WO2022121958A1 - 带有温补层的声波谐振器和滤波器以及电子设备 - Google Patents

带有温补层的声波谐振器和滤波器以及电子设备 Download PDF

Info

Publication number
WO2022121958A1
WO2022121958A1 PCT/CN2021/136534 CN2021136534W WO2022121958A1 WO 2022121958 A1 WO2022121958 A1 WO 2022121958A1 CN 2021136534 W CN2021136534 W CN 2021136534W WO 2022121958 A1 WO2022121958 A1 WO 2022121958A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonator
electrode
acoustic wave
thickness
layer
Prior art date
Application number
PCT/CN2021/136534
Other languages
English (en)
French (fr)
Inventor
庞慰
郝龙
徐洋
李葱葱
Original Assignee
诺思(天津)微系统有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诺思(天津)微系统有限责任公司 filed Critical 诺思(天津)微系统有限责任公司
Publication of WO2022121958A1 publication Critical patent/WO2022121958A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02157Dimensional parameters, e.g. ratio between two dimension parameters, length, width or thickness
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02086Means for compensation or elimination of undesirable effects
    • H03H9/02102Means for compensation or elimination of undesirable effects of temperature influence
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/19Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator consisting of quartz
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • H03H9/56Monolithic crystal filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • H03H9/58Multiple crystal filters

Definitions

  • the present invention relates to the field of electronic technology, in particular to an acoustic wave resonator and filter with a temperature compensation layer, and an electronic device.
  • the acoustic wave resonator is the basic unit of the bulk acoustic wave filter. Its basic structure includes a piezoelectric film, a bottom electrode and a top electrode sandwiching the piezoelectric film to form a piezoelectric stack structure; it also includes an acoustic reflection under the bottom electrode. unit. The overlapping area between the acoustic reflection unit, the bottom electrode, the top electrode and the piezoelectric film forms an effective area for the acoustic wave resonator to work.
  • the piezoelectric film vibrates due to the inverse piezoelectric effect, generating acoustic waves, which propagate in the direction perpendicular to the electrode surface and reflect at the upper and lower interfaces.
  • Some acoustic wave resonators also have a temperature compensation layer, which is a layer or layers of materials added to the laminated structure of the acoustic wave resonator with the opposite sign of the frequency temperature coefficient of the piezoelectric layer itself (for example, aluminum nitride has a negative frequency. temperature coefficient, while silicon dioxide has a positive frequency temperature coefficient) a temperature compensation layer, thereby offsetting or partially offsetting the resonator frequency drift caused by temperature changes.
  • a temperature compensation layer for a resonator with a temperature compensation layer and a specific frequency, different electromechanical coupling coefficients Kt can be obtained by adjusting the ratio of the upper and lower electrodes to the piezoelectric layer.
  • the present invention provides an acoustic wave resonator with a temperature compensation layer, a filter and an electronic device, and the acoustic wave resonator has better performance.
  • the dielectric layer above the upper electrode, the middle electrode, the etching barrier layer of the temperature compensation layer, and the seed layer are optional, and may not be provided, or only one or several of them may be provided. When a certain layer is absent, the calculation formula remains unchanged, and its thickness can be set to 0 in the formula.
  • the electrode piezoelectric ratio is less than 1.5.
  • one or more of T1, T4, T6, and T8 take a value of 0.
  • a filter comprising the acoustic resonator of the present invention.
  • An electronic device comprising the acoustic resonator of the present invention, or the filter of the present invention.
  • a parameter such as the electrode piezoelectric ratio is introduced and a calculation method is given.
  • the resonator can have better performance.
  • FIG. 1 is a schematic cross-sectional view of an acoustic wave resonator related to an embodiment of the present invention
  • Fig. 2 is the partial (dotted line frame) enlarged schematic diagram of Fig. 1;
  • FIG. 3 is a schematic cross-sectional view of another acoustic wave resonator related to an embodiment of the present invention.
  • 5 is a graph of changing Kt by doping Sc in AlN when the electrode piezoelectric ratio is 1, according to an embodiment of the present invention.
  • FIG. 1 is a schematic cross-sectional view of an acoustic wave resonator related to an embodiment of the present invention
  • FIG. 2 is an enlarged schematic view of a part (in a dotted line frame) of FIG. 1 .
  • the descriptions of the parts in Figures 1 and 2 are as follows:
  • Substrate, optional materials are monocrystalline silicon, gallium arsenide, sapphire, quartz, etc.;
  • Acoustic mirror which can be a cavity, or a Bragg reflector and other equivalent forms. In this paper, the cavity is used;
  • Bottom electrode the material can be selected from molybdenum, ruthenium, gold, aluminum, magnesium, tungsten, copper, titanium, iridium, osmium, chromium or the composite of the above metals or their alloys;
  • Interlayer electrode or intermediate electrode the material can be selected from molybdenum, ruthenium, gold, aluminum, magnesium, tungsten, copper, titanium, iridium, osmium, chromium or the composite of the above metals or their alloys, etc.;
  • Piezoelectric layer which can be a single crystal piezoelectric material, optional, such as: single crystal aluminum nitride, single crystal gallium nitride, single crystal lithium niobate, single crystal lead zirconate titanate (PZT), single crystal Potassium niobate, single crystal quartz film, or single crystal lithium tantalate and other materials can also be polycrystalline piezoelectric materials (corresponding to single crystal, non-single crystal materials), optional, such as polycrystalline aluminum nitride, Zinc oxide, PZT, etc., can also be a rare earth element doped material containing a certain atomic ratio of the above materials, for example, can be doped aluminum nitride, and doped aluminum nitride contains at least one rare earth element, such as scandium (Sc), yttrium (Y), magnesium (Mg), titanium (Ti), lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (
  • Upper electrode the material can be selected from molybdenum, ruthenium, gold, aluminum, magnesium, tungsten, copper, titanium, iridium, osmium, chromium or the composite of the above metals or their alloys, etc.;
  • the dielectric layer above the upper electrode, the material can be AlN, SiN, SiO2, etc.;
  • the etching barrier layer of the temperature compensation layer can be selected from aluminum nitride, zinc oxide, PZT and other materials and contains rare earth element doping materials with a certain atomic ratio of the above materials;
  • Temperature compensation layer optional SiO2, and other materials with positive temperature coefficient
  • Seed layer optional materials such as aluminum nitride, zinc oxide, PZT, etc., and containing rare earth element doping materials with a certain atomic ratio of the above materials.
  • a parameter such as the electrode piezoelectric ratio is introduced, and a corresponding calculation method is given.
  • the relevant parameters are explained first. Referring to Figure 1 and Figure 2, the parameters of the thickness (unit: nanometer) of each layer have the following meanings:
  • T1 the thickness of the dielectric layer 70 above the upper electrode
  • T2 the thickness of the upper electrode 60
  • T3 the thickness of the piezoelectric layer 50
  • T4 the thickness of the intermediate electrode 40
  • T5 the thickness of the bottom electrode 30
  • T6 the thickness of the etching barrier layer 80 of the temperature compensation layer
  • T7 the thickness of the temperature compensation layer 81
  • T8 The thickness of the seed layer 82 .
  • Va, Vb, Vc, and Vd are respectively the influence rates of the middle electrode 40 of the acoustic wave resonator, the etching barrier layer 80 of the temperature compensation layer, the temperature compensation layer 81, and the seed layer 82 on the resonant frequency of the resonator, and the unit is nm /MHz (nanometers per megahertz), V (nm/MHz) represents the rate at which the bottom electrode 30 affects the resonant frequency of the resonator.
  • V2 the thickness of the upper electrode 60 on the resonator. The rate of influence of the resonant frequency in nm/MHz.
  • Electrode piezoelectric ratio (e ⁇ TB+T2+n ⁇ T1)/T3.
  • FIG. 3 is a schematic cross-sectional view of another acoustic wave resonator related to an embodiment of the present invention, wherein a raised structure 90 above the piezoelectric layer is added, and the material can be selected from molybdenum, ruthenium, gold, aluminum, magnesium, tungsten, copper, Titanium, iridium, osmium, chromium or their alloys or their alloys.
  • An air gap 91 exists between the raised structure 90 and the piezoelectric layer 50 .
  • the temperature compensation layer 81 and the seed layer 82 of the temperature compensation layer in FIG. 3 please refer to FIG. 2 .
  • FIG. 4 is a schematic diagram of the relationship between the electrode piezoelectric ratio and the Q value according to an embodiment of the present invention, and a plurality of numerical values in the horizontal direction in the figure represent protrusions
  • the width d of the structure 90, the longitudinal direction represents the change trend of the Q value.
  • the electrode piezoelectric ratio when the electrode piezoelectric ratio is 0.5, the first peak value of the Q value decreases significantly with the change of the width d of the raised structure 90 ; when the electrode piezoelectric ratio is 1.5, the Q value decreases at the first peak value A peak decreases slightly, but the decrease is not very large; when the electrode piezoelectric ratio is 1, there will be a peak when the convex structure d is 1um, and the Q value first increases and then decreases, while the other two ratios There is clearly no such trend. The reason for this is that the electrode piezoelectric ratio is out of balance. When the electrode piezoelectric ratio is 1, it is optimal. When the ratio is less than 0.5, the performance of the resonator will decline very seriously.
  • Doping Sc can be introduced, and the desired Kt can be obtained by selecting an appropriate doping concentration in an appropriate ratio.
  • FIG. 5 is a curve of changing Kt by doping Sc in AlN when the electrode piezoelectric ratio is 1, which is related to the embodiment of the present invention. It can be seen from Fig. 5 that through different doping ratios, the Kt can be changed while maintaining the piezoelectric ratio of the electrodes, which not only meets the performance requirements but also obtains the desired Kt.
  • a parameter such as electrode piezoelectric ratio is introduced and a calculation method is given.
  • the settings of each layer of the resonator make the value of this parameter meet certain conditions, the resonator can have better performance.
  • the application of the resonator in a filter or other electronic equipment also helps to improve the performance of the device or device.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

本发明提供一种带有温补层的声波谐振器和滤波器以及电子设备,引入电极压电比这样一个参数并给出计算方式,在谐振器的各层的设置使得电极压电比的值符合一定条件时,谐振器能够具备较好的性能。

Description

带有温补层的声波谐振器和滤波器以及电子设备 技术领域
本发明涉及电子技术领域,特别地涉及一种带有温补层的声波谐振器和滤波器以及电子设备。
背景技术
声波谐振器是构成体声波滤波器的基本单元,其基本结构包含一层压电膜、夹持压电膜的底电极和顶电极,构成压电堆叠结构;另包含位于底电极下方的声反射单元。声反射单元、底电极、顶电极以及压电膜之间的重叠区域,形成了声波谐振器工作的有效区。当在电极之间施加射频信号时,压电膜因逆压电效应会产生振动,产生声波,声波在垂直于电极表面的方向传播,并且在上下界面处发生反射。
一些声波谐振器还带有温度补偿层,温度补偿层是声波谐振器的层叠结构中加入的一层或多层与压电层本身的频率温度系数符号相反的材料(例如氮化铝具有负频率温度系数,而二氧化硅具有正频率温度系数)的温补层,从而抵消或部分抵消温度变化造成的谐振器频率漂移。对于一个带有温补层的谐振器和特定的频率,可以通过调整上下电极与压电层的比例来获得不同的机电耦合系数Kt,在不改变压电层掺杂浓度的前提下,其Kt是有一定的最优范围,超出这个范围,谐振器的品质因数Q值就会严重掉落。因此需要一种合适的调整声波谐振器各层的方式,来实现性能的尽可能优化。
发明内容
有鉴于此,本发明提供一种带有温补层的声波谐振器和滤波器以及电子设备,该声波谐振器具有较优的性能。
本发明提供如下技术方案:
一种带有温补层的声波谐振器,该声波谐振器的电极压电比大于0.5,该电极压电比根据如下公式计算:电极压电比=(e×TB+T2+n×T1)/T3;并且:TB=T5+a×T4+b×T6+c×T7+d×T8;a=V/Va、b=V/Vb、c=V/Vc、d=V/Vd;其中:T1表示所述声波谐振器的上电极上方介质层的厚度;T2表示所述声波谐振器的上电极的厚度;T3表示所述声波谐振器的压电层的厚度;T4表示所述声波谐振器的中间电极的厚度;T5表示所述声波谐振器的底电极的厚度;T6表示所述声波谐振器的温补层的刻蚀阻挡层的厚度;T7表示所述声波谐振器的温补层的厚度;T8表示所述声波谐振器的种子层的厚度;所述声波谐振器的中间电极、温补层的刻蚀阻挡层、温补层、种子层各自对谐振器谐振频率的影响速率分别为Va nm/MHz、Vb nm/MHz、Vc nm/MHz、Vd nm/MHz;所述底电极对谐振器谐振频率的影响速率为V nm/MHz;n=V2/V1,e=V2/V,其中V1表示上电极上方介质层的厚度对谐振器谐振频率的影响速率,V2表示上电极的厚度对谐振器谐振频率的影响速率。
其中上电极上方介质层、中间电极、温补层的刻蚀阻挡层、以及种子层这4层为非必须,可以都不设置,也可以只有其中的一层或几层。当某一层没有时,计算公式不变,在公式中其厚度取值为0即可。
可选地,所述电极压电比小于1.5。
可选地,T1、T4、T6、T8中的一个或多个取值为0。
可选地,所述TB还满足如下关系:TB=e×m(T2+n×T1),其中:m取值0.7至1.3。
一种滤波器,包含本发明所述的声波谐振器。
一种电子设备,包含本发明所述的声波谐振器,或包含本发明所述的滤波器。
根据本发明的技术方案,引入电极压电比这样一个参数并给出计算方式,在谐振器的各层的设置使得电极压电比的值符合一定条件时,谐振器能够具备较好的性能。
附图说明
为了说明而非限制的目的,现在将根据本发明的优选实施例、特别是参考附图来描述本发明,其中:
图1是与本发明实施方式有关的一种声波谐振器的剖面示意图;
图2是图1的局部(虚线框内)放大示意图;
图3是与本发明实施方式有关的另一种声波谐振器的剖面示意图;
图4是根据本发明实施方式的电极压电比与Q值的关系的示意图;
图5是与本发明实施方式有关的在电极压电比为1时,采用在AlN中掺杂Sc来改变Kt的曲线。
具体实施方式
以下结合附图对本发明实施方式进行阐述。图1是与本发明实施方式有关的一种声波谐振器的剖面示意图;图2是图1的局部(虚线框内)放大示意图。图1和图2中各部分的说明如下:
10:基底,可选材料为单晶硅、砷化镓、蓝宝石、石英等;
20:声学镜,可为空腔,也可采用布拉格反射层及其他等效形式。本文采用的是空腔;
30:底电极,材料可选钼、钌、金、铝、镁、钨、铜,钛、铱、锇、铬或以上金属的复合或其合金等;
40:夹层电极或中间电极,材料可选钼、钌、金、铝、镁、钨、铜,钛、铱、锇、铬或以上金属的复合或其合金等;
50:压电层,可以为单晶压电材料,可选的,如:单晶氮化铝、单晶氮化镓、单晶铌酸锂、单晶锆钛酸铅(PZT)、单晶铌酸钾、单晶石英薄膜、或者单晶钽酸锂等材料,也可以为多晶压电材料(与单晶相对应,非单晶 材料),可选的,如多晶氮化铝、氧化锌、PZT等,还可是包含上述材料的一定原子比的稀土元素掺杂材料,例如可以是掺杂氮化铝,掺杂氮化铝至少含一种稀土元素,如钪(Sc)、钇(Y)、镁(Mg)、钛(Ti)、镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)等;
60:上电极,材料可选钼、钌、金、铝、镁、钨、铜,钛、铱、锇、铬或以上金属的复合或其合金等;
70:上电极上方介质层,材料可以是AlN,SiN,SiO2等;
80:温补层的刻蚀阻挡层,可选氮化铝,氧化锌,PZT等材料并包含上述材料的一定原子比的稀土元素掺杂材料;
81:温补层,可选SiO2,等正温度系数的材料;
82:种子层,可选氮化铝,氧化锌,PZT等材料并包含上述材料的一定原子比的稀土元素掺杂材料。
本实施方式中,引入电极压电比这样一个参数,并给出相应的计算方式。为表述方便,先对相关参数加以说明。参见图1和图2,各层厚度(单位:纳米)参数含义如下:
T1:上电极上方介质层70的厚度;
T2:上电极60的厚度;
T3:压电层50的厚度;
T4:中间电极40的厚度;
T5:底电极30的厚度;
T6:温补层的刻蚀阻挡层80的厚度;
T7:温补层81的厚度;
T8:种子层82的厚度。
再引入系数a、b、c、d,a=V/Va、b=V/Vb、c=V/Vc、d=V/Vd。这里的Va、Vb、Vc、Vd分别是声波谐振器的中间电极40、温补层的刻蚀阻挡层80、温补层81、种子层82各自对谐振器谐振频率的影响速率,单位为nm/MHz(纳米每兆赫兹),V(nm/MHz)表示底电极30对谐振器谐振 频率的影响速率。并且还引入参数n和e,n=V2/V1,e=V2/V,其中V1表示上电极上方介质层70的厚度对谐振器谐振频率的影响速率,V2表示上电极60的厚度对谐振器谐振频率的影响速率,单位为nm/MHz。
最后根据上述参数和系数进行电极压电比的计算,为了表达式在形式上简洁,再加入中间参数TB,TB=T5+a×T4+b×T6+c×T7+d×T8。最终电极压电比根据如下公式计算:电极压电比=(e×TB+T2+n×T1)/T3。
通过选择合适的电极压电比,可以获得较佳的谐振器性能。以下举例加以说明。图3是与本发明实施方式有关的另一种声波谐振器的剖面示意图,其中增加了压电层上方的凸起结构90,材料可选钼,钌,金,铝,镁,钨,铜,钛,铱,锇,铬或以上金属的符合或其合金等。凸起结构90和压电层50之间存在空气隙91。图3中的关于温补层的刻蚀阻挡层80、温补层81和种子层82的局部放大结构可参见图2。
图3所示结构对应的2GHz频段的实验结果如图4所示,图4是根据本发明实施方式的电极压电比与Q值的关系的示意图,图中的横向的多个数值表示凸起结构90的宽度d,纵向表示Q值的变化趋势。
根据图4所示,其中当电极压电比为0.5时,Q值随着凸起结构90的宽度d的变化的第一个峰值明显下降;当电极压电比为1.5时,Q值在第一个峰值略有下降,但是下降幅度不是很大;当电极压电比为1时,在凸起结构d为1um时会有个峰值,Q值是先上升再下降的,而另外两个比例明显没有这种趋势。造成这种情况的原因是其电极压电比失调导致的,当这个电极压电比为1时为最优,当这个比值小于0.5时,谐振器的性能下降会非常严重。
有的时候,对于给定的频率,要想得到目标Kt,在一定范围内要通过调整电极压电比才能满足需求,但原则是比例遵守上面的比例限定,超出范围就要用其他方法解决,比如可以引入掺杂Sc,在合适的比例下选择适 当的掺杂浓度就能得到想要的Kt。
比如在2G HZ频率下,在满足特定的温漂的条件下(0温漂),谐振器在不掺杂的情况下可以得到2.1%~4.2%的Kt,但是当需要做到大于4.2%时就需要引入掺杂,选择适当的掺杂浓度就能够在满足0.5<电极压电比=(e×TB+T2+n×T1)/T3<1.5的同时,得到Q值比较高的谐振器同时还能满足Kt需求,如图5,图5是与本发明实施方式有关的在电极压电比为1时,采用在AlN中掺杂Sc来改变Kt的曲线。从图5可以看到通过不同掺杂比例,可以保持电极压电比的同时改变Kt,这样既满足性能要求又能得到想要的Kt。
根据本发明实施方式的技术方案,引入电极压电比这样一个参数并给出计算方式,在谐振器的各层的设置使得该参数的值符合一定条件时,谐振器能够具备较好的性能。该谐振器应用于滤波器或其他电子设备中同样有助于提高器件或设备的性能。
上述具体实施方式,并不构成对本发明保护范围的限制。本领域技术人员应该明白的是,取决于设计要求和其他因素,可以发生各种各样的修改、组合、子组合和替代。任何在本发明的精神和原则之内所作的修改、等同替换和改进等,均应包含在本发明保护范围之内。

Claims (6)

  1. 一种带有温补层的声波谐振器,其特征在于,该声波谐振器的电极压电比大于0.5,该电极压电比根据如下公式计算:
    电极压电比=(e×TB+T2+n×T1)/T3;
    并且:
    TB=T5+a×T4+b×T6+c×T7+d×T8;
    a=V/Va、b=V/Vb、c=V/Vc、d=V/Vd;
    其中:
    T1表示所述声波谐振器的上电极上方介质层的厚度;
    T2表示所述声波谐振器的上电极的厚度;
    T3表示所述声波谐振器的压电层的厚度;
    T4表示所述声波谐振器的中间电极的厚度;
    T5表示所述声波谐振器的底电极的厚度;
    T6表示所述声波谐振器的温补层的刻蚀阻挡层的厚度;
    T7表示所述声波谐振器的温补层的厚度;
    T8表示所述声波谐振器的种子层的厚度;
    所述声波谐振器的中间电极、温补层的刻蚀阻挡层、温补层、种子层各自对谐振器谐振频率的影响速率分别为Va nm/MHz、Vb nm/MHz、Vc nm/MHz、Vd nm/MHz;
    所述底电极对谐振器谐振频率的影响速率为V nm/MHz;
    n=V2/V1,e=V2/V,其中V1表示上电极上方介质层的厚度对谐振器谐振频率的影响速率,V2表示上电极的厚度对谐振器谐振频率的影响速率,单位为nm/MHz。
  2. 根据权利要求1所述的声波谐振器,其特征在于,所述电极压电比小于1.5。
  3. 根据权利要求1或2所述的声波谐振器,其特征在于,T1、T4、T6、T8中的一个或多个取值为0。
  4. 根据权利要求1或2所述的声波谐振器,其特征在于,所述TB还满足如下关系:TB=e×m(T2+n×T1),其中:m取值0.7至1.3。
  5. 一种滤波器,其特征在于,包含权利要求1至4中任一项所述的声波谐振器。
  6. 一种电子设备,其特征在于,包含权利要求1至4中任一项所述的声波谐振器,或包含权利要求5中的滤波器。
PCT/CN2021/136534 2020-12-10 2021-12-08 带有温补层的声波谐振器和滤波器以及电子设备 WO2022121958A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011435645.X 2020-12-10
CN202011435645.XA CN114629460A (zh) 2020-12-10 2020-12-10 带有温补层的声波谐振器和滤波器以及电子设备

Publications (1)

Publication Number Publication Date
WO2022121958A1 true WO2022121958A1 (zh) 2022-06-16

Family

ID=81896093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/136534 WO2022121958A1 (zh) 2020-12-10 2021-12-08 带有温补层的声波谐振器和滤波器以及电子设备

Country Status (2)

Country Link
CN (1) CN114629460A (zh)
WO (1) WO2022121958A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104242862A (zh) * 2013-06-10 2014-12-24 太阳诱电株式会社 声波装置
CN107493086A (zh) * 2017-09-04 2017-12-19 苏州苏芯微电子技术有限公司 温度补偿声表面波谐振器及其制备方法
US20180069528A1 (en) * 2016-09-06 2018-03-08 Cindy X. Qiu Tunable Film Bulk Acoustic Resonators and Filters with Integrated Biasing Resistors
CN109039299A (zh) * 2018-07-08 2018-12-18 邱星星 具有集成偏置电阻的可调谐薄膜体声波谐振器和滤波器
CN109802646A (zh) * 2018-12-26 2019-05-24 天津大学 带有温度补偿层的谐振器、滤波器
CN112054777A (zh) * 2020-05-09 2020-12-08 诺思(天津)微系统有限责任公司 体声波谐振器组件及制造方法、滤波器及电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104242862A (zh) * 2013-06-10 2014-12-24 太阳诱电株式会社 声波装置
US20180069528A1 (en) * 2016-09-06 2018-03-08 Cindy X. Qiu Tunable Film Bulk Acoustic Resonators and Filters with Integrated Biasing Resistors
CN107493086A (zh) * 2017-09-04 2017-12-19 苏州苏芯微电子技术有限公司 温度补偿声表面波谐振器及其制备方法
CN109039299A (zh) * 2018-07-08 2018-12-18 邱星星 具有集成偏置电阻的可调谐薄膜体声波谐振器和滤波器
CN109802646A (zh) * 2018-12-26 2019-05-24 天津大学 带有温度补偿层的谐振器、滤波器
CN112054777A (zh) * 2020-05-09 2020-12-08 诺思(天津)微系统有限责任公司 体声波谐振器组件及制造方法、滤波器及电子设备

Also Published As

Publication number Publication date
CN114629460A (zh) 2022-06-14

Similar Documents

Publication Publication Date Title
US9219464B2 (en) Bulk acoustic wave (BAW) resonator structure having an electrode with a cantilevered portion and a piezoelectric layer with multiple dopants
US9450561B2 (en) Bulk acoustic wave (BAW) resonator structure having an electrode with a cantilevered portion and a piezoelectric layer with varying amounts of dopant
US11152913B2 (en) Bulk acoustic wave (BAW) resonator
CN109802646B (zh) 带有温度补偿层的谐振器、滤波器
JP4327942B2 (ja) 薄膜圧電素子
US9679765B2 (en) Method of fabricating rare-earth doped piezoelectric material with various amounts of dopants and a selected C-axis orientation
US9455681B2 (en) Bulk acoustic wave resonator having doped piezoelectric layer
US20070284971A1 (en) Electronic device
US20140246305A1 (en) Method of fabricating rare-earth element doped piezoelectric material with various amounts of dopants and a selected c-axis orientation
WO2020098487A1 (zh) 带粗糙面体声波谐振器、滤波器和电子设备
WO2020098480A1 (zh) 体声波谐振器、滤波器和电子设备
WO2022083352A1 (zh) 体声波谐振器及组件、滤波器、电子设备
CN114696773A (zh) 体声波谐振器及制造方法、滤波器及电子设备
US11558031B2 (en) Film bulk acoustic resonator and method of manufacturing the same
US11031539B2 (en) Piezoelectric vibrator and sensor
WO2022037572A1 (zh) 顶电极具有上下空隙的体声波谐振器及制造方法、滤波器及电子设备
JP4055885B2 (ja) 圧電薄膜振動素子、及びこれを用いたフィルタ
WO2022121958A1 (zh) 带有温补层的声波谐振器和滤波器以及电子设备
WO2024087628A1 (zh) 选择凸起结构的角度以提升性能的体声波谐振器
WO2023030359A1 (zh) 包括间隙电极的体声波谐振器、滤波器及电子设备
WO2020140654A1 (zh) 基于梁檐尺寸调整声学谐振器性能的装置和方法
WO2022068552A1 (zh) 体声波谐振器、掺杂浓度确定方法、滤波器及电子设备
WO2022068561A1 (zh) 体声波谐振器、掺杂浓度确定方法、滤波器及电子设备
WO2022218376A1 (zh) 压电层下侧设置凸起和/或凹陷的体声波谐振器、滤波器及电子设备
JP3493315B2 (ja) 圧電共振子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21902663

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 06.10.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21902663

Country of ref document: EP

Kind code of ref document: A1