WO2022121559A1 - 移动通信系统管控方法、网络管控体、系统及存储介质 - Google Patents

移动通信系统管控方法、网络管控体、系统及存储介质 Download PDF

Info

Publication number
WO2022121559A1
WO2022121559A1 PCT/CN2021/128228 CN2021128228W WO2022121559A1 WO 2022121559 A1 WO2022121559 A1 WO 2022121559A1 CN 2021128228 W CN2021128228 W CN 2021128228W WO 2022121559 A1 WO2022121559 A1 WO 2022121559A1
Authority
WO
WIPO (PCT)
Prior art keywords
mobile communication
communication system
management
twin
control
Prior art date
Application number
PCT/CN2021/128228
Other languages
English (en)
French (fr)
Inventor
汪波
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2022121559A1 publication Critical patent/WO2022121559A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/06Testing, supervising or monitoring using simulated traffic
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/10Interfaces, programming languages or software development kits, e.g. for simulating neural networks

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a mobile communication system management and control method, a network management and control body, a system, and a storage medium.
  • the mobile communication system includes a lot of equipment, so there is a certain difficulty in management and control.
  • mobile communication systems are managed and controlled using manually defined management and control strategies, which not only rely on the management experience of managers, but also have problems such as difficulty in verifying the management and control effects and long adjustment periods after the management and control strategies are applied to the mobile communication system. Therefore, the current management and control methods of mobile communication systems have certain limitations.
  • the embodiments of the present application provide a mobile communication system management and control method, a network management and control body, a system, and a storage medium, so as to solve the limitations of the management and control methods of the mobile communication system in the prior art.
  • an embodiment of the present application provides a mobile communication system management and control method, including: sending a knowledge graph stored in a knowledge agent to a system simulation engine in a twin mobile communication system, so that the system simulation engine can
  • the knowledge graph configures the twin mobile communication system, wherein the twin mobile communication system is a simulation system of the mobile communication system; receives the management and control strategy generated by the knowledge agent and issues it to the system simulation engine, In order to enable the system simulation engine to drive the twin mobile communication system to simulate according to the management and control strategy, and to feed back a network performance knowledge graph to the knowledge agent after the simulation, wherein the network performance knowledge graph is used to make
  • the knowledge agent generates an optimized management and control strategy; receives the optimized management and control strategy sent by the knowledge agent, and controls the mobile communication system to perform corresponding management and control actions according to the optimized management and control strategy.
  • an embodiment of the present application provides a network management and control body, including a processor and a memory; the memory is used to store a computer program; the processor is used to execute the computer program and execute the computer program.
  • the program implements the mobile communication system management and control method described in the first aspect.
  • embodiments of the present application provide a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the processor implements the method described in the first aspect.
  • the described mobile communication system management and control method when the computer program is executed by a processor, the processor implements the method described in the first aspect.
  • an embodiment of the present application provides a management and control system, including the network management and control body, a knowledge agent, a mobile communication system, and a twin mobile communication system as described in the second aspect.
  • FIG. 1 is a schematic block diagram of a structure of a management and control system provided by an embodiment of the present application
  • FIG. 2 is a schematic flowchart of a mobile communication system management and control method provided by an embodiment of the present application
  • FIG. 3 is an optional system structure diagram of the mobile communication system in the embodiment of the application.
  • Fig. 4 is a kind of optional system structure diagram of twin mobile communication system in the embodiment of the application.
  • FIG. 5 is a schematic flowchart of a system simulation engine driving a twin mobile communication system to perform simulation in the embodiment of the application;
  • FIG. 6 is a schematic flowchart of another method for managing and controlling a mobile communication system according to an embodiment of the present application.
  • FIG. 7 is a schematic structural block diagram of a network management and control body provided by an embodiment of the present application.
  • the embodiments of the present application may be applied to a management and control system.
  • the management and control system may include a network management and control body, a knowledge agent, a mobile communication system, and a twin mobile communication system.
  • the communication system management and control method can be applied to a network management and control body, that is, the network management and control body can perform the method described in the embodiments of the present application to manage and control the mobile communication system.
  • the mobile communication system management and control method provided by the embodiments of the present application may be applied to a network management and control body. As shown in FIG. 2 , the method may include but not limited to steps S10 to S30.
  • Step S10 the knowledge graph stored in the knowledge agent is sent to the system simulation engine in the twin mobile communication system, so that the system simulation engine can configure the twin mobile communication system according to the knowledge graph, wherein, the twin mobile communication system is the mobile communication system. Simulation System.
  • the mobile communication system may include a user terminal, an air interface, an access network, a bearer network, a core network, an application server, a storage system, a computing system, etc.
  • the user terminal may include a mobile phone, CPE (Customer Premise Equipment) and laptop computers, etc.
  • air interface refers to the air interface between the user terminal and the access network, which can include indoor WiFi wireless channels, outdoor wireless channels and satellite communication channels, etc.
  • access The network may include 2/3/4/5G terrestrial cellular mobile network or NTN (Non-Terrestrial Networks, non-terrestrial network) satellite communication network, etc., such as macro base station, micro base station, pico base station and femto base station, etc.
  • bearer network may include PTN (Packet Transport Network, Packet Transport Network) and OTN (Optical Transport Network, Optical Transport Network), etc., such as optical fiber network and wireless Mesh backhaul network (Wireless Mesh Network), etc.;
  • the knowledge agent can be used to generate a knowledge graph according to the operation and maintenance data stored in the storage system in the mobile communication system, that is, the knowledge graph stored in the knowledge agent is generated according to the operation and maintenance data of the mobile communication system
  • the operation and maintenance data may include industrial parameter information, drive test data, MR report (Measurement Report, measurement report), log file, 3D map, KPI (Key Performance Indicator, key performance indicator) statistics and intelligent edge cache data, etc.
  • the working parameter information may include the antenna downtilt angle of the base station and the GPS position of the base station, etc.
  • the MR report may include the user terminal measurement report, etc.
  • the intelligent edge cache data refers to the application data stored in the network element equipment close to the user terminal.
  • the manner in which the knowledge agent generates the knowledge graph according to the operation and maintenance data is not limited in this embodiment of the present application.
  • the knowledge graph may be generated by using an object-oriented data modeling method, or a knowledge graph may be generated based on a deep learning AI model, etc.
  • the mobile communication system is managed and controlled by using a manually defined control strategy, which has certain limitations.
  • the limitation can be solved through the digital twin (Digital Twin) technology.
  • Twin technology is a multi-disciplinary, multi-physical, multi-scale, multi-probability simulation process that makes full use of physical models, sensor updates, operation history and other data, mainly by digitally simulating events (objects) in the physical world to construct An identical entity in a digital world through which the process of understanding, analyzing, and optimizing a physical entity is realized.
  • the knowledge graph stored in the knowledge agent can be sent to the system simulation engine in the twin mobile communication system, so that the system simulation engine can configure the twin mobile communication system according to the knowledge graph. Therefore, the configured twin mobile communication system is As the simulation system of the mobile communication system, it can be understood that the configured twin mobile communication system and the mobile communication system are basically the same in entity attributes, states, behaviors and wireless environments.
  • the knowledge graph includes a wireless environment knowledge graph, a wireless network element knowledge graph, a network management knowledge graph, and a user terminal knowledge graph.
  • the wireless environment knowledge graph may include geographic information features, wireless channel features, and coverage features.
  • geographic information features may include cell ID (which can be understood as a cell number), cell longitude and latitude, terminal longitude and latitude, POI (Point of Information) , information point) partition information and grid information, etc.
  • the cell ID may include MCC (Mobile Country Code, mobile country code), MNC (Mobile Network Code, mobile network number) and CI (Cell Identity, cell identity) composition ID information, etc.
  • POI partition information may include POI number, POI type, and POI area ratio, etc.
  • grid information may include grid ID, grid latitude and longitude, etc.
  • wireless channel characteristics may include beam pairing characteristics, channel LOS (Line of Sight, line-of-sight) attributes, channel multipath fading characteristics, channel DOA (Direction of Arriva, direction of arrival) distribution characteristics, uplink and downlink RI (Rank Indicator, rank indication) distribution, uplink and downlink PHR (Power Headroom Report, power margin) Quantity report) distribution
  • the wireless network element knowledge graph may include control plane features, user plane features, etc.
  • the control plane features may include load features, resource usage features, energy consumption features, KPI features, and event features, etc.
  • the load features may be Including the average number of online users of RRC (Radio Resource Control, Radio Resource Control layer), PDCP (Packet Data Convergence Protocol, Packet Data Convergence Protocol) layer data flow, MAC layer data flow and load stability, etc.
  • Resource usage characteristics can include uplink and downlink PRB (Physical Resource Block, Physical Resource Block) utilization, uplink and downlink CCE (Control Channel Element, Control Channel Element) scheduling times, control plane CPU utilization, and baseband processing board resource utilization, etc.
  • Energy consumption characteristics can include idle symbol occupancy ratio, symbol turn-off ratio, slot turn-off ratio, and channel turn-off ratio, etc.
  • KPI features can include RRC connection establishment success rate, wireless disconnection rate, and handover success rate, etc.
  • Event features can include channel shutdown event records , handover success/failure records, abnormal device status, and system alarm information, etc.; user plane features may include service distribution characteristics, service perception characteristics, and service traffic characteristics, etc.
  • New Radio a call solution based on pure 5G access, realizes that both voice services and data services are carried on the 5G network) the number of users, the proportion of game services, the proportion of WeChat services, NGBR (Non Guaranteed Bit Rate, non-guaranteed rate) ) service ratio, PDCP layer packet delay and RLC layer packet delay, etc.
  • Service perception characteristics refer to the user’s subjective perception of the service quality and performance of specific applications, which can include the distribution ratio of users with poor cell quality, real-time game perception, WeChat Sensing, VoNR sensing, 5QI2 video sensing and NGBR service sensing, etc.
  • Service traffic characteristics can include UE service rate distribution, UE second-level accumulated BSR (Buffer Status Report, buffer status report), UE accumulated scheduling TbSize (transport block size) and user throughput, etc.
  • the network management knowledge graph may include network configuration, algorithm strategy, and networking structure.
  • the network configuration may include slice resource configuration, base station operating frequency, base station transmit power, base station antenna downtilt, base station antenna number, and base station antennas.
  • FDD Frequency Division Duplex, Frequency Division Duplex
  • TDD Time Division Duplex, Time Division Duplex
  • algorithm strategies can include network slice control algorithms, MAC layer scheduling algorithms, PDCP layer data offloading algorithms and MU-MIMO pairing algorithms etc.
  • the networking structure may include access network structure, bearer network structure, core network structure, etc., in which the access network structure may include the number and type of base stations, etc., the bearer network structure may include backhaul Mesh networking, etc., the core network structure It may include SA networking (Stand Alone, independent networking) and NSA networking (Non-Stand Alone, non-standalone networking).
  • the user terminal knowledge graph may include behavioral features, business features, perception features, etc.
  • the behavioral features may include state features, mobile behavioral features, VR (Virtual Reality, virtual reality)/AR (Augmented Reality, augmented reality)
  • Application action features, etc. where mobile behavior features can include terminal motion trajectory
  • business features can include application layer semantic features and business category features, etc., where application layer semantic features can include natural language, visual semantics, and image semantics, etc., business category features It can include small packets and VoNR, etc.
  • perceptual characteristics refer to the user's subjective feelings, which can include video QoE (Quality of Experience) perceptual characteristics, visual perception characteristics, auditory perception characteristics, tactile perception characteristics, olfactory perception characteristics and taste perception. features, etc.
  • the twin mobile communication system includes a plurality of twin communication devices, twin air interfaces, a terminal motion model (not shown in the figure) and a service model (not shown in the figure), and the twin air interfaces include Channel model and antenna model.
  • the aforementioned "system simulation engine configures the twin mobile communication system according to the knowledge graph” may include but is not limited to the following: configuring software algorithm parameters of multiple twin communication devices according to the wireless network element knowledge graph, configuring multiple twin communication devices according to the network management knowledge graph
  • the hardware parameters and software algorithm strategy of a twin communication device, the channel model is configured according to the wireless environment knowledge graph, the antenna model is configured according to the network management knowledge graph, and the terminal motion model and service model are configured according to the user terminal knowledge graph.
  • the mobile communication system includes a plurality of communication devices (for the convenience of description, these communication devices are called actual devices), because the twin mobile communication system is a corresponding simulation system, so the twin mobile communication system includes the twin communication devices corresponding to these actual devices.
  • the twin communication devices may include actual communication devices (that is, actual products), and may also include virtual devices simulated by software, such as virtual devices simulated by OAI (Open Air Interface) software. Therefore, twin communication devices may include twin users. Terminal, twin access network, twin bearer network, twin core network, twin internet, twin application server, twin storage system and twin computing system, etc.
  • the twin user terminal may be a virtual device simulated by the OAI software for simulating a user terminal in an actual mobile communication system, and the twin user terminal has 3GPP (3rd Generation Partnership Project, 3rd Generation Partnership Project) protocol regulations. All communication functions, such as RRC (Radio Resource Control, Radio Resource Control), PDCP (Packet Data Convergence Protocol, Packet Data Convergence Protocol), RLC (Radio Link Control, Radio Link Layer Control Protocol), MAC (Media Access Control) , media access control), PHY (Physical Layer, port physical layer), S1 interface, X2 interface and application layer, etc.
  • RRC Radio Resource Control
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control, Radio Link Layer Control Protocol
  • MAC Media Access Control
  • PHY Physical Layer, port physical layer
  • the twin access network may include twin base stations, and the twin base stations may be virtual devices simulated by OAI software for simulating base stations in an actual mobile communication system.
  • the twin base stations have all the communication functions specified in the 3GPP protocol, such as With NAS (Network Attached Storage, network attached storage), RRC, PDCP, RLC, MAC and PHY, etc.
  • the twin bearer network may be an optical fiber or a network cable or the like.
  • the twin core network can be a virtual device simulated by the OAI software for simulating the core network in the actual mobile communication system, and the twin core network has all the communication functions specified by the 3GPP protocol, such as HSS (Home Subscriber Server, Home User Server), MME (Mobility Management Entity, mobility management node), SGW (Serving GateWay, serving gateway) and PGW (Packet data network GateWay, packet data gateway), etc.
  • the twin Internet, twin application server, twin storage system, and twin computing system may be virtual devices processed by software simulation, or corresponding functions may be simulated by a system simulation engine or the like.
  • the system simulation engine can configure the software algorithm parameters of each twin communication device according to the wireless network element knowledge graph, and configure the hardware parameters and software algorithm strategies of each twin communication device according to the network management knowledge graph.
  • the system simulation engine can configure the UE (User Equipment, user terminal) capabilities, physical layer algorithm parameters, MAC layer algorithm parameters, UE reporting neighbor relationship, UE uplink and downlink MCS (Modulation and Coding Scheme, modulation and coding strategy), etc.;
  • the system simulation engine can configure the base station of the twin base station (a kind of twin access network) according to the wireless network element knowledge map and the network management knowledge map ID, geographic information, physical layer algorithm parameters, MAC layer algorithm parameters, KPI performance, etc.
  • the system simulation engine can also configure the channel model according to the wireless environment knowledge graph, where the channel model can include path loss parameters, channel characteristic parameters, and interference characteristic parameters.
  • the system simulation engine can configure the path loss parameter according to the RSRP of the user serving cell, the RSRP of the user serving neighbor cell, and the downlink reference signal power in the wireless environment knowledge graph.
  • the path loss parameter is determined according to the following formula.
  • PL i,j represents the path loss parameter between user terminal j and cell i
  • dlrstxpower i represents the reference signal transmit power of cell i
  • PSRP i,j represents the RSRP of cell i reported by terminal j; when it is a continuous time slice , that is, there are multiple sets of data, firstly calculate multiple road loss samples according to the aforementioned formula, then perform curve fitting on these road loss samples to obtain the corresponding probability distribution, and finally generate a random number according to the probability distribution.
  • the number is the path loss parameter.
  • the path loss parameters can also be configured through a ray tracing algorithm, and the specific process is not limited in this embodiment of the present application.
  • the channel characteristic parameters may include beam pairing characteristics, channel LOS attributes, channel multipath fading characteristics, channel DOA distribution characteristics, uplink and downlink RI distribution, uplink and downlink PHR distribution, and user channel PMI weights, etc.
  • Wireless channel feature configuration in wireless environment knowledge graph may include uplink RB average NI and interference slot level fluctuation status, etc., and the system simulation engine may be configured according to the cell interference characteristics in the wireless environment knowledge graph.
  • system simulation engine can also configure the antenna model according to the network management knowledge graph.
  • the antenna model is used to simulate the 360-degree horizontal and vertical antenna gains of the base station antenna in the mobile communication system.
  • the system simulation engine can be configured according to the network management knowledge graph. For example, according to the knowledge data configuration of the drive test data in the network management knowledge graph.
  • the system simulation engine can also configure the terminal motion model and the service model with the user terminal knowledge graph, wherein the terminal motion model is used to simulate the position of the user terminal in the mobile communication system.
  • the system simulation engine can be based on the user terminal knowledge graph behavioral feature configuration.
  • the service model may include load characteristic parameters, service characteristic parameters, etc.
  • the load characteristic parameters may include uplink and downlink PRB utilization, the average number of RRC online users, and uplink and downlink CCE utilization, etc.
  • the service characteristic parameters may include BSR, Service type, service package size, service package quantity, service package interaction process, service package interval, etc.
  • the twin mobile communication system further includes an environment similarity comparison module, and the environment similarity comparison module is used for: after the system simulation engine configures the twin mobile communication system, according to the same communication characteristics as the twin mobile communication system and the mobile communication system Determine the restoration degree of the twin mobile communication system to the mobile communication system, and update the twin mobile communication system according to the knowledge graph when it is detected that the restoration degree is lower than the preset threshold.
  • the twin mobile communication system and the mobile communication system are basically the same in entity attributes, status, behavior and wireless environment. Therefore, in order to maintain this state, the restoration degree of the twin mobile communication system to the mobile communication system can be monitored.
  • the twin mobile communication system can be updated according to the knowledge graph (that is, the twin mobile communication system is reconfigured) to ensure that the twin mobile communication system can be consistent with the actual mobile communication system in all aspects.
  • the system simulation engine may determine the degree of restoration based on one or more common communication characteristics of the two systems, wherein the communication characteristics may include any of the characteristics described above, and the degree of restoration may be determined according to the following formula.
  • S represents the degree of reduction
  • abs() represents the absolute value
  • T real and T twin represent the same communication characteristics of the actual mobile communication system and the twin mobile communication system respectively, and the preset threshold can be reasonably set according to actual needs.
  • Step S20 receiving the management and control strategy generated by the knowledge agent and sending it to the system simulation engine, so that the system simulation engine can drive the twin mobile communication system to perform simulation according to the management and control strategy and feed back the network performance knowledge map to the knowledge agent after the simulation is completed,
  • the network performance knowledge graph is used to enable knowledge agents to generate optimized management and control strategies.
  • Step S30 Receive the optimized management and control strategy sent by the knowledge agent, and control the mobile communication system to perform corresponding management and control actions according to the optimized management and control strategy.
  • the management and control strategy is mainly to adjust the working state and/or work flow of the communication device, and is mainly applied to the access network and the core network.
  • the management and control strategy may include adjusting the physical layer, MAC layer, RLC layer, PDCP of the base station. Layer, RRC layer, TCP layer or IP layer algorithm parameters, process or type, etc., the management and control strategy may also include adjusting the device hardware operation process, handover process or paging process, etc.
  • the network performance knowledge graph can be used to characterize the control effect of the management and control strategy, which can include PDCP layer data traffic, MAC layer data traffic, uplink and downlink PRB utilization, uplink and downlink CCE scheduling times, user SINR (Signal to Interference plus Noise Ratio, signal dryness) ratio), user MCS, user BLER, RRC connection establishment success rate, wireless disconnection rate, handover success rate, or user service perception MOS (Mean Opinion Score, mean opinion value) score, etc.
  • SINR Signal to Interference plus Noise Ratio, signal dryness
  • the configured twin mobile communication system is a simulation system of the mobile communication system, and the two are basically the same in entity attributes, status, behavior and wireless environment. Therefore, the control strategy is issued to the system simulation engine, and the system simulation engine is based on the The management and control strategy drives the twin mobile communication system for simulation, which is equivalent to the network controller controlling the mobile communication system to perform corresponding management and control actions according to the management and control strategy. Since the twin mobile communication system is a virtual digital system, the twin mobile communication system is simulated after the end of the simulation.
  • the network performance knowledge map can be generated, that is, the network performance knowledge map corresponding to the management and control strategy can be quickly obtained.
  • the management and control effect of the management and control strategy can be known through the network performance knowledge graph, that is, the network performance of the system becomes better or worse after applying the management and control strategy, so that the knowledge agent can generate the optimized management and control strategy and send it to Therefore, the network management and control body can control the mobile communication system to perform corresponding management and control actions according to the optimized management and control strategy.
  • the verification difficulty of the management and control effect can be effectively reduced by using the twin mobile communication system, thereby effectively shortening the management and control adjustment period, and solving the limitations of the management and control methods of the mobile communication system in the prior art.
  • a management and control strategy may be issued to the system simulation engine, so that the system simulation engine drives the twin mobile communication system to perform simulation according to the management and control strategy, and sends the network performance knowledge graph to the knowledge agent after the simulation is completed,
  • the knowledge agent can know the management and control effect of the management and control strategy according to the network performance knowledge graph.
  • the management and control effect can be known according to the user's SINR value.
  • the body can be optimized to generate an optimized management and control strategy and send it to the network management and control body, so that the network management and control body can control the mobile communication system to perform corresponding management and control actions according to the optimized management and control strategy.
  • the optimized management and control strategy is the management and control strategy with the management and control effect reaching the standard, that is, the network performance of the system can meet the standard after the strategy is applied to the mobile communication system, for example, the user SINR value can reach the aforementioned threshold.
  • multiple management and control strategies may be delivered to the system simulation engine respectively, wherein the multiple management and control strategies may be approximate management and control strategies.
  • num_2, num_3, ..., num_N so that the system simulation engine can drive the twin mobile communication system to simulate successively according to each control strategy and send each network performance knowledge map to the knowledge agent after the simulation. Therefore, the knowledge agent
  • the management and control effect of each management and control strategy can be known according to each network performance knowledge graph.
  • the management and control effect of each management and control strategy can be known according to the SINR value of each user.
  • the user SINR value For example, the algorithm parameter corresponding to the user SINR value with the largest value is num_5.
  • the knowledge agent can generate an optimized management and control strategy according to the network performance knowledge graph corresponding to the strategy, that is, generate a management and control strategy with the best management and control effect and send it to the network management and control body, so that the network management and control body can be based on the optimized management and control.
  • the policy controls the mobile communication system to perform corresponding management and control actions.
  • step S20 “the system simulation engine drives the twin mobile communication system to perform simulation according to the management and control strategy and feeds back the network performance knowledge graph to the knowledge agent after the simulation is over”, may include but not be limited to the following content: system simulation The engine enables the twin mobile communication system to repeatedly execute the simulation task corresponding to the management and control strategy within a preset time period, and records the performance indicators output by the twin mobile communication system after each execution of the simulation task, and generates them according to multiple performance indicators after the simulation ends. The network performance knowledge graph is fed back to the knowledge agent.
  • a reasonable simulation time period can be set in advance, so that the system simulation engine can drive the twin mobile communication system to repeatedly perform the simulation tasks within the corresponding time period. After the simulation task is executed, a performance indicator will be output. Therefore, after the simulation is completed, the system simulation engine can generate a network performance knowledge graph corresponding to the management and control strategy according to multiple performance indicators and send it to the knowledge agent.
  • the system simulation engine is further configured to update the channel model in the twin mobile communication system according to the knowledge graph before each time the twin mobile communication system performs the simulation task.
  • the change frequency of the wireless channel between the user terminal and the access network is relatively high.
  • the wireless channel changes due to the movement of the user terminal. Therefore, the system simulation engine makes the twin mobile communication system perform simulation every time.
  • the channel model of the twin mobile communication system can be updated according to the knowledge graph, so as to ensure the restoration degree of the twin mobile communication system to the actual mobile communication system during the verification of the management and control effect, and improve the reliability of the verification of the management and control effect.
  • the system simulation engine can first update the channel model according to the knowledge graph, and then make the twin mobile communication system perform the corresponding tasks. Then, when the simulation time arrives, the system simulation engine can generate the network performance knowledge graph of the management and control strategy according to multiple performance indicators.
  • the method may further include, but is not limited to, step S40.
  • Step S40 when it is detected that the network performance of the mobile communication system deteriorates, control the mobile communication system to perform corresponding management and control actions again according to the original management and control strategy, wherein the original management and control strategy is performed before the mobile communication system is controlled according to the optimized management and control strategy.
  • the network management and control body can control the mobile communication system to perform corresponding management and control actions according to the optimized management and control strategy, but this process takes a long time. Therefore, in order to improve the reliability of the embodiments of the present application, the network management and control body can monitor the mobile communication system. When the network performance of the communication system changes, when it is detected that the network performance deteriorates, the mobile communication system can be controlled to perform corresponding management and control actions again according to the original management and control strategy, so as to restore the network performance of the mobile communication system.
  • An embodiment of the present application further provides a network management and control body, as shown in FIG. 7 , including a processor and a memory, where the memory is used to store a computer program; the processor is used to execute the computer program and implement the embodiments of the present application when executing the computer program Any of the provided mobile communication system management and control methods.
  • the processor may be a central processing unit (Central Processing Unit, CPU), and the processor may also be other general-purpose processors, digital signal processors (Digital Signal Processors, DSP), application specific integrated circuits (Application Specific Integrated circuits) Circuit, ASIC), Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor can be a microprocessor or the processor can also be any conventional processor or the like.
  • Embodiments of the present application further provide a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed by the processor, the processor enables the processor to implement any one of the mobile communication systems provided by the embodiments of the present application control method.
  • the mobile communication system management and control method, network management and control body, system, and storage medium provided by the embodiments of the present application include: sending the knowledge graph stored in the knowledge agent to the system simulation engine in the twin mobile communication system, so that the system simulates The engine can configure the twin mobile communication system according to the knowledge graph, wherein, the twin mobile communication system is the simulation system of the mobile communication system; it receives the management and control strategy generated by the knowledge agent and sends it to the system simulation engine, so that the system simulation engine can be based on the management and control strategy.
  • twin mobile communication system to simulate and feed back the network performance knowledge graph to the knowledge agent after the simulation, where the network performance knowledge graph is used to enable the knowledge agent to generate an optimized management and control strategy; control strategy, and control the mobile communication system to perform corresponding control actions according to the optimized management and control strategy.
  • the twin mobile communication system is a simulation system of the mobile communication system, and because the twin mobile communication system is a digital system, the verification difficulty of the control effect can be effectively reduced through the twin mobile communication system, thereby effectively shortening the control adjustment period and solving the problem.
  • the limitations of the management and control methods of the mobile communication system in the prior art are eliminated.
  • computer-readable storage medium includes volatile and non-volatile and non-volatile storage media implemented in any method or technology for storage of information, such as computer-readable instructions, data structures, program modules or other data. Volatile, removable and non-removable media.
  • Computer-readable storage media include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, magnetic tape, magnetic disk storage or other magnetic storage devices, Or any other medium that can be used to store the desired information and that can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and can include any information delivery media, as is well known to those of ordinary skill in the art .
  • the computer-readable storage medium may be an internal storage unit of the network management and control body described in the foregoing embodiments, such as a hard disk or a memory of the network management and control body.
  • the computer-readable storage medium can also be an external storage device of the network management and control body, such as a plug-in hard disk, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) card equipped on the network management and control body , Flash Card (Flash Card) and so on.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Computing Systems (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Evolutionary Computation (AREA)
  • Mathematical Physics (AREA)
  • Artificial Intelligence (AREA)
  • Signal Processing (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种移动通信系统管控方法、网络管控体、系统及存储介质,该方法包括:将知识智能体中存储的知识图谱发送给孪生移动通信系统中的系统仿真引擎,以使系统仿真引擎能够根据知识图谱配置孪生移动通信系统,其中,孪生移动通信系统为移动通信系统的仿真系统;接收知识智能体生成的管控策略并下发给系统仿真引擎,以使系统仿真引擎能够根据管控策略驱动孪生移动通信系统进行仿真并在仿真结束后向知识智能体反馈网络性能知识图谱,其中,网络性能知识图谱用于使知识智能体生成优化后的管控策略;接收知识智能体发送的优化后的管控策略,并根据优化后的管控策略控制移动通信系统执行相应的管控动作。

Description

移动通信系统管控方法、网络管控体、系统及存储介质
相关申请的交叉引用
本申请要求享有2020年12月07日提交的名称为“移动通信系统管控方法、网络管控体、系统及存储介质”的中国专利申请CN202011418782.2的优先权,其全部内容通过引用并入本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种移动通信系统管控方法、网络管控体、系统及存储介质。
背景技术
移动通信系统包括的设备繁多,因此存在一定的管控难度。目前,移动通信系统采用人工定义的管控策略进行管控,这种方式不仅依赖管理人员的管理经验,并且在将管控策略应用于移动通信系统后,存在管控效果验证难度大、管控调整周期长等问题,因此,目前移动通信系统的管控方式存在一定的局限性。
发明内容
基于此,本申请实施例提供了一种移动通信系统管控方法、网络管控体、系统及存储介质,以解决现有技术中移动通信系统的管控方式存在的局限性。
第一方面,本申请实施例提供了一种移动通信系统管控方法,包括:将知识智能体中存储的知识图谱发送给孪生移动通信系统中的系统仿真引擎,以使所述系统仿真引擎能够根据所述知识图谱配置所述孪生移动通信系统,其中,所述孪生移动通信系统为所述移动通信系统的仿真系统;接收所述知识智能体生成的管控策略并下发给所述系统仿真引擎,以使所述系统仿真引擎能够根据所述管控策略驱动所述孪生移动通信系统进行仿真并在仿真结束后向所述知识智能体反馈网络性能知识图谱,其中,所述网络性能知识图谱用于使所述知识智能体生成优化后的管控策略;接收所述知识智能体发送的优化后的管控策略,并根据所述优化后的管控策略控制所述移动通信系统执行相应的管控动作。
第二方面,本申请实施例提供了一种网络管控体,包括处理器与存储器;所述存储器,用于存储计算机程序;所述处理器,用于执行所述计算机程序并在执行所述计算机程序时实现如第一方面所述的移动通信系统管控方法。
第三方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现如第一方面所述的 移动通信系统管控方法。
第四方面,本申请实施例提供了一种管控系统,包括如第二方面所述的网络管控体、知识智能体、移动通信系统以及孪生移动通信系统。
附图说明
图1为本申请实施例提供的管控系统的一种结构示意性框图;
图2为本申请实施例提供的移动通信系统管控方法的一种流程示意图;
图3为本申请实施例中移动通信系统的一种可选的系统结构图;
图4为本申请实施例中孪生移动通信系统的一种可选的系统结构图;
图5为本申请实施例中系统仿真引擎驱动孪生移动通信系统进行仿真的一种流程示意图;
图6为本申请实施例中移动通信系统管控方法的另一种流程示意图;
图7为本申请实施例提供的网络管控体的一种结构示意性框图。
具体实施方式
下面将结合本说明书实施例中的附图,对本说明书实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本说明书一部分实施例,而不是全部的实施例。基于本说明书中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本说明书保护的范围。
附图中所示的流程图仅是示例说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解、组合或部分合并,因此实际执行的顺序有可能根据实际情况改变。
下面结合附图,对本说明书的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
本申请实施例可以应用于一种管控系统,如图1所示,该管控系统可以包括网络管控体、知识智能体、移动通信系统以及孪生移动通信系统,其中,本申请实施例所述的移动通信系统管控方法可以应用于网络管控体,即网络管控体可以执行本申请实施例所述的方法对该移动通信系统进行管控。
基于此,本申请实施例提供的移动通信系统管控方法,可以应用于网络管控体,如图2所示,该方法可以包括但不限于步骤S10至步骤S30。
步骤S10,将知识智能体中存储的知识图谱发送给孪生移动通信系统中的系统仿真引擎,以使系统仿真引擎能够根据知识图谱配置孪生移动通信系统,其中,孪生移动通信系 统为移动通信系统的仿真系统。
在一些实施方式中,如图3所示,移动通信系统可以包括用户终端、空口、接入网、承载网、核心网、应用服务器、存储系统和计算系统等,其中,用户终端可以包括手机、CPE(Customer Premise Equipment,客户前置设备)和手提电脑等;空口指的是用户终端与接入网之间的空中接口,可以包括室内WiFi无线信道、室外无线信道以及卫星通信信道等;接入网可以包括2/3/4/5G地面蜂窝移动网或NTN(Non-Terrestrial Networks,非地面网络)卫星通信网络等,例如包括宏基站、微基站、皮基站和飞基站等;承载网可以包括PTN(Packet Transport Network,分组传输网)以及OTN(Optical Transport Network,光传输网)等,例如包括光纤网和无线Mesh回传网(Wireless Mesh Network)等;核心网可以包括2/3/4/5G核心网等;应用服务器指部署应用业务的服务器,用于处理对端业务,可以包括网站服务器以及视屏点播服务器等;存储系统用于存储该移动通信系统的运维数据;计算系统用于为该移动通信系统提供管理计算功能,例如可以包括边缘计算设备。
在一些实施方式中,知识智能体可以用于根据移动通信系统中的存储系统存储的运维数据生成知识图谱,即知识智能体中存储的知识图谱是根据移动通信系统的运维数据生成的,其中,运维数据可以包括工参信息、路测数据、MR报告(Measurement Report,测量报告)、日志文件、3D地图、KPI(Key Performance Indicator,关键性能指标)统计和智能边缘缓存数据等,其中,工参信息可以包括基站的天线下倾角以及基站的GPS位置等;MR报告可以包括用户终端测量报告等;智能边缘缓存数据指的是靠近用户终端的网元设备中存储的应用数据。需要说明的是,知识智能体根据运维数据生成知识图谱的方式本申请实施例并不作限制,例如可以利用对象化数据建模方法生成知识图谱,或者基于深度学习AI模型生成知识图谱等。
在现有技术中,移动通信系统采用人工定义的管控策略进行管控,这种方式存在一定的局限性,基于此,发明人发现可以通过数字孪生(Digital Twin)技术解决该局限性,其中,数字孪生技术是充分利用物理模型、传感器更新、运行历史等数据,集成多学科、多物理量、多尺度、多概率的仿真过程,主要是通过对物理世界中的事件(物体)进行数字化模拟,来构建一个数字世界中一模一样的实体,藉此来实现对物理实体的了解、分析和优化的过程。基于前述思想,可以将知识智能体中存储的知识图谱发送给孪生移动通信系统中的系统仿真引擎,使得系统仿真引擎可以根据知识图谱去配置孪生移动通信系统,因此配置后的孪生移动通信系统即为移动通信系统的仿真系统,可以理解,配置后的孪生移动通信系统和移动通信系统在实体属性、状态、行为和无线环境上基本一致。
在一些实施方式中,知识图谱包括无线环境知识图谱、无线网元知识图谱、网络管理知识图谱和用户终端知识图谱。
其中,无线环境知识图谱可以包括地理信息特征、无线信道特征以及覆盖特征等,示例性的,地理信息特征可以包括小区ID(可以理解为小区编号)、小区经纬度、终端经纬度、POI(Point of Information,信息点)分区信息以及栅格信息等,其中,小区ID可以包括由MCC(Mobile Country Code,移动国家码)、MNC(Mobile Network Code,移动网络号码)以及CI(Cell Identity,小区标识)组成的ID信息等,POI分区信息可以包括POI个数、POI类型以及POI面积占比等,栅格信息可以包括栅格ID以及栅格经纬度等;无线信道特征可以包括波束配对特征、信道LOS(Line of Sight,视距)属性、信道多径衰落特性、信道DOA(Direction of Arriva,波达方向)分布特性、上下行RI(Rank Indicator,秩指示)分布、上下行PHR(Power Headroom Report,功率裕量报告)分布、用户信道PMI(Precoding Matrix Indicator,预编码矩阵指示)权值和小区干扰特征等,其中波束配对特征可以包括MU-MIMO(Multi-User Multiple-Input Multiple-Output,多用户-多输入多输出)配对成功概率等,小区干扰特征可以包括上行RB(Resource Block,资源块)平均NI(Noise Interference,噪声指示)以及干扰slot(时隙)级波动状态等;覆盖特征可以包括用户服务小区RSRP(Reference Signal Receiving Power,参考信号接收功率)、用户服务邻区RSRP、用户MCS(Modulation and Coding Scheme,调制与编码策略)、用户BLER(Block Error Rate,误块率)以及用户CQI(Channel Quality Indicator,信道质量指示)等。
其中,无线网元知识图谱可以包括控制面特征以及用户面特征等,示例性的,控制面特征可以包括负荷特征、资源使用特征、能耗特征、KPI特征以及事件特征等,其中,负荷特征可以包括RRC(Radio Resource Control,无线资源控制层)在线平均用户数、PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)层数据流量、MAC层数据流量以及负荷平稳性等,资源使用特征可以包括上下行PRB(Physical Resource Block,物理资源块)利用率、上下行CCE(Control Channel Element,控制信道单元)调度次数、控制面CPU利用率以及基带处理板资源利用率等,能耗特征可以包括空闲符号占比、符号关断占比、slot关断占比以及通道关断占比等,KPI特征可以包括RRC连接建立成功率、无线掉线率以及切换成功率等,事件特征可以包括通道关断事件记录、切换成功/失败记录、设备状态异常以及系统报警信息等;用户面特征可以包括业务分布特征、业务感知特征以及业务流量特征等,其中,业务分布特征可以包括小包业务占比、VoNR(Voice over New Radio,是基于纯5G接入的通话解决方案,实现话音业务和数据业务均承载在5G网络)用户数、游戏类业务占比、微信业务占比、NGBR(Non Guaranteed Bit Rate,非保证速率)业务占比、PDCP层包时延和RLC层包时延等,业务感知特征指的是用户对具体应用业务质量和性能的主观感受,可以包括小区质差用户分布比例、实时游戏感知、微信感知、VoNR感知、5QI2视频感知以及NGBR业务感知等,业务流量特征可以包括UE业务速率分布、UE 秒级累积BSR(Buffer Status Report,缓存状态报告)、UE累积调度TbSize(传输块大小)以及用户面吞吐量等。
其中,网络管理知识图谱可以包括网络配置、算法策略以及组网结构等,示例性的,网络配置可以包括切片资源配置、基站工作频点、基站发射功率、基站天线下倾、基站天线数以及基站FDD(Frequency Division Duplex,频分双工)/TDD(Time Division Duplex,时分双工)制式等;算法策略可以包括网络切片管控算法、MAC层调度算法、PDCP层数据分流算法以及MU-MIMO配对算法等;组网结构可以包括接入网结构、承载网结构和核心网结构等,其中接入网结构可以包括基站个数以及类型等,承载网结构可以包括回传Mesh组网等,核心网结构可以包括SA组网(Stand Alone,独立组网)以及NSA组网(Non-Stand Alone,非独立组网)等。
其中,用户终端知识图谱可以包括行为特征、业务特征以及感知特征等,示例性的,行为特征可以包括状态特征、移动行为特征、VR(Virtual Reality,虚拟现实)/AR(Augmented Reality,增强现实)应用的动作特征等,其中移动行为特征可以包括终端运动轨迹;业务特征可以包括应用层语义特征以及业务类别特征等,其中应用层语义特征可以包括自然语言、视觉语义和图像语义等,业务类别特征可以包括小包以及VoNR等;感知特征指的是用户的主观感受,可以包括视频QoE(Quality of Experience,体验质量)感知特征、视觉感知特征、听觉感知特征、触觉感知特征、嗅觉感知特征以及味觉感知特征等。
在一些实施方式中,如图4所示,孪生移动通信系统包括多个孪生通信设备、孪生空口、终端运动模型(图中未画出)和业务模型(图中未画出),孪生空口包括信道模型和天线模型。基于此,前述“系统仿真引擎根据知识图谱配置孪生移动通信系统”,可以包括但不限于如下内容:根据无线网元知识图谱配置多个孪生通信设备的软件算法参数、根据网络管理知识图谱配置多个孪生通信设备的硬件参数和软件算法策略、根据无线环境知识图谱配置信道模型、根据网络管理知识图谱配置天线模型以及根据用户终端知识图谱配置终端运动模型和业务模型。
由前述可知移动通信系统包括多个通信设备(为了叙述方便将这些通信设备称为实际设备),由于孪生移动通信系统为相应的仿真系统,因此孪生移动通信系统包括对应这些实际设备的孪生通信设备。其中,孪生通信设备可以包括实际通信设备(即实际产品),也可以包括由软件模拟的虚拟设备,例如由OAI(Open Air Interface)软件模拟出来的虚拟设备,因此,孪生通信设备可以包括孪生用户终端、孪生接入网、孪生承载网、孪生核心网、孪生互联网、孪生应用服务器、孪生存储系统和孪生计算系统等。示例性的,孪生用户终端可以为OAI软件模拟出来的虚拟设备,用于模拟实际移动通信系统中的用户终端,该孪生用户终端具备3GPP(3rd Generation Partnership Project,第三代合作伙伴计划)协议规定的 所有通信功能,例如具备RRC(Radio Resource Control,无线资源控制)、PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)、RLC(Radio Link Control,无线链路层控制协议)、MAC(Media Access Control,媒体接入控制)、PHY(Physical Layer,端口物理层)、S1接口、X2接口以及应用层等。示例性的,孪生接入网可以包括孪生基站,该孪生基站可以为OAI软件模拟出来的虚拟设备,用于模拟实际移动通信系统中的基站,该孪生基站具备3GPP协议规定的所有通信功能,例如具备NAS(Network Attached Storage,网络附属存储)、RRC、PDCP、RLC、MAC以及PHY等。示例性的,孪生承载网可以是光纤或网线等等。示例性的,孪生核心网可以为OAI软件模拟出来的虚拟设备,用于模拟实际移动通信系统中的核心网,该孪生核心网具备3GPP协议规定的所有通信功能,例如具备HSS(Home Subscriber Server,归属用户服务器)、MME(Mobility Management Entity,移动管理节点)、SGW(Serving GateWay,服务网关)以及PGW(Packet data network GateWay,分组数据网关)等。示例性的,孪生互联网、孪生应用服务器、孪生存储系统和孪生计算系统可以为软件模拟处理的虚拟设备,也可以由系统仿真引擎等模拟相应的功能即可。
因此,系统仿真引擎可以根据无线网元知识图谱配置各个孪生通信设备的软件算法参数,根据网络管理知识图谱配置各个孪生通信设备的硬件参数和软件算法策略。示例性的,系统仿真引擎可以根据无线网元知识图谱和网络管理知识图谱配置孪生用户终端的UE(User Equipment,用户终端)能力、物理层算法参数、MAC层算法参数、UE上报邻区关系、UE上下行MCS(Modulation and Coding Scheme,调制与编码策略)等;示例性的,系统仿真引擎可以根据无线网元知识图谱和网络管理知识图谱配置孪生基站(孪生接入网的一种)的基站ID、地理信息、物理层算法参数、MAC层算法参数、KPI性能等。
此外,系统仿真引擎还可以根据无线环境知识图谱配置信道模型,其中,信道模型可以包括路损参数、信道特征参数以及干扰特征参数等。示例性的,系统仿真引擎可以根据无线环境知识图谱中的用户服务小区RSRP、用户服务邻区RSRP以及下行参考信号功率配置路损参数,配置的具体方式可以通过数据拟合方法,数据拟合可以分为单一时间切片和连续时间切片两种方式,当为单一时间切片时,即只有一组数据,则根据以下公式确定路损参数。
PL i,j=dlrstxpower i-PSRP i,j
其中,PL i,j表示用户终端j与小区i之间的路损参数,dlrstxpower i表示小区i的参考信号发射功率,PSRP i,j表示终端j上报的小区i的RSRP;当为连续时间切片,即有多组数据,则先根据前述公式分别计算出多个路损样本,接着对这些路损样本进行曲线拟合,得到相应的概率分布,最后可以根据概率分布生成一个随机数,该随机数即为路损参数。当然,配置路损参数也可以通过射线追踪算法,具体过程本申请实施例不作限制。示例性的,信 道特征参数可以包括波束配对特征、信道LOS属性、信道多径衰落特性、信道DOA分布特性、上下行RI分布、上下行PHR分布以及用户信道PMI权值等,系统仿真引擎可以根据无线环境知识图谱中的无线信道特征配置。示例性的,干扰特征参数可以包括上行RB平均NI以及干扰slot级波动状态等,系统仿真引擎可以根据无线环境知识图谱中的小区干扰特征配置。
此外,系统仿真引擎还可以根据网络管理知识图谱配置天线模型,天线模型用于模拟移动通信系统中基站天线360度的水平方向和垂直方向的天线增益,系统仿真引擎可以根据网络管理知识图谱配置,例如根据网络管理知识图谱中关于路测数据的知识数据配置。
此外,系统仿真引擎还可以用户终端知识图谱配置终端运动模型和业务模型,其中,终端运动模型用于模拟移动通信系统中用户终端的位置,示例性的,系统仿真引擎可以根据用户终端知识图谱中的行为特征配置。另外,业务模型可以包括负荷特征参数以及业务特征参数等,示例性的,负荷特征参数可以包括上下行PRB利用率、RRC在线平均用户数以及上下行CCE利用率等,业务特征参数可以包括BSR、业务类型、业务包大小、业务包数量、业务包交互流程和业务包间隔时间等。
在一些实施例中,孪生移动通信系统还包括环境相似度对比模块,环境相似度对比模块用于:在系统仿真引擎配置孪生移动通信系统之后,根据移动通信系统与孪生移动通信系统相同的通信特征确定孪生移动通信系统对移动通信系统的还原度,并在检测到还原度低于预设阈值时根据知识图谱更新孪生移动通信系统。
由前述可知,孪生移动通信系统和移动通信系统在实体属性、状态、行为和无线环境上基本一致,因此为了保持这种状态,可以监测孪生移动通信系统对移动通信系统的还原度,在检测到还原度低于预设阈值时可以根据知识图谱更新孪生移动通信系统(即重新配置孪生移动通信系统),以确保孪生移动通信系统能够在各方面上与实际移动通信系统保持一致。在一些实施方式中,系统仿真引擎可以根据这两个系统相同的一个或多个通信特征确定还原度,其中,通信特征可以包括如上所述的任一个特征,并且可以根据以下公式确定还原度。
Figure PCTCN2021128228-appb-000001
其中,S表示还原度,abs()表示取绝对值,T real以及T twin分别表示实际移动通信系统与孪生移动通信系统相同的通信特征,另外预设阈值可以根据实际需求合理设置。
步骤S20,接收知识智能体生成的管控策略并下发给系统仿真引擎,以使系统仿真引擎能够根据管控策略驱动孪生移动通信系统进行仿真并在仿真结束后向知识智能体反馈网络性能知识图谱,其中,网络性能知识图谱用于使知识智能体生成优化后的管控策略。
步骤S30,接收知识智能体发送的优化后的管控策略,并根据优化后的管控策略控制移动通信系统执行相应的管控动作。
其中,管控策略主要是调整通信设备的工作状态和/或工作流程等,主要应用于接入网和核心网,示例性的,管控策略可以包括调整基站的物理层、MAC层、RLC层、PDCP层、RRC层、TCP层或IP层的算法参数、流程或类型等,管控策略还可以包括调整设备硬件操作流程、切换流程或寻呼流程等。网络性能知识图谱可以用于表征管控策略的管控效果,可以包括PDCP层数据流量、MAC层数据流量、上下行PRB利用率、上下行CCE调度次数、用户SINR(Signal to Interference plus Noise Ratio,信干燥比值)、用户MCS、用户BLER、RRC连接建立成功率、无线掉线率、切换成功率或用户业务感知MOS(Mean Opinion Score,平均意见值)分值等。
由前述可知配置后的孪生移动通信系统为移动通信系统的仿真系统,两者在实体属性、状态、行为和无线环境上基本一致,因此将管控策略下发给系统仿真引擎,系统仿真引擎根据该管控策略驱动孪生移动通信系统进行仿真,如此等同于网络管控体根据管控策略控制移动通信系统执行相应的管控动作,而由于孪生移动通信系统为虚拟的数字化系统,因此孪生移动通信系统在仿真结束后即可生成网络性能知识图谱,即可以快速的获取到对应该管控策略的网络性能知识图谱。如此,通过该网络性能知识图谱即可得知该管控策略的管控效果,即应用该管控策略后系统的网络性能变好还是变差,进而使得知识智能体可以生成优化后的管控策略并发送给网络管控体,因此网络管控体可以根据优化后的的管控策略控制移动通信系统执行相应的管控动作,其中,优化后的管控策略为管控效果达标或最优的管控策略。可以理解,通过孪生移动通信系统可以有效降低管控效果的验证难度,进而有效缩短了管控调整周期,解决了现有技术中移动通信系统的管控方式存在的局限性。
在一些实施方式中,可以将一个管控策略下发给系统仿真引擎,以使系统仿真引擎根据该管控策略驱动孪生移动通信系统进行仿真并在仿真结束后将网络性能知识图谱发送给知识智能体,如此,知识智能体可以根据该网络性能知识图谱得知该管控策略的管控效果,例如,根据用户SINR值得知管控效果,若用户SINR值不达标(例如达不到某一阈值),则知识智能体可以进行优化,以生成优化后的管控策略并发送给网络管控体,以使网络管控体能够根据优化后的管控策略控制移动通信系统执行相应的管控动作。可以理解,优化后的管控策略即为管控效果达标的管控策略,即在将该策略应用于移动通信系统之后系统的网络性能能够达标,例如用户SINR值能够达到前述阈值。
在一些实施方式中,可以将多个管控策略分别下发给系统仿真引擎,其中多个管控策略可以为近似的管控策略,例如,多个管控策略分别为调整基站IP层的算法参数为num_1、num_2、num_3、...、num_N,如此系统仿真引擎可以先后根据各个管控策略驱动孪生移动 通信系统进行仿真并在仿真结束后将每个网络性能知识图谱发送给知识智能体,因此,知识智能体可以根据各个网络性能知识图谱得知各个管控策略的管控效果,例如,根据各个用户SINR值得知各个管控策略的管控效果,可以理解,知识智能体可以在多个用户SINR值中筛选出数值最大的用户SINR值,例如,数值最大的用户SINR值对应的算法参数为num_5,则可以理解,在前述多个管控策略中,调整基站IP层的算法参数为num_5的管控策略可以带来最优的管控效果,因此知识智能体可以根据该策略对应的网络性能知识图谱生成优化后的管控策略,即生成管控效果最优的管控策略并发送给网络管控体,以使网络管控体能够根据优化后的管控策略控制移动通信系统执行相应的管控动作。
在一些实施例中,步骤S20中的“系统仿真引擎根据管控策略驱动孪生移动通信系统进行仿真并在仿真结束后向知识智能体反馈网络性能知识图谱”,可以包括但不限于如下内容:系统仿真引擎使孪生移动通信系统在预设时间段内重复执行对应管控策略的仿真任务,并记录孪生移动通信系统在每次执行仿真任务后输出的性能指标,以及在仿真结束后根据多个性能指标生成网络性能知识图谱并反馈给知识智能体。
为了提高管控效果验证的可靠性,可以预先设置一个合理的仿真时间段,使得系统仿真引擎可以在相应的时间长度内驱动孪生移动通信系统重复执行仿真任务,可以理解,孪生移动通信系统在每次执行仿真任务之后会输出一个性能指标,因此在仿真结束后系统仿真引擎可以根据多个性能指标生成对应该管控策略的网络性能知识图谱并发送给知识智能体。
在一些实施方式中,系统仿真引擎还用于在使孪生移动通信系统每次执行仿真任务之前根据知识图谱更新孪生移动通信系统中的信道模型。在移动通信系统中,用户终端与接入网之间的无线信道的变化频率比较高,例如由于用户终端的移动而引起无线信道发生变化,因此系统仿真引擎在每次使孪生移动通信系统执行仿真任务之前,可以根据知识图谱更新孪生移动通信系统的信道模型,以在管控效果验证的过程中确保孪生移动通信系统对实际移动通信系统的还原度,提高管控效果验证的可靠性。示例性的,如图5所示,系统仿真引擎驱动孪生移动通信系统进行仿真任务后,在未到达仿真时间时,系统仿真引擎可以先根据知识图谱更新信道模型,再使孪生移动通信系统执行相应的仿真任务并记录其输出的一个性能指标,如此,在到达仿真时间时,系统仿真引擎就可以根据多个性能指标生成该管控策略的网络性能知识图谱。
在一些实施例中,如图6所示,在步骤S30之后,该方法还可以包括但不限于步骤S40。
步骤S40,当检测到移动通信系统的网络性能变差时,重新根据原始管控策略控制移动通信系统执行相应的管控动作,其中,原始管控策略为在根据优化后的管控策略控制移动通信系统之前所使用的管控策略。
由前述可知,网络管控体可以根据优化后的管控策略控制移动通信系统执行相应的管控动作,但是这个过程需要较长的时间,因此为了提高本申请实施例的可靠性,网络管控体可以监测移动通信系统的网络性能变化,当检测到网络性能变差时,可以重新根据原始管控策略控制移动通信系统执行相应的管控动作,以恢复移动通信系统的网络性能。
本申请实施例还提供一种网络管控体,如图7所示,包括处理器与存储器,该存储器用于存储计算机程序;该处理器用于执行计算机程序并在执行计算机程序时实现本申请实施例提供的任一项移动通信系统管控方法。
应当理解的是,处理器可以是中央处理单元(Central Processing Unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。其中,通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,该计算机程序被处理器执行时,使处理器实现本申请实施例提供的任一项移动通信系统管控方法。
本申请实施例提供的移动通信系统管控方法、网络管控体、系统及存储介质,该方法包括:将知识智能体中存储的知识图谱发送给孪生移动通信系统中的系统仿真引擎,以使系统仿真引擎能够根据知识图谱配置孪生移动通信系统,其中,孪生移动通信系统为移动通信系统的仿真系统;接收知识智能体生成的管控策略并下发给系统仿真引擎,以使系统仿真引擎能够根据管控策略驱动孪生移动通信系统进行仿真并在仿真结束后向知识智能体反馈网络性能知识图谱,其中,网络性能知识图谱用于使知识智能体生成优化后的管控策略;接收知识智能体发送的优化后的管控策略,并根据优化后的管控策略控制移动通信系统执行相应的管控动作。可以理解,由于孪生移动通信系统为移动通信系统的仿真系统,又由于孪生移动通信系统为数字化系统,因此通过孪生移动通信系统可以有效降低管控效果的验证难度,进而有效缩短了管控调整周期,解决了现有技术中移动通信系统的管控方式存在的局限性。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软 件可以分布在计算机可读存储介质上,计算机可读存储介质可以包括计算机可读存储介质(或非暂时性介质)和通信介质(或暂时性介质)。
如本领域普通技术人员公知的,术语计算机可读存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机可读存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
示例性的,计算机可读存储介质可以是前述实施例所述的网络管控体的内部存储单元,例如该网络管控体的硬盘或内存。计算机可读存储介质也可以是该网络管控体的外部存储设备,例如该网络管控体上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (10)

  1. 一种移动通信系统管控方法,其中,包括:
    将知识智能体中存储的知识图谱发送给孪生移动通信系统中的系统仿真引擎,以使所述系统仿真引擎能够根据所述知识图谱配置所述孪生移动通信系统,其中,所述孪生移动通信系统为所述移动通信系统的仿真系统;
    接收所述知识智能体生成的管控策略并下发给所述系统仿真引擎,以使所述系统仿真引擎能够根据所述管控策略驱动所述孪生移动通信系统进行仿真并在仿真结束后向所述知识智能体反馈网络性能知识图谱,其中,所述网络性能知识图谱用于使所述知识智能体生成优化后的管控策略;
    接收所述知识智能体发送的优化后的管控策略,并根据所述优化后的管控策略控制所述移动通信系统执行相应的管控动作。
  2. 根据权利要求1所述的方法,其中,所述知识图谱包括无线环境知识图谱、无线网元知识图谱、网络管理知识图谱和用户终端知识图谱;
    所述孪生移动通信系统包括多个孪生通信设备、孪生空口、终端运动模型和业务模型,所述孪生空口包括信道模型和天线模型;
    其中,所述系统仿真引擎根据所述知识图谱配置所述孪生移动通信系统,包括以下内容:
    根据所述无线网元知识图谱配置所述多个孪生通信设备的软件算法参数、
    根据所述网络管理知识图谱配置所述多个孪生通信设备的硬件参数和软件算法策略、
    根据所述无线环境知识图谱配置所述信道模型、
    根据所述网络管理知识图谱配置所述天线模型以及
    根据所述用户终端知识图谱配置所述终端运动模型和所述业务模型。
  3. 根据权利要求1所述的方法,其中,所述知识智能体中存储的知识图谱是所述知识智能体根据所述移动通信系统中的存储系统存储的运维数据生成的。
  4. 根据权利要求1-3任一项所述的方法,其中,所述孪生移动通信系统还包括环境相似度对比模块,所述环境相似度对比模块用于:在所述系统仿真引擎配置所述孪生移动通信系统之后,根据所述移动通信系统与所述孪生移动通信系统相同的通信特征确定所述孪生移动通信系统对所述移动通信系统的还原度,并在检测到所述还原度低于预设阈值时根据所述知识图谱更新所述孪生移动通信系统。
  5. 根据权利要求1所述的方法,其中,所述系统仿真引擎根据所述管控策略驱动所述孪生移动通信系统进行仿真并在仿真结束后向所述知识智能体反馈网络性能知识 图谱,包括以下内容:
    所述系统仿真引擎使所述孪生移动通信系统在预设时间段内重复执行对应所述管控策略的仿真任务,并记录所述孪生移动通信系统在每次执行所述仿真任务后输出的性能指标,以及在仿真结束后根据多个所述性能指标生成所述网络性能知识图谱并反馈给所述知识智能体。
  6. 根据权利要求5所述的方法,其中,所述系统仿真引擎还用于在使所述孪生移动通信系统每次执行所述仿真任务之前根据所述知识图谱更新所述孪生移动通信系统中的信道模型。
  7. 根据权利要求1所述的方法,其中,在根据所述优化后的管控策略控制所述移动通信系统执行相应的管控动作之后,包括:
    当检测到所述移动通信系统的网络性能变差时,重新根据原始管控策略控制所述移动通信系统执行相应的管控动作,其中,所述原始管控策略为在根据所述优化后的管控策略控制所述移动通信系统之前所使用的管控策略。
  8. 一种网络管控体,其中,包括处理器与存储器;
    所述存储器,用于存储计算机程序;
    所述处理器,用于执行所述计算机程序并在执行所述计算机程序时实现如权利要求1至7中任一项所述的移动通信系统管控方法。
  9. 一种管控系统,其中,包括如权利要求8所述的网络管控体、知识智能体、移动通信系统以及孪生移动通信系统。
  10. 一种计算机可读存储介质,其中,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现如权利要求1至7中任一项所述的移动通信系统管控方法。
PCT/CN2021/128228 2020-12-07 2021-11-02 移动通信系统管控方法、网络管控体、系统及存储介质 WO2022121559A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011418782.2 2020-12-07
CN202011418782.2A CN114599056A (zh) 2020-12-07 2020-12-07 移动通信系统管控方法、网络管控体、系统及存储介质

Publications (1)

Publication Number Publication Date
WO2022121559A1 true WO2022121559A1 (zh) 2022-06-16

Family

ID=81813005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/128228 WO2022121559A1 (zh) 2020-12-07 2021-11-02 移动通信系统管控方法、网络管控体、系统及存储介质

Country Status (2)

Country Link
CN (1) CN114599056A (zh)
WO (1) WO2022121559A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115802387A (zh) * 2023-01-04 2023-03-14 阿里巴巴(中国)有限公司 设备管控方法、存储介质和电子设备
CN116128128A (zh) * 2023-01-17 2023-05-16 北京融信数联科技有限公司 基于智能体图谱的城市职住平衡预测方法、系统和介质
CN116208970A (zh) * 2023-04-18 2023-06-02 山东科技大学 一种基于知识图谱感知的空地协作卸载和内容获取方法
WO2024036841A1 (zh) * 2022-08-15 2024-02-22 中国电信股份有限公司 网络拓扑结构优化方法、装置、存储介质与电子设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116016202B (zh) * 2022-08-05 2024-04-26 烽火通信科技股份有限公司 一种基于孪生pce的网络故障模拟方法和系统
CN117641315A (zh) * 2022-08-18 2024-03-01 中兴通讯股份有限公司 业务体验保障方法、电子设备和计算机可读存储介质
CN117082551B (zh) * 2023-08-21 2024-06-11 中国科学院微小卫星创新研究院 天地一体化卫星网络的仿真系统、方法及计算机可读介质
CN116939632B (zh) * 2023-09-12 2023-11-28 安世亚太科技股份有限公司 一种数据包重传次数确定方法、系统、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101436959A (zh) * 2008-12-18 2009-05-20 中国人民解放军国防科学技术大学 基于后台管控架构的并行仿真任务分发与调度方法
CN107341215A (zh) * 2017-06-07 2017-11-10 北京航空航天大学 一种基于分布式计算平台的多源垂直知识图谱分类集成查询方法
US20190274108A1 (en) * 2018-03-02 2019-09-05 DeepSig Inc. Learning communication systems using channel approximation
CN111182556A (zh) * 2019-12-31 2020-05-19 中国电建集团河南省电力勘测设计院有限公司 一种基于智能代理的无线网络规划设计方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101436959A (zh) * 2008-12-18 2009-05-20 中国人民解放军国防科学技术大学 基于后台管控架构的并行仿真任务分发与调度方法
CN107341215A (zh) * 2017-06-07 2017-11-10 北京航空航天大学 一种基于分布式计算平台的多源垂直知识图谱分类集成查询方法
US20190274108A1 (en) * 2018-03-02 2019-09-05 DeepSig Inc. Learning communication systems using channel approximation
CN111182556A (zh) * 2019-12-31 2020-05-19 中国电建集团河南省电力勘测设计院有限公司 一种基于智能代理的无线网络规划设计方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024036841A1 (zh) * 2022-08-15 2024-02-22 中国电信股份有限公司 网络拓扑结构优化方法、装置、存储介质与电子设备
CN115802387A (zh) * 2023-01-04 2023-03-14 阿里巴巴(中国)有限公司 设备管控方法、存储介质和电子设备
CN116128128A (zh) * 2023-01-17 2023-05-16 北京融信数联科技有限公司 基于智能体图谱的城市职住平衡预测方法、系统和介质
CN116208970A (zh) * 2023-04-18 2023-06-02 山东科技大学 一种基于知识图谱感知的空地协作卸载和内容获取方法
CN116208970B (zh) * 2023-04-18 2023-07-14 山东科技大学 一种基于知识图谱感知的空地协作卸载和内容获取方法

Also Published As

Publication number Publication date
CN114599056A (zh) 2022-06-07

Similar Documents

Publication Publication Date Title
WO2022121559A1 (zh) 移动通信系统管控方法、网络管控体、系统及存储介质
CN113498076A (zh) 基于o-ran的性能优化配置方法与设备
WO2022011862A1 (zh) 一种o-ran与mec的通信方法及系统
US8908507B2 (en) RAN analytics, control and tuning via multi-protocol, multi-domain, and multi-RAT analysis
US20210044488A1 (en) Model update method and apparatus, and system
US12015936B2 (en) Proactively adjusting network infrastructure in response to reporting of real-time network performance
WO2019242664A1 (zh) 一种资源管理方法及装置
CN110139325B (zh) 一种网络参数调优方法及装置
Tian et al. QoS-constrained medium access probability optimization in wireless interference-limited networks
Coronado et al. Joint mobility management and multicast rate adaptation in software–defined enterprise WLANs
EP4175358A1 (en) Communication method and apparatus
Błaszczyszyn et al. How user throughput depends on the traffic demand in large cellular networks
CN113498174A (zh) 一种物理资源划分的方法及设备
CN116057988A (zh) 基于模型的预测干扰管理
US11647457B2 (en) Systems and methods for performance-aware energy saving in a radio access network
US12096249B2 (en) Systems and methods for machine learning model augmentation using target distributions of key performance indicators in a wireless network
US20230354054A1 (en) Systems and methods for simulating wireless interference in a wired telecommunications network
Wang et al. From PHY to QoE: A parameterized framework design
US11102695B2 (en) Beam avoidance method and base station
US20240056984A1 (en) Flow-level coverage and bandwidth adaptation
EP4398620A1 (en) Communication method and apparatus for network energy saving
Sohn et al. A novel multicast scheme for feedback-based multicast services over wireless networks
US20160309411A1 (en) Dynamic ungrouping of ip packets before cellular transmission
US20160127932A1 (en) Telecommunications networks
US20230289656A1 (en) Distributed training in communication networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21902266

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16.08.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21902266

Country of ref document: EP

Kind code of ref document: A1