WO2022121596A1 - 通信方法、装置、终端设备及存储介质 - Google Patents

通信方法、装置、终端设备及存储介质 Download PDF

Info

Publication number
WO2022121596A1
WO2022121596A1 PCT/CN2021/129386 CN2021129386W WO2022121596A1 WO 2022121596 A1 WO2022121596 A1 WO 2022121596A1 CN 2021129386 W CN2021129386 W CN 2021129386W WO 2022121596 A1 WO2022121596 A1 WO 2022121596A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
communication
smart wearable
wearable device
peer device
Prior art date
Application number
PCT/CN2021/129386
Other languages
English (en)
French (fr)
Inventor
吴中臣
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP21902303.3A priority Critical patent/EP4262254A4/en
Publication of WO2022121596A1 publication Critical patent/WO2022121596A1/zh
Priority to US18/328,639 priority patent/US20230309020A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0251Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity
    • H04W52/0258Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity controlling an operation mode according to history or models of usage information, e.g. activity schedule or time of day
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • H04W52/288TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission taking into account the usage mode, e.g. hands-free, data transmission, telephone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a communication method, apparatus, terminal device, and storage medium.
  • the smart wearable device can generally communicate with the communication peer device through Bluetooth, and the Bluetooth power consumption of the smart wearable device will affect its battery life.
  • the size of the transmit power of the smart watch is determined by the request signal of the Bluetooth device that communicates with it. If the request signal requests the maximum power, the smart watch transmits the signal at the maximum power.
  • the disadvantage of the related technology is that smart watches are wearable devices and are extremely sensitive to power consumption. It does not take into account that many Bluetooth devices on the market do not comply with the power request rules. Regardless of whether the signal is good or not, these Bluetooth devices require the watch to transmit at the maximum power. In this way, the power consumption of the watch will be very high, which will have a great impact on the battery life of the watch.
  • the main purpose of this application is to provide a communication method, device, terminal device and storage medium, which are aimed at reducing the power consumption of the smart wearable device and improving the battery life.
  • an embodiment of the present application provides a communication method, which is applied to a smart wearable device, and the method includes the following steps:
  • scene data is transmitted between the smart wearable device and the communication peer device.
  • an embodiment of the present application also provides a communication device, the communication device comprising:
  • a monitoring module configured to monitor the communication scene between the smart wearable device and the communication peer device after the smart wearable device establishes a Bluetooth connection with the communication peer device;
  • a selection module configured to select a corresponding preset power according to the communication scenario
  • a transmission module configured to transmit scene data between the smart wearable device and the communication peer device based on the selected preset power.
  • an embodiment of the present application also proposes a terminal device, the terminal device includes a memory, a processor, and a communication program stored in the memory and running on the processor, the communication program being processed by the processor
  • the communication method is realized when the device is executed; the communication method includes the following steps:
  • scene data is transmitted between the smart wearable device and the communication peer device.
  • an embodiment of the present application further provides a computer-readable storage medium, where a communication program is stored on the computer-readable storage medium, and when the communication program is executed by a processor, the steps of the above-mentioned communication method are implemented.
  • the communication method, device, terminal device, and storage medium proposed in the embodiments of the present application, after a Bluetooth connection is established between the smart wearable device and the communication peer device, the communication scene between the smart wearable device and the communication peer device is monitored; According to the communication scenario, a corresponding preset power is selected; based on the selected preset power, scenario data is transmitted between the smart wearable device and the communication peer device.
  • This solution can control the power of the smart wearable device, and can respond to different preset powers according to different usage scenarios, instead of the communication peer device controlling the transmit power of the smart wearable device, thereby reducing the smart wearable device.
  • Bluetooth power consumption improves battery life, and at the same time avoids the audio stutter problem caused by inappropriate power selection.
  • FIG. 1 is a schematic diagram of functional modules of a terminal device to which a communication device of the application belongs;
  • FIG. 2 is a schematic flowchart of an exemplary embodiment of a communication method of the present application
  • FIG. 3 is a schematic flowchart of a scenario according to an embodiment of a communication method of the present application.
  • FIG. 4 is a schematic flowchart of another exemplary embodiment of the communication method of the present application.
  • the main solution of the embodiment of the present application is: after the smart wearable device and the communication peer device establish a Bluetooth connection, monitor the communication scene between the smart wearable device and the communication peer device; according to the communication scene, select The corresponding preset power; based on the selected preset power, the scene data is transmitted between the smart wearable device and the communication peer device.
  • This solution can control the power of the smart wearable device, and can respond to different preset powers according to different usage scenarios, instead of controlling the power of the smart wearable device by the communication peer device, thereby reducing the Bluetooth of the smart wearable device. Power consumption, improve battery life, and avoid the audio stutter problem caused by inappropriate power selection.
  • the maximum power is debugged through the radio frequency, and the software is compiled into different power according to the power size. grade.
  • the size of the transmission power of the smart wearable device is determined by the request signal of the Bluetooth device that communicates with it. If the request signal requests the maximum power, the smart wearable device transmits the signal at the maximum power.
  • the disadvantage of this solution is that smart wearable devices are extremely sensitive to power consumption, and it does not take into account that many Bluetooth devices on the market do not comply with the power request rules. Regardless of whether the signal is good or not, these Bluetooth devices request smart wearable devices to transmit at maximum power. In this way, the power consumption of the smart wearable device will be very high, which will have a great impact on the battery life of the wearable device.
  • the premise that the communication peer device can request the maximum Bluetooth power of the smart wearable device is that the maximum Bluetooth power of the smart wearable device is visible to the communication peer device. Therefore, based on the above considerations, the embodiments of the present application propose a solution that can The power of the transmitted data of the smart wearable device is compiled into power meters of different levels. According to the usage status of different scenarios, only the power of the corresponding level of power meter can be requested. Even if some Bluetooth devices do not request data according to the rules, the transmit power of the smart wearable device It will not exceed the maximum power of the power meter of the corresponding level, so that the Bluetooth power consumption of the smart wearable device can be reduced and the battery life can be improved.
  • FIG. 1 is a schematic diagram of functional modules of a terminal device to which the communication apparatus of the present application belongs.
  • the communication device may be a device that is independent of the terminal device and capable of data processing, and may be carried on the terminal device in the form of hardware or software.
  • the terminal device may be a smart wearable device such as a smart watch, a smart bracelet, or the like.
  • Smart wearable devices such as smart watches and smart bracelets can communicate with communication peer devices through Bluetooth, and the communication peer devices can be electronic devices such as Bluetooth headsets, mobile phones, tablet computers, and other wearable Bluetooth devices.
  • the terminal device to which the communication apparatus belongs includes at least an output module 110 , a processor 120 , a memory 130 and a communication module 140 .
  • An operating system and a communication program are stored in the memory 130, and the communication device can monitor the communication scenario, preset power, and communication between the smart wearable device and the communication peer device.
  • the transmitted scene data and other information are stored in the memory 130; the output module 110 may be a display screen, a speaker, and the like.
  • the communication module 140 may include a WIFI module, a mobile communication module, a Bluetooth module, etc., and communicate with an external device or a server through the communication module 140 .
  • scene data is transmitted between the smart wearable device and the communication peer device.
  • the communication scenario is a preset high-power application communication scenario, selecting the corresponding first-level power meter;
  • the communication scenario is a preset low-power application communication scenario
  • select the corresponding second-level power meter and the maximum power of the power range of the first-level power meter is greater than the power range of the second-level power meter. Maximum power.
  • the communication scenario is a preset high-power application communication scenario
  • a default power meter is selected, and the maximum power of the power range of the default power meter is less than the maximum power of the power range of the first-level power meter;
  • the smart wearable device receives the maximum power request signal of the communication peer device, send a scene data test packet to the communication peer device with the maximum power in the power range of the default power meter;
  • the step is to select a corresponding first-level power meter.
  • the smart wearable device If the smart wearable device receives the response data from the communication peer device within a preset time, it continues to send scene data to the communication peer device at the maximum power within the power range of the default power meter.
  • the power request signal sent by the communication peer device is the maximum power request signal, select the maximum power of the power range of the first-level power meter;
  • the power request signal sent by the communication peer device is the maximum power request signal, select the maximum power of the power range of the second-level power meter;
  • the power parameters of the smart wearable device are compiled into preset power tables of different levels.
  • the scene data is transmitted between the device and the communication peer device.
  • the communication scenario between the smart wearable device and the communication peer device is monitored; according to the communication scenario, a corresponding preset is selected.
  • This solution can control the power of the smart wearable device, and can respond to different preset powers according to different usage scenarios, instead of controlling the power of the smart wearable device by the communication peer device, thereby reducing the Bluetooth of the smart wearable device. Power consumption, improve battery life, and avoid the audio stutter problem caused by inappropriate power selection.
  • the execution body of the method in this embodiment may be a device independent of the terminal device and capable of data processing, which may be carried on the terminal device in the form of hardware or software, and the terminal device may be a smart wearable device such as a smart watch or a smart bracelet.
  • the device may also be a mobile terminal such as a mobile phone and a tablet computer.
  • FIG. 2 is a schematic flowchart of an exemplary embodiment of a communication method of the present application.
  • the communication method is applied to a smart wearable device, and the method includes the following steps:
  • Step S101 after the smart wearable device and the communication peer device establish a Bluetooth connection, monitor the communication scene between the smart wearable device and the communication peer device;
  • the smart wearable device may be a wearable device such as a smart watch, a smart bracelet, etc., which can communicate through wireless means such as Bluetooth.
  • a smart watch is used as an example.
  • Smart wearable devices such as smart watches and smart bracelets can communicate with communication peer devices through Bluetooth, and the communication peer devices can be electronic devices such as Bluetooth headsets, mobile phones, tablet computers, and other wearable Bluetooth devices.
  • the solution of the present application can control the power of Bluetooth transmission on the smart wearable device, so that the smart wearable device can respond to different preset powers according to different communication scenarios, instead of the communication peer device controlling the transmission of the smart wearable device power, which can reduce the Bluetooth power consumption of the smart wearable device, improve the battery life of the smart wearable device, and avoid the audio jam problem caused by inappropriate power selection.
  • the communication scene between the smart wearable device and the communication peer device is monitored.
  • the communication scenarios may be pre-classified according to different levels of transmit power when the smart wearable device communicates with the communication peer device.
  • the communication scenarios may include preset high-power application communication scenarios and low-power application communication scenarios.
  • the preset high-power application communication scenario may be a communication scenario including audio, such as making a phone call, transmitting voice information, etc., because when transmitting audio, a relatively large data transmission power is generally required, because audio is related to the transmission rate. The requirements are relatively high, so a large transmit power is required, otherwise the audio jam phenomenon is prone to occur.
  • the preset low-power application communication scenarios such as communication scenarios that do not include audio, for example, the mobile phone is in standby, the mobile phone transmits information such as WeChat and SMS, or the watch transmits heartbeat, heart rate, steps and other exercise data to the mobile phone.
  • the required power is relatively low, and can be classified as low-power application communication scenarios.
  • non-audio communication scenarios can also be subdivided based on the required power, such as general low-power application communication scenarios and extremely low-power application communication scenarios.
  • different preset powers may be configured for different communication scenarios respectively.
  • this embodiment can also compile the power parameters of the smart wearable device into different levels according to the power transmission situation of the smart wearable device, and form several preset power meters of different levels, and each preset power meter can be composed of a plurality of different levels.
  • the power parameters form a power range, and the maximum power of the power range of each preset power meter can be set to be different according to different levels.
  • the preset power meter formed by the above scheme may include a plurality of different power parameters
  • the data format of the table can not be limited to a specific data format.
  • Each power parameter in the preset power meter is the power that the smart wearable device can support for data transmission.
  • the range of power parameters that a smart watch can support for data transmission is: 5dbm to 20dbm, which can be used to convert the power of the smart wearable device.
  • the parameters are compiled into different levels to form several preset power meters of different levels. For example, it is compiled into a high-level preset power meter with a power range of 10dbm to 20dbm, and a low-level preset power meter with a power range of : 5dbm ⁇ 10dbm.
  • the power parameters of the smart watch are compiled into the first-level power meter, the second-level power meter, and the third-level power meter of different levels, wherein the first level power meter
  • the maximum power of the power range of the power meter is greater than the maximum power of the power range of the second stage power meter
  • the maximum power of the power range of the second stage power meter is greater than the maximum power of the power range of the third stage power meter, and so on.
  • the maximum power of the power range of the first-level power meter is 20dbm
  • the maximum power of the power range of the second-level power meter is 10dbm
  • the maximum power of the power range of the third-level power meter is 5dbm.
  • a default power meter can be set for the smart wearable device, that is, the smart wearable device works with the default power meter after the Bluetooth function is turned on, and then the power meter can be switched according to the power required by the communication scenario.
  • the default power meter may be the lowest-level power meter in the above-mentioned power meter hierarchy, such as the third-level power meter.
  • level power meter For different communication scenarios, different levels of power meters can be configured for different communication scenarios. level power meter.
  • Step S102 according to the communication scenario, select the corresponding preset power
  • Step S103 based on the selected preset power, transmit scene data between the smart wearable device and the communication peer device.
  • the communication scenario between the smart wearable device and the communication peer device is monitored, and a corresponding preset power is selected according to the monitored communication scenario.
  • the power of the smart wearable device is compiled into preset power meters of different levels. According to the usage status of different scenarios, only the power of the power meter of the corresponding level can be requested. Even if some Bluetooth devices do not request data according to the rules, the smart wearable The transmission power of the device will not exceed the maximum power of the corresponding level power meter, which can reduce the Bluetooth power consumption of the smart wearable device and improve the battery life.
  • the specific implementation is as follows:
  • the solution for selecting the corresponding preset power may include:
  • the communication scenario is a preset high-power application communication scenario, selecting the corresponding first-level power meter;
  • the communication scenario is a preset low-power application communication scenario
  • select the corresponding second-level power meter and the maximum power of the power range of the first-level power meter is greater than the power range of the second-level power meter. Maximum power.
  • the power of the smart wearable device into preset power meters of different levels, and selecting the power meter of the corresponding level according to the usage status of different scenarios, it is possible to make only the request for the power meter of the corresponding level of the power meter in different communication scenarios. Even if some Bluetooth devices do not request data according to the rules, the transmission power of the smart wearable device will not exceed the maximum power of the corresponding level power meter, which can reduce the Bluetooth power consumption of the smart wearable device and improve the battery life.
  • the following scheme may also be used to select the power.
  • the default power meter of the smart wearable device may be selected first, and the maximum power of the power range of the default power meter is less than the maximum power of the first power meter.
  • the default power meter may be the same power meter as the second-level power meter.
  • the smart wearable device receives the maximum power request signal of the communication peer device, it first sends scene data to the communication peer device with the maximum power in the power range of the default power meter test package;
  • the smart wearable device does not receive the response data from the communication peer device within a preset time, select a first-level power meter corresponding to a higher level.
  • the smart wearable device If the smart wearable device receives the response data from the communication peer device within a preset time, it continues to send scene data to the communication peer device at the maximum power within the power range of the default power meter.
  • the premise that other devices can request the maximum Bluetooth power of the watch is that the maximum Bluetooth power of the watch is visible to other devices. According to this premise, this solution can compile the power of the watch for data transmission into different power meters. Depending on the usage status of different scenarios, only the power of the corresponding power meter can be requested. Even if some devices do not request according to the rules, the power used in the current scenario will not exceed the maximum power of the corresponding power meter, for example:
  • the watch is normally connected to other devices, and when there is no audio transmission, the power meter A is used, and the corresponding maximum power is 10dbm, then the maximum power that other devices can request can only be 10dbm.
  • a power meter B with a higher power can be used, and the maximum power corresponding to the power meter B is 20dbm, but the switching of the power meter must be actively controlled by the watch, not controlled by other devices, such as :
  • the watch is in power meter A, and the maximum power is 10dbm.
  • the priority response is 10dbm. You can try to send 2 data packets first. If 2 data packets are sent in the past, other devices cannot respond. Then the watch responds to the power meter with higher power, otherwise it continues to use 10dbm power.
  • the Bluetooth power consumption of the smart watch can be saved, and the battery life of the smart watch can be improved.
  • the smart wearable device transmits scene data between the smart wearable device and the communication peer device based on the selected preset power meter.
  • the power request signal received by the smart wearable device and sent by the communication peer device is obtained;
  • the power request signal sent by the communication peer device is the maximum power request signal, select the maximum power of the power range of the first-level power meter;
  • the power request signal received by the smart wearable device and sent by the communication peer device is obtained;
  • the power request signal sent by the communication peer device is the maximum power request signal, select the maximum power of the power range of the second-level power meter;
  • the communication scenario between the smart wearable device and the communication peer device is monitored; according to the communication scenario, a corresponding preset is selected.
  • Set power based on the selected preset power, transmit scene data between the smart wearable device and the communication peer device.
  • This solution can control the power of the smart wearable device, and can respond to different preset powers according to different usage scenarios, instead of the communication peer device controlling the transmit power of the smart wearable device, thereby reducing the smart wearable device.
  • Bluetooth power consumption improves battery life, and at the same time avoids the audio stutter problem caused by inappropriate power selection.
  • FIG. 4 is a schematic flowchart of another exemplary embodiment of the communication method of the present application.
  • the method further includes:
  • Step S1001 obtaining the power parameter of the smart wearable device
  • Step S1002 compiling the power parameters of the smart wearable device into preset power meters of different levels.
  • this embodiment also includes a solution for configuring a power meter for the smart wearable device.
  • this embodiment can compile the power of the smart wearable device into different levels according to the power transmission situation of the smart wearable device, and form several preset power meters of different levels, and each preset power meter can be composed of multiple different power
  • the parameters form a power range, and the maximum power of the power range of each preset power meter can be set differently according to different levels.
  • the preset power table formed by the above solution may include a plurality of different power parameters to form a power range, and the data format of the table may not be limited to a specific data format.
  • Each power parameter in the preset power meter is the power that the smart wearable device can support for data transmission.
  • the range of power parameters that a smart watch can support for data transmission is: 5dbm to 20dbm, which can be used to convert the power of the smart wearable device.
  • the parameters are compiled into different levels to form several preset power meters of different levels. For example, it is compiled into a high-level preset power meter, and its power range is: 10dbm ⁇ 20dbm, and a low-level preset power meter, its power range is : 5dbm ⁇ 10dbm.
  • the power parameters of the smart watch are compiled into the first-level power meter, the second-level power meter, and the third-level power meter of different levels, wherein the first-level power meter
  • the maximum power of the power range of the power meter is greater than the maximum power of the power range of the second stage power meter
  • the maximum power of the power range of the second stage power meter is greater than the maximum power of the power range of the third stage power meter, and so on.
  • the maximum power of the power range of the first-level power meter is 20dbm
  • the maximum power of the power range of the second-level power meter is 10dbm
  • the maximum power of the power range of the third-level power meter is 5dbm.
  • a default power meter can be set for the smart wearable device, that is, the smart wearable device works with the default power meter after the Bluetooth function is turned on, and then the power meter can be switched according to the power required by the communication scenario.
  • the default power meter may be the lowest-level power meter in the above-mentioned power meter hierarchy, such as the third-level power meter.
  • different levels of power meters may be configured for different communication scenarios respectively.
  • the communication scenarios may be pre-classified according to different levels of transmit power when the smart wearable device communicates with the communication peer device.
  • the communication scenarios may include preset high-power application communication scenarios and low-power application communication scenarios.
  • the preset high-power application communication scenario may be a communication scenario including audio, for example, making a phone call, transmitting voice information, etc., because when transmitting audio, generally a relatively large power is required, because audio requires a relatively high transmission rate. High, so a larger transmit power is required, otherwise the audio stuttering phenomenon is prone to occur.
  • the preset low-power application communication scenarios such as communication scenarios that do not include audio, for example, the mobile phone is in standby, the mobile phone transmits information such as WeChat and SMS, or the watch transmits heartbeat, heart rate, steps and other exercise data to the mobile phone.
  • the required power is relatively low, and can be classified as low-power application communication scenarios.
  • non-audio communication scenarios can also be subdivided based on the required power, such as general low-power application communication scenarios and extremely low-power application communication scenarios.
  • a high-power application communication scenario corresponds to a first-level power meter
  • a low-power application communication scenario corresponds to a second-level power meter.
  • This embodiment obtains the power parameters of the smart wearable device through the above solution; compiles the power parameters of the smart wearable device into preset powers of different levels; after the smart wearable device establishes a Bluetooth connection with the communication peer device, monitors the The communication scenario between the smart wearable device and the communication peer device; according to the communication scenario, select the corresponding preset power; based on the selected preset power, between the smart wearable device and the communication peer device transfer scene data between.
  • This solution can control the power of the smart wearable device, and can respond to different preset power meters according to different usage scenarios, instead of the communication peer device controlling the transmit power of the smart wearable device, thereby reducing the smart wearable device.
  • the Bluetooth power consumption is improved, the battery life is improved, and the audio stuttering problem caused by inappropriate power selection is avoided.
  • the method can also include:
  • the above-mentioned power meter selection rule is adopted to select the corresponding preset power meter, and based on the selected preset power meter A power meter is set up to transmit scene data between the smart wearable device and the communication peer device.
  • an embodiment of the present application also provides a communication device, the communication device comprising:
  • a monitoring module configured to monitor the communication scene between the smart wearable device and the communication peer device after the smart wearable device establishes a Bluetooth connection with the communication peer device;
  • a selection module configured to select a corresponding preset power according to the communication scenario
  • a transmission module configured to transmit scene data between the smart wearable device and the communication peer device based on the selected preset power.
  • an embodiment of the present application also proposes a terminal device, the terminal device includes a memory, a processor, and a communication program stored in the memory and running on the processor, the communication program being processed by the processor When the device is executed, the steps of the communication method described in the above embodiments are realized.
  • an embodiment of the present application further proposes a computer-readable storage medium, where a communication program is stored on the computer-readable storage medium, and when the communication program is executed by a processor, the steps of the communication method described in the foregoing embodiments are implemented
  • the communication method, device, terminal device and storage medium proposed in the embodiments of the present application monitor the smart wearable device and the communication peer device after the Bluetooth connection is established between the smart wearable device and the communication peer device.
  • select the corresponding preset power based on the selected preset power, transmit scene data between the smart wearable device and the communication peer device.
  • This solution can control the power of the smart wearable device, and can respond to different preset power meters according to different usage scenarios, instead of the communication peer device controlling the transmit power of the smart wearable device, thereby reducing the smart wearable device.
  • the Bluetooth power consumption is improved, the battery life is improved, and the audio stuttering problem caused by inappropriate power selection is avoided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Telephone Function (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种通信方法、装置、终端设备及存储介质,该方法包括:在智能穿戴设备与通信对端设备建立蓝牙连接后,监测所述智能穿戴设备与所述通信对端设备之间的通信场景;根据所述通信场景,选择对应的预设功率;基于选择的预设功率,在所述智能穿戴设备与所述通信对端设备之间传输场景数据。该方案可以将功率控制权掌握在智能穿戴设备端,能够根据不同的使用场景,响应不同的预设功率表,而不是由通信对端设备控制智能穿戴设备的发射功率,从而降低了智能穿戴设备的蓝牙功耗,提升续航能力,同时避免了功率选择不合适造成的音频卡顿问题。

Description

通信方法、装置、终端设备及存储介质 【技术领域】
本申请涉及通信技术领域,尤其涉及一种通信方法、装置、终端设备及存储介质。
【背景技术】
随着智能移动终端技术的发展,各种智能穿戴设备,比如智能手环、智能手表等应运而生。智能穿戴设备一般可以通过蓝牙方式与通信对端设备通信,智能穿戴设备的蓝牙功耗会影响其续航能力。
相关技术中,智能手表发射功率的大小,由与之通信的蓝牙设备的请求信号决定,如果请求信号请求最大功率,则智能手表按最大功率发射信号。相关技术的缺陷在于:智能手表属于穿戴设备,对功耗极其敏感,并未考虑到市面上很多蓝牙设备并未遵守功率请求规则,无论信号好不好,这些蓝牙设备都请求手表按最大功率发射,这样会造成手表功耗非常高,对手表续航造成很大影响。
【发明内容】
本申请的主要目的在于提供一种通信方法、装置、终端设备及存储介质,旨在降低智能穿戴设备的功耗,提升续航能力。
为实现上述目的,本申请实施例提供一种通信方法,应用于智能穿戴设备,所述方法包括以下步骤:
在智能穿戴设备与通信对端设备建立蓝牙连接后,监测所述智能穿戴设备与所述通信对端设备之间的通信场景;
根据所述通信场景,选择对应的预设功率;
基于选择的预设功率,在所述智能穿戴设备与所述通信对端设备之间传输场景数据。
此外,本申请实施例还提出一种通信装置,所述通信装置包括:
监测模块,用于在智能穿戴设备与通信对端设备建立蓝牙连接后,监测所述智能穿戴设备与所述通信对端设备之间的通信场景;
选择模块,用于根据所述通信场景,选择对应的预设功率;
传输模块,用于基于选择的预设功率,在所述智能穿戴设备与所述通信对端设备之间传输场景数据。
此外,本申请实施例还提出一种终端设备,所述终端设备包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的通信程序,所述通信程序被所述处理器执行时实现通信方法;所述通信方法包括以下步骤:
在智能穿戴设备与通信对端设备建立蓝牙连接后,监测所述智能穿戴设备与所述通信对 端设备之间的通信场景;
根据所述通信场景,选择对应的预设功率;
基于选择的预设功率,在所述智能穿戴设备与所述通信对端设备之间传输场景数据。
此外,本申请实施例还提出一种计算机可读存储介质,所述计算机可读存储介质上存储有通信程序,所述通信程序被处理器执行时实现如上所述的通信方法的步骤。
本申请实施例提出的通信方法、装置、终端设备及存储介质,在智能穿戴设备与通信对端设备建立蓝牙连接后,监测所述智能穿戴设备与所述通信对端设备之间的通信场景;根据所述通信场景,选择对应的预设功率;基于选择的预设功率,在所述智能穿戴设备与所述通信对端设备之间传输场景数据。该方案可以将功率控制权掌握在智能穿戴设备端,能够根据不同的使用场景,响应不同的预设功率,而不是由通信对端设备控制智能穿戴设备的发射功率,从而降低了智能穿戴设备的蓝牙功耗,提升续航能力,同时避免了功率选择不合适造成的音频卡顿问题。
【附图说明】
图1为本申请通信装置所属终端设备的功能模块示意图;
图2为本申请通信方法一示例性实施例的流程示意图;
图3为本申请通信方法实施例的一种场景流程示意图;
图4为本申请通信方法另一示例性实施例的流程示意图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
【具体实施方式】
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
本申请实施例的主要解决方案是:在智能穿戴设备与通信对端设备建立蓝牙连接后,监测所述智能穿戴设备与所述通信对端设备之间的通信场景;根据所述通信场景,选择对应的预设功率;基于选择的预设功率,在所述智能穿戴设备与所述通信对端设备之间传输场景数据。该方案可以将功率控制权掌握在智能穿戴设备端,能够根据不同的使用场景,响应不同的预设功率,而不是由通信对端设备控制智能穿戴设备的功率,从而降低了智能穿戴设备的蓝牙功耗,提升续航能力,同时避免了功率选择不合适造成的音频卡顿问题。
本申请实施例考虑到,智能穿戴设备的功耗,很大一部分是由于蓝牙发射功率过大导致的,相关方案中,通过射频调试好最大功率,由软件按功率大小不同,编译成不同的功率等级。在实际使用过程中,智能穿戴设备发射功率的大小,由与之通信的蓝牙设备的请求信号决定,如果请求信号请求最大功率,则智能穿戴设备按最大功率发射信号。这种方 案的缺陷在于:智能穿戴设备对功耗极其敏感,并未考虑到市面上很多蓝牙设备并未遵守功率请求规则,无论信号好不好,这些蓝牙设备都请求智能穿戴设备按最大功率发射,这样会造成智能穿戴设备功耗非常高,对穿戴设备续航造成很大影响。
而通信对端设备能够请求到智能穿戴设备的最大蓝牙功率的前提是,智能穿戴设备的最大蓝牙功率对通信对端设备是可见的,因此,本申请实施例基于上述考虑,提出解决方案,可以把智能穿戴设备的传输数据的功率编译成不同等级的功率表,针对不同的场景使用状态,只能请求对应级别功率表的功率,即使有些蓝牙设备不按规则请求数据,智能穿戴设备的发射功率也不会超过对应级别功率表的最大功率,从而可以降低智能穿戴设备的蓝牙功耗,提升续航能力。
具体地,参照图1,图1为本申请通信装置所属终端设备的功能模块示意图。该通信装置可以为独立于终端设备的、能够实现数据处理的装置,其可以通过硬件或软件的形式承载于终端设备上,该终端设备可以为智能手表、智能手环等智能穿戴设备,还可以为手机、平板电脑等移动终端。智能手表、智能手环等智能穿戴设备可以与通信对端设备通过蓝牙方式通信,该通信对端设备可以是蓝牙耳机、手机、平板电脑、其他可穿戴蓝牙设备等电子设备。
在本实施例中,该通信装置所属终端设备至少包括输出模块110、处理器120、存储器130以及通信模块140。
存储器130中存储有操作系统以及通信程序,通信装置可以将监测到的所述智能穿戴设备与所述通信对端设备之间的通信场景、预设功率、智能穿戴设备与通信对端设备之间传输的场景数据等信息存储于该存储器130中;输出模块110可为显示屏、扬声器等。通信模块140可以包括WIFI模块、移动通信模块以及蓝牙模块等,通过通信模块140与外部设备或服务器进行通信。
其中,作为一种实施例方式,存储器130中的通信程序被处理器执行时实现以下步骤:
在智能穿戴设备与通信对端设备建立蓝牙连接后,监测所述智能穿戴设备与所述通信对端设备之间的通信场景;
根据所述通信场景,选择对应的预设功率;
基于选择的预设功率,在所述智能穿戴设备与所述通信对端设备之间传输场景数据。
进一步地,存储器130中的通信程序被处理器执行时还实现以下步骤:
若所述通信场景为预设的高功率应用通信场景,则选择对应的第一级功率表;
若所述通信场景为预设的低功率应用通信场景,则选择对应的第二级功率表,所述第一级功率表的功率范围的最大功率大于所述第二级功率表的功率范围的最大功率。
进一步地,存储器130中的通信程序被处理器执行时还实现以下步骤:
若所述通信场景为预设的高功率应用通信场景,则选择默认功率表,所述默认功率表 的功率范围的最大功率小于所述第一级功率表的功率范围的最大功率;
若所述智能穿戴设备接收到所述通信对端设备的最大功率请求信号,则以所述默认功率表的功率范围的最大功率向所述通信对端设备发送场景数据测试包;
若所述智能穿戴设备在预设时间内未接收到所述通信对端设备的响应数据,则执行步骤:选择对应的第一级功率表。
进一步地,存储器130中的通信程序被处理器执行时还实现以下步骤:
若所述智能穿戴设备在预设时间内接收到所述通信对端设备的响应数据,则继续以所述默认功率表的功率范围的最大功率向所述通信对端设备发送场景数据。
进一步地,存储器130中的通信程序被处理器执行时还实现以下步骤:
若选择对应的第一级功率表,则获取所述智能穿戴设备接收到的、所述通信对端设备发送的功率请求信号;
若所述通信对端设备发送的功率请求信号为最大功率请求信号,则选取所述第一级功率表的功率范围的最大功率;
以选取的所述第一级功率表的功率范围的最大功率向所述通信对端设备发送对应的场景数据。
进一步地,存储器130中的通信程序被处理器执行时还实现以下步骤:
若选择对应的第二级功率表,则获取所述智能穿戴设备接收到的、所述通信对端设备发送的功率请求信号;
若所述通信对端设备发送的功率请求信号为最大功率请求信号,则选取所述第二级功率表的功率范围的最大功率;
以选取的所述第二级功率表的功率范围的最大功率向所述通信对端设备发送对应的场景数据。
进一步地,存储器130中的通信程序被处理器执行时还实现以下步骤:
获取所述智能穿戴设备的功率参数;
将所述智能穿戴设备的功率参数编译成不同等级的预设功率表。
进一步地,存储器130中的通信程序被处理器执行时还实现以下步骤:
在监测到所述智能穿戴设备与所述通信对端设备之间的通信场景变化后,根据变化后的通信场景,选择对应的预设功率,并基于选择的预设功率,在所述智能穿戴设备与所述通信对端设备之间传输场景数据。
本实施例通过上述方案,在智能穿戴设备与通信对端设备建立蓝牙连接后,监测所述 智能穿戴设备与所述通信对端设备之间的通信场景;根据所述通信场景,选择对应的预设功率;基于选择的预设功率,在所述智能穿戴设备与所述通信对端设备之间传输场景数据。该方案可以将功率控制权掌握在智能穿戴设备端,能够根据不同的使用场景,响应不同的预设功率,而不是由通信对端设备控制智能穿戴设备的功率,从而降低了智能穿戴设备的蓝牙功耗,提升续航能力,同时避免了功率选择不合适造成的音频卡顿问题。
基于上述终端设备架构但不限于上述架构,提出本申请方法实施例。
本实施例方法的执行主体可以为独立于终端设备的、能够实现数据处理的装置,其可以通过硬件或软件的形式承载于终端设备上,该终端设备可以为智能手表、智能手环等智能穿戴设备,还可以为手机、平板电脑等移动终端。
参照图2,图2为本申请通信方法一示例性实施例的流程示意图。所述通信方法应用于智能穿戴设备,所述方法包括以下步骤:
步骤S101,在智能穿戴设备与通信对端设备建立蓝牙连接后,监测所述智能穿戴设备与所述通信对端设备之间的通信场景;
其中,智能穿戴设备可以为智能手表、智能手环等能够通过蓝牙等无线方式进行通信的可穿戴设备,本实施例中,以智能手表进行举例。
智能手表、智能手环等智能穿戴设备可以与通信对端设备通过蓝牙方式通信,该通信对端设备可以是蓝牙耳机、手机、平板电脑、其他可穿戴蓝牙设备等电子设备。
本申请方案可以将蓝牙发射功率控制权掌握在智能穿戴设备端,使得智能穿戴设备能够根据不同的通信场景使用情况,响应不同的预设功率,而不是由通信对端设备控制智能穿戴设备的发射功率,从而可以降低智能穿戴设备的蓝牙功耗,提升智能穿戴设备的续航能力,同时避免了功率选择不合适造成的音频卡顿问题。
具体地,在智能穿戴设备与通信对端设备建立蓝牙连接后,监测所述智能穿戴设备与所述通信对端设备之间的通信场景。
其中,通信场景可以根据智能穿戴设备与通信对端设备通信时不同等级的发射功率而进行预先分类,比如,通信场景可以包括:预设的高功率应用通信场景和低功率应用通信场景。
其中,预设的高功率应用通信场景,比如可以是包含音频的通信场景,例如,打电话、传输语音信息等,因为传输音频的时候,一般要求比较大的数据传输功率,因为音频对传输速率要求比较高,因此需求较大的发射功率,否则容易出现音频卡顿现象。
预设的低功率应用通信场景,比如可以是不包含音频的通信场景,例如,手机待机、手机传输微信、短信等信息,或者手表传输心跳、心率、步数等运动数据给手机,这些场景下,需要的功率比较低,可以分类为低功率应用通信场景。其中,还可以对非音频的通信场景基于所需要的功率高低进行细分,比如一般低功率应用通信场景和极低功率应用通信场景等。
在本实施例中,针对不同的通信场景,可以为不同的通信场景分别配置不同的预设功 率。
此外,本实施例还可以根据智能穿戴设备的功率发射情况,将智能穿戴设备的功率参数编译成不同等级,形成若干不同等级的预设功率表,每个预设功率表可以由多个不同的功率参数组成一个功率范围,每个预设功率表的功率范围的最大功率可以根据不同等级设置为不同,需要说明的是,通过上述方案形成的预设功率表中可以包括多个不同的功率参数组成一个功率范围,该表的数据格式可以不用限定特定的数据格式。预设功率表中的各功率参数为智能穿戴设备可以支持的用于数据传输的功率,比如智能手表可以支持的用于数据传输的功率参数范围为:5dbm~20dbm,可以将智能穿戴设备的功率参数编译成不同等级,形成若干不同等级的预设功率表,比如编译为一个高级别的预设功率表,其功率范围为:10dbm~20dbm,一个低别的预设功率表,其功率范围为:5dbm~10dbm。
作为一种实施方式,比如,根据智能手表的功率发射情况,将智能手表的功率参数编译成不同等级的第一级功率表、第二级功率表、第三级功率表,其中,第一级功率表的功率范围的最大功率大于第二级功率表的功率范围的最大功率,第二级功率表的功率范围的最大功率大于第三级功率表的功率范围的最大功率,等等。比如,第一级功率表的功率范围的最大功率为20dbm,第二级功率表的功率范围的最大功率为10dbm,第三级功率表的功率范围的最大功率为5dbm。
此外,还可以为智能穿戴设备设置一个默认状态下的功率表,即智能穿戴设备在开启蓝牙功能后,以默认的功率表工作,后续,可以根据通信场景所需要使用的功率来切换功率表。该默认的功率表可以是上述功率表分级中的最低级功率表,比如第三级功率表。
上述功率表配置方案中,针对不同的通信场景,可以为不同的通信场景分别配置不同等级的功率表,比如高功率应用通信场景对应配置第一级功率表,低功率应用通信场景对应配置第二级功率表。
步骤S102,根据所述通信场景,选择对应的预设功率;
步骤S103,基于选择的预设功率,在所述智能穿戴设备与所述通信对端设备之间传输场景数据。
在智能穿戴设备与通信对端设备建立蓝牙连接后,监测所述智能穿戴设备与所述通信对端设备之间的通信场景,根据监测得到的通信场景,选择对应的预设功率。
本实施例中,把智能穿戴设备的功率编译成不同等级的预设功率表,针对不同的场景使用状态,只能请求对应级别功率表的功率,即使有些蓝牙设备不按规则请求数据,智能穿戴设备的发射功率也不会超过对应级别功率表的最大功率,从而可以降低智能穿戴设备的蓝牙功耗,提升续航能力。
作为一种实施方式,在根据通信场景选择预设功率时,具体实现如下:
以通信场景包括:预设的高功率应用通信场景和低功率应用通信场景为例,根据所述通信场景,选择对应的预设功率的方案可以包括:
若所述通信场景为预设的高功率应用通信场景,则选择对应的第一级功率表;
若所述通信场景为预设的低功率应用通信场景,则选择对应的第二级功率表,所述第一级功率表的功率范围的最大功率大于所述第二级功率表的功率范围的最大功率。
由此,通过将智能穿戴设备的功率编译成不同等级的预设功率表,针对不同的场景使用状态,选择对应级别的功率表,从而可以使得不同通信场景下,只能请求对应级别功率表的功率,即使有些蓝牙设备不按规则请求数据,智能穿戴设备的发射功率也不会超过对应级别功率表的最大功率,从而可以降低智能穿戴设备的蓝牙功耗,提升续航能力。
进一步地,在通信场景为预设的高功率应用通信场景时,还可以采用如下方案选择功率。
具体地,若所述通信场景为预设的高功率应用通信场景,比如音频通信场景,则可以先选择智能穿戴设备的默认功率表,所述默认功率表的功率范围的最大功率小于所述第一级功率表的功率范围的最大功率;
其中,作为一种实施方式,所述默认功率表可以是与所述第二级功率表相同的功率表。
在当前通信场景下,若所述智能穿戴设备接收到所述通信对端设备的最大功率请求信号,则先以所述默认功率表的功率范围的最大功率向所述通信对端设备发送场景数据测试包;
若所述智能穿戴设备在预设时间内未接收到所述通信对端设备的响应数据,则选择更高级别对应的第一级功率表。
若所述智能穿戴设备在预设时间内接收到所述通信对端设备的响应数据,则继续以所述默认功率表的功率范围的最大功率向所述通信对端设备发送场景数据。
以智能手表与其他设备通信为例,功率响应流程如图3所示。
其他设备能够请求到手表的最大蓝牙功率的前提是,手表的最大蓝牙功率对其他设备是可见的才行,根据这个前提,本方案可以把手表的用于数据传输的功率编译成不同功率表,不同场景使用状态,只能请求对应功率表的功率,即使有些设备不按规则请求,当前场景使用的功率也不会超过对应功率表的最大功率,比如:
手表正常连接其他设备,无音频传输时,使用功率表A,对应最大功率为10dbm,那么其他设备能请求的最大功率只能为10dbm。
当手表与其他设备有音频通信时,可以使用更大功率的功率表B,功率表B对应的最大功率为20dbm,但功率表的切换必须由手表主动控制,而不是由其他设备请求控制,例如:默认状态手表处于功率表A,最大功率为10dbm,当其他设备请求最大功率发射时,优先响应10dbm,可以先发2个数据包试探一下,若发2个数据包过去,其他设备无法响应,则手表响应功率更大的功率表,否则继续使用10dbm功率。
由此,通过对功率表的主动控制和切换,可以节省智能手表的蓝牙功耗,提升智能手表的续航能力。
之后,智能穿戴设备基于选择的预设功率表,在所述智能穿戴设备与所述通信对端设备之间传输场景数据。
具体地,若选择对应的第一级功率表,则获取所述智能穿戴设备接收到的、所述通信对端设备发送的功率请求信号;
若所述通信对端设备发送的功率请求信号为最大功率请求信号,则选取所述第一级功率表的功率范围的最大功率;
以选取的所述第一级功率表的功率范围的最大功率向所述通信对端设备发送对应的场景数据。
此外,若选择对应的第二级功率表,则获取所述智能穿戴设备接收到的、所述通信对端设备发送的功率请求信号;
若所述通信对端设备发送的功率请求信号为最大功率请求信号,则选取所述第二级功率表的功率范围的最大功率;
以选取的所述第二级功率表的功率范围的最大功率向所述通信对端设备发送对应的场景数据。
本实施例通过上述方案,在智能穿戴设备与通信对端设备建立蓝牙连接后,监测所述智能穿戴设备与所述通信对端设备之间的通信场景;根据所述通信场景,选择对应的预设功率;基于选择的预设功率,在所述智能穿戴设备与所述通信对端设备之间传输场景数据。该方案可以将功率控制权掌握在智能穿戴设备端,能够根据不同的使用场景,响应不同的预设功率,而不是由通信对端设备控制智能穿戴设备的发射功率,从而降低了智能穿戴设备的蓝牙功耗,提升续航能力,同时避免了功率选择不合适造成的音频卡顿问题。
参照图4,图4为本申请通信方法另一示例性实施例的流程示意图。在本实施例中,基于上述图2所示的实施例,在上述步骤S101,根据所述通信场景,选择对应的预设功率表之前还包括:
步骤S1001,获取所述智能穿戴设备的功率参数;
步骤S1002,将所述智能穿戴设备的功率参数编译成不同等级的预设功率表。
相比上述图2所示的实施例,本实施例还包括为智能穿戴设备配置功率表的方案。
具体地,本实施例可以根据智能穿戴设备的功率发射情况,将智能穿戴设备的功率编译成不同等级,形成若干不同等级的预设功率表,每个预设功率表可以由多个不同的功率参数组成一个功率范围,每个预设功率表的功率范围的最大功率可以根据不同等级设置为不同。需要说明的是,通过上述方案形成的预设功率表中可以包括多个不同的功率参数组成一个功率范围,该表的数据格式可以不用限定特定的数据格式。预设功率表中的各功率参数为智能穿戴设备可以支持的用于数据传输的功率,比如智能手表可以支持的用于数据传输的功率参数范围为:5dbm~20dbm,可以将智能穿戴设备的功率参数编译成不同等级,形成若干不同等级的预设功率表,比如编译为一个高级别的预设功率表,其功率范围为: 10dbm~20dbm,一个低别的预设功率表,其功率范围为:5dbm~10dbm。
作为一种实施方式,比如,根据智能手表的功率发射情况,将智能手表的功率参数编译成不同等级的第一级功率表、第二级功率表、第三级功率表,其中,第一级功率表的功率范围的最大功率大于第二级功率表的功率范围的最大功率,第二级功率表的功率范围的最大功率大于第三级功率表的功率范围的最大功率,等等。比如,第一级功率表的功率范围的最大功率为20dbm,第二级功率表的功率范围的最大功率为10dbm,第三级功率表的功率范围的最大功率为5dbm。
此外,还可以为智能穿戴设备设置一个默认状态下的功率表,即智能穿戴设备在开启蓝牙功能后,以默认的功率表工作,后续,可以根据通信场景所需要使用的功率来切换功率表。该默认的功率表可以是上述功率表分级中的最低级功率表,比如第三级功率表。
进一步地,还可以针对不同的通信场景,为不同的通信场景分别配置不同等级的功率表。其中,通信场景可以根据智能穿戴设备与通信对端设备通信时不同等级的发射功率而进行预先分类,比如,通信场景可以包括:预设的高功率应用通信场景和低功率应用通信场景。
其中,预设的高功率应用通信场景,比如可以是包含音频的通信场景,例如,打电话、传输语音信息等,因为传输音频的时候,一般要求比较大的功率,因为音频对传输速率要求比较高,因此需求较大的发射功率,否则容易出现音频卡顿现象。
预设的低功率应用通信场景,比如可以是不包含音频的通信场景,例如,手机待机、手机传输微信、短信等信息,或者手表传输心跳、心率、步数等运动数据给手机,这些场景下,需要的功率比较低,可以分类为低功率应用通信场景。其中,还可以对非音频的通信场景基于所需要的功率高低进行细分,比如一般低功率应用通信场景和极低功率应用通信场景等。
针对不同的通信场景,为不同的通信场景分别配置不同等级的功率表,比如高功率应用通信场景对应配置第一级功率表,低功率应用通信场景对应配置第二级功率表。
本实施例通过上述方案,获取智能穿戴设备的功率参数;将所述智能穿戴设备的功率参数编译成不同等级的预设功率;在智能穿戴设备与通信对端设备建立蓝牙连接后,监测所述智能穿戴设备与所述通信对端设备之间的通信场景;根据所述通信场景,选择对应的预设功率;基于选择的预设功率,在所述智能穿戴设备与所述通信对端设备之间传输场景数据。该方案可以将功率控制权掌握在智能穿戴设备端,能够根据不同的使用场景,响应不同的预设功率表,而不是由通信对端设备控制智能穿戴设备的发射功率,从而降低了智能穿戴设备的蓝牙功耗,提升续航能力,同时避免了功率选择不合适造成的音频卡顿问题。
进一步地,所述方法还可以包括:
在监测到所述智能穿戴设备与所述通信对端设备之间的通信场景变化后,根据变化后的通信场景,采用上述功率表选择规则,选择对应的预设功率表,并基于选择的预设功率 表,在所述智能穿戴设备与所述通信对端设备之间传输场景数据。具体选择原理及数据传输方案,请参照上述各实施例,在此不再赘述。
此外,本申请实施例还提出一种通信装置,所述通信装置包括:
监测模块,用于在智能穿戴设备与通信对端设备建立蓝牙连接后,监测所述智能穿戴设备与所述通信对端设备之间的通信场景;
选择模块,用于根据所述通信场景,选择对应的预设功率;
传输模块,用于基于选择的预设功率,在所述智能穿戴设备与所述通信对端设备之间传输场景数据。
本实施例实现通信的原理及实施过程,请参照上述各实施例,在此不再赘述。
此外,本申请实施例还提出一种终端设备,所述终端设备包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的通信程序,所述通信程序被所述处理器执行时实现如上述各实施例所述的通信方法的步骤。
由于本通信程序被处理器执行时,采用了前述所有实施例的全部技术方案,因此至少具有前述所有实施例的全部技术方案所带来的所有有益效果,在此不再一一赘述。
此外,本申请实施例还提出一种计算机可读存储介质,所述计算机可读存储介质上存储有通信程序,所述通信程序被处理器执行时实现如上述实施例所述的通信方法的步骤
相比现有技术,本申请实施例提出的通信方法、装置、终端设备及存储介质,在智能穿戴设备与通信对端设备建立蓝牙连接后,监测所述智能穿戴设备与所述通信对端设备之间的通信场景;根据所述通信场景,选择对应的预设功率;基于选择的预设功率,在所述智能穿戴设备与所述通信对端设备之间传输场景数据。该方案可以将功率控制权掌握在智能穿戴设备端,能够根据不同的使用场景,响应不同的预设功率表,而不是由通信对端设备控制智能穿戴设备的发射功率,从而降低了智能穿戴设备的蓝牙功耗,提升续航能力,同时避免了功率选择不合适造成的音频卡顿问题。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者系统中还存在另外的相同要素。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者 是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上的一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,被控终端,或者网络设备等)执行本申请每个实施例的方法。
以上仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (20)

  1. 一种通信方法,其特征在于,应用于智能穿戴设备,所述方法包括以下步骤:
    在智能穿戴设备与通信对端设备建立蓝牙连接后,监测所述智能穿戴设备与所述通信对端设备之间的通信场景;
    根据所述通信场景,选择对应的预设功率;
    基于选择的预设功率,在所述智能穿戴设备与所述通信对端设备之间传输场景数据。
  2. 根据权利要求1所述的通信方法,其特征在于,所述通信场景包括:预设的高功率应用通信场景和低功率应用通信场景,所述根据所述通信场景,选择对应的预设功率的步骤包括:
    若所述通信场景为预设的高功率应用通信场景,则选择对应的第一级功率表;
    若所述通信场景为预设的低功率应用通信场景,则选择对应的第二级功率表,所述第一级功率表的功率范围的最大功率大于所述第二级功率表的功率范围的最大功率。
  3. 根据权利要求2所述的通信方法,其特征在于,所述选择对应的第一级功率的步骤之前还包括:
    若所述通信场景为预设的高功率应用通信场景,则选择默认功率表,所述默认功率表的功率范围的最大功率小于所述第一级功率表的功率范围的最大功率;
    若所述智能穿戴设备接收到所述通信对端设备的最大功率请求信号,则以所述默认功率表的功率范围的最大功率向所述通信对端设备发送场景数据测试包;
    若所述智能穿戴设备在预设时间内未接收到所述通信对端设备的响应数据,则执行步骤:选择对应的第一级功率表。
  4. 根据权利要求3所述的通信方法,其特征在于,所述若所述智能穿戴设备接收到所述通信对端设备的最大功率请求信号,则以所述默认功率表的功率范围的最大功率向所述通信对端设备发送场景数据测试包的步骤之后还包括:
    若所述智能穿戴设备在预设时间内接收到所述通信对端设备的响应数据,则继续以所述默认功率表的功率范围的最大功率向所述通信对端设备发送场景数据。
  5. 根据权利要求2或3所述的通信方法,其特征在于,所述基于选择的预设功率,在所述智能穿戴设备与所述通信对端设备之间传输场景数据的步骤包括:
    若选择对应的第一级功率表,则获取所述智能穿戴设备接收到的、所述通信对端设备发送的功率请求信号;
    若所述通信对端设备发送的功率请求信号为最大功率请求信号,则选取所述第一级功率表的功率范围的最大功率;
    以选取的所述第一级功率表的功率范围的最大功率向所述通信对端设备发送对应的场景数据。
  6. 根据权利要求5所述的通信方法,其特征在于,所述基于选择的预设功率,在所述智能穿戴设备与所述通信对端设备之间传输场景数据的步骤还包括:
    若选择对应的第二级功率表,则获取所述智能穿戴设备接收到的、所述通信对端设备发送的功率请求信号;
    若所述通信对端设备发送的功率请求信号为最大功率请求信号,则选取所述第二级功率表的功率范围的最大功率;
    以选取的所述第二级功率表的功率范围的最大功率向所述通信对端设备发送对应的场景数据。
  7. 根据权利要求5所述的通信方法,其特征在于,所述默认功率表与所述第二级功率表为相同的功率表。
  8. 根据权利要求2所述的通信方法,其特征在于,所述根据所述通信场景,选择对应的预设功率的步骤之前还包括:
    获取所述智能穿戴设备的功率参数;
    将所述智能穿戴设备的功率参数编译成不同等级的预设功率表。
  9. 根据权利要求2所述的通信方法,其特征在于,所述预设的高功率应用通信场景为音频通信场景,所述预设的低功率应用通信场景为非音频通信场景。
  10. 根据权利要求1所述的通信方法,其特征在于,所述方法还包括:
    在监测到所述智能穿戴设备与所述通信对端设备之间的通信场景变化后,根据变化后的通信场景,选择对应的预设功率,并基于选择的预设功率,在所述智能穿戴设备与所述通信对端设备之间传输场景数据。
  11. 一种通信装置,其特征在于,所述通信装置包括:
    监测模块,用于在智能穿戴设备与通信对端设备建立蓝牙连接后,监测所述智能穿戴设备与所述通信对端设备之间的通信场景;
    选择模块,用于根据所述通信场景,选择对应的预设功率;
    传输模块,用于基于选择的预设功率,在所述智能穿戴设备与所述通信对端设备之间传输场景数据。
  12. 一种终端设备,其特征在于,所述终端设备包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的通信程序,所述通信程序被所述处理器执行时实现通信方法; 所述通信方法包括以下步骤:
    在智能穿戴设备与通信对端设备建立蓝牙连接后,监测所述智能穿戴设备与所述通信对端设备之间的通信场景;
    根据所述通信场景,选择对应的预设功率;
    基于选择的预设功率,在所述智能穿戴设备与所述通信对端设备之间传输场景数据。
  13. 根据权利要求12所述的终端设备,其特征在于,所述通信场景包括:预设的高功率应用通信场景和低功率应用通信场景,所述根据所述通信场景,选择对应的预设功率的步骤包括:
    若所述通信场景为预设的高功率应用通信场景,则选择对应的第一级功率表;
    若所述通信场景为预设的低功率应用通信场景,则选择对应的第二级功率表,所述第一级功率表的功率范围的最大功率大于所述第二级功率表的功率范围的最大功率。
  14. 根据权利要求13所述的终端设备,其特征在于,所述选择对应的第一级功率的步骤之前还包括:
    若所述通信场景为预设的高功率应用通信场景,则选择默认功率表,所述默认功率表的功率范围的最大功率小于所述第一级功率表的功率范围的最大功率;
    若所述智能穿戴设备接收到所述通信对端设备的最大功率请求信号,则以所述默认功率表的功率范围的最大功率向所述通信对端设备发送场景数据测试包;
    若所述智能穿戴设备在预设时间内未接收到所述通信对端设备的响应数据,则执行步骤:选择对应的第一级功率表。
  15. 根据权利要求14所述的终端设备,其特征在于,所述若所述智能穿戴设备接收到所述通信对端设备的最大功率请求信号,则以所述默认功率表的功率范围的最大功率向所述通信对端设备发送场景数据测试包的步骤之后还包括:
    若所述智能穿戴设备在预设时间内接收到所述通信对端设备的响应数据,则继续以所述默认功率表的功率范围的最大功率向所述通信对端设备发送场景数据。
  16. 根据权利要求13或14所述的终端设备,其特征在于,所述基于选择的预设功率,在所述智能穿戴设备与所述通信对端设备之间传输场景数据的步骤包括:
    若选择对应的第一级功率表,则获取所述智能穿戴设备接收到的、所述通信对端设备发送的功率请求信号;
    若所述通信对端设备发送的功率请求信号为最大功率请求信号,则选取所述第一级功率表的功率范围的最大功率;
    以选取的所述第一级功率表的功率范围的最大功率向所述通信对端设备发送对应的场景数据。
  17. 根据权利要求16所述的终端设备,其特征在于,所述基于选择的预设功率,在所述智能穿戴设备与所述通信对端设备之间传输场景数据的步骤还包括:
    若选择对应的第二级功率表,则获取所述智能穿戴设备接收到的、所述通信对端设备发送的功率请求信号;
    若所述通信对端设备发送的功率请求信号为最大功率请求信号,则选取所述第二级功率表的功率范围的最大功率;
    以选取的所述第二级功率表的功率范围的最大功率向所述通信对端设备发送对应的场景数据。
  18. 根据权利要求13所述的终端设备,其特征在于,所述根据所述通信场景,选择对应的预设功率的步骤之前还包括:
    获取所述智能穿戴设备的功率参数;
    将所述智能穿戴设备的功率参数编译成不同等级的预设功率表。
  19. 根据权利要求12所述的终端设备,其特征在于,所述方法还包括:
    在监测到所述智能穿戴设备与所述通信对端设备之间的通信场景变化后,根据变化后的通信场景,选择对应的预设功率,并基于选择的预设功率,在所述智能穿戴设备与所述通信对端设备之间传输场景数据。
  20. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有通信程序,所述通信程序被处理器执行时实现如权利要求1-10中任一项所述的通信方法的步骤。
PCT/CN2021/129386 2020-12-11 2021-11-08 通信方法、装置、终端设备及存储介质 WO2022121596A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21902303.3A EP4262254A4 (en) 2020-12-11 2021-11-08 COMMUNICATION METHOD AND DEVICE, TERMINAL DEVICE AND STORAGE MEDIUM
US18/328,639 US20230309020A1 (en) 2020-12-11 2023-06-02 Communication method, terminal device, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011468548.0A CN112601207B (zh) 2020-12-11 2020-12-11 通信方法、装置、终端设备及存储介质
CN202011468548.0 2020-12-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/328,639 Continuation US20230309020A1 (en) 2020-12-11 2023-06-02 Communication method, terminal device, and storage medium

Publications (1)

Publication Number Publication Date
WO2022121596A1 true WO2022121596A1 (zh) 2022-06-16

Family

ID=75195123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/129386 WO2022121596A1 (zh) 2020-12-11 2021-11-08 通信方法、装置、终端设备及存储介质

Country Status (4)

Country Link
US (1) US20230309020A1 (zh)
EP (1) EP4262254A4 (zh)
CN (2) CN116801223A (zh)
WO (1) WO2022121596A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116801223A (zh) * 2020-12-11 2023-09-22 Oppo广东移动通信有限公司 通信方法、装置、终端设备及存储介质
CN116033209B (zh) * 2022-08-29 2023-10-20 荣耀终端有限公司 投屏方法和电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101132206A (zh) * 2007-09-25 2008-02-27 上海华为技术有限公司 功率控制方法与无线设备
CN102076075A (zh) * 2010-12-23 2011-05-25 意法·爱立信半导体(北京)有限公司 控制对端的数据发送功率的方法、装置以及系统
WO2017074828A1 (en) * 2015-10-30 2017-05-04 Microsoft Technology Licensing, Llc Communication interface for wearable devices
CN109032246A (zh) * 2018-05-31 2018-12-18 北京数科技有限公司 一种智能穿戴设备的控制方法、装置、电子设备及介质
CN111757303A (zh) * 2019-03-26 2020-10-09 华为技术有限公司 一种蓝牙发射功率的控制方法以及终端设备
CN112601207A (zh) * 2020-12-11 2021-04-02 Oppo广东移动通信有限公司 通信方法、装置、终端设备及存储介质

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101895977A (zh) * 2010-07-19 2010-11-24 华为终端有限公司 控制终端信号发射的方法和终端
CN106332132B (zh) * 2015-07-03 2021-05-04 中兴通讯股份有限公司 一种自适应式蓝牙性能调节的通讯终端及方法
CN109005582B (zh) * 2018-08-14 2021-07-13 Oppo广东移动通信有限公司 发射功率调整方法、装置、电子设备及存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101132206A (zh) * 2007-09-25 2008-02-27 上海华为技术有限公司 功率控制方法与无线设备
CN102076075A (zh) * 2010-12-23 2011-05-25 意法·爱立信半导体(北京)有限公司 控制对端的数据发送功率的方法、装置以及系统
WO2017074828A1 (en) * 2015-10-30 2017-05-04 Microsoft Technology Licensing, Llc Communication interface for wearable devices
CN109032246A (zh) * 2018-05-31 2018-12-18 北京数科技有限公司 一种智能穿戴设备的控制方法、装置、电子设备及介质
CN111757303A (zh) * 2019-03-26 2020-10-09 华为技术有限公司 一种蓝牙发射功率的控制方法以及终端设备
CN112601207A (zh) * 2020-12-11 2021-04-02 Oppo广东移动通信有限公司 通信方法、装置、终端设备及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4262254A4 *

Also Published As

Publication number Publication date
CN112601207A (zh) 2021-04-02
EP4262254A4 (en) 2024-03-06
US20230309020A1 (en) 2023-09-28
CN116801223A (zh) 2023-09-22
EP4262254A1 (en) 2023-10-18
CN112601207B (zh) 2023-07-21

Similar Documents

Publication Publication Date Title
WO2022121596A1 (zh) 通信方法、装置、终端设备及存储介质
CN106658366B (zh) 蓝牙工作模式的切换方法、装置及蓝牙芯片、电子设备
US9531501B2 (en) Data transfer between electronic devices
EP4329378A2 (en) Electronic device for supporting access to wireless media using target wake time (twt) defined in ieee 802.11 standard
CN112821963B (zh) 一种减少对扬声器干扰的方法、装置及一种电子设备
JP2008526130A (ja) コンピューティング・システムにおける電力をセーブするためにデューティ・サイクルを調整する方法と装置
CN111093259B (zh) 一种蓝牙功率调整方法、装置、存储介质及终端
US11157315B2 (en) Method for process management and electronic device
WO2021057965A1 (zh) 能力参数确定方法、上行调度方法、终端和网络侧设备
CN111787611B (zh) 一种更新寻呼周期的方法、终端设备及网络设备
US9655047B2 (en) Reducing power consumption of a wireless terminal
CN110913382A (zh) 一种基于蓝牙mesh自动调整发射功率的通信网络系统
KR20210043337A (ko) 전압 변환 방식을 제어하기 위한 전자 장치 및 그의 동작 방법
WO2021238199A1 (zh) 数据传输方法、电子设备及计算机可读存储介质
US20060100000A1 (en) System and method for dynamic power savings for short range wireless systems
CN113079536A (zh) 一种定时提前量的更新方法、装置及移动终端
US20230262810A1 (en) Data processing method and terminal
KR20220102492A (ko) 오디오 데이터를 처리하기 위한 오디오 장치 및 그의 동작 방법
CN112261712B (zh) 功率调节方法及装置
WO2021139627A1 (zh) 参数上报方法及上行调度方法、设备及介质
KR20230059213A (ko) 라디오 자원 제어 상태를 변경하기 위한 전자 장치 및 동작 방법
WO2021128556A1 (zh) 一种降低 sar 值的方法、系统及移动终端
WO2022170903A1 (zh) 蓝牙设备、蓝牙耳机及蓝牙设备的控制方法
WO2020151559A1 (zh) 能力信息上报方法、预编码矩阵指示反馈方法和通信设备
US11653307B2 (en) Modifying idle mode DRX on wireless devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21902303

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021902303

Country of ref document: EP

Effective date: 20230710