WO2022121834A1 - 连续拍摄方法、装置及电子设备 - Google Patents

连续拍摄方法、装置及电子设备 Download PDF

Info

Publication number
WO2022121834A1
WO2022121834A1 PCT/CN2021/135672 CN2021135672W WO2022121834A1 WO 2022121834 A1 WO2022121834 A1 WO 2022121834A1 CN 2021135672 W CN2021135672 W CN 2021135672W WO 2022121834 A1 WO2022121834 A1 WO 2022121834A1
Authority
WO
WIPO (PCT)
Prior art keywords
zoom factor
input
zoom
sub
user
Prior art date
Application number
PCT/CN2021/135672
Other languages
English (en)
French (fr)
Inventor
王陈阳
Original Assignee
维沃移动通信(杭州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信(杭州)有限公司 filed Critical 维沃移动通信(杭州)有限公司
Publication of WO2022121834A1 publication Critical patent/WO2022121834A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/62Control of parameters via user interfaces
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/69Control of means for changing angle of the field of view, e.g. optical zoom objectives or electronic zooming

Definitions

  • the present application belongs to the field of image technology, and in particular relates to a continuous shooting method, device and electronic device.
  • the user needs to manually trigger the electronic device to obtain one image, then manually adjust the multiple, and then shoot the second image; if the user needs to obtain more images
  • the user needs to repeat the above-mentioned operation process of manually adjusting the multiples and shooting repeatedly, which leads to complicated and time-consuming operation steps of the electronic device in the scenario of acquiring multiple images of different multiples.
  • the purpose of the embodiments of the present application is to provide a continuous shooting method, device and electronic device, which can solve the problems of complicated operation steps and long time-consuming of the electronic device in the scenario of acquiring multiple images of different multiples.
  • an embodiment of the present application provides a continuous shooting method, the method includes: receiving a first input; in response to the first input, acquiring a continuous shooting parameter set by a user; wherein the continuous shooting parameter includes: a zoom ratio range , zoom direction, the number of consecutive shots N, N is an integer greater than or equal to 2; according to the continuous shooting parameter, control each camera in the M cameras to shoot N times continuously with the zoom magnification range and zoom direction set by the user, Output the target images collected by the M cameras, where M is a positive integer.
  • an embodiment of the present application provides a continuous shooting device, the continuous shooting device includes: a receiving module, an obtaining module, a control module and an output module; the receiving module is used for receiving a first input; the obtaining module is used for In response to the first input received by the receiving module, the continuous shooting parameters set by the user are obtained; wherein, the continuous shooting parameters include: zoom multiple range, zoom direction, and the number of continuous shooting N, where N is an integer greater than or equal to 2; the control module , which is used to control each of the M cameras according to the continuous shooting parameters, shoot N times continuously with the zoom multiple range and zoom direction set by the user, and output the target images collected by the M cameras, where M is a positive integer.
  • embodiments of the present application provide an electronic device, the electronic device includes a processor, a memory, and a program or instruction stored on the memory and executable on the processor, the program or instruction being The processor implements the steps of the continuous shooting method according to the first aspect when executed.
  • an embodiment of the present application provides a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the continuous shooting method according to the first aspect is implemented A step of.
  • an embodiment of the present application provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a program or an instruction, and implement the first aspect The continuous shooting method.
  • an embodiment of the present application provides a computer program product, where the program product is stored in a storage medium, and the program product is executed by at least one processor to implement the method described in the first aspect.
  • the electronic device receives a first input from the user, and the electronic device may, in response to the first input, obtain continuous shooting parameters set by the user; wherein the continuous shooting parameters may include a zoom magnification range, a zoom direction and The number of continuous shooting times; then, the electronic device can control each of the M cameras according to the continuous shooting parameters set by the user, shoot N times continuously with the zoom magnification range and zoom direction set by the user, and output the targets collected by the M cameras image, where M is a positive integer.
  • the user can first set the zoom ratio range and zoom direction for continuous shooting, and the electronic device can control each of the M cameras after the user sets the shooting parameters.
  • FIG. 1 is a schematic flowchart of a continuous shooting method provided by an embodiment of the present application.
  • FIG. 2 is one of the schematic diagrams of the display interface provided by the embodiment of the present application.
  • FIG. 3 is the second schematic diagram of a display interface provided by an embodiment of the present application.
  • FIG. 4 is a third schematic diagram of a display interface provided by an embodiment of the present application.
  • FIG. 5 is a fourth schematic diagram of a display interface provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of gesture input provided by an embodiment of the present application.
  • FIG. 7 is a fifth schematic diagram of a display interface provided by an embodiment of the present application.
  • FIG. 8 is a sixth schematic diagram of a display interface provided by an embodiment of the present application.
  • FIG. 9 is a seventh schematic diagram of a display interface provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a continuous shooting device provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a possible electronic device provided by an embodiment of the present application.
  • FIG. 12 is a schematic hardware diagram of an electronic device according to an embodiment of the present application.
  • first, second and the like in the description and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and distinguish between “first”, “second”, etc.
  • Objects are usually of one type, and the number of objects is not limited.
  • the first object may be one or multiple.
  • a plurality may indicate at least two, eg a plurality of images may indicate at least two images.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the associated objects are in an "or” relationship.
  • FIG. 1 is a schematic flowchart of a continuous shooting method provided by an embodiment of the present application. As shown in Figure 1, the method includes the following steps 101 to 103:
  • Step 101 The electronic device receives a first input from a user.
  • the first input may be the user's setting input in the shooting preview interface, which may be input in the form of clicking, sliding, or voice.
  • the first input may be a click selection input on a control in the shooting preview interface, a sliding selection input, or a preset gesture input or voice input input on the shooting preview interface, which is not specified in this embodiment of the present application. limited.
  • FIG. 2 is a schematic diagram of a display interface provided by an embodiment of the present application.
  • the electronic device displays a “continuous shooting” control 20 in the displayed shooting preview interface, and the user can click the “continuous shooting” control 20 to control the electronic device Switch to the continuous shooting mode, and then click the setting control 21 displayed on the shooting preview interface, so that the continuous shooting parameters in the continuous shooting mode can be set.
  • Step 102 The electronic device acquires the continuous shooting parameters set by the user in response to the first input.
  • the continuous shooting parameters set by the user include: zoom multiple range, zoom direction, and continuous shooting times N, where N is an integer greater than or equal to 2.
  • the zoom factor range may include a start zoom factor and an end zoom factor.
  • the zoom factor from small to large is the continuous shooting that gradually enlarges; the zoom factor from large to small is the continuous shooting that is gradually reduced.
  • the scaling factor range may include a starting scaling factor, an inflection point scaling factor, and an ending scaling factor.
  • the user can set a continuous shooting that zooms in and then zooms out, or a continuous shooting that zooms out and then zooms in.
  • the user can use the continuous shooting parameters set by default, or the continuous shooting parameters manually set by themselves, and the user can also use the default partial continuous shooting parameters of the electronic device and the manually set partial continuous shooting parameters.
  • This example is not specifically limited.
  • the default zoom direction is continuous shooting with the zoom ratio changing from small to large
  • the default zoom ratio range is 0.5x to 5.0x
  • Step 103 The electronic device controls each of the M cameras according to the continuous shooting parameters, shoots N times continuously with the zoom magnification range and zoom direction set by the user, and outputs the target images collected by the M cameras.
  • M is a positive integer.
  • the electronic device may control a camera to dynamically change the zoom factor during the continuous shooting process, so as to obtain an image with a change in the zoom factor.
  • M is greater than or equal to 2
  • the electronic device can control each camera in the plurality of cameras to dynamically change the zoom factor during continuous shooting, so as to obtain an image with a changed zoom factor.
  • the camera of the electronic device may include multiple cameras, each of which has a different focal length (that is, different focal lengths that are good at shooting), such as macro cameras, wide-angle cameras, Ultra wide-angle camera, etc.
  • the electronic device may display, in real time, the currently used zoom factor and the number of images being shot i on the current interface (for example, the preview interface), so as to prompt the user that the i-th image is currently captured, and the The zoom factor corresponding to i images.
  • the current interface for example, the preview interface
  • FIG. 3 is a schematic diagram of a display interface provided by an embodiment of the present application. As shown in FIG. 3 , the electronic device may display in the preview interface that the eighth image is being shot, and the zoom factor is 3.5x.
  • the electronic device saves the images captured before the termination.
  • the target image may be an image captured by each of the M cameras under a zoom factor (referred to as mode 1); exemplarily, assuming that three cameras are used for shooting, the zoom factor is In the case of 3.5x, camera 1 captures image 1 with a zoom ratio of 3.5x, camera 2 captures image 2 with a zoom ratio of 3.5x, and camera 3 captures image 3 with a zoom ratio of 3.5x.
  • mode 1 a zoom factor
  • camera 1 captures image 1 with a zoom ratio of 3.5x
  • camera 2 captures image 2 with a zoom ratio of 3.5x
  • camera 3 captures image 3 with a zoom ratio of 3.5x.
  • the target images output by the electronic device can be image 1, image 2 and image 3; the target image can also be one image among M images collected from M cameras under a zoom factor (denoted as Mode 2); for example, when the zoom factor is 3.5x, the target image output by the electronic device may be one of Image 1, Image 2, and Image 3; this is not specifically limited in this embodiment of the present application.
  • the electronic device can select one image from the saved M images as the image output under the zoom factor in the continuous shooting images.
  • the user can also select an image that meets the user's needs from the M images corresponding to each zoom factor after the shooting is completed. For example, after the shooting is completed, the user can manually select a favorite image under each zoom factor as the image in the continuous shooting image.
  • the electronic device may directly use the image selected under each zoom factor as the image in the continuous shooting images.
  • the electronic device may output the target image according to the sharpness or contrast of the captured image.
  • the electronic device receives a first input from the user, and the electronic device may, in response to the first input, obtain continuous shooting parameters set by the user; wherein, the continuous shooting parameters may include a zoom factor range, The zoom direction and the number of consecutive shots; then, the electronic device can control each camera in the M cameras according to the continuous shooting parameters set by the user, shoot N times continuously, and output M cameras with the zoom magnification range and zoom direction set by the user
  • the collected target image, M is a positive integer.
  • the user can first set the zoom ratio range and zoom direction for continuous shooting, and the electronic device can control each of the M cameras after the user sets the shooting parameters.
  • the electronic device may automatically perform step 103 after the user setting is completed, or may trigger the execution according to the user's input, which is not specifically limited in this embodiment of the present application.
  • the continuous shooting method provided by this embodiment of the present application may further include the following step 104:
  • Step 104 the electronic device receives the second input from the user.
  • the second input is an input that triggers the electronic device to start collecting.
  • the second input may be an input for the user to determine to start acquisition, or an input for determining to start acquisition and determining to end acquisition.
  • the second input may be an input that the user clicks the shooting control to start the collection, and the end of the collection may be automatically ended (that is, after the zoom factor reaches the end zoom factor), or the third input of the user clicking the shooting control again to end the collection
  • the third input can be the input at any time after the start of the acquisition and before the automatic end; the second input is the input of continuous pressing to keep the acquisition, and the end of the acquisition can be an automatic end (that is, after the zoom factor reaches the end zoom factor), or it can be The user releases the finger to cancel the pressed input.
  • step 103 can be performed by the following step 103a:
  • Step 103a in response to the second input, the electronic device controls each camera in the M cameras according to the continuous shooting parameters, and continuously shoots N times with the zoom multiple range and zoom direction set by the user, and outputs the target collected by the M cameras. image.
  • the electronic device can trigger the electronic device to control each of the M cameras according to the continuous shooting parameters set by the user according to the user's input, and shoot N times continuously with the zoom magnification range and zoom direction set by the user, and output the The target images collected by the M cameras.
  • two parameter setting methods for continuous shooting parameters can be provided.
  • One parameter setting method is that the user can set parameters through input to controls
  • the other parameter setting method is that the user can set parameters through preset gestures.
  • the electronic device can provide the user with different setting methods, and the user can flexibly choose how to set the shooting parameters of the continuous shooting.
  • the method may further include the following step 105:
  • Step 105 the electronic device displays the first control and the second control.
  • the first control is used for the user to set continuous shooting parameters through options
  • the second control is used for the user to set continuous shooting parameters through gestures.
  • Fig. 4 is a schematic diagram of a display interface provided by an embodiment of the present application.
  • the user first clicks the "continuous shooting” control 20, and then clicks the "setting” control 21, as shown in Fig. 4, the electronic device can display "" "Zoom factor” control 22 (ie the first control) and “Gesture zoom” control 23 (ie the second control).
  • the "zoom factor” control 22 indicates the setting mode of the manually selected option
  • the "gesture zoom” control 23 indicates the setting mode in which the user can draw a preset gesture on the screen.
  • the first parameter setting method :
  • the user may choose to use the setting control to set the parameters, and the first input may include the user's first sub-input to the first control, the user's second sub-input to the first sub-control, and the user's second sub-control The third sub input of .
  • step 102 can be performed through the following steps 102a1 to 102c1:
  • Step 102a1 the electronic device displays the first sub-control and the second sub-control in response to the first sub-input.
  • the first sub-control is used to set the zoom factor
  • the second sub-control is used to set the number of consecutive shots.
  • the first sub-control and the second sub-control may be displayed in different areas in one setting control, or may be controls displayed separately, which are not specifically limited in this embodiment of the present application.
  • Step 102b1 the electronic device acquires the zoom factor range and the zoom direction in response to the second sub-input.
  • the zoom multiplier range and the zoom direction are determined according to the input information of the second sub-input.
  • the second sub-input may be one input, or may be multiple sub-inputs, which is not specifically limited in this embodiment of the present application.
  • Step 102c1 in response to the third sub-input, the electronic device acquires the number of shots N of continuous shooting.
  • the continuous shooting times N is determined according to the input information of the third sub-input.
  • FIG. 5 is a schematic diagram of a display interface provided by an embodiment of the application.
  • the electronic device suspends and displays a sub-interface 24 in the shooting preview interface, and displays the setting of the zoom factor in the sub-interface 24
  • the control 24a ie, the first sub-control
  • the setting control 24b ie, the second sub-control
  • the user can select the starting zoom factor of 1.0x by sliding the zoom factor option in the left area up and down; i.e. the second sub input).
  • the user may input "15" (ie, the third sub-input) in the input area corresponding to "Number of Shots" displayed on the setting control 24b for the number of consecutive shots, and select 15 shots continuously.
  • the zoom direction is from small to large, that is, continuous zooming. continuous shooting; if the starting zoom ratio is greater than the ending zoom ratio, the zoom direction is from large to small, that is, continuous shooting with continuous zooming in and out.
  • "20” may be displayed by default in the input area corresponding to "Number of Shots". If the user decides to use the default value, the user may not change the default value of the input area.
  • the second sub-input may be an input for the user to select the zoom multiple range of the multiple for continuously taking photos by sliding the multiple options on both sides of the zoom multiple setting control.
  • the user can click the “Cancel” control, and the electronic device can perform continuous shooting according to the default set continuous shooting parameters.
  • the default zoom factor range can be a constant zoom factor value, or a range with a start zoom factor and an end zoom factor. If the default zoom factor range is a zoom factor value, if the user does not set the zoom factor range and triggers continuous shooting, the electronic device can use the zoom factor value (which can be the zoom factor value displayed on the current page) to shoot continuously.
  • the electronic device can use this zoom factor range.
  • the default zoom factor is continuous shooting (ie zoom factor changes).
  • the user can also set the zoom direction of the multiple that changes from small to large and then from large to small, or can also set the zoom direction of the multiple that changes from large to small and then from small to large.
  • the electronic device can provide the user with options for setting and selecting various parameters, so that the user can quickly set the continuous shooting parameters according to the displayed options, which satisfies the usage habits of users who prefer to select according to the options, and the user does not need to worry about how to adjust the zoom factor. and the zoom direction, which reduces the difficulty for the user to shoot multiple images with changing zoom factors, and simplifies the operation steps for the user to shoot multiple images whose zoom factors change continuously.
  • the user may choose to set parameters through gestures, and the first input may include a fourth sub-input, a first gesture sub-input and a second gesture sub-input of the user to the second control.
  • step 102 can be performed through the following steps 102a2 to 102c2:
  • Step 102a2 the electronic device determines, in response to the fourth sub-input, the gesture setting zoom magnification range and zoom direction.
  • Step 102b2 the electronic device acquires the initial zoom factor in response to the first gesture sub-input.
  • the initial zoom factor is determined according to the gesture feature of the first gesture sub-input.
  • the gesture features may include trajectory, distance, and direction.
  • Step 102c2 the electronic device acquires the termination zoom factor and the zoom direction in response to the second gesture sub-input.
  • the termination zoom factor is determined according to the gesture feature of the second gesture sub-input.
  • the gesture input may be an input of at least one finger drawing a preset track on the screen, or may be an input of a preset track drawn by the user in front of the camera.
  • the above-mentioned gesture input may be set by the user, or may be preset in the electronic device, which is not specifically limited in the embodiment of the present application.
  • the user taking the user first selecting a zoom factor that increases from small to large, as shown in Figure 6, the user first slides inward with two fingers, selects a smaller initial zoom factor of 1.0x, and then uses one finger to scroll down Swipe up to determine the starting zoom factor (that is, the first gesture sub-input), and then the user slides back and forth to select a larger zoom factor of 6.0x, and then swipes from top to bottom with one finger to determine the termination zoom factor. (ie the second gesture sub-input).
  • the electronic device may further display the zoom factor selected by the user in real time to prompt the user what the current zoom factor is.
  • the user can choose the gesture setting method, and the user can directly set the zoom multiple range and zoom direction through a specific gesture input, without the need for the electronic device to display various setting sub-interfaces, making the interface more concise and increasing the parameter settings. flexibility.
  • the electronic device may also display a setting interface, prompting the user to input the total number of continuously captured images in the input area.
  • the electronic device may prompt the user to continue to select the number of consecutively shot images through gesture input.
  • the setting for the number of consecutive shots may include the following two setting methods.
  • the electronic device may further display a setting interface for setting the number of consecutively captured images for the user.
  • the first input further includes a user's fifth sub-input to the third sub-control.
  • the following steps 102d2 and 102e2 may also be included:
  • Step 102d2 the electronic device displays the third sub-control.
  • the third sub-control is used to set the number of consecutive shots.
  • the setting area of the third sub-control may display an input area, and the input area may be an area for the user to manually fill in numbers, and the setting area of the third sub-control may also display a sliding control, which is used for the user to slide and select the number of consecutive shots. .
  • FIG. 7 is a schematic diagram of a display interface provided by an embodiment of the present application.
  • a sub-interface 25 is displayed in the preview interface of continuous shooting, and the electronic device can display the zoom that has been set by the user in the sub-interface 25.
  • Step 102e2 the electronic device acquires the number of consecutive shootings N in response to the fifth sub-input.
  • the electronic device can display the setting control for setting the number of consecutive shots for the user, so as to facilitate the user to set the number of consecutive shots.
  • the user's setting habits can be satisfied, so that the user can set parameters more conveniently and operate more quickly.
  • the user can also continue to use the gesture input to set the number of consecutive shots.
  • the first input further includes the user's third gesture sub-input, and further, after the above step 102c2, the following step 102f2 may also be included:
  • Step 102f2 in response to the third gesture sub-input, the electronic device acquires the number N of consecutive shots.
  • the continuous shooting times N is determined according to the gesture feature of the third gesture sub-input.
  • the user may draw a track of "15" on the screen or draw "15" in front of the camera, and the electronic device may determine that the number of consecutive shots set by the user is 15 according to the track drawn by the user.
  • the user can uniformly set the zoom factor range, zoom direction and the number of consecutive shots through gesture input.
  • the operation steps are few, and the setting method is simple and flexible. If the user is accustomed to setting by gesture input, it can meet the needs of such users.
  • Setting Habits is convenient for users to quickly set continuous shooting parameters.
  • step 106 may be further included:
  • Step 106 the electronic device determines the zoom factor of the M cameras for each shot in N shots according to the start zoom factor, the end zoom factor, the zoom direction, and the number of consecutive shots N.
  • the electronic device can determine the zoom factor used for each shot in N shots according to the continuous shooting parameters input by the user, so that it is convenient for the electronic device to control the camera to adjust the zoom factor during the acquisition process, and perform the operation based on the adjusted zoom factor. shoot.
  • step 106 can be specifically performed by step 106a1 and step 106a2:
  • Step 106a1 the electronic device determines, based on the first preset formula, a zoom factor difference between every two shots in the N shots.
  • the first preset formula is the following formula (1):
  • Z max represents the larger zoom factor among the starting zoom factor and the ending zoom factor
  • Z min represents the smaller zoom factor among the starting zoom factor and the ending zoom factor
  • Z diff represents every two shots in the above N shots. The zoom factor difference between.
  • Step 106a2 Based on the second preset formula and the zoom direction, the electronic device determines the zoom factor of each shot in the N shots.
  • the second preset formula is the following formula (2):
  • the second preset formula is the following formula (3):
  • Z max represents the larger zoom factor among the starting zoom factor and the ending zoom factor
  • Z min represents the smaller zoom factor among the starting zoom factor and the ending zoom factor
  • Z diff represents every two shots in the above N shots. The zoom factor difference between.
  • the electronic device can determine the zoom factor of each shooting in the continuous shooting process according to the continuous shooting parameters set by the user.
  • the electronic device can first determine the zoom factor difference for every two shots, and then determine the zoom factor used by the camera for each shot according to the start zoom factor, the end zoom factor, and the zoom factor difference.
  • the electronic device can precisely control the zoom factor based on the determined zoom factor.
  • the electronic device performs continuous shooting, so that the zooming of the image captured by the electronic device and obtained by continuous shooting with zooming is smoother.
  • step 106 can be specifically performed through steps 106a3 to 106a5:
  • Step 106a3 Based on the third preset formula, the electronic device determines the minimum number of granularity points between the start zoom factor and the end zoom factor.
  • the third preset formula is the following formula (4):
  • n a represents the number of minimum granularity points
  • a represents the minimum granularity
  • the minimum granularity can make the zoom factor of the image saved by the user evenly distributed on the keys of the minimum zoom factor and the maximum zoom factor and each minimum strength point during continuous shooting.
  • Step 106a4 the electronic device determines, based on the fourth preset formula, a zoom factor difference between every two shots in the N shots.
  • the fourth preset formula is the following formula (5):
  • na represents the minimum granularity point number between the above-mentioned starting scaling factor and the above-mentioned ending scaling factor
  • a represents the minimum granularity of the scaling factor
  • Step 106a5 Based on the second preset formula and the zoom direction, the electronic device determines the zoom factor of each shot in the N shots.
  • the second preset formula may be the above formula (2), and when the zoom direction is gradual reduction, the second preset formula may be the above formula (3).
  • the minimum zoom factor reaches the maximum Minimum number of granularity points between zoom factors
  • the zoom factor difference between each shot According to the linear change rule of zoom ratio from small to large, and the principle of zoom ratio difference and rounding, the zoom ratios of 15 consecutive images are as follows: 1.0x, 1.4x, 1.7x, 2.1x, 2.4x, 2.8x, 3.1 x, 3.5x, 3.9x, 4.2x, 4.6x, 4.9x, 5.3x, 5.6x, 6.0x.
  • the zoom ratio of the preview in the shooting preview interface is 6.0x.
  • the zooming effect of continuous shooting also stops. If the user triggers to stop shooting after the electronic device takes 10 images, the zooming method of the continuously captured images ranges from 1.0x to 4.2x, for a total of 10 images.
  • the electronic device can determine the zoom factor of each shooting in the continuous shooting process according to the continuous shooting parameters set by the user.
  • the electronic device may first determine the minimum number of granularity points between the start zoom factor and the end zoom factor, and then determine the zoom factor difference between every two shots based on the minimum number of granularity points, and then determine the zoom factor difference between the start zoom factor and the end zoom factor based on the minimum number of granularity points. Different from the zoom factor, determine the zoom factor used by the camera for each shooting.
  • the determined zoom factor is evenly distributed on the minimum zoom factor and maximum zoom factor keys and each minimum force point.
  • the electronic device can control the zoom factor more precisely according to the determined zoom factor.
  • the electronic device performs continuous shooting, so that the zooming of the image obtained by the electronic device with zoom continuous shooting is smoother, and since the precision can be controlled, it is easier to obtain multiple continuously zoomed images of the multiple desired by the user.
  • step 103 may be specifically performed by step 103a:
  • Step 103a During the shooting process of M cameras at the ith zoom factor, the electronic device controls each of the M cameras to capture an image to obtain M images.
  • the i-th zoom factor is a zoom factor determined by any one of the zoom factor ranges set by the user according to the start zoom factor, the end zoom factor, the zoom direction, and the number of consecutive shots N; i is a positive integer, and M is greater than 1 the integer.
  • Step 103b the electronic device outputs an image with the highest definition among the M images.
  • the target image includes N images, and each image in the N images is the image with the highest definition among the M images under the corresponding zoom factor.
  • the user uses an ultra-wide-angle, wide-angle, and macro camera to perform the continuous shooting method provided in the embodiments of the present application, taking the image with the highest output definition as an example, during the shooting process, under a zoom factor, the ultra-wide-angle,
  • the wide-angle and macro cameras output one image respectively, and the electronic device can determine the sharpness of the three images captured by the three cameras at the zoom factor, and then output the image with the highest sharpness among the three images as the zoom factor. image below.
  • the electronic device in the process of using the i-th zoom factor for shooting, can control the M cameras to use the i-th zoom factor to capture images to obtain M images, and then the electronic device can output the zoom factor.
  • the image with the highest definition among the collected M images enables the user to conveniently obtain a set of images with varying zoom ratios and clear images when the user needs to shoot continuously captured images with varying zoom ratios.
  • FIG. 8 is a schematic diagram of an interface provided by an embodiment of the present application.
  • the electronic device may display a thumbnail in the shooting preset interface, and the user may click on the thumbnail.
  • the electronic device may A "continuous photo" control is displayed on the screen, prompting the user to view or edit the continuous shooting image corresponding to the thumbnail. If the user selects the "continuous photo” control, as shown in Figure 9, the electronic device can zoom in and out according to the zoom direction. Thumbnails of images obtained by continuous shooting are displayed in sequence in the lower area, and the image corresponding to the first thumbnail on the left is displayed in the upper area. Users can edit and save the images displayed in the interface.
  • the executing subject may be a continuous shooting device, or a control module in the continuous shooting device for executing the continuous shooting method.
  • a method for performing continuous shooting by a continuous shooting device is used as an example to describe the continuous shooting device provided by the embodiments of the present application.
  • FIG. 10 is a schematic diagram of a continuous shooting device provided by an embodiment of the present application.
  • the continuous shooting device includes: a receiving module 301, an obtaining module 302, a control module 303 and an output module 304;
  • the receiving module 301 is used for Receive the first input;
  • the obtaining module 302 is configured to obtain the continuous shooting parameters set by the user in response to the first input received by the receiving module 301;
  • the continuous shooting parameters include: zoom multiple range, zoom direction, continuous shooting times N, N is an integer greater than or equal to 2;
  • the control module 303 is used to control each camera in the M cameras according to the continuous shooting parameters, and continuously shoot N times with the zoom magnification range and zoom direction set by the user, and M is a positive integer;
  • the output module 304 is configured to output the target images collected by the M cameras.
  • the continuous shooting device receives a first input from the user, and the continuous shooting device may, in response to the first input, obtain continuous shooting parameters set by the user; wherein the continuous shooting parameters may include a zoom factor range, zoom direction and the number of continuous shooting times; then, the continuous shooting device can control each camera in the M cameras according to the continuous shooting parameters set by the user, shoot N times continuously with the zoom magnification range and zoom direction set by the user, and output Target images collected by M cameras, where M is a positive integer.
  • the user can first set the zoom ratio range and zoom direction for continuous shooting, and the continuous shooting device can control each of the M cameras after the user sets shooting parameters.
  • the camera with the zoom magnification range and zoom direction set by the user, continuously shoots N times. There is no need for the user to manually control and trigger the electronic device to shoot one by one, and there is no need to manually adjust the zoom factor every time an image is taken, and the zoom factor does not need to be manually adjusted once for each image, and the user does not need to manually move the distance between the electronic device and the subject to be photographed. , simplifies the user's operation steps during the shooting process, reduces the difficulty of shooting multiple images with varying zoom ratios, saves shooting time, enables users to quickly shoot multiple images with varying zoom ratios, and improves the user experience. shooting efficiency.
  • the first input includes the first sub-input of the user to the first control, the second sub-input of the user to the first sub-control and the third sub-input of the user to the second sub-control;
  • the acquiring module is specifically used for: In response to the first sub-input, a first sub-control and a second sub-control are displayed, the first sub-control indicates to set the zoom factor, and the second sub-control is used to set the number of consecutive shots; in response to the second sub-input, the zoom factor range and Zoom direction; in response to the third sub-input, obtain the number N of continuously shot images; wherein, the zoom multiple range and the zoom direction are determined by the input information of the second sub-input, and the number of consecutive shots N is determined according to the input information of the third sub-input of.
  • the continuous shooting device can provide the user with options for setting and selecting various parameters, so that the user can quickly set the continuous shooting parameters according to the displayed options, which satisfies the usage habits of users who prefer to select according to the options, and the user does not need to worry about how to adjust the zoom
  • the multiplier and the zoom direction reduce the difficulty for the user to shoot multiple images whose zoom ratios change, and simplify the operation steps for the user to shoot multiple images whose zoom ratios change continuously.
  • the first input includes the user's fourth sub-input to the second control, the user's first gesture sub-input and the user's second gesture sub-input;
  • the acquiring module is specifically configured to: in response to the fourth sub-input, Determine the gesture setting zoom factor range and zoom direction; obtain the initial zoom factor in response to the first gesture sub-input; obtain the termination zoom factor in response to the second gesture sub-input; determine the zoom factor according to the initial zoom factor and the termination zoom factor direction; wherein, the initial zoom factor is determined according to the gesture features of the first gesture sub-input, and the termination zoom factor is determined according to the gesture features of the second gesture sub-input.
  • the user can choose the gesture setting method, and the user can directly set the zoom multiple range and zoom direction through a specific gesture input, without the need for the continuous shooting device to display various setting sub-interfaces, making the interface more concise and increasing the parameters Flexibility of settings.
  • the first input further includes a fifth sub-input of the user to the third sub-control
  • the continuous shooting device further includes: a display module; a display module for determining the zoom in the acquisition module according to the start zoom factor and the end zoom factor After the direction, the third sub-control is displayed, and the third sub-control is used to set the number of consecutive shots;
  • the receiving module is also used to receive the fifth sub-input;
  • the acquiring module is also used to respond to the fifth sub-input received by the receiving module, obtain The number of consecutive shots N; wherein, the number of consecutive shots N is determined according to the input information of the fifth sub-input.
  • the continuous shooting device can display the setting control for setting the continuous shooting times for the user, so as to facilitate the user to set the continuous shooting times, and the user is accustomed to operating the input on the control In the case of numbers, it can satisfy the user's setting habits, so that the user can set parameters more conveniently and operate more quickly.
  • the first input further includes a third gesture sub-input; the acquiring module is further configured to: in response to the user's third gesture sub-input, acquire the number of consecutive shots N; wherein, the number of consecutive shots N is based on the third gesture sub-input.
  • the input gesture features are determined.
  • the user can uniformly set the zoom factor range, zoom direction, and continuous shooting times through gesture input.
  • the operation steps are few, and the setting method is simple and flexible. If the user is accustomed to setting by gesture input, it can meet the needs of such users.
  • Setting Habits is convenient for users to quickly set continuous shooting parameters.
  • the continuous shooting device further includes: a determining module; a determining module, configured to determine the zoom of each shot of the M cameras in the N shots according to the start zoom factor, the end zoom factor, the zoom direction and the number of consecutive shots N. multiple.
  • the electronic device can determine the zoom factor used for each shot in N shots according to the continuous shooting parameters input by the user, so that the continuous shooting device can control the camera to adjust the zoom factor during the acquisition process conveniently, and based on the adjusted zoom factor Shoot at the zoom factor.
  • the determining module is specifically configured to: determine, based on the first preset formula, a zoom factor difference between every two shots in the N shots; based on the second preset formula and the zoom direction, determine each shot in the N shots.
  • the zoom factor of ; the first preset formula is:
  • the second preset formula is: Zmin, Zmin+Z diff , Zmin+2Z diff , Zmin+3Z diff , K, Zmin+(N-3)Z diff , Zmin+( N-2) Z diff , Zmax; or, in the case that the zooming direction is zooming from large to small, the second preset formula is: Zmin, Zmin+Z diff , Zmin+2Z diff , Zmin+3Z diff , K, Zmin+(N-3)Z diff , Zmin+(N-2)Z diff , Zmax; wherein, Z max represents the larger zoom factor of the start zoom factor and the end zoom factor, and Z min represents the start zoom factor and the end zoom factor The smaller
  • the continuous shooting device can determine the zoom factor of each shooting in the continuous shooting process according to the continuous shooting parameters set by the user.
  • the continuous shooting device can first determine the zoom ratio difference for every two shots, and then determine the zoom ratio used by the camera for each shooting according to the start zoom ratio, the termination zoom ratio, and the zoom ratio difference.
  • the continuous shooting device can determine the zoom ratio according to the determined zoom ratio
  • the multiple accurately controls the continuous shooting device to perform continuous shooting, so that the zooming of the image obtained by the continuous shooting device with zoom continuous shooting is more smooth.
  • the determining module is specifically configured to: based on the third preset formula, determine the minimum number of granularity points between the start zoom factor and the end zoom factor; based on the fourth preset formula, determine every two shots in the N times The zoom factor difference between shots; based on the second preset formula and the zoom direction, determine the zoom factor of each shot in the N shots; the third preset formula is:
  • the fourth preset formula is: When the zoom direction is from small to large, the second preset formula is: Zmin, Zmin+Z diff , Zmin+2Z diff , Zmin+3Z diff , K, Zmin+(N-3)Z diff , Zmin+( N-2) Z diff , Zmax; or, in the case that the zooming direction is from large to small, the second preset formula is: Zmax, Zmin+(N-2)Z diff , Zmin+(N-3), K , Zmin+3Z diff , Zmin+2Z diff , Zmin + Z diff , Z diff ; among them, na
  • the continuous shooting device can determine the zoom factor of each shooting in the continuous shooting process according to the continuous shooting parameters set by the user.
  • the continuous shooting device can first determine the minimum number of granularity points between the start zoom factor and the end zoom factor, and then determine the zoom factor difference between every two shots based on the minimum number of granularity points, and then determine the zoom factor difference between the start zoom factor and the end zoom factor based on the minimum number of granularity points.
  • the difference between the multiple and the zoom factor determines the zoom factor used by the camera for each shooting.
  • the determined zoom factor is evenly distributed on the minimum zoom factor and maximum zoom factor keys and each minimum force point.
  • the continuous shooting device is controlled to perform continuous shooting, so that the zooming of the image captured by the electronic device and obtained by continuous shooting with zooming is smoother.
  • control module is specifically used to control each of the M cameras to capture an image during the shooting process of the i-th zoom factor for the M cameras, to obtain M images;
  • output module is specifically used The image output with the highest definition among the M images is selected;
  • the above-mentioned i-th zoom factor is determined by any one of the above-mentioned zoom factor ranges according to the start zoom factor, the end zoom factor, the zoom direction and the number of consecutive shots N Zoom factor; i is a positive integer, M is an integer greater than 1.
  • the continuous shooting device can control the M cameras to use the i-th zoom factor to capture images to obtain M images, and then the electronic device can output the zoom factor. , the image with the highest definition among the M images collected, so that the user can conveniently obtain a set of images with varying zoom factors and clear images when the user needs to shoot images continuously shot with varying zoom factors.
  • the continuous shooting device in this embodiment of the present application may be a device, or may be a component, an integrated circuit, or a chip in a terminal.
  • the apparatus may be a mobile electronic device or a non-mobile electronic device.
  • the mobile electronic device may be a mobile phone, a tablet computer, a notebook computer, a palmtop computer, an in-vehicle electronic device, a wearable device, an ultra-mobile personal computer (UMPC), a netbook, or a personal digital assistant (personal digital assistant).
  • UMPC ultra-mobile personal computer
  • netbook or a personal digital assistant
  • non-mobile electronic devices can be servers, network attached storage (Network Attached Storage, NAS), personal computer (personal computer, PC), television (television, TV), teller machine or self-service machine, etc., this application Examples are not specifically limited.
  • Network Attached Storage NAS
  • personal computer personal computer, PC
  • television television
  • teller machine or self-service machine etc.
  • the continuous shooting device in the embodiment of the present application may be a device with an operating system.
  • the operating system may be an Android (Android) operating system, an ios operating system, or other possible operating systems, which are not specifically limited in the embodiments of the present application.
  • the continuous shooting apparatus provided by the embodiment of the present application can implement each process implemented by the electronic device in the method embodiments of FIG. 1 to FIG. 8 , and to avoid repetition, details are not repeated here.
  • an embodiment of the present application further provides an electronic device 400 , including a processor 401 , a memory 402 , a program or instruction stored in the memory 402 and executable on the processor 401 , the program Or when the instruction is executed by the processor 401, each process of the above-mentioned continuous shooting method embodiment can be implemented, and the same technical effect can be achieved. To avoid repetition, details are not described here.
  • the electronic devices in the embodiments of the present application include the above-mentioned mobile electronic devices and non-mobile electronic devices.
  • FIG. 12 is a schematic diagram of a hardware structure of an electronic device implementing an embodiment of the present application.
  • the electronic device 1000 includes but is not limited to: a radio frequency unit 1001, a network module 1002, an audio output unit 1003, an input unit 1004, a sensor 1005, a display unit 1006, a user input unit 1007, an interface unit 1008, a memory 1009, and a processor 1010, etc. part.
  • the electronic device 1000 may also include a power source (such as a battery) for supplying power to various components, and the power source may be logically connected to the processor 1010 through a power management system, so that the power management system can manage charging, discharging, and power functions. consumption management and other functions.
  • a power source such as a battery
  • the structure of the electronic device shown in FIG. 12 does not constitute a limitation on the electronic device.
  • the electronic device may include more or less components than the one shown, or combine some components, or arrange different components, which will not be repeated here. .
  • the user input unit 1007 is used for receiving the first input of the user; the processor 1010 is used for obtaining the continuous shooting parameters set by the user in response to the first input; wherein, the continuous shooting parameters include: zoom multiple range, zoom direction, The number of consecutive shots N, N is an integer greater than or equal to 2; according to the continuous shooting parameters, control each of the M cameras to shoot N times continuously with the zoom ratio range and zoom direction set by the user, and output M cameras to capture , where M is a positive integer.
  • the user input unit receives the first input of the user; the processor may, in response to the first input, obtain the continuous shooting parameters set by the user; wherein, the continuous shooting parameters may include a zoom ratio range, Zoom direction and continuous shooting times; then, the processor can control each camera in the M cameras according to the continuous shooting parameters set by the user, shoot N times continuously with the zoom multiple range and zoom direction set by the user, and output M cameras
  • the collected target image, M is a positive integer.
  • the user can first set the zoom ratio range and zoom direction for continuous shooting, and the electronic device can control each of the M cameras after the user sets the shooting parameters.
  • the first input includes the first sub-input of the user to the first control, the second sub-input of the user to the first sub-control, and the third sub-input of the user to the second sub-control; the processor 1010, for responding In the first sub-input, display a first sub-control and a second sub-control, the first sub-control is used to set the zoom factor, and the second sub-control is used to set the number of consecutive shots; in response to the second sub-input, obtain the zoom factor range and Zoom direction; in response to the third sub-input, obtain the number of consecutive shots N; wherein, the zoom multiple range and the zoom direction are determined according to the input information of the second sub-input, and the number of consecutive shots N is determined according to the input information of the third sub-input of.
  • the electronic device can provide the user with options for setting and selecting various parameters, so that the user can quickly set the continuous shooting parameters according to the displayed options, which satisfies the usage habits of users who prefer to select according to the options, and the user does not need to worry about how to adjust the zoom factor. and the zoom direction, which reduces the difficulty for the user to shoot multiple images with changing zoom factors, and simplifies the operation steps for the user to shoot multiple images whose zoom factors change continuously.
  • the first input includes the user's fourth sub-input to the second control, the user's first gesture sub-input and the user's second gesture sub-input; the processor 1010 is configured to, in response to the fourth sub-input, determine The gesture sets the zoom factor range and zoom direction; in response to the first gesture sub-input, obtains the initial zoom factor; in response to the second gesture sub-input, obtains the termination zoom factor; according to the initial zoom factor and the termination zoom factor, the zoom direction is determined ; wherein, the initial zoom factor is determined according to the gesture features of the first gesture sub-input, and the termination zoom factor is determined according to the gesture features of the second gesture sub-input.
  • the user can choose the gesture setting method, and the user can directly set the zoom multiple range and zoom direction through a specific gesture input, without the need for electronic devices to display various setting sub-interfaces, making the interface more concise and increasing the parameter settings. flexibility.
  • the first input also includes a fifth sub-input by the user to the third sub-control;
  • the display unit 1006 is configured to display the third sub-control after determining the zooming direction according to the start zoom factor and the end zoom factor, and then display the third sub-control.
  • the sub-control is used to set the number of consecutive shots;
  • the processor 1010 is further configured to obtain the number of consecutive shots N in response to the fifth sub-input; wherein the number of consecutive shots N is determined according to the input information of the fifth sub-input.
  • the electronic device can display the setting control for setting the number of consecutive shots for the user, so as to facilitate the user to set the number of consecutive shots.
  • the user's setting habits can be satisfied, so that the user can set parameters more conveniently and operate more quickly.
  • the first input further includes a third gesture sub-input of the user; the processor 1010 is further configured to obtain the number of consecutive shots N in response to the third gesture sub-input; wherein, the number of consecutive shots N is based on the third gesture sub-input.
  • the input gesture features are determined.
  • the user can uniformly set the zoom factor range, zoom direction, and continuous shooting times through gesture input.
  • the operation steps are few, and the setting method is simple and flexible. If the user is accustomed to setting by gesture input, it can meet the needs of such users.
  • Setting Habits is convenient for users to quickly set continuous shooting parameters.
  • the processor 1010 is further configured to, after receiving the first input, according to the start zoom factor, the end zoom factor, the zoom direction, and the number of consecutive shots N, determine the zoom factor of the M cameras for each shot in the N shots. .
  • the electronic device can determine the zoom factor used for each shot in N shots according to the continuous shooting parameters input by the user, so that it is convenient for the electronic device to control the camera to adjust the zoom factor during the acquisition process, and based on the adjusted zoom factor to shoot.
  • the processor 1010 is specifically configured to, based on the first preset formula, determine the zoom factor difference between every two shots in the N shots; based on the second preset formula and the zoom direction, determine each time in the N shots.
  • the zoom factor for shooting; the first preset formula is: When the zoom direction is from small to large, the second preset formula is: Zmin, Zmin+Z diff , Zmin+2Z diff , K, Zmin+(N-3)Z diff , Zmin+(N-2)Z diff , Zmax; or, when the zooming direction is from large to small, the second preset formula is: Zmin, Zmin+Z diff , Zmin+2Z diff , K, Zmin+(N-3)Z diff , Zmin+ (N-2) Z diff , Zmax; wherein, Z max represents the larger zoom factor of the start zoom factor and the end zoom factor, Z min represents the smaller zoom factor of the start zoom factor and the end zoom factor, and Z diff Indicates the zoom factor difference between each of the N shots.
  • the electronic device can determine the zoom factor of each shooting in the continuous shooting process according to the continuous shooting parameters set by the user.
  • the electronic device can first determine the zoom factor difference for every two shots, and then determine the zoom factor used by the camera for each shot according to the start zoom factor, the end zoom factor, and the zoom factor difference.
  • the electronic device can precisely control the zoom factor based on the determined zoom factor.
  • the electronic device performs continuous shooting, so that the zooming of the image captured by the electronic device and obtained by continuous shooting with zooming is smoother.
  • the processor 1010 is specifically configured to, based on the third preset formula, determine the minimum number of granularity points between the start zoom factor and the end zoom factor; The zoom factor difference between shots; based on the second preset formula and the zoom direction, the zoom factor of each shot in the N shots is determined; the third preset formula is: The fourth preset formula is: When the zoom direction is from small to large, the second preset formula is: Zmin, Zmin+Z diff , Zmin+2Z diff , K, Zmin+(N-3)Z diff , Zmin+(N-2)Z diff , Zmax; or, when the zooming direction is from large to small, the second preset formula is: Zmax, Zmin+(N-2)Z diff , K, Zmin+3Z diff , Zmin+2Z diff , Zmin + Z diff , Z diff ; wherein, na represents the minimum number of granularity points between the start zoom factor and the end zoom factor, Z max represents the larger zoom factor among the start zoom factor and the
  • the electronic device can determine the zoom factor of each shooting in the continuous shooting process according to the continuous shooting parameters set by the user.
  • the electronic device may first determine the minimum number of granularity points between the start zoom factor and the end zoom factor, and then determine the zoom factor difference between every two shots based on the minimum number of granularity points, and then determine the zoom factor difference between the start zoom factor and the end zoom factor based on the minimum number of granularity points.
  • the zoom factor is different from the zoom factor, and the zoom factor used by the camera for each shooting is determined.
  • the determined zoom factor is evenly distributed on the minimum zoom factor and maximum zoom factor keys and each minimum force point.
  • the electronic device can control the electronic device more precisely according to the determined zoom factor.
  • the device performs continuous shooting, so that the zooming of the image obtained by the electronic device with zoom continuous shooting is smoother. Since the precision can be controlled, it is easier to obtain multiple continuously zoomed images of the multiple desired by the user.
  • the processor 1010 is specifically configured to control each of the M cameras to capture an image during the shooting process of the i-th zoom factor for the M cameras, to obtain M images; output M images The image with the highest definition in the middle; the i-th zoom factor is any one in the zoom factor range determined according to the start zoom factor, end zoom factor, zoom direction and the number of consecutive shots N; i is a positive integer, M is an integer greater than 1.
  • the electronic device in the process of using the i-th zoom factor for shooting, can control the M cameras to use the i-th zoom factor to capture images to obtain M images, and then the electronic device can output the zoom factor.
  • the image with the highest definition among the collected M images enables the user to conveniently obtain a set of images with varying zoom ratios and clear images when the user needs to shoot continuously captured images with varying zoom ratios.
  • the input unit 1004 may include a graphics processor (Graphics Processing Unit, GPU) 1041 and a microphone 1042. Such as camera) to obtain still pictures or video image data for processing.
  • the display unit 1006 may include a display panel 1061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 1007 includes a touch panel 1071 and other input devices 1072 .
  • the touch panel 1071 is also called a touch screen.
  • the touch panel 1071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 1072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which are not described herein again.
  • Memory 1009 may be used to store software programs as well as various data, including but not limited to application programs and operating systems.
  • the processor 1010 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, and application programs, and the like, and the modem processor mainly processes wireless communication. It can be understood that, the above-mentioned modulation and demodulation processor may not be integrated into the processor 1010.
  • Embodiments of the present application further provide a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, each process of the foregoing continuous shooting method embodiment can be achieved, and the same can be achieved. In order to avoid repetition, the technical effect will not be repeated here.
  • the processor is the processor in the electronic device described in the foregoing embodiments.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • An embodiment of the present application further provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a program or an instruction to implement the above-mentioned continuous shooting method embodiment.
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is configured to run a program or an instruction to implement the above-mentioned continuous shooting method embodiment.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip, or the like.
  • An embodiment of the present application provides a computer program product, the program product is stored in a storage medium, and the program product is executed by at least one processor to implement the various processes in the foregoing continuous shooting method embodiments, and can achieve the same technical effect , in order to avoid repetition, it will not be repeated here.
  • the method of the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course can also be implemented by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or in a part that contributes to the prior art, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, CD-ROM), including several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of this application.
  • a storage medium such as ROM/RAM, magnetic disk, CD-ROM

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Human Computer Interaction (AREA)
  • Studio Devices (AREA)

Abstract

本申请公开了一种连续拍摄方法、装置及电子设备,。该方法包括:接收用户的第一输入;响应于第一输入,获取用户设置的连续拍摄参数;该连续拍摄参数包括:缩放倍数范围、缩放方向、连续拍摄次数N,N为大于或等于2的整数;根据该连续拍摄参数,控制M个摄像头中的每个摄像头,以用户设置的缩放倍数范围和缩放方向,连续拍摄N次,输出该M个摄像头采集的目标图像,M为正整数。

Description

连续拍摄方法、装置及电子设备
相关申请的交叉引用
本申请主张在2020年12月08日在中国提交的中国专利申请号202011445615.7的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于图像技术领域,具体涉及一种连续拍摄方法、装置及电子设备。
背景技术
随着通信技术的发展,电子设备中的拍摄功能越来越强大,用户使用电子设备拍摄图像的场景也越来越多。
通常,若用户需要对同一个拍摄对象拍摄不同倍数的多张图像,则需要用户先手动触发电子设备获取一张图像,然后手动调整倍数,再拍摄第二张图像;若用户需要获取更多的其他倍数的图像,用户需要重复执行上述的手动调整倍数以及重复拍摄的操作过程,从而导致在获取不同倍数的多张图像的场景下,电子设备的操作步骤繁琐,耗时较长。
发明内容
本申请实施例的目的是提供一种连续拍摄方法、装置及电子设备,能够解决在获取不同倍数的多张图像的场景下,电子设备的操作步骤繁琐,耗时较长的问题。
为了解决上述技术问题,本申请是这样实现的:
第一方面,本申请实施例提供了一种连续拍摄方法,该方法包括:接收第一输入;响应于第一输入,获取用户设置的连续拍摄参数;其中,该连续拍摄参数包括:缩放倍数范围、缩放方向、连续拍摄次数N,N为大于或等于2的整数;根据该连续拍摄参数,控制M个摄像头中的每个摄像头,以用户设置的缩放倍数范围和缩放方向,连续拍摄N次,输出该M个摄像头采集的目标图像,M为正整数。
第二方面,本申请实施例提供了一种连续拍摄装置,该连续拍摄装置包括:接收模块、获取模块、控制模块和输出模块;该接收模块,用于接收第一输入;该获取模块,用于响应于接收模块接收的第一输入,获取用户设置的连续拍摄参数;其中,该连续拍摄参数包括:缩放倍数范围、缩放方向、连续拍摄次数N,N为大于或等于2的整数;控制模块,用于根据该连续拍摄参数,控制M个摄像头中的每个摄像头,以用户设置的缩放倍数范围和缩放方向,连续拍摄N次,输出该M个摄像头采集的目标图像,M为正整数。
第三方面,本申请实施例提供了一种电子设备,该电子设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的连续拍摄方法的步骤。
第四方面,本申请实施例提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的连续拍摄方法的步骤。
第五方面,本申请实施例提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的连续拍摄方法。
第六方面,本申请实施例提供了一种计算机程序产品,该程序产品被存储在存储介质中,该程序产品被至少一个处理器执行以实现如第一方面所述的方法。
在本申请实施例中,首先,电子设备接收用户的第一输入,电子设备可以响应于该第一输入,获取用户设置的连续拍摄参数;其中,连续拍摄参数可以包括缩放倍数范围、缩放方向和连续拍摄次数;然后,电子设备可以根据用户设置的连续拍摄参数,控制M个摄像头中的每个摄像头,以用户设置的缩放倍数范围和缩放方向,连续拍摄N次,输出M 个摄像头采集的目标图像,M为正整数。在用户需要拍摄缩放倍数变化的多张图像的情况下,用户可以先设置好连续拍摄的缩放倍数范围和缩放方向,电子设备可以在用户设置拍摄参数之后,可以控制M个摄像头中的每个摄像头,以用户设置好的缩放倍数范围和缩放方向,连续拍摄次数N。无需用户手动控制触发电子设备一张一张的拍摄,无需每次拍摄一张图像手动调整一次缩放倍数,拍一张手动调整一次缩放倍数,也无需用户手动移动电子设备与被拍摄对象间的距离,简化了用户在拍摄过程中的操作步骤,降低了用户拍摄缩放倍数变化的多张图像的拍摄难度,节省了拍摄时间,使得用户可以快速地拍摄出缩放倍数变化的多张图像,提升了用户的拍摄效率。
附图说明
图1为本申请实施例提供的一种连续拍摄方法的流程示意图;
图2为本申请实施例提供的显示界面示意图之一;
图3为本申请实施例提供的显示界面示意图之二;
图4为本申请实施例提供的显示界面示意图之三;
图5为本申请实施例提供的显示界面示意图之四;
图6为本申请实施例提供的手势输入示意图;
图7为本申请实施例提供的显示界面示意图之五;
图8为本申请实施例提供的显示界面示意图之六;
图9为本申请实施例提供的显示界面示意图之七;
图10为本申请实施例提供的一种连续拍摄装置可能的结构示意图;
图11为本申请实施例提供的一种电子设备可能的结构示意图;
图12为本申请实施例提供的一种电子设备的硬件示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”等所区分的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。多个可以指示至少两个,例如多个图像可以指示至少两个图像。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的连续拍摄方法进行详细地说明。
图1为本申请实施例提供的一种连续拍摄方法的流程示意图。如图1中所示,该方法包括下述的步骤101至步骤103:
步骤101、电子设备接收用户的第一输入。
其中,第一输入可以为用户在拍摄预览界面中的设置输入,可以为点击、滑动、语音的形式的输入。
例如,第一输入可以为对拍摄预览界面中的控件的点击选中输入,滑动选中输入,也可以为在拍摄预览界面上输入的预设的手势输入或语音输入,本申请实施例对此不作具体限定。
示例性地,图2为本申请实施例提供的一种显示界面示意图。如图2中所示,在用户触发电子设备启用相机应用程序之后,电子设备在显示的拍摄预览界面中显示有“连拍” 控件20,用户可以点击该“连拍”控件20,控制电子设备切换到连拍模式,然后点击拍摄预览界面上显示的设置控件21,从而可以设置连拍模式下的连续拍摄参数。
需要说明的是,为了便于描述,本申请实施例中的附图中以花田中远近不同的花作为拍摄对象,用户可以采用本申请实施例提供的连续拍摄方法,拍摄一组缩放倍数变化的连续拍摄图像。
步骤102、电子设备响应于第一输入,获取用户设置的连续拍摄参数。
其中,用户设置的连续拍摄参数包括:缩放倍数范围、缩放方向、连续拍摄次数N,N为大于或等于2的整数。
示例性地,在缩放方向为线性变化的情况下,缩放倍数范围可以包括起始缩放倍数、结束缩放倍数。例如,从小到大的缩放倍数,即逐渐放大的连拍;从大到小的缩放倍数,即逐渐缩小的连拍。
示例性地,在缩放方向为非线性变化的情况下,缩放倍数范围可以包括起始缩放倍数、拐点缩放倍数,结束缩放倍数。例如,用户可以设置先放大再缩小缩放倍数的连拍,或者先缩小再放大缩放倍数的连拍。
需要说明的是,用户可以使用默认设置的连续拍摄参数,也可以使用自己手动设置的连续拍摄参数,用户也可以使用电子设备默认的部分连续拍摄参数和手动设置的部分连续拍摄参数,本申请实施例对此不作具体限定。
比如默认缩放方向为缩放倍数从小到大变化的连续拍摄,默认缩放倍数范围为0.5x至5.0x,默认连续拍摄次数N,比如默认N=20。
步骤103、电子设备根据连续拍摄参数,控制M个摄像头中的每个摄像头,以用户设置的缩放倍数范围、缩放方向,连续拍摄N次数,输出该M个摄像头采集的目标图像。
其中,M为正整数。
可选地,在M=1的情况下,电子设备可以控制一个摄像头在连续拍摄过程中动态变化缩放倍数,从而得到缩放倍数变化的图像。在M大于或等于2的情况下,电子设备可以控制多个摄像头中的每个摄像头在连续拍摄过程中动态变化缩放倍数,从而得到缩放倍数变化的图像。
需要说明的是,在M大于或等于2的情况下,电子设备的摄像头可以包括多个摄像头,每个摄像头的焦距不同(即擅长拍摄的焦段不同),例如可以包括微距摄像头、广角摄像头、超广角摄像头等。
示例性地,电子设备可以在拍摄过程中,可以在当前界面(例如预览界面)实时显示当前使用的缩放倍数,正在拍摄的张数i,从而可以提示用户当前拍摄到第i张图像,以及第i张图像对应的缩放倍数。
图3为本申请实施例提供的一种显示界面示意图,如图3中所示,电子设备可以在预览界面中显示正在拍摄的是第8张图像,缩放倍数为3.5x。
需要说明的是,在电子设备拍摄过程中,若用户提前终止连续拍摄,则电子设备保存终止之前已拍摄得到的图像。
在本申请实施例中,目标图像可以为在一个缩放倍数下,M个摄像头中每个摄像头采集的图像(记为方式1);示例性地,假设使用3个摄像头进行拍摄,在缩放倍数为3.5x的情况下,摄像头1采集到缩放倍数为3.5x的图像1、摄像头2采集到缩放倍数为3.5x的图像2、摄像头3采集到缩放倍数为3.5x的图像3,在缩放倍数为3.5x的情况下,电子设备输出的目标图像可以为图像1、图像2和图像3;目标图像也可以为在一个缩放倍数下,从M个摄像头采集的M个图像中的一张图像(记为方式2);例如,在缩放倍数为3.5x的情况下,电子设备输出的目标图像可以为图像1、图像2和图像3中的其中一张图像;本申请实施例对此不作具体限定。
需要说明的是,上述的方式1中,在同一个缩放倍数下,电子设备可以从保存的M个 图像中选择一个图像,作为连拍图像中该缩放倍数下输出的图像。
在本申请实施例中,用户也可以在拍摄完成后,从每个缩放倍数对应的M个图像中选择符合用户需求的图像。例如,用户可以在拍摄完成之后,手动选择每个缩放倍数下,最喜欢的一张图像作为连拍图像中的图像。
在上述的方式2中,电子设备可以直接将每个缩放倍数下选择的图像作为连拍图像中的图像。示例性地,电子设备可以根据拍摄出的图像的清晰度或对比度输出目标图像。
本申请实施例提供的连续拍摄方法,首先,电子设备接收用户的第一输入,电子设备可以响应于该第一输入,获取用户设置的连续拍摄参数;其中,连续拍摄参数可以包括缩放倍数范围、缩放方向和连续拍摄次数;然后,电子设备可以根据用户设置的连续拍摄参数,控制M个摄像头中的每个摄像头,以用户设置的缩放倍数范围和缩放方向,连续拍摄N次,输出M个摄像头采集的目标图像,M为正整数。在用户需要拍摄缩放倍数变化的多张图像的情况下,用户可以先设置好连续拍摄的缩放倍数范围和缩放方向,电子设备可以在用户设置拍摄参数之后,可以控制M个摄像头中的每个摄像头,以用户设置好的缩放倍数范围和缩放方向,连续拍摄次数N。无需用户手动控制触发电子设备一张一张的拍摄,无需每次拍摄一张图像手动调整一次缩放倍数,拍一张手动调整一次缩放倍数,也无需用户手动移动电子设备与被拍摄对象间的距离,简化了用户在拍摄过程中的操作步骤,降低了用户拍摄缩放倍数变化的多张图像的拍摄难度,节省了拍摄时间,使得用户可以快速地拍摄出缩放倍数变化的多张图像,提升了用户的拍摄效率。
可选地,在步骤102之后,电子设备可以在用户设置完成之后自动执行步骤103,也可以为根据用户的输入触发执行,本申请实施例对此不作具体限定。
示例性地,本申请实施例提供的连续拍摄方法,在步骤102之后,还可以包括下述的步骤104:
步骤104、电子设备接收用户的第二输入。
其中,第二输入为触发电子设备开始采集的输入。
可选地,第二输入可以为用户确定开始采集的输入,也可以为确定开始采集并确定结束采集的输入。
示例性地,第二输入可以为用户点击拍摄控件开始采集的输入,结束采集可以为自动结束(即缩放倍数到达结束缩放倍数之后),也可以为用户再次点击拍摄控件的第三输入结束采集,该第三输入可以为开始采集之后自动结束之前的任意一个时刻的输入;第二输入为连续按压保持采集的输入,结束采集可以为自动结束(即缩放倍数到达结束缩放倍数之后),也可以为用户松开手指取消按压的输入。
进而,上述的步骤103可以通过下述的步骤103a执行:
步骤103a、响应于第二输入,电子设备根据连续拍摄参数,控制M个摄像头中的每个摄像头,以用户设置的缩放倍数范围、缩放方向,连续拍摄N次数,输出该M个摄像头采集的目标图像。
基于该方案,电子设备可以根据用户的输入,触发电子设备根据用户设置的连续拍摄参数,控制M个摄像头中的每个摄像头,以用户设置的缩放倍数范围和缩放方向,连续拍摄N次,输出该M个摄像头采集的目标图像。
在本申请实施例中,可以提供两种连续拍摄参数的参数设置方式,一种参数设置方式是用户可以通过对控件的输入设置参数,一种参数设置方式是用户通过预设的手势设置参数。进而,在用户选择不同设置方式对应的控件的情况下,电子设备可以为用户提供不同的设置方式,用户可以灵活选择如何设置连续拍摄的拍摄参数。
可选地,在本申请实施例提供的连续拍摄方法中,在上述的步骤101之前,该方法还可以包括下述的步骤105:
步骤105、电子设备显示第一控件和第二控件。
其中,第一控件用于用户通过选项设置连续拍摄参数,第二控件用于用户通过手势设置连续拍摄参数。
图4为本申请实施例提供的一种显示界面示意图,结合图2,用户先点击“连拍”控件20,然后点击“设置”控件21,则如图4中所示,电子设备可以显示“缩放倍数”控件22(即第一控件)和“手势缩放”控件23(即第二控件)。其中,“缩放倍数”控件22指示手动选中选项的设置方式,“手势缩放”控件23指示用户可以在屏幕上绘制预设手势的设置方式。
第一种参数设置方式:
在上述的步骤105之后,用户可以选择使用设置控件设置参数,第一输入可以包括用户对第一控件的第一子输入、用户对第一子控件的第二子输入和用户对第二子控件的第三子输入。
进而,上述的步骤102可以通过下述的步骤102a1至步骤102c1执行:
步骤102a1、电子设备响应于第一子输入,显示第一子控件和第二子控件。
其中,第一子控件用于设置缩放倍数,第二子控件用于设置连续拍摄次数。
可选地,第一子控件和第二子控件可以为显示在一个设置控件中的不同区域,也可以为分别显示的控件,本申请实施例对此不作具体限定。
步骤102b1、电子设备响应于第二子输入,获取缩放倍数范围和缩放方向。
其中,该缩放倍数范围和缩放方向为根据第二子输入的输入信息确定的。
可选地,第二子输入可以为一个输入,也可以为多个子输入,本申请实施例对此不作具体限定。
步骤102c1、电子设备响应于第三子输入,获取连续拍摄拍摄次数N。
其中,该连续拍摄次数N为根据第三子输入的输入信息确定的。
示例性地,图5为本申请实施例提供的一种显示界面示意图,如图5中所示,电子设备在拍摄预览界面悬浮显示子界面24,并在该子界面24中显示缩放倍数的设置控件24a(即第一子控件)和连续拍摄次数的设置控件24b(即第二子控件)。用户可以在缩放倍数的设置控件24a的两侧,通过上下滑动左侧区域的缩放倍数选项,选择起始缩放倍数1.0x;通过上下滑动右侧区域的缩放倍数选项,选择结束缩放倍数6.0x(即第二子输入)。用户可以在连续拍摄次数的设置控件24b上显示的“拍摄张数”对应的输入区域输入“15”(即第三子输入),选择连续拍摄15张。
需要说明的是,在上述的图5显示的设置界面中,若用户在设置连续拍摄倍数缩放倍数范围时,若起始缩放倍数小于结束缩放倍数,则缩放方向为从小到大,即为不断放大的连续拍摄;若起始缩放倍数大于结束缩放倍数,则缩放方向为从大到小,即为不断放缩小的连续拍摄。
需要说明的是,“拍摄张数”对应的输入区域中可以默认显示“20”,若用户确定使用默认值,用户可以不变更该输入区域的默认值。
示例性地,结合图5,第二子输入,可以为用户可以通过滑动缩放倍数设置控件两侧的倍数选项,选择连续拍摄照片的倍数的缩放倍数范围的输入。
结合图5,若用户不需要设置,则用户可以点击“取消”控件,则电子设备可以根据默认设置的连续拍摄参数进行连续拍摄。比如,默认的缩放倍数范围可以为一个不变的缩放倍数值,也可以为一个有起始缩放倍数和结束缩放倍数的范围。若默认的缩放倍数范围为一个缩放倍数值,在用户未设置缩放倍数范围,触发连续拍摄的情况下,则电子设备可以采用该缩放倍数值(可以为当前页面上显示的缩放倍数值)连续拍摄(即缩放倍数不变);若默认的缩放倍数范围为有起始缩放倍数和结束缩放倍数的缩放倍数范围,在用户未设置缩放倍数范围,触发连续拍摄的情况下,则电子设备可以采用该默认的缩放倍数连续拍摄(即缩放倍数变化)。
需要说明的是,用户还可以设置先从小到大,再从大到小变化的倍数的缩放方向,也可以设置先从大到小,再从小到大变化的倍数的缩放方向。
基于该方案,电子设备可以为用户提供各个参数的设置选择选项,使得用户可以根据显示的选项快速地设置连续拍摄参数,满足喜欢根据选项选择的用户的使用习惯,用户不需纠结如何调整缩放倍数和缩放方向,降低了用户拍摄缩放倍数变化的多张图像的拍摄难度,简化了用户拍摄缩放倍数连续变化的多张图像的操作步骤。
第二种参数设置方式:
在上述的步骤105之后,用户可以选择通过手势设置参数,第一输入可以包括用户对第二控件的第四子输入、第一手势子输入和第二手势子输入。
进而,上述的步骤102可以通过下述的步骤102a2至步骤102c2执行:
步骤102a2、电子设备响应于第四子输入,确定手势设置缩放倍数范围和缩放方向。
步骤102b2、电子设备响应于第一手势子输入,获取起始缩放倍数。
其中,该起始缩放倍数为根据第一手势子输入的手势特征确定的。
示例性地,手势特征可以包括轨迹、距离、方向。
步骤102c2、电子设备响应于第二手势子输入,获取终止缩放倍数和缩放方向。
其中,该终止缩放倍数为根据第二手势子输入的手势特征确定的。
示例性地,本申请实施例中,手势输入可以为至少一个手指在屏幕上绘制预设轨迹的输入,也可以为用户在摄像头前绘制的预设轨迹的输入。
需要说明的是,本申请实施例中,上述的手势输入可以为用户设置的,也可以为电子设备中预设的,本申请实施例对此不作具体限定。
示例性地,以用户先选择自小变大的缩放倍数为例,如图6中所示,用户首先双指向内滑动,选择一个较小起始缩放倍数1.0x,然后再通过单指自下向上滑动确定起始缩放倍数(即第一手势子输入),其次用户再通过背向向外滑动,选择一个较大的缩放倍数6.0x,然后再通过单指自上向下滑动确定终止缩放倍数(即第二手势子输入)。
示例性地,电子设备在用户输入第一手势子输入的过程中以及第二手势子输入的过程中,还可以显示用户实时选择的缩放倍数,以提示用户当前的缩放倍数为多少。
基于该方案,用户可以选择手势设置的方式,用户可以直接通过特定的手势输入,快速设置缩放倍数范围和缩放方向,无需电子设备显示各种设置子界面,使得界面更加简洁,增加了参数设置的灵活性。
在第二种参数设置方式中,在用户选择完缩放倍数之后,电子设备也可以显示设置界面,提示用户在输入区域输入连续拍摄图像的总数量。电子设备可以提示用户继续通过手势输入选择连续拍摄图像数量,具体的,关于连续拍摄次数的设置可以包括下述两种设置方式。
连续拍摄次数设置方式1:
在手势输入选择倍数缩放倍数范围和缩放方向之后,电子设备还可以为用户显示设置连续拍摄图像数量的设置界面。
可选地,第一输入还包括用户对第三子控件的第五子输入。进而,在上述的步骤102c2之后,还可以包括下述的步骤102d2和步骤102e2:
步骤102d2、电子设备显示第三子控件。
其中,第三子控件用于设置连续拍摄次数。
可选地,第三子控件的设置区域可以显示输入区域,该输入区域可以为用户手动填写数字的区域,第三子控件的设置区域也可以显示滑动控件,用于用户滑动选择连续拍摄的次数。
示例性地,图7为本申请实施例提供的一种显示界面示意图,在该界面中,连续拍摄的预览界面中显示子界面25,电子设备可以在子界面25中显示用户已经设置好的缩放倍 数范围和缩放方向,以及“拍摄张数”控件25a(即第三子控件)对应的输入区域,用户可以在该输入区域中输入连续拍摄次数。
步骤102e2、电子设备响应于第五子输入,获取连续拍摄次数N。
基于该方案,在用户通过手势输入确定缩放倍数范围和缩放方向之后,电子设备可以为用户显示设置连续拍摄次数的设置控件从而方便用户中设置连续拍摄次数,在用户习惯在控件上操作输入数字的情况下,可以满足用户的设置习惯,使得用户可以更加方便地进行参数的设置,操作更加快捷。
连续拍摄次数设置方式2:
在手势输入选择倍数缩放倍数范围和缩放方向之后,用户也可以继续使用手势输入设置连续拍摄次数。
可选地,第一输入还包括用户的第三手势子输入,进而,在上述的步骤102c2之后,还可以包括下述的步骤102f2:
步骤102f2、电子设备响应于第三手势子输入,获取连续拍摄次数N。
其中,该连续拍摄次数N为根据第三手势子输入的手势特征确定的。
示例性地,用户可以在屏幕上绘制“15”的轨迹或者在摄像头前隔空绘制“15”,电子设备可以根据用户绘制的轨迹确定用户设置的连续拍摄次数为15次。
基于该方案,用户可以通过手势输入,统一设置缩放倍数范围、缩放方向以及连续拍摄次数,操作步骤较少,设置方式简单灵活,在用户习惯通过手势输入设置的情况下,可以满足该类用户的设置习惯,便于用户快速设置连续拍摄参数。
可选地,在本申请实施例提供的连续拍摄方法中,在上述的步骤101之后,还可以包括步骤106:
步骤106、电子设备根据起始缩放倍数、终止缩放倍数、缩放方向以及连续拍摄次数N,确定M个摄像头在N次拍摄中每次拍摄的缩放倍数。
可以理解,电子设备可以根据用户输入的连续拍摄参数,确定N次拍摄中每次拍摄使用的缩放倍数,从而可以方便电子设备在采集过程中控制摄像头调整缩放倍数,并基于调整后的缩放倍数进行拍摄。
可选地,上述的步骤106具体可以通过步骤106a1和步骤106a2执行:
步骤106a1、电子设备基于第一预设公式,确定N次拍摄中每两次拍摄间的缩放倍数差。
第一预设公式为下述的公式(1):
Figure PCTCN2021135672-appb-000001
其中,Z max表示起始缩放倍数和终止缩放倍数中较大的缩放倍数,Z min表示起始缩放倍数和终止缩放倍数中较小的缩放倍数,Z diff表示上述N次拍摄中每两次拍摄间的缩放倍数差。
步骤106a2、电子设备基于第二预设公式和缩放方向,确定N次拍摄中每次拍摄的缩放倍数。
示例性地,以用户选择的是逐渐放大的连续拍摄,第二预设公式为下述的公式(2):
Z min、Z min+Z diff、Z min+2Z diff、L Z min+(N-3)Z diff、Z min+(N-2)Z diff、Z max    (2)
示例性地,以用户选择的是逐渐缩小的连续拍摄,第二预设公式为下述的公式(3):
Zmin、Zmin+Z diff、Zmin+2Z diff,K,Zmin+(N-3)Z diff、Zmin+(N-2)Z diff、Zmax   (3)
其中,Z max表示起始缩放倍数和终止缩放倍数中较大的缩放倍数,Z min表示起始缩放倍数和终止缩放倍数中较小的缩放倍数,Z diff表示上述N次拍摄中每两次拍摄间的缩放倍数差。
基于该方案,电子设备在用户输入连续拍摄参数之后,可以根据用户设置的连续拍摄参数,确定连续拍摄过程中每次拍摄的缩放倍数。电子设备可以先确定每两次拍摄的缩放倍数差,然后根据起始缩放倍数、终止缩放倍数和缩放倍数差,确定每次拍摄摄像头使用的缩放倍数,电子设备可以根据确定的缩放倍数精确地控制电子设备进行连续拍摄,从而使得电子设备拍摄的具有缩放连续拍摄获得的图像的缩放更加流畅。
可选地,上述的步骤106具体可以通过步骤106a3至步骤106a5执行:
步骤106a3、电子设备基于第三预设公式,确定起始缩放倍数和终止缩放倍数之间的最小粒度点个数。
第三预设公式为下述的公式(4):
Figure PCTCN2021135672-appb-000002
其中,n a表示最小粒度点个数,a表示最小粒度。
需要说明的是,最小粒度,可以在连续拍摄时,使得用户保存的图像的缩放倍数均匀分布在最小缩放倍数和最大缩放倍数键和各个最小力度点上。
步骤106a4、电子设备基于第四预设公式,确定N次拍摄中每两次拍摄间的缩放倍数差。
第四预设公式为下述的公式(5):
Figure PCTCN2021135672-appb-000003
其中,n a表示上述起始缩放倍数和上述终止缩放倍数之间的最小粒度点个数,a表示缩放倍数的最小粒度。
步骤106a5、电子设备基于第二预设公式和缩放方向,确定N次拍摄中每次拍摄的缩放倍数。
在缩放方向为逐渐放大时,第二预设公式可以为上述的公式(2),在缩放方向为逐渐缩小时,第二预设公式可以为上述的公式(3)。
示例性地,假设用户设置最小缩放倍数Z min=1.0,最大缩放倍数Z max=6.0,连续拍摄张数N=15,最小粒度a=0.1(可以为预设的),则最小缩放倍数到最大缩放倍数之间的最小粒度点个数
Figure PCTCN2021135672-appb-000004
每两次拍摄间的缩放倍数差
Figure PCTCN2021135672-appb-000005
按照缩放倍数从小到大的线性变化规律,以及缩放倍数差和四舍五入原则,则连续拍摄15张图像的缩放倍数依次如下:1.0x、1.4x、1.7x、2.1x、2.4x、2.8x、3.1x、3.5x、3.9x、4.2x、4.6x、4.9x、5.3x、5.6x、6.0x。
示例性地,结合上述的缩放倍数范围和缩放方向,电子设备在拍摄完成后,拍摄预览界面预览的缩放倍数为6.0x。
若在拍摄过程中,已拍摄张数未达到设置的连续拍摄图像数量,用户触发停止拍摄,则连续拍摄的缩放效果也停止,例如,以上述示例中的缩放倍数范围和缩放方向为例,假 设用户在电子设备拍摄10张后触发停止拍摄,则拍出的连续拍摄图像的缩放法范围为1.0x至4.2x,共10张图像。
基于该方案,电子设备在用户输入连续拍摄参数之后,可以根据用户设置的连续拍摄参数,确定连续拍摄过程中每次拍摄的缩放倍数。电子设备可以先确定起始缩放倍数和终止缩放倍数之间的最小粒度点个数,然后基于最小粒度点个数再确定每两次拍摄的缩放倍数差,然后根据起始缩放倍数、终止缩放倍数和缩放倍数差,确定每次拍摄摄像头使用的缩放倍数,确定的缩放倍数均匀分布在最小缩放倍数和最大缩放倍数键和各个最小力度点上,电子设备可以根据确定的缩放倍数,更精确地控制电子设备进行连续拍摄,从而使得电子设备拍摄的具有缩放连续拍摄获得的图像的缩放更加流畅,由于精度可以控制,更容易得到用户想要的倍数的多张连续缩放的图像。
可选地,在本申请实施例提供的连续拍摄方法中,上述的步骤103具体可以通过步骤103a执行:
步骤103a、对于M个摄像头在第i个缩放倍数的拍摄过程中,电子设备分别控制该M个摄像头中的每个摄像头拍摄一张图像,得到M张图像。
其中,上述第i个缩放倍数为用户设置的缩放倍数范围中的任一个根据起始缩放倍数、终止缩放倍数、缩放方向以及连续拍摄次数N确定的缩放倍数;i为正整数,M为大于1的整数。
步骤103b、电子设备输出该M张图像中清晰度最高的一张图像。
可以理解,目标图像包括N张图像,该N张图像中的每张图像为对应的缩放倍数下的M张图像中清晰度最高的图像。
示例性地,假设用户使用超广角、广角、微距摄像头进行本申请实施例提供的连续拍摄方法,以输出清晰度最高的图像为例,在拍摄过程中,在一个缩放倍数下,超广角、广角和微距摄像头分别输出一张图像,电子设备可以确定在该缩放倍数下三个摄像头拍摄得到的三张图像的清晰度,然后输出三张图像中清晰度最高的一张图像为该缩放倍数下的图像。
基于该方案,在使用第i个缩放倍数进行拍摄的过程中,电子设备可以控制该M个摄像头均使用第i个缩放倍数采集图像,得到M张图像,然后电子设备可以输出该缩放倍数下,采集的M张图像中清晰度最高的一张图像,从而使得用户在需要拍摄缩放倍数变化的连续拍摄图像的情况下,可以方便地获取一组缩放倍数有变化并且清晰的图像。
图8为本申请实施例提供的一种界面示意图,在连续拍摄完成后,电子设备可以在拍摄预设界面中显示缩略图,用户可以点击该缩略图,如图8中所示,电子设备可以在屏幕上显示“连拍照片”控件,提示用户可以查看或编辑该缩略图对应的连续拍摄图像,若用户选择该“连拍照片”控件,则如图9所示,电子设备可以按照缩放方向在下方区域依次显示连续拍摄得到的图像的缩略图,并在上方区域显示左侧第一张缩略图对应的图像。用户可以对该界面中显示的图像编辑,另存等操作。
需要说明的是,本申请实施例提供的连续拍摄方法,执行主体可以为连续拍摄装置,或者该连续拍摄装置中的用于执行连续拍摄的方法的控制模块。本申请实施例中以连续拍摄装置执行连续拍摄的方法为例,说明本申请实施例提供的连续拍摄的装置。
图10为本申请实施例提供的一种连续拍摄装置示意图,如图10中所示,连续拍摄装置包括:接收模块301,获取模块302,控制模块303和输出模块304;接收模块301,用于接收第一输入;获取模块302,用于响应于接收模块301接收的第一输入,获取用户设置的连续拍摄参数;其中,连续拍摄参数包括:缩放倍数范围、缩放方向、连续拍摄次数N,N为大于或等于2的整数;控制模块303,用于根据连续拍摄参数,控制M个摄像头中的每个摄像头,以用户设置的缩放倍数范围和缩放方向,连续拍摄N次,M为正整数;输出模块304,用于输出M个摄像头采集的目标图像。
本申请实施例提供的连续拍摄装置,首先,连续拍摄装置接收用户的第一输入,连续拍摄装置可以响应于该第一输入,获取用户设置的连续拍摄参数;其中,连续拍摄参数可以包括缩放倍数范围、缩放方向和连续拍摄次数;然后,连续拍摄装置可以根据用户设置的连续拍摄参数,控制M个摄像头中的每个摄像头,以用户设置的缩放倍数范围和缩放方向,连续拍摄N次,输出M个摄像头采集的目标图像,M为正整数。在用户需要拍摄缩放倍数变化的多张图像的情况下,用户可以先设置好连续拍摄的缩放倍数范围和缩放方向,连续拍摄装置可以在用户设置拍摄参数之后,可以控制M个摄像头中的每个摄像头,以用户设置好的缩放倍数范围和缩放方向,连续拍摄次数N。无需用户手动控制触发电子设备一张一张的拍摄,无需每次拍摄一张图像手动调整一次缩放倍数,拍一张手动调整一次缩放倍数,也无需用户手动移动电子设备与被拍摄对象间的距离,简化了用户在拍摄过程中的操作步骤,降低了用户拍摄缩放倍数变化的多张图像的拍摄难度,节省了拍摄时间,使得用户可以快速地拍摄出缩放倍数变化的多张图像,提升了用户的拍摄效率。
可选地,第一输入包括用户对第一控件的第一子输入、用户对第一子控件的第二子输入和用户对第二子控件的第三子输入;获取模块,具体用于:响应于第一子输入,显示第一子控件和第二子控件,第一子控件指示设置缩放倍数,第二子控件用于设置连续拍摄次数;响应于第二子输入,获取缩放倍数范围和缩放方向;响应于第三子输入,获取连续拍摄图像数量N;其中,缩放倍数范围和缩放方向为第二子输入的输入信息确定的,连续拍摄次数N为根据第三子输入的输入信息确定的。
基于该方案,连续拍摄装置可以为用户提供各个参数的设置选择选项,使得用户可以根据显示的选项快速地设置连续拍摄参数,满足喜欢根据选项选择的用户的使用习惯,用户不需纠结如何调整缩放倍数和缩放方向,降低了用户拍摄缩放倍数变化的多张图像的拍摄难度,简化了用户拍摄缩放倍数连续变化的多张图像的操作步骤。
可选地,第一输入包括用户对第二控件的第四子输入、用户的第一手势子收入和用户的第二手势子输入;获取模块,具体用于:响应于第四子输入,确定手势设置缩放倍数范围和缩放方向;响应于第一手势子输入,获取起始缩放倍数;响应于第二手势子输入,获取终止缩放倍数;根据起始缩放倍数和终止缩放倍数,确定缩放方向;其中,起始缩放倍数为根据第一手势子输入的手势特征确定的,终止缩放倍数为根据第二手势子输入的手势特征确定的。
基于该方案,用户可以选择手势设置的方式,用户可以直接通过特定的手势输入,快速设置缩放倍数范围和缩放方向,无需该连续拍摄装置显示各种设置子界面,使得界面更加简洁,增加了参数设置的灵活性。
可选地,第一输入还包括用户对第三子控件的第五子输入;连续拍摄装置还包括:显示模块;显示模块,用于在获取模块根据起始缩放倍数和终止缩放倍数,确定缩放方向之后,显示第三子控件,第三子控件用于设置连续拍摄次数;接收模块,还用于接收第五子输入;获取模块,还用于响应于接收模块接收的第五子输入,获取连续拍摄次数N;其中,连续拍摄次数N为根据第五子输入的输入信息确定的。
基于该方案,在用户通过手势输入确定缩放倍数范围和缩放方向之后,该连续拍摄装置可以为用户显示设置连续拍摄次数的设置控件从而方便用户中设置连续拍摄次数,在用户习惯在控件上操作输入数字的情况下,可以满足用户的设置习惯,使得用户可以更加方便的进行参数的设置,操作更加快捷。
可选地,第一输入还包括第三手势子输入;获取模块,还用于:响应于用户的第三手势子输入,获取连续拍摄次数N;其中,连续拍摄次数N为根据第三手势子输入的手势特征确定的。
基于该方案,用户可以通过手势输入,统一设置缩放倍数范围、缩放方向以及连续拍摄次数,操作步骤较少,设置方式简单灵活,在用户习惯通过手势输入设置的情况下,可 以满足该类用户的设置习惯,便于用户快速设置连续拍摄参数。
可选地,连续拍摄装置还包括:确定模块;确定模块,用于根据起始缩放倍数、终止缩放倍数、缩放方向以及连续拍摄次数N,确定M个摄像头在N次拍摄中每次拍摄的缩放倍数。
基于该方案,电子设备可以根据用户输入的连续拍摄参数,确定N次拍摄中每次拍摄使用的缩放倍数,从而可以方便该连续拍摄装置在采集过程中控制摄像头调整缩放倍数,并基于调整后的缩放倍数进行拍摄。
可选地,确定模块具体用于:基于第一预设公式,确定N次拍摄中每两次拍摄间的缩放倍数差;基于第二预设公式和缩放方向,确定N次拍摄中每次拍摄的缩放倍数;第一预设公式为:
Figure PCTCN2021135672-appb-000006
在缩放方向为自小向大缩放的情况下,第二预设公式为:Zmin、Zmin+Z diff、Zmin+2Z diff、Zmin+3Z diff,K,Zmin+(N-3)Z diff、Zmin+(N-2)Z diff、Zmax;或者,在缩放方向为自大向小缩放的情况下,第二预设公式为:Zmin、Zmin+Z diff、Zmin+2Z diff、Zmin+3Z diff,K,Zmin+(N-3)Z diff、Zmin+(N-2)Z diff、Zmax;其中,Z max表示起始缩放倍数和终止缩放倍数中较大的缩放倍数,Z min表示起始缩放倍数和终止缩放倍数中较小的缩放倍数,Z diff表示N次拍摄中每两次拍摄间的缩放倍数差。
基于该方案,该连续拍摄装置在用户输入连续拍摄参数之后,可以根据用户设置的连续拍摄参数,确定连续拍摄过程中每次拍摄的缩放倍数。该连续拍摄装置可以先确定每两次拍摄的缩放倍数差,然后根据起始缩放倍数、终止缩放倍数和缩放倍数差,确定每次拍摄摄像头使用的缩放倍数,该连续拍摄装置可以根据确定的缩放倍数精确地控制该连续拍摄装置进行连续拍摄,从而使得该连续拍摄装置拍摄的具有缩放连续拍摄获得的图像的缩放更加流畅。
可选地,确定模块具体用于:基于第三预设公式,确定起始缩放倍数和终止缩放倍数之间的最小粒度点个数;基于第四预设公式,确定N次拍摄中每两次拍摄间的缩放倍数差;基于第二预设公式和缩放方向,确定N次拍摄中每次拍摄的缩放倍数;第三预设公式为:
Figure PCTCN2021135672-appb-000007
第四预设公式为:
Figure PCTCN2021135672-appb-000008
在缩放方向为自小向大缩放的情况下,第二预设公式为:Zmin、Zmin+Z diff、Zmin+2Z diff、Zmin+3Z diff,K,Zmin+(N-3)Z diff、Zmin+(N-2)Z diff、Zmax;或者,在缩放方向为自大向小缩放的情况下,第二预设公式为:Zmax、Zmin+(N-2)Z diff、Zmin+(N-3),K,Zmin+3Z diff、Zmin+2Z diff、Zmin+Z diff、Z diff;其中,n a表示起始缩放倍数和终止缩放倍数之间的最小粒度点个数,Z max表示起始缩放倍数和终止缩放倍数中较大的缩放倍数,Z min表示起始缩放倍数和终止缩放倍数中较小的缩放倍数,a表示缩放倍数的最小粒度,Z diff表示N次拍摄中每两次拍摄间的缩放倍数差。
基于该方案,连续拍摄装置在用户输入连续拍摄参数之后,可以根据用户设置的连续拍摄参数,确定连续拍摄过程中每次拍摄的缩放倍数。连续拍摄装置可以先确定起始缩放倍数和终止缩放倍数之间的最小粒度点个数,然后基于最小粒度点个数再确定每两次拍摄的缩放倍数差,然后根据起始缩放倍数、终止缩放倍数和缩放倍数差,确定每次拍摄摄像头使用的缩放倍数,确定的缩放倍数均匀分布在最小缩放倍数和最大缩放倍数键和各个最小力度点上,连续拍摄装置可以根据确定的缩放倍数更精确地控制连续拍摄装置进行连续拍摄,从而使得电子设备拍摄的具有缩放连续拍摄获得的图像的缩放更加流畅。
可选地,控制模块,具体用于对于M个摄像头在第i个缩放倍数的拍摄过程中,分别控制M个摄像头中的每个摄像头拍摄一张图像,得到M张图像;输出模块,具体用于选 择M张图像中清晰度最高的一张图像输出;上述第i个缩放倍数,为上述缩放倍数范围中的任一个根据起始缩放倍数、终止缩放倍数、缩放方向以及连续拍摄次数N确定的缩放倍数;i为正整数,M为大于1的整数。
基于该方案,在使用第i个缩放倍数进行拍摄的过程中,连续拍摄装置可以控制该M个摄像头均使用第i个缩放倍数采集图像,得到M张图像,然后电子设备可以输出该缩放倍数下,采集的M张图像中清晰度最高的一张图像,从而使得用户在需要拍摄缩放倍数变化的连续拍摄图像的情况下,可以方便地获取一组缩放倍数有变化并且清晰的图像。
本申请实施例中的连续拍摄装置可以是装置,也可以是终端中的部件、集成电路、或芯片。该装置可以是移动电子设备,也可以为非移动电子设备。示例性地,移动电子设备可以为手机、平板电脑、笔记本电脑、掌上电脑、车载电子设备、可穿戴设备、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本或者个人数字助理(personal digital assistant,PDA)等,非移动电子设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例中的连续拍摄装置可以为具有操作系统的装置。该操作系统可以为安卓(Android)操作系统,可以为ios操作系统,还可以为其他可能的操作系统,本申请实施例不作具体限定。
本申请实施例提供的连续拍摄装置能够实现图1至图8的方法实施例中电子设备实现的各个过程,为避免重复,这里不再赘述。
可选地,如图11所示,本申请实施例还提供一种电子设备400,包括处理器401,存储器402,存储在存储器402上并可在处理器401上运行的程序或指令,该程序或指令被处理器401执行时实现上述连续拍摄方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,本申请实施例中的电子设备包括上述的移动电子设备和非移动电子设备。
图12为实现本申请实施例的一种电子设备的硬件结构示意图。
该电子设备1000包括但不限于:射频单元1001、网络模块1002、音频输出单元1003、输入单元1004、传感器1005、显示单元1006、用户输入单元1007、接口单元1008、存储器1009、以及处理器1010等部件。
本领域技术人员可以理解,电子设备1000还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1010逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图12中示出的电子设备结构并不构成对电子设备的限定,电子设备可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
其中,用户输入单元1007,用于接收用户的第一输入;处理器1010,用于响应于第一输入,获取用户设置的连续拍摄参数;其中,连续拍摄参数包括:缩放倍数范围、缩放方向、连续拍摄次数N,N为大于或等于2的整数;根据连续拍摄参数,控制M个摄像头中的每个摄像头,以用户设置的缩放倍数范围和缩放方向,连续拍摄N次,输出M个摄像头采集的目标图像,M为正整数。
本申请实施例中的电子设备,首先,用户输入单元接收用户的第一输入;处理器可以响应于该第一输入,获取用户设置的连续拍摄参数;其中,连续拍摄参数可以包括缩放倍数范围、缩放方向和连续拍摄次数;然后,处理器可以根据用户设置的连续拍摄参数,控制M个摄像头中的每个摄像头,以用户设置的缩放倍数范围和缩放方向,连续拍摄N次,输出M个摄像头采集的目标图像,M为正整数。在用户需要拍摄缩放倍数变化的多张图像的情况下,用户可以先设置好连续拍摄的缩放倍数范围和缩放方向,电子设备可以在用 户设置拍摄参数之后,可以控制M个摄像头中的每个摄像头,以用户设置好的缩放倍数范围和缩放方向,连续拍摄次数N。无需用户手动控制触发电子设备一张一张的拍摄,无需每次拍摄一张图像手动调整一次缩放倍数,拍一张手动调整一次缩放倍数,也无需用户手动移动电子设备与被拍摄对象间的距离,简化了用户在拍摄过程中的操作步骤,降低了用户拍摄缩放倍数变化的多张图像的拍摄难度,节省了拍摄时间,使得用户可以快速地拍摄出缩放倍数变化的多张图像,提升了用户的拍摄效率。
可选地,第一输入包括用户对第一控件的第一子输入、用户对第一子控件的第二子输入和用户对第二子控件的第三子输入;处理器1010,用于响应于第一子输入,显示第一子控件和第二子控件,第一子控件用于设置缩放倍数,第二子控件用于设置连续拍摄次数;响应于第二子输入,获取缩放倍数范围和缩放方向;响应于第三子输入,获取连续拍摄次数N;其中,缩放倍数范围和缩放方向为根据第二子输入的输入信息确定的,连续拍摄次数N为根据第三子输入的输入信息确定的。
基于该方案,电子设备可以为用户提供各个参数的设置选择选项,使得用户可以根据显示的选项快速地设置连续拍摄参数,满足喜欢根据选项选择的用户的使用习惯,用户不需纠结如何调整缩放倍数和缩放方向,降低了用户拍摄缩放倍数变化的多张图像的拍摄难度,简化了用户拍摄缩放倍数连续变化的多张图像的操作步骤。
可选地,第一输入包括用户对第二控件的第四子输入、用户的第一手势子输入和用户的第二手势子输入;处理器1010,用于响应于第四子输入,确定手势设置缩放倍数范围和缩放方向;响应于第一手势子输入,获取起始缩放倍数;响应于第二手势子输入,获取终止缩放倍数;根据起始缩放倍数和终止缩放倍数,确定缩放方向;其中,起始缩放倍数为根据第一手势子输入的手势特征确定的,终止缩放倍数为根据第二手势子输入的手势特征确定的。
基于该方案,用户可以选择手势设置的方式,用户可以直接通过特定的手势输入,快速设置缩放倍数范围和缩放方向,无需电子设备显示各种设置子界面,使得界面更加简洁,增加了参数设置的灵活性。
可选地,第一输入还包括用户对第三子控件的第五子输入;显示单元1006,用于根据起始缩放倍数和终止缩放倍数,确定缩放方向之后,显示第三子控件,第三子控件用于设置连续拍摄次数;处理器1010,还用于响应于第五子输入,获取连续拍摄次数N;其中,连续拍摄次数N为根据第五子输入的输入信息确定的。
基于该方案,在用户通过手势输入确定缩放倍数范围和缩放方向之后,电子设备可以为用户显示设置连续拍摄次数的设置控件从而方便用户中设置连续拍摄次数,在用户习惯在控件上操作输入数字的情况下,可以满足用户的设置习惯,使得用户可以更加方便的进行参数的设置,操作更加快捷。
可选地,第一输入还包括用户的第三手势子输入;处理器1010,还用于响应于第三手势子输入,获取连续拍摄次数N;其中,连续拍摄次数N为根据第三手势子输入的手势特征确定的。
基于该方案,用户可以通过手势输入,统一设置缩放倍数范围、缩放方向以及连续拍摄次数,操作步骤较少,设置方式简单灵活,在用户习惯通过手势输入设置的情况下,可以满足该类用户的设置习惯,便于用户快速设置连续拍摄参数。
可选地,处理器1010,还用于接收第一输入之后,根据起始缩放倍数、终止缩放倍数、缩放方向以及连续拍摄次数N,确定M个摄像头在N次拍摄中每次拍摄的缩放倍数。
基于该方案,电子设备可以根据用户输入的连续拍摄参数,确定N次拍摄中每次拍摄使用的缩放倍数,从而可以方便电子设备在采集过程中控制摄像头调整缩放倍数,并基于调整后的缩放倍数进行拍摄。
可选地,处理器1010,具体用于基于第一预设公式,确定N次拍摄中每两次拍摄间的 缩放倍数差;基于第二预设公式和缩放方向,确定N次拍摄中每次拍摄的缩放倍数;第一预设公式为:
Figure PCTCN2021135672-appb-000009
在缩放方向为自小向大缩放的情况下,第二预设公式为:Zmin、Zmin+Z diff、Zmin+2Z diff,K,Zmin+(N-3)Z diff、Zmin+(N-2)Z diff、Zmax;或者,在缩放方向为自大向小缩放的情况下,第二预设公式为:Zmin、Zmin+Z diff、Zmin+2Z diff,K,Zmin+(N-3)Z diff、Zmin+(N-2)Z diff、Zmax;其中,Z max表示起始缩放倍数和终止缩放倍数中较大的缩放倍数,Z min表示起始缩放倍数和终止缩放倍数中较小的缩放倍数,Z diff表示N次拍摄中每两次拍摄间的缩放倍数差。
基于该方案,电子设备在用户输入连续拍摄参数之后,可以根据用户设置的连续拍摄参数,确定连续拍摄过程中每次拍摄的缩放倍数。电子设备可以先确定每两次拍摄的缩放倍数差,然后根据起始缩放倍数、终止缩放倍数和缩放倍数差,确定每次拍摄摄像头使用的缩放倍数,电子设备可以根据确定的缩放倍数精确地控制电子设备进行连续拍摄,从而使得电子设备拍摄的具有缩放连续拍摄获得的图像的缩放更加流畅。
可选地,处理器1010,具体用于基于第三预设公式,确定起始缩放倍数和终止缩放倍数之间的最小粒度点个数;基于第四预设公式,确定N次拍摄中每两次拍摄间的缩放倍数差;基于第二预设公式和缩放方向,确定N次拍摄中每次拍摄的缩放倍数;第三预设公式为:
Figure PCTCN2021135672-appb-000010
第四预设公式为:
Figure PCTCN2021135672-appb-000011
在缩放方向为自小向大缩放的情况下,第二预设公式为:Zmin、Zmin+Z diff、Zmin+2Z diff,K,Zmin+(N-3)Z diff、Zmin+(N-2)Z diff、Zmax;或者,在缩放方向为自大向小缩放的情况下,第二预设公式为:Zmax、Zmin+(N-2)Z diff,K,Zmin+3Z diff、Zmin+2Z diff、Zmin+Z diff、Z diff;其中,n a表示起始缩放倍数和终止缩放倍数之间的最小粒度点个数,Z max表示起始缩放倍数和终止缩放倍数中较大的缩放倍数,Z min表示起始缩放倍数和终止缩放倍数中较小的缩放倍数,a表示缩放倍数的最小粒度,Z diff表示N次拍摄中每两次拍摄间的缩放倍数差。
基于该方案,电子设备在用户输入连续拍摄参数之后,可以根据用户设置的连续拍摄参数,确定连续拍摄过程中每次拍摄的缩放倍数。电子设备可以先确定起始缩放倍数和终止缩放倍数之间的最小粒度点个数,然后基于最小粒度点个数再确定每两次拍摄的缩放倍数差,然后根据起始缩放倍数、终止缩放倍数和缩放倍数差,确定每次拍摄摄像头使用的缩放倍数,确定的缩放倍数均匀分布在最小缩放倍数和最大缩放倍数键和各个最小力度点上,电子设备可以根据确定的缩放倍数更精确地控制电子设备进行连续拍摄,从而使得电子设备拍摄的具有缩放连续拍摄获得的图像的缩放更加流畅,由于精度可以控制,更容易得到用户想要的倍数的多张连续缩放的图像。
可选地,处理器1010,具体用于对于M个摄像头在第i个缩放倍数的拍摄过程中,分别控制M个摄像头中的每个摄像头拍摄一张图像,得到M张图像;输出M张图像中清晰度最高的一张图像;第i个缩放倍数为缩放倍数范围中的任一个根据起始缩放倍数、终止缩放倍数、缩放方向以及连续拍摄次数N确定的缩放倍数;i为正整数,M为大于1的整数。
基于该方案,在使用第i个缩放倍数进行拍摄的过程中,电子设备可以控制该M个摄像头均使用第i个缩放倍数采集图像,得到M张图像,然后电子设备可以输出该缩放倍数下,采集的M张图像中清晰度最高的一张图像,从而使得用户在需要拍摄缩放倍数变化的连续拍摄图像的情况下,可以方便地获取一组缩放倍数有变化并且清晰的图像。
应理解的是,本申请实施例中,输入单元1004可以包括图形处理器(Graphics Processing  Unit,GPU)1041和麦克风1042,图形处理器1041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1006可包括显示面板1061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板1061。用户输入单元1007包括触控面板1071以及其他输入设备1072。触控面板1071,也称为触摸屏。触控面板1071可包括触摸检测装置和触摸控制器两个部分。其他输入设备1072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。存储器1009可用于存储软件程序以及各种数据,包括但不限于应用程序和操作系统。处理器1010可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器1010中。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述连续拍摄方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的电子设备中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述连续拍摄方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片、系统芯片、芯片系统或片上系统芯片等。
本申请实施例提供一种计算机程序产品,该程序产品被存储在存储介质中,该程序产品被至少一个处理器执行以实现如上述连续拍摄方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (18)

  1. 一种连续拍摄方法,所述方法包括:
    接收用户的第一输入;
    响应于所述第一输入,获取用户设置的连续拍摄参数;其中,所述连续拍摄参数包括:缩放倍数范围、缩放方向、连续拍摄次数N,N为大于或等于2的整数;
    根据所述连续拍摄参数,控制M个摄像头中的每个摄像头,以用户设置的缩放倍数范围和缩放方向,连续拍摄N次,输出所述M个摄像头采集的目标图像,M为正整数。
  2. 根据权利要求1所述的方法,其中,所述第一输入包括用户对第一控件的第一子输入、用户对第一子控件的第二子输入和用户对第二子控件的第三子输入;
    所述响应于所述第一输入,获取用户设置的连续拍摄参数,包括:
    响应于所述第一子输入,显示所述第一子控件和所述第二子控件,所述第一子控件用于设置缩放倍数,所述第二子控件用于设置连续拍摄次数;
    响应于所述第二子输入,获取缩放倍数范围和缩放方向;
    响应于所述第三子输入,获取连续拍摄次数N;
    其中,所述缩放倍数范围和缩放方向为根据所述第二子输入的输入信息确定的,所述连续拍摄次数N为根据所述第三子输入的输入信息确定的。
  3. 根据权利要求1所述的方法,其中,所述第一输入包括用户对第二控件的第四子输入、用户的第一手势子输入和用户的第二手势子输入;
    所述响应于所述第一输入,获取用户设置的连续拍摄参数,包括:
    响应于所述第四子输入,确定手势设置缩放倍数范围和缩放方向;
    响应于所述第一手势子输入,获取起始缩放倍数;
    响应于所述第二手势子输入,获取终止缩放倍数;
    根据所述起始缩放倍数和所述终止缩放倍数,确定缩放方向;
    其中,所述起始缩放倍数为根据所述第一手势子输入的手势特征确定的,所述终止缩放倍数为根据所述第二手势子输入的手势特征确定的。
  4. 根据权利要求3所述的方法,其中,所述第一输入还包括用户对第三子控件的第五子输入;
    所述根据所述起始缩放倍数和所述终止缩放倍数,确定缩放方向之后,所述方法还包括:
    显示第三子控件,所述第三子控件用于设置连续拍摄次数;
    响应于所述第五子输入,获取连续拍摄次数N;
    其中,所述连续拍摄次数N为根据所述第五子输入的输入信息确定的。
  5. 根据权利要求3所述的方法,其中,所述方法还包括:所述第一输入还包括用户的第三手势子输入;
    响应于所述第三手势子输入,获取连续拍摄次数N;
    其中,所述连续拍摄次数N为根据所述第三手势子输入的手势特征确定的。
  6. 根据权利要求1至5中任一项所述的方法,其中,所述接收第一输入之后,所述方法还包括:
    根据起始缩放倍数、终止缩放倍数、缩放方向以及连续拍摄次数N,确定所述M个摄像头在N次拍摄中每次拍摄的缩放倍数。
  7. 根据权利要求6所述的方法,其中,所述根据起始缩放倍数、终止缩放倍数,缩放方向以及连续拍摄次数N,确定所述M个摄像头,N次拍摄中每次拍摄使用的缩放倍数,包括:
    基于第一预设公式,确定所述N次拍摄中每两次拍摄间的缩放倍数差;
    基于第二预设公式和缩放方向,确定所述N次拍摄中每次拍摄的缩放倍数;
    所述第一预设公式为:
    Figure PCTCN2021135672-appb-100001
    在缩放方向为自小向大缩放的情况下,所述第二预设公式为:
    Z min、Z min+Z diff、Z min+2Z diff,K,Z min+(N-3)Z diff、Z min+(N-2)Z diff、Z max;
    或者,在缩放方向为自大向小缩放的情况下,所述第二预设公式为:
    Z min、Z min+Z diff、Z min+2Z diff,K,Z min+(N-3)Z diff、Z min+(N-2)Z diff、Z max;
    其中,Z max表示起始缩放倍数和终止缩放倍数中较大的缩放倍数,Z min表示起始缩放倍数和终止缩放倍数中较小的缩放倍数,Z diff表示所述N次拍摄中每两次拍摄间的缩放倍数差。
  8. 根据权利要求6所述的方法,其中,根据起始缩放倍数、终止缩放倍数,缩放方向以及连续拍摄次数N,确定所述M个摄像头,N次拍摄中每次拍摄使用的缩放倍数,包括:
    基于第三预设公式,确定所述起始缩放倍数和所述终止缩放倍数之间的最小粒度点个数;
    基于第四预设公式,确定所述N次拍摄中每两次拍摄间的缩放倍数差;
    基于第二预设公式和缩放方向,确定所述N次拍摄中每次拍摄的缩放倍数;
    所述第三预设公式为:
    Figure PCTCN2021135672-appb-100002
    所述第四预设公式为:
    Figure PCTCN2021135672-appb-100003
    在缩放方向为自小向大缩放的情况下,所述第二预设公式为:
    Z min、Z min+Z diff、Z min+2Z diff,K,Z min+(N-3)Z diff、Z min+(N-2)Z diff、Z max;
    或者,在缩放方向为自大向小缩放的情况下,所述第二预设公式为:
    Z max、Z min+(N-2)Z diff,K,Z min+3Z diff、Z min+2Z diff、Z min+Z diff、Z diff
    其中,n a表示所述起始缩放倍数和所述终止缩放倍数之间的最小粒度点个数,Z max表示起始缩放倍数和终止缩放倍数中较大的缩放倍数,Z min表示起始缩放倍数和终止缩放倍数中较小的缩放倍数,a表示缩放倍数的最小粒度,Z diff表示所述N次拍摄中每两次拍摄间的缩放倍数差。
  9. 根据权利要求6所述的方法,其中,所述根据所述连续拍摄参数,控制M个摄像头中的每个摄像头,以用户设置的缩放倍数范围和缩放方向,连续拍摄N次,输出所述M个摄像头采集的目标图像,包括:
    对于所述M个摄像头在第i个缩放倍数的拍摄过程中,分别控制所述M个摄像头中的每个摄像头拍摄一张图像,得到M张图像;
    输出所述M张图像中清晰度最高的一张图像;
    其中,所述第i个缩放倍数为所述缩放倍数范围中的任一个根据起始缩放倍数、终止缩放倍数、缩放方向以及连续拍摄次数N确定的缩放倍数;i为正整数,M为大于1的整数。
  10. 一种连续拍摄装置,所述连续拍摄装置包括:接收模块,获取模块,控制模块和输出模块;
    所述接收模块,用于接收第一输入;
    所述获取模块,用于响应于所述接收模块接收的所述第一输入,获取用户设置的连续拍摄参数;其中,所述连续拍摄参数包括:缩放倍数范围、缩放方向、连续拍摄次数N,N为大于或等于2的整数;
    所述控制模块,用于根据所述连续拍摄参数,控制M个摄像头中的每个摄像头,以用户设置的缩放倍数范围和缩放方向,连续拍摄N次,M为正整数;
    所述输出模块,用于输出所述M个摄像头采集的目标图像。
  11. 根据权利要求10所述的连续拍摄装置,其中,所述第一输入包括对用户对第一控件的第一子输入、用户对第一子控件的第二子输入和用户对第二子控件的第三子输入;
    所述获取模块,具体用于:
    响应于所述第一子输入,显示所述第一子控件和所述第二子控件,所述第一子控件指示设置缩放倍数,所述第二子控件用于设置连续拍摄次数;
    响应于所述第二子输入,获取缩放倍数范围和缩放方向;
    响应于所述第三子输入,获取连续拍摄图像数量N;
    其中,所述缩放倍数范围和缩放方向为所述第二子输入的输入信息确定的,所述连续拍摄次数N为根据所述第三子输入的输入信息确定的。
  12. 根据权利要求10所述的连续拍摄装置,其中,所述第一输入包括用户对第二控件的第四子输入、用户的第一手势子收入和用户的第二手势子输入;
    所述获取模块,具体用于:
    响应于第四子输入,确定手势设置缩放倍数范围和缩放方向;
    响应于第一手势子输入,获取起始缩放倍数;
    响应于第二手势子输入,获取终止缩放倍数;
    根据所述起始缩放倍数和所述终止缩放倍数,确定缩放方向;
    其中,所述起始缩放倍数为根据所述第一手势子输入的手势特征确定的,所述终止缩放倍数为根据所述第二手势子输入的手势特征确定的。
  13. 根据权利要求10至12中任一项所述的连续拍摄装置,其中,所述连续拍摄装置还包括:确定模块;
    所述确定模块,用于根据起始缩放倍数、终止缩放倍数、缩放方向以及连续拍摄次数N,确定所述M个摄像头在N次拍摄中每次拍摄的缩放倍数。
  14. 根据权利要求13所述的连续拍摄装置,其中,所述确定模块具体用于:
    基于第三预设公式,确定所述起始缩放倍数和所述终止缩放倍数之间的最小粒度点个数;
    基于第四预设公式,确定所述N次拍摄中每两次拍摄间的缩放倍数差;
    基于第二预设公式和缩放方向,确定所述N次拍摄中每次拍摄的缩放倍数;
    所述第三预设公式为:
    Figure PCTCN2021135672-appb-100004
    所述第四预设公式为:
    Figure PCTCN2021135672-appb-100005
    在缩放方向为自小向大缩放的情况下,所述第二预设公式为:
    Z min、Z min+Z diff、Z min+2Z diff,K,Z min+(N-3)Z diff、Z min+(N-2)Z diff、Z max;
    或者,在缩放方向为自大向小缩放的情况下,所述第二预设公式为:
    Z max、Z min+(N-2)Z diff,K,Z min+3Z diff、Z min+2Z diff、Z min+Z diff、Z diff
    其中,n a表示所述起始缩放倍数和所述终止缩放倍数之间的最小粒度点个数,Z max表示起始缩放倍数和终止缩放倍数中较大的缩放倍数,Z min表示起始缩放倍数和终止缩放倍数中较小的缩放倍数,a表示缩放倍数的最小粒度,Z diff表示所述N次拍摄中每两次拍摄间的缩放倍数差。
  15. 一种电子设备,其中,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至9中任一项所述的连续拍摄方法的步骤。
  16. 一种可读存储介质,其特征在于,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至9中任一项所述的连续拍摄方法。
  17. 一种计算机程序产品,所述程序产品被至少一个处理器执行以实现如权利要求1至9中任一项所述的连续拍摄方法。
  18. 一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1至9中任一项所述的连续拍摄方法。
PCT/CN2021/135672 2020-12-08 2021-12-06 连续拍摄方法、装置及电子设备 WO2022121834A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011445615.7A CN112565610B (zh) 2020-12-08 2020-12-08 连续拍摄方法、装置及电子设备
CN202011445615.7 2020-12-08

Publications (1)

Publication Number Publication Date
WO2022121834A1 true WO2022121834A1 (zh) 2022-06-16

Family

ID=75061157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/135672 WO2022121834A1 (zh) 2020-12-08 2021-12-06 连续拍摄方法、装置及电子设备

Country Status (2)

Country Link
CN (1) CN112565610B (zh)
WO (1) WO2022121834A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112565610B (zh) * 2020-12-08 2023-04-07 维沃移动通信(杭州)有限公司 连续拍摄方法、装置及电子设备
CN113923350A (zh) * 2021-09-03 2022-01-11 维沃移动通信(杭州)有限公司 视频拍摄方法、装置、电子设备和可读存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080057478A (ko) * 2006-12-20 2008-06-25 삼성테크윈 주식회사 연속 촬영 모드가 수행되는 디지털 영상 처리 장치의 제어방법
US20150009372A1 (en) * 2013-07-08 2015-01-08 Lg Electronics Inc. Electronic device and method of operating the same
CN109510939A (zh) * 2017-09-15 2019-03-22 中兴通讯股份有限公司 相机缩放对焦的roi调整方法、装置及存储介质
CN110703534A (zh) * 2019-10-28 2020-01-17 上海比路电子股份有限公司 一种连续可变光圈装置
CN110913139A (zh) * 2019-11-28 2020-03-24 维沃移动通信有限公司 拍照方法及电子设备
CN112565610A (zh) * 2020-12-08 2021-03-26 维沃移动通信(杭州)有限公司 连续拍摄方法、装置及电子设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10222975B2 (en) * 2012-08-27 2019-03-05 Apple Inc. Single contact scaling gesture
CN108668083B (zh) * 2018-07-24 2020-09-01 维沃移动通信有限公司 一种拍照方法及终端
CN110944114B (zh) * 2019-11-28 2021-06-08 维沃移动通信有限公司 拍照方法及电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080057478A (ko) * 2006-12-20 2008-06-25 삼성테크윈 주식회사 연속 촬영 모드가 수행되는 디지털 영상 처리 장치의 제어방법
US20150009372A1 (en) * 2013-07-08 2015-01-08 Lg Electronics Inc. Electronic device and method of operating the same
CN109510939A (zh) * 2017-09-15 2019-03-22 中兴通讯股份有限公司 相机缩放对焦的roi调整方法、装置及存储介质
CN110703534A (zh) * 2019-10-28 2020-01-17 上海比路电子股份有限公司 一种连续可变光圈装置
CN110913139A (zh) * 2019-11-28 2020-03-24 维沃移动通信有限公司 拍照方法及电子设备
CN112565610A (zh) * 2020-12-08 2021-03-26 维沃移动通信(杭州)有限公司 连续拍摄方法、装置及电子设备

Also Published As

Publication number Publication date
CN112565610B (zh) 2023-04-07
CN112565610A (zh) 2021-03-26

Similar Documents

Publication Publication Date Title
WO2022116885A1 (zh) 拍照方法、装置、电子设备及存储介质
WO2022121834A1 (zh) 连续拍摄方法、装置及电子设备
US9918021B2 (en) Image processing device that changes extent of image altering by first and second image processing
WO2022012657A1 (zh) 图像编辑方法、装置和电子设备
WO2022166944A1 (zh) 拍照方法、装置、电子设备及介质
JP2021145209A (ja) 電子機器
CN112637507B (zh) 拍摄方法、装置、电子设备及可读存储介质
CN113141450B (zh) 拍摄方法、装置、电子设备及介质
CN112954199B (zh) 视频录制方法及装置
US20130208163A1 (en) Camera shutter key display apparatus and method
WO2022116961A1 (zh) 拍摄方法及装置、电子设备和可读存储介质
WO2022089284A1 (zh) 拍摄处理方法、装置、电子设备和可读存储介质
WO2022161240A1 (zh) 拍摄方法、装置、电子设备及介质
WO2022121875A1 (zh) 预览图像显示控制方法、装置、电子设备及介质
CN113923350A (zh) 视频拍摄方法、装置、电子设备和可读存储介质
CN112565611A (zh) 视频录制方法、装置、电子设备及介质
CN112437232A (zh) 拍摄方法、装置、电子设备及可读存储介质
WO2022156673A1 (zh) 显示控制方法、装置、电子设备及介质
WO2022156672A1 (zh) 拍照方法、装置、电子设备及可读存储介质
CN112738401B (zh) 变焦方法、装置及电子设备
WO2023071981A1 (zh) 拍摄方法、装置及电子设备
WO2023005908A1 (zh) 拍摄方法、装置、设备和存储介质
WO2022156774A1 (zh) 对焦方法、装置、电子设备及介质
CN112887624B (zh) 一种拍摄方法、装置和电子设备
WO2022105673A1 (zh) 视频录制方法和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21902539

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10-11-2023)