WO2022121432A1 - 油分离器以及空调室外机 - Google Patents

油分离器以及空调室外机 Download PDF

Info

Publication number
WO2022121432A1
WO2022121432A1 PCT/CN2021/119363 CN2021119363W WO2022121432A1 WO 2022121432 A1 WO2022121432 A1 WO 2022121432A1 CN 2021119363 W CN2021119363 W CN 2021119363W WO 2022121432 A1 WO2022121432 A1 WO 2022121432A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank body
inlet pipe
oil separator
oil
outlet pipe
Prior art date
Application number
PCT/CN2021/119363
Other languages
English (en)
French (fr)
Inventor
颜利波
马焕桥
张铁钢
李仲珍
崔渊博
Original Assignee
合肥美的暖通设备有限公司
广东美的暖通设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合肥美的暖通设备有限公司, 广东美的暖通设备有限公司 filed Critical 合肥美的暖通设备有限公司
Priority to EP21902140.9A priority Critical patent/EP4130614A4/en
Publication of WO2022121432A1 publication Critical patent/WO2022121432A1/zh
Priority to US17/992,847 priority patent/US20230080586A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/12Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces
    • B01D45/16Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces generated by the winding course of the gas stream, the centrifugal forces being generated solely or partly by mechanical means, e.g. fixed swirl vanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/02Construction of inlets by which the vortex flow is generated, e.g. tangential admission, the fluid flow being forced to follow a downward path by spirally wound bulkheads, or with slightly downwardly-directed tangential admission
    • B04C5/04Tangential inlets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/08Vortex chamber constructions
    • B04C5/081Shapes or dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/08Vortex chamber constructions
    • B04C5/103Bodies or members, e.g. bulkheads, guides, in the vortex chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/08Compressors specially adapted for separate outdoor units
    • F24F1/10Arrangement or mounting thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/02Centrifugal separation of gas, liquid or oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Definitions

  • the present disclosure belongs to the technical field of air conditioners, and in particular relates to an oil separator and an outdoor unit of an air conditioner.
  • An air conditioner is a device that enables the refrigerant inside to undergo a refrigeration cycle consisting of a compression process, a condensation process, an expansion process and an evaporation process.
  • the refrigerant compressed into a high temperature and high pressure state can dissipate heat to the outside in the condenser, and significantly reduce its temperature and pressure when it flows through the expansion valve, and then the low temperature, low pressure refrigerant flows through the evaporator. The heat is absorbed and eventually recirculated back to the compressor.
  • the compression process, the condensation process and the expansion process are carried out in the outdoor unit of the air conditioner, and the evaporation process is carried out under the action of the blower fan and the evaporator in the indoor unit.
  • an oil separator is generally installed between the compressor exhaust port and the condenser. , used to separate the lubricating oil in the high-pressure gas discharged from the compressor, so that the lubricating oil can return to the compressor to ensure its normal operation, prevent the compressor from running out of oil, and at the same time, prevent excess oil from entering the condenser and evaporator, affecting heat exchange efficiency.
  • the purpose of the present disclosure is to at least solve the problems of excessive pressure drop and low separation efficiency caused by the filter screen provided in the oil separator in the prior art. This purpose is achieved through the following technical solutions:
  • a first aspect of the present disclosure proposes an oil separator, comprising:
  • a tank body the lower end of the tank body is provided with an oil outlet;
  • the inlet pipe is connected to the tank body
  • the air outlet pipe is connected to the upper end of the tank body, and at least part of the air outlet pipe extends into the tank body;
  • the tank body has an axial center plane
  • the axial center plane is a plane passing through the central axis of the tank body
  • the center line of the inlet pipe is eccentrically arranged relative to the axial center plane
  • the inlet pipe is integrally on one side of the axial plane.
  • the setting of the filter screen is cancelled, and after the mixture enters the tank body, the oil and gas separation is realized by rotating motion, and the pressure drop is small.
  • the inlet pipe When the inlet pipe is connected to the side of the tank, it can be parallel to the horizontal direction, and can be inclined upward or downward relative to the horizontal direction. In one embodiment, the inlet pipe is parallel to the horizontal direction. On the one hand, it is avoided that the mixture is inclined along the slope The upward flow of the inlet pipe collides with the upper end of the tank unnecessarily. On the other hand, the flow of the mixture along the inclined downward inlet pipe is avoided to accelerate the flow of the mixture to the oil outlet, and the separation efficiency is low due to insufficient time for separation. Therefore, the final choice is to set the inlet pipe to be parallel to the horizontal direction, so that the mixture can be separated in the tank for a long enough time to improve the separation effect.
  • the separation member is disposed between the inlet pipe and the lower end of the air outlet pipe.
  • the ratio of the axial distance between the inlet pipe and the air outlet pipe to the radial dimension of the tank body is greater than or equal to 0.5.
  • the outer wall portion of the separator is connected to the inner wall of the tank
  • the lower end of the air outlet pipe is higher than the inlet pipe.
  • the ratio of the axial distance between the inlet pipe and the oil outlet to the radial dimension of the tank is greater than or equal to 0.2, and the distance between the gas outlet pipe and the inlet pipe is greater than or equal to 0.2.
  • the ratio of the axial distance between them to the radial dimension of the tank is greater than or equal to 0.5.
  • the plurality of separation holes are formed on the separation member at uniform intervals.
  • the end of the inlet pipe connected to the tank body is located on the inner wall of the tank body or is located outside the inner wall of the tank body .
  • the inner wall of the inlet pipe is tangent to the inner wall of the tank.
  • An oil separator is the oil separator in any of the above technical solutions, and the oil separator is connected downstream of the compressor.
  • the outdoor unit of the air conditioner in the embodiment of the present disclosure has the same beneficial effects as the oil separator in the above-mentioned embodiment, which will not be repeated here.
  • FIG. 1 is a schematic diagram of an oil separator according to an embodiment of the disclosure
  • Fig. 2 is the top view shown in Fig. 1;
  • FIG. 3 is a schematic diagram of an oil separator according to another embodiment of the disclosure.
  • Fig. 4 is the top view shown in Fig. 3;
  • FIG. 5 is a schematic diagram of an embodiment of the separator shown in Figures 1 to 4;
  • Figure 6 is a schematic diagram of another embodiment of the separator shown in Figures 1 to 4;
  • FIG. 8 is a schematic diagram of an oil separator according to another embodiment of the disclosure.
  • FIG. 9 is a schematic diagram of an embodiment of the separator shown in FIGS. 7-8;
  • FIG. 11 is a schematic diagram of a manner in which an inlet pipe and a tank body are connected according to an embodiment of the disclosure
  • FIG. 12 is a schematic diagram of another way of connecting the inlet pipe and the tank according to the embodiment of the disclosure.
  • first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be restricted by these terms. These terms may only be used to distinguish one element, component, region, layer or section from another region, layer or section. Terms such as “first,” “second,” and other numerical terms when used herein do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of example embodiments.
  • spatially relative terms may be used herein to describe the relationship of one element or feature to another element or feature as shown in the figures, such as “inner”, “outer”, “inner” “, “outside”, “below”, “below”, “above”, “above”, etc.
  • This spatially relative term is intended to include different orientations of the device in use or operation other than the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” or “above the other elements or features" above features". Thus, the example term “below” can encompass both an orientation of above and below.
  • the device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
  • an oil separator according to an embodiment of the present disclosure includes:
  • Tank body 2 the lower end of the tank body 2 is provided with an oil outlet;
  • Inlet pipe 1 the inlet pipe 1 is connected to the tank body 2, and the center line of the inlet pipe is parallel to the horizontal direction;
  • the air outlet pipe 3, the air outlet pipe 3 is connected to the upper end of the tank body 2, and at least part of the air outlet pipe 3 extends into the tank body 2;
  • the tank body 2 has an axial center surface 5, the axial center surface 5 is a plane passing through the central axis of the tank body 2, the center line of the inlet pipe 1 is arranged eccentrically relative to the axial center surface 5, and the inlet pipe 1 is located on the axial center plane 5 as a whole side.
  • the oil separator changes the flow direction of the mixture formed by the lubricating oil and the exhaust gas, so that it has a tangential velocity, so that the mixture can rotate in the tank body 2, and further
  • the separation of oil and gas is realized by centrifugal force, providing tangential speed for the mixture, avoiding direct collision between the mixture and the tank body 2, reducing kinetic energy loss, speeding up the separation speed, and improving the separation effect.
  • the center line of the inlet pipe 1 is set eccentrically relative to the axial center surface 5, that is, there is a certain distance between the mixture entering the tank body 2 and the axial center surface 5, which prolongs the separation path and prolongs the rotation time of the mixture in the tank body 2.
  • the present application cancels the setting of the filter screen, and replaces it with a plate-shaped separation member 6, which is provided with separation holes 61 at intervals.
  • the tank body 2 is a cylindrical structure as a whole, which includes an axial direction and a radial direction.
  • the direction from the oil outlet to the gas outlet pipe 3 is the axial direction, the axial direction is parallel to the vertical direction, and the direction perpendicular to the axial direction is Radial direction, the radial direction is parallel to the horizontal direction.
  • the interior of the tank body 2 forms an accommodation cavity.
  • the inlet pipe 1 referred to here is parallel to the radial direction of the tank body 2. It does not mean that all the inlet pipes 1 are in the radial direction of the tank body 2. It is only necessary to ensure that the inlet pipe 1 is close to the tank body 2 and the tank body 2.
  • the connected part is parallel to the radial direction, and the remaining part can be adaptively adjusted according to the setting position of the upstream part of the oil separator.
  • the inlet pipe 1 includes a first part and a second part, the first part is connected with the upstream part compressor, and the first part is connected with the upstream part compressor.
  • the two parts are connected to the tank body 2, and the arc transition between the first part and the second part is connected. It is only necessary to ensure that the second part is parallel to the radial direction of the tank body 2, and the angle between the first part and the second part can be It is an acute angle, a right angle or an obtuse angle, and its bending direction can be upward, downward, left or right, etc.
  • part of the inlet pipe 1 is parallel to the radial direction of the tank body 2, and part is bent upward.
  • the part of the inlet pipe 1 is parallel to the The radial direction of the tank body 2 is parallel, and part of it is bent to the left or right along the horizontal direction.
  • the oil will adhere to the inner wall of the tank body 2, and after gathering, it will flow to the oil outlet along the inner wall. , to avoid the interception of the oil by the separator 6 .
  • the gas outlet pipe 3 can also be connected to the side of the tank body 2. Since the density of the gas is smaller than that of the lubricating oil, it will flow upward. Therefore, in order to better discharge the gas, Connect the air outlet pipe 3 to the upper end of the tank body 2 .
  • the inlet pipe 1 can be connected to the side, the upper end or the lower end of the tank body 2 , and the end of the inlet pipe 1 can be connected to the tank body 2 , and can also extend into the interior of the tank body 2 .
  • the inlet pipe 1 extends into the interior of the tank 2 from the lower end, the center line of the inlet pipe 1 is set eccentrically relative to the axial plane 5, and the The center line is parallel to the axis surface 5, and an arc-shaped guide plate is arranged at the end of the inlet pipe 1, and the collision between the mixture and the guide plate is reduced through the arc, so that the mixture can enter the tank 2 smoothly;
  • the inlet pipe 1 extends into the interior of the tank body 2 from the lower end, the center line of the inlet pipe 1 is eccentrically arranged relative to the axial plane 5, the center line of the inlet pipe 1 is parallel to the axial plane 5, and the tank body 2 is provided with an arc-shaped
  • the guide plate reduces the collision between the mixture and the guide plate through the arc, so that the mixture can enter the tank 2 smoothly;
  • the inlet pipe 1 extends into the tank 2 from the lower end, changing the structure of the inlet pipe 1, The
  • the inlet pipe 1 is connected to the side of the tank body 2, and its part extends into the interior of the tank body 2, changing the structure of the inlet pipe 1, the end of the inlet pipe 1 is bent to the axial surface 5 of the tank body 2, and the The center line and the axial plane 5 gradually intersect by separation, so that the mixture flowing out of the inlet pipe 1 has a velocity direction, the mixture enters the tank body 2 from the inlet pipe 1, and the mixture flows along the bent end of the inlet pipe 1, After the mixture flows out from the inlet pipe 1, it already has a speed direction, and the mixture maintains this speed direction and enters the tank body 2 to continue to flow;
  • the central plane 5 is eccentrically arranged, the center line of the inlet pipe 1 is parallel to the axial plane 5, and the inlet pipe 1 is located on one side of
  • the general shape of the separating member 6 may be a flat plate shape or an arc-shaped plate shape.
  • the separator 6 When the separator 6 is in the shape of a flat plate, it can be parallel to the horizontal direction, and can also be inclined upward or downward relative to the horizontal direction.
  • the separator 6 When the separator 6 is in the shape of an arc plate, it can be bent upwards and downwards.
  • the separating member 6 adopts a flat plate shape, and the separating member 6 is parallel to the horizontal direction.
  • the separation member 6 is sleeved on the air outlet pipe 3.
  • the oil will adhere to the inner wall of the tank body 2, and after gathering, the oil will flow along the inner wall.
  • a gap D is provided between the separating member 6 and the inner wall, so as to avoid the interception of the oil by the separating member 6 . Since the oil separator is installed in the outdoor unit of the air conditioner, the size of the oil separator will affect the size of the outdoor unit of the air conditioner. Therefore, it is necessary to make full use of the size of the accommodating cavity formed by the tank body 2 to improve the separation effect in a limited space.
  • the inlet pipe 1 is connected to the side of the tank body 2, and the air outlet pipe 3 is connected to the upper end of the tank body 2.
  • the air outlet pipe 3 is connected to the upper end of the tank body 2.
  • a connecting hole is opened in the middle area of the separating member 6, and the outline of the connecting hole is similar to the outer contour of the air outlet pipe 3, so as to facilitate the installation and positioning of the separating member 6 and the air outlet pipe 3, and the connection between the separating member 6 and the air outlet pipe 3
  • It can be a detachable connection, which is connected by screws, pins or threads, so as to facilitate the replacement and maintenance of the separation part 6 .
  • the connection between the separating member 6 and the air outlet pipe 3 can also be non-detachable, and the connection is made by gluing, welding or integrated processing, so as to avoid the separation of the two due to the vibration of the outdoor unit after long-term use.
  • the separating member 6 and the air outlet pipe 3 are divided into two parts for processing, and a connecting hole is opened in the middle area of the separating member 6, and the separating member 6 is sleeved on the air outlet pipe 3 through the connecting hole.
  • the axial dimension of the tank body 2 is 150mm, and the axial distance between the center line of the end connecting the inlet pipe 1 and the tank body 2 and the upper end of the tank body 2 is 45mm.
  • the shape of the cyclone separation channel determines the flow velocity of the mixture
  • the outer wall of the air outlet pipe 3 is an arc surface
  • the inner wall of the tank body 2 is an arc surface to reduce the mixture and the tank body 2 collision with outlet pipe 3.
  • the radius of the arc surface of the tank body 2 and the air outlet pipe 3 can be the same or different;
  • the arc surface of the tank body 2 can be an arc surface with equal radii everywhere, or an arc surface formed by splicing different radii;
  • the arc-shaped surface of the air outlet pipe 3 may be an arc-shaped surface with equal radii everywhere, or may be an arc-shaped surface formed by splicing different radii. As shown in FIG. 2 and FIG.
  • the radius of the outer wall of the air outlet pipe 3 is equal everywhere
  • the radius of the inner wall of the tank body 2 is equal everywhere
  • the air outlet pipe 3 and the tank body 2 are arranged concentrically, and the air outlet pipe 3 and The shape of the cyclone separation channel formed by the tank body 2 is closer to the regular annular channel, which can further reduce the collision between the mixture and the tank body 2 and the air outlet pipe 3, thereby reducing the kinetic energy loss.
  • the centerline of the inlet pipe 1 is eccentrically arranged relative to the axial plane 5, and the distance between the centerline of the inlet pipe 1 and the axial plane 5 is equal everywhere, that is, That is to say, the center line of the inlet pipe 1 is parallel to the axial plane 5 , and the entire inlet pipe 1 is located on one side of the axial plane 5 .
  • the distance between the centerline of the inlet pipe 1 and the axial plane 5 is greater than zero, and the limit position between the centerline of the inlet pipe 1 and the axis plane is that the inner wall of the inlet pipe 1 is tangent to the inner wall of the tank 2, so that along the The mixture flowing out of the inner wall of the inlet pipe 1 can directly transition to continue to flow along the inner wall of the tank body 2, further reducing the kinetic energy loss.
  • the lower end of the air outlet pipe 3 is lower than the inlet pipe 1 .
  • the lower end of the gas pipe 3 can also be set higher than the inlet pipe 1 . In this case, it is necessary to reduce the size of the air outlet pipe 3 extending into the tank body 2, and it is necessary to place the part of the air outlet pipe 3 inside the tank body 2 and the separation part 6 as close to the upper end of the tank body 2 as possible, so as to facilitate The separated gas can be discharged from the gas outlet pipe 3 in time.
  • the inlet pipe 1 is connected to the side of the tank body 2.
  • the position of the inlet pipe 1 can be close to the upper end or the lower end of the tank body 2, or it can be arranged in the middle area of the tank body 2. In one embodiment, the position of the inlet pipe 1 is set in the middle area of the tank 2.
  • the size of the axial distance between the inlet pipe 1 and the gas outlet pipe 3 and the size of the axial distance between the inlet pipe 1 and the oil outlet will affect the residence time of the mixture in the tank 2 and the separation effect.
  • the ratio between the axial distance L2 between the inlet pipe 1 and the oil outlet and the radial dimension of the tank 2 is set to be greater than or equal to 0.2, that is, the distance between the inlet pipe 1 and the oil outlet needs to be kept constant.
  • the ratio of radial dimensions is greater than or equal to 0.5.
  • the separator 6 is connected to the inner wall of the tank body 2 and is not connected to the air outlet pipe 3.
  • a gap D is set between the separator 6 and the inner wall, so that the oil can flow to the oil outlet smoothly and avoid the interception of the oil by the separator 6.
  • the air outlet pipe 3 is projected to the separating member 6 along the axial direction, and the projected area formed on the separating member 6 needs to be set as a solid structure, Avoid the mixture directly passing through the projection area and enter the gas outlet pipe 3, ensure that the mixture collides with the area where the separation hole 61 is provided on the separation member 6 to achieve oil and gas separation, and the oil accumulates and falls to the oil outlet, and the gas flows from the gas outlet pipe. 3 discharge.
  • the gap D between the separation part 6 and the tank body 2 can be a complete annular gap, and the auxiliary rod is used to realize the fixing of the separation part 6, or the separation part 6 can be directly connected to the inner wall of the tank body 2, and the separation At least two connection points are formed between the member 6 and the inner wall of the tank body 2, that is, at least two gaps are formed.
  • the only difference from the previous embodiment is the relative positions of the inlet pipe 1, the air outlet pipe 3 and the separating part 6, the axial dimension of the tank body 2 is 150mm, and the center line of the end where the inlet pipe 1 and the tank body 2 are connected is connected to the tank body.
  • the axial distance of the upper end of 2 is 85mm, and the rest is the same as the previous embodiment.
  • the separation member 6 is a plate-like structure with a certain thickness, that is, the separation hole 61 has a certain length in the axial direction
  • the arrangement positions of the plurality of separation holes 61 may be evenly spaced from each other, or the density of the separation holes 61 at different positions may be adjusted according to the positions of the separation member 6 in contact with the mixture.
  • the size of the separation hole 61 can be determined according to multiple tests, the profile of the cross-section in the radial direction of the separation hole 61 can be rectangular, circular, oval or other regular geometric shapes, and the cross-section in the axial direction of the separation hole 61 can be For rectangular, circular, conical or other regular geometric shapes, the cross-section in the radial direction and the cross-section in the axial direction of the separation hole 61 can also be provided with irregular patterns to increase the contact area between the mixture and the separation hole 61, strengthen the The collision between the mixture and the separation hole 61 improves the separation effect.
  • the separation holes 61 are formed on the separation member 6 evenly spaced apart from each other. On the one hand, the mold design is facilitated, and on the other hand, different regions of the separation member 61 have the same separation effect on the mixture.
  • the connection between the inlet pipe 1 and the tank body 2 is a non-detachable connection, which can be integrally manufactured, welded or bonded, and a non-detachable connection is adopted to avoid any damage caused by the operation of the outdoor unit of the air conditioner.
  • the vibrations fail the connection between the inlet pipe 1 and the tank 2 .
  • the inlet pipe 1 and the tank 2 can be connected by the end of the inlet pipe 1 and the inner wall of the tank 2, along the projection of the axial direction of the tank 2, the end of the inlet pipe 1 connected with the tank 2 is located in the tank on the inner wall of body 2. As shown in FIG.
  • the connecting part 11 can also be processed on the outer wall of the tank body 2, and the outer wall of the tank body 2 extends outward to form the connecting part 11 of the hollow structure.
  • the end of the connected inlet pipe 1 is located outside the inner wall of the tank body 2, the inner diameter of the connecting part 11 is less than or equal to the outer diameter of the inlet pipe 1, and then the connection is realized by welding or bonding process, and the inlet pipe 1 does not need to extend into the tank body 2.
  • the space of the accommodating cavity of the tank body 2 should be utilized as much as possible to fully separate the mixture.
  • At least part of the air outlet pipe 3 is located in the tank body 2.
  • the connection between the air outlet pipe 3 and the tank body 2 is also a non-detachable connection, which can be integrally manufactured, welded or bonded. The vibration generated by the operation makes the connection between the air outlet pipe 3 and the tank body 2 fail.
  • the oil separator in order to facilitate the collection of the separated oil and the connection with the downstream components, as shown in FIG. 1 , FIG. 3 , FIG. 7 to FIG. 8 , the oil separator further includes an oil outlet pipe 4 , which discharges The oil pipe 4 is connected to the oil outlet.
  • the connection between the oil outlet pipe 4 and the tank body 2 is a non-detachable connection, which can be manufactured, welded or bonded as a whole.
  • the non-detachable connection is adopted to avoid the oil outlet pipe 4 and the tank body 2 caused by the vibration generated by the operation of the outdoor unit of the air conditioner. The connection between them fails.
  • the oil when the mixture enters the tank body 2 for separation, the oil may adhere to the inner wall of the tank body 2.
  • the lower end of the tank body 2 is set as a slope inclined toward the oil outlet, and the oil is accelerated to flow to the oil outlet by gravity.
  • the upper end of the tank body 2 is set as an inclined surface inclined toward the air outlet pipe 3.
  • the embodiment of the present application also proposes an outdoor unit of an air conditioner, which includes an oil separator, and the oil separator is the oil separator in any of the above embodiments.
  • the outdoor unit of the air conditioner in the embodiment of the present application has the same beneficial effects as the oil separator in the above-mentioned embodiment, which will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Power Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Geometry (AREA)
  • Fluid Mechanics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Cyclones (AREA)

Abstract

本公开属于空调技术领域,具体涉及一种油分离器以及空调室外机,该油分离器包括罐体、进口管、出气管和分离件,罐体的下端设置有出油口,进口管连接在罐体上,进口管的中心线与水平方向平行,出气管连接在罐体的上端,且至少部分出气管伸入罐体内,分离件设置在罐体内与罐体之间设置有间隙,且分离件上间隔设置有多个分离孔;其中,罐体具有轴心面,进口管的中心线相对轴心面偏心设置,且进口管整体位于轴心面的一侧。根据本公开实施例的油分离器,使混合物具有一个切向速度,在罐体内旋转,通过离心力实现油气分离,降低了动能损失。进口管与水平方向平行,避免混合物与罐体的上端发生非必要碰撞,给混合物足够时间进行分离。

Description

油分离器以及空调室外机
本申请要求于2020年12月08日提交至中国国家知识产权局的、申请号为202011423956.4、名称为“油分离器以及空调室外机”的中国专利申请的优先权和权益,其全部内容通过引用结合在本申请中。
技术领域
本公开属于空调技术领域,具体涉及一种油分离器以及空调室外机。
背景技术
本部分提供的仅仅是与本公开相关的背景信息,其并不必然是现有技术。
空调器是一种使其内部的冷媒进行由压缩过程、冷凝过程、膨胀过程和蒸发过程组成的制冷循环的装置。在空调器中,经过压缩而变成高温高压状态的冷媒可在冷凝器中向外部散热,并在流过膨胀阀门时显著降低其温度和压力,然后该低温、低压冷媒在流经蒸发器时会吸收热量,最后重新流回压缩机。其中,压缩过程、冷凝过程以及膨胀过程是在空调器的室外机中进行,而蒸发过程则是在室内机中的送风扇和蒸发器的作用下进行。
在空调制冷系统中,压缩机通常需要润滑油才能正常运转,而在压缩机排气中会混有润滑油,因此,一般会在压缩机的排气口和冷凝器之间设置一油分离器,用来分离压缩机排出的高压气体中的润滑油,以便润滑油能回到压缩机保证其正常运转,防止压缩机缺油,同时,避免过量的油进入冷凝器和蒸发器,影响换热效率。
现有技术中,为了加强分离效果会在分离器内加装过滤网,导致油分离器的体积较大,由于过滤网的过滤孔过于密集在分离的过程中压降过大,影响分离效率。
公开内容
本公开的目的是至少解决现有技术中油分离器中设置过滤网导致压降过大、分离效率低下的问题。该目的是通过以下技术方案实现的:
本公开的第一方面提出了一种油分离器,包括:
罐体,所述罐体的下端设置有出油口;
进口管,所述进口管连接在所述罐体上;
出气管,所述出气管连接在所述罐体的上端,且至少部分所述出气管伸入所述罐体内;
分离件,所述分离件设置在所述罐体内与所述罐体之间设置有间隙,且所述分离件上间隔设置有多个分离孔;
其中,所述罐体具有轴心面,所述轴心面为经过所述罐体的中轴线的平面,所述进口管的中心线相对所述轴心面偏心设置,且所述进口管整体位于所述轴心面的一侧。
根据本公开实施例的油分离器,与常规油分离器相比,改变了润滑油和排气形成的混合物的流向,使其具有一个切向速度,使混合物能够在罐体内旋转,进而通过离心力实现油气分离,为混合物提供切向速度,避免混合物与罐体直接碰撞,降低了动能损失,加快分离速度,提高分离效果。进口管的中心线相对轴心面偏心设置,即混合物进入罐体时与轴心面之间存在一定的间距,延长了分离的路径,使混合物在罐体内旋转的时间延长,进一步提高分离效果。本申请取消了过滤网的设置,混合物进入罐体后利用旋转运动实现油气分离,压降小。当进口管连接在罐体的侧面上时,可以与水平方向平行,可以相对水平方向向上倾斜或向下倾斜,在一个实施例中,进口管与水平方向平行,一方面,避免混合物沿着倾斜向上的进口管流出与罐体的上端发生非必要碰撞,另一方面,避免混合物沿着倾斜向下的进口管流出加速混合物流向出油口,不能给分离足够的时间而造成的分离效率低下,因此,最终选择将进口管设置为与水平方向平行,以使混合物在罐体内分离的时间足够长,提高分离效果。
在本公开的一些实施例中,沿所述罐体的轴向方向,所述分离件设置在所述进口管和所述出气管的下端之间。
在本公开的一些实施例中,所述分离件套设在所述出气管上;
沿所述罐体的轴向方向,所述出气管的下端低于所述进口管,所述出气管伸入所述罐体内的部分与所述罐体之间形成分离通道,且所述进口管与所述分离通道连通。
在本公开的一些实施例中,所述进口管与所述出气管之间的轴向距离与所述罐体的径向尺寸之比大于等于0.5。
在本公开的一些实施例中,所述分离件的外壁部分连接在所述罐体的内壁上;
沿所述罐体的轴向方向,所述出气管的下端高于所述进口管。
在本公开的一些实施例中,所述进口管与所述出油口之间的轴向距离与所述罐体的径向尺寸之比大于等于0.2,所述出气管与所述进口管之间的 轴向距离与所述罐体的径向尺寸之比大于等于0.5。
在本公开的一些实施例中,所述多个分离孔间隔均匀形成于所述分离件上。
在本公开的一些实施例中,沿所述罐体轴向的投影观察,与所述罐体连接的所述进口管的末端位于所述罐体的内壁上或位于所述罐体的内壁外侧。
在本公开的一些实施例中,所述进口管的内壁与所述罐体的内壁相切。
本公开的第二方面提出了一种空调室外机,包括:
压缩机;
油分离器,所述油分离器为上述任一技术方案中的油分离器,所述油分离器连接在所述压缩机的下游。
本公开实施例的空调室外机与上述实施例中的油分离器所具有的有益效果相同,在此不再赘述。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本公开的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本公开一种实施例的油分离器的示意图;
图2为图1所示的俯视图;
图3为本公开另一种实施例的油分离器的示意图;
图4为图3所示的俯视图;
图5为图1至图4中所示的分离件的一种实施例的示意图;
图6为图1至图4中所示的分离件的另一种实施例的示意图;
图7为本公开另一种实施例的油分离器的示意图;
图8为本公开另一种实施例的油分离器的示意图;
图9为图7至图8中所示的分离件的一种实施例的示意图;
图10为图7至图8中所示的分离件的另一种实施例的示意图;
图11为本公开实施例的进口管与罐体连接的一种方式的示意图;
图12为本公开实施例的进口管与罐体连接的另一种方式的示意图。
附图中各标记表示如下:
1、进口管;11、连接部;
2、罐体;
3、出气管;
4、出油管;
5、轴心面;
6、分离件;61、分离孔。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施方式。虽然附图中显示了本公开的示例性实施方式,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施方式所限制。相反,提供这些实施方式是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
应理解的是,文中使用的术语仅出于描述特定示例实施方式的目的,而无意于进行限制。除非上下文另外明确地指出,否则如文中使用的单数形式“一”、“一个”以及“所述”也可以表示包括复数形式。术语“包括”、“包含”、“含有”以及“具有”是包含性的,并且因此指明所陈述的特征、步骤、操作、元件和/或部件的存在,但并不排除存在或者添加一个或多个其它特征、步骤、操作、元件、部件、和/或它们的组合。
尽管可以在文中使用术语第一、第二、第三等来描述多个元件、部件、区域、层和/或部段,但是,这些元件、部件、区域、层和/或部段不应被这些术语所限制。这些术语可以仅用来将一个元件、部件、区域、层或部段与另一区域、层或部段区分开。除非上下文明确地指出,否则诸如“第一”、“第二”之类的术语以及其它数字术语在文中使用时并不暗示顺序或者次序。因此,以下讨论的第一元件、部件、区域、层或部段在不脱离示例实施方式的教导的情况下可以被称作第二元件、部件、区域、层或部段。
为了便于描述,可以在文中使用空间相对关系术语来描述如图中示出的一个元件或者特征相对于另一元件或者特征的关系,这些相对关系术语例如为“内部”、“外部”、“内侧”、“外侧”、“下面”、“下方”、“上面”、“上方”等。这种空间相对关系术语意于包括除图中描绘的方位之外的在使用或者操作中装置的不同方位。例如,如果在图中的装置翻转,那么描述为“在其它元件或者特征下面”或者“在其它元件或者特征下方”的元件将随后定向为“在其它元件或者特征上面”或者“在其它元件或者特征上方”。因此,示例术语“在……下方”可以包括在上和在下的方位。装置可以另外定向(旋转90度或者在其它方向)并且文中使用的空间相对关系描述符相应地进行解释。
如图1至图12所示,根据本公开一个实施例的油分离器,包括:
罐体2,罐体2的下端设置有出油口;
进口管1,进口管1连接在罐体2上,进口管的中心线与水平方向平行;
出气管3,出气管3连接在罐体2的上端,且至少部分出气管3伸入罐体2内;
分离件6,分离件6设置在罐体2内与罐体2之间设置有间隙,且分离件6上间隔设置有多个分离孔61;
其中,罐体2具有轴心面5,轴心面5为经过罐体2的中轴线的平面,进口管1的中心线相对轴心面5偏心设置,且进口管1整体位于轴心面5的一侧。
根据本公开实施例的油分离器,与常规油分离器相比,改变了润滑油和排气形成的混合物的流向,使其具有一个切向速度,使混合物能够在罐体2内旋转,进而通过离心力实现油气分离,为混合物提供切向速度,避免混合物与罐体2直接碰撞,降低了动能损失,加快分离速度,提高分离效果。进口管1的中心线相对轴心面5偏心设置,即混合物进入罐体2时与轴心面5之间存在一定的间距,延长了分离的路径,使混合物在罐体2内旋转的时间延长,进一步提高分离效果。本申请取消了过滤网的设置,以板状结构的分离件6代替,分离件6上间隔设置有分离孔61,混合物进入罐体2后利用旋转运动实现油气分离,压降小。罐体2整体为筒体结构,其包括轴向方向和径向方向,由出油口指向出气管3的方向为轴向方向,轴向方向与竖直方向平行,垂直于轴向方向的为径向方向,径向方向与水平方向平行。罐体2的内部形成容纳腔,当进口管1连接在罐体2的侧面上时,可以与罐体2的径向方向(水平方向)平行,可以相对罐体2的径向方向(水平方向)向上倾斜或向下倾斜,在一个实施例中,进口管1与罐体2的径向方向(水平方向)平行,一方面,避免混合物沿着倾斜向上的进口管1流出与罐体2的上端发生非必要碰撞,另一方面,避免混合物沿着倾斜向下的进口管1流出加速混合物流向出油口,不能给分离足够的时间而造成的分离效率低下,因此,最终选择将进口管1设置为与罐体2的径向方向(水平方向)平行,以使混合物在罐体2内分离的时间足够长,提高分离效果。该处所指的进口管1与罐体2的径向方向平行,并不是指全部进口管1均与罐体2的径向方向,只需要保证进口管1上靠近罐体2与罐体2连接的部分与径向方向平行,其余部分可以根据油分离器的上游部件的设置位置进行适应性调整,例如,进口管1包括第一部分和第二部分,第一部分与上游部件压缩机连接,第二部分与罐体2连接,第一部分与第二部分之间圆弧过渡连接,只需要保证第二部分与罐体2的径向方向平行即可,第一部分与第二部分之间的角度可以为锐角、直角或钝角,其 弯折方向可以是向上、向下、向左或向右等。如图1、图2、图7和图8所示,进口管1的部分与罐体2的径向方向平行,部分向上弯折,如图3和图4所示,进口管1的部分与罐体2的径向方向平行,部分沿水平方向向左或向右弯折。在进行油气分离的过程中,油分会黏附在罐体2的内壁上,聚集后沿着内壁流向出油口,为了使油能够顺利流向出油口,分离件6与内壁之间设置有间隙D,避免分离件6对油的拦截。
需要说明的是,在其他实施例中,出气管3还可以连接在罐体2的侧面,由于气体的密度相较于润滑油的密度小,会向上流动,因此,为了更好地排出气体,将出气管3连接在罐体2的上端。进口管1可以连接在罐体2的侧面、上端或下端,进口管1的末端可以连接在罐体2上,也可以伸入罐体2的内部。要实现为油气混合物提供切向速度,有以下几种方式:第一、进口管1从下端伸入罐体2的内部,进口管1的中心线相对轴心面5偏心设置,进口管1的中心线与轴心面5平行,在进口管1的末端设置有弧形的引导板,通过弧形减少混合物与引导板之间的碰撞,使混合物能够平稳的进入罐体2内;第二、进口管1从下端伸入罐体2的内部,进口管1的中心线相对轴心面5偏心设置,进口管1的中心线与轴心面5平行,在罐体2内设置有弧形的引导板,通过弧形减少混合物与引导板之间的碰撞,使混合物能够平稳的进入罐体2内;第三、进口管1从下端伸入罐体2的内部,改变进口管1的结构,进口管1末端向罐体2的轴心面5弯折,进口管1的中心线与轴心面5由分离逐渐相交,使从进口管1中流出的混合物具有一个速度方向,混合物从进口管1进入到罐体2内,混合物沿着进口管1弯折的末端流动,混合物从进口管1中流出后已经具有了速度方向,混合物保持该速度方向进入到罐体2内继续流动;第四、进口管1与罐体2的侧面连接,其部分伸入到罐体2的内部,改变进口管1的结构,进口管1末端向罐体2的轴心面5弯折,进口管1的中心线与轴心面5由分离逐渐相交,使从进口管1中流出的混合物具有一个速度方向,混合物从进口管1进入到罐体2内,混合物沿着进口管1弯折的末端流动,混合物从进口管1中流出后已经具有了速度方向,混合物保持该速度方向进入到罐体2内继续流动;第五、进口管1与罐体2的侧面连接,进口管1的中心线相对轴心面5偏心设置,进口管1的中心线与轴心面5平行,且进口管1整体位于轴心面5的一侧,通过偏心距离引导混合物从进口管1流出后沿着罐体2流动,减少混合物与罐体2之间的碰撞,使混合物能够平稳的进入罐体2内;第六、以上几种方式的组合。以上方式仅作为举例说明,并不作为对本申请的为混合物提供切向速度的方式的限制。下文以第五种提供切向速度的方式为例进行说明。
在本公开的一些实施例中,分离件6的大致形状可以为平板状或弧形板状。当分离件6为平板状时,其可以与水平方向平行,也可以相对水平方向向上或向下倾斜。当分离件6为弧形板状时,其可以向上、向下弯曲。在一个实施例中,分离件6采用平板状,且分离件6与水平方向平行。混合物在进入罐体2后经过分离件6时,相比较于弧形板状的分离件6,在竖直方向的高度变化小,避免混合物沿着相对水平方向倾斜的表面滑动,减小混合物与分离件6之间的摩擦力,进而降低压降,减少能量损失。
在本公开的一些实施例中,分离件6可以连接在罐体2的内壁上,也可以连接在出气管3上。沿罐体2的轴向方向,分离件6设置在进口管1和出气管3的下端之间,混合物从进口管1流出进入到罐体2中,混合物与分离件6发生碰撞,油黏附在分离件6上,聚集后滴落从出油口流出,经过分离件6油与气体分离,气体从出气管3排出。将分离件6设置在进口管1和出气管3之间,使混合物先进行分离,避免混合物直接进入到排气管中,从而提高混合物的分离效率。
在本公开的一些实施例中,在一个实施例中,分离件6套设在出气管3上,在进行油气分离的过程中,油分会黏附在罐体2的内壁上,聚集后沿着内壁流向出油口,为了使油能够顺利流向出油口,分离件6与内壁之间设置有间隙D,避免分离件6对油的拦截。由于油分离器安装在空调室外机内,油分离器的大小会影响到空调室外机的大小,因此,需要充分利用罐体2所形成的容纳腔的大小,在有限的空间内提高分离效果。根据前文所述,如图1至图4所示,进口管1连接在罐体2的侧面,出气管3连接在罐体2的上端,要使混合物在罐体2停留足够时间进行分离,就需要尽可能地将混合物进入罐体2的位置设置地靠近罐体2的上端,而出气管3的至少部分伸入罐体2的内部,进而罐体2的内壁和出气管3的外壁形成旋风分离通道,混合物进入旋风分离通道后沿着罐体2的内壁和出气管3的外壁流动,在油和气体的自重不同的作用下,油向下落至出油口处,气体进入出气管3排出,实现油气分离。混合物在旋风分离通道中流动时,罐体2的内壁和出气管3的外壁限制了混合物的流向,以使混合物具有切向速度的情况下在罐体2内停留足够久的时间,进而提高分离效果。出气管3伸入罐体2的部分的大小和形成的旋风分离通道的大小相关,因此,在空间有限的情况下,将出气管3的下端设置为低于进口管1,以增大旋风分离通道的大小,更进一步的,沿罐体2的轴向方向,进口管1与出气管3之间的轴向距离L1与罐体2的径向尺寸之比大于等于0.5。
其中,在分离件6的中间区域开设有连接孔,该连接孔的轮廓与出气管3的外轮廓相似,以便于分离件6与出气管3的安装定位,分离件6与 出气管3的连接可以为可拆卸连接,利用螺钉、销钉或螺纹进行连接,以便于对分离件6进行更换维修。分离件6与出气管3的连接也可以为不可拆卸连接,通过胶粘、焊接或一体加工进行连接,避免两者长期使用后因室外机的震动导致两者的分离。为了便于加工制造,将分离件6和出气管3分为两部分进行加工,在分离件6的中间区域开设有连接孔,通过该连接孔将分离件6套设在出气管3上。罐体2的轴向尺寸为150mm,进口管1与罐体2连接的末端的中心线与罐体2的上端的轴向距离为45mm。
在本公开的一些实施例中,旋风分离通道的形状决定了混合物的流动速度,采用出气管3的外壁为弧形面,罐体2的内壁为弧形面的方式以减少混合物与罐体2和出气管3之间的碰撞。罐体2和出气管3的弧形面的半径可以相同,也可以不同;罐体2的弧形面可以为半径处处相等的弧形面,也可以为不同半径拼接而成的弧形面;出气管3的弧形面可以为半径处处相等的弧形面,也可以为不同半径拼接而成的弧形面。如图2和图4所示,在一个实施例中,出气管3的外壁的半径处处相等,罐体2的内壁的半径处处相等,且出气管3与罐体2同心设置,出气管3和罐体2所形成的旋风分离通道的形状更加贴近规则的圆环形通道,能够进一步减少混合物与罐体2和出气管3之间的碰撞,进而降低动能损失。
在本实用新型的一些实施例中,根据前文所述,进口管1的中心线相对轴心面5偏心设置,且进口管1的中心线与轴心面5之间的距离处处相等,也就是说,进口管1的中心线与轴心面5平行,进口管1整体位于轴心面5的一侧。进口管1的中心线与轴心面5之间的距离大于零,进口管1的中心线与轴线面之间的极限位置是进口管1的内壁与罐体2的内壁相切,使沿着进口管1内壁流出的混合物能够直接过渡到沿着罐体2的内壁继续流动,进一步减少动能损失。
在本公开的一些实施例中,根据前文所述,出气管3的下端低于进口管1,在其他实施例中,如图7至图8所示,沿罐体2的轴向方向,出气管3的下端也可以设置为高于进口管1。该种情况下,则需要减少出气管3伸入罐体2的大小,就需要尽可能地将出气管3位于罐体2内部的部分和分离件6设置地靠近罐体2的上端,以便于分离后的气体能够及时从出气管3排出。进口管1连接在罐体2的侧面,进口管1的位置可以靠近罐体2的上端或下端,也可以设置在罐体2的中间区域,在一个实施例中,将进口管1的位置设置在罐体2的中间区域。但进口管1与出气管3的轴向距离的大小和进口管1与出油口的轴向距离的大小会对混合物在罐体2内停留的时间和分离效果产生影响。经过多次实验,将进口管1与出油口之间的轴向距离L2与罐体2的径向尺寸之比设置为大于等于0.2,也就是进 口管1与出油口之间需要保持一定的间距,以使混合物进入罐体2后,在进口管1与出油口之间的区域进行旋转运动实现油气分离,出气管3与进口管1之间的轴向距离L3与罐体2的径向尺寸之比大于等于0.5,混合物进入罐体2后与罐体2的内壁接触沿着罐体2的内壁流动,出气管3与进口管1之间存在轴向距离,减少粘附在排气管上的油量,尽可能使润滑油从出油口流出。分离件6连接在罐体2的内壁上,不与出气管3连接,分离件6与内壁之间设置有间隙D,以使油能够顺利流向出油口,避免分离件6对油的拦截。如图7至图10所示,分离件6与罐体2的内壁连接时,沿轴向方向,出气管3向分离件6投影,在分离件6上形成的投影区域需要设置为实心结构,避免混合物直接从该投影区域穿过进入到出气管3中,保证混合物与分离件6上设置有分离孔61的区域进行碰撞后实现油气分离,油聚集后下落至出油口,气体从出气管3排出。
其中,分离件6与罐体2之间的间隙D可以为一个完整的环形间隙,利用辅助杆等实现分离件6的固定,也可以是分离件6直接连接在罐体2的内壁上,分离件6与罐体2的内壁之间形成至少两个连接点,也就是形成至少两个间隙。与前一实施例不同的仅是进口管1、出气管3和分离件6的相对位置,罐体2的轴向尺寸为150mm,进口管1与罐体2连接的末端的中心线与罐体2的上端的轴向距离为85mm,其余与前一实施例相同。
在本公开的一些实施例中,如图5、图6、图9和图10所示,分离件6为具有一定厚度的板状结构,也就是分离孔61在轴向方向上具有一定的长度,多个分离孔61的设置位置可以是彼此间隔均匀设置,也可以根据分离件6与混合物接触的位置调整不同位置的分离孔61的密度。分离孔61的大小可根据多次试验确定,分离孔61的径向方向上的截面的轮廓可以为矩形、圆形、椭圆形或其他规则几何形状,分离孔61的轴向方向上的截面可以为矩形、圆形、锥形或其他规则几何形状,分离孔61的径向方向上的截面和轴向方向上的截面也可以设置不规则图形,以增加混合物与分离孔61的接触面积,加强混合物与分离孔61之间的碰撞,进而提高分离效果。在一个实施例中,分离孔61彼此间隔均匀形成于分离件6上,一方面,便于进行模具设计,另一方面,分离件61的不同区域对混合物的分离效果相同。
在本公开的一些实施例中,进口管1与罐体2之间的连接为不可拆卸连接,可以为一体制造、焊接或粘接,采用不可拆卸连接,避免因空调室外机的运行所产生的震动使进口管1与罐体2之间的连接失效。如图11所示,进口管1与罐体2可以是进口管1的末端与罐体2的内壁连接,沿罐体2轴向的投影,与罐体2连接的进口管1的末端位于罐体2的内壁上。 如图12所示,也可以是在罐体2的外壁上加工连接部11,罐体2的外壁向外延伸形成中空结构的连接部11,沿罐体2轴向的投影,与罐体2连接的进口管1的末端位于罐体2的内壁外侧,连接部11的内径小于等于进口管1的外径,再通过焊接或粘接工艺实现连接,进口管1无需伸入到罐体2的内部中去,尽可能利用罐体2的容纳腔的空间大小,使混合物充分分离。出气管3的至少部分位于罐体2内,出气管3与罐体2之间的连接同样为不可拆卸连接,可以为一体制造、焊接或粘接,采用不可拆卸连接,避免因空调室外机的运行所产生的震动使出气管3与罐体2之间的连接失效。
其中,总的来说,进口管1的末端未伸入罐体2的内部,混合物从进口管1流出,如图11所示,混合物沿着罐体2的内壁进入罐体2的内部进行转动。如图12所示,混合物从进口管1流出,继续沿着连接部11流动,最终沿着罐体2的内壁进入罐体2的内部进行转动。
在本公开的一些实施例中,为了便于对分离后的油进行收集和与下游部件的连接,如图1、图3、图7至图8所示,油分离器还包括出油管4,出油管4连接在出油口上。出油管4与罐体2之间的连接为不可拆卸连接,可以为一体制造、焊接或粘接,采用不可拆卸连接,避免因空调室外机的运行所产生的震动使出油管4与罐体2之间的连接失效。
在本公开的一些实施例中,在混合物进入到罐体2进行分离的过程中,油存在粘附在罐体2内壁的情况,为了加快油向出油口的流速,如图1、图3、图7至图8所示,将罐体2的下端设置为朝向出油口倾斜的斜面,利用重力加速油流向出油口。进一步的,将罐体2的上端设置为朝向出气管3倾斜的斜面,当罐体2的上端内壁上粘附有油时,倾斜面能够加速油的流动和滴落,加速分离速度。
本申请实施例还提出了一种空调室外机,包括油分离器,油分离器为上述任一实施例中的油分离器。
本申请实施例的空调室外机与上述实施例中的油分离器所具有的有益效果相同,在此不再赘述。
以上,仅为本公开较佳的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (10)

  1. 一种油分离器,其特征在于,包括:
    罐体,所述罐体的下端设置有出油口;
    进口管,所述进口管连接在所述罐体上,所述进口管的中心线与水平方向平行;
    出气管,所述出气管连接在所述罐体的上端,且至少部分所述出气管伸入所述罐体内;
    分离件,所述分离件设置在所述罐体内与所述罐体之间设置有间隙,且所述分离件上间隔设置有多个分离孔;
    其中,所述罐体具有轴心面,所述轴心面为经过所述罐体的中轴线的平面,所述进口管的中心线相对所述轴心面偏心设置,且所述进口管整体位于所述轴心面的一侧。
  2. 根据权利要求1所述的油分离器,其特征在于,沿所述罐体的轴向方向,所述分离件设置在所述进口管和所述出气管的下端之间。
  3. 根据权利要求2所述的油分离器,其特征在于,所述分离件套设在所述出气管上;
    沿所述罐体的轴向方向,所述出气管的下端低于所述进口管,所述出气管伸入所述罐体内的部分与所述罐体之间形成分离通道,且所述进口管与所述分离通道连通。
  4. 根据权利要求3所述的油分离器,其特征在于,所述进口管与所述出气管之间的轴向距离与所述罐体的径向尺寸之比大于等于0.5。
  5. 根据权利要求2所述的油分离器,其特征在于,所述分离件的外壁部分连接在所述罐体的内壁上;
    沿所述罐体的轴向方向,所述出气管的下端高于所述进口管。
  6. 根据权利要求5所述的油分离器,其特征在于,所述进口管与所述出油口之间的轴向距离与所述罐体的径向尺寸之比大于等于0.2,所述出气管与所述进口管之间的轴向距离与所述罐体的径向尺寸之比大于等于0.5。
  7. 根据权利要求1-6任一项所述的油分离器,其特征在于,所述多个分离孔间隔均匀形成于所述分离件上。
  8. 根据权利要求1-6任一项所述的油分离器,其特征在于,沿所述罐体轴向的投影观察,与所述罐体连接的所述进口管的末端位于所述罐体的内壁上或位于所述罐体的内壁外侧。
  9. 根据权利要求1-6任一项所述的油分离器,其特征在于,所述进口管的内壁与所述罐体的内壁相切。
  10. 一种空调室外机,其特征在于,包括:
    压缩机;
    油分离器,所述油分离器为根据权利要求1-9任一项所述的油分离器,所述油分离器连接在所述压缩机的下游。
PCT/CN2021/119363 2020-12-08 2021-09-18 油分离器以及空调室外机 WO2022121432A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21902140.9A EP4130614A4 (en) 2020-12-08 2021-09-18 OIL SEPARATOR AND OUTDOOR UNIT OF AN AIR CONDITIONER
US17/992,847 US20230080586A1 (en) 2020-12-08 2022-11-22 Oil separator and outdoor unit for air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011423956.4 2020-12-08
CN202011423956.4A CN114608226A (zh) 2020-12-08 2020-12-08 油分离器以及空调室外机

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/992,847 Continuation US20230080586A1 (en) 2020-12-08 2022-11-22 Oil separator and outdoor unit for air conditioner

Publications (1)

Publication Number Publication Date
WO2022121432A1 true WO2022121432A1 (zh) 2022-06-16

Family

ID=81856515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/119363 WO2022121432A1 (zh) 2020-12-08 2021-09-18 油分离器以及空调室外机

Country Status (4)

Country Link
US (1) US20230080586A1 (zh)
EP (1) EP4130614A4 (zh)
CN (1) CN114608226A (zh)
WO (1) WO2022121432A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06235572A (ja) * 1993-02-10 1994-08-23 Hitachi Ltd 冷凍装置の油分離器
CN201436520U (zh) * 2009-06-30 2010-04-07 广州联合冷热设备有限公司 一种油分离器
CN201748726U (zh) * 2010-07-28 2011-02-16 广东美的电器股份有限公司 空调机的油分离器结构
CN205957565U (zh) * 2016-08-22 2017-02-15 广东美的暖通设备有限公司 空调器的卧式气液分离器及空调器
CN207715209U (zh) * 2017-12-30 2018-08-10 江西腾勒动力有限公司 一种发动机油气分离器
CN213811246U (zh) * 2020-12-08 2021-07-27 合肥美的暖通设备有限公司 油分离器以及空调室外机

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4506523A (en) * 1982-11-19 1985-03-26 Hussmann Corporation Oil separator unit
JP4356214B2 (ja) * 2000-08-21 2009-11-04 三菱電機株式会社 油分離器および室外機
KR100698294B1 (ko) * 2004-11-25 2007-03-23 엘지전자 주식회사 공기조화기의 원심식 오일분리기
CN1782630A (zh) * 2004-11-29 2006-06-07 乐金电子(天津)电器有限公司 油分离器
CN104457060A (zh) * 2013-09-23 2015-03-25 重庆美的通用制冷设备有限公司 油分离器和制冷系统
CN103851846B (zh) * 2014-03-19 2016-09-07 广东欧科空调制冷有限公司 油分离器及包含其的空调系统
JP2015215148A (ja) * 2014-05-13 2015-12-03 ダイキン工業株式会社 油分離装置
JP2016070607A (ja) * 2014-09-30 2016-05-09 パナソニックIpマネジメント株式会社 オイルセパレータ
CN107388655B (zh) * 2017-09-13 2023-12-05 珠海格力电器股份有限公司 油分离器装置及空调机组

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06235572A (ja) * 1993-02-10 1994-08-23 Hitachi Ltd 冷凍装置の油分離器
CN201436520U (zh) * 2009-06-30 2010-04-07 广州联合冷热设备有限公司 一种油分离器
CN201748726U (zh) * 2010-07-28 2011-02-16 广东美的电器股份有限公司 空调机的油分离器结构
CN205957565U (zh) * 2016-08-22 2017-02-15 广东美的暖通设备有限公司 空调器的卧式气液分离器及空调器
CN207715209U (zh) * 2017-12-30 2018-08-10 江西腾勒动力有限公司 一种发动机油气分离器
CN213811246U (zh) * 2020-12-08 2021-07-27 合肥美的暖通设备有限公司 油分离器以及空调室外机

Also Published As

Publication number Publication date
CN114608226A (zh) 2022-06-10
EP4130614A4 (en) 2023-11-15
US20230080586A1 (en) 2023-03-16
EP4130614A1 (en) 2023-02-08

Similar Documents

Publication Publication Date Title
US6574986B2 (en) Oil separator and outdoor unit with the oil separator
US20060280622A1 (en) Oil separator for air conditioner
CN106704197B (zh) 油气分离器、压缩机及空调器
CN102914105B (zh) 油分离器
US20210285701A1 (en) Refrigerant distributor and evaporator comprising the refrigerant distributor
CN213811246U (zh) 油分离器以及空调室外机
EP1681522B1 (en) Gas liquid separator
WO2022121432A1 (zh) 油分离器以及空调室外机
JP2006266524A (ja) アキュムレータ
WO2019229814A1 (ja) 油分離器および冷凍サイクル装置
CN209638003U (zh) 油气分离装置和包含该油气分离装置的空调系统
WO2020174660A1 (ja) 気液分離装置および冷凍サイクル装置
CN112856588B (zh) 空调室内机和空调器
CN100436973C (zh) 在管路中的油分离器
CN211625773U (zh) 具有旋风分离装置的降膜式蒸发器和冷水机组
CN114608227A (zh) 油分离器以及空调室外机
CN206739683U (zh) 一种气体旁通微通道蒸发器
CN220818151U (zh) 一种气液分离器及空调
CN109340085B (zh) 一种汽车空调压缩机旋风式油气分离器
CN220771448U (zh) 用于换热系统的气液分离装置和换热系统
CN112856866B (zh) 节流元件、节流分液组件和空调室内机
CN110259684A (zh) 压缩机和具有其的车辆
JP7204899B2 (ja) 気液分離装置および冷凍サイクル装置
WO2024029028A1 (ja) 油分離器および冷凍サイクル装置
CN117052672A (zh) 油气分离装置及压缩机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21902140

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021902140

Country of ref document: EP

Effective date: 20221103

NENP Non-entry into the national phase

Ref country code: DE