WO2024036841A1 - 网络拓扑结构优化方法、装置、存储介质与电子设备 - Google Patents

网络拓扑结构优化方法、装置、存储介质与电子设备 Download PDF

Info

Publication number
WO2024036841A1
WO2024036841A1 PCT/CN2022/139472 CN2022139472W WO2024036841A1 WO 2024036841 A1 WO2024036841 A1 WO 2024036841A1 CN 2022139472 W CN2022139472 W CN 2022139472W WO 2024036841 A1 WO2024036841 A1 WO 2024036841A1
Authority
WO
WIPO (PCT)
Prior art keywords
network
network element
data
topology
network topology
Prior art date
Application number
PCT/CN2022/139472
Other languages
English (en)
French (fr)
Inventor
高一超
阳志明
田海波
李凌
Original Assignee
中国电信股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电信股份有限公司 filed Critical 中国电信股份有限公司
Publication of WO2024036841A1 publication Critical patent/WO2024036841A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks

Definitions

  • the present disclosure relates to the field of network communication technology, and in particular, to a network topology structure optimization method, device, storage medium and electronic equipment.
  • 5G 5th Generation Mobile Communication Technology proposes SBA (Service Based Architecture) on the 3GPP standard to serve as NF (Network Function) method for distributed deployment.
  • the new technologies and architecture solutions adopted by the 5G core network are proposed to meet the three major application scenarios of 5G in the future: eMBB (enhanced mobile broadband), URLLC (low latency and high reliability), and mMTC (massive connections).
  • eMBB enhanced mobile broadband
  • URLLC low latency and high reliability
  • mMTC massive connections.
  • CUPS Control and User Plane Separation
  • a single network domain (single domain for short) topological connection cannot accurately describe the end-to-end service status of the physical network
  • the present disclosure provides a network topology structure optimization method, a network topology structure optimization device, a computer-readable storage medium and an electronic device.
  • a network topology optimization method includes: collecting network element data of cross-domain network element devices in a physical network; the network element data includes the current network element data of the network element device. Operating data and operating instruction data; constructing a twin network topology of the physical network based on the current operating data of the network element device and the operating instruction data; determining the twin network topology based on the current operating data of the network element device service operation information within the network, and optimize the topology structure of the physical network based on the service operation information.
  • a network topology optimization device includes: a network element data collection module configured to collect network element data of cross-domain network element equipment in a physical network; the network element The data includes current operating data and operation instruction data of the network element equipment; a network topology building module configured to construct a twin network topology of the physical network based on the current operation data of the network element equipment and the operation instruction data; The network topology optimization module is configured to determine the business operation information in the twin network topology according to the current operation data of the network element device, and to optimize the topology structure of the physical network according to the service operation information.
  • a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the network topology optimization method and possible implementation methods of the first aspect are implemented.
  • an electronic device including: a processor; and a memory for storing executable instructions of the processor; wherein the processor is configured to perform the above-described first aspect via executing the executable instructions.
  • Figure 1 is a schematic diagram of a system architecture provided by an embodiment of the present disclosure
  • Figure 2 is a schematic flow chart of the implementation of a network topology optimization method provided by an embodiment of the present disclosure
  • Figure 3 is a schematic flow chart of the implementation of a network topology optimization method provided by an embodiment of the present disclosure
  • Figure 4 is a schematic flowchart of the implementation of a network topology optimization method provided by an embodiment of the present disclosure
  • Figure 5 is a schematic flowchart of the implementation of a network topology optimization method provided by an embodiment of the present disclosure
  • Figure 6 is a schematic flowchart of the implementation of a network topology optimization method provided by an embodiment of the present disclosure
  • Figure 7 is a schematic flow chart of the implementation of a network topology optimization method provided by an embodiment of the present disclosure
  • Figure 8 is a schematic structural diagram of a network topology structure optimization device provided by an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of an electronic device provided by an embodiment of the present disclosure.
  • the 5G core network can be said to have undergone earth-shaking changes.
  • SBA Service Based Architecture
  • NF Network Function, network function
  • the new technologies and architecture solutions used in the 5G core network are proposed to meet the three major future 5G application scenarios: eMBB (enhanced mobile broadband), URLLC (low latency and high reliability), and mMTC (massive connections).
  • eMBB enhanced mobile broadband
  • URLLC low latency and high reliability
  • mMTC massive connections
  • the 5G core network adopts the SBA architecture from the beginning, that is, network function services + service-based interfaces.
  • Network function services can be composed of multiple modular "network function services NF" and display their functions through “service-based interfaces".
  • CUPS Control and User Plane Separation
  • the purpose is to free the network user plane function from the "centralization" prison, so that it can be flexibly deployed in the core network (central data center) or the access network (edge data center), and ultimately achieve distributed deployment.
  • the 5G core network control plane consists of NSSF, AUSF, UDM, AMF, SMF, PCF and AF services, and the services between them are implemented by the http interface.
  • the 5G core network user plane is composed of UPF (User Plane Function), which can include one or more UPFs, providing routing and forwarding of user data packets, data interaction with external data network DN, user plane Qos processing, and flow control rule implementation. (e.g. gating, redirection, traffic steering, etc.).
  • Expose N3 (GTP-U), N4 (PFCP), N6, and N9 (GTP-U) interfaces to the outside to connect to (R) AN (such as base stations, etc.), SMF, and DN (data networks, such as operator services, Internet access or third-party services) and other UPF.
  • AMF Access and Mobility Management Function: It implements interaction with the N1 and N2 interfaces with UE and (R)AN respectively. Responsible for registration, access, mobility, authentication, transparent SMS transmission and other functions.
  • NSSF The Network Slice Selection Function
  • AUSF Authentication Server Function: Authentication for 3GPP access and authentication for untrusted non3GPP access.
  • UDM Unified Data Management
  • the main functions responsible are: generating 3GPP authentication certificates/authentication parameters; storing and managing the permanent user ID (SUPI) of the 5G system; subscription information management; MT-SMS submission; SMS management; user service network element registration management.
  • SUPI Permanent user ID
  • SMF Session Management function, session function management
  • the main functions of SMF include the establishment, modification, and release of sessions; allocation management of UE IP; DHCP function; ARP proxy or IPv6 neighbor request proxy; selection and control for a session UPF; collection of accounting data and support for accounting interfaces; determining the SSC mode of a session; downlink data indication, etc.
  • PCF Policy Control Function
  • AF Application Function
  • Volte AF similar to 4G Volte As
  • third-party AF such as mobile video servers, games server
  • UPF The User plane function, user plane function: packet routing and forwarding, policy implementation, traffic reporting, Qos processing.
  • UPF is the anchor point of the session and records the amount of traffic forwarding.
  • a single network domain (single domain for short) topological connection cannot accurately describe the end-to-end service status of the physical network
  • exemplary embodiments of the present disclosure first provide a network topology optimization method, which can optimize the cross-domain network topology and better support business operations.
  • FIG. 1 shows a schematic diagram of the system architecture.
  • the system architecture 100 may include a cross-domain network element device cluster 101 and a server 102 composed of different network element devices in different network domains; where the server 104 may generally refer to a server that provides network topology optimization.
  • the backend system (such as the 5G core network cloud network operation service platform) can be a server or a cluster of multiple servers.
  • the cross-domain network element device cluster 101 and the server 102 may be connected through wired or wireless communication links for data exchange.
  • the cross-domain network element device cluster 101 includes a first network element device 1011, a second network element device 1012, and a third network element device 1013; wherein the first network element device 1011, the second network element device 1012 and the third network element device 1013 are network element devices in different network domains.
  • the first network element device 1011 belongs to the first network domain
  • the second network element device 1012 belongs to the second network domain
  • the third network element device 1013 belongs to the third network domain.
  • the domain is different from the third domain.
  • the first network element device 1011 belongs to the first network domain
  • the second network element device 1012 belongs to the second network domain
  • the third network element device 1013 may be a network element device in the 5G core network, such as: AMF, SMF, PCF, NSSF, UPF, NRF, UDM, etc.
  • FIG. 2 is a schematic flowchart of the implementation of a network topology optimization method provided by an embodiment of the present disclosure, which can be executed by the above-mentioned server 102. As shown in Figure 2, the method includes the following steps S201 to S203:
  • Step S201 Collect network element data of cross-domain network element devices in the physical network; network element data includes current operating data and operation instruction data of network element devices;
  • Step S202 Construct a twin network topology of the physical network based on the current operating data and operation instruction data of the network element equipment;
  • Step S203 Determine the service operation information within the twin network topology based on the current operation data of the network element equipment, and optimize the topology structure of the physical network based on the service operation information.
  • a twin network topology of the physical network is constructed; secondly, based on the current operating data in the network element data, the twin network topology is determined.
  • Business operation information within the network topology is determined.
  • the physical network is optimized based on the business operation information; thus, 1) Since the network element data of cross-domain network element equipment is collected, the constructed twin network topology can accurately and real-time describe the physical network The status of the end-to-end business of the network; 2) Since the business operation information within the twin network topology is determined based on the current operation data of the network element equipment, the topology of the physical network is optimized, so the topology of the physical network can be optimized in real time. structure to improve business processing efficiency.
  • step S201 network element data of cross-domain network element devices in the physical network is collected.
  • the network element data includes the current operating data and operation instruction data of the network element equipment.
  • Cross-domain can be understood as different autonomous domains; an autonomous domain is a collection of routers; depending on whether it is used within an autonomous domain, dynamic routing protocols are divided into internal gateway protocols (Inner Gateway Protocol, IGP) and external gateway protocols (Exterior Gateway Protocol, EGP).
  • IGP Inner Gateway Protocol
  • EGP External Gateway Protocol
  • the interior gateway protocol is used for routing within an autonomous domain; the exterior gateway protocol is used for routing between multiple autonomous domains.
  • Network element equipment is the smallest unit that can be managed in the network and can independently complete certain transmission functions.
  • the network element device may be a network element device in a 4G network, such as: MME, SAEGW-C, SAEGW-U, etc.; it may also be a network element device in a 5G network, such as: AMF, SMF, PCF, NSSF, UPF, NRF, UDM, etc.
  • Network element data is data collected from network element equipment.
  • it can be attribute information of network element equipment, such as: network element equipment manufacturer type, user information, microservice process type, microservice process information, etc. ;
  • It can also be the operating information of the network element equipment, such as: the carrying capacity, carrying performance, task scheduling path, etc. of the network element equipment;
  • it can also be the operation instruction data of the network element equipment, such as: query IP address instructions, query APN configuration instructions , display instance information instructions, etc.
  • step S202 a twin network topology of the physical network is constructed based on the current operating data and operation instruction data of the network element device.
  • the operation instruction data of the network element device can determine other network element devices that interact with the network element device. For example, the instruction to query SMF user information needs to interact with the UPF network element device.
  • the current operating data of network element devices can determine whether operation command data is exchanged between network element devices. For example: the command to query SMF user information at 10:00 AM on 2021.08.31 AM interacted with UPF network element devices.
  • the current operating data of the network element equipment combined with the operation instruction data can determine the topology (connection relationship) between the network element twins corresponding to the network element equipment in the physical network.
  • step S203 the service operation information within the twin network topology is determined based on the current operation data of the network element equipment, and the topology structure of the physical network is optimized based on the service operation information.
  • the service operation information that is, the operation information corresponding to each service
  • a network element device often has multiple functions, for example: the main functions of the SMF network element device include the establishment, modification, and release of sessions, UE IP Allocation management, DHCP functions, ARP proxy or IPv6 neighbor request proxy, selection and control of UPF for a session, collection of accounting data and support for accounting interfaces, determination of SSC mode for a session, downlink data indication, etc.; therefore, a network element Equipment is often responsible for more than one service; the current operating data of network element equipment may include operating data of multiple services; therefore, it is necessary to analyze the current operating data of network element equipment to determine the operating information corresponding to each service (business operating information ).
  • the current operating data of the network element equipment includes carrying capacity, carrying performance, task scheduling path, etc.; in one implementation, the carrying capacity of each service can be determined according to the carrying capacity of the network element equipment, and the carrying capacity of each service can be determined based on the carrying performance of the network element equipment.
  • the bearer performance of each service and the task scheduling path of each service are determined according to the task scheduling path of the network element device; specifically, it can be determined by classifying the bearer capacity, bearer performance, and task scheduling path according to the service.
  • the optimization of the physical network topology can be achieved by optimizing the twin network topology; specifically, the optimization plan for the twin network topology can be determined based on the business operation information, and the optimization plan can be verified.
  • the business operation information meets the business needs, In this case, it is determined that the verification is passed and the optimization solution is applied to the physical network; for example, if the business operation information of the video transmission service shows that the business requirements in terms of delay, jitter, packet loss and other dimensions are met, it is determined that the verification is passed.
  • the operation data of the network element device is combined with the operation instruction data to determine other network element devices that interact with the network element device; further, the topology of the twin network of the physical network can be determined; as shown in Figure 3 , the above step S202 includes the following steps S301 and S302:
  • Step S301 Determine the interactive relationship between the network element devices according to the current operating data and operation instruction data of the network element devices.
  • the operation instruction data can be understood as operation instructions; the operation instructions are determined according to the functions of the network element device, are generally directional, and are executed by sending them to another network element device; and the operation instructions can be determined through the current operation data. Interaction situation; therefore, the current operating data of the network element device combined with the operation instruction data can determine other gateway devices that interact with the network element device; further, the interactive relationship (connection relationship) between the network element devices can be determined.
  • Step S302 Construct a twin network topology based on the network topology creation rules and the interactive relationship between network element devices.
  • the physical network includes three logical layers, and the network topology creation rules are used to determine the topological logical relationship between the three logical layers.
  • Three logical layers namely, network entity layer, regional equipment bus layer and network element equipment interconnection layer; among them, the network entity layer includes user equipment UE, (wireless) access network (R)AN, user plane function UPF, data network DN; the regional device bus layer includes network element devices such as UDM, AUSF, PCF, SMF, and AMF; the network element device interconnection layer includes network entities such as PCF, UDM, BSF, NSSF, etc.; the network entity layer devices and the regional device bus layer devices Connection; the equipment at the regional bus layer is connected to the equipment at the network element equipment interconnection layer.
  • the true state of the physical network can be accurately restored, real-time monitoring and dynamic tracking of the physical network can be achieved, and the stability of the physical network can be improved.
  • step S302 the twin network topology is determined according to the interactive relationship between the network element devices; and then a twin network topology with three logical layers is formed according to the network topology creation rules; in this way, the interactions between the network element devices can be clearly expressed. Topology structure to better conduct task scheduling analysis and efficiently handle user needs.
  • the business operation information within the twin network topology can be understood as data obtained by optimizing the current operation data of the network element equipment; as shown in Figure 4, the above step S203 includes the following steps S401 and S402:
  • Step S401 Determine the carrying capacity, carrying performance and task scheduling path of each network element device in the three logical layers of the twin network topology based on the current operating data of the network element device.
  • the carrying capacity, carrying performance and task scheduling path of the network element equipment can be determined by analyzing the current operating data of the network element equipment; in one embodiment, the carrying capacity can be calculated by counting the external interactive communication of the network element equipment. The quantity is determined; the bearing performance can be determined by counting the success rate of network element equipment in processing user requirements; the task scheduling path can be determined by determining the communication path of operation instruction data during the processing and execution of user requirements.
  • Step S402 Determine the service operation information within the twin network topology based on the carrying capacity, carrying performance and task scheduling path of each network element device.
  • the service operation information within the twin network topology can be determined by analyzing the load capacity, load performance and task scheduling path of the network element equipment; in one implementation, the load capacity, load performance and task scheduling can be determined according to the service type. Paths are classified to determine the number of interactive communications of each service (service carrying capacity), the success rate of each service (service carrying performance), and the actual communication path of each service (service task scheduling path).
  • step S203 includes the following steps S501 and S502:
  • Step S501 Determine an optimization plan for the twin network topology based on the business operation information and business requirements within the twin network topology.
  • Step S501 refers to the (2) situation; that is, when the service operation information does not meet the service requirements, an optimization solution for the twin network topology is determined.
  • a carrying capacity threshold can be set for the carrying capacity based on historical data.
  • the carrying capacity (the number of interactive communications) is at a critical point between meeting business needs and not meeting business needs; in this way, the carrying capacity After the traffic exceeds the carrying capacity threshold, the corresponding optimization strategy is executed, that is, the number of network element devices that need to be offloaded is determined to relieve network pressure.
  • the carrying capacity threshold can be set for each service.
  • the bearer performance threshold can be set for the bearer performance based on historical data.
  • the bearer performance successess rate of processing user requirements
  • the bearer performance is at the critical point between meeting business needs and not meeting business needs; In this way, optimization is performed after the load-carrying performance is lower than the load-carrying performance threshold, that is, a network disconnection test is performed to determine the cause, and corresponding processing is performed on the network element equipment that affects the load-carrying performance (for example, replacing the faulty network element equipment).
  • the bearer performance threshold can be set for each service.
  • the task scheduling path can be analyzed to determine whether unnecessary operation instruction data has been performed and whether communication has been carried out with network element equipment that is far away, so that when the above situation exists, the network element equipment can be Optimize, that is, make corresponding adjustments to the connections of network element devices to make the task scheduling path reasonable and concise.
  • Step S502 In the test environment corresponding to the physical network, use the optimization plan to optimize the network topology of the test environment, and verify whether the business operation information of the optimized test environment meets the business requirements. If so, use the optimization plan to optimize the physical network. topology.
  • the test environment is generally existing; usually, before the solution is applied to the physical network, the solution will be tested in the test environment to reduce errors when the solution is applied to the physical network.
  • Optimize the network topology of the test environment that is, adjust the network topology of the test environment according to the optimization plan so that the network topology of the test environment is consistent with the network topology of the optimization plan.
  • Verify the service operation information of the optimized test environment that is, verify the service operation information according to the above rules (carrying capacity threshold, bearing performance threshold, whether there is unnecessary operation instruction data and communication with distant network element equipment) , when the business operation information meets the above rules, it is determined that the business operation information meets the business needs; otherwise, the business operation information does not meet the business needs.
  • the business operation information of each dimension of each business it is determined that the business meets the business needs; if the business operation information of one dimension does not meet the corresponding business needs, it is determined that the business does not meet the corresponding business needs.
  • the substandard network topology data is fed back to the twin network topology, and the optimization plan is re-determined in the twin network topology; this is repeated until The final optimization solution can meet business needs.
  • the network element data in order to facilitate real-time updating of network element data, can be managed and stored.
  • the method also includes the following steps S601 and S602:
  • Step S601 Manage network element data of cross-domain network element devices to standardize network element data.
  • the purpose of management is to make network element data easy to identify and extract; in one implementation, the network element data can be standardized into tables or other forms according to certain rules to achieve management of network element data.
  • Step S602 Store the standardized network element data to update the network element data in real time.
  • network element data can be managed according to categories. As shown in Figure 7, the above step S601 includes the following steps S701 and S702:
  • Step S701 Generate a corresponding category table for each type of network element data according to the category of the network element data.
  • the operation instructions can be managed through the instruction content, instruction version, etc.; for the current operation data, the current operation data can be managed according to different dimensions for each business; for example: for the video transmission service, from time to time The business is managed from different dimensions such as delay, jitter, and packet loss, and corresponding data is recorded under each dimension.
  • Step S702 Generate a corresponding relationship table based on the correlation between various types of network element data.
  • the category table and the relationship table are used to normalize network element data.
  • operation instruction data there may be an association between different operation instructions. For example, a certain operation instruction requires another operation instruction to respond. At this time, establishing an association between the two operations can make the operation instruction data Management is easier to identify and extract.
  • step S601 includes the following steps:
  • the data collected by network element equipment is divided into scheduled collection and real-time collection.
  • the time series is relatively dense and needs to be taken at regular intervals.
  • 3D modeling as an analogy, a 3D scanner can scan 100,000*100,000 point cloud data, but When performing point cloud reverse modeling, such dense surface data is not needed.
  • a three-dimensional model that meets the accuracy requirements can be constructed.
  • Exemplary embodiments of the present disclosure also provide a network topology optimization device 800.
  • the network topology optimization device is applied to the server 102; as shown in Figure 8, the network topology optimization device 800 may include:
  • the network element data collection module 801 is configured to collect network element data of cross-domain network element devices in the physical network; network element data includes current operating data and operation instruction data of network element devices;
  • the network topology building module 802 is configured to construct a twin network topology of the physical network based on the current operating data and operation instruction data of the network element equipment;
  • the network topology optimization module 803 is configured to determine the business operation information within the twin network topology based on the current operation data of the network element equipment, and to optimize the topology structure of the physical network based on the business operation information.
  • constructing a twin network topology of the physical network based on the current operating data and operating instruction data of the network element equipment includes: determining the distance between the network element equipment based on the current operating data and operating instruction data of the network element equipment.
  • the interactive relationship; based on the network topology creation rules and the interactive relationship between network element devices, a twin network topology structure is constructed; the physical network includes three logical layers, and the network topology creation rules are used to determine the topological logical relationships between the three logical layers. .
  • determining the business operation information within the twin network topology based on the current operating data of the network element equipment includes: determining each of the three logical layers of the twin network topology based on the current operating data of the network element equipment.
  • the carrying capacity, carrying performance and task scheduling path of network element equipment determine the business operation information within the twin network topology based on the carrying capacity, carrying performance and task scheduling path of each network element equipment.
  • optimizing the topology of the physical network based on business operation information includes: determining an optimization plan for the twin network topology based on the business operation information and business requirements within the twin network topology; In the test environment, the optimization plan is used to optimize the network topology structure of the test environment, and the business operation information of the optimized test environment is verified to meet the business requirements. If so, the optimization plan is used to optimize the topology structure of the physical network.
  • the method further includes: managing the network element data of the cross-domain network element equipment to standardize the network element data; Store standardized network element data to update network element data in real time.
  • managing network element data of cross-domain network element equipment to standardize the network element data includes: generating a corresponding category table for each type of network element data according to the category of the network element data; The association between class network element data generates corresponding relationship tables; the category table and relationship table are used to standardize network element data.
  • the method further includes: filtering the network element data according to the quantitative relationship between the network element data and the construction of the twin network topology.
  • Exemplary embodiments of the present disclosure also provide a computer-readable storage medium, which can be implemented in the form of a program product, which includes program code.
  • the program product When the program product is run on an electronic device, the program code is used to cause the electronic device to The steps described in the "Exemplary Methods" section of this specification above according to various exemplary embodiments of the present disclosure are performed.
  • the program product may be implemented as a portable compact disk read-only memory (CD-ROM) and include the program code, and may be run on an electronic device, such as a personal computer.
  • CD-ROM portable compact disk read-only memory
  • the program product of the present disclosure is not limited thereto.
  • a readable storage medium may be any tangible medium containing or storing a program that may be used by or in conjunction with an instruction execution system, apparatus, or device.
  • the Program Product may take the form of one or more readable media in any combination.
  • the readable medium may be a readable signal medium or a readable storage medium.
  • the readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device or device, or any combination thereof. More specific examples (non-exhaustive list) of readable storage media include: electrical connection with one or more conductors, portable disk, hard disk, random access memory (RAM), read only memory (ROM), erasable programmable read-only memory (EPROM or flash memory), optical fiber, portable compact disk read-only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
  • a computer-readable signal medium may include a data signal propagated in baseband or as part of a carrier wave carrying readable program code therein. Such propagated data signals may take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the above.
  • a readable signal medium may also be any readable medium other than a readable storage medium that can send, propagate, or transport the program for use by or in connection with an instruction execution system, apparatus, or device.
  • Program code embodied on a readable medium may be transmitted using any suitable medium, including but not limited to wireless, wireline, optical cable, RF, etc., or any suitable combination of the foregoing.
  • Program code for performing the operations of the present disclosure may be written in any combination of one or more programming languages, including object-oriented programming languages such as Java, C++, etc., as well as conventional procedural programming. Language—such as "C” or a similar programming language.
  • the program code may execute entirely on the user's computing device, partly on the user's device, as a stand-alone software package, partly on the user's computing device and partly on a remote computing device, or entirely on the remote computing device or server execute on.
  • the remote computing device may be connected to the user computing device through any kind of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computing device, such as provided by an Internet service. (business comes via Internet connection).
  • LAN local area network
  • WAN wide area network
  • Exemplary embodiments of the present disclosure also provide an electronic device, which may be, for example, the above-mentioned server 102 .
  • the electronic device may include a processor and memory.
  • the memory stores executable instructions of the processor, such as program codes.
  • the processor executes the network topology optimization method in this exemplary embodiment by executing the executable instructions. For example, the processor may execute the method steps in FIG. 2 .
  • FIG. 9 an exemplary description of an electronic device is provided in the form of a general-purpose computing device. It should be understood that the electronic device 900 shown in FIG. 9 is only an example and should not limit the functions and scope of use of the embodiments of the present disclosure.
  • the electronic device 900 may include: a processor 910 , a memory 920 , a bus 930 , an I/O (input/output) interface 940 , and a network adapter 950 .
  • the memory 920 may include volatile memory, such as RAM 921 and cache unit 922 , and may also include non-volatile memory, such as ROM 923 .
  • Memory 920 may also include one or more program modules 924, such program modules 924 including, but not limited to: an operating system, one or more application programs, other program modules, and program data, each or some combination of these examples. This may include the implementation of a network environment.
  • the program module 924 may include each module in the network topology optimization device 800 described above.
  • the bus 930 is used to realize connections between different components of the electronic device 900 and may include a data bus, an address bus and a control bus.
  • Electronic device 900 may communicate with one or more external devices 2000 (eg, keyboard, mouse, external controller, etc.) through I/O interface 940.
  • external devices 2000 eg, keyboard, mouse, external controller, etc.
  • the electronic device 900 can communicate with one or more networks through the network adapter 950.
  • the network adapter 950 can provide mobile communication solutions such as 3G/4G/5G, or provide wireless communication solutions such as wireless LAN, Bluetooth, near field communication, etc. .
  • Network adapter 950 may communicate with other modules of electronic device 900 via bus 930.
  • modules or units of equipment for action execution are mentioned in the above detailed description, this division is not mandatory.
  • the features and functions of two or more modules or units described above may be embodied in one module or unit.
  • the features and functions of one module or unit described above may be further divided into being embodied by multiple modules or units.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

一种网络拓扑结构优化方法、装置、存储介质与电子设备,该网络拓扑结构方法包括:采集物理网络中跨域的网元设备的网元数据;所述网元数据包括所述网元设备的当前运行数据和操作指令数据(S201);根据所述网元设备的当前运行数据和所述操作指令数据构建所述物理网络的孪生网络拓扑(S202);根据所述网元设备的当前运行数据,确定所述孪生网络拓扑内的业务运行信息,并根据所述业务运行信息对所述物理网络的拓扑结构进行优化(S203)。能够在一定程度上对网络拓扑结构进行优化,提高业务处理效率。

Description

网络拓扑结构优化方法、装置、存储介质与电子设备
本申请要求申请日为2022年08月15日,申请号为202210976085.1,名称为“网络拓扑结构优化方法、装置、存储介质与电子设备”的中国专利申请的优先权,该中国专利申请的全部内容通过引用结合在本文中。
技术领域
本公开涉及网络通信技术领域,尤其涉及一种网络拓扑结构优化方法、装置、存储介质与电子设备。
背景技术
5G(5th Generation Mobile Communication Technology,第五代移动通信技术)为了实现灵活的部署和扩展,在3GPP标准上提出SBA(Service Based Architecture,基于服务的架构),以NF(Network Function,网络功能)服务方式进行分布式部署。5G核心网采用的新技术、新架构方案为满足未来5G三大应用场景eMBB(增强移动宽带)、URLLC(低时延高可靠)以及mMTC(海量大连接)而提出,通过灵活的部署方式和扩展提供高带宽、低时延、高可靠和海量大连接的能力。为了摆脱之前网络架构部署的局限性,提出CUPS(Control and User Plane Separation)架构思想,即控制面与用户面分离。
目前,运营商在运营5G核心网业务时,在网络连接方面面临以下技术问题:
(1)单个网域(简称单域)拓扑连接无法准确描述物理网络端到端业务的状态;
(2)网络中存在不支持链路层发现协议(Link Layer Discovery Protocol,LLDP)的网元时,部分拓扑连接无法生成,以及一些区域内的网元增加了不必要的拓扑连接,对业务处理效率造成影响。
发明内容
本公开提供一种网络拓扑结构优化方法、网络拓扑结构优化装置、计算机可读存储介质与电子设备。
根据本公开的第一方面,提供一种网络拓扑结构优化方法,所述方法包括:采集物理网络中跨域的网元设备的网元数据;所述网元数据包括所述网元设备的当前运行数据和操作指令数据;根据所述网元设备的当前运行数据和所述操作指令数据构建所述物理网络的孪生网络拓扑;根据所述网元设备的当前运行数据,确定所述孪生网络拓扑内的业务运行信息,并根据所述业务运行信息对所述物理网络的拓扑结构进行优化。
根据本公开的第二方面,提供一种网络拓扑结构优化装置,所述装置包括:网元数据采集模块,被配置为采集物理网络中跨域的网元设备的网元数据;所述网元数据包括所述网元设备的当前运行数据和操作指令数据;网络拓扑构建模块,被配置为根据所述网元设 备的当前运行数据和所述操作指令数据构建所述物理网络的孪生网络拓扑;网络拓扑优化模块,被配置为根据所述网元设备的当前运行数据,确定所述孪生网络拓扑内的业务运行信息,并根据所述业务运行信息对所述物理网络的拓扑结构进行优化。
根据本公开的第三方面,提供一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现上述第一方面的网络拓扑结构优化方法及其可能的实现方式。
根据本公开的第四方面,提供一种电子设备,包括:处理器;以及存储器,用于存储处理器的可执行指令;其中,处理器配置为经由执行可执行指令来执行上述第一方面的网络拓扑结构优化方法及其可能的实现方式。
附图说明
图1为本公开实施例提供的一种系统架构的示意图;
图2为本公开实施例提供的一种网络拓扑结构优化方法的实现流程示意图;
图3为本公开实施例提供的一种网络拓扑结构优化方法的实现流程示意图;
图4为本公开实施例提供的一种网络拓扑结构优化方法的实现流程示意图;
图5为本公开实施例提供的一种网络拓扑结构优化方法的实现流程示意图;
图6为本公开实施例提供的一种网络拓扑结构优化方法的实现流程示意图;
图7为本公开实施例提供的一种网络拓扑结构优化方法的实现流程示意图;
图8为本公开实施例提供的一种网络拓扑结构优化装置的结构示意图;
图9为本公开实施例提供的一种电子设备的结构示意图。
具体实施方式
下文将结合附图更全面地描述本公开的示例性实施方式。
附图为本公开的示意性图解,并非一定是按比例绘制。附图中所示的一些方框图可能是功能实体,不一定必须与物理或逻辑上独立的实体相对应。可以采用软件形式来实现这些功能实体,或在硬件模块或集成电路中实现这些功能实体,或在网络、处理器或微控制器中实现这些功能实体。实施方式能够以多种形式实施,不应被理解为限于在此阐述的范例。本公开所描述的特征、结构或特性可以以任何合适的方式结合在一个或多个实施方式中。在下文的描述中,提供许多具体细节从而给出对本公开实施方式的充分说明。然而,本领域技术人员应意识到,可以在实现本公开的技术方案时省略其中的一个或多个特定细节,或者可以采用其它的方法、组元、装置、步骤等替代一个或多个特定细节。
5G核心网相比于4G及之前的核心网架构可以说是翻天覆地的改变,为了实现灵活的部署和扩展,由我国5G专家在3GPP标准上提出SBA(Service Based Architecture,基于服务的架构),以NF(Network Function,网络功能)服务方式进行分布式部署。5G核心网采用的新技术、新架构方案为满足未来5G三大应用场景eMBB(增强移动宽带)、URLLC (低时延高可靠)以及mMTC(海量大连接)而提出,通过灵活的部署方式和扩展提供高带宽、低时延、高可靠和海量大连接的能力。
5G核心网设计之初就采用SBA架构,即网络功能服务+基于服务的接口。网络功能服务可由多个模块化的“网络功能服务NF”组成,并通过“基于服务的接口”来展现其功能。为了摆脱之前网络架构部署的局限性,提出CUPS(Control and User Plane Separation)架构思想,即控制面与用户面分离。目的是让网络用户面功能摆脱“中心化”囚禁,使其既可灵活部署于核心网(中心数据中心),也可部署于接入网(边缘数据中心),最终实现可分布式部署。
5G核心网控制面由NSSF、AUSF、UDM、AMF、SMF、PCF和AF服务构成,它们之间服务由http接口方式实现。
5G核心网用户面由UPF(用户面功能)构成,可以包括一个或多个UPF,提供用户数据包的路由和转发、与外部数据网DN的数据交互、用户平面的Qos处理、流控规则实施(例如门控、重定向、流量转向等)。对外部分别暴露N3(GTP-U)、N4(PFCP)、N6、N9(GTP-U)接口对接(R)AN(比如基站等)、SMF、DN(数据网络,比如:运营商服务,因特网接入或第三方服务)和其他UPF。
上述控制面和用户面的网元设备介绍如下:
AMF(Access and Mobility Management Function,接入和移动性管理功能):分别与UE、(R)AN之间是实现N1和N2接口的交互。负责注册、接入、移动性、鉴权、透传短信等功能。
NSSF(The Network Slice Selection Function,网络切片选择功能):负责对UE的网络应用业务进行网络切片管理。
AUSF(Authentication Server Function,鉴权服务功能):持3GPP接入的鉴权和untrusted non3GPP接入的鉴权。
UDM(Unified Data Management,统一数据管理):负责的主要功能有:产生3GPP鉴权证书/鉴权参数;存储和管理5G系统的永久性用户ID(SUPI);订阅信息管理;MT-SMS递交;SMS管理;用户的服务网元注册管理。
SMF(Session Management function,会话功能管理):SMF的主要功能包括会话(session)的建立、修改、释放;UE IP的分配管理;DHCP功能;ARP代理或者IPv6邻居请求代理;为一个会话选择和控制UPF;计费数据的收集以及支持计费接口;决定一个会话的SSC模式;下行数据指示等。
PCF(Policy Control Function,策略控制功能):统一的策略框架去管理网络行为,提供策略规则给网络实体去实施执行。
AF(Application Function,应用功能):指应用层的各种服务,可以是运营商内部的应用如Volte AF(类似4G的Volte As)、也可以是第三方的AF(如移动端视频服务器、游戏服务器)。
UPF(The User plane function,用户面功能):分组路由转发,策略实施,流量报告,Qos处理。UPF是会话的锚点,记录流量转发量。
目前,运营商在运营5G核心网业务时,在网络连接方面面临以下技术问题:
(1)单个网域(简称单域)拓扑连接无法准确描述物理网络端到端业务的状态;
(2)网络中存在不支持链路层发现协议(Link Layer Discovery Protocol,LLDP)的网元时,部分拓扑连接无法生成,以及一些区域内的网元增加了不必要的拓扑连接,对业务运行效率造成影响。
鉴于上述问题,本公开的示例性实施方式首先提供一种网络拓扑结构优化方法,能够对跨域网络拓扑结构进行优化,更好的支持业务运行。
下面结合图1对上述网络拓扑结构优化方法的一种运行环境的系统架构与应用场景进行示例性说明。
图1示出了系统架构的示意图,该系统架构100可以包括不同网域内不同的网元设备组成的跨域网元设备集群101和服务器102;其中,服务器104可以泛指提供网络拓扑结构优化的后台系统(如5G核心网云网运营服务平台),可以是一台服务器或多台服务器形成的集群。跨域网元设备集群101和服务器102之间可以通过有线或无线的通信链路形成连接,以进行数据交互。
在一种实施例中,跨域网元设备集群101包括第一网元设备1011、第二网元设备1012和第三网元设备1013;其中,第一网元设备1011、第二网元设备1012和第三网元设备1013是不同网域的网元设备。
在一种实施方式中,第一网元设备1011属于第一网域,第二网元设备1012属于第二网域,第三网元设备1013属于第三网域,第一网域、第二网域和第三网域不同。
在一种实施方式中,第一网元设备1011属于第一网域,第二网元设备1012属于第二网域和第三网元设备1013可以是5G核心网中的网元设备,比如:AMF、SMF、PCF、NSSF、UPF、NRF、UDM等。
图2为本公开实施例提供的一种网络拓扑结构优化方法的实现流程示意图,可以由上述服务器102执行,如图2所示,该方法包括以下步骤S201至S203:
步骤S201、采集物理网络中跨域的网元设备的网元数据;网元数据包括网元设备的当前运行数据和操作指令数据;
步骤S202、根据网元设备的当前运行数据和操作指令数据构建物理网络的孪生网络拓扑;
步骤S203、根据网元设备的当前运行数据,确定孪生网络拓扑内的业务运行信息,并根据业务运行信息对物理网络的拓扑结构进行优化。
在上述网络拓扑结构优化方法中,首先,通过采集物理网络中跨域的网元设备的网元数据,构建该物理网络的孪生网络拓扑;其次,根据网元数据中的当前运行数据,确定孪生网络拓扑内的业务运行信息;最后,根据业务运行信息优化物理网络;如此,1)由于 采集的是跨域的网元设备的网元数据,因此,构建的孪生网络拓扑能够准确且实时描述物理网络端到端业务的状态;2)由于是根据网元设备的当前运行数据确定的孪生网络拓扑内的业务运行信息,进而对物理网络的拓扑结构进行优化,因此,能够实时优化物理网络的拓扑结构,提高业务处理效率。
下面对图2中的每个步骤进行具体说明。
参考图2,在步骤S201中,采集物理网络中跨域的网元设备的网元数据。
其中,网元数据包括网元设备的当前运行数据和操作指令数据。
跨域,可以理解为不同的自治域;自治域是一组路由器的集合;根据是否在一个自治域内部使用,动态路由协议分为内部网关协议(Inner Gateway Protocol,IGP)和外部网关协议(Exterior Gateway Protocol,EGP)。内部网关协议用于自治域内部路由选择;外部网关协议用于多个自治域之间的路由选择。
网元设备是网络中可以管理的最小单位,能够独立完成一定的传输功能。在一种实施方式中,网元设备可以是4G网络中的网元设备,比如:MME、SAEGW-C、SAEGW-U等;也可以是5G网络中的网元设备,比如:AMF、SMF、PCF、NSSF、UPF、NRF、UDM等。
网元数据是从网元设备采集的数据,在一种实施方式中,可以是网元设备的属性信息,比如:网元设备的厂商类型、用户信息、微服务进程类型、微服务进程信息等;也可以是网元设备的运行信息,比如:网元设备的承载量、承载性能、任务调度路径等;还可以是网元设备的操作指令数据,比如:查询IP地址指令、查询APN配置指令、显示实例信息指令等。
继续参考图2,在步骤S202中,根据网元设备的当前运行数据和操作指令数据构建物理网络的孪生网络拓扑。
其中,网元设备的操作指令数据,能够确定与该网元设备交互的其他网元设备,比如:查询SMF用户信息的指令需要与UPF网元设备进行交互。网元设备的当前运行数据,能够确定网元设备之间是否交互了操作指令数据,比如:2021.08.31AM10:00查询SMF用户信息的指令与UPF网元设备进行了交互。进而,网元设备的当前运行数据结合操作指令数据,能够确定物理网络中网元设备对应的网元孪生体之间的拓扑结构(连接关系)。
继续参考图2,在步骤S203中,根据网元设备的当前运行数据,确定孪生网络拓扑内的业务运行信息,并根据业务运行信息对物理网络的拓扑结构进行优化。
其中,业务运行信息,即,每一业务对应的运行信息;一个网元设备往往具有多种功能,比如:SMF网元设备的主要功能包括会话(session)的建立、修改、释放,UE IP的分配管理,DHCP功能,ARP代理或者IPv6邻居请求代理,为一个会话选择和控制UPF,计费数据的收集以及支持计费接口,决定一个会话的SSC模式,下行数据指示等;因此,一个网元设备往往不止负责一个业务;网元设备的当前运行数据可能包括多个业务的运行数据;因此,需要对网元设备的当前运行数据进行分析,以确定每一业务对应的运行信息(业务运行信息)。
网元设备的当前运行数据包括承载量、承载性能、任务调度路径等;在一种实施方式中,可以根据网元设备的承载量确定每一业务的承载量、根据网元设备的承载性能确定每一业务的承载性能、根据网元设备的任务调度路径确定每一业务的任务调度路径;具体地,可以通过对承载量、承载性能、任务调度路径按照业务进行分类来确定。
物理网络的拓扑结构的优化,可以通过对孪生网络拓扑优化来实现;具体地,可以根据业务运行信息确定孪生网络拓扑的优化方案,并对该优化方案进行验证,在业务运行信息满足业务需求的情况下,确定验证通过,并将该优化方案应用于物理网络;比如:视频传输业务的业务运行信息表明时延、抖动、丢包等维度的业务需求均满足,则确定验证通过。
在一种实施方式中,网元设备的运行数据结合操作指令数据,能够确定与该网元设备交互的其他网元设备;进而,能够确定物理网络的孪生网络的拓扑结构;如图3所示,上述步骤S202包括以下步骤S301和S302:
步骤S301、根据所述网元设备的当前运行数据和操作指令数据,确定网元设备之间的交互关系。
其中,操作指令数据可以理解为操作指令;操作指令是根据网元设备的功能而定的,一般具有指向性,通过发送给另一网元设备来执行;而通过当前运行数据能够确定操作指令的交互情况;因此,网元设备的当前运行数据结合操作指令数据,能够确定与该网元设备交互的其他网关设备;进而,能够确定网元设备之间的交互关系(连接关系)。
步骤S302、基于网络拓扑创建规则和网元设备之间的交互关系,构建孪生网络拓扑。
其中,物理网络包括三个逻辑层,网络拓扑创建规则用于确定三个逻辑层之间的拓扑逻辑关系。三个逻辑层,即,网络实体层、区域设备总线层和网元设备互联层;其中,网络实体层包括用户设备UE、(无线)接入网络(R)AN、用户平面功能UPF、数据网DN;区域设备总线层包括UDM、AUSF、PCF、SMF、AMF等网元设备;网元设备互联层包括PCF、UDM、BSF、NSSF等网络实体;网络实体层的设备与区域设备总线层的设备连接;区域总线层的设备与网元设备互联层的设备连接。通过构建孪生网络拓扑,能够实现准确还原物理网络的真实状态,实现对物理网络的实时监控和动态跟踪,以提高物理网络的稳定性。
步骤S302中,根据网元设备之间的交互关系确定出孪生网络拓扑结构;再根据网络拓扑创建规则形成具有三个逻辑层的孪生网络拓扑结构;如此,能够清晰的表达网元设备之间的拓扑结构,以更好的进行任务调度分析,高效处理用户需求。
在一种实施方式中,孪生网络拓扑内的业务运行信息,可以理解为,对网元设备的当前运行数据优化后得到的数据;如图4所示,上述步骤S203包括以下步骤S401和S402:
步骤S401、根据网元设备的当前运行数据,确定孪生网络拓扑的三个逻辑层中各网元设备的承载量、承载性能以及任务调度路径。
其中,可以通过对网元设备的当前运行数据进行分析来确定网元设备的承载量、承载 性能和任务调度路径;在一种实施方式中,承载量可以通过统计网元设备向外交互通信的数量确定;承载性能可以通过统计网元设备处理用户需求的成功率确定;任务调度路径可以通过确定针对用户需求的处理与执行过程中,操作指令数据的通信路径。
步骤S402、根据各网元设备的承载量、承载性能以及任务调度路径,确定孪生网络拓扑内的业务运行信息。
其中,孪生网络拓扑内的业务运行信息可以通过对网元设备的承载量、承载性能以及任务调度路径进行分析确定;在一种实施方式中,可以按照业务类型对承载量、承载性能和任务调度路径进行分类,来确定各业务交互通信的数量(业务承载量)、各业务的成功率(业务承载性能)、各业务的实际通信路径(业务的任务调度路径)。
在一种实施方式中,确定出优化方案后,需要在测试环境中对优化方案进行测试,测试通过后再将优化方案应用于实际的物理网络,如图5所示,上述步骤S203包括以下步骤S501和S502:
步骤S501、根据孪生网络拓扑内的业务运行信息和业务需求,确定孪生网络拓扑的优化方案。
其中,业务运行信息与业务需求之间的关系存在以下两种:
业务运行信息满足业务需求;
业务运行信息不满足业务需求。
步骤S501指的第(2)种情况;即,在业务运行信息不满足业务需求的情况下,确定孪生网络拓扑的优化方案。
在一种实施方式中,可以根据历史数据对承载量设置承载量阈值,承载量等于承载量阈值时,承载量(交互通信数量)处于满足业务需求与不满足业务需求的临界点;如此,承载量超过承载量阈值后执行对应的优化策略,即确定需要分流的网元设备数量,以缓解网络压力。这里,可以针对每一业务设置承载量阈值。
在一种实施方式中,可以根据历史数据对承载性能设置承载性能阈值,承载性能(处理用户需求的成功率)等于承载性能阈值时,承载性能处于满足业务需求与不满足业务需求的临界点;如此,承载性能低于承载性能阈值后进行优化,即进行断网测试以确定原因,并对影响承载性能的网元设备进行相应的处理(比如:更换故障的网元设备)。这里,可以针对每一业务设置承载性能阈值。
在一种实施方式中,可以通过分析任务调度路径,确定是否进行了不必要的操作指令数据,以及是否与距离较远的网元设备进行了通信,以在存在上述情况时,对网元设备进行优化,即对网元设备的连接进行相应的调整,以使任务调度路径合理、简洁。
步骤S502、在物理网络对应的测试环境中,采用优化方案对测试环境的网络拓扑结构进行优化,验证优化后的测试环境的业务运行信息是否满足业务需求,若满足,则采用优化方案优化物理网络的拓扑结构。
其中,测试环境一般是现有的;通常,方案在应用于物理网络前,会先在测试环境中 对方案进行测试,以降低方案应用于物理网络中的失误。
对测试环境的网络拓扑结构进行优化,即,根据优化方案对测试环境的网络拓扑进行调整,以使测试环境的网络拓扑结构与优化方案的网络拓扑结构一致。
验证优化后测试环境的业务运行信息,即根据上述规则(承载量阈值、承载性能阈值、是否存在不必要的操作指令数据和与距离较远的网元设备进行了通信)对业务运行信息进行验证,在业务运行信息满足上述规则的情况下,则确定业务运行信息满足业务需求;否则,业务运行信息不满足业务需求。这里,每一业务每一维度的业务运行信息均满足对应的业务需求的情况下,确定该业务满足业务需求;存在一个维度的业务运行信息不满足对应的业务需求的情况下,确定该业务不满足业务需求;比如:视频传输业务在时延、抖动、丢包等维度均满足业务需求,则视频传输业务满足业务需求;存在一个维度不满足业务需求,则不满足业务需求。
在一种实施方式中,当验证优化后的测试环境的业务运行信息不满足业务需求时,反馈不达标的网络拓扑数据至孪生网络拓扑,在孪生网络拓扑中重新确定优化方案;如此反复,直到最终的优化方案能够满足业务需求。
在一种实施方式中,为了便于对网元数据进行实时更新,可以对网元数据进行管理和存储,如图在上述步骤S201之后,该方法还包括以下步骤S601和S602:
步骤S601、对跨域的网元设备的网元数据进行管理,以规范化网元数据。
其中,管理的目的是为了使网元数据易于识别和抽取;在一种实施方式中,可以是按照一定的规则将网元数据规范化为表格或者其他形式,以实现对网元数据的管理。
步骤S602、对规范化后的网元数据进行存储,以实时更新网元数据。
在一种实施方式中,可以按照类别对网元数据进行管理,如图7所示,上述步骤S601包括以下步骤S701和S702:
步骤S701、根据网元数据的类别,针对每类网元数据生成对应的类别表。
其中,对于操作指令数据,可以通过指令内容、指令版本等对操作指令进行管理;对于当前运行数据,可以针对每一业务按照不同维度对当前运行数据进行管理;比如:对于视频传输业务,从时延、抖动、丢包等不同维度对该业务进行管理,每一维度下记录对应的数据。
步骤S702、根据各类网元数据之间的关联关系,生成对应的关系表。
其中,类别表和关系表用于规范化网元数据。
对于操作指令数据,不同的操作指令之间可能存在关联关系,比如:某一操作指令需要另一操作指令来响应,此时,建立这两个操作之间的关联关系,能够使得操作指令数据的管理更易识别和抽取。
在一种实施方式中,网元数据并非都能应用于网络拓扑的构建,因此,需要对网元数据进行过滤;上述步骤S601包括以下步骤:
根据网元数据与构建孪生网络拓扑之间的数量关系,对网元数据进行筛选。
其中,网元设备采集数据分为定时采集与实时采集,时间序列比较密集,需要间隔定时取数;以三维建模作类比,三维扫描仪可以扫描到10万*10万的点云数据,但点云逆向建模的时候,并不需要如此密集的表面数据,定长从中筛取1万*1万,采用插值法,即可构建出满足精度要求的三维模型。
本公开的示例性实施方式还提供一种网络拓扑结构优化装置800。该网络拓扑结构优化装置应用于服务器102;参考图8所示,该网络拓扑结构优化装置800可以包括:
网元数据采集模块801,被配置为采集物理网络中跨域的网元设备的网元数据;网元数据包括网元设备的当前运行数据和操作指令数据;
网络拓扑构建模块802,被配置为根据网元设备的当前运行数据和操作指令数据构建物理网络的孪生网络拓扑;
网络拓扑优化模块803,被配置为根据网元设备的当前运行数据,确定孪生网络拓扑内的业务运行信息,并根据业务运行信息对物理网络的拓扑结构进行优化。
在一种实施方式中,所述根据网元设备的当前运行数据和操作指令数据构建物理网络的孪生网络拓扑,包括:根据网元设备的当前运行数据和操作指令数据,确定网元设备之间的交互关系;基于网络拓扑创建规则和网元设备之间的交互关系,构建孪生网络拓扑结构;物理网络包括三个逻辑层,网络拓扑创建规则用于确定三个逻辑层之间的拓扑逻辑关系。
在一种实施方式中,根据所述网元设备的当前运行数据,确定孪生网络拓扑内的业务运行信息,包括:根据网元设备的当前运行数据,确定孪生网络拓扑的三个逻辑层中各网元设备的承载量、承载性能以及任务调度路径;根据各网元设备的承载量、承载性能以及任务调度路径,确定孪生网络拓扑内的业务运行信息。
在一种实施方式中,根据业务运行信息对物理网络的拓扑结构进行优化,包括:根据孪生网络拓扑内的业务运行信息和业务需求,确定孪生网络拓扑的优化方案;在物理网络对应的测试环境中,采用优化方案对测试环境的网络拓扑结构进行优化,验证优化后的测试环境的业务运行信息是否满足业务需求,若满足,则采用优化方案优化物理网络的拓扑结构。
在一种实施方式中,在所述采集物理网络中跨域的网元设备的网元数据之后,方法还包括:对跨域的网元设备的网元数据进行管理,以规范化网元数据;对规范化后的网元数据进行存储,以实时更新网元数据。
在一种实施方式中,对跨域的网元设备的网元数据进行管理,以规范化网元数据,包括:根据网元数据的类别,针对每类网元数据生成对应的类别表;根据各类网元数据之间的关联关系,生成对应的关系表;类别表和关系表用于规范化网元数据。
在一种实施方式中,在采集物理网络中跨域的网元设备的网元数据之后,方法还包括:根据网元数据与构建孪生网络拓扑之间的数量关系,对网元数据进行筛选。
本公开的示例性实施方式还提供了一种计算机可读存储介质,可以实现为一种程序产 品的形式,其包括程序代码,当程序产品在电子设备上运行时,程序代码用于使电子设备执行本说明书上述“示例性方法”部分中描述的根据本公开各种示例性实施方式的步骤。在一种可选的实施方式中,该程序产品可以实现为便携式紧凑盘只读存储器(CD-ROM)并包括程序代码,并可以在电子设备,例如个人电脑上运行。然而,本公开的程序产品不限于此,在本文件中,可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
程序产品可以采用一个或多个可读介质的任意组合。可读介质可以是可读信号介质或者可读存储介质。可读存储介质例如可以为但不限于电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。
计算机可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了可读程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。可读信号介质还可以是可读存储介质以外的任何可读介质,该可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于无线、有线、光缆、RF等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言的任意组合来编写用于执行本公开操作的程序代码,程序设计语言包括面向对象的程序设计语言—诸如Java、C++等,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算设备上执行、部分地在用户设备上执行、作为一个独立的软件包执行、部分在用户计算设备上部分在远程计算设备上执行、或者完全在远程计算设备或服务器上执行。在涉及远程计算设备的情形中,远程计算设备可以通过任意种类的网络,包括局域网(LAN)或广域网(WAN),连接到用户计算设备,或者,可以连接到外部计算设备(例如利用因特网服务提供商来通过因特网连接)。
本公开的示例性实施方式还提供一种电子设备,该电子设备例如可以是上述服务器102。该电子设备可以包括处理器与存储器。存储器存储有处理器的可执行指令,如可以是程序代码。处理器通过执行该可执行指令来执行本示例性实施方式中的网络拓扑结构优化方法,如可以执行图2的方法步骤。
下面参考图9,以通用计算设备的形式对电子设备进行示例性说明。应当理解,图9显示的电子设备900仅仅是一个示例,不应对本公开实施方式的功能和使用范围带来限制。
如图9所示,电子设备900可以包括:处理器910、存储器920、总线930、I/O(输入/输出)接口940、网络适配器950。
存储器920可以包括易失性存储器,例如RAM921、缓存单元922,还可以包括非易失性存储器,例如ROM923。存储器920还可以包括一个或多个程序模块924,这样的程序模块924包括但不限于:操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。例如,程序模块924可以包括上述网络拓扑结构优化装置800中的各模块。
总线930用于实现电子设备900的不同组件之间的连接,可以包括数据总线、地址总线和控制总线。
电子设备900可以通过I/O接口940与一个或多个外部设备2000(例如键盘、鼠标、外置控制器等)进行通信。
电子设备900可以通过网络适配器950与一个或者多个网络通信,例如网络适配器950可以提供如3G/4G/5G等移动通信解决方案,或者提供如无线局域网、蓝牙、近场通信等无线通信解决方案。网络适配器950可以通过总线930与电子设备900的其它模块通信。
尽管图9中未示出,还可以在电子设备900中设置其它硬件和/或软件模块,包括但不限于:显示器、微代码、设备驱动器、冗余处理器、外部磁盘驱动阵列、RAID系统、磁带驱动器以及数据备份存储系统等。
应当注意,尽管在上文详细描述中提及了用于动作执行的设备的若干模块或者单元,但是这种划分并非强制性的。实际上,根据本公开的示例性实施方式,上文描述的两个或更多模块或者单元的特征和功能可以在一个模块或者单元中具体化。反之,上文描述的一个模块或者单元的特征和功能可以进一步划分为由多个模块或者单元来具体化。
本领域技术人员能够理解,本公开的各个方面可以实现为系统、方法或程序产品。因此,本公开的各个方面可以具体实现为以下形式,即:完全的硬件实施方式、完全的软件实施方式(包括固件、微代码等),或硬件和软件方面结合的实施方式,这里可以统称为“电路”、“模块”或“系统”。本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其他实施方式。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施方式仅被视为示例性的,本公开的真正范围和精神由权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限定。

Claims (10)

  1. 一种网络拓扑结构优化方法,其中,包括:
    采集物理网络中跨域的网元设备的网元数据;所述网元数据包括所述网元设备的当前运行数据和操作指令数据;
    根据所述网元设备的当前运行数据和所述操作指令数据构建所述物理网络的孪生网络拓扑;
    根据所述网元设备的当前运行数据,确定所述孪生网络拓扑内的业务运行信息,并根据所述业务运行信息对所述物理网络的拓扑结构进行优化。
  2. 根据权利要求1所述的网络拓扑结构优化方法,其中,所述根据所述网元设备的当前运行数据和所述操作指令数据构建所述物理网络的孪生网络拓扑,包括:
    根据所述网元设备的当前运行数据和所述操作指令数据,确定所述网元设备之间的交互关系;
    基于网络拓扑创建规则和所述网元设备之间的交互关系,构建所述孪生网络拓扑;所述物理网络包括三个逻辑层,所述网络拓扑创建规则用于确定所述三个逻辑层之间的拓扑逻辑关系。
  3. 根据权利要求1所述的网络拓扑结构优化方法,其中,所述根据所述网元设备的当前运行数据,确定所述孪生网络拓扑内的业务运行信息,包括:
    根据所述网元设备的当前运行数据,确定所述孪生网络拓扑的三个逻辑层中各网元设备的承载量、承载性能以及任务调度路径;
    根据各网元设备的承载量、承载性能以及任务调度路径,确定所述孪生网络拓扑内的业务运行信息。
  4. 根据权利要求3所述的网络拓扑结构优化方法,其中,所述根据所述业务运行信息对所述物理网络的拓扑结构进行优化,包括:
    根据所述孪生网络拓扑内的业务运行信息和业务需求,确定所述孪生网络拓扑的优化方案;
    在所述物理网络对应的测试环境中,采用所述优化方案对所述测试环境的网络拓扑结构进行优化,验证优化后的测试环境的业务运行信息是否满足业务需求,若满足,则采用所述优化方案优化所述物理网络的拓扑结构。
  5. 根据权利要求1所述的网络拓扑结构优化方法,其中,在所述采集物理网络中跨域的网元设备的网元数据之后,所述方法还包括:
    对所述跨域的网元设备的网元数据进行管理,以规范化所述网元数据;
    对规范化后的网元数据进行存储,以实时更新所述网元数据。
  6. 根据权利要求5所述的网络拓扑结构优化方法,其中,所述对所述跨域的网元设备的网元数据进行管理,以规范化所述网元数据,包括:
    根据所述网元数据的类别,针对每类网元数据生成对应的类别表;
    根据各类网元数据之间的关联关系,生成对应的关系表;所述类别表和所述关系表用于规范化所述网元数据。
  7. 根据权利要求1所述的网络拓扑结构优化方法,其中,在所述采集物理网络中跨域的网元设备的网元数据之后,所述方法还包括:
    根据所述网元数据与构建所述孪生网络拓扑之间的数量关系,对所述网元数据进行筛选。
  8. 一种网络拓扑结构优化装置,其中,包括:
    网元数据采集模块,被配置为采集物理网络中跨域的网元设备的网元数据;所述网元数据包括所述网元设备的当前运行数据和操作指令数据;
    网络拓扑构建模块,被配置为根据所述网元设备的当前运行数据和所述操作指令数据构建所述物理网络的孪生网络拓扑;
    网络拓扑优化模块,被配置为根据所述网元设备的当前运行数据,确定所述孪生网络拓扑内的业务运行信息,并根据所述业务运行信息对所述物理网络的拓扑结构进行优化。
  9. 一种计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现权利要求1至7任一项所述的方法。
  10. 一种电子设备,其中,包括:
    处理器;以及
    存储器,用于存储所述处理器的可执行指令;
    其中,所述处理器配置为经由执行所述可执行指令来执行权利要求1至7任一项所述的方法。
PCT/CN2022/139472 2022-08-15 2022-12-16 网络拓扑结构优化方法、装置、存储介质与电子设备 WO2024036841A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210976085.1 2022-08-15
CN202210976085.1A CN115348637A (zh) 2022-08-15 2022-08-15 网络拓扑结构优化方法、装置、存储介质与电子设备

Publications (1)

Publication Number Publication Date
WO2024036841A1 true WO2024036841A1 (zh) 2024-02-22

Family

ID=83952409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/139472 WO2024036841A1 (zh) 2022-08-15 2022-12-16 网络拓扑结构优化方法、装置、存储介质与电子设备

Country Status (2)

Country Link
CN (1) CN115348637A (zh)
WO (1) WO2024036841A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115348637A (zh) * 2022-08-15 2022-11-15 中国电信股份有限公司 网络拓扑结构优化方法、装置、存储介质与电子设备
CN115865695A (zh) * 2022-11-23 2023-03-28 博瑞得科技有限公司 基于跨专业数据关联的5g专网资源拓扑生成的方法及装置
CN116260765B (zh) * 2023-05-11 2023-07-18 中国人民解放军国防科技大学 一种大规模动态路由网络数字孪生建模方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111835565A (zh) * 2020-07-06 2020-10-27 重庆金美通信有限责任公司 一种基于数字孪生的通信网络优化方法、装置和系统
CN114189888A (zh) * 2021-11-29 2022-03-15 中国船舶重工集团公司第七一六研究所 基于数字孪生的5g融合网架构下多模终端接入系统及方法
CN114615718A (zh) * 2021-12-30 2022-06-10 亚信科技(中国)有限公司 基于数字孪生技术的网络拓扑构建方法及装置
WO2022121559A1 (zh) * 2020-12-07 2022-06-16 中兴通讯股份有限公司 移动通信系统管控方法、网络管控体、系统及存储介质
US20220207217A1 (en) * 2020-12-31 2022-06-30 Electronics And Telecommunications Research Institute Method and system for real-time simulation using digital twin agent
CN114900436A (zh) * 2022-04-29 2022-08-12 电子科技大学 一种基于多维融合模型的网络孪生方法
CN115348637A (zh) * 2022-08-15 2022-11-15 中国电信股份有限公司 网络拓扑结构优化方法、装置、存储介质与电子设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111835565A (zh) * 2020-07-06 2020-10-27 重庆金美通信有限责任公司 一种基于数字孪生的通信网络优化方法、装置和系统
WO2022121559A1 (zh) * 2020-12-07 2022-06-16 中兴通讯股份有限公司 移动通信系统管控方法、网络管控体、系统及存储介质
US20220207217A1 (en) * 2020-12-31 2022-06-30 Electronics And Telecommunications Research Institute Method and system for real-time simulation using digital twin agent
CN114189888A (zh) * 2021-11-29 2022-03-15 中国船舶重工集团公司第七一六研究所 基于数字孪生的5g融合网架构下多模终端接入系统及方法
CN114615718A (zh) * 2021-12-30 2022-06-10 亚信科技(中国)有限公司 基于数字孪生技术的网络拓扑构建方法及装置
CN114900436A (zh) * 2022-04-29 2022-08-12 电子科技大学 一种基于多维融合模型的网络孪生方法
CN115348637A (zh) * 2022-08-15 2022-11-15 中国电信股份有限公司 网络拓扑结构优化方法、装置、存储介质与电子设备

Also Published As

Publication number Publication date
CN115348637A (zh) 2022-11-15

Similar Documents

Publication Publication Date Title
WO2024036841A1 (zh) 网络拓扑结构优化方法、装置、存储介质与电子设备
US11368862B2 (en) Point-to-multipoint or multipoint-to-multipoint mesh self-organized network over WIGIG standards with new MAC layer
US10334446B2 (en) Private multefire network with SDR-based massive MIMO, multefire and network slicing
JP7064588B2 (ja) エッジネットワークケイパビリティ開放を実現する方法、装置、機器および記憶媒体
CN110890976B (zh) 计算机网络中的动态意图保证方法和装置以及存储介质
US8861494B2 (en) Self-organizing communication networks
US20210274418A1 (en) Information Transmission Method and Apparatus
JP3910613B2 (ja) ネットワーク接続ストレージsnmpシングル・システム・イメージ
KR20200018220A (ko) 무선 통신 시스템에서 네트워크 트래픽 관리 방법 및 장치
EP3545705B1 (en) Wireless backhaul management of sensor networks via programmable ran controller
CN114339719A (zh) 一种dpi数据采集方法及相关装置
Khurshid et al. Big data assisted CRAN enabled 5G SON architecture
US20230403223A1 (en) Data analysis apparatus management and control method and communication apparatus
WO2015070763A1 (zh) X2接口的自建立方法及装置
US12021706B2 (en) Enterprise port assignment
Mahmoud et al. Software‐defined networking approach for enhanced evolved packet core network
Lee et al. Auto-scaling mechanism in the ICT converged cross stratum orchestration architecture for zero-touch service and network management
WO2021218270A1 (zh) 一种通信方法、装置及系统
CN113039752B (zh) 用于支持基于服务的架构的网络节点和方法
CN111106974B (zh) 一种测试无损网络性能的方法和装置
US20200195523A1 (en) Server assisted network discovery (sand)
Wang et al. Multi-layer virtual transport network design
US11563640B2 (en) Network data extraction parser-model in SDN
EP4191958A1 (en) Edge device for telemetry flow data collection
US11277307B2 (en) Configuring managed devices when a network management system (NMS) is not reachable

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22955608

Country of ref document: EP

Kind code of ref document: A1