustic wave filter. Its basic structure includes a piezoelectric film, a bottom electrode and a top electrode sandwiching the piezoelectric film to form a piezoelectric stack structure; it also includes an acoustic reflection under the bottom electrode. unit. The overlapping area between the acoustic reflection unit, the bottom electrode, the top electrode and the piezoelectric film forms an effective area for the acoustic wave resonator to work.
- the piezoelectric film vibrates due to the inverse piezoelectric effect, generating acoustic waves, which propagate in the direction perpendicular to the electrode surface and reflect at the upper and lower interfaces.
- Some acoustic wave resonators also have a temperature compensation layer, which is a layer or layers of materials added to the laminated structure of the acoustic wave resonator with the opposite sign of the frequency temperature coefficient of the piezoelectric layer itself (for example, aluminum nitride has a negative frequency. temperature coefficient, while silicon dioxide has a positive frequency temperature coefficient) a temperature compensation layer, thereby offsetting or partially offsetting the resonator frequency drift caused by temperature changes.
- a temperature compensation layer for a resonator with a temperature compensation layer and a specific frequency, different electromechanical coupling coefficients Kt can be obtained by adjusting the ratio of the upper and lower electrodes to the piezoelectric layer.
- the present invention provides an acoustic wave resonator with a temperature compensation layer, a filter and an electronic device, and the acoustic wave resonator has better performance.
- the dielectric layer above the upper electrode, the middle electrode, the etching barrier layer of the temperature compensation layer, and the seed layer are optional, and may not be provided, or only one or several of them may be provided. When a certain layer is absent, the calculation formula remains unchanged, and its thickness can be set to 0 in the formula.
- the electrode piezoelectric ratio is less than 1.5.
- one or more of T1, T4, T6, and T8 take a value of 0.
- a filter comprising the acoustic resonator of the present invention.
- An electronic device comprising the acoustic resonator of the present invention, or the filter of the present invention.
- a parameter such as the electrode piezoelectric ratio is introduced and a calculation method is given.
- the resonator can have better performance.
- FIG. 1 is a schematic cross-sectional view of an acoustic wave resonator related to an embodiment of the present invention
- Fig. 2 is the partial (dotted line frame) enlarged schematic diagram of Fig. 1;
- FIG. 3 is a schematic cross-sectional view of another acoustic wave resonator related to an embodiment of the present invention.
- 5 is a graph of changing Kt by doping Sc in AlN when the electrode piezoelectric ratio is 1, according to an embodiment of the present invention.
- FIG. 1 is a schematic cross-sectional view of an acoustic wave resonator related to an embodiment of the present invention
- FIG. 2 is an enlarged schematic view of a part (in a dotted line frame) of FIG. 1 .
- the descriptions of the parts in Figures 1 and 2 are as follows:
- Substrate, optional materials are monocrystalline silicon, gallium arsenide, sapphire, quartz, etc.;
- Acoustic mirror which can be a cavity, or a Bragg reflector and other equivalent forms. In this paper, the cavity is used;
- Bottom electrode the material can be selected from molybdenum, ruthenium, gold, aluminum, magnesium, tungsten, copper, titanium, iridium, osmium, chromium or the composite of the above metals or their alloys;
- Interlayer electrode or intermediate electrode the material can be selected from molybdenum, ruthenium, gold, aluminum, magnesium, tungsten, copper, titanium, iridium, osmium, chromium or the composite of the above metals or their alloys, etc.;
- Piezoelectric layer which can be a single crystal piezoelectric material, optional, such as: single crystal aluminum nitride, single crystal gallium nitride, single crystal lithium niobate, single crystal lead zirconate titanate (PZT), single crystal Potassium niobate, single crystal quartz film, or single crystal lithium tantalate and other materials can also be polycrystalline piezoelectric materials (corresponding to single crystal, non-single crystal materials), optional, such as polycrystalline aluminum nitride, Zinc oxide, PZT, etc., can also be a rare earth element doped material containing a certain atomic ratio of the above materials, for example, can be doped aluminum nitride, and doped aluminum nitride contains at least one rare earth element, such as scandium (Sc), yttrium (Y), magnesium (Mg), titanium (Ti), lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (
- Upper electrode the material can be selected from molybdenum, ruthenium, gold, aluminum, magnesium, tungsten, copper, titanium, iridium, osmium, chromium or the composite of the above metals or their alloys, etc.;
- the dielectric layer above the upper electrode, the material can be AlN, SiN, SiO2, etc.;
- the etching barrier layer of the temperature compensation layer can be selected from aluminum nitride, zinc oxide, PZT and other materials and contains rare earth element doping materials with a certain atomic ratio of the above materials;
- Temperature compensation layer optional SiO2, and other materials with positive temperature coefficient
- Seed layer optional materials such as aluminum nitride, zinc oxide, PZT, etc., and containing rare earth element doping materials with a certain atomic ratio of the above materials.
- a parameter such as the electrode piezoelectric ratio is introduced, and a corresponding calculation method is given.
- the relevant parameters are explained first. Referring to Figure 1 and Figure 2, the parameters of the thickness (unit: nanometer) of each layer have the following meanings:
- T1 the thickness of the dielectric layer 70 above the upper electrode
- T2 the thickness of the upper electrode 60
- T3 the thickness of the piezoelectric layer 50
- T4 the thickness of the intermediate electrode 40
- T5 the thickness of the bottom electrode 30
- T6 the thickness of the etching barrier layer 80 of the temperature compensation layer
- T7 the thickness of the temperature compensation layer 81
- T8 The thickness of the seed layer 82 .
- Va, Vb, Vc, and Vd are respectively the influence rates of the middle electrode 40 of the acoustic wave resonator, the etching barrier layer 80 of the temperature compensation layer, the temperature compensation layer 81, and the seed layer 82 on the resonant frequency of the resonator, and the unit is nm /MHz (nanometers per megahertz), V (nm/MHz) represents the rate at which the bottom electrode 30 affects the resonant frequency of the resonator.
- V2 the thickness of the upper electrode 60 on the resonator. The rate of influence of the resonant frequency in nm/MHz.
- Electrode piezoelectric ratio (e ⁇ TB+T2+n ⁇ T1)/T3.
- FIG. 3 is a schematic cross-sectional view of another acoustic wave resonator related to an embodiment of the present invention, wherein a raised structure 90 above the piezoelectric layer is added, and the material can be selected from molybdenum, ruthenium, gold, aluminum, magnesium, tungsten, copper, Titanium, iridium, osmium, chromium or their alloys or their alloys.
- An air gap 91 exists between the raised structure 90 and the piezoelectric layer 50 .
- the temperature compensation layer 81 and the seed layer 82 of the temperature compensation layer in FIG. 3 please refer to FIG. 2 .
- FIG. 4 is a schematic diagram of the relationship between the electrode piezoelectric ratio and the Q value according to an embodiment of the present invention, and a plurality of numerical values in the horizontal direction in the figure represent protrusions
- the width d of the structure 90, the longitudinal direction represents the change trend of the Q value.
- the electrode piezoelectric ratio when the electrode piezoelectric ratio is 0.5, the first peak value of the Q value decreases significantly with the change of the width d of the raised structure 90 ; when the electrode piezoelectric ratio is 1.5, the Q value decreases at the first peak value A peak decreases slightly, but the decrease is not very large; when the electrode piezoelectric ratio is 1, there will be a peak when the convex structure d is 1um, and the Q value first increases and then decreases, while the other two ratios There is clearly no such trend. The reason for this is that the electrode piezoelectric ratio is out of balance. When the electrode piezoelectric ratio is 1, it is optimal. When the ratio is less than 0.5, the performance of the resonator will decline very seriously.
- Doping Sc can be introduced, and the desired Kt can be obtained by selecting an appropriate doping concentration in an appropriate ratio.
- FIG. 5 is a curve of changing Kt by doping Sc in AlN when the electrode piezoelectric ratio is 1, which is related to the embodiment of the present invention. It can be seen from Fig. 5 that through different doping ratios, the Kt can be changed while maintaining the piezoelectric ratio of the electrodes, which not only meets the performance requirements but also obtains the desired Kt.
- a parameter such as electrode piezoelectric ratio is introduced and a calculation method is given.
- the settings of each layer of the resonator make the value of this parameter meet certain conditions, the resonator can have better performance.
- the application of the resonator in a filter or other electronic equipment also helps to improve the performance of the device or device.
Landscapes
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
Abstract
本发明提供一种带有温补层的声波谐振器和滤波器以及电子设备,引入电极压电比这样一个参数并给出计算方式,在谐振器的各层的设置使得电极压电比的值符合一定条件时,谐振器能够具备较好的性能。
Description
本发明涉及电子技术领域,特别地涉及一种带有温补层的声波谐振器和滤波器以及电子设备。
声波谐振器是构成体声波滤波器的基本单元,其基本结构包含一层压电膜、夹持压电膜的底电极和顶电极,构成压电堆叠结构;另包含位于底电极下方的声反射单元。声反射单元、底电极、顶电极以及压电膜之间的重叠区域,形成了声波谐振器工作的有效区。当在电极之间施加射频信号时,压电膜因逆压电效应会产生振动,产生声波,声波在垂直于电极表面的方向传播,并且在上下界面处发生反射。
一些声波谐振器还带有温度补偿层,温度补偿层是声波谐振器的层叠结构中加入的一层或多层与压电层本身的频率温度系数符号相反的材料(例如氮化铝具有负频率温度系数,而二氧化硅具有正频率温度系数)的温补层,从而抵消或部分抵消温度变化造成的谐振器频率漂移。对于一个带有温补层的谐振器和特定的频率,可以通过调整上下电极与压电层的比例来获得不同的机电耦合系数Kt,在不改变压电层掺杂浓度的前提下,其Kt是有一定的最优范围,超出这个范围,谐振器的品质因数Q值就会严重掉落。因此需要一种合适的调整声波谐振器各层的方式,来实现性能的尽可能优化。
发明内容
有鉴于此,本发明提供一种带有温补层的声波谐振器和滤波器以及电子设备,该声波谐振器具有较优的性能。
本发明提供如下技术方案:
一种带有温补层的声波谐振器,该声波谐振器的电极压电比大于0.5,该电极压电比根据如下公式计算:电极压电比=(e×TB+T2+n×T1)/T3;并且:TB=T5+a×T4+b×T6+c×T7+d×T8;a=V/Va、b=V/Vb、c=V/Vc、d=V/Vd;其中:T1表示所述声波谐振器的上电极上方介质层的厚度;T2表示所述声波谐振器的上电极的厚度;T3表示所述声波谐振器的压电层的厚度;T4表示所述声波谐振器的中间电极的厚度;T5表示所述声波谐振器的底电极的厚度;T6表示所述声波谐振器的温补层的刻蚀阻挡层的厚度;T7表示所述声波谐振器的温补层的厚度;T8表示所述声波谐振器的种子层的厚度;所述声波谐振器的中间电极、温补层的刻蚀阻挡层、温补层、种子层各自对谐振器谐振频率的影响速率分别为Va nm/MHz、Vb nm/MHz、Vc nm/MHz、Vd nm/MHz;所述底电极对谐振器谐振频率的影响速率为V nm/MHz;n=V2/V1,e=V2/V,其中V1表示上电极上方介质层的厚度对谐振器谐振频率的影响速率,V2表示上电极的厚度对谐振器谐振频率的影响速率。
其中上电极上方介质层、中间电极、温补层的刻蚀阻挡层、以及种子层这4层为非必须,可以都不设置,也可以只有其中的一层或几层。当某一层没有时,计算公式不变,在公式中其厚度取值为0即可。
可选地,所述电极压电比小于1.5。
可选地,T1、T4、T6、T8中的一个或多个取值为0。
可选地,所述TB还满足如下关系:TB=e×m(T2+n×T1),其中:m取值0.7至1.3。
一种滤波器,包含本发明所述的声波谐振器。
一种电子设备,包含本发明所述的声波谐振器,或包含本发明所述的滤波器。
根据本发明的技术方案,引入电极压电比这样一个参数并给出计算方式,在谐振器的各层的设置使得电极压电比的值符合一定条件时,谐振器能够具备较好的性能。
为了说明而非限制的目的,现在将根据本发明的优选实施例、特别是参考附图来描述本发明,其中:
图1是与本发明实施方式有关的一种声波谐振器的剖面示意图;
图2是图1的局部(虚线框内)放大示意图;
图3是与本发明实施方式有关的另一种声波谐振器的剖面示意图;
图4是根据本发明实施方式的电极压电比与Q值的关系的示意图;
图5是与本发明实施方式有关的在电极压电比为1时,采用在AlN中掺杂Sc来改变Kt的曲线。
以下结合附图对本发明实施方式进行阐述。图1是与本发明实施方式有关的一种声波谐振器的剖面示意图;图2是图1的局部(虚线框内)放大示意图。图1和图2中各部分的说明如下:
10:基底,可选材料为单晶硅、砷化镓、蓝宝石、石英等;
20:声学镜,可为空腔,也可采用布拉格反射层及其他等效形式。本文采用的是空腔;
30:底电极,材料可选钼、钌、金、铝、镁、钨、铜,钛、铱、锇、铬或以上金属的复合或其合金等;
40:夹层电极或中间电极,材料可选钼、钌、金、铝、镁、钨、铜,钛、铱、锇、铬或以上金属的复合或其合金等;
50:压电层,可以为单晶压电材料,可选的,如:单晶氮化铝、单晶氮化镓、单晶铌酸锂、单晶锆钛酸铅(PZT)、单晶铌酸钾、单晶石英薄膜、或者单晶钽酸锂等材料,也可以为多晶压电材料(与单晶相对应,非单晶 材料),可选的,如多晶氮化铝、氧化锌、PZT等,还可是包含上述材料的一定原子比的稀土元素掺杂材料,例如可以是掺杂氮化铝,掺杂氮化铝至少含一种稀土元素,如钪(Sc)、钇(Y)、镁(Mg)、钛(Ti)、镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)等;
60:上电极,材料可选钼、钌、金、铝、镁、钨、铜,钛、铱、锇、铬或以上金属的复合或其合金等;
70:上电极上方介质层,材料可以是AlN,SiN,SiO2等;
80:温补层的刻蚀阻挡层,可选氮化铝,氧化锌,PZT等材料并包含上述材料的一定原子比的稀土元素掺杂材料;
81:温补层,可选SiO2,等正温度系数的材料;
82:种子层,可选氮化铝,氧化锌,PZT等材料并包含上述材料的一定原子比的稀土元素掺杂材料。
本实施方式中,引入电极压电比这样一个参数,并给出相应的计算方式。为表述方便,先对相关参数加以说明。参见图1和图2,各层厚度(单位:纳米)参数含义如下:
T1:上电极上方介质层70的厚度;
T2:上电极60的厚度;
T3:压电层50的厚度;
T4:中间电极40的厚度;
T5:底电极30的厚度;
T6:温补层的刻蚀阻挡层80的厚度;
T7:温补层81的厚度;
T8:种子层82的厚度。
再引入系数a、b、c、d,a=V/Va、b=V/Vb、c=V/Vc、d=V/Vd。这里的Va、Vb、Vc、Vd分别是声波谐振器的中间电极40、温补层的刻蚀阻挡层80、温补层81、种子层82各自对谐振器谐振频率的影响速率,单位为nm/MHz(纳米每兆赫兹),V(nm/MHz)表示底电极30对谐振器谐振 频率的影响速率。并且还引入参数n和e,n=V2/V1,e=V2/V,其中V1表示上电极上方介质层70的厚度对谐振器谐振频率的影响速率,V2表示上电极60的厚度对谐振器谐振频率的影响速率,单位为nm/MHz。
最后根据上述参数和系数进行电极压电比的计算,为了表达式在形式上简洁,再加入中间参数TB,TB=T5+a×T4+b×T6+c×T7+d×T8。最终电极压电比根据如下公式计算:电极压电比=(e×TB+T2+n×T1)/T3。
通过选择合适的电极压电比,可以获得较佳的谐振器性能。以下举例加以说明。图3是与本发明实施方式有关的另一种声波谐振器的剖面示意图,其中增加了压电层上方的凸起结构90,材料可选钼,钌,金,铝,镁,钨,铜,钛,铱,锇,铬或以上金属的符合或其合金等。凸起结构90和压电层50之间存在空气隙91。图3中的关于温补层的刻蚀阻挡层80、温补层81和种子层82的局部放大结构可参见图2。
图3所示结构对应的2GHz频段的实验结果如图4所示,图4是根据本发明实施方式的电极压电比与Q值的关系的示意图,图中的横向的多个数值表示凸起结构90的宽度d,纵向表示Q值的变化趋势。
根据图4所示,其中当电极压电比为0.5时,Q值随着凸起结构90的宽度d的变化的第一个峰值明显下降;当电极压电比为1.5时,Q值在第一个峰值略有下降,但是下降幅度不是很大;当电极压电比为1时,在凸起结构d为1um时会有个峰值,Q值是先上升再下降的,而另外两个比例明显没有这种趋势。造成这种情况的原因是其电极压电比失调导致的,当这个电极压电比为1时为最优,当这个比值小于0.5时,谐振器的性能下降会非常严重。
有的时候,对于给定的频率,要想得到目标Kt,在一定范围内要通过调整电极压电比才能满足需求,但原则是比例遵守上面的比例限定,超出范围就要用其他方法解决,比如可以引入掺杂Sc,在合适的比例下选择适 当的掺杂浓度就能得到想要的Kt。
比如在2G HZ频率下,在满足特定的温漂的条件下(0温漂),谐振器在不掺杂的情况下可以得到2.1%~4.2%的Kt,但是当需要做到大于4.2%时就需要引入掺杂,选择适当的掺杂浓度就能够在满足0.5<电极压电比=(e×TB+T2+n×T1)/T3<1.5的同时,得到Q值比较高的谐振器同时还能满足Kt需求,如图5,图5是与本发明实施方式有关的在电极压电比为1时,采用在AlN中掺杂Sc来改变Kt的曲线。从图5可以看到通过不同掺杂比例,可以保持电极压电比的同时改变Kt,这样既满足性能要求又能得到想要的Kt。
根据本发明实施方式的技术方案,引入电极压电比这样一个参数并给出计算方式,在谐振器的各层的设置使得该参数的值符合一定条件时,谐振器能够具备较好的性能。该谐振器应用于滤波器或其他电子设备中同样有助于提高器件或设备的性能。
上述具体实施方式,并不构成对本发明保护范围的限制。本领域技术人员应该明白的是,取决于设计要求和其他因素,可以发生各种各样的修改、组合、子组合和替代。任何在本发明的精神和原则之内所作的修改、等同替换和改进等,均应包含在本发明保护范围之内。
Claims (6)
- 一种带有温补层的声波谐振器,其特征在于,该声波谐振器的电极压电比大于0.5,该电极压电比根据如下公式计算:电极压电比=(e×TB+T2+n×T1)/T3;并且:TB=T5+a×T4+b×T6+c×T7+d×T8;a=V/Va、b=V/Vb、c=V/Vc、d=V/Vd;其中:T1表示所述声波谐振器的上电极上方介质层的厚度;T2表示所述声波谐振器的上电极的厚度;T3表示所述声波谐振器的压电层的厚度;T4表示所述声波谐振器的中间电极的厚度;T5表示所述声波谐振器的底电极的厚度;T6表示所述声波谐振器的温补层的刻蚀阻挡层的厚度;T7表示所述声波谐振器的温补层的厚度;T8表示所述声波谐振器的种子层的厚度;所述声波谐振器的中间电极、温补层的刻蚀阻挡层、温补层、种子层各自对谐振器谐振频率的影响速率分别为Va nm/MHz、Vb nm/MHz、Vc nm/MHz、Vd nm/MHz;所述底电极对谐振器谐振频率的影响速率为V nm/MHz;n=V2/V1,e=V2/V,其中V1表示上电极上方介质层的厚度对谐振器谐振频率的影响速率,V2表示上电极的厚度对谐振器谐振频率的影响速率,单位为nm/MHz。
- 根据权利要求1所述的声波谐振器,其特征在于,所述电极压电比小于1.5。
- 根据权利要求1或2所述的声波谐振器,其特征在于,T1、T4、T6、T8中的一个或多个取值为0。
- 根据权利要求1或2所述的声波谐振器,其特征在于,所述TB还满足如下关系:TB=e×m(T2+n×T1),其中:m取值0.7至1.3。
- 一种滤波器,其特征在于,包含权利要求1至4中任一项所述的声波谐振器。
- 一种电子设备,其特征在于,包含权利要求1至4中任一项所述的声波谐振器,或包含权利要求5中的滤波器。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011435645.X | 2020-12-10 | ||
CN202011435645.XA CN114629460A (zh) | 2020-12-10 | 2020-12-10 | 带有温补层的声波谐振器和滤波器以及电子设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022121958A1 true WO2022121958A1 (zh) | 2022-06-16 |
Family
ID=81896093
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/136534 WO2022121958A1 (zh) | 2020-12-10 | 2021-12-08 | 带有温补层的声波谐振器和滤波器以及电子设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114629460A (zh) |
WO (1) | WO2022121958A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104242862A (zh) * | 2013-06-10 | 2014-12-24 | 太阳诱电株式会社 | 声波装置 |
CN107493086A (zh) * | 2017-09-04 | 2017-12-19 | 苏州苏芯微电子技术有限公司 | 温度补偿声表面波谐振器及其制备方法 |
US20180069528A1 (en) * | 2016-09-06 | 2018-03-08 | Cindy X. Qiu | Tunable Film Bulk Acoustic Resonators and Filters with Integrated Biasing Resistors |
CN109039299A (zh) * | 2018-07-08 | 2018-12-18 | 邱星星 | 具有集成偏置电阻的可调谐薄膜体声波谐振器和滤波器 |
CN109802646A (zh) * | 2018-12-26 | 2019-05-24 | 天津大学 | 带有温度补偿层的谐振器、滤波器 |
CN112054777A (zh) * | 2020-05-09 | 2020-12-08 | 诺思(天津)微系统有限责任公司 | 体声波谐振器组件及制造方法、滤波器及电子设备 |
-
2020
- 2020-12-10 CN CN202011435645.XA patent/CN114629460A/zh active Pending
-
2021
- 2021-12-08 WO PCT/CN2021/136534 patent/WO2022121958A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104242862A (zh) * | 2013-06-10 | 2014-12-24 | 太阳诱电株式会社 | 声波装置 |
US20180069528A1 (en) * | 2016-09-06 | 2018-03-08 | Cindy X. Qiu | Tunable Film Bulk Acoustic Resonators and Filters with Integrated Biasing Resistors |
CN107493086A (zh) * | 2017-09-04 | 2017-12-19 | 苏州苏芯微电子技术有限公司 | 温度补偿声表面波谐振器及其制备方法 |
CN109039299A (zh) * | 2018-07-08 | 2018-12-18 | 邱星星 | 具有集成偏置电阻的可调谐薄膜体声波谐振器和滤波器 |
CN109802646A (zh) * | 2018-12-26 | 2019-05-24 | 天津大学 | 带有温度补偿层的谐振器、滤波器 |
CN112054777A (zh) * | 2020-05-09 | 2020-12-08 | 诺思(天津)微系统有限责任公司 | 体声波谐振器组件及制造方法、滤波器及电子设备 |
Also Published As
Publication number | Publication date |
---|---|
CN114629460A (zh) | 2022-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9219464B2 (en) | Bulk acoustic wave (BAW) resonator structure having an electrode with a cantilevered portion and a piezoelectric layer with multiple dopants | |
US9450561B2 (en) | Bulk acoustic wave (BAW) resonator structure having an electrode with a cantilevered portion and a piezoelectric layer with varying amounts of dopant | |
US11152913B2 (en) | Bulk acoustic wave (BAW) resonator | |
CN109802646B (zh) | 带有温度补偿层的谐振器、滤波器 | |
JP4327942B2 (ja) | 薄膜圧電素子 | |
US9679765B2 (en) | Method of fabricating rare-earth doped piezoelectric material with various amounts of dopants and a selected C-axis orientation | |
US9455681B2 (en) | Bulk acoustic wave resonator having doped piezoelectric layer | |
US20070284971A1 (en) | Electronic device | |
US20140246305A1 (en) | Method of fabricating rare-earth element doped piezoelectric material with various amounts of dopants and a selected c-axis orientation | |
WO2020098487A1 (zh) | 带粗糙面体声波谐振器、滤波器和电子设备 | |
WO2020098480A1 (zh) | 体声波谐振器、滤波器和电子设备 | |
WO2022083352A1 (zh) | 体声波谐振器及组件、滤波器、电子设备 | |
CN114696773A (zh) | 体声波谐振器及制造方法、滤波器及电子设备 | |
US11558031B2 (en) | Film bulk acoustic resonator and method of manufacturing the same | |
US11031539B2 (en) | Piezoelectric vibrator and sensor | |
WO2022037572A1 (zh) | 顶电极具有上下空隙的体声波谐振器及制造方法、滤波器及电子设备 | |
JP4055885B2 (ja) | 圧電薄膜振動素子、及びこれを用いたフィルタ | |
WO2022121958A1 (zh) | 带有温补层的声波谐振器和滤波器以及电子设备 | |
WO2024087628A1 (zh) | 选择凸起结构的角度以提升性能的体声波谐振器 | |
WO2023030359A1 (zh) | 包括间隙电极的体声波谐振器、滤波器及电子设备 | |
WO2020140654A1 (zh) | 基于梁檐尺寸调整声学谐振器性能的装置和方法 | |
WO2022068552A1 (zh) | 体声波谐振器、掺杂浓度确定方法、滤波器及电子设备 | |
WO2022068561A1 (zh) | 体声波谐振器、掺杂浓度确定方法、滤波器及电子设备 | |
WO2022218376A1 (zh) | 压电层下侧设置凸起和/或凹陷的体声波谐振器、滤波器及电子设备 | |
JP3493315B2 (ja) | 圧電共振子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21902663 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 06.10.2023) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21902663 Country of ref document: EP Kind code of ref document: A1 |