WO2022121833A1 - 电子设备、无线通信方法和计算机可读存储介质 - Google Patents

电子设备、无线通信方法和计算机可读存储介质 Download PDF

Info

Publication number
WO2022121833A1
WO2022121833A1 PCT/CN2021/135670 CN2021135670W WO2022121833A1 WO 2022121833 A1 WO2022121833 A1 WO 2022121833A1 CN 2021135670 W CN2021135670 W CN 2021135670W WO 2022121833 A1 WO2022121833 A1 WO 2022121833A1
Authority
WO
WIPO (PCT)
Prior art keywords
user equipment
electronic device
relay
remote
state
Prior art date
Application number
PCT/CN2021/135670
Other languages
English (en)
French (fr)
Inventor
周明拓
刘敏
Original Assignee
索尼集团公司
周明拓
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼集团公司, 周明拓 filed Critical 索尼集团公司
Priority to US18/251,883 priority Critical patent/US20240015659A1/en
Priority to CN202180081036.5A priority patent/CN116711233A/zh
Publication of WO2022121833A1 publication Critical patent/WO2022121833A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0248Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal dependent on the time of the day, e.g. according to expected transmission activity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18519Operations control, administration or maintenance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • Embodiments of the present disclosure generally relate to the field of wireless communications, and in particular, to electronic devices, wireless communication methods, and computer-readable storage media. More specifically, the present disclosure relates to an electronic device serving as a network-side device in a wireless communication system, an electronic device serving as a relay user equipment in a wireless communication system, and an electronic device serving as a remote user device in a wireless communication system electronic equipment, a wireless communication method performed by a network side device in a wireless communication system, a wireless communication method performed by a relay user equipment in a wireless communication system, a wireless communication method performed by a remote user in a wireless communication system A wireless communication method performed by a device and a computer-readable storage medium.
  • NTN Non-terrestrial Network, non-terrestrial network
  • a satellite can cover a huge area of the ground, compared with TN (Terrestrial Network, terrestrial network), NTN has the huge advantage of easy network deployment, so it can Provide services for thousands of UEs (User Equipment, user equipment).
  • UEs User Equipment, user equipment
  • satellite equipment can provide services to user equipment.
  • the serving base station is enabled to serve user equipment by placing the serving base station on a non-transparent satellite device.
  • the serving base station located on the ground can also provide services for the user equipment.
  • user equipments with poor communication conditions e.g. the user equipment is located in an occluded environment
  • user equipments with lower energy it may be difficult to communicate with the satellite equipment.
  • user equipments with poor communication conditions or user equipments with lower energy referred to as remote user equipments
  • the user equipment may use a sleep mode, that is, be in a sleep state periodically. Since both the relay user equipment and the remote user equipment can adopt the sleep mode, this will bring a huge challenge to the design of each communication process in the NTN network.
  • the purpose of the present disclosure is to provide an electronic device, a wireless communication method and a computer-readable storage medium, so that in an NTN network, while saving the energy of the relay user equipment and the remote user equipment, the relay user equipment and the remote user equipment can be saved.
  • the end-user device works fine.
  • an electronic device including a processing circuit configured to: determine the sleep parameters of the remote user equipment and the next wake-up state according to the sleep parameters of the relay user equipment and the start time of the next wake-up state. the start time of the wake-up state, so that when the remote user equipment is in the wake-up state, the relay user equipment is also in the wake-up state; and the sleep parameters of the remote user equipment and the next wake-up
  • the start time of the state is sent to the remote user equipment, wherein the remote user equipment communicates with the satellite device via the relay user equipment, and the sleep parameters include the duration of the sleep state and the duration of the awake state .
  • an electronic device including a processing circuit configured to: receive sleep parameters of the electronic device and a start time of a next wake-up state, the sleep parameters including a duration of the sleep state and the duration of the wake-up state, and is determined according to the sleep parameters of the relay user equipment, when the electronic device is in the wake-up state, the relay user equipment is also in the wake-up state; and according to the sleep parameters and The start time of the next wake-up state periodically enters the sleep state and the wake-up state, wherein the electronic device communicates with the satellite device via the relay user equipment.
  • a wireless communication method performed by an electronic device, comprising: determining a sleep parameter and a next wakeup state of a remote user equipment according to a sleep parameter of a relay user equipment and a start time of a next wake-up state The start time of a wake-up state, so that when the remote user equipment is in the wake-up state, the relay user equipment is also in the wake-up state; and the sleep parameters of the remote user equipment and the next wake-up The start time of the incoming state is sent to the remote user equipment, wherein the remote user equipment communicates with the satellite device via the relay user equipment, and the sleep parameters include the duration of the sleep state and the wake-up state. duration.
  • a wireless communication method performed by an electronic device, comprising: receiving a sleep parameter of the electronic device and a start time of a next wake-up state, the sleep parameter including a duration of the sleep state and the duration of the wake-up state, and is determined according to the sleep parameters of the relay user equipment, when the electronic device is in the wake-up state, the relay user equipment is also in the wake-up state; and according to the sleep parameters and The start time of the next wake-up state periodically enters the sleep state and the wake-up state, wherein the electronic device communicates with the satellite device via the relay user equipment.
  • the electronic device in the core network or the relay user equipment can determine the remote state according to the sleep parameters of the relay user equipment and the start time of the next wake-up state.
  • the sleep parameters of the end user equipment and the start time of the next wake-up state so that the relay user equipment is also in the wake-up state when the remote user equipment is in the wake-up state.
  • the remote user equipment wakes up, there is a relay user equipment serving it, so that the relay user equipment and the remote user equipment can adopt the sleep mode to save energy, and the remote user equipment can also Get the service of the relay user equipment.
  • FIG. 1 is a schematic diagram illustrating a situation in which sleep parameters of a relay UE and a remote UE do not match according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram illustrating a situation in which a relay UE does not match a satellite communication window according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram illustrating a situation in which a remote UE in a sleep state cannot perform handover according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram illustrating a situation in which a remote UE with a hybrid connection cannot communicate normally after a relay UE switches a serving base station according to an embodiment of the present disclosure
  • FIG. 5 is a block diagram illustrating an example of a configuration of an electronic device for a network side according to an embodiment of the present disclosure
  • FIG. 6 is a block diagram illustrating an example of a configuration of an electronic device for relaying a UE according to an embodiment of the present disclosure
  • FIG. 7 is a block diagram illustrating an example of a configuration of an electronic device for a remote UE according to an embodiment of the present disclosure
  • FIG. 8 is a signaling flow diagram illustrating the determination of sleep parameters of the relay UE and the remote UE and the start time of the next wake-up according to an embodiment of the present disclosure
  • FIG. 9 is a signaling flow diagram illustrating the determination of sleep parameters of the relay UE and the remote UE and the start time of the next wake-up according to another embodiment of the present disclosure.
  • FIG. 10 is a signaling flow diagram illustrating the determination of sleep parameters of a relay UE and a remote UE and the start time of next wake-up according to yet another embodiment of the present disclosure
  • FIG. 11 is a signaling flow chart illustrating the adjustment of the sleep parameters of the relay UE and the remote UE and the start time of the next wake-up by the network side device according to an embodiment of the present disclosure
  • FIG. 12 is a signaling flow diagram illustrating a process for a relay UE to switch a serving base station according to an embodiment of the present disclosure
  • FIG. 13 is a signaling flow chart illustrating a process for a relay UE to switch a serving base station according to another embodiment of the present disclosure
  • FIG. 14 is a signaling flow diagram illustrating a process in which a remote UE also connects to a new serving base station after a relay UE connects to the serving base station according to an embodiment of the present disclosure
  • 15 is a signaling flow diagram illustrating the connection of a relay UE to a new serving base station according to an embodiment of the present disclosure
  • 16 is a signaling flow diagram illustrating a process in which a remote UE also connects to a new serving base station after a relay UE connects to the serving base station according to an embodiment of the present disclosure
  • 17 is a signaling flow diagram illustrating a process for performing measurements together by a remote UE with a hybrid connection and a relay UE according to an embodiment of the present disclosure
  • Figure 18 is a signaling flow diagram illustrating the operation of a remote UE waking up with a hybrid connection and not yet taking measurements due to being in a sleep state;
  • 19 is a flowchart illustrating a wireless communication method performed by an electronic device for a network side according to an embodiment of the present disclosure
  • 20 is a flowchart illustrating a wireless communication method performed by an electronic device for relaying a UE according to an embodiment of the present disclosure
  • 21 is a flowchart illustrating a wireless communication method performed by an electronic device for a remote UE according to an embodiment of the present disclosure
  • FIG. 22 is a block diagram illustrating an example of a server in which an electronic device according to the present disclosure may be implemented.
  • FIG. 23 is a block diagram showing a first example of a schematic configuration of an eNB (Evolved Node B, evolved Node B);
  • 24 is a block diagram showing a second example of a schematic configuration of an eNB
  • FIG. 25 is a block diagram showing an example of a schematic configuration of a smartphone.
  • FIG. 26 is a block diagram showing an example of a schematic configuration of a car navigation apparatus.
  • Example embodiments are provided so that this disclosure will be thorough, and will fully convey the scope to those skilled in the art. Numerous specific details are set forth such as examples of specific components, devices, and methods in order to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms, and that neither should be construed to limit the scope of the disclosure. In some example embodiments, well-known processes, well-known structures and well-known technologies are not described in detail.
  • the present disclosure is directed to scenarios where there are relay services and sleep modes in the NTN network. That is, the NTN network includes one or more relay user equipments and one or more remote user equipments, and each relay user equipment can provide a relay service for at least one remote user equipment. Moreover, both the relay user equipment and the remote user equipment may adopt a sleep mode, that is, the relay user equipment and the remote user equipment may periodically enter a sleep state and a wake-up state.
  • FIGS. 1 to 4 The problem to be solved by the present disclosure will be described below with reference to FIGS. 1 to 4 .
  • FIG. 1 is a schematic diagram illustrating a situation in which sleep parameters of a relay UE and a remote UE do not match according to an embodiment of the present disclosure.
  • the horizontal axis represents time
  • the upper graph shows the curve of the sleep parameters of the relay UE
  • the lower graph shows the curve of the sleep parameters of the remote UE.
  • the upper line indicates that the UE is awake
  • the lower line indicates that the UE is sleeping.
  • the remote UE is in a awake state
  • the relay UE is in a sleep state. That is to say, if the remote UE needs to send uplink data or receive downlink data at time T1, since the relay UE is in a sleep state and cannot perform forwarding, the remote UE cannot send and receive data.
  • FIG. 2 is a schematic diagram illustrating a situation in which a relay UE does not match a satellite communication window according to an embodiment of the present disclosure.
  • the horizontal axis represents time
  • the upper graph shows the curve of the satellite communication window
  • the lower graph shows the graph of the sleep parameter of the relay UE.
  • the upper line indicates that there is a satellite device above the relay UE
  • the lower line indicates that there is no satellite device above the relay UE.
  • the upper line indicates that the relay UE is in a awake state
  • the lower line indicates that the relay UE is in a sleep state.
  • the relay UE is in a awake state, but there is no satellite device above the relay UE. That is to say, if the relay UE needs to send uplink data or receive downlink data at time T2, since there is no satellite device above the relay UE, the relay UE cannot send and receive data.
  • FIG. 3 is a schematic diagram illustrating a situation in which a remote UE in a sleep state cannot perform handover according to an embodiment of the present disclosure.
  • the remote UE1 and the remote UE2 communicate with the satellite equipment through the relay UE.
  • the remote UE1 is in a awake state, and communicates with the satellite device through the relay UE, while the remote UE2 is in a sleep state. Due to the movement of the satellite, the serving satellite device of the relay UE has changed. Since the remote UE1 is in a awake state, the handover process can be performed together with the relay UE, so that the relay UE can communicate with the new satellite device.
  • the handover process cannot be performed.
  • the remote UE2 because the remote UE2 is in a sleep state, the handover process cannot be performed.
  • the remote UE2 at time t2, when the remote UE2 wakes up, it cannot communicate with the new satellite device through the relay UE because the handover process is not performed.
  • a remote UE with a hybrid connection can perform one of uplink communication and downlink communication with a satellite device through a relay UE, and can directly perform the other one of uplink communication and downlink communication with the satellite device.
  • the remote UE1 performs downlink communication with the satellite device 1 through the relay UE, and directly performs uplink communication with the satellite device 1 .
  • the remote UE2 performs uplink communication with the satellite device 1 through the relay UE, and directly performs downlink communication with the satellite device 1 .
  • Both remote UE1 and remote UE2 belong to remote UEs with hybrid connections.
  • the relay UE will measure the channel quality between it and each other base station, so that the source serving base station can select an appropriate target serving base station.
  • the source serving base station only considers the channel quality between the relay UE and other base stations. That is to say, there is a situation in which the channel quality between the remote UE and the target serving base station is very poor.
  • the remote UE may be unable to perform uplink communication or downlink communication.
  • the remote UE2 can still communicate with the satellite through the relay UE. Uplink communication between devices 2, but downlink communication with satellite device 2 cannot be performed directly. Similarly, since there are obstacles between the remote UE1 and the satellite device 2, the remote UE1 can still perform downlink communication with the satellite device 2 through the relay UE, but cannot directly perform uplink communication with the satellite device 2.
  • FIGS. 1 to 4 exemplarily illustrate some problems in the scenario where the NTN network has relay services and sleep mode.
  • the present disclosure proposes an electronic device in a wireless communication system, a wireless communication method performed by the electronic device in the wireless communication system, and a computer-readable storage medium to solve at least one of the above problems, so that the In the NTN network, while saving the energy of the relay user equipment and the remote user equipment, the relay user equipment can provide services for the remote user equipment.
  • the wireless communication system according to the present disclosure may be a 5G NR (New Radio) communication system. Furthermore, the wireless communication system according to the present disclosure may include NTN.
  • 5G NR New Radio
  • NTN NTN
  • the electronic device for the network side may be located in the core network, and may be implemented by various types of servers.
  • the base station device may be, for example, an eNB or a gNB (a base station in a 5th generation communication system).
  • the base station device may be located on a satellite device serving user equipment, that is, the satellite device is a non-transparent satellite device, which has the capability of data processing.
  • the base station equipment may also be located on the ground station, that is, the satellite equipment that provides services for the user equipment is a transparent satellite equipment, does not have the capability of data processing, and needs to forward the data to the ground station for processing.
  • Satellite devices include, but are not limited to, GEO (Geosynchronous Orbit, Geosynchronous Orbit) satellite devices, LEO (Low Earth Orbit, Low Earth Orbit) satellite devices, MEO (Medium Earth Orbit, Medium Earth Orbit) satellite devices, HEO ( Highly Elliptical Orbiting satellite equipment and HAPS (High Altitude Platform Station).
  • GEO Global Evolution
  • Geosynchronous Orbit Geosynchronous Orbit
  • LEO Low Earth Orbit, Low Earth Orbit
  • MEO Medium Earth Orbit, Medium Earth Orbit
  • HEO Highly Elliptical Orbiting satellite equipment
  • HAPS High Altitude Platform Station
  • the structures of the remote user equipment and the relay user equipment according to the present disclosure may be consistent. That is, when the user equipment is used as a relay device, it is called a relay user equipment; when the user equipment is used as a remote device, it is called a remote user equipment.
  • the user equipment may be a mobile terminal such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/dongle type mobile router, and a digital camera or a vehicle-mounted terminal such as a car navigation device.
  • the user equipment may also be implemented as a terminal performing machine-to-machine (M2M) communication (also referred to as a machine type communication (MTC) terminal).
  • M2M machine-to-machine
  • MTC machine type communication
  • the user equipment may be a wireless communication module (such as an integrated circuit module comprising a single die) mounted on each of the aforementioned terminals.
  • FIG. 5 is a block diagram illustrating an example of the configuration of an electronic device 500 according to an embodiment of the present disclosure.
  • the electronic device 500 here may be used as a network-side device in a wireless communication system, and may specifically be located in a core network.
  • the electronic device 500 may include a determination unit 510 and a communication unit 520 .
  • each unit of the electronic device 500 may be included in the processing circuit.
  • the electronic device 500 may include either one processing circuit or multiple processing circuits.
  • the processing circuit may include various discrete functional units to perform various different functions and/or operations. It should be noted that these functional units may be physical entities or logical entities, and units with different names may be implemented by the same physical entity.
  • the determining unit 510 may determine the sleep parameters of the remote user equipment and the start time of the next wake-up state according to the sleep parameters of the relay user equipment and the start time of the next wake-up state, so that when the remote When the end user equipment is in the awake state, the relay user equipment is also in the awake state.
  • the relay user equipment refers to the relay user equipment via which the remote user equipment communicates with the satellite equipment.
  • the sleep parameter determined by the determining unit 510 may include the duration of the sleep state and the duration of the wake state of the remote user equipment.
  • the electronic device 500 may send the sleep parameters of the remote user equipment and the start time of the next wake-up state to the remote user equipment through the communication unit 520 .
  • the electronic device 500 may send the sleep parameters of the remote user equipment and the start time of the next wake-up state to the center through the satellite device The relay user equipment, so that the relay user equipment can forward the above information to the remote user equipment.
  • the electronic device 500 may also directly send the sleep parameters of the remote user equipment and the start time of the next wake-up state to the remote user equipment through the satellite device.
  • the electronic device 500 can determine the sleep parameters of the remote user equipment and the start of the next wake-up state according to the sleep parameters of the relay user equipment and the start time of the next wake-up state time, so that when the remote user equipment is in the wake-up state, the relay user equipment is also in the wake-up state.
  • the remote user equipment wakes up, there is a relay user equipment serving it, so that the relay user equipment and the remote user equipment can adopt the sleep mode to save energy, and the remote user equipment can also Get the service of the relay user equipment.
  • the determining unit 510 may determine the sleep parameters of the remote user equipment and the start time of the next wake-up state according to various methods, as long as it is ensured that the relay user equipment is also in the wake-up state when the remote user equipment is in the wake-up state. It only needs to be in a awake state, which is not limited in the present disclosure.
  • the determining unit 510 may periodically select some time among all the wake-up states of the relay user equipment as the wake-up state of the remote user equipment. That is to say, the duration of the wake-up state of the remote user equipment is equal to or less than the duration of the wake-up state of the relay user equipment, and the duration of the sleep state of the remote user equipment is equal to or greater than the duration of the sleep state of the relay user equipment . Further, the start time of the wake-up state of the remote user equipment may be aligned with the start time of the wake-up state of the relay user equipment, or may not be aligned with the start time of the wake-up state of the relay user equipment.
  • the determining unit 510 may select a period of time in each wake-up state of the relay user equipment as the wake-up state of the remote user equipment. In another example, the determining unit 510 may respectively select a period of time as the wake-up state of the remote user equipment in the first, third, fifth, . . . wake-up states of the relay user equipment.
  • the electronic device 500 may also receive desired sleep parameters of the remote user equipment from the remote user equipment through the communication unit 520 .
  • the remote user equipment can send the desired sleep parameter to the relay user equipment, so that the relay user equipment can send the desired sleep parameter via the satellite equipment Forwarded to the electronic device 500 .
  • the remote user equipment may also directly send the desired sleep parameter to the satellite device and then to the electronic device 500 .
  • the remote user equipment may send the desired sleep parameters to the electronic device 500 after it establishes a connection with the relay user equipment.
  • the remote user equipment may determine the expected sleep parameter according to the transmission characteristics of the data, including but not limited to the transmission period of the data and the length of the data.
  • the expected sleep parameters include the expected duration of the sleep state and the expected duration of the awake state of the remote user equipment.
  • the determining unit 510 may further determine the sleep parameters of the remote user equipment according to the expected sleep parameters of the remote user equipment. That is to say, the determining unit 510 can try to satisfy the expected sleep parameters of the remote user equipment under the condition that the relay user equipment is also in the awake state when the remote user equipment is guaranteed to be in the awake state.
  • the determining unit 510 may also determine the remote user equipment according to the sleep parameters of other remote user equipments and the time of the next wake-up state. The sleep parameters of the user equipment and the time of the next wake-up state, so that the amount of data forwarded by the relay user equipment in each wake-up state is relatively uniform.
  • the electronic device 500 may further include a determination unit 530, configured to determine the start time of the next wake-up state of the relay user equipment and the sleep parameters of the relay user equipment, so that the middle Subsequent to when the user equipment is in the awake state, there is a satellite device serving the relay user equipment. Further, the electronic device 500 may send the start time of the next wake-up state of the relay user equipment and the sleep parameters of the relay user equipment to the relay user equipment through the communication unit 520 .
  • a determination unit 530 configured to determine the start time of the next wake-up state of the relay user equipment and the sleep parameters of the relay user equipment, so that the middle Subsequent to when the user equipment is in the awake state, there is a satellite device serving the relay user equipment. Further, the electronic device 500 may send the start time of the next wake-up state of the relay user equipment and the sleep parameters of the relay user equipment to the relay user equipment through the communication unit 520 .
  • the determining unit 530 may determine the start time of the next wake-up state of the relay user equipment and the sleep parameters of the relay user equipment according to the ephemeris information of each satellite device. Specifically, the determining unit 530 can determine the time when each satellite device is located above the relay user equipment according to the ephemeris information of each satellite device, thereby determining the start time of the next wake-up state of the relay user equipment and the sleep state of the relay user equipment parameter, so that every time the relay user equipment is in a awake state, there is a satellite device serving it above it.
  • the upper part of the relay user equipment refers to a space area where the satellite equipment can provide services for the relay user equipment.
  • the electronic device 500 may also receive desired sleep parameters of the relay user equipment from the relay user equipment through the communication unit 520 .
  • the relay user equipment may send the desired sleep parameters to the electronic device 500 after it joins the network.
  • the relay user equipment may determine the expected sleep parameter according to the transmission characteristics of the data, including but not limited to the transmission period of the data and the length of the data.
  • the expected sleep parameters include the duration of the sleep state expected by the relay user equipment and the duration of the expected wake state.
  • the determining unit 530 may determine the sleep parameters of the relay user equipment according to the expected sleep parameters of the relay user equipment. That is, the determining unit 530 tries to satisfy the expected sleep parameters of the relay user equipment under the condition that there is a satellite device serving the relay user equipment when the relay user equipment is in the awake state.
  • the electronic device 500 may determine the start time and sleep parameters of the next wake-up state of the relay user equipment, so that the relay user equipment has satellites serving it every time it wakes up equipment, thereby avoiding the situation where the relay user equipment cannot send and receive data.
  • the sleep parameters and the next wake-up state of the relay user equipment can be determined.
  • the start time of a wake-up state is dynamically adjusted. For example, the relay user equipment can determine the time to wake up next time according to the determined sleep parameters, and then judge whether there is a satellite device that can serve above when it wakes up next time. If there is no satellite device that can be served, the relay user equipment can send the desired sleep parameters again, so that there is a satellite device that can be served above when it wakes up next time.
  • the determining unit 530 may determine the adjusted sleep parameter of the relay user equipment and the start time of the next wake-up state according to the expected sleep parameter of the relay user equipment. Similarly, after the remote user equipment establishes a connection with the relay user equipment and the electronic device 500 determines the sleep parameters of the remote user equipment and the start time of the next wake-up state, the sleep parameters and the next wake-up state of the remote user equipment can be determined. The start time of a wake-up state is dynamically adjusted. For example, the remote user equipment can determine the next wake-up time according to the determined sleep parameters, and then judge whether the relay user equipment wakes up next time and whether there is a satellite device that can serve.
  • the determining unit 520 may determine the adjusted sleep parameters of the remote user equipment and the start time of the next wake-up state according to the expected sleep parameters of the remote user equipment.
  • FIG. 6 is a block diagram illustrating a structure of an electronic device 600 serving as a relay user equipment in a wireless communication system according to an embodiment of the present disclosure.
  • the electronic device 600 may include a determination unit 610 and a communication unit 620 .
  • each unit of the electronic device 600 may be included in the processing circuit. It should be noted that the electronic device 600 may include either one processing circuit or multiple processing circuits. Further, the processing circuit may include various discrete functional units to perform various different functions and/or operations. It should be noted that these functional units may be physical entities or logical entities, and units with different names may be implemented by the same physical entity.
  • the determining unit 610 may determine the sleep parameters of the remote user equipment and the start of the next wake-up state according to the sleep parameters of the relay user equipment (ie the electronic device 600 ) and the start time of the next wake-up state time, so that when the remote user equipment is in the awake state, the electronic device 600 is also in the awake state.
  • the sleep parameter determined by the determining unit 610 may include the duration of the sleep state and the duration of the wake state of the remote user equipment.
  • the electronic device 600 may send the sleep parameters of the remote user equipment and the start time of the next wake-up state to the remote user equipment through the communication unit 620 .
  • the electronic device 600 can determine the sleep parameters of the remote user equipment and the start time of the next wake-up state according to the sleep parameters of the electronic device 600 and the start time of the next wake-up state , so that the electronic device 600 is also in the awake state when the remote user equipment is in the awake state.
  • the electronic device 600 serving it, so that the electronic device 600 and the remote user equipment can use the sleep mode to save energy, and the remote user equipment can also obtain electronic Device 600 Services.
  • the determination unit 610 may determine the sleep parameters of the remote user equipment and the start time of the next wake-up state in a manner similar to the determination unit 510 described above, as long as the remote user equipment is guaranteed to be awake In the state, the electronic device 600 may also be in the awake state, which is not limited in the present disclosure.
  • the determining unit 610 may periodically select some time among all the wake-up states of the electronic device 600 as the wake-up state of the remote user equipment. That is, the duration of the wake state of the remote user equipment is equal to or less than the duration of the wake state of the electronic device 600 , and the duration of the sleep state of the remote user equipment is equal to or greater than the duration of the sleep state of the electronic device 600 . Further, the start time of the wake-up state of the remote user equipment may or may not be aligned with the start time of the wake-up state of the electronic device 600 . In one example, the determining unit 610 may select a period of time in each wake-up state of the electronic device 600 as the wake-up state of the remote user equipment. In another example, the determining unit 610 may select a period of time in the first, third, fifth, . . . wake-up states of the electronic device 600 respectively as the wake-up state of the remote user equipment.
  • the electronic device 600 may also receive desired sleep parameters of the remote user equipment from the remote user equipment through the communication unit 620 .
  • the remote user equipment may send desired sleep parameters to the electronic device 600 after it establishes a connection with the electronic device 600 .
  • the remote user equipment may determine the expected sleep parameter according to the transmission characteristics of the data, including but not limited to the transmission period of the data and the length of the data.
  • the expected sleep parameters include the expected duration of the sleep state and the expected duration of the awake state of the remote user equipment.
  • the determining unit 610 may further determine the sleep parameters of the remote user equipment according to the expected sleep parameters of the remote user equipment. That is to say, the determining unit 610 may try to satisfy the expected sleep parameters of the remote user equipment under the condition that the electronic device 600 is also in the awake state when the remote user equipment is in the awake state.
  • the determining unit 610 may further determine the remote user according to the sleep parameters of other remote user equipments and the time of the next wake-up state The sleep parameters of the device and the time of the next wake-up state, so that the amount of data forwarded by the electronic device 600 in each wake-up state is relatively uniform.
  • the electronic device 600 may further include a determination unit 630 for determining the start time of the next wake-up state of the relay user equipment, so that when the electronic device 600 is in the wake-up state , there is a satellite device serving the electronic device 600 .
  • the electronic device 600 may receive the sleep parameter of the electronic device 600 from the core network through the communication unit 620, and determine the next time to relay the user equipment according to the sleep parameter of the electronic device 600 and the ephemeris information of each satellite device The start time of the wake state.
  • the determining unit 630 may determine the time when each satellite device is located above the electronic device 600 according to the ephemeris information of each satellite device, and determine the start time of the next wake-up state of the electronic device 600 in combination with the sleep parameters of the electronic device 600, so that Each time the electronic device 600 is awake, there is a satellite device serving it above it.
  • the electronic device 600 may also send desired sleep parameters of the electronic device 600 to the core network through the communication unit 620 .
  • the electronic device 600 may send the desired sleep parameter to the core network after it joins the network.
  • the electronic device 600 may determine the desired sleep parameter according to the transmission characteristics of the data, including but not limited to the transmission period of the data and the length of the data.
  • the desired sleep parameters include the duration of the desired sleep state and the desired duration of the awake state of the electronic device 600 .
  • the electronic device 600 may determine the start time of the next wake-up state of the electronic device 600, so that the electronic device 600 has satellite devices serving it every time it wakes up, thereby avoiding electronic A situation where the device 600 is unable to send and receive data.
  • FIG. 7 is a block diagram illustrating a structure of an electronic device 700 serving as a remote user equipment in a wireless communication system according to an embodiment of the present disclosure.
  • the electronic device 700 performs at least one of uplink communication and downlink communication with the satellite device via the relay user equipment.
  • the electronic device 700 may include a communication unit 710 and a sleep control unit 720 .
  • each unit of the electronic device 700 may be included in the processing circuit. It should be noted that the electronic device 700 may include either one processing circuit or multiple processing circuits. Further, the processing circuit may include various discrete functional units to perform various different functions and/or operations. It should be noted that these functional units may be physical entities or logical entities, and units with different names may be implemented by the same physical entity.
  • the electronic device 700 may receive the sleep parameters of the electronic device 700 and the start time of the next wake-up state through the communication unit 710, where the sleep parameters include the duration of the sleep state and the duration of the wake-up state, and are based on the Following the determination by the sleep parameter of the user equipment, when the electronic device 700 is in the awake state, the relay user equipment is also in the awake state.
  • the sleep parameters of the electronic device 700 and the start time of the next wake-up state may be determined by the relay user equipment, that is, the electronic device 700 receives the above information from the relay user equipment.
  • the sleep parameters of the electronic device 700 and the start time of the next wake-up state may also be determined by the core network, that is, the electronic device 700 receives the above-mentioned information forwarded by the relay user equipment from the relay user equipment, or directly from the satellite device. receive the above information.
  • the sleep control unit 720 may control the electronic device 700 to periodically enter the sleep state and the wake-up state according to the sleep parameters and the start time of the next wake-up state.
  • the sleep control unit 720 may control the electronic device 700 to enter a sleep state, and wake up according to the start time of the next wake-up state, and determine the next wake-up state according to the duration of the wake-up state in the sleep parameters The duration of the next sleep state is determined, and the duration of the next sleep state is determined according to the duration of the sleep state in the sleep parameters. In this way, the sleep control unit 720 can control the electronic device 700 to periodically enter the sleep state and the wake-up state.
  • the electronic device 700 may further include a generating unit 730 configured to generate a desired sleep parameter of the electronic device 700 , where the desired sleep parameter includes the duration and the desired sleep state of the electronic device 700 .
  • the duration of the awake state may be generated by the electronic device 700 .
  • the electronic device 700 may send the desired sleep parameters to the relay user equipment through the communication unit 710, so that the relay user equipment determines the sleep parameters of the electronic device 700 and the time of the next wake-up state according to the desired sleep parameters of the electronic device 700 .
  • the electronic device 700 may send the expected sleep parameters to the relay user equipment through the communication unit 710, and the relay user equipment forwards the expected sleep parameters of the electronic device 700 to the core network, so that the core network sleeps according to the expected sleep of the electronic device 700.
  • the parameters determine the sleep parameters of the electronic device 700 and the time of the next awake state.
  • the electronic device 700 may send the desired sleep parameter to the relay user equipment after it establishes a connection with the relay user equipment.
  • the electronic device 700 may determine the expected sleep parameter according to the transmission characteristics of the data, including but not limited to the transmission period of the data and the length of the data.
  • the sleep parameters and the start time of the next wake-up state are determined according to the sleep parameters of the relay user equipment and the start time of the next wake-up state, so that the electronic device When the device 700 is in the awake state, the relay user equipment is also in the awake state.
  • the electronic device 700 wakes up, there is a relay user equipment serving it, so that the electronic device 700 and the relay user equipment can adopt the sleep mode to save energy, and the electronic device 700 can also get the relay Services for user equipment.
  • the CN Core Network, core network
  • the relay UE may be implemented by the electronic device 600
  • the remote UE may be implemented by the electronic device 700 .
  • step S801 a new remote UE establishes a connection with the relay UE.
  • step S802 the new remote UE sends the desired sleep parameters to the relay UE.
  • step S803 the relay UE forwards the desired sleep parameters of the new remote UE to the CN through the satellite device.
  • step S804 the CN determines the sleep parameters of the new remote UE and the start time of the next wake-up state according to the expected sleep parameters of the new remote UE.
  • the CN may determine, according to the sleep parameters of the new remote UE and the start time of the next wake-up state, whether to adjust the sleep parameters of the relay UE and the start time of the next wake-up state, and whether to adjust other remote UEs.
  • the sleep parameters of the end UE and the start time of the next wake-up state If adjustment is required, the CN determines the adjusted sleep parameters of the relay UE and the start time of the next wake-up state, and/or the adjusted sleep parameters of other remote UEs and the start time of the next wake-up state.
  • step S805 the CN sends the new sleep parameters of the remote UE and the start time of the next wake-up state to the relay UE.
  • the CN also determines the adjusted sleep parameters of the relay UE and the start time of the next wake-up state, and/or the adjusted sleep parameters of other remote UEs and the next wake-up
  • the start time of the state is sent to the relay UE together.
  • the relay UE forwards the sleep parameters of the new remote UE and the start time of the next wake-up state to the new remote UE.
  • the relay UE forwards the sleep parameters of other remote UEs and the start time of the next wake-up state to other remote UEs.
  • the sleep parameters of the relay UE, the start time of the next wake-up state of the relay UE, the sleep parameters of the remote UE, and the parameters of the next wake-up state of the remote UE are determined by the CN. Starting time.
  • FIG. 9 is a signaling flow diagram illustrating the determination of sleep parameters of the relay UE and the remote UE and the start time of the next wake-up according to another embodiment of the present disclosure.
  • a new remote UE establishes a connection with the relay UE.
  • the new remote UE sends the desired sleep parameters to the relay UE.
  • the relay UE determines whether the sleep parameter of the relay UE needs to be adjusted according to the expected sleep parameter of the new remote UE. If adjustment is required, the relay UE sends the relay UE's desired sleep parameters to the CN.
  • step S904 the CN determines the sleep parameters of the relay UE according to the expected sleep parameters of the relay UE and sends the sleep parameters to the relay UE.
  • step S905 the relay UE determines the sleep parameters of the new remote UE and the start time of the next wake-up state according to the expected sleep parameters of the new remote UE.
  • the relay UE may determine the start time of the next wake-up state of the relay UE. Further, optionally, the relay UE may also determine whether to adjust the sleep parameters of other remote UEs and the start time of the next wake-up state.
  • the relay UE determines the adjusted sleep parameters of other remote UEs and the start time of the next wake-up state.
  • the relay UE sends the sleep parameters of the new remote UE and the start time of the next wake-up state to the new remote UE.
  • the relay UE sends the sleep parameters of the other remote UEs and the start time of the next wake-up state to the other remote UEs.
  • the sleep parameters of the relay UE are determined by the CN, and the start time of the next wake-up state of the relay UE, the sleep parameters of the remote UE, and the sleep parameters of the remote UE are determined by the relay UE. The start time of a wake state.
  • FIG. 10 is a signaling flow diagram illustrating the determination of sleep parameters of the relay UE and the remote UE and the start time of the next wake-up according to yet another embodiment of the present disclosure.
  • a new remote UE establishes a connection with the relay UE.
  • the new remote UE sends the desired sleep parameters to the relay UE.
  • the relay UE sends the desired sleep parameters of the remote UE to the CN.
  • the CN determines the sleep parameters of the remote UE according to the expected sleep parameters of the remote UE.
  • the CN may also determine whether to adjust the sleep parameters of the relay UE and whether to adjust the sleep parameters of other remote UEs.
  • the CN may also determine the adjusted sleep parameters of the relay UE, and/or determine the adjusted sleep parameters of other remote UEs.
  • the CN sends the new sleep parameters of the remote UE to the relay UE.
  • the CN also sends the adjusted sleep parameters of the relay UE and/or the adjusted sleep parameters of other remote UEs to the relay UE.
  • the relay UE determines the start time of the next wake-up state of the new remote UE.
  • the relay UE determines whether the start time of the next wake-up state of the relay UE needs to be adjusted and whether the start time of the next wake-up state of other remote UEs needs to be adjusted.
  • step S1007 the relay UE sends the sleep parameters of the new remote UE and the start time of the next wake-up state to the new remote UE.
  • step S1007 the relay UE sends the sleep parameters of the other remote UEs and the start time of the next wake-up state to the other remote UEs.
  • the sleep parameters of the relay UE and the sleep parameters of the remote UE are determined by the CN, and the start time of the next wake-up state of the relay UE and the next wake-up state of the remote UE are determined by the relay UE.
  • the start time of the wake state is determined by the CN.
  • FIGS. 8-10 illustrate three embodiments of determining the sleep parameters of the relay UE and the remote UE and the start time of the next wake-up state.
  • the core network can determine the sleep parameters of the relay UE and the remote UE and the start time of the next wake-up state. make adjustments.
  • FIG. 11 is a signaling flow chart illustrating that the network side device adjusts the sleep parameters of the relay UE and the remote UE and the start time of the next wake-up according to an embodiment of the present disclosure.
  • the relay UE determines the time to wake up next time and determines whether there is a satellite device that can be served when it wakes up next time, so as to determine whether it is necessary to adjust the sleep parameters . If there is no satellite device capable of serving, the relay UE may re-determine the expected sleep parameters, including the duration of the expected sleep state and the duration of the expected wake state, and send the expected sleep parameters to the CN.
  • the relay UE since the duration of the expected sleep state actually determines the start time of the next wake-up state, the expected sleep parameter implicitly indicates the next wake-up expected by the relay UE The start time of the state.
  • the CN determines the sleep parameters of the relay UE and the start time of the next wake-up state according to the expected sleep parameters of the relay UE.
  • the CN sends the sleep parameters of the relay UE and the start time of the next wake-up state to the relay UE.
  • the relay UE sends the adjusted sleep parameters of the relay UE and the start time of the next wake-up state to the remote UE1 and remote UE2 served by the relay UE.
  • the remote UE1 and the remote UE2 may determine whether to adjust their own sleep parameters according to the adjusted sleep parameters of the relay UE and the start time of the next wake-up state. For example, if the remote UE finds that the relay UE is in the sleep state when the remote UE is in the awake state, the remote UE may determine that its own sleep parameters need to be adjusted. Assuming that the remote UE2 determines that the sleep parameters need to be adjusted, the remote UE2 may re-determine the desired sleep parameters, including the desired sleep state duration and the desired wake state duration, and send the desired sleep parameters to the relay UE.
  • the far-end UE since the duration of the expected sleep state actually determines the start time of the next wake-up state, the expected sleep parameter implicitly indicates the next wake-up expected by the far-end UE The start time of the state.
  • the relay UE sends the desired sleep parameters of the remote UE2 to the CN.
  • the CN determines the adjusted sleep parameters of the remote UE2 and the start time of the next wake-up state.
  • the CN sends the sleep parameters of the remote UE2 and the start time of the next wake-up state to the relay UE.
  • the relay UE sends the sleep parameters of the remote UE2 and the start time of the next wake-up state to the remote UE2.
  • the remote UE can also directly perform uplink communication and downlink communication with the satellite device one of the.
  • the sleep parameters of the remote UE and the start time of the next wake-up state are determined according to the sleep parameters of the relay UE and the start time of the next wake-up state, so as to ensure that the remote UE is awake In the state, the relay UE is also in the wake-up state. In this way, the energy of the remote UE and the relay UE can be saved in the NTN network, and at the same time, the relay UE can provide services for the remote UE.
  • the start time of the next wake-up state of the relay UE can be determined according to the ephemeris information of the satellite, so that there is a satellite device serving the relay UE when it wakes up. In this way, the energy of the remote UE and the relay UE can be saved in the NTN network, and at the same time, the relay UE can communicate with the satellite device so as to provide services for the remote UE.
  • the foregoing describes the determination of the sleep parameters of the relay user equipment and the remote user equipment and the start time of the next wake-up state.
  • the following will describe the process of the user equipment switching the serving base station in the case of the relay service and the sleep mode in the NTN network according to an embodiment of the present disclosure. It is worth noting that the switching process according to the embodiment of the present disclosure may be combined with the foregoing determination process of the sleep parameters and the start time of the next wake-up state. That is to say, the sleep parameters of the relay user equipment and the remote user equipment and the start time of the next wake-up state are determined according to the method described above, and then when the user equipment needs to perform the handover process, the following methods are used to determine Perform the switch.
  • the handover process according to the embodiment of the present disclosure can also be performed independently. That is to say, the sleep parameters of the relay user equipment and the remote user equipment and the start time of the next wake-up state can be determined according to other methods, that is, the handover process described below does not care about the sleep parameters and the next wake-up state of the user equipment. How the start time of a wake-up state is determined.
  • the electronic device 600 may receive handover RRC reconfiguration information (HO RRC Reconfiguration Info) from the source serving base station of the electronic device 600 through the communication unit 620.
  • HO RRC Reconfiguration Info handover RRC reconfiguration information
  • the source serving base station of the electronic device 600 may be located on a non-transparent satellite device, so that the electronic device 600 directly receives the handover RRC reconfiguration information from the source serving base station.
  • the source serving base station of the electronic device 600 may be located at the ground station, so that the electronic device 600 may receive the handover RRC reconfiguration information from the source serving base station from the transparent satellite device.
  • the target serving base station can also be located on a non-transparent satellite device, or in a ground station connected to a transparent satellite device.
  • the source serving base station and the target serving base station of the electronic device may be different DU devices connected to the same CU, or That is, the electronic device 600 switches among different DU devices.
  • the handover RRC reconfiguration information received by the electronic device 600 from the source serving base station may include the handover RRC reconfiguration information of the electronic device 600 and all remote user equipments served by the electronic device 600 .
  • the electronic device 600 may further include a measurement unit 670 for performing cell handover measurement. That is, the measuring unit 670 may measure the channel quality of the adjacent cells, for example, measure parameters such as signal strength from the base stations of the adjacent cells.
  • the measurement unit 670 may use any method known in the art to perform measurement for cell handover, which is not limited in the present disclosure.
  • the electronic device 600 may further include a generating unit 660 configured to generate a measurement report according to the measurement result of the measuring unit 670, and the measurement report may include, for example, the channel quality of the current serving cell of the electronic device 600 and the information of neighboring cells. channel quality.
  • the electronic device 600 can send the measurement report generated by the generating unit 660 to the source serving base station through the communication unit 620, so that the source serving base station can perform handover determination according to the measurement report, and when it is determined to perform cell handover (that is, the service of the electronic device 600 If the base station is switched from the source serving base station to the target serving base station), the handover RRC reconfiguration information is sent to the electronic device 600 .
  • the generating unit 660 may also generate location information of the electronic device 600 . Further, the electronic device 600 may send the location information generated by the generating unit 660 to the source serving base station through the communication unit 620, so that the source serving base station performs handover determination according to the location information.
  • the electronic device 600 may further include a state determination unit 640 for determining whether each remote user equipment served by the electronic device 600 is in a sleep state or a wake state.
  • the state determining unit 640 may determine whether the remote user equipment is in the sleep state or the wake-up state at the current moment according to the sleep parameters of each remote user equipment and the start time of the next wake-up state. Further, for the remote user equipment in the awake state, the electronic device 600 may send the handover RRC reconfiguration information of the remote user equipment to it through the communication unit 620 .
  • the electronic device 600 may further include a storage unit 650 for storing the handover RRC reconfiguration information of the remote user equipment in the sleep state.
  • the storage unit 650 updates the handover RRC reconfiguration information of the remote user equipment. That is, if the serving base station of the electronic device 600 is handed over many times during the period when the remote user equipment is in the sleep state, the storage unit 650 only stores the latest handover RRC reconfiguration information of the remote user equipment.
  • the electronic device 600 sends the remote user equipment's handover RRC reconfiguration stored in the storage unit 650 to the remote user equipment through the communication unit 620 information.
  • the remote user equipment in the sleep state wakes up, it will re-establish a connection with the electronic device 600, so that the electronic device 600 sends the handover RRC reconfiguration information to the remote user equipment in response to the connection re-establishment .
  • the electronic device 600 may save the handover RRC reconfiguration information for the remote user equipment in the sleep state, and in the sleep state After the remote user equipment wakes up, the handover RRC reconfiguration information is sent again.
  • the electronic device 600 and the remote user equipment in the awake state can switch the serving base station from the source serving base station to the target serving base station according to the handover RRC reconfiguration information, and the remote user equipment in the sleeping state can wake up.
  • the serving base station is handed over from the source serving base station to the target serving base station according to the handover RRC reconfiguration information.
  • the handover process of the serving base station performed by handover measurement when the electronic device 600 is in a awake state, and this process may be referred to as a process of the electronic device 600 "actively handing over the serving base station".
  • the electronic device 600 when the electronic device 600 enters the sleep state and then wakes up, the electronic device 600 also needs to perform handover of the serving base station due to the movement of the satellite device. This process may be called the electronic device 600 "passive handover service”. base station" process.
  • the electronic device 600 after the electronic device 600 enters a sleep state and wakes up, it can re-establish a connection with a new serving base station.
  • the electronic device 600 may send RRC connection restoration request information to the new serving base station through the communication unit 620, and after the new serving base station acquires the context information of the electronic device 600 from the source serving base station, the electronic device 600 receives RRC from the new serving base station Connection restoration information to connect to the new serving base station.
  • one or more remote user equipments served by the electronic device 600 may be in a sleep state when the electronic device 600 is connected to a new serving base station. After the remote user equipment wakes up, the electronic device 600 may receive RRC connection resume request (RRC Connection Resume Request) information from the remote user equipment through the communication unit 620.
  • RRC connection resume request RRC Connection Resume Request
  • the RRC connection restoration request information includes the source serving base station of the remote user equipment.
  • the source serving base station refers to the serving base station before the remote user equipment enters the sleep state. If the electronic device 600 has switched the serving base station multiple times during the sleep state of the remote user equipment, the source serving base station of the remote user equipment may be different from the source serving base station of the electronic device 600, so the remote user equipment needs to connect through RRC The recovery request information informs its source serving base station.
  • the electronic device 600 may forward the RRC connection recovery request information of the remote user equipment to the current serving base station through the communication unit 620, so that the current serving base station of the electronic device 600 can send the source of the remote user equipment to the remote user equipment.
  • the serving base station requests the context of the remote user equipment.
  • the electronic device 600 may receive the RRC connection recovery ( RRC Connection Resume) information, and forward the RRC connection resume information to the remote user equipment.
  • RRC connection recovery RRC Connection Resume
  • the remote user equipment in the sleeping state can send RRC connection recovery request information including the source serving base station of the remote user equipment after waking up, thereby The serving base station of the remote user equipment is also handed over to the current serving base station of the electronic device 600 .
  • the electronic device 600 may perform cell measurement for the source serving base station to perform handover determination, that is, to determine whether to hand over the electronic device 600 to another The serving base station and which target serving base station to switch to.
  • the state determination unit 640 may determine whether each remote user equipment served by the electronic device 600 is in a sleep state or a wake state.
  • the electronic device 600 can also determine whether each remote user equipment is a remote user equipment with a hybrid connection.
  • the remote user equipment with a hybrid connection refers to a remote user that performs one of uplink communication and downlink communication with the satellite device through the electronic device 600, and directly performs the other one of uplink communication and downlink communication with the satellite device. equipment.
  • the electronic device 600 may further include a generating unit 680 for generating a measurement indication for the remote user equipment served by the electronic device 600 that is in a awake state and has a hybrid connection, so as to Instruct the remote user equipment to perform handover measurements.
  • the handover measurement here refers to the measurement used for cell handover, for example, the remote user equipment can measure the channel quality of the adjacent cell, for example, measure parameters such as signal strength from the base station of the adjacent cell.
  • the remote user equipment may use any method known in the art to perform measurement for cell handover, which is not limited in the present disclosure.
  • the electronic device 600 may send the measurement indication to the remote user equipment served by the electronic device 600 in an awake state and having a hybrid connection through the communication unit 620 .
  • the measurement unit 670 performs handover measurement. That is to say, the measurement unit 670 and the remote user equipment with the hybrid connection in the awake state separately and independently perform the cell handover measurement.
  • the electronic device 600 may receive the measurement result of the remote user equipment through the communication unit 620 from the remote user equipment served by the electronic device 600 in an awake state and having a hybrid connection. Further, the generating unit 660 may generate a measurement result, and the measurement result includes the measurement result of the measurement unit 670 of the electronic device 600 and the received measurement result of each remote user equipment. Further, the electronic device 600 may send the measurement result generated by the generating unit 660 to the source serving base station of the electronic device 600 through the communication unit 620 . In this way, the source serving base station can perform handover determination according to the received measurement results, so as to select the channels for the electronic device 600 and all remote user equipments served by the electronic device 600 that are in the awake state and have hybrid connections Target serving base stations with relatively good quality.
  • the generating unit 680 For the remote user equipment served by the electronic device 600 that is in a sleep state and has a hybrid connection, after the remote user equipment wakes up, the generating unit 680 generates measurement indication information to indicate the The remote user equipment measures the remote user equipment and the switched satellite equipment (at this time, the electronic device 600 has been switched to the target serving base station, so the serving satellite equipment has also changed, and this measurement can also become the measurement of the remote user equipment. and the channel quality between the target serving base station). Further, the electronic device 600 may send the measurement indication information generated by the generating unit 680 to the remote user equipment through the communication unit 620 .
  • the electronic device 600 may re-establish a connection with the electronic device 600 after the remote user equipment that is in a sleep state and has a hybrid connection wakes up and sends a measurement indication to the remote user equipment after the RRC reconfiguration is completed information, so that the remote user equipment can measure the channel quality between it and the target serving base station.
  • the electronic device 600 may receive a measurement result from the remote user equipment through the communication unit 620, and determine whether to allow a direct connection between the remote user equipment and a new satellite device according to the measurement result. For example, when the measurement result shows that the channel quality between the remote user equipment and the target serving base station is good, it can be determined that the direct connection between the remote user equipment and the new satellite equipment is allowed, and when the measurement result shows that the remote user equipment is of good quality In the case that the channel quality between the end user equipment and the target serving base station is poor, it may be determined that the direct connection between the remote user equipment and the new satellite equipment is not allowed. Further, the electronic device 600 may notify the remote user equipment of the determination result through the communication unit 620 .
  • the remote user equipment may determine another satellite device to re-establish the direct connection.
  • the remote user equipment can perform one of uplink communication and downlink communication with the satellite equipment serving the electronic equipment 600 through the electronic equipment 600, and directly perform one of the uplink communication and the downlink communication with the other satellite equipment another.
  • the CA Carrier Aggregation, carrier aggregation
  • there is only one serving cell of the electronic device 600 and the remote user equipment and the electronic device 600 and the remote user equipment have only one serving cell.
  • the measurement of the device is for the serving cell; when the CA technology is applied in the wireless communication system, there are multiple serving cells of the electronic device 600 and the remote user equipment, and the measurement of the electronic device 600 and the remote user equipment is for the main cell. service area.
  • the electronic device 600 when the electronic device 600 performs cell handover measurements, it may require the served remote user equipments that are in a awake state and have hybrid connections to also perform cell handover measurements.
  • the source serving base station can comprehensively consider the measurement results of the electronic device 600 and the remote user equipment when determining the handover, so that the quality of the direct connection between the remote user equipment with the hybrid connection and the destination serving base station is not the same. would be too bad.
  • the direct connection can be measured after waking up, so as to decide whether to use the direct connection with the destination serving base station.
  • the electronic device 700 may further include a connection unit 740 for reconnecting to the relay user equipment after the electronic device 700 enters a sleep state and wakes up.
  • the relay user equipment is a relay user equipment that serves the electronic device 700 before the electronic device 700 enters a sleep state.
  • the electronic device 700 may receive the handover RRC reconfiguration information of the electronic device 700 from the relay user equipment through the communication unit 710 .
  • the electronic device 700 may further include a determination unit 750 .
  • the determination unit 750 may determine that during the sleep state of the electronic device 700, the serving base station of the relay user equipment is handed over, and the relay user equipment saves the electronic device 700
  • the handover RRC reconfiguration information of the electronic device 700 is obtained.
  • the electronic device 700 can perform RRC reconfiguration according to the received handover RRC reconfiguration information, and can send the handover RRC reconfiguration complete (HO RRC Reconfiguration Complete) information to the relay user equipment through the communication unit 710 after the RRC reconfiguration .
  • the serving base station of the electronic device 700 is also handed over to the serving base station of the electronic device 700, so that the user equipment can communicate with the new serving base station through the relay.
  • the determination unit 750 may determine that during the sleep state of the electronic device 700, the serving base station of the relay user equipment is handed over, and The relay user equipment does not save the handover RRC reconfiguration information of the electronic device 700 for the electronic device 700 .
  • the judging unit 750 may set a timer, and if no RRC reconfiguration information is received after the timer expires, determine that the serving base station of the relay user equipment is handed over during the sleep state of the electronic device 700, and The relay user equipment does not save the handover RRC reconfiguration information of the electronic device 700 for the electronic device 700 .
  • the electronic device 700 may send RRC connection restoration request information to the relay user equipment through the communication unit 710, where the RRC connection restoration request information includes the source serving base station of the electronic device 700, for example, includes the source serving base station of the electronic device 700 identification information. Further, the electronic device 700 may receive the RRC connection restoration information from the relay user equipment through the communication unit 710 . In this way, the electronic device 700 can switch the serving base station to the current serving base station of the relay user equipment, so as to communicate with the new serving base station through the relay user equipment.
  • the electronic device 700 in a sleep state can re-establish a connection with the relay user equipment after waking up.
  • the electronic device 700 may switch the serving base station to the current serving base station of the relay user equipment according to the handover RRC reconfiguration information.
  • the electronic device 700 can also switch the serving base station of the electronic device 700 to the RRC connection recovery request information including the source serving base station of the electronic device 700. The current serving base station of the relay user equipment.
  • the electronic device 700 may further include a measurement unit 760 for, after receiving the measurement indication information from the relay user equipment for instructing the electronic device 700 to perform handover measurement, perform a measurement Measurement of cell handover.
  • the measuring unit 760 may measure the channel quality of the adjacent cells, such as measuring parameters such as signal strength from the base stations of the adjacent cells.
  • the measurement unit 760 may use any method known in the art to perform measurement for cell handover, which is not limited in the present disclosure.
  • the electronic device 700 may further include a generating unit 770 for generating a measurement result. Further, the electronic device 700 can also send the measurement result generated by the generating unit 770 to the relay user equipment through the communication unit 710, so that the relay user equipment can forward it to the source serving base station.
  • the electronic device 700 after receiving the measurement indication information from the relay user equipment for instructing the electronic device 700 to measure the channel quality between the relay user equipment and the current serving base station of the relay user equipment, the electronic device 700 communicates with the relay user equipment.
  • the measurement is performed following the channel quality between the current serving base stations of the user equipment.
  • the current serving base station of the relay user equipment here refers to a new serving base station to which the relay user equipment is handed over when the electronic device 700 is in a sleep state.
  • the generation unit 770 may generate a measurement result, and the electronic device 700 may send the measurement result generated by the generation unit 770 to the relay user equipment through the communication unit 710, so that the relay user equipment can determine whether to allow the electronic device 700 to communicate with the relay A direct connection between the current serving base stations of the user equipment.
  • the electronic device 700 may determine another target through the measurement result of the cell handover A serving base station to establish a direct connection with another target serving base station. That is, the electronic device 700 may perform one of uplink communication and downlink communication through a direct connection with another target serving base station, and perform uplink communication and downlink communication with the current serving base station of the relay user equipment through the relay user equipment. the other in downstream communication.
  • cell handover measurements can also be performed for the electronic device 700 in a awake state with a hybrid connection.
  • the source serving base station can comprehensively consider the measurement results of the relay user equipment and the electronic device 700 when determining the handover, so that the quality of the direct link between the electronic device 700 with the hybrid connection and the destination serving base station will not be the same. would be too bad.
  • the direct link can be measured after waking up, so as to decide whether to use the direct link with the destination serving base station.
  • the electronic device 500 may further include an estimation unit 540 for estimating a target serving base station of the relay user equipment according to sleep parameters of the relay user equipment.
  • the estimation unit 540 may perform the above estimation while the relay user equipment is in a sleep state, that is, before the relay user equipment wakes up. Further, the estimation unit 540 may estimate a new serving base station (target serving base station) serving the relay user equipment after the relay user equipment wakes up according to the ephemeris information of each satellite device and the position information of the relay user equipment.
  • the electronic device 500 may further include a generating unit 550 configured to generate context retrieval request (Context retrieve Request) information, where the context retrieval request information includes the source serving base station of the relay user equipment . Further, the electronic device 500 may send the context acquisition request information to the target serving base station of the relay user equipment estimated by the estimation unit 540 through the communication unit 520 . In this way, the target serving base station may request the source serving base station for the context of the relay user equipment according to the source serving base station of the relay user equipment included in the context acquisition request information.
  • a generating unit 550 configured to generate context retrieval request (Context retrieve Request) information, where the context retrieval request information includes the source serving base station of the relay user equipment .
  • the electronic device 500 may send the context acquisition request information to the target serving base station of the relay user equipment estimated by the estimation unit 540 through the communication unit 520 .
  • the target serving base station may request the source serving base station for the context of the relay user equipment according to the source serving base station of the relay user equipment included in the context acquisition
  • the electronic device 500 can also receive path switching request information of the relay user equipment from the target serving base station through the communication unit 520, where the path switching request information indicates that the target serving base station wishes to switch the path of the relay user equipment to the target serving base station.
  • the electronic device 500 receives the path switching request information, it indicates that the target serving base station has successfully acquired the context of the relay user equipment.
  • the electronic device 500 may further include a switching unit 560 for switching the path of the relay user equipment to the target serving base station.
  • the above process is also applicable to the remote user equipment that relays the service of the user equipment.
  • the generating unit 550 may generate the context acquisition request information including the source serving base station of the remote user equipment, and the electronic device 500 may send the context acquisition request information to the target serving base station through the communication unit 520, so that the target serving base station sends the request information to the target serving base station.
  • the source serving base station of the remote user equipment requests the context of the remote user equipment.
  • the electronic device 500 may receive the path switching request information of the remote user equipment from the target serving base station through the communication unit 520 . Further, the switching unit 560 may switch the path of the remote user equipment to the target serving base station.
  • the target serving base station obtains the context information of the remote user equipment, and Request to switch the path of the remote user equipment.
  • the electronic device 500 can estimate the target serving base station after the relay user equipment wakes up, Therefore, the target serving base station obtains the context information of the remote user equipment in advance and requests to switch the path of the remote user equipment. In this way, after the remote user equipment wakes up, it can be directly handed over to the target serving base station, thereby greatly reducing the handover process time and improving the handover efficiency.
  • the relay UE can be implemented by the electronic device 600
  • the remote UE can be implemented by the electronic device 700
  • AMF Access and Mobility Management Function
  • UPF User Port Function
  • user port function may be located in the core network, eg included in the electronic device 500.
  • the AMF is used to perform the functions of the management plane
  • the UPF is used to perform the functions of the user plane.
  • the source serving gNB and the target serving gNB can be located on the non-transparent satellite device or in a ground station connected to the transparent satellite device.
  • FIG. 12 is a signaling flow diagram illustrating a process of a relay UE switching a serving base station according to an embodiment of the present disclosure.
  • the relay UE performs cell handover measurement and sends a measurement report to the source serving gNB.
  • the source serving gNB performs handover determination according to the measurement report of the relay UE, for example, determines the target serving gNB.
  • the source serving gNB sends a handover request for the relay UE and all remote UEs served by the relay UE to the target serving gNB.
  • the target serving gNB determines whether to allow access to the relay UE and all remote UEs served by the relay UE.
  • step S1205 the target serving gNB sends a handover response to the source serving gNB, indicating that this handover is permitted.
  • the source serving gNB sends a group handover command to the relay UE, which includes the handover RRC reconfiguration information of the relay UE and all remote UEs.
  • step S1207 the relay UE determines the state of each remote UE, where the remote UE1 is in a sleep state and the remote UE2 is in a awake state. Then the relay UE saves the handover RRC reconfiguration information of the remote UE1.
  • step S1208 the relay UE sends the handover RRC reconfiguration information of the remote UE2 to the remote UE2.
  • step S1209 the relay UE switches to the target serving gNB.
  • step S1210 the relay UE sends the handover complete information to the target serving gNB.
  • step S1211 the remote UE2 sends the information that the RRC reconfiguration is completed to the relay UE.
  • step S1212 the relay UE forwards the RRC reconfiguration completion information of the remote UE2 to the target serving gNB. So far, the relay UE and the remote UE2 are successfully handed over to the target serving gNB.
  • step S1213 the remote UE1 re-establishes a connection with the relay UE.
  • the relay UE sends the stored RRC reconfiguration information of the remote UE1 to the remote UE1.
  • step S1215 the remote UE1 sends the RRC reconfiguration completion information to the relay UE.
  • step S1216 the relay UE forwards the RRC reconfiguration completion information of the remote UE1 to the target serving gNB. So far, the remote UE1 is successfully handed over to the target serving gNB.
  • FIG. 13 is a signaling flowchart illustrating a process of a relay UE switching a serving base station according to another embodiment of the present disclosure.
  • the relay UE performs cell handover measurement, and sends a measurement report to the source serving gNB.
  • the source serving gNB performs handover determination according to the measurement report of the relay UE, for example, determines the target serving gNB.
  • the source serving gNB sends a handover request for the relay UE and all remote UEs served by the relay UE to the target serving gNB.
  • the target serving gNB determines whether to allow access to the relay UE and all remote UEs served by the relay UE.
  • step S1305 the target serving gNB sends a handover response to the source serving gNB, indicating that this handover is permitted.
  • the source serving gNB sends the handover RRC reconfiguration information of the relay UE and all remote UEs to the relay UE.
  • step S1307 the relay UE determines that the remote UE1 is in a sleep state, and thus saves the handover RRC reconfiguration information of the remote UE1.
  • step S1308 the relay UE sends the SN status to the source serving gNB.
  • step S1309 the relay UE determines that the remote UE2 is in the awake state, and therefore sends the handover RRC reconfiguration information to the remote UE2.
  • step S1310 the relay UE synchronizes with the target gNB.
  • step S1311 if the UPF sends user data for the relay UE and all remote UEs to the source serving gNB, then in step S1312, the source serving gNB forwards the user data to the target gNB.
  • step S1313 the target serving gNB caches the received data.
  • step S1314 the remote UE2 sends the RRC reconfiguration completion information to the relay UE.
  • step S1315 the relay UE sends the RRC reconfiguration completion information of the relay UE to the target serving gNB.
  • step S1316 the relay UE forwards the RRC reconfiguration completion information of the remote UE2 to the target serving gNB.
  • the remote UE2 and the relay UE can normally send uplink data.
  • the target serving gNB can forward the previously buffered downlink data for the relay UE and the remote UE2 to the relay UE and the remote UE2. end UE2. Since the AMF and UPF in the core network have not performed path switching at this time, the AMF and UPF cannot send downlink data to the target serving gNB.
  • the target serving gNB sends a path switching request to the AMF to request to switch the paths of the relay UE and all remote UEs.
  • step S1321 the AMF and the UPF perform path switching.
  • step S1322 the UPF sends an end marker (End Marker) to the source serving gNB.
  • step S1323 the source serving gNB forwards the end marker to the target serving gNB.
  • step S1324 the AMF sends a path switching response for the relay UE and all remote UEs to the target serving gNB.
  • step S1325 the target serving gNB sends context release information to the source serving gNB to request the source serving gNB to release the contexts of the relay UE and all remote UEs.
  • step S1326 the source serving gNB releases the contexts of the relay UE and all remote UEs.
  • step S1327 the relay UE and the remote UE2 can normally perform uplink and downlink communication. If there is data for the remote UE1, since the remote UE1 has not been handed over to the target serving gNB, the target serving gNB buffers the data in step S1328.
  • the relay UE may be implemented by the electronic device 600
  • the remote UE may be implemented by the electronic device 700
  • the AMF may be included in the electronic device 500 in the core network.
  • the source serving gNB and the target serving gNB can be located on the non-transparent satellite device or in a ground station connected to the transparent satellite device.
  • FIG. 14 is a signaling flow diagram illustrating a process for a remote UE to also connect to a new serving base station after a relay UE connects to the serving base station according to an embodiment of the present disclosure.
  • step S1401 after the relay UE enters the sleep mode and wakes up, it connects to a new serving gNB and performs uplink and downlink communication normally.
  • step S1402 After the remote UE1 enters the sleep mode and wakes up, in step S1402, it reconnects to the relay UE.
  • the remote UE1 sends RRC connection recovery request information to the relay UE, which includes the source serving gNB of the remote UE1.
  • step S1404 the relay UE forwards the RRC connection restoration request information of the remote UE1 to the new serving gNB.
  • the new serving gNB determines the source serving gNB of the remote UE1 according to the RRC connection restoration request information of the remote UE1, and requests the context request of the remote UE1 from it.
  • the source serving gNB of the remote UE1 sends the context response information of the remote UE1, including the context of the remote UE1, to the new serving gNB of the relay UE.
  • step S1407 the new serving gNB sends the RRC connection recovery information of the remote UE1 to the relay UE.
  • the relay UE forwards the RRC connection recovery information to the remote UE1.
  • the new serving gNB sends the data forwarding address indication of the remote UE1 to the source serving gNB of the remote UE1 to request to send the data of the remote UE1 to the new serving gNB.
  • the new serving gNB sends a path switching request of the remote UE1 to the AMF, so as to request to switch the path of the remote UE1 to the new serving gNB.
  • the AMF sends a path switch response of the remote UE1 to the new serving gNB.
  • the new serving gNB sends the context release information of the remote UE1 to the source serving gNB of the remote UE1 to request to release the context of the remote UE1.
  • the remote UE1 switches to the new serving gNB.
  • FIG. 15 is a signaling flow diagram illustrating a relay UE connecting to a new serving base station according to an embodiment of the present disclosure.
  • FIG. 15 is an improvement made to the procedure of connecting the relay UE to the new serving gNB shown in step S1401 in FIG. 14 .
  • the CN estimates the target serving gNB after the relay UE wakes up according to the sleep parameters of the relay UE and the ephemeris information of each satellite device.
  • the CN sends the context request information of the relay UE to the target serving gNB, including the source serving gNB of the relay UE.
  • the target serving gNB sends a context response of the relay UE to the CN.
  • the target serving gNB sends a data forwarding address indication to the source serving gNB to instruct the source serving gNB to forward the data of the relay UE to the target serving gNB.
  • the target serving gNB sends a path switching request of the relay UE to the CN, so as to request to switch the path of the relay UE to the target serving gNB.
  • the CN sends a path switching response to the target serving gNB.
  • the target serving gNB has acquired the context of the relay UE in advance, and the path of the relay UE has been switched to the target serving gNB in advance.
  • the target serving gNB after the relay UE wakes up, it sends RRC connection recovery request information to the target serving gNB.
  • the target serving gNB sends RRC connection recovery information to the relay UE.
  • the target serving gNB sends the context release information of the relay UE to the source serving gNB.
  • the source serving gNB releases the context of the relay UE.
  • the relay UE can quickly switch to the target serving gNB after waking up.
  • FIG. 16 is a signaling flow diagram illustrating a process for a remote UE to also connect to a new serving base station after a relay UE connects to the serving base station according to an embodiment of the present disclosure.
  • FIG. 16 is an improvement to the process of connecting a remote UE to a new serving gNB shown in steps S1402 to S1412 in FIG. 14 .
  • step S1601 when the relay UE and the remote UE are in the sleep state, the CN estimates the target service after the relay UE wakes up according to the sleep parameters of the relay UE and the ephemeris information of each satellite device gNB.
  • step S1602 the CN sends the context request information of the remote UE to the target serving gNB, including the source serving gNB of the remote UE.
  • step S1603 the target serving gNB sends a context response of the remote UE to the CN.
  • step S1604 the target serving gNB sends a data forwarding address indication to the source serving gNB of the remote UE to instruct the source serving gNB to forward the data of the remote UE to the target serving gNB.
  • step S1605 the target serving gNB sends a path switching request of the remote UE to the CN, so as to request to switch the path of the remote UE to the target serving gNB.
  • step S1606 the CN sends a path switching response to the target serving gNB. Therefore, during the sleep period of the relay UE and the remote UE, the target serving gNB has acquired the context of the remote UE in advance, and the path of the remote UE has been switched to the target serving gNB in advance.
  • the remote UE1 wakes up, in step S1607, it reconnects to the relay UE.
  • the remote UE1 sends RRC connection restoration request information to the relay UE.
  • the relay UE forwards the RRC connection restoration request of the remote UE1 to the target serving gNB.
  • the target serving gNB sends the RRC connection recovery information of the remote UE1 to the relay UE.
  • the relay UE may save the handover RRC reconfiguration information for the remote UE in the sleeping state, and wait for the remote UE to wake up. to send again, so that the remote UE in the sleeping state can perform handover after waking up. As shown in FIG. 12-13 , in the process of the relay UE actively performing the handover, the relay UE may save the handover RRC reconfiguration information for the remote UE in the sleeping state, and wait for the remote UE to wake up. to send again, so that the remote UE in the sleeping state can perform handover after waking up. As shown in FIG.
  • the remote UE in the process of the relay UE passively performing handover, can send RRC connection recovery request information including the source serving gNB of the remote UE to the relay UE after waking up, so that the relay UE can
  • the new serving gNB of the remote UE can request the context of the remote UE from the source serving gNB of the remote UE, and switch the path of the remote UE, so that the remote UE can perform the handover.
  • the CN can estimate the target serving gNB of the relay UE in advance, so that the target serving gNB can obtain the context of the relay UE and the remote UE in advance, and can handover in advance The path between the UE and the remote UE is relayed, thereby reducing the handover time.
  • the remote UE can be implemented by the electronic device 700
  • the relay UE can be implemented by the electronic device 600
  • the source serving gNB can be located on the non-transparent satellite device, or it can be located on the device connected to the transparent satellite device. in the ground station.
  • both far-end UE1 and far-end UE2 are far-end UEs with hybrid connectivity.
  • FIG. 17 is a signaling flow diagram illustrating a process of performing measurements together by a remote UE with a hybrid connection and a relay UE according to an embodiment of the present disclosure.
  • FIG. 17 is an improvement made to the process of generating and transmitting the measurement report shown in step S1201 in FIG. 12 and step S1301 in FIG. 13 .
  • the relay UE sends a measurement indication to the remote UE2 to instruct the remote UE2 to also perform the cell handover measurement .
  • the remote UE2 and the relay UE respectively perform cell handover measurements.
  • step S1703 the remote UE2 sends its measurement result to the relay UE.
  • step S1704 the relay UE sends a measurement report to the source serving gNB, which includes the measurement result of the remote UE2 and the measurement result of the relay UE.
  • step S1705 the source serving gNB makes a handover decision according to the measurement report.
  • FIG. 18 is a signaling flow diagram illustrating the operation of a far-end UE waking up with a hybrid connection and not yet taking measurements due to being in a sleep state.
  • FIG. 18 is an improvement made to the processes shown in steps S1213 to S1216 in FIG. 12 and steps S1329 to S1332 in FIG. 13 .
  • the remote UE1 when the cell handover measurement is performed, since the remote UE1 is in a sleep state, the remote UE1 does not perform the cell handover measurement.
  • step S1801 the remote UE1 reconnects to the relay UE.
  • the relay UE sends RRC reconfiguration information to the remote UE1.
  • step S1803 the remote UE1 sends the RRC reconfiguration completion information to the relay UE.
  • step S1804 the relay UE sends measurement indication information to the remote UE1 to instruct the remote UE1 to measure the quality of the direct connection between the remote UE1 and the target serving gNB.
  • step S1805 the remote UE1 performs a measurement process.
  • step S1806 the remote UE1 sends the measurement result to the relay UE.
  • step S1807 the relay UE determines whether to allow the direct connection between the remote UE1 and the target serving gNB according to the measurement result.
  • the source serving base station only considers the channel quality between the relay UE and other base stations. That is to say, there is a situation in which the channel quality between the remote UE and the target serving base station is very poor.
  • Figure 4 for a remote UE with a hybrid connection, when the relay UE is handed over to the target serving base station, if the channel quality between the remote UE and the target serving base station is very poor, it may cause the remote The UE cannot perform uplink communication or downlink communication. According to an embodiment of the present disclosure, as shown in FIG.
  • the source serving gNB considers the measurement results of the remote UE with hybrid connection when determining the handover, so that the measurement results of both the remote UE and the relay UE can be selected.
  • the target serving gNB enables remote UEs with hybrid connections to communicate well after handover.
  • a remote UE with a hybrid connection in a sleep state after waking up and switching to the target serving gNB, it can measure the direct connection between it and the target serving gNB, if the measurement result Not ideally, the serving gNB directly connected to the remote UE can be replaced. Therefore, the remote UE with the hybrid connection can also communicate well after the handover.
  • FIG. 19 is a flowchart illustrating a wireless communication method performed by the electronic device 500 for the network side in the wireless communication system according to an embodiment of the present disclosure.
  • step S1910 the sleep parameters of the remote user equipment and the start time of the next wake-up state are determined according to the sleep parameters of the relay user equipment and the start time of the next wake-up state, so that when the remote When the end user equipment is in the awake state, the relay user equipment is also in the awake state.
  • step S1920 the sleep parameters of the remote user equipment and the start time of the next wake-up state are sent to the remote user equipment.
  • the remote user equipment communicates with the satellite equipment via the relay user equipment, and the sleep parameters include the duration of the sleep state and the duration of the awake state.
  • the wireless communication method further comprises: receiving a desired sleep parameter of the remote user equipment from the remote user equipment; and further determining the sleep parameter of the remote user equipment according to the desired sleep parameter of the remote user equipment.
  • the wireless communication method further comprises: determining the start time of the next wake-up state of the relay user equipment, so that when the relay user equipment is in the wake-up state, there is a satellite device serving the relay user equipment.
  • the wireless communication method further comprises: receiving a desired sleep parameter of the relay user equipment from the relay user equipment; and determining the sleep parameter of the relay user equipment according to the desired sleep parameter of the relay user equipment.
  • the wireless communication method further comprises: estimating the target serving base station of the relay user equipment according to the sleep parameter of the relay user equipment; sending the context acquisition request information including the source serving base station of the relay user equipment to the target serving base station, so that the target serving base station
  • the serving base station requests the relay user equipment's context from the source serving base station of the relay user equipment; receives the relay user equipment's path switching request information from the target serving base station; and switches the relay user equipment's path to the target serving base station.
  • the wireless communication method further comprises: sending context acquisition request information including the source serving base station of the remote user equipment to the target serving base station, so that the target serving base station requests the source serving base station of the remote user equipment for the context of the remote user equipment ; receiving path switching request information of the remote user equipment from the target serving base station; and switching the path of the remote user equipment to the target serving base station.
  • FIG. 20 is a flowchart illustrating a wireless communication method performed by an electronic device 600 for relaying user equipment in a wireless communication system according to an embodiment of the present disclosure.
  • step S2010 the sleep parameters of the remote user equipment and the start time of the next wake-up state are determined according to the sleep parameters of the relay user equipment and the start time of the next wake-up state, so that when the remote When the end user equipment is in the awake state, the relay user equipment is also in the awake state.
  • step S2020 the sleep parameters of the remote user equipment and the start time of the next wake-up state are sent to the remote user equipment.
  • the remote user equipment communicates with the satellite equipment via the relay user equipment, and the sleep parameters include the duration of the sleep state and the duration of the awake state.
  • the wireless communication method further comprises: receiving a desired sleep parameter of the remote user equipment from the remote user equipment; and further determining the sleep parameter of the remote user equipment according to the desired sleep parameter of the remote user equipment.
  • the wireless communication method further comprises: determining the start time of the next wake-up state of the relay user equipment, so that when the relay user equipment is in the wake-up state, there is a satellite device serving the relay user equipment.
  • the wireless communication method further includes: receiving handover RRC reconfiguration information from a source serving base station of the electronic device; determining whether each remote user equipment served by the electronic device is in a sleep state or a awake state; The device sends the handover RRC reconfiguration information; and saves the handover RRC reconfiguration information of the remote user equipment in the sleep state.
  • the wireless communication method further includes: after the remote user equipment in the sleep state wakes up, sending handover RRC reconfiguration information to the remote user equipment.
  • the wireless communication method further comprises: receiving RRC connection restoration request information from the remote user equipment, where the RRC connection restoration request information includes the source serving base station of the remote user equipment; sending the RRC connection restoration request information to the serving base station of the electronic device to The serving base station for the electronic equipment requests the context of the remote user equipment from the source serving base station of the remote user equipment; receives the RRC connection recovery information of the remote user equipment from the serving base station of the electronic equipment; and sends the RRC connection to the remote user equipment restore information.
  • the wireless communication method further comprises: sending measurement indication information to the remote user equipment served by the electronic device in an awake state and having a hybrid connection, so as to instruct the remote user equipment to perform handover measurement; perform handover measurement;
  • the base station sends the measurement results, and the measurement results include the measurement results of the electronic equipment and the measurement results of the remote user equipment, wherein the remote user equipment with the hybrid connection performs one of uplink communication and downlink communication with the satellite equipment through the electronic equipment, and directly The other of uplink and downlink communication with satellite equipment.
  • the wireless communication method further includes: when the remote user equipment served by the electronic device is in a sleep state and has a hybrid connection wakes up, sending measurement indication information to the remote user equipment to instruct the remote user equipment to measure the remote Channel quality between user equipment and satellite equipment.
  • the subject performing the above method may be the electronic device 600 according to the embodiment of the present disclosure, so all the foregoing embodiments about the electronic device 600 are applicable to this.
  • 21 is a flowchart illustrating a wireless communication method performed by an electronic device 700 for a remote user equipment in a wireless communication system according to an embodiment of the present disclosure.
  • step S2110 sleep parameters of the electronic device and the start time of the next wake-up state are received.
  • the sleep parameters include the duration of the sleep state and the duration of the wake-up state, and are based on the sleep state of the relay user equipment. Determined by the parameters, when the electronic device is in the wake-up state, the relay user equipment is also in the wake-up state.
  • step S2120 periodically enter the sleep state and the wake-up state according to the sleep parameters and the start time of the next wake-up state.
  • the electronic device communicates with the satellite device via the relay user equipment.
  • the wireless communication method further comprises: sending expected sleep parameters of the electronic device, and the sleep parameters of the electronic device are further determined according to the expected sleep parameters of the electronic device.
  • the wireless communication method further comprises: when the electronic device wakes up, reconnecting to the relay user equipment; receiving handover RRC reconfiguration information from the relay user equipment; and sending handover RRC reconfiguration completion information to the relay user equipment to Communicate with the new serving base station through the relay user equipment.
  • the wireless communication method further comprises: when the electronic device wakes up, reconnecting to the relay user equipment; sending RRC connection restoration request information to the relay user equipment, the RRC connection restoration request information including the source serving base station of the electronic device; and RRC connection restoration information is received from the relay user equipment to communicate with the new serving base station through the relay user equipment.
  • the main body performing the above method may be the electronic device 700 according to the embodiment of the present disclosure, so all the foregoing embodiments about the electronic device 700 are applicable to this.
  • electronic device 500 may be implemented as any type of server, such as tower servers, rack servers, and blade servers.
  • the electronic device 500 may be a control module (such as an integrated circuit module comprising a single die, and a card or blade that is inserted into a slot of a blade server) mounted on a server.
  • the base station equipment can be implemented as macro eNB and small eNB, and can also be implemented as any type of gNB (base station in 5G system).
  • Small eNBs may be eNBs covering cells smaller than macro cells, such as pico eNBs, micro eNBs, and home (femto) eNBs.
  • the base station may be implemented as any other type of base station, such as NodeB and base transceiver station (BTS).
  • a base station may include: a subject (also referred to as a base station device) configured to control wireless communications; and one or more remote radio heads (RRHs) disposed at a different location than the subject.
  • RRHs remote radio heads
  • the relay user equipment and the remote user equipment may be implemented as mobile terminals such as smart phones, tablet personal computers (PCs), notebook PCs, portable game terminals, portable/dongle-type mobile routers, and digital cameras, or vehicle-mounted terminals (such as car navigation devices).
  • the user equipment may also be implemented as a terminal that performs machine-to-machine (M2M) communication (also referred to as a machine type communication (MTC) terminal).
  • M2M machine-to-machine
  • MTC machine type communication
  • the user equipment may be a wireless communication module (such as an integrated circuit module comprising a single die) mounted on each of the above-mentioned user equipments.
  • FIG. 22 is a block diagram illustrating an example of a server 2200 in which the electronic device 500 according to the present disclosure may be implemented.
  • the server 2200 includes a processor 2201 , a memory 2202 , a storage device 2203 , a network interface 2204 and a bus 2206 .
  • the processor 2201 may be, for example, a central processing unit (CPU) or a digital signal processor (DSP), and controls the functions of the server 2200 .
  • the memory 2202 includes random access memory (RAM) and read only memory (ROM), and stores data and programs executed by the processor 2201 .
  • the storage device 2203 may include a storage medium such as a semiconductor memory and a hard disk.
  • the network interface 2204 is a wired communication interface for connecting the server 2200 to the wired communication network 2205 .
  • the wired communication network 2205 may be a core network such as an Evolved Packet Core (EPC) or a Packet Data Network (PDN) such as the Internet.
  • EPC Evolved Packet Core
  • PDN Packet Data Network
  • a bus 2206 connects the processor 2201, the memory 2202, the storage device 2203, and the network interface 2204 to each other.
  • Bus 2206 may include two or more buses (such as a high-speed bus and a low-speed bus) each having a different speed.
  • the determination unit 510 , the determination unit 530 , the estimation unit 540 , the generation unit 550 , and the switching unit 560 described by using FIG. 5 may be implemented by the processor 2201 , and described by using FIG. 5
  • the communication unit 520 may be implemented by the network interface 2204.
  • the processor 2201 may perform determining the sleep parameters of the remote user equipment and the start time of the next wake-up state, and determining the sleep parameters of the relay user equipment and the next wake-up by executing the instructions stored in the memory 2202 or the storage device 2203. The function of starting time of incoming state, estimating the target serving base station of relay user equipment, generating context acquisition request information, and switching path.
  • eNB 2300 is a block diagram illustrating a first example of a schematic configuration of an eNB to which the techniques of this disclosure may be applied.
  • eNB 2300 includes one or more antennas 2310 and base station equipment 2320.
  • the base station apparatus 2320 and each antenna 2310 may be connected to each other via an RF cable.
  • Each of the antennas 2310 includes a single or multiple antenna elements (such as multiple antenna elements included in a multiple-input multiple-output (MIMO) antenna), and is used by the base station apparatus 2320 to transmit and receive wireless signals.
  • the eNB 2300 may include multiple antennas 2310.
  • multiple antennas 2310 may be compatible with multiple frequency bands used by eNB 2300.
  • FIG. 23 shows an example in which the eNB 2300 includes multiple antennas 2310, the eNB 2300 may also include a single antenna 2310.
  • the base station apparatus 2320 includes a controller 2321 , a memory 2322 , a network interface 2323 , and a wireless communication interface 2325 .
  • the controller 2321 may be, for example, a CPU or a DSP, and operates various functions of a higher layer of the base station apparatus 2320 .
  • the controller 2321 generates data packets from data in the signal processed by the wireless communication interface 2325, and communicates the generated packets via the network interface 2323.
  • the controller 2321 may bundle data from a plurality of baseband processors to generate a bundled packet, and deliver the generated bundled packet.
  • the controller 2321 may have logical functions to perform controls such as radio resource control, radio bearer control, mobility management, admission control and scheduling. This control may be performed in conjunction with nearby eNB or core network nodes.
  • the memory 2322 includes RAM and ROM, and stores programs executed by the controller 2321 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • the network interface 2323 is a communication interface for connecting the base station apparatus 2320 to the core network 2324 .
  • the controller 2321 may communicate with a core network node or another eNB via a network interface 2323.
  • eNB2 300 and core network nodes or other eNBs may be connected to each other through logical interfaces such as S1 interface and X2 interface.
  • the network interface 2323 may also be a wired communication interface or a wireless communication interface for wireless backhaul. If the network interface 2323 is a wireless communication interface, the network interface 2323 may use a higher frequency band for wireless communication than the frequency band used by the wireless communication interface 2325.
  • the wireless communication interface 2325 supports any cellular communication scheme, such as Long Term Evolution (LTE) and LTE-Advanced, and provides wireless connectivity to terminals located in the cell of the eNB 2300 via the antenna 2310.
  • the wireless communication interface 2325 may generally include, for example, a baseband (BB) processor 2326 and RF circuitry 2327.
  • the BB processor 2326 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs layers such as L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol (PDCP)) various types of signal processing.
  • L1 Medium Access Control
  • RLC Radio Link Control
  • PDCP Packet Data Convergence Protocol
  • the BB processor 2326 may have some or all of the above-described logical functions.
  • the BB processor 2326 may be a memory storing a communication control program, or a module including a processor and associated circuitry configured to execute the program.
  • the update procedure may cause the functionality of the BB processor 2326 to change.
  • the module may be a card or blade that is inserted into a slot of the base station device 2320. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 2327 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 2310 .
  • the wireless communication interface 2325 may include a plurality of BB processors 2326.
  • multiple BB processors 2326 may be compatible with multiple frequency bands used by eNB 2300.
  • the wireless communication interface 2325 may include a plurality of RF circuits 2327.
  • multiple RF circuits 2327 may be compatible with multiple antenna elements.
  • FIG. 23 shows an example in which the wireless communication interface 2325 includes multiple BB processors 2326 and multiple RF circuits 2327 , the wireless communication interface 2325 may also include a single BB processor 2326 or a single RF circuit 2327 .
  • eNB 24 is a block diagram showing a second example of a schematic configuration of an eNB to which the techniques of this disclosure may be applied.
  • eNB 2430 includes one or more antennas 2440, base station equipment 2450, and RRH 2460.
  • the RRH 2460 and each antenna 2440 may be connected to each other via RF cables.
  • the base station apparatus 2450 and the RRH 2460 may be connected to each other via a high-speed line such as an optical fiber cable.
  • Each of the antennas 2440 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the RRH 2460 to transmit and receive wireless signals.
  • the eNB 2430 may include multiple antennas 2440.
  • multiple antennas 2440 may be compatible with multiple frequency bands used by eNB 2430.
  • FIG. 24 shows an example in which the eNB 2430 includes multiple antennas 2440, the eNB 2430 may also include a single antenna 2440.
  • the base station apparatus 2450 includes a controller 2451 , a memory 2452 , a network interface 2453 , a wireless communication interface 2455 , and a connection interface 2457 .
  • the controller 2451 , the memory 2452 and the network interface 2453 are the same as the controller 2321 , the memory 2322 and the network interface 2323 described with reference to FIG. 23 .
  • the network interface 2453 is a communication interface for connecting the base station apparatus 2450 to the core network 2454 .
  • Wireless communication interface 2455 supports any cellular communication scheme, such as LTE and LTE-Advanced, and provides wireless communication via RRH 2460 and antenna 2440 to terminals located in a sector corresponding to RRH 2460.
  • the wireless communication interface 2455 may generally include, for example, a BB processor 2456.
  • the BB processor 2456 is the same as the BB processor 2326 described with reference to FIG. 23, except that the BB processor 2456 is connected to the RF circuit 2464 of the RRH 2460 via the connection interface 2457.
  • the wireless communication interface 2455 may include a plurality of BB processors 2456.
  • multiple BB processors 2456 may be compatible with multiple frequency bands used by eNB 2430.
  • FIG. 24 shows an example in which the wireless communication interface 2455 includes multiple BB processors 2456
  • the wireless communication interface 2455 may include a single BB processor 2456 .
  • RRH 2460 includes connection interface 2461 and wireless communication interface 2463.
  • connection interface 2461 is an interface for connecting the RRH 2460 (the wireless communication interface 2463 ) to the base station apparatus 2450.
  • the connection interface 2461 may also be a communication module for communication in the above-mentioned high-speed line.
  • the wireless communication interface 2463 transmits and receives wireless signals via the antenna 2440 .
  • Wireless communication interface 2463 may typically include RF circuitry 2464, for example.
  • RF circuitry 2464 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via antenna 2440 .
  • the wireless communication interface 2463 may include a plurality of RF circuits 2464.
  • multiple RF circuits 2464 may support multiple antenna elements.
  • FIG. 24 shows an example in which the wireless communication interface 2463 includes a plurality of RF circuits 2464 , the wireless communication interface 2463 may include a single RF circuit 2464 .
  • FIG. 25 is a block diagram showing an example of a schematic configuration of a smartphone 2500 to which the techniques of the present disclosure can be applied.
  • Smartphone 2500 includes processor 2501, memory 2502, storage device 2503, external connection interface 2504, camera device 2506, sensor 2507, microphone 2508, input device 2509, display device 2510, speaker 2511, wireless communication interface 2512, one or more Antenna switch 2515, one or more antennas 2516, bus 2517, battery 2518, and auxiliary controller 2519.
  • the processor 2501 may be, for example, a CPU or a system on a chip (SoC), and controls the functions of the application layer and further layers of the smartphone 2500.
  • the memory 2502 includes RAM and ROM, and stores data and programs executed by the processor 2501 .
  • the storage device 2503 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 2504 is an interface for connecting an external device such as a memory card and a Universal Serial Bus (USB) device to the smartphone 2500 .
  • USB Universal Serial Bus
  • the camera 2506 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • Sensors 2507 may include a set of sensors, such as measurement sensors, gyroscope sensors, geomagnetic sensors, and acceleration sensors.
  • the microphone 2508 converts the sound input to the smartphone 2500 into an audio signal.
  • the input device 2509 includes, for example, a touch sensor, keypad, keyboard, button, or switch configured to detect a touch on the screen of the display device 2510, and receives operations or information input from a user.
  • the display device 2510 includes a screen such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 2500 .
  • the speaker 2511 converts the audio signal output from the smartphone 2500 into sound.
  • the wireless communication interface 2512 supports any cellular communication scheme, such as LTE and LTE-Advanced, and performs wireless communication.
  • Wireless communication interface 2512 may typically include, for example, BB processor 2513 and RF circuitry 2514.
  • the BB processor 2513 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • the RF circuit 2514 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via the antenna 2516 .
  • the wireless communication interface 2512 can be a chip module on which the BB processor 2513 and the RF circuit 2514 are integrated. As shown in FIG.
  • the wireless communication interface 2512 may include a plurality of BB processors 2513 and a plurality of RF circuits 2514 .
  • FIG. 25 shows an example in which the wireless communication interface 2512 includes multiple BB processors 2513 and multiple RF circuits 2514 , the wireless communication interface 2512 may include a single BB processor 2513 or a single RF circuit 2514 .
  • the wireless communication interface 2512 may support additional types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless local area network (LAN) schemes.
  • the wireless communication interface 2512 may include a BB processor 2513 and an RF circuit 2514 for each wireless communication scheme.
  • Each of the antenna switches 2515 switches the connection destination of the antenna 2516 among a plurality of circuits included in the wireless communication interface 2512 (eg, circuits for different wireless communication schemes).
  • Each of the antennas 2516 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 2512 to transmit and receive wireless signals.
  • smartphone 2500 may include multiple antennas 2516 .
  • FIG. 25 shows an example in which the smartphone 2500 includes multiple antennas 2516
  • the smartphone 2500 may include a single antenna 2516 as well.
  • the smartphone 2500 may include an antenna 2516 for each wireless communication scheme.
  • the antenna switch 2515 can be omitted from the configuration of the smartphone 2500.
  • the bus 2517 connects the processor 2501, the memory 2502, the storage device 2503, the external connection interface 2504, the camera device 2506, the sensor 2507, the microphone 2508, the input device 2509, the display device 2510, the speaker 2511, the wireless communication interface 2512, and the auxiliary controller 2519 to each other connect.
  • the battery 2518 provides power to the various blocks of the smartphone 2500 shown in FIG. 25 via feeders, which are partially shown in phantom in the figure.
  • the auxiliary controller 2519 operates the minimum necessary functions of the smartphone 2500, eg, in sleep mode.
  • the sleep control unit 720 , the generating unit 730 , the connecting unit 740 , the judging unit 750 , the measuring unit 760 and the generating unit 770 may be implemented by the processor 2501 or the auxiliary controller 2519 . At least a portion of the functionality may also be implemented by the processor 2501 or the auxiliary controller 2519.
  • the processor 2501 or the auxiliary controller 2519 may perform determining the sleep parameters of the remote user equipment and the start time of the next wake-up state, determining the next state of the relay user equipment by executing the instructions stored in the memory 2502 or the storage device 2503. Start time of a wake-up state, determine the state of the remote user equipment, generate a measurement report, perform cell handover measurements, generate measurement indication information, control the sleep mode of the remote user equipment, generate the desired sleep parameters, connect to the relay user equipment , the function of judging whether the relay user equipment is actively handed over or passively handed over, performing cell handover measurements and generating measurement reports.
  • FIG. 26 is a block diagram showing an example of a schematic configuration of a car navigation apparatus 2620 to which the techniques of the present disclosure can be applied.
  • the car navigation device 2620 includes a processor 2621, a memory 2622, a global positioning system (GPS) module 2624, a sensor 2625, a data interface 2626, a content player 2627, a storage medium interface 2628, an input device 2629, a display device 2630, a speaker 2631, a wireless A communication interface 2633, one or more antenna switches 2636, one or more antennas 2637, and a battery 2638.
  • GPS global positioning system
  • the processor 2621 may be, for example, a CPU or a SoC, and controls the navigation function and other functions of the car navigation device 2620 .
  • the memory 2622 includes RAM and ROM, and stores data and programs executed by the processor 2621.
  • the GPS module 2624 uses GPS signals received from GPS satellites to measure the location (such as latitude, longitude, and altitude) of the car navigation device 2620.
  • Sensors 2625 may include a set of sensors such as gyroscope sensors, geomagnetic sensors, and air pressure sensors.
  • the data interface 2626 is connected to, for example, the in-vehicle network 2641 via a terminal not shown, and acquires data generated by the vehicle, such as vehicle speed data.
  • the content player 2627 reproduces content stored in storage media such as CDs and DVDs, which are inserted into the storage media interface 2628 .
  • the input device 2629 includes, for example, a touch sensor, a button, or a switch configured to detect a touch on the screen of the display device 2630, and receives operations or information input from a user.
  • the display device 2630 includes a screen such as an LCD or OLED display, and displays images or reproduced content of a navigation function.
  • the speaker 2631 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 2633 supports any cellular communication scheme, such as LTE and LTE-Advanced, and performs wireless communication.
  • Wireless communication interface 2633 may typically include, for example, BB processor 2634 and RF circuitry 2635.
  • the BB processor 2634 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 2635 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via the antenna 2637 .
  • the wireless communication interface 2633 can also be a chip module on which the BB processor 2634 and the RF circuit 2635 are integrated. As shown in FIG.
  • the wireless communication interface 2633 may include a plurality of BB processors 2634 and a plurality of RF circuits 2635.
  • FIG. 26 shows an example in which the wireless communication interface 2633 includes multiple BB processors 2634 and multiple RF circuits 2635, the wireless communication interface 2633 may include a single BB processor 2634 or a single RF circuit 2635.
  • the wireless communication interface 2633 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless LAN scheme.
  • the wireless communication interface 2633 may include the BB processor 2634 and the RF circuit 2635 for each wireless communication scheme.
  • Each of the antenna switches 2636 switches the connection destination of the antenna 2637 among a plurality of circuits included in the wireless communication interface 2633, such as circuits for different wireless communication schemes.
  • Each of the antennas 2637 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used by the wireless communication interface 2633 to transmit and receive wireless signals.
  • the car navigation device 2620 may include a plurality of antennas 2637 .
  • FIG. 26 shows an example in which the car navigation device 2620 includes multiple antennas 2637
  • the car navigation device 2620 may include a single antenna 2637 .
  • the car navigation device 2620 may include an antenna 2637 for each wireless communication scheme.
  • the antenna switch 2636 may be omitted from the configuration of the car navigation device 2620.
  • the battery 2638 provides power to the various blocks of the car navigation device 2620 shown in FIG. 26 via feeders, which are partially shown in the figure as dashed lines.
  • the battery 2638 accumulates power supplied from the vehicle.
  • the determination unit 610 by using the determination unit 610 , the determination unit 630 , the state determination unit 640 , the generation unit 660 , the measurement unit 67 , the generation unit 680 described in FIG. 6 , and by using the The described sleep control unit 720 , generating unit 730 , connecting unit 740 , judging unit 750 , measuring unit 760 and generating unit 770 may be implemented by the processor 2621 . At least a portion of the functionality may also be implemented by the processor 2621.
  • the processor 2621 may perform determining the sleep parameters of the remote user equipment and the start time of the next wake-up state, determining the start time of the next wake-up state of the relay user equipment, determining the start time of the next wake-up state of the relay user equipment by executing the instructions stored in the memory 2622 Status of the remote user equipment, generate measurement reports, perform cell handover measurements, generate measurement indication information, control the sleep mode of the remote user equipment, generate expected sleep parameters, connect to the relay user equipment, and determine whether the relay user equipment is actively handed over or not. Functions for passive handover, cell handover measurements and measurement report generation.
  • the techniques of this disclosure may also be implemented as an in-vehicle system (or vehicle) 2640 that includes one or more blocks of a car navigation device 2620 , an in-vehicle network 2641 , and a vehicle module 2642 .
  • the vehicle module 2642 generates vehicle data such as vehicle speed, engine speed, and fault information, and outputs the generated data to the in-vehicle network 2641 .
  • the units shown in dotted boxes in the functional block diagram shown in the accompanying drawings all indicate that the functional unit is optional in the corresponding device, and each optional functional unit can be combined in an appropriate manner to realize the required function .
  • a plurality of functions included in one unit in the above embodiments may be implemented by separate devices.
  • multiple functions implemented by multiple units in the above embodiments may be implemented by separate devices, respectively.
  • one of the above functions may be implemented by multiple units. Needless to say, such a configuration is included in the technical scope of the present disclosure.
  • the steps described in the flowcharts include not only processing performed in time series in the stated order, but also processing performed in parallel or individually rather than necessarily in time series. Furthermore, even in the steps processed in time series, needless to say, the order can be appropriately changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种电子设备、无线通信方法和计算机可读存储介质,电子设备包括处理电路,被配置为:根据中继用户设备的睡眠参数和下一次醒来状态的开始时间确定远端用户设备的睡眠参数和下一次醒来状态的开始时间,以使得当远端用户设备处于醒来状态时,中继用户设备也处于醒来状态;以及将远端用户设备的睡眠参数和下一次醒来状态的开始时间发送至远端用户设备,其中,远端用户设备经由中继用户设备与卫星设备进行通信。无线通信方法使得在NTN网络中,在节约中继用户设备和远端用户设备的能量的同时,中继用户设备可以为远端用户设备提供服务。

Description

电子设备、无线通信方法和计算机可读存储介质
本申请要求于2020年12月11日提交中国专利局、申请号为202011450032.3、发明名称为“电子设备、无线通信方法和计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开的实施例总体上涉及无线通信领域,具体地涉及电子设备、无线通信方法和计算机可读存储介质。更具体地,本公开涉及一种作为无线通信系统中的网络侧设备的电子设备、一种作为无线通信系统中的中继用户设备的电子设备、一种作为无线通信系统中的远端用户设备的电子设备、一种由无线通信系统中的网络侧设备执行的无线通信方法、一种由无线通信系统中的中继用户设备执行的无线通信方法、一种由无线通信系统中的远端用户设备执行的无线通信方法以及一种计算机可读存储介质。
背景技术
NTN(Non-terrestrial Network,非地面网络)具有覆盖面积广的特点,一颗卫星可以覆盖地面巨大的面积,相比TN(Terrestrial Network,地面网络),NTN具有容易部署网络的巨大优势,因此能够为成千上万的UE(User Equipment,用户设备)提供服务。在NTN中,卫星设备可以为用户设备提供服务。例如,通过将服务基站放置在非透明卫星设备上从而使得服务基站能够为用户设备提供服务。再如,通过透明卫星设备的转发,位于地面的服务基站也可以为用户设备提供服务。对于某些具有较差的通信条件的用户设备(例如该用户设备位于遮挡环境中)或者具有较低能量的用户设备,可能难以与卫星设备进行通信。在这种情况下,具有较差的通信条件的用户设备或者具有较低能量的用户设备(被称为远端用户设备)可以通过中继用户设备间接与卫星设备进行通信。
此外,为了节约用户设备的能量,用户设备可以使用睡眠模式,即周期性处于睡眠状态。由于中继用户设备和远端用户设备都可以采用睡眠模式,这将对NTN网络中的各个通信过程的设计带来巨大的挑战。
因此,有必要提出一种技术方案,以解决在NTN网络中存在中继用 户设备和远端用户设备的场景中由睡眠模式带来的各种问题,以使得在节约中继用户设备和远端用户设备的能量的同时,中继用户设备和远端用户设备可以正常工作。
发明内容
这个部分提供了本公开的一般概要,而不是其全部范围或其全部特征的全面披露。
本公开的目的在于提供一种电子设备、无线通信方法和计算机可读存储介质,以使得在NTN网络中,在节约中继用户设备和远端用户设备的能量的同时,中继用户设备和远端用户设备可以正常工作。
根据本公开的一方面,提供了一种电子设备,包括处理电路,被配置为:根据中继用户设备的睡眠参数和下一次醒来状态的开始时间确定远端用户设备的睡眠参数和下一次醒来状态的开始时间,以使得当所述远端用户设备处于醒来状态时,所述中继用户设备也处于醒来状态;以及将所述远端用户设备的睡眠参数和下一次醒来状态的开始时间发送至所述远端用户设备,其中,所述远端用户设备经由所述中继用户设备与卫星设备进行通信,并且所述睡眠参数包括睡眠状态的时长和醒来状态的时长。
根据本公开的另一方面,提供了一种电子设备,包括处理电路,被配置为:接收所述电子设备的睡眠参数和下一次醒来状态的开始时间,所述睡眠参数包括睡眠状态的时长和醒来状态的时长、并且是根据中继用户设备的睡眠参数确定的,当所述电子设备处于醒来状态时,所述中继用户设备也处于醒来状态;以及根据所述睡眠参数和下一次醒来状态的开始时间周期性进入睡眠状态和醒来状态,其中,所述电子设备经由所述中继用户设备与卫星设备进行通信。
根据本公开的另一方面,提供了一种由电子设备执行的无线通信方法,包括:根据中继用户设备的睡眠参数和下一次醒来状态的开始时间确定远端用户设备的睡眠参数和下一次醒来状态的开始时间,以使得当所述远端用户设备处于醒来状态时,所述中继用户设备也处于醒来状态;以及将所述远端用户设备的睡眠参数和下一次醒来状态的开始时间发送至所述远端用户设备,其中,所述远端用户设备经由所述中继用户设备与卫星设备进行通信,并且所述睡眠参数包括睡眠状态的时长和醒来状态的时长。
根据本公开的另一方面,提供了一种由电子设备执行的无线通信方法,包括:接收所述电子设备的睡眠参数和下一次醒来状态的开始时间,所述睡眠参数包括睡眠状态的时长和醒来状态的时长、并且是根据中继用户设备的睡眠参数确定的,当所述电子设备处于醒来状态时,所述中继用户设备也处于醒来状态;以及根据所述睡眠参数和下一次醒来状态的开始时间周期性进入睡眠状态和醒来状态,其中,所述电子设备经由所述中继用户设备与卫星设备进行通信。
根据本公开的另一方面,提供了一种计算机可读存储介质,包括可执行计算机指令,所述可执行计算机指令当被计算机执行时使得所述计算机执行根据本公开所述的无线通信方法。
根据本公开的另一方面,提供了一种计算机程序,所述计算机程序当被计算机执行时使得所述计算机执行根据本公开所述的无线通信方法。
使用根据本公开的电子设备、无线通信方法和计算机可读存储介质,核心网中的电子设备或者中继用户设备可以根据中继用户设备的睡眠参数和下一次醒来状态的开始时间来确定远端用户设备的睡眠参数和下一次醒来状态的开始时间,从而使得远端用户设备处于醒来状态时中继用户设备也处于醒来状态。这样一来,当远端用户设备醒来时,存在为其提供服务的中继用户设备,从而使得中继用户设备和远端用户设备能够采用睡眠模式而节约能量,同时远端用户设备也能够得到中继用户设备的服务。
从在此提供的描述中,进一步的适用性区域将会变得明显。这个概要中的描述和特定例子只是为了示意的目的,而不旨在限制本公开的范围。
附图说明
在此描述的附图只是为了所选实施例的示意的目的而非全部可能的实施,并且不旨在限制本公开的范围。在附图中:
图1是示出根据本公开的实施例的中继UE与远端UE的睡眠参数不匹配的情况的示意图;
图2是示出根据本公开的实施例的中继UE与卫星通信窗口不匹配的情况的示意图;
图3是示出根据本公开的实施例的处于睡眠状态的远端UE无法执行 切换的情况的示意图;
图4是示出根据本公开的实施例的在中继UE切换服务基站之后具有混合连接的远端UE无法正常通信的情况的示意图;
图5是示出根据本公开的实施例的用于网络侧的电子设备的配置的示例的框图;
图6是示出根据本公开的实施例的用于中继UE的电子设备的配置的示例的框图;
图7是示出根据本公开的实施例的用于远端UE的电子设备的配置的示例的框图;
图8是示出根据本公开的实施例的中继UE和远端UE的睡眠参数以及下一次醒来的开始时间的确定的信令流程图;
图9是示出根据本公开的另一个实施例的中继UE和远端UE的睡眠参数以及下一次醒来的开始时间的确定的信令流程图;
图10是示出根据本公开的又一个实施例的中继UE和远端UE的睡眠参数以及下一次醒来的开始时间的确定的信令流程图;
图11是示出根据本公开的实施例的由网络侧设备调整中继UE和远端UE的睡眠参数以及下一次醒来的开始时间的信令流程图;
图12是示出根据本公开的实施例的中继UE切换服务基站的过程的信令流程图;
图13是示出根据本公开的另一个实施例的中继UE切换服务基站的过程的信令流程图;
图14是示出根据本公开的实施例的在中继UE连接至新的服务基站之后远端UE也连接至该服务基站的过程的信令流程图;
图15是示出根据本公开的实施例的中继UE连接至新的服务基站的信令流程图;
图16是示出根据本公开的实施例的在中继UE连接至新的服务基站之后远端UE也连接至该服务基站的过程的信令流程图;
图17是示出根据本公开的实施例的由具有混合连接的远端UE和中继UE一起执行测量的过程的信令流程图;
图18是示出具有混合连接且由于处于睡眠状态从而尚未进行测量的 远端UE醒来后的操作的信令流程图;
图19是示出根据本公开的实施例的由用于网络侧的电子设备执行的无线通信方法的流程图;
图20是示出根据本公开的实施例的由用于中继UE的电子设备执行的无线通信方法的流程图;
图21是示出根据本公开的实施例的由用于远端UE的电子设备执行的无线通信方法的流程图;
图22是示出可以实现根据本公开的电子设备的服务器的示例的框图。
图23是示出eNB(Evolved Node B,演进型节点B)的示意性配置的第一示例的框图;
图24是示出eNB的示意性配置的第二示例的框图;
图25是示出智能电话的示意性配置的示例的框图;以及
图26是示出汽车导航设备的示意性配置的示例的框图。
虽然本公开容易经受各种修改和替换形式,但是其特定实施例已作为例子在附图中示出,并且在此详细描述。然而应当理解的是,在此对特定实施例的描述并不打算将本公开限制到公开的具体形式,而是相反地,本公开目的是要覆盖落在本公开的精神和范围之内的所有修改、等效和替换。要注意的是,贯穿几个附图,相应的标号指示相应的部件。
具体实施方式
现在参考附图来更加充分地描述本公开的例子。以下描述实质上只是示例性的,而不旨在限制本公开、应用或用途。
提供了示例实施例,以便本公开将会变得详尽,并且将会向本领域技术人员充分地传达其范围。阐述了众多的特定细节如特定部件、装置和方法的例子,以提供对本公开的实施例的详尽理解。对于本领域技术人员而言将会明显的是,不需要使用特定的细节,示例实施例可以用许多不同的形式来实施,它们都不应当被解释为限制本公开的范围。在某些示例实施例中,没有详细地描述众所周知的过程、众所周知的结构和众所周知的技术。
将按照以下顺序进行描述:
1.问题的描述;
2.睡眠参数和下一次醒来状态的开始时间的确定;
2.1核心网中的电子设备的配置示例;
2.2用于中继UE的电子设备的配置示例;
2.3用于远端UE的电子设备的配置示例;
3.切换过程的描述;
3.1用于中继UE的电子设备的配置示例;
3.2用于远端UE的电子设备的配置示例;
3.3核心网中的电子设备的配置示例;
4.方法实施例;
5.应用示例。
<1.问题的描述>
本公开针对NTN网络中存在中继服务以及睡眠模式的场景。也就是说,NTN网络包括一个或多个中继用户设备和以及一个或多个远端用户设备,每个中继用户设备可以为至少一个远端用户设备提供中继服务。并且,中继用户设备和远端用户设备都可以采用睡眠模式,即中继用户设备和远端用户设备可以周期性进入睡眠状态和醒来状态。下面将结合图1-图4描述本公开要解决的问题。
图1是示出根据本公开的实施例的中继UE与远端UE的睡眠参数不匹配的情况的示意图。在图1中,横轴表示时间,上方的图示出了中继UE的睡眠参数的曲线,下方的图示出了远端UE的睡眠参数的曲线。在每个曲线中,上方的线表示UE处于醒来状态,下方的线表示UE处于睡眠状态。如图1所示,在时间T1处,远端UE处于醒来状态,而中继UE处于睡眠状态。也就是说,如果远端UE在时间T1处需要发送上行数据或者接收下行数据,由于中继UE处于睡眠状态无法进行转发,将造成远端UE无法发送数据和接收数据。
图2是示出根据本公开的实施例的中继UE与卫星通信窗口不匹配的情况的示意图。在图2中,横轴表示时间,上方的图示出了卫星通信窗口的曲线,下方的图示出了中继UE的睡眠参数的曲线。在卫星通信窗口的 曲线中,上方的线表示中继UE的上方存在卫星设备,下方的线表示中继UE的上方不存在卫星设备。在中继UE的睡眠参数的曲线中,上方的线表示中继UE处于醒来状态,下方的线表示中继UE处于睡眠状态。如图2所示,在时间T2处,中继UE处于醒来状态,但是中继UE上方不存在卫星设备。也就是说,如果中继UE在时间T2处需要发送上行数据或者接收下行数据,由于中继UE上方不存在卫星设备,将导致中继UE无法发送数据和接收数据。
图3是示出根据本公开的实施例的处于睡眠状态的远端UE无法执行切换的情况的示意图。在图3中,远端UE1和远端UE2通过中继UE与卫星设备进行通信。如图3的左侧所示,在t1时刻,远端UE1处于醒来状态,其通过中继UE与卫星设备进行通信,而远端UE2处于睡眠状态。由于卫星的移动,中继UE的服务卫星设备发生了变化,由于远端UE1处于醒来状态因此可以与中继UE一起执行切换的过程,从而可以通过中继UE与新的卫星设备进行通信。而由于远端UE2处于睡眠状态因此无法执行切换的过程。如图3的右侧所示,在t2时刻,当远端UE2醒来,其由于没有执行切换过程从而不能通过中继UE与新的卫星设备进行通信。
图4是示出根据本公开的实施例的在中继UE切换服务基站之后具有混合连接的远端UE无法正常通信的情况的示意图。在本公开中,具有混合连接的远端UE可以通过中继UE与卫星设备进行上行通信和下行通信中的一者,并且可以直接与该卫星设备进行上行通信和下行通信中的另一者。如图4的左侧所示,远端UE1通过中继UE与卫星设备1进行下行通信,并且直接与卫星设备1进行上行通信。远端UE2通过中继UE与卫星设备1进行上行通信,并且直接与卫星设备1进行下行通信。远端UE1和远端UE2都属于具有混合连接的远端UE。
在中继UE切换服务基站的过程中,中继UE会测量其与各个其他基站之间的信道质量,从而源服务基站可以选择合适的目标服务基站。在选取目标服务基站的过程中,源服务基站只会考虑中继UE与其他基站之间的信道质量。也就是说,存在远端UE与目标服务基站之间的信道质量很差的情形。对于具有混合连接的远端UE来说,在中继UE切换至目标服务基站的情况下,如果远端UE与目标服务基站之间的信道质量很差,可能会造成远端UE无法进行上行通信或者下行通信。
如图4的右侧所示,在中继UE进行切换测量从而切换至卫星设备2之后,由于远端UE2与卫星设备2之间存在遮挡物,远端UE2仍然可以 通过中继UE进行与卫星设备2之间的上行通信,但是无法直接与卫星设备2进行下行通信。同样地,由于远端UE1与卫星设备2之间也存在遮挡物,远端UE1仍然可以通过中继UE进行与卫星设备2之间的下行通信,但是无法直接与卫星设备2进行上行通信。
如上所述,图1-图4示例性地示出了NTN网络存在中继服务以及睡眠模式的场景中存在的一些问题。
本公开针对这样的场景提出了一种无线通信系统中的电子设备、由无线通信系统中的电子设备执行的无线通信方法以及计算机可读存储介质,以解决以上问题中的至少一个,从而使得在NTN网络中,在节约中继用户设备和远端用户设备的能量的同时,中继用户设备可以为远端用户设备提供服务。
根据本公开的无线通信系统可以是5G NR(New Radio,新无线)通信系统。此外,根据本公开的无线通信系统可以包括NTN。
根据本公开的用于网络侧的电子设备可以位于核心网中,并且可以通过各种类型的服务器来实现。
根据本公开的基站设备例如可以是eNB,也可以是gNB(第5代通信系统中的基站)。在本公开中,基站设备可以位于为用户设备服务的卫星设备上,即该卫星设备为非透明卫星设备,其具备数据处理的能力。可选地,基站设备也可以位于地面站上,即为用户设备提供服务的卫星设备为透明卫星设备,不具备数据处理的能力,需要将数据转发至地面站上进行处理。
根据本公开的卫星设备包括但不限于GEO(Geosynchronous Orbit,地球同步轨道)卫星设备、LEO(Low Earth Orbit,近地球轨道)卫星设备、MEO(Medium Earth Orbit,中地球轨道)卫星设备、HEO(Highly Elliptical Orbiting,高椭圆轨道)卫星设备和HAPS(High Altitude Platform Station,高空平台)。
根据本公开的远端用户设备和中继用户设备的结构可以一致。也就是说,当用户设备用作中继设备时,被称为中继用户设备;当用户设备用作远端设备时,被称为远端用户设备。
用户设备可以是移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执 行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
<2.睡眠参数和下一次醒来状态的开始时间的确定>
<2.1核心网中的电子设备的配置示例>
图5是示出根据本公开的实施例的电子设备500的配置的示例的框图。这里的电子设备500可以作为无线通信系统中的网络侧设备,具体地可以位于核心网中。
如图5所示,电子设备500可以包括确定单元510和通信单元520。
这里,电子设备500的各个单元都可以包括在处理电路中。需要说明的是,电子设备500既可以包括一个处理电路,也可以包括多个处理电路。进一步,处理电路可以包括各种分立的功能单元以执行各种不同的功能和/或操作。需要说明的是,这些功能单元可以是物理实体或逻辑实体,并且不同称谓的单元可能由同一个物理实体实现。
根据本公开的实施例,确定单元510可以根据中继用户设备的睡眠参数和下一次醒来状态的开始时间确定远端用户设备的睡眠参数和下一次醒来状态的开始时间,以使得当远端用户设备处于醒来状态时,中继用户设备也处于醒来状态。
这里,中继用户设备指的是远端用户设备经由其与卫星设备进行通信的中继用户设备。根据本公开的实施例,确定单元510确定的睡眠参数可以包括远端用户设备的睡眠状态的时长和醒来状态的时长。
根据本公开的实施例,电子设备500可以通过通信单元520将远端用户设备的睡眠参数和下一次醒来状态的开始时间发送至远端用户设备。这里,在卫星设备经由中继用户设备进行与远端用户设备的下行通信的情况下,电子设备500可以将远端用户设备的睡眠参数和下一次醒来状态的开始时间通过卫星设备发送至中继用户设备,从而中继用户设备可以将上述信息转发至远端用户设备。在卫星设备直接与远端用户设备进行下行通信的情况下,电子设备500也可以将远端用户设备的睡眠参数和下一次醒来状态的开始时间通过卫星设备直接发送至远端用户设备。
由此可见,根据本公开的实施例的电子设备500,可以根据中继用户设备的睡眠参数和下一次醒来状态的开始时间来确定远端用户设备的睡眠参数和下一次醒来状态的开始时间,从而使得远端用户设备处于醒来状 态时中继用户设备也处于醒来状态。这样一来,当远端用户设备醒来时,存在为其提供服务的中继用户设备,从而使得中继用户设备和远端用户设备能够采用睡眠模式而节约能量,同时远端用户设备也能够得到中继用户设备的服务。
根据本公开的实施例,确定单元510可以根据各种方式来确定远端用户设备的睡眠参数和下一次醒来状态的开始时间,只要保证远端用户设备处于醒来状态时中继用户设备也处于醒来状态即可,本公开对此不作限定。
例如,确定单元510可以在中继用户设备的所有醒来状态中周期性选择一些时间作为远端用户设备的醒来状态。也就是说,远端用户设备的醒来状态的时长等于或小于中继用户设备的醒来状态的时长,而远端用户设备的睡眠状态的时长等于或大于中继用户设备的睡眠状态的时长。进一步,远端用户设备的醒来状态的开始时间可以与中继用户设备的醒来状态的开始时间对齐,也可以不与中继用户设备的醒来状态的开始时间对齐。在一个示例中,确定单元510可以在中继用户设备的每个醒来状态中分别选择一段时间作为远端用户设备的醒来状态。在另一个示例中,确定单元510可以在中继用户设备的第1、3、5、…次醒来状态中分别选择一段时间作为远端用户设备的醒来状态。
根据本公开的实施例,电子设备500还可以通过通信单元520从远端用户设备接收远端用户设备的期望睡眠参数。在卫星设备经由中继用户设备进行与远端用户设备的上行通信的情况下,远端用户设备可以将期望睡眠参数发送至中继用户设备,从而中继用户设备将该期望睡眠参数经由卫星设备转发至电子设备500。在卫星设备直接与远端用户设备进行上行通信的情况下,远端用户设备也可以将期望睡眠参数直接发送至卫星设备从而发送至电子设备500。
根据本公开的实施例,远端用户设备可以在其与中继用户设备建立连接之后将期望睡眠参数发送至电子设备500。这里,远端用户设备可以根据数据的发送特性,包括但不限于数据的发送周期和数据的长度,来确定期望睡眠参数。期望睡眠参数包括远端用户设备期望的睡眠状态的时长和期望的醒来状态的时长。
这样一来,确定单元510还可以根据远端用户设备的期望睡眠参数确定远端用户设备的睡眠参数。也就是说,确定单元510可以在保证远端用户设备处于醒来状态时中继用户设备也处于醒来状态的情况下,尽量满 足远端用户设备的期望睡眠参数。
根据本公开的实施例,在中继用户设备服务多个远端用户设备的情况下,确定单元510还可以根据其他远端用户设备的睡眠参数和下一次醒来状态的时间来确定该远端用户设备的睡眠参数和下一次醒来状态的时间,以使得中继用户设备在各个醒来状态中转发的数据量较为均匀。
根据本公开的实施例,如图5所示,电子设备500还可以包括确定单元530,用于确定中继用户设备下一次醒来状态的开始时间和中继用户设备的睡眠参数,以使得当中继用户设备处于醒来状态时,存在为中继用户设备服务的卫星设备。进一步,电子设备500可以通过通信单元520将中继用户设备下一次醒来状态的开始时间和中继用户设备的睡眠参数发送至中继用户设备。
根据本公开的实施例,确定单元530可以根据各个卫星设备的星历信息来确定中继用户设备下一次醒来状态的开始时间和中继用户设备的睡眠参数。具体地,确定单元530可以根据各个卫星设备的星历信息来确定各个卫星设备位于中继用户设备上方的时间,从而确定中继用户设备下一次醒来状态的开始时间和中继用户设备的睡眠参数,以使得中继用户设备每次处于醒来状态时上方都存在为其服务的卫星设备。这里,中继用户设备的上方指的是卫星设备能够为中继用户设备提供服务的空间区域。
根据本公开的实施例,电子设备500还可以通过通信单元520从中继用户设备接收中继用户设备的期望睡眠参数。
根据本公开的实施例,中继用户设备可以在其加入网络之后将期望睡眠参数发送至电子设备500。这里,中继用户设备可以根据数据的发送特性,包括但不限于数据的发送周期和数据的长度,来确定期望睡眠参数。期望睡眠参数包括中继用户设备期望的睡眠状态的时长和期望的醒来状态的时长。
这样一来,确定单元530可以根据中继用户设备的期望睡眠参数确定中继用户设备的睡眠参数。也就是说,确定单元530在保证当中继用户设备处于醒来状态时存在为中继用户设备服务的卫星设备的情况下,尽量满足中继用户设备的期望睡眠参数。
如上所述,根据本公开的实施例,电子设备500可以确定中继用户设备的下一次醒来状态的开始时间和睡眠参数,以使得中继用户设备每次醒来都有为其服务的卫星设备,从而避免中继用户设备无法发送数据和接 收数据的情况。
根据本公开的实施例,在中继用户设备接入网络从而电子设备500确定了中继用户设备的睡眠参数和下一次醒来状态的开始时间之后,可以对中继用户设备的睡眠参数和下一次醒来状态的开始时间进行动态调整。例如,中继用户设备可以根据已经确定的睡眠参数确定下一次醒来的时间,然后判断下一次醒来时上方是否有能够服务的卫星设备。如果不存在能够服务的卫星设备,中继用户设备可以再次发送期望睡眠参数,以使得下次醒来时上方存在能够服务的卫星设备。确定单元530可以根据中继用户设备的期望睡眠参数确定调整后的中继用户设备的睡眠参数和下一次醒来状态的开始时间。类似地,在远端用户设备与中继用户设备建立连接从而电子设备500确定了远端用户设备的睡眠参数和下一次醒来状态的开始时间之后,可以对远端用户设备的睡眠参数和下一次醒来状态的开始时间进行动态调整。例如,远端用户设备可以根据已经确定的睡眠参数确定下一次醒来的时间,然后判断下一次醒来时中继用户设备是否醒来以及是否存在能够服务的卫星设备。如果不存在能够服务的卫星设备或者中继用户设备处于睡眠状态,远端用户设备可以再次发送期望睡眠参数,以使得下次醒来时上方存在能够服务的卫星设备并且中继用户设备处于醒来状态。确定单元520可以根据远端用户设备的期望睡眠参数确定调整后的远端用户设备的睡眠参数和下一次醒来状态的开始时间。
<2.2用于中继UE的电子设备的配置示例>
图6是示出根据本公开的实施例的无线通信系统中的用作中继用户设备的电子设备600的结构的框图。
如图6所示,电子设备600可以包括确定单元610和通信单元620。
这里,电子设备600的各个单元都可以包括在处理电路中。需要说明的是,电子设备600既可以包括一个处理电路,也可以包括多个处理电路。进一步,处理电路可以包括各种分立的功能单元以执行各种不同的功能和/或操作。需要说明的是,这些功能单元可以是物理实体或逻辑实体,并且不同称谓的单元可能由同一个物理实体实现。
根据本公开的实施例,确定单元610可以根据中继用户设备(即电子设备600)的睡眠参数和下一次醒来状态的开始时间确定远端用户设备的睡眠参数和下一次醒来状态的开始时间,以使得当远端用户设备处于醒来状态时,电子设备600也处于醒来状态。
根据本公开的实施例,确定单元610确定的睡眠参数可以包括远端用户设备的睡眠状态的时长和醒来状态的时长。
根据本公开的实施例,电子设备600可以通过通信单元620将远端用户设备的睡眠参数和下一次醒来状态的开始时间发送至远端用户设备。
由此可见,根据本公开的实施例的电子设备600,可以根据电子设备600的睡眠参数和下一次醒来状态的开始时间来确定远端用户设备的睡眠参数和下一次醒来状态的开始时间,从而使得远端用户设备处于醒来状态时电子设备600也处于醒来状态。这样一来,当远端用户设备醒来时,存在为其提供服务的电子设备600,从而使得电子设备600和远端用户设备能够采用睡眠模式而节约能量,同时远端用户设备也能够得到电子设备600的服务。
根据本公开的实施例,确定单元610可以采用与上面描述的确定单元510类似的方式来确定远端用户设备的睡眠参数和下一次醒来状态的开始时间,只要保证远端用户设备处于醒来状态时电子设备600也处于醒来状态即可,本公开对此不作限定。
例如,确定单元610可以在电子设备600的所有醒来状态中周期性选择一些时间作为远端用户设备的醒来状态。也就是说,远端用户设备的醒来状态的时长等于或小于电子设备600的醒来状态的时长,而远端用户设备的睡眠状态的时长等于或大于电子设备600的睡眠状态的时长。进一步,远端用户设备的醒来状态的开始时间可以与电子设备600的醒来状态的开始时间对齐,也可以不与电子设备600的醒来状态的开始时间对齐。在一个示例中,确定单元610可以在电子设备600的每个醒来状态中分别选择一段时间作为远端用户设备的醒来状态。在另一个示例中,确定单元610可以在电子设备600的第1、3、5、…次醒来状态中分别选择一段时间作为远端用户设备的醒来状态。
根据本公开的实施例,电子设备600还可以通过通信单元620从远端用户设备接收远端用户设备的期望睡眠参数。根据本公开的实施例,远端用户设备可以在其与电子设备600建立连接之后将期望睡眠参数发送至电子设备600。这里,远端用户设备可以根据数据的发送特性,包括但不限于数据的发送周期和数据的长度,来确定期望睡眠参数。期望睡眠参数包括远端用户设备期望的睡眠状态的时长和期望的醒来状态的时长。这样一来,确定单元610还可以根据远端用户设备的期望睡眠参数确定远端用户设备的睡眠参数。也就是说,确定单元610可以在保证远端用户设备 处于醒来状态时电子设备600也处于醒来状态的情况下,尽量满足远端用户设备的期望睡眠参数。
根据本公开的实施例,在电子设备600服务多个远端用户设备的情况下,确定单元610还可以根据其他远端用户设备的睡眠参数和下一次醒来状态的时间来确定该远端用户设备的睡眠参数和下一次醒来状态的时间,以使得电子设备600在各个醒来状态中转发的数据量较为均匀。
根据本公开的实施例,如图6所示,电子设备600还可以包括确定单元630,用于确定中继用户设备下一次醒来状态的开始时间,以使得当电子设备600处于醒来状态时,存在为电子设备600服务的卫星设备。
根据本公开的实施例,电子设备600可以通过通信单元620从核心网接收电子设备600的睡眠参数,并根据电子设备600的睡眠参数和各个卫星设备的星历信息来确定中继用户设备下一次醒来状态的开始时间。具体地,确定单元630可以根据各个卫星设备的星历信息来确定各个卫星设备位于电子设备600上方的时间,结合电子设备600的睡眠参数确定电子设备600下一次醒来状态的开始时间,以使得电子设备600每次处于醒来状态时上方都存在为其服务的卫星设备。
根据本公开的实施例,电子设备600还可以通过通信单元620向核心网发送电子设备600的期望睡眠参数。这里,电子设备600可以在其加入网络之后将期望睡眠参数发送至核心网。电子设备600可以根据数据的发送特性,包括但不限于数据的发送周期和数据的长度,来确定期望睡眠参数。期望睡眠参数包括电子设备600期望的睡眠状态的时长和期望的醒来状态的时长。
如上所述,根据本公开的实施例,电子设备600可以确定电子设备600的下一次醒来状态的开始时间,以使得电子设备600每次醒来都有为其服务的卫星设备,从而避免电子设备600无法发送数据和接收数据的情况。
<2.3用于远端UE的电子设备的配置示例>
图7是示出根据本公开的实施例的无线通信系统中的用作远端用户设备的电子设备700的结构的框图。电子设备700经由中继用户设备与卫星设备进行上行通信和下行通信中的至少一者。
如图7所示,电子设备700可以包括通信单元710和睡眠控制单元720。
这里,电子设备700的各个单元都可以包括在处理电路中。需要说明的是,电子设备700既可以包括一个处理电路,也可以包括多个处理电路。进一步,处理电路可以包括各种分立的功能单元以执行各种不同的功能和/或操作。需要说明的是,这些功能单元可以是物理实体或逻辑实体,并且不同称谓的单元可能由同一个物理实体实现。
根据本公开的实施例,电子设备700可以通过通信单元710接收电子设备700的睡眠参数和下一次醒来状态的开始时间,睡眠参数包括睡眠状态的时长和醒来状态的时长、并且是根据中继用户设备的睡眠参数确定的,当电子设备700处于醒来状态时,中继用户设备也处于醒来状态。
这里,电子设备700的睡眠参数和下一次醒来状态的开始时间可以是中继用户设备确定的,即电子设备700从中继用户设备接收上述信息。可选地,电子设备700的睡眠参数和下一次醒来状态的开始时间也可以是核心网确定的,即电子设备700从中继用户设备接收中继用户设备转发的上述信息,或者从卫星设备直接接收上述信息。
根据本公开的实施例,睡眠控制单元720可以根据睡眠参数和下一次醒来状态的开始时间控制电子设备700周期性进入睡眠状态和醒来状态。
根据本公开的实施例,睡眠控制单元720可以控制电子设备700进入睡眠状态,并且根据下一次醒来状态的开始时间醒来,根据睡眠参数中的醒来状态的时长来确定下一次醒来状态的时长,从而确定下一次睡眠状态的开始时间,并根据睡眠参数中的睡眠状态的时长来确定下一次睡眠状态的时长。这样一来,睡眠控制单元720可以控制电子设备700周期性进入睡眠状态和醒来状态。
根据本公开的实施例,如图7所示,电子设备700还可以包括生成单元730,用于生成电子设备700的期望睡眠参数,期望睡眠参数包括电子设备700的期望的睡眠状态的时长和期望的醒来状态的时长。
进一步,电子设备700可以通过通信单元710将期望睡眠参数发送至中继用户设备,以使得中继用户设备根据电子设备700的期望睡眠参数确定电子设备700的睡眠参数和下一次醒来状态的时间。可选地,电子设备700可以通过通信单元710将期望睡眠参数发送至中继用户设备,中继用户设备将电子设备700的期望睡眠参数转发至核心网,从而核心网根据电子设备700的期望睡眠参数确定电子设备700的睡眠参数和下一次醒来 状态的时间。根据本公开的实施例,电子设备700可以在其与中继用户设备建立连接之后将期望睡眠参数发送至中继用户设备。这里,电子设备700可以根据数据的发送特性,包括但不限于数据的发送周期和数据的长度,来确定期望睡眠参数。
由此可见,根据本公开的实施例的电子设备700,睡眠参数和下一次醒来状态的开始时间是根据中继用户设备的睡眠参数和下一次醒来状态的开始时间确定的,从而使得电子设备700处于醒来状态时中继用户设备也处于醒来状态。这样一来,当电子设备700醒来时,存在为其提供服务的中继用户设备,从而使得电子设备700和中继用户设备能够采用睡眠模式而节约能量,同时电子设备700也能够得到中继用户设备的服务。
如上详细描述了根据本公开的实施例的中继用户设备和远端用户设备的睡眠参数和下一次醒来状态的开始时间的确定,下面将结合图8-图11来描述上述确定过程的信令流程。在图8-图11中,CN(Core Network,核心网)可以包括电子设备500,中继UE可以由电子设备600来实现,远端UE可以由电子设备700来实现。
图8是示出根据本公开的实施例的中继UE和远端UE的睡眠参数以及下一次醒来的开始时间的确定的信令流程图。如图8所示,在步骤S801中,新的远端UE与中继UE建立连接。在步骤S802中,新的远端UE向中继UE发送期望睡眠参数。在步骤S803中,中继UE将新的远端UE的期望睡眠参数通过卫星设备转发至CN。在步骤S804中,CN根据新的远端UE的期望睡眠参数确定新的远端UE的睡眠参数和下一次醒来状态的开始时间。可选地,CN可以根据新的远端UE的睡眠参数和下一次醒来状态的开始时间确定是否需要调整中继UE的睡眠参数和下一次醒来状态的开始时间,以及是否需要调整其他远端UE的睡眠参数和下一次醒来状态的开始时间。如果需要调整,则CN确定调整后的中继UE的睡眠参数和下一次醒来状态的开始时间、以及/或者调整后的其他远端UE的睡眠参数和下一次醒来状态的开始时间。在步骤S805中,CN将新的远端UE的睡眠参数和下一次醒来状态的开始时间发送至中继UE。可选地,如果在步骤S804中CN还确定了调整后的中继UE的睡眠参数和下一次醒来状态的开始时间、以及/或者调整后的其他远端UE的睡眠参数和下一次醒来状态的开始时间,则一并发送至中继UE。在步骤S806中,中继UE将新的远端UE的睡眠参数和下一次醒来状态的开始时间转发至新的远端UE。在步骤S807中,中继UE将其他远端UE的睡眠参数和下一次醒来状态的 开始时间转发至其他远端UE。如上所述,在图8中,由CN确定中继UE的睡眠参数、中继UE的下一次醒来状态的开始时间、远端UE的睡眠参数、以及远端UE的下一次醒来状态的开始时间。
图9是示出根据本公开的另一个实施例的中继UE和远端UE的睡眠参数以及下一次醒来的开始时间的确定的信令流程图。如图9所示,在步骤S901中,新的远端UE与中继UE建立连接。在步骤S902中,新的远端UE向中继UE发送期望睡眠参数。在步骤S903中,中继UE根据新的远端UE的期望睡眠参数确定是否需要调整中继UE的睡眠参数。如果需要调整,则中继UE将中继UE的期望睡眠参数发送至CN。在步骤S904中,CN根据中继UE的期望睡眠参数确定中继UE的睡眠参数并发送至中继UE。在步骤S905中,中继UE根据新的远端UE的期望睡眠参数确定新的远端UE的睡眠参数和下一次醒来状态的开始时间。可选地,如果在步骤S904中,中继UE接收到CN调整的中继UE的睡眠参数,则中继UE可以确定中继UE的下一次醒来状态的开始时间。进一步,可选地,中继UE还可以确定是否需要调整其他远端UE的睡眠参数和下一次醒来状态的开始时间。如果需要调整,则中继UE确定调整后的其他远端UE的睡眠参数和下一次醒来状态的开始时间。在步骤S906中,中继UE将新的远端UE的睡眠参数和下一次醒来状态的开始时间发送至新的远端UE。在步骤S907中,中继UE将其他远端UE的睡眠参数和下一次醒来状态的开始时间发送至其他远端UE。如上所述,在图9中,由CN确定中继UE的睡眠参数,由中继UE确定中继UE的下一次醒来状态的开始时间、远端UE的睡眠参数、以及远端UE的下一次醒来状态的开始时间。
图10是示出根据本公开的又一个实施例的中继UE和远端UE的睡眠参数以及下一次醒来的开始时间的确定的信令流程图。如图10所示,在步骤S1001中,新的远端UE与中继UE建立连接。在步骤S1002中,新的远端UE向中继UE发送期望睡眠参数。在步骤S1003中,中继UE将远端UE的期望睡眠参数发送至CN。在步骤S1004中,CN根据远端UE的期望睡眠参数确定远端UE的睡眠参数。可选地,CN还可以确定是否需要调整中继UE的睡眠参数以及是否需要调整其他远端UE的睡眠参数。如果需要调整,则CN还可以确定调整后的中继UE的睡眠参数、以及/或者确定调整后的其他远端UE的睡眠参数。在步骤S1005中,CN将新的远端UE的睡眠参数发送至中继UE。可选地,CN还将调整后的中继UE的睡眠参数和/或调整后的其他远端UE的睡眠参数发送至中继UE。在步骤S1006中,中继UE确定新的远端UE的下一次醒来状态的开始时 间。可选地,中继UE确定是否需要调整中继UE的下一次醒来状态的开始时间以及是否需要调整其他远端UE的下一次醒来状态的开始时间。如果需要调整,则确定调整后的中继UE的下一次醒来状态的开始时间、以及/或者确定调整后的其他远端UE的下一次醒来状态的开始时间。在步骤S1007中,中继UE将新的远端UE的睡眠参数和下一次醒来状态的开始时间发送至新的远端UE。在步骤S1007中,中继UE将其他远端UE的睡眠参数和下一次醒来状态的开始时间发送至其他远端UE。如上所述,在图10中,由CN确定中继UE的睡眠参数和远端UE的睡眠参数,由中继UE确定中继UE的下一次醒来状态的开始时间以及远端UE的下一次醒来状态的开始时间。
如上所述,图8-图10示出了中继UE和远端UE的睡眠参数和下一次醒来状态的开始时间的确定的三个实施例。无论采用哪种方式确定中继UE和远端UE的睡眠参数和下一次醒来状态的开始时间,核心网都可以对中继UE和远端UE的睡眠参数和下一次醒来状态的开始时间进行调整。
图11是示出根据本公开的实施例的由网络侧设备调整中继UE和远端UE的睡眠参数以及下一次醒来的开始时间的信令流程图。如图11所示,在步骤S1101中,在每次进入睡眠状态之前,中继UE确定下一次醒来的时间并且确定下一次醒来时是否有能够服务的卫星设备从而确定是否需要调整睡眠参数。如果没有能够服务的卫星设备,则中继UE可以重新确定期望睡眠参数,包括期望睡眠状态的时长和期望醒来状态的时长,并将期望睡眠参数发送至CN。这里,虽然中继UE仅发送了期望睡眠参数,但是由于期望睡眠状态的时长实际上决定了下一次醒来状态的开始时间,因此期望睡眠参数隐含指示了中继UE期望的下一次醒来状态的开始时间。在步骤S1102中,CN根据中继UE的期望睡眠参数确定中继UE的睡眠参数和下一次醒来状态的开始时间。在步骤S1103中,CN将中继UE的睡眠参数和下一次醒来状态的开始时间发送至中继UE。在步骤S1104中,中继UE将调整后的中继UE的睡眠参数和下一次醒来状态的开始时间发送至其服务的远端UE1和远端UE2。在步骤S1105中,远端UE1和远端UE2可以根据调整后的中继UE的睡眠参数和下一次醒来状态的开始时间确定是否需要调整自己的睡眠参数。例如,如果远端UE发现远端UE处于醒来状态时中继UE处于睡眠状态,则远端UE可以确定需要调整自己的睡眠参数。这里假定远端UE2确定需要调整睡眠参数,则远端UE2可以重新确定期望睡眠参数,包括期望睡眠状态的时长和期望醒来状态的时长,并将期望睡眠参数发送至中继UE。这里,虽然远端 UE仅发送了期望睡眠参数,但是由于期望睡眠状态的时长实际上决定了下一次醒来状态的开始时间,因此期望睡眠参数隐含指示了远端UE期望的下一次醒来状态的开始时间。在步骤S1106中,中继UE将远端UE2的期望睡眠参数发送至CN。在步骤S1107中,CN确定调整后的远端UE2的睡眠参数和下一次醒来状态的开始时间。在步骤S1108中,CN将远端UE2的睡眠参数和下一次醒来状态的开始时间发送至中继UE。在步骤S1109中,中继UE将远端UE2的睡眠参数和下一次醒来状态的开始时间发送至远端UE2。
值得注意的是,虽然在本文中的一些附图中示出了远端UE通过中继UE发送上行数据并且接收下行数据的情形,但是远端UE也可以直接与卫星设备进行上行通信和下行通信中的一者。
如前文所述,在图1中,由于中继UE和远端UE的睡眠参数的不匹配,可能会存在远端UE处于醒来状态而中继UE处于睡眠状态的情形,从而导致远端UE无法正常通信。根据本公开的实施例,远端UE的睡眠参数和下一次醒来状态的开始时间是根据中继UE的睡眠参数和下一次醒来状态的开始时间确定的,从而保证远端UE处于醒来状态时中继UE也处于醒来状态。这样一来,可以在NTN网络中节约远端UE和中继UE的能量的同时使得中继UE可以为远端UE提供服务。
进一步,如前文所述,在图2中,由于中继UE的睡眠参数和卫星通信窗口的不匹配,可能会存在中继UE处于醒来状态而没有能够服务的卫星设备的情形,从而导致中继UE无法正常通信。根据本公开的实施例,可以根据卫星的星历信息来确定中继UE的下一次醒来状态的开始时间,以使得中继UE醒来时存在为其服务的卫星设备。这样一来,可以在NTN网络中节约远端UE和中继UE的能量的同时使得中继UE能够与卫星设备进行通信从而可以为远端UE提供服务。
<3.切换过程的描述>
前文中描述了中继用户设备和远端用户设备的睡眠参数和下一次醒来状态的开始时间的确定。下面将描述根据本公开的实施例的在NTN网络中存在中继服务和睡眠模式的情况下用户设备切换服务基站的过程。值得注意的是,根据本公开的实施例的切换过程可以与前文中睡眠参数和下一次醒来状态的开始时间的确定过程相结合。也就是说,根据前文中所述的方法来确定中继用户设备和远端用户设备的睡眠参数和下一次醒来状态的开始时间,然后当用户设备需要执行切换过程时根据下述的方法来执 行切换。此外,根据本公开的实施例的切换过程也可以独立进行。也就是说,可以根据其他方法来确定中继用户设备和远端用户设备的睡眠参数和下一次醒来状态的开始时间,即下文中所描述的切换过程并不关心用户设备的睡眠参数和下一次醒来状态的开始时间是如何确定的。
<3.1用于中继UE的电子设备的配置示例>
根据本公开的实施例,电子设备600可以通过通信单元620从电子设备600的源服务基站接收切换RRC重配置信息(HO RRC Reconfiguration Info)。
这里,电子设备600的源服务基站可以位于非透明卫星设备上,从而电子设备600直接从源服务基站接收切换RRC重配置信息。可选地,电子设备600的源服务基站可以位于地面站,从而电子设备600可以从透明卫星设备接收来自源服务基站的切换RRC重配置信息。同样地,目标服务基站也可以位于非透明卫星设备上,或者位于与透明卫星设备连接的地面站中。此外,对于CU(Central Unit,集中单元)与DU(Distributed Unit,分布式单元)分开设置的情况,电子设备的源服务基站和目标服务基站可以是与同一个CU相连的不同的DU设备,也就是说,电子设备600在不同的DU设备中切换。
根据本公开的实施例,电子设备600从源服务基站接收到的切换RRC重配置信息可以包括电子设备600以及电子设备600服务的所有远端用户设备的切换RRC重配置信息。
根据本公开的实施例,电子设备600还可以包括测量单元670,用于进行小区切换测量。也就是说,测量单元670可以对相邻小区的信道质量进行测量,例如测量来自相邻小区基站的信号强度等参数。这里,测量单元670可以采用本领域公知的任何方法来进行用于小区切换的测量,本公开对此不作限定。
根据本公开的实施例,电子设备600还可以包括生成单元660,用于根据测量单元670的测量结果生成测量报告,测量报告例如可以包括电子设备600的当前服务小区的信道质量以及相邻小区的信道质量。进一步,电子设备600可以通过通信单元620将生成单元660生成的测量报告发送至源服务基站,以用于源服务基站根据测量报告进行切换确定,并在确定进行小区切换(即将电子设备600的服务基站由源服务基站切换至目标服务基站)的情况下,向电子设备600发送切换RRC重配置信息。可选地, 生成单元660还可以生成电子设备600的位置信息。进一步,电子设备600可以通过通信单元620将生成单元660生成的位置信息发送至源服务基站,以用于源服务基站根据位置信息进行切换确定。
如图6所示,电子设备600还可以包括状态确定单元640,用于确定电子设备600服务的各个远端用户设备处于睡眠状态还是醒来状态。这里,状态确定单元640可以根据各个远端用户设备的睡眠参数以及下一次醒来状态的开始时间来确定当前时刻该远端用户设备处于睡眠状态还是醒来状态。进一步,对于处于醒来状态的远端用户设备,电子设备600可以通过通信单元620向其发送该远端用户设备的切换RRC重配置信息。
根据本公开的实施例,如图6所示,电子设备600还可以包括存储单元650,用于保存处于睡眠状态的远端用户设备的切换RRC重配置信息。这里,对于任意一个远端用户设备,如果存储单元650已经存储过该远端用户设备的切换RRC重配置信息,则存储单元650更新该远端用户设备的切换RRC重配置信息。也就是说,如果在该远端用户设备处于睡眠状态的期间,电子设备600的服务基站发生过多次切换,则存储单元650仅存储最新的该远端用户设备的切换RRC重配置信息。
根据本公开的实施例,在处于睡眠状态的远端用户设备醒来之后,电子设备600通过通信单元620向该远端用户设备发送存储单元650中存储的该远端用户设备的切换RRC重配置信息。
根据本公开的实施例,在处于睡眠状态的远端用户设备醒来之后会重新与电子设备600建立连接,从而电子设备600响应于连接的重新建立向该远端用户设备发送切换RRC重配置信息。
如上所述,根据本公开的实施例,在电子设备600执行服务基站的切换的过程中,电子设备600可以为处于睡眠状态的远端用户设备保存切换RRC重配置信息,并在处于睡眠状态的远端用户设备醒来后再次发送切换RRC重配置信息。这样一来,电子设备600和处于醒来状态的远端用户设备可以根据切换RRC重配置信息将服务基站从源服务基站切换至目标服务基站,并且处于睡眠状态的远端用户设备可以在醒来之后根据切换RRC重配置信息将服务基站从源服务基站切换至目标服务基站。
以上详细描述了在电子设备600处于醒来状态的情况下通过切换测量从而执行的服务基站的切换过程,这个过程可以被称为电子设备600“主动切换服务基站”的过程。下面将详细描述在电子设备600进入睡眠状态 然后醒来的情况下,由于卫星设备的移动,电子设备600也需要进行服务基站的切换的过程,这个过程可以被称为电子设备600“被动切换服务基站”的过程。
根据本公开的实施例,电子设备600进入睡眠状态并且醒来之后,可以重新与新的服务基站建立连接。例如,电子设备600可以通过通信单元620向新的服务基站发送RRC连接恢复请求信息,并且在新的服务基站从源服务基站获取电子设备600的上下文信息之后,电子设备600从新的服务基站接收RRC连接恢复信息,从而连接至新的服务基站。
根据本公开的实施例,电子设备600连接至新的服务基站时其服务的一个或多个远端用户设备可能处于睡眠状态。在该远端用户设备醒来之后,电子设备600可以通过通信单元620从远端用户设备接收RRC连接恢复请求(RRC Connection Resume Request)信息。
根据本公开的实施例,RRC连接恢复请求信息包括远端用户设备的源服务基站。这里,源服务基站指的是该远端用户设备进入睡眠状态之前的服务基站。如果远端用户设备在睡眠状态期间,电子设备600已经多次切换过服务基站,则远端用户设备的源服务基站可能不同于电子设备600的源服务基站,因此远端用户设备需要通过RRC连接恢复请求信息告知其源服务基站。
根据本公开的实施例,电子设备600可以通过通信单元620向当前的服务基站转发该远端用户设备的RRC连接恢复请求信息,以用于电子设备600的当前服务基站向远端用户设备的源服务基站请求远端用户设备的上下文。
根据本公开的实施例,在电子设备600的当前服务基站获取了远端用户设备的上下文之后,电子设备600可以通过通信单元620从电子设备600的服务基站接收远端用户设备的RRC连接恢复(RRC Connection Resume)信息,并将该RRC连接恢复信息转发至远端用户设备。
如上所述,在电子设备600进行“被动切换服务基站”的过程之后,处于睡眠状态的远端用户设备醒来之后可以通过发送包括远端用户设备的源服务基站的RRC连接恢复请求信息,从而将远端用户设备的服务基站也切换至电子设备600的当前服务基站。
根据本公开的实施例,在电子设备600进行“主动切换服务基站”的过程中,电子设备600可以进行小区测量,以用于源服务基站进行切换 确定,即确定是否将电子设备600切换至其他服务基站以及切换至哪个目标服务基站。
根据本公开的实施例,状态确定单元640可以确定电子设备600服务的各个远端用户设备处于睡眠状态还是处于醒来状态。此外,电子设备600还可以确定各个远端用户设备是否是具有混合连接的远端用户设备。这里,具有混合连接的远端用户设备指的是通过电子设备600与卫星设备进行上行通信和下行通信中的一个、并且直接与该卫星设备进行上行通信和下行通信中的另一个的远端用户设备。
根据本公开的实施例,如图6所示,电子设备600还可以包括生成单元680,用于针对电子设备600服务的处于醒来状态、并且具有混合连接的远端用户设备生成测量指示,以指示该远端用户设备进行切换测量。这里的切换测量表示用于小区切换的测量,例如远端用户设备可以对相邻小区的信道质量进行测量,例如测量来自相邻小区基站的信号强度等参数。这里,远端用户设备可以采用本领域公知的任何方法来进行用于小区切换的测量,本公开对此不作限定。进一步,电子设备600可以通过通信单元620将测量指示发送至电子设备600服务的处于醒来状态、并且具有混合连接的远端用户设备。
根据本公开的实施例,测量单元670进行切换测量。也就是说,测量单元670和处于醒来状态的具有混合连接的远端用户设备分别地、独立地进行小区切换的测量。
根据本公开的实施例,电子设备600可以通过通信单元620从电子设备600服务的处于醒来状态、并且具有混合连接的远端用户设备接收该远端用户设备的测量结果。进一步,生成单元660可以生成测量结果,测量结果包括电子设备600的测量单元670的测量结果和接收到的各个远端用户设备的测量结果。进一步,电子设备600可以通过通信单元620向电子设备600的源服务基站发送生成单元660生成的测量结果。这样一来,源服务基站可以根据接收到的测量结果来进行切换确定,从而可以选取针对电子设备600、以及电子设备600服务的处于醒来状态、并且具有混合连接的所有远端用户设备的信道质量都比较好的目标服务基站。
根据本公开的实施例,对于电子设备600服务的处于睡眠状态、并且具有混合连接的远端用户设备,可以等该远端用户设备醒来后,生成单元680生成测量指示信息,以指示所该远端用户设备测量该远端用户设备与切换后的卫星设备(此时电子设备600已经切换至目标服务基站,因此 服务的卫星设备也发生了变化,这种测量也可以成为测量远端用户设备与目标服务基站之间的信道质量)之间的信道质量。进一步,电子设备600可以通过通信单元620向该远端用户设备发送生成单元680生成的测量指示信息。
根据本公开的实施例,电子设备600可以在处于睡眠状态、并且具有混合连接的远端用户设备醒来后与电子设备600重新建立连接并且RRC重配置完成之后向该远端用户设备发送测量指示信息,从而该远端用户设备可以测量其与目标服务基站之间的信道质量。
根据本公开的实施例,电子设备600可以通过通信单元620从该远端用户设备接收测量结果,并根据测量结果确定是否允许该远端用户设备与新的卫星设备之间的直接连接。例如,在测量结果表明远端用户设备与目标服务基站之间的信道质量较好的情况下,可以确定允许该远端用户设备与新的卫星设备之间的直接连接,并且在测量结果表明远端用户设备与目标服务基站之间的信道质量较差的情况下,可以确定不允许该远端用户设备与新的卫星设备之间的直接连接。进一步,电子设备600可以通过通信单元620将确定的结果告知该远端用户设备。这样一来,在确定的结果表示不允许该远端用户设备与新的卫星设备之间的直接连接的情况下,该远端用户设备可以确定另一个卫星设备以重新建立直接连接。在这种情况下,该远端用户设备可以通过电子设备600与为电子设备600服务的卫星设备进行上行通信和下行通信中的一个、并且直接与另一个卫星设备进行上行通信和下行通信中的另一个。
此外,根据本公开的实施例,在无线通信系统中没有应用CA(Carrier Aggregation,载波聚合)技术的情况下,电子设备600以及远端用户设备的服务小区只有一个,电子设备600和远端用户设备的测量是针对该服务小区的;在无线通信系统中应用了CA技术的情况下,电子设备600以及远端用户设备的服务小区有多个,电子设备600和远端用户设备的测量针对主服务小区。
如上所述,根据本公开的实施例,电子设备600在进行用于小区切换的测量时,可以要求其服务的处于醒来状态的且具有混合连接的远端用户设备也进行小区切换测量。这样一来,源服务基站在进行切换确定的时候可以综合考虑电子设备600和远端用户设备的测量结果,从而使得具有混合连接的远端用户设备与目的服务基站之间的直接连接的质量不会太差。此外,对于处于睡眠状态且具有混合连接的远端用户设备,可以在醒 来之后对直接连接进行测量,从而决定是否使用与目的服务基站之间的直接连接。
<3.2用于远端UE的电子设备的配置示例>
根据本公开的实施例,如图7所示,电子设备700还可以包括连接单元740,用于在电子设备700进入睡眠状态并且醒来之后,重新连接至中继用户设备。该中继用户设备是电子设备700进入睡眠状态之前为电子设备700服务的中继用户设备。
根据本公开的实施例,电子设备700可以通过通信单元710从中继用户设备接收电子设备700的切换RRC重配置信息。
根据本公开的实施例,如图7所示,电子设备700还可以包括判断单元750。在电子设备700接收到切换RRC重配置信息的情况下,判断单元750可以确定在电子设备700的睡眠状态期间,中继用户设备的服务基站发生了切换,并且中继用户设备为电子设备700保存了电子设备700的切换RRC重配置信息。进一步,电子设备700可以根据接收到的切换RRC重配置信息进行RRC重配置,并可以在RRC重配置之后,通过通信单元710向中继用户设备发送切换RRC重配置完成(HO RRC Reconfiguration Complete)信息。这样一来,电子设备700的服务基站也切换至电子设备700的服务基站,从而可以通过中继用户设备与新的服务基站进行通信。
根据本公开的实施例,在没有从中继用户设备接收到切换RRC重配置信息的情况下,判断单元750可以确定在电子设备700的睡眠状态期间,中继用户设备的服务基站发生了切换,并且中继用户设备没有为电子设备700保存电子设备700的切换RRC重配置信息。例如,判断单元750可以设置计时器,并且在计时器期满后没有接收到RRC重配置信息的情况下,确定在电子设备700的睡眠状态期间,中继用户设备的服务基站发生了切换,并且中继用户设备没有为电子设备700保存电子设备700的切换RRC重配置信息。
在这种情况下,电子设备700可以通过通信单元710向中继用户设备发送RRC连接恢复请求信息,RRC连接恢复请求信息包括电子设备700的源服务基站,例如包括电子设备700的源服务基站的标识信息。进一步,电子设备700可以通过通信单元710从中继用户设备接收RRC连接恢复信息。这样一来,电子设备700可以将服务基站切换至中继用户设备的当 前服务基站,从而通过中继用户设备与新的服务基站进行通信。
如上所述,根据本公开的实施例,处于睡眠状态的电子设备700可以在醒来之后与中继用户设备重新建立连接。在中继用户设备进行“主动切换服务基站”的过程的情况下,电子设备700可以根据切换RRC重配置信息将服务基站切换至中继用户设备的当前服务基站。在中继用户设备进行“被动切换服务基站”的过程的情况下,电子设备700可以通过发送包括电子设备700的源服务基站的RRC连接恢复请求信息,从而将电子设备700的服务基站也切换至中继用户设备的当前服务基站。
根据本公开的实施例,如图7所示,电子设备700还可以包括测量单元760,用于在接收到来自中继用户设备的用于指示电子设备700进行切换测量的测量指示信息之后,进行小区切换的测量。例如,测量单元760可以对相邻小区的信道质量进行测量,例如测量来自相邻小区基站的信号强度等参数。这里,测量单元760可以采用本领域公知的任何方法来进行用于小区切换的测量,本公开对此不作限定。
根据本公开的实施例,如图7所示,电子设备700还可以包括生成单元770,用于生成测量结果。进一步,电子设备700还可以通过通信单元710将生成单元770生成的测量结果发送至中继用户设备,以用于中继用户设备转发至源服务基站。
根据本公开的实施例,在接收到来自中继用户设备的用于指示电子设备700测量其与中继用户设备的当前服务基站之间的信道质量的测量指示信息之后,对电子设备700与中继用户设备的当前服务基站之间的信道质量进行测量。这里的中继用户设备的当前服务基站指的是在电子设备700处于睡眠状态期间,中继用户设备切换至的新的服务基站。进一步,生成单元770可以生成测量结果,并且电子设备700可以通过通信单元710将生成单元770生成的测量结果发送至中继用户设备,以用于中继用户设备确定是否允许电子设备700与中继用户设备的当前服务基站之间的直接连接。
根据本公开的实施例,在中继用户设备不允许电子设备700与中继用户设备的当前服务基站之间的直接连接的情况下,电子设备700可以通过小区切换的测量结果来确定另一个目标服务基站,以建立与另一个目标服务基站之间的直接连接。也就是说,电子设备700可以通过与另一个目标服务基站之间的直接连接进行上行通信和下行通信中的一者,并且通过中继用户设备与中继用户设备的当前服务基站进行上行通信和下行通信 中的另一者。
如上所述,根据本公开的实施例,对于处于醒来状态的且具有混合连接的电子设备700,也可以进行小区切换测量。这样一来,源服务基站在进行切换确定的时候可以综合考虑中继用户设备和电子设备700的测量结果,从而使得具有混合连接的电子设备700与目的服务基站之间的直接链路的质量不会太差。此外,对于处于睡眠状态且具有混合连接的电子设备700,可以在醒来之后对直接链路进行测量,从而决定是否使用与目的服务基站之间的直接链路。
<3.3核心网中的电子设备的配置示例>
根据本公开的实施例,如图5所示,电子设备500还可以包括估计单元540,用于根据中继用户设备的睡眠参数估计中继用户设备的目标服务基站。具体地,估计单元540可以在中继用户设备处于睡眠状态期间,即中继用户设备醒来之前执行上述估计。进一步,估计单元540可以根据各个卫星设备的星历信息和中继用户设备的位置信息来估计在中继用户设备醒来之后为其提供服务的新的服务基站(目标服务基站)。
根据本公开的实施例,如图5所示,电子设备500还可以包括生成单元550,用于生成上下文获取请求(Context Retrieve Request)信息,该上下文获取请求信息包括中继用户设备的源服务基站。进一步,电子设备500可以通过通信单元520将上下文获取请求信息发送至估计单元540估计的中继用户设备的目标服务基站。这样一来,目标服务基站可以根据上下文获取请求信息中包括的中继用户设备的源服务基站向源服务基站请求中继用户设备的上下文。
进一步,电子设备500还可以通过通信单元520从目标服务基站接收中继用户设备的路径切换请求信息,该路径切换请求信息表示目标服务基站希望将中继用户设备的路径切换至该目标服务基站。当电子设备500接收到路径切换请求信息时,说明目标服务基站已经成功获取了中继用户设备的上下文。
根据本公开的实施例,如图5所示,电子设备500还可以包括切换单元560,用于将中继用户设备的路径切换至目标服务基站。
在现有的中继用户设备切换服务基站的过程中,需要在中继用户设备醒来之后向目标服务基站发送RRC连接恢复请求信息,然后目标服务基站获取中继用户设备的上下文信息,并且请求切换中继用户设备的路 径。如上所述,根据本公开的实施例,在中继用户设备处于睡眠状态期间,电子设备500可以估计中继用户设备醒来之后的目标服务基站,从而使得目标服务基站提前获取中继用户设备的上下文信息并请求切换中继用户设备的路径。这样一来,在中继用户设备醒来之后,可以直接切换至目标服务基站,从而大大减少了切换过程的时间,提高了切换的效率。
根据本公开的实施例,上述过程同样适用于中继用户设备服务的远端用户设备。
也就是说,生成单元550可以生成包括远端用户设备的源服务基站的上下文获取请求信息,并且电子设备500可以通过通信单元520向目标服务基站发送该上下文获取请求信息,以使得目标服务基站向远端用户设备的源服务基站请求远端用户设备的上下文。进一步,电子设备500可以通过通信单元520从目标服务基站接收远端用户设备的路径切换请求信息。进一步,切换单元560可以将远端用户设备的路径切换至目标服务基站。
在现有的远端用户设备切换服务基站的过程中,需要在远端用户设备醒来之后向中继用户设备发送RRC连接恢复请求信息,然后目标服务基站获取远端用户设备的上下文信息,并且请求切换远端用户设备的路径。如上所述,根据本公开的实施例,在中继用户设备处于睡眠状态期间(此时远端用户设备也处于睡眠状态),电子设备500可以估计中继用户设备醒来之后的目标服务基站,从而使得目标服务基站提前获取远端用户设备的上下文信息并请求切换远端用户设备的路径。这样一来,在远端用户设备醒来之后,可以直接切换至目标服务基站,从而大大减少了切换过程的时间,提高了切换的效率。
下面结合图12-13描述中继用户设备进行“主动切换服务基站”的过程的信令流程图。在图12-13中,中继UE可以由电子设备600来实现,远端UE可以由电子设备700来实现,AMF(Access and Mobility Management Function,接入和移动管理功能)和UPF(User Port Function,用户端口功能)可以位于核心网中,例如包括在电子设备500中。其中,AMF用于执行管理面的功能,而UPF用于执行用户面的功能。此外,源服务gNB和目标服务gNB可以位于非透明卫星设备上,也可以位于与透明卫星设备连接的地面站中。
图12是示出根据本公开的实施例的中继UE切换服务基站的过程的信令流程图。如图12所示,在步骤S1201中,中继UE进行小区切换的 测量,并向源服务gNB发送测量报告。在步骤S1202中,源服务gNB根据中继UE的测量报告进行切换确定,例如确定目标服务gNB。在步骤S1203中,源服务gNB向目标服务gNB发送针对中继UE以及该中继UE服务的所有远端UE的切换请求。在步骤S1204中,目标服务gNB确定是否允许接入中继UE以及该中继UE服务的所有远端UE。在步骤S1205中,目标服务gNB向源服务gNB发送切换响应,表明允许本次切换。在步骤S1206中,源服务gNB向中继UE发送组切换命令,其中包括中继UE和所有远端UE的切换RRC重配置信息。在步骤S1207中,中继UE确定各个远端UE的状态,这里远端UE1处于睡眠状态,远端UE2处于醒来状态。则中继UE保存远端UE1的切换RRC重配置信息。在步骤S1208中,中继UE将远端UE2的切换RRC重配置信息发送至远端UE2。在步骤S1209中,中继UE切换至目标服务gNB。在步骤S1210中,中继UE向目标服务gNB发送切换完成的信息。在步骤S1211中,远端UE2向中继UE发送RRC重配置完成的信息。在步骤S1212中,中继UE向目标服务gNB转发远端UE2的RRC重配置完成信息。至此,中继UE和远端UE2成功切换至目标服务gNB。
接下来,当远端UE1醒来之后,在步骤S1213中,远端UE1与中继UE重新建立连接。在步骤S1214中,中继UE将保存的远端UE1的RRC重配置信息发送至远端UE1。在步骤S1215中,远端UE1向中继UE发送RRC重配置完成信息。在步骤S1216中,中继UE向目标服务gNB转发远端UE1的RRC重配置完成信息。至此,远端UE1成功切换至目标服务gNB。
图13是示出根据本公开的另一个实施例的中继UE切换服务基站的过程的信令流程图。如图13所示,在步骤S1301中,中继UE进行小区切换的测量,并向源服务gNB发送测量报告。在步骤S1302中,源服务gNB根据中继UE的测量报告进行切换确定,例如确定目标服务gNB。在步骤S1303中,源服务gNB向目标服务gNB发送针对中继UE以及该中继UE服务的所有远端UE的切换请求。在步骤S1304中,目标服务gNB确定是否允许接入中继UE以及该中继UE服务的所有远端UE。在步骤S1305中,目标服务gNB向源服务gNB发送切换响应,表明允许本次切换。在步骤S1306中,源服务gNB向中继UE发送中继UE和所有远端UE的切换RRC重配置信息。在步骤S1307中,中继UE确定远端UE1处于睡眠状态,因此保存远端UE1的切换RRC重配置信息。在步骤S1308中,中继UE向源服务gNB发送SN状态。在步骤S1309中,中继UE确 定远端UE2处于醒来状态,因此向远端UE2发送切换RRC重配置信息。在步骤S1310中,中继UE与目标gNB同步。在步骤S1311中,如果UPF向源服务gNB发送针对中继UE以及所有远端UE的用户数据,则在步骤S1312中,源服务gNB将用户数据转发至目标gNB。在步骤S1313中,目标服务gNB对接收到的数据进行缓存。在步骤S1314中,远端UE2向中继UE发送RRC重配置完成信息。在步骤S1315中,中继UE向目标服务gNB发送中继UE的RRC重配置完成信息。在步骤S1316中,中继UE向目标服务gNB转发远端UE2的RRC重配置完成信息。由此,在步骤S1317、S1318和步骤S1319中,远端UE2以及中继UE可以正常发送上行数据。此外,由于中继UE和远端UE2已经切换至目标gNB,因此在步骤S1317和S1318中,目标服务gNB可以将之前缓存的针对中继UE和远端UE2的下行数据转发至中继UE和远端UE2。由于此时核心网中的AMF和UPF尚未进行路径切换,因此AMF和UPF无法将下行数据发送至目标服务gNB。在步骤S1320中,目标服务gNB向AMF发送路径切换请求,以请求切换中继UE和所有远端UE的路径。在步骤S1321中,AMF和UPF进行路径切换。在步骤S1322中,UPF向源服务gNB发送结束标记(End Marker)。在步骤S1323中,源服务gNB向目标服务gNB转发结束标记。在步骤S1324中,AMF向目标服务gNB发送针对中继UE和所有远端UE的路径切换响应。在步骤S1325中,目标服务gNB向源服务gNB发送上下文释放信息,以请求源服务gNB释放中继UE和所有远端UE的上下文。在步骤S1326中,源服务gNB释放中继UE和所有远端UE的上下文。由此,在步骤S1327中,中继UE和远端UE2可以正常进行上下行通信。如果有针对远端UE1的数据,由于远端UE1尚未切换至目标服务gNB,则目标服务gNB在步骤S1328中对该数据进行缓存。
接下来,在步骤S1329中,在远端UE1醒来之后,重新连接至中继UE。在步骤S1330中,中继UE向远端UE1发送之前保存的远端UE1的切换RRC重配置信息。在步骤S1331中,远端UE1向中继UE发送RRC重配置完成信息。在步骤S1332中,中继UE向目标服务gNB转发远端UE1的RRC重配置完成信息。在步骤S1333中,远端UE1可以通过中继UE与目标服务gNB正常进行上下行通信。
下面结合图14-16描述中继用户设备进行“被动切换服务基站”的过程的信令流程图。在图14-16中,中继UE可以由电子设备600来实现,远端UE可以由电子设备700来实现,AMF可以包括在核心网中的电子设备500中。此外,源服务gNB和目标服务gNB可以位于非透明卫星设 备上,也可以位于与透明卫星设备连接的地面站中。
图14是示出根据本公开的实施例的在中继UE连接至新的服务基站之后远端UE也连接至该服务基站的过程的信令流程图。如图14所示,在步骤S1401中,在中继UE进入睡眠模式并且醒来之后,连接至新的服务gNB并正常进行上下行通信。在远端UE1进入睡眠模式并且醒来之后,在步骤S1402中,重新连接至中继UE。在步骤S1403中,远端UE1向中继UE发送RRC连接恢复请求信息,其中包括远端UE1的源服务gNB。在步骤S1404中,中继UE向新的服务gNB转发远端UE1的RRC连接恢复请求信息。在步骤S1405中,新的服务gNB根据远端UE1的RRC连接恢复请求信息确定远端UE1的源服务gNB,并向其请求远端UE1的上下文请求。在步骤S1406中,远端UE1的源服务gNB向中继UE的新的服务gNB发送远端UE1的上下文响应信息,包括远端UE1的上下文。在步骤S1407中,新的服务gNB向中继UE发送远端UE1的RRC连接恢复信息。在步骤S1408中,中继UE向远端UE1转发RRC连接恢复信息。在步骤S1409中,新的服务gNB向远端UE1的源服务gNB发送远端UE1的数据转发地址指示,以请求将远端UE1的数据发送至新的服务gNB。在步骤S1410中,新的服务gNB向AMF发送远端UE1的路径切换请求,以请求将远端UE1的路径切换至新的服务gNB。在步骤S1411中,AMF向新的服务gNB发送远端UE1的路径切换响应。在步骤S1412中,新的服务gNB向远端UE1的源服务gNB发送远端UE1的上下文释放信息,以请求释放远端UE1的上下文。由此,远端UE1切换至该新的服务gNB。
图15是示出根据本公开的实施例的中继UE连接至新的服务基站的信令流程图。图15是对图14中的步骤S1401中所示的中继UE连接至新的服务gNB的过程做出的改进。如图15所示,在步骤S1501中,在中继UE处于睡眠状态期间,CN根据中继UE的睡眠参数和各个卫星设备的星历信息估计中继UE醒来后的目标服务gNB。在步骤S1502中,CN向目标服务gNB发送中继UE的上下文请求信息,其中包括中继UE的源服务gNB。在步骤S1503中,目标服务gNB向CN发送中继UE的上下文响应。在步骤S1504中,目标服务gNB向源服务gNB发送数据转发地址指示,以指示源服务gNB将中继UE的数据转发至目标服务gNB。在步骤S1505中,目标服务gNB向CN发送中继UE的路径切换请求,以请求将中继UE的路径切换至目标服务gNB。在步骤S1506中,CN向目标服务gNB发送路径切换响应。由此,在中继UE睡眠期间,目标服务gNB已经提前获取了中继UE的上下文,并且中继UE的路径已经提前切换至目标服务 gNB。在步骤S1507中,在中继UE醒来之后,向目标服务gNB发送RRC连接恢复请求信息。在步骤S1508中,目标服务gNB向中继UE发送RRC连接恢复信息。在步骤S1509中,目标服务gNB向源服务gNB发送中继UE的上下文释放信息。在步骤S1510中,源服务gNB释放中继UE的上下文。由此,中继UE可以在醒来之后快速切换至目标服务gNB。
图16是示出根据本公开的实施例的在中继UE连接至新的服务基站之后远端UE也连接至该服务基站的过程的信令流程图。图16是对图14中的步骤S1402至步骤S1412中所示的远端UE连接至新的服务gNB的过程做出的改进。如图16所示,在步骤S1601中,在中继UE和远端UE处于睡眠状态期间,CN根据中继UE的睡眠参数和各个卫星设备的星历信息估计中继UE醒来后的目标服务gNB。在步骤S1602中,CN向目标服务gNB发送远端UE的上下文请求信息,其中包括远端UE的源服务gNB。在步骤S1603中,目标服务gNB向CN发送远端UE的上下文响应。在步骤S1604中,目标服务gNB向远端UE的源服务gNB发送数据转发地址指示,以指示源服务gNB将远端UE的数据转发至目标服务gNB。在步骤S1605中,目标服务gNB向CN发送远端UE的路径切换请求,以请求将远端UE的路径切换至目标服务gNB。在步骤S1606中,CN向目标服务gNB发送路径切换响应。由此,在中继UE和远端UE睡眠期间,目标服务gNB已经提前获取了远端UE的上下文,并且远端UE的路径已经提前切换至目标服务gNB。在远端UE1醒来之后,在步骤S1607中,重新连接至中继UE。在步骤S1608中,远端UE1向中继UE发送RRC连接恢复请求信息。在步骤S1609中,中继UE向目标服务gNB转发远端UE1的RRC连接恢复请求。在步骤S1610中,目标服务gNB向中继UE发送远端UE1的RRC连接恢复信息。在步骤S1611中,中继UE向远端UE1转发远端UE1的RRC连接恢复信息。在步骤S1612中,目标服务gNB向远端UE1的源服务gNB发送远端UE1的上下文释放信息,以请求释放远端UE1的上下文。在步骤S1613中,源服务gNB释放远端UE1的上下文。由此,远端UE可以在醒来之后快速切换至目标服务gNB。
在前文中提到,在图3中,当中继UE的服务基站发生了变化时,由于远端UE处于睡眠状态因此无法执行切换的过程。根据本公开的实施例,如图12-13所示,在中继UE主动执行切换的过程中,中继UE可以为处于睡眠状态的远端UE保存切换RRC重配置信息,等远端UE醒来再进行发送,从而使得处于睡眠状态的远端UE在醒来之后可以进行切换。如图14所示,在中继UE被动执行切换的过程中,远端UE可以在醒来之后向 中继UE发送包括远端UE的源服务gNB的RRC连接恢复请求信息,从而使得中继UE的新的服务gNB可以从远端UE的源服务gNB请求远端UE的上下文,并切换远端UE的路径,从而使得远端UE可以进行切换。此外,为了加快切换的速度,如图15和图16所示,CN可以提前估计中继UE的目标服务gNB,从而目标服务gNB可以提前获取中继UE和远端UE的上下文,并且可以提前切换中继UE和远端UE的路径,从而可以减少切换的时间。
下面将结合图17和图18描述存在具有混合连接的远端UE的情况下的小区测量的过程。在图17和图18中,远端UE可以由电子设备700来实现,中继UE可以由电子设备600来实现,源服务gNB可以位于非透明卫星设备上,也可以位于与透明卫星设备连接的地面站中。此外,假定远端UE1和远端UE2都是具有混合连接的远端UE。
图17是示出根据本公开的实施例的由具有混合连接的远端UE和中继UE一起执行测量的过程的信令流程图。图17是对图12中的步骤S1201和图13中的步骤S1301中所示的生成并发送测量报告的过程所做出的的改进。如图17所示,在步骤S1701中,由于远端UE2处于醒来状态,因此当需要进行小区切换测量时,中继UE向远端UE2发送测量指示,以指示远端UE2也进行小区切换测量。在步骤S1702中,远端UE2和中继UE分别执行小区切换的测量。在步骤S1703中,远端UE2将其测量结果发送至中继UE。在步骤S1704中,中继UE向源服务gNB发送测量报告,其包括远端UE2的测量结果和中继UE的测量结果。在步骤S1705中,源服务gNB根据测量报告进行切换决定。
图18是示出具有混合连接且由于处于睡眠状态从而尚未进行测量的远端UE醒来后的操作的信令流程图。图18是对图12中的步骤S1213至步骤S1216、以及图13中的步骤S1329至步骤S1332所示的过程做出的改进。在图18中,在进行小区切换测量时,由于远端UE1处于睡眠状态,因此远端UE1并未进行小区切换测量。如图18所示,在远端UE1醒来之后,在步骤S1801中,远端UE1重新连接至中继UE。在步骤S1802中,中继UE向远端UE1发送RRC重配置信息。在步骤S1803中,远端UE1向中继UE发送RRC重配置完成信息。在步骤S1804中,中继UE向远端UE1发送测量指示信息,以指示远端UE1测量远端UE1与目标服务gNB之间的直接连接的质量。在步骤S1805中,远端UE1执行测量过程。在步骤S1806中,远端UE1将测量结果发送至中继UE。在步骤S1807中, 中继UE根据测量结果确定是否允许远端UE1与目标服务gNB之间的直接连接。在步骤S1808中,中继UE将确定结果发送至远端UE1。
前文中提到,在选取目标服务基站的过程中,源服务基站只会考虑中继UE与其他基站之间的信道质量。也就是说,存在远端UE与目标服务基站之间的信道质量很差的情形。在图4中,对于具有混合连接的远端UE来说,在中继UE切换至目标服务基站的情况下,如果远端UE与目标服务基站之间的信道质量很差,可能会造成远端UE无法进行上行通信或者下行通信。根据本公开的实施例,如图17所示,源服务gNB在进行切换确定时考虑了具有混合连接的远端UE的测量结果,从而可以选取远端UE和中继UE测量结果都比较好的目标服务gNB,使得具有混合连接的远端UE在切换后也能够很好地进行通信。此外,如图18所示,对于处于睡眠状态的具有混合连接的远端UE,可以在醒来并且切换至目标服务gNB之后,对其与目标服务gNB之间的直接连接进行测量,如果测量结果不理想可以更换与该远端UE直接连接的服务gNB。由此,具有混合连接的远端UE在切换后也能够很好地进行通信。
<4.方法实施例>
接下来将详细描述根据本公开实施例的由无线通信系统中的用于网络侧的电子设备500执行的无线通信方法。
图19是示出根据本公开的实施例的由无线通信系统中的用于网络侧的电子设备500执行的无线通信方法的流程图。
如图19所示,在步骤S1910中,根据中继用户设备的睡眠参数和下一次醒来状态的开始时间确定远端用户设备的睡眠参数和下一次醒来状态的开始时间,以使得当远端用户设备处于醒来状态时,中继用户设备也处于醒来状态。
接下来,在步骤S1920中,将远端用户设备的睡眠参数和下一次醒来状态的开始时间发送至远端用户设备。
这里,远端用户设备经由中继用户设备与卫星设备进行通信,并且睡眠参数包括睡眠状态的时长和醒来状态的时长。
优选地,无线通信方法还包括:从远端用户设备接收远端用户设备的期望睡眠参数;以及还根据远端用户设备的期望睡眠参数确定远端用户设备的睡眠参数。
优选地,无线通信方法还包括:确定中继用户设备下一次醒来状态 的开始时间,以使得当中继用户设备处于醒来状态时,存在为中继用户设备服务的卫星设备。
优选地,无线通信方法还包括:从中继用户设备接收中继用户设备的期望睡眠参数;以及根据中继用户设备的期望睡眠参数确定中继用户设备的睡眠参数。
优选地,无线通信方法还包括:根据中继用户设备的睡眠参数估计中继用户设备的目标服务基站;向目标服务基站发送包括中继用户设备的源服务基站的上下文获取请求信息,以使得目标服务基站向中继用户设备的源服务基站请求中继用户设备的上下文;从目标服务基站接收中继用户设备的路径切换请求信息;以及将中继用户设备的路径切换至目标服务基站。
优选地,无线通信方法还包括:向目标服务基站发送包括远端用户设备的源服务基站的上下文获取请求信息,以使得目标服务基站向远端用户设备的源服务基站请求远端用户设备的上下文;从目标服务基站接收远端用户设备的路径切换请求信息;以及将远端用户设备的路径切换至目标服务基站。
根据本公开的实施例,执行上述方法的主体可以是根据本公开的实施例的电子设备500,因此前文中关于电子设备500的全部实施例均适用于此。
接下来将详细描述根据本公开实施例的由无线通信系统中的用于中继用户设备的电子设备600执行的无线通信方法。
图20是示出根据本公开的实施例的由无线通信系统中的用于中继用户设备的电子设备600执行的无线通信方法的流程图。
如图20所示,在步骤S2010中,根据中继用户设备的睡眠参数和下一次醒来状态的开始时间确定远端用户设备的睡眠参数和下一次醒来状态的开始时间,以使得当远端用户设备处于醒来状态时,中继用户设备也处于醒来状态。
接下来,在步骤S2020中,将远端用户设备的睡眠参数和下一次醒来状态的开始时间发送至远端用户设备。
这里,远端用户设备经由中继用户设备与卫星设备进行通信,并且睡眠参数包括睡眠状态的时长和醒来状态的时长。
优选地,无线通信方法还包括:从远端用户设备接收远端用户设备的期望睡眠参数;以及还根据远端用户设备的期望睡眠参数确定远端用户设备的睡眠参数。
优选地,无线通信方法还包括:确定中继用户设备下一次醒来状态的开始时间,以使得当中继用户设备处于醒来状态时,存在为中继用户设备服务的卫星设备。
优选地,无线通信方法还包括:从电子设备的源服务基站接收切换RRC重配置信息;确定电子设备服务的各个远端用户设备处于睡眠状态还是醒来状态;向处于醒来状态的远端用户设备发送切换RRC重配置信息;以及保存处于睡眠状态的远端用户设备的切换RRC重配置信息。
优选地,无线通信方法还包括:在处于睡眠状态的远端用户设备醒来之后,向远端用户设备发送切换RRC重配置信息。
优选地,无线通信方法还包括:从远端用户设备接收RRC连接恢复请求信息,RRC连接恢复请求信息包括远端用户设备的源服务基站;向电子设备的服务基站发送RRC连接恢复请求信息,以用于电子设备的服务基站向远端用户设备的源服务基站请求远端用户设备的上下文;从电子设备的服务基站接收远端用户设备的RRC连接恢复信息;以及向远端用户设备发送RRC连接恢复信息。
优选地,无线通信方法还包括:向电子设备服务的处于醒来状态、并且具有混合连接的远端用户设备发送测量指示信息,以指示远端用户设备进行切换测量;进行切换测量;以及向服务基站发送测量结果,测量结果包括电子设备的测量结果和远端用户设备的测量结果,其中,具有混合连接的远端用户设备通过电子设备与卫星设备进行上行通信和下行通信中的一个,并且直接与卫星设备进行上行通信和下行通信中的另一个。
优选地,无线通信方法还包括:当电子设备服务的处于睡眠状态、并且具有混合连接的远端用户设备醒来时,向远端用户设备发送测量指示信息,以指示远端用户设备测量远端用户设备与卫星设备之间的信道质量。
根据本公开的实施例,执行上述方法的主体可以是根据本公开的实施例的电子设备600,因此前文中关于电子设备600的全部实施例均适用于此。
接下来将详细描述根据本公开实施例的由无线通信系统中的用于远 端用户设备的电子设备700执行的无线通信方法。
图21是示出根据本公开的实施例的由无线通信系统中的用于远端用户设备的电子设备700执行的无线通信方法的流程图。
如图21所示,在步骤S2110中,接收电子设备的睡眠参数和下一次醒来状态的开始时间,睡眠参数包括睡眠状态的时长和醒来状态的时长、并且是根据中继用户设备的睡眠参数确定的,当电子设备处于醒来状态时,中继用户设备也处于醒来状态。
接下来,在步骤S2120中,根据睡眠参数和下一次醒来状态的开始时间周期性进入睡眠状态和醒来状态。
这里,电子设备经由中继用户设备与卫星设备进行通信。
优选地,无线通信方法还包括:发送电子设备的期望睡眠参数,电子设备的睡眠参数还根据电子设备的期望睡眠参数确定。
优选地,无线通信方法还包括:当电子设备醒来时,重新连接至中继用户设备;从中继用户设备接收切换RRC重配置信息;以及向中继用户设备发送切换RRC重配置完成信息,以通过中继用户设备与新的服务基站进行通信。
优选地,无线通信方法还包括:当电子设备醒来时,重新连接至中继用户设备;向中继用户设备发送RRC连接恢复请求信息,RRC连接恢复请求信息包括电子设备的源服务基站;以及从中继用户设备接收RRC连接恢复信息,以通过中继用户设备与新的服务基站进行通信。
根据本公开的实施例,执行上述方法的主体可以是根据本公开的实施例的电子设备700,因此前文中关于电子设备700的全部实施例均适用于此。
<5.应用示例>
本公开内容的技术能够应用于各种产品。
例如,电子设备500可以被实现为任何类型的服务器,诸如塔式服务器、机架式服务器以及刀片式服务器。电子设备500可以为安装在服务器上的控制模块(诸如包括单个晶片的集成电路模块,以及插入到刀片式服务器的槽中的卡或刀片(blade))。
基站设备可以被实现为宏eNB和小eNB,还可以被实现为任何类型的gNB(5G系统中的基站)。小eNB可以为覆盖比宏小区小的小区的eNB, 诸如微微eNB、微eNB和家庭(毫微微)eNB。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。
中继用户设备和远端用户设备可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述用户设备中的每个用户设备上的无线通信模块(诸如包括单个晶片的集成电路模块)。
<关于服务器的应用示例>
图22是示出可以实现根据本公开的电子设备500的服务器2200的示例的框图。服务器2200包括处理器2201、存储器2202、存储装置2203、网络接口2204以及总线2206。
处理器2201可以为例如中央处理单元(CPU)或数字信号处理器(DSP),并且控制服务器2200的功能。存储器2202包括随机存取存储器(RAM)和只读存储器(ROM),并且存储数据和由处理器2201执行的程序。存储装置2203可以包括存储介质,诸如半导体存储器和硬盘。
网络接口2204为用于将服务器2200连接到有线通信网络2205的有线通信接口。有线通信网络2205可以为诸如演进分组核心网(EPC)的核心网或者诸如因特网的分组数据网络(PDN)。
总线2206将处理器2201、存储器2202、存储装置2203和网络接口2204彼此连接。总线2206可以包括各自具有不同速度的两个或更多个总线(诸如高速总线和低速总线)。
在图22所示的服务器2200中,通过使用图5所描述的确定单元510、确定单元530、估计单元540、生成单元550和切换单元560可以由处理器2201实现,并且通过使用图5所描述的通信单元520可以由网络接口2204实现。例如,处理器2201可以通过执行存储器2202或存储装置2203中存储的指令而执行确定远端用户设备的睡眠参数和下一次醒来状态的开始时间、确定中继用户设备的睡眠参数和下一次醒来状态的开始时间、估计中继用户设备的目标服务基站、生成上下文获取请求信息、切换路径 的功能。
<关于基站的应用示例>
(第一应用示例)
图23是示出可以应用本公开内容的技术的eNB的示意性配置的第一示例的框图。eNB 2300包括一个或多个天线2310以及基站设备2320。基站设备2320和每个天线2310可以经由RF线缆彼此连接。
天线2310中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备2320发送和接收无线信号。如图23所示,eNB 2300可以包括多个天线2310。例如,多个天线2310可以与eNB 2300使用的多个频带兼容。虽然图23示出其中eNB 2300包括多个天线2310的示例,但是eNB 2300也可以包括单个天线2310。
基站设备2320包括控制器2321、存储器2322、网络接口2323以及无线通信接口2325。
控制器2321可以为例如CPU或DSP,并且操作基站设备2320的较高层的各种功能。例如,控制器2321根据由无线通信接口2325处理的信号中的数据来生成数据分组,并经由网络接口2323来传递所生成的分组。控制器2321可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器2321可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的eNB或核心网节点来执行。存储器2322包括RAM和ROM,并且存储由控制器2321执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口2323为用于将基站设备2320连接至核心网2324的通信接口。控制器2321可以经由网络接口2323而与核心网节点或另外的eNB进行通信。在此情况下,eNB2300与核心网节点或其他eNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口2323还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口2323为无线通信接口,则与由无线通信接口2325使用的频带相比,网络接口2323可以使用较高频带用于无线通信。
无线通信接口2325支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线2310来提供到位于eNB 2300的小区中的终 端的无线连接。无线通信接口2325通常可以包括例如基带(BB)处理器2326和RF电路2327。BB处理器2326可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器2321,BB处理器2326可以具有上述逻辑功能的一部分或全部。BB处理器2326可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器2326的功能改变。该模块可以为插入到基站设备2320的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路2327可以包括例如混频器、滤波器和放大器,并且经由天线2310来传送和接收无线信号。
如图23所示,无线通信接口2325可以包括多个BB处理器2326。例如,多个BB处理器2326可以与eNB 2300使用的多个频带兼容。如图23所示,无线通信接口2325可以包括多个RF电路2327。例如,多个RF电路2327可以与多个天线元件兼容。虽然图23示出其中无线通信接口2325包括多个BB处理器2326和多个RF电路2327的示例,但是无线通信接口2325也可以包括单个BB处理器2326或单个RF电路2327。
(第二应用示例)
图24是示出可以应用本公开内容的技术的eNB的示意性配置的第二示例的框图。eNB 2430包括一个或多个天线2440、基站设备2450和RRH2460。RRH 2460和每个天线2440可以经由RF线缆而彼此连接。基站设备2450和RRH 2460可以经由诸如光纤线缆的高速线路而彼此连接。
天线2440中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 2460发送和接收无线信号。如图24所示,eNB 2430可以包括多个天线2440。例如,多个天线2440可以与eNB 2430使用的多个频带兼容。虽然图24示出其中eNB 2430包括多个天线2440的示例,但是eNB 2430也可以包括单个天线2440。
基站设备2450包括控制器2451、存储器2452、网络接口2453、无线通信接口2455以及连接接口2457。控制器2451、存储器2452和网络接口2453与参照图23描述的控制器2321、存储器2322和网络接口2323相同。网络接口2453为用于将基站设备2450连接至核心网2454的通信接口。
无线通信接口2455支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH2460和天线2440来提供到位于与RRH 2460对应的扇区中的终端的无线通信。无线通信接口2455通常可以包括例如BB处理器2456。除了BB处理器2456经由连接接口2457连接到RRH 2460的RF电路2464之外,BB处理器2456与参照图23描述的BB处理器2326相同。如图24所示,无线通信接口2455可以包括多个BB处理器2456。例如,多个BB处理器2456可以与eNB 2430使用的多个频带兼容。虽然图24示出其中无线通信接口2455包括多个BB处理器2456的示例,但是无线通信接口2455也可以包括单个BB处理器2456。
连接接口2457为用于将基站设备2450(无线通信接口2455)连接至RRH 2460的接口。连接接口2457还可以为用于将基站设备2450(无线通信接口2455)连接至RRH 2460的上述高速线路中的通信的通信模块。
RRH 2460包括连接接口2461和无线通信接口2463。
连接接口2461为用于将RRH 2460(无线通信接口2463)连接至基站设备2450的接口。连接接口2461还可以为用于上述高速线路中的通信的通信模块。
无线通信接口2463经由天线2440来传送和接收无线信号。无线通信接口2463通常可以包括例如RF电路2464。RF电路2464可以包括例如混频器、滤波器和放大器,并且经由天线2440来传送和接收无线信号。如图24所示,无线通信接口2463可以包括多个RF电路2464。例如,多个RF电路2464可以支持多个天线元件。虽然图24示出其中无线通信接口2463包括多个RF电路2464的示例,但是无线通信接口2463也可以包括单个RF电路2464。
<关于终端设备的应用示例>
(第一应用示例)
图25是示出可以应用本公开内容的技术的智能电话2500的示意性配置的示例的框图。智能电话2500包括处理器2501、存储器2502、存储装置2503、外部连接接口2504、摄像装置2506、传感器2507、麦克风2508、输入装置2509、显示装置2510、扬声器2511、无线通信接口2512、一个或多个天线开关2515、一个或多个天线2516、总线2517、电池2518以及辅助控制器2519。
处理器2501可以为例如CPU或片上系统(SoC),并且控制智能电 话2500的应用层和另外层的功能。存储器2502包括RAM和ROM,并且存储数据和由处理器2501执行的程序。存储装置2503可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口2504为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话2500的接口。
摄像装置2506包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器2507可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风2508将输入到智能电话2500的声音转换为音频信号。输入装置2509包括例如被配置为检测显示装置2510的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置2510包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话2500的输出图像。扬声器2511将从智能电话2500输出的音频信号转换为声音。
无线通信接口2512支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口2512通常可以包括例如BB处理器2513和RF电路2514。BB处理器2513可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路2514可以包括例如混频器、滤波器和放大器,并且经由天线2516来传送和接收无线信号。无线通信接口2512可以为其上集成有BB处理器2513和RF电路2514的一个芯片模块。如图25所示,无线通信接口2512可以包括多个BB处理器2513和多个RF电路2514。虽然图25示出其中无线通信接口2512包括多个BB处理器2513和多个RF电路2514的示例,但是无线通信接口2512也可以包括单个BB处理器2513或单个RF电路2514。
此外,除了蜂窝通信方案之外,无线通信接口2512可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口2512可以包括针对每种无线通信方案的BB处理器2513和RF电路2514。
天线开关2515中的每一个在包括在无线通信接口2512中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线2516的连接目的地。
天线2516中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口2512传送和接收 无线信号。如图25所示,智能电话2500可以包括多个天线2516。虽然图25示出其中智能电话2500包括多个天线2516的示例,但是智能电话2500也可以包括单个天线2516。
此外,智能电话2500可以包括针对每种无线通信方案的天线2516。在此情况下,天线开关2515可以从智能电话2500的配置中省略。
总线2517将处理器2501、存储器2502、存储装置2503、外部连接接口2504、摄像装置2506、传感器2507、麦克风2508、输入装置2509、显示装置2510、扬声器2511、无线通信接口2512以及辅助控制器2519彼此连接。电池2518经由馈线向图25所示的智能电话2500的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器2519例如在睡眠模式下操作智能电话2500的最小必需功能。
在图25所示的智能电话2500中,通过使用图6所描述的确定单元610、确定单元630、状态确定单元640、生成单元660、测量单元67、生成单元680、以及通过使用图7所描述的睡眠控制单元720、生成单元730、连接单元740、判断单元750、测量单元760和生成单元770可以由处理器2501或辅助控制器2519实现。功能的至少一部分也可以由处理器2501或辅助控制器2519实现。例如,处理器2501或辅助控制器2519可以通过执行存储器2502或存储装置2503中存储的指令而执行确定远端用户设备的睡眠参数和下一次醒来状态的开始时间、确定中继用户设备的下一次醒来状态的开始时间、确定远端用户设备的状态、生成测量报告、进行小区切换测量、生成测量指示信息、控制远端用户设备的睡眠模式、生成期望睡眠参数、连接至中继用户设备、判断中继用户设备主动切换还是被动切换、进行小区切换测量和生成测量报告的功能。
(第二应用示例)
图26是示出可以应用本公开内容的技术的汽车导航设备2620的示意性配置的示例的框图。汽车导航设备2620包括处理器2621、存储器2622、全球定位系统(GPS)模块2624、传感器2625、数据接口2626、内容播放器2627、存储介质接口2628、输入装置2629、显示装置2630、扬声器2631、无线通信接口2633、一个或多个天线开关2636、一个或多个天线2637以及电池2638。
处理器2621可以为例如CPU或SoC,并且控制汽车导航设备2620的导航功能和另外的功能。存储器2622包括RAM和ROM,并且存储数 据和由处理器2621执行的程序。
GPS模块2624使用从GPS卫星接收的GPS信号来测量汽车导航设备2620的位置(诸如纬度、经度和高度)。传感器2625可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口2626经由未示出的终端而连接到例如车载网络2641,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器2627再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口2628中。输入装置2629包括例如被配置为检测显示装置2630的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置2630包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器2631输出导航功能的声音或再现的内容。
无线通信接口2633支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口2633通常可以包括例如BB处理器2634和RF电路2635。BB处理器2634可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路2635可以包括例如混频器、滤波器和放大器,并且经由天线2637来传送和接收无线信号。无线通信接口2633还可以为其上集成有BB处理器2634和RF电路2635的一个芯片模块。如图26所示,无线通信接口2633可以包括多个BB处理器2634和多个RF电路2635。虽然图26示出其中无线通信接口2633包括多个BB处理器2634和多个RF电路2635的示例,但是无线通信接口2633也可以包括单个BB处理器2634或单个RF电路2635。
此外,除了蜂窝通信方案之外,无线通信接口2633可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口2633可以包括BB处理器2634和RF电路2635。
天线开关2636中的每一个在包括在无线通信接口2633中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线2637的连接目的地。
天线2637中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口2633传送和接收 无线信号。如图26所示,汽车导航设备2620可以包括多个天线2637。虽然图26示出其中汽车导航设备2620包括多个天线2637的示例,但是汽车导航设备2620也可以包括单个天线2637。
此外,汽车导航设备2620可以包括针对每种无线通信方案的天线2637。在此情况下,天线开关2636可以从汽车导航设备2620的配置中省略。
电池2638经由馈线向图26所示的汽车导航设备2620的各个块提供电力,馈线在图中被部分地示为虚线。电池2638累积从车辆提供的电力。
在图26示出的汽车导航设备2620中,通过使用图6所描述的确定单元610、确定单元630、状态确定单元640、生成单元660、测量单元67、生成单元680、以及通过使用图7所描述的睡眠控制单元720、生成单元730、连接单元740、判断单元750、测量单元760和生成单元770可以由处理器2621实现。功能的至少一部分也可以由处理器2621实现。例如,处理器2621可以通过执行存储器2622中存储的指令而执行确定远端用户设备的睡眠参数和下一次醒来状态的开始时间、确定中继用户设备的下一次醒来状态的开始时间、确定远端用户设备的状态、生成测量报告、进行小区切换测量、生成测量指示信息、控制远端用户设备的睡眠模式、生成期望睡眠参数、连接至中继用户设备、判断中继用户设备主动切换还是被动切换、进行小区切换测量和生成测量报告的功能。
本公开内容的技术也可以被实现为包括汽车导航设备2620、车载网络2641以及车辆模块2642中的一个或多个块的车载系统(或车辆)2640。车辆模块2642生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络2641。
以上参照附图描述了本公开的优选实施例,但是本公开当然不限于以上示例。本领域技术人员可在所附权利要求的范围内得到各种变更和修改,并且应理解这些变更和修改自然将落入本公开的技术范围内。
例如,附图所示的功能框图中以虚线框示出的单元均表示该功能单元在相应装置中是可选的,并且各个可选的功能单元可以以适当的方式进行组合以实现所需功能。
例如,在以上实施例中包括在一个单元中的多个功能可以由分开的装置来实现。替选地,在以上实施例中由多个单元实现的多个功能可分别由分开的装置来实现。另外,以上功能之一可由多个单元来实现。无需说, 这样的配置包括在本公开的技术范围内。
在该说明书中,流程图中所描述的步骤不仅包括以所述顺序按时间序列执行的处理,而且包括并行地或单独地而不是必须按时间序列执行的处理。此外,甚至在按时间序列处理的步骤中,无需说,也可以适当地改变该顺序。
以上虽然结合附图详细描述了本公开的实施例,但是应当明白,上面所描述的实施方式只是用于说明本公开,而并不构成对本公开的限制。对于本领域的技术人员来说,可以对上述实施方式作出各种修改和变更而没有背离本公开的实质和范围。因此,本公开的范围仅由所附的权利要求及其等效含义来限定。

Claims (35)

  1. 一种电子设备,包括处理电路,被配置为:
    根据中继用户设备的睡眠参数和下一次醒来状态的开始时间确定远端用户设备的睡眠参数和下一次醒来状态的开始时间,以使得当所述远端用户设备处于醒来状态时,所述中继用户设备也处于醒来状态;以及
    将所述远端用户设备的睡眠参数和下一次醒来状态的开始时间发送至所述远端用户设备,
    其中,所述远端用户设备经由所述中继用户设备与卫星设备进行通信,并且所述睡眠参数包括睡眠状态的时长和醒来状态的时长。
  2. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为:
    从所述远端用户设备接收所述远端用户设备的期望睡眠参数;以及
    还根据所述远端用户设备的期望睡眠参数确定所述远端用户设备的睡眠参数。
  3. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为:
    确定所述中继用户设备下一次醒来状态的开始时间,以使得当所述中继用户设备处于醒来状态时,存在为所述中继用户设备服务的卫星设备。
  4. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为:
    从所述中继用户设备接收所述中继用户设备的期望睡眠参数;以及
    根据所述中继用户设备的期望睡眠参数确定所述中继用户设备的睡眠参数。
  5. 根据权利要求1所述的电子设备,其中,所述电子设备位于核心网中。
  6. 根据权利要求5所述的电子设备,其中,所述处理电路还被配置为:
    根据所述中继用户设备的睡眠参数估计所述中继用户设备的目标服务基站;
    向所述目标服务基站发送包括所述中继用户设备的源服务基站的上下文获取请求信息,以使得所述目标服务基站向所述中继用户设备的源服务基站请求所述中继用户设备的上下文;
    从所述目标服务基站接收所述中继用户设备的路径切换请求信息;以及
    将所述中继用户设备的路径切换至所述目标服务基站。
  7. 根据权利要求6所述的电子设备,其中,所述处理电路还被配置为:
    向所述目标服务基站发送包括所述远端用户设备的源服务基站的上下文获取请求信息,以使得所述目标服务基站向所述远端用户设备的源服务基站请求所述远端用户设备的上下文;
    从所述目标服务基站接收所述远端用户设备的路径切换请求信息;以及
    将所述远端用户设备的路径切换至所述目标服务基站。
  8. 根据权利要求1所述的电子设备,其中,所述电子设备是所述中继用户设备。
  9. 根据权利要求8所述的电子设备,其中,所述处理电路还被配置为:
    从所述电子设备的源服务基站接收切换RRC重配置信息;
    确定所述电子设备服务的各个远端用户设备处于睡眠状态还是醒来状态;
    向处于醒来状态的远端用户设备发送所述切换RRC重配置信息;以及
    保存处于睡眠状态的远端用户设备的切换RRC重配置信息。
  10. 根据权利要求9所述的电子设备,其中,所述处理电路还被配置为:
    在处于睡眠状态的远端用户设备醒来之后,向所述远端用户设备发送所述切换RRC重配置信息。
  11. 根据权利要求8所述的电子设备,其中,所述处理电路还被配置为:
    从所述远端用户设备接收RRC连接恢复请求信息,所述RRC连接恢复请求信息包括所述远端用户设备的源服务基站;
    向所述电子设备的服务基站发送所述RRC连接恢复请求信息,以用于所述电子设备的服务基站向所述远端用户设备的源服务基站请求所述远端用户设备的上下文;
    从所述电子设备的服务基站接收所述远端用户设备的RRC连接恢复信息;以及
    向所述远端用户设备发送所述RRC连接恢复信息。
  12. 根据权利要求8所述的电子设备,其中,所述处理电路还被配置为:
    向所述电子设备服务的处于醒来状态、并且具有混合连接的远端用户设备发送测量指示信息,以指示所述远端用户设备进行切换测量;
    进行切换测量;以及
    向所述服务基站发送测量结果,所述测量结果包括所述电子设备的测量结果和所述远端用户设备的测量结果,
    其中,具有混合连接的远端用户设备通过所述电子设备与所述卫星设备进行上行通信和下行通信中的一个,并且直接与所述卫星设备进行上行通信和下行通信中的另一个。
  13. 根据权利要求12所述的电子设备,其中,所述处理电路还被配置为:
    当所述电子设备服务的处于睡眠状态、并且具有混合连接的远端用户设备醒来时,向所述远端用户设备发送测量指示信息,以指示所述远端用户设备测量所述远端用户设备与所述卫星设备之间的信道质量。
  14. 一种电子设备,包括处理电路,被配置为:
    接收所述电子设备的睡眠参数和下一次醒来状态的开始时间,所述睡眠参数包括睡眠状态的时长和醒来状态的时长、并且是根据中继用户设备的睡眠参数确定的,当所述电子设备处于醒来状态时,所述中继用户设备也处于醒来状态;以及
    根据所述睡眠参数和下一次醒来状态的开始时间周期性进入睡眠状态和醒来状态,
    其中,所述电子设备经由所述中继用户设备与卫星设备进行通信。
  15. 根据权利要求14所述的电子设备,其中,所述处理电路还被配置为:
    发送所述电子设备的期望睡眠参数,所述电子设备的睡眠参数还根据所述电子设备的期望睡眠参数确定。
  16. 根据权利要求14所述的电子设备,其中,所述处理电路还被配置为:
    当所述电子设备醒来时,重新连接至所述中继用户设备;
    从所述中继用户设备接收切换RRC重配置信息;以及
    向所述中继用户设备发送切换RRC重配置完成信息,以通过所述中继用户设备与新的服务基站进行通信。
  17. 根据权利要求14所述的电子设备,其中,所述处理电路还被配置为:
    当所述电子设备醒来时,重新连接至所述中继用户设备;
    向所述中继用户设备发送RRC连接恢复请求信息,所述RRC连接恢复请求信息包括所述电子设备的源服务基站;以及
    从所述中继用户设备接收RRC连接恢复信息,以通过所述中继用户设备与新的服务基站进行通信。
  18. 一种由电子设备执行的无线通信方法,包括:
    根据中继用户设备的睡眠参数和下一次醒来状态的开始时间确定远端用户设备的睡眠参数和下一次醒来状态的开始时间,以使得当所述远端用户设备处于醒来状态时,所述中继用户设备也处于醒来状态;以及
    将所述远端用户设备的睡眠参数和下一次醒来状态的开始时间发送至所述远端用户设备,
    其中,所述远端用户设备经由所述中继用户设备与卫星设备进行通信,并且所述睡眠参数包括睡眠状态的时长和醒来状态的时长。
  19. 根据权利要求18所述的无线通信方法,其中,所述无线通信方法还包括:
    从所述远端用户设备接收所述远端用户设备的期望睡眠参数;以及
    还根据所述远端用户设备的期望睡眠参数确定所述远端用户设备的睡眠参数。
  20. 根据权利要求18所述的无线通信方法,其中,所述无线通信方法还包括:
    确定所述中继用户设备下一次醒来状态的开始时间,以使得当所述中继用户设备处于醒来状态时,存在为所述中继用户设备服务的卫星设备。
  21. 根据权利要求18所述的无线通信方法,其中,所述无线通信方法还包括:
    从所述中继用户设备接收所述中继用户设备的期望睡眠参数;以及
    根据所述中继用户设备的期望睡眠参数确定所述中继用户设备的睡眠参数。
  22. 根据权利要求18所述的无线通信方法,其中,所述电子设备位于核心网中。
  23. 根据权利要求22所述的无线通信方法,其中,所述无线通信方法还包括:
    根据所述中继用户设备的睡眠参数估计所述中继用户设备的目标服务基站;
    向所述目标服务基站发送包括所述中继用户设备的源服务基站的上下文获取请求信息,以使得所述目标服务基站向所述中继用户设备的源服务基站请求所述中继用户设备的上下文;
    从所述目标服务基站接收所述中继用户设备的路径切换请求信息;以及
    将所述中继用户设备的路径切换至所述目标服务基站。
  24. 根据权利要求23所述的无线通信方法,其中,所述无线通信方法还包括:
    向所述目标服务基站发送包括所述远端用户设备的源服务基站的上下文获取请求信息,以使得所述目标服务基站向所述远端用户设备的源服务基站请求所述远端用户设备的上下文;
    从所述目标服务基站接收所述远端用户设备的路径切换请求信息;以及
    将所述远端用户设备的路径切换至所述目标服务基站。
  25. 根据权利要求18所述的无线通信方法,其中,所述电子设备是所述中继用户设备。
  26. 根据权利要求25所述的无线通信方法,其中,所述无线通信方法还包括:
    从所述电子设备的源服务基站接收切换RRC重配置信息;
    确定所述电子设备服务的各个远端用户设备处于睡眠状态还是醒来状态;
    向处于醒来状态的远端用户设备发送所述切换RRC重配置信息;以及
    保存处于睡眠状态的远端用户设备的切换RRC重配置信息。
  27. 根据权利要求26所述的无线通信方法,其中,所述无线通信方法还包括:
    在处于睡眠状态的远端用户设备醒来之后,向所述远端用户设备发送所述切换RRC重配置信息。
  28. 根据权利要求25所述的无线通信方法,其中,所述无线通信方法还包括:
    从所述远端用户设备接收RRC连接恢复请求信息,所述RRC连接恢复请求信息包括所述远端用户设备的源服务基站;
    向所述电子设备的服务基站发送所述RRC连接恢复请求信息,以用于所述电子设备的服务基站向所述远端用户设备的源服务基站请求所述远端用户设备的上下文;
    从所述电子设备的服务基站接收所述远端用户设备的RRC连接恢复信息;以及
    向所述远端用户设备发送所述RRC连接恢复信息。
  29. 根据权利要求25所述的无线通信方法,其中,所述无线通信方法还包括:
    向所述电子设备服务的处于醒来状态、并且具有混合连接的远端用户设备发送测量指示信息,以指示所述远端用户设备进行切换测量;
    进行切换测量;以及
    向所述服务基站发送测量结果,所述测量结果包括所述电子设备的测量结果和所述远端用户设备的测量结果,
    其中,具有混合连接的远端用户设备通过所述电子设备与所述卫星设备进行上行通信和下行通信中的一个,并且直接与所述卫星设备进行上行通信和下行通信中的另一个。
  30. 根据权利要求29所述的无线通信方法,其中,所述无线通信方法还包括:
    当所述电子设备服务的处于睡眠状态、并且具有混合连接的远端用户设备醒来时,向所述远端用户设备发送测量指示信息,以指示所述远端用户设备测量所述远端用户设备与所述卫星设备之间的信道质量。
  31. 一种由电子设备执行的无线通信方法,包括:
    接收所述电子设备的睡眠参数和下一次醒来状态的开始时间,所述睡眠参数包括睡眠状态的时长和醒来状态的时长、并且是根据中继用户设备的睡眠参数确定的,当所述电子设备处于醒来状态时,所述中继用户设备也处于醒来状态;以及
    根据所述睡眠参数和下一次醒来状态的开始时间周期性进入睡眠状态和醒来状态,
    其中,所述电子设备经由所述中继用户设备与卫星设备进行通信。
  32. 根据权利要求31所述的无线通信方法,其中,所述无线通信方法还包括:
    发送所述电子设备的期望睡眠参数,所述电子设备的睡眠参数还根据所述电子设备的期望睡眠参数确定。
  33. 根据权利要求32所述的无线通信方法,其中,所述无线通信方法还包括:
    当所述电子设备醒来时,重新连接至所述中继用户设备;
    从所述中继用户设备接收切换RRC重配置信息;以及
    向所述中继用户设备发送切换RRC重配置完成信息,以通过所述中继用户设备与新的服务基站进行通信。
  34. 根据权利要求31所述的无线通信方法,其中,所述无线通信方法还包括:
    当所述电子设备醒来时,重新连接至所述中继用户设备;
    向所述中继用户设备发送RRC连接恢复请求信息,所述RRC连接恢复请求信息包括所述电子设备的源服务基站;以及
    从所述中继用户设备接收RRC连接恢复信息,以通过所述中继用户设备与新的服务基站进行通信。
  35. 一种计算机可读存储介质,包括可执行计算机指令,所述可执行计算机指令当被计算机执行时使得所述计算机执行根据权利要求18-34中任一项所述的无线通信方法。
PCT/CN2021/135670 2020-12-11 2021-12-06 电子设备、无线通信方法和计算机可读存储介质 WO2022121833A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/251,883 US20240015659A1 (en) 2020-12-11 2021-12-06 Electronic device, wireless communication method, and computer-readable storage medium
CN202180081036.5A CN116711233A (zh) 2020-12-11 2021-12-06 电子设备、无线通信方法和计算机可读存储介质

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011450032.3 2020-12-11
CN202011450032.3A CN114630399A (zh) 2020-12-11 2020-12-11 电子设备、无线通信方法和计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2022121833A1 true WO2022121833A1 (zh) 2022-06-16

Family

ID=81895770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/135670 WO2022121833A1 (zh) 2020-12-11 2021-12-06 电子设备、无线通信方法和计算机可读存储介质

Country Status (3)

Country Link
US (1) US20240015659A1 (zh)
CN (2) CN114630399A (zh)
WO (1) WO2022121833A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116261181A (zh) * 2023-05-15 2023-06-13 华安中云股份有限公司 基于卫星信号的数据传输方法、装置、设备及存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115191792A (zh) * 2022-08-31 2022-10-18 慕思健康睡眠股份有限公司 一种酒店点餐方法及智能床垫
CN116390221B (zh) * 2023-03-17 2024-03-15 广州爱浦路网络技术有限公司 卫星通信用户终端周期性注册方法、系统、装置和介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018170911A1 (zh) * 2017-03-24 2018-09-27 华为技术有限公司 一种功耗参数的配置方法及装置
CN108700669A (zh) * 2016-02-25 2018-10-23 迈锐奥塔企业有限公司 卫星通信系统中的终端调度方法
CN110249706A (zh) * 2017-02-07 2019-09-17 索尼移动通讯有限公司 中继介导寻呼
CN111937450A (zh) * 2020-07-09 2020-11-13 北京小米移动软件有限公司 无线通信的方法、装置、设备及存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108700669A (zh) * 2016-02-25 2018-10-23 迈锐奥塔企业有限公司 卫星通信系统中的终端调度方法
CN110249706A (zh) * 2017-02-07 2019-09-17 索尼移动通讯有限公司 中继介导寻呼
WO2018170911A1 (zh) * 2017-03-24 2018-09-27 华为技术有限公司 一种功耗参数的配置方法及装置
CN111937450A (zh) * 2020-07-09 2020-11-13 北京小米移动软件有限公司 无线通信的方法、装置、设备及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SEQUANS COMMUNICATIONS: "Sidelink maintenance for evolved L2 relay", 3GPP DRAFT; R2-1705126 - SIDELINK MAINTENANCE FOR EVOLVED L2 RELAY, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Hangzhou, China; 20170515 - 20170519, 5 May 2017 (2017-05-05), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051263951 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116261181A (zh) * 2023-05-15 2023-06-13 华安中云股份有限公司 基于卫星信号的数据传输方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN114630399A (zh) 2022-06-14
US20240015659A1 (en) 2024-01-11
CN116711233A (zh) 2023-09-05

Similar Documents

Publication Publication Date Title
WO2022121833A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
JP6859590B2 (ja) 通信装置および通信方法
JP2021119719A (ja) 端末装置、無線通信装置、無線通信方法及びコンピュータプログラム
WO2016197813A1 (zh) 无线通信设备和无线通信方法
WO2021223666A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
CN113632537B (zh) 集中单元设备、用户设备、无线通信方法和存储介质
CN111684857B (zh) 电子设备、用户设备、无线通信方法和存储介质
CN110546989B (zh) 无线通信系统中的电子设备以及无线通信方法
US9722678B2 (en) Coordinated multi-point transmission method and equipment
JP6265204B2 (ja) 通信制御装置、通信制御方法及び端末装置
JP6209898B2 (ja) 通信制御装置、通信制御方法及び端末装置
WO2022017303A1 (zh) 用于无线通信系统的电子设备、方法和存储介质
WO2021004377A1 (zh) 电子设备、分布式单元设备、无线通信方法和存储介质
CN113395787A (zh) 一种恢复双连接的方法及装置
WO2022052850A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
WO2023138470A1 (zh) 电子设备、用于无线通信的方法以及计算机可读存储介质
WO2024046255A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
US10028256B2 (en) Apparatus
WO2024125370A1 (zh) 通信方法和通信装置
WO2023134526A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
WO2019214493A1 (zh) 用户设备、电子设备、无线通信方法和存储介质
WO2023130221A1 (zh) 通信方法、终端设备以及网络设备
WO2021238750A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
WO2017094360A1 (ja) 装置、方法及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21902538

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18251883

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180081036.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21902538

Country of ref document: EP

Kind code of ref document: A1