WO2022121310A1 - 多线激光雷达自动驾驶设备的下线验收车间的使用方法 - Google Patents

多线激光雷达自动驾驶设备的下线验收车间的使用方法 Download PDF

Info

Publication number
WO2022121310A1
WO2022121310A1 PCT/CN2021/106041 CN2021106041W WO2022121310A1 WO 2022121310 A1 WO2022121310 A1 WO 2022121310A1 CN 2021106041 W CN2021106041 W CN 2021106041W WO 2022121310 A1 WO2022121310 A1 WO 2022121310A1
Authority
WO
WIPO (PCT)
Prior art keywords
acceptance
parking
automatic driving
platform
judgment
Prior art date
Application number
PCT/CN2021/106041
Other languages
English (en)
French (fr)
Inventor
霍光磊
李瑞峰
黄小春
温宽昌
常骐川
梁培栋
Original Assignee
福建(泉州)哈工大工程技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福建(泉州)哈工大工程技术研究院 filed Critical 福建(泉州)哈工大工程技术研究院
Priority to US18/265,444 priority Critical patent/US20240027594A1/en
Publication of WO2022121310A1 publication Critical patent/WO2022121310A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • G01S7/4972Alignment of sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo, light or radio wave sensitive means, e.g. infrared sensors
    • B60W2420/408Radar; Laser, e.g. lidar
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles

Definitions

  • the invention relates to a workshop for offline acceptance detection of multi-line laser radar installed on automatic driving equipment and a method of using the same.
  • multi-line lidar With the rapid development of intelligent technology, the application of multi-line lidar is becoming more and more extensive, especially in some autonomous driving equipment.
  • the laser beam reaches the laser scanning within a 360-degree range, and the laser scanning data is obtained for the judgment of the surrounding environment and objects of the vehicle. Therefore, the precise installation of multi-line lidars on automatic driving equipment and the normal use of functions are very important, which are the basic requirements for automatic driving equipment to achieve safe and effective automatic driving.
  • a method for using an offline acceptance workshop of multi-line lidar automatic driving equipment the method steps are as follows: 1. Initially, the offline acceptance workshop is in an initial state; the offline acceptance workshop includes a workshop main body, an acceptance parking platform, an acceptance inspection device and acceptance control system; the main body of the workshop is a square-shaped workshop with walls on three sides and an entrance and exit on the other side; the acceptance parking platform is arranged on the ground in the main body of the workshop for parking automatic driving equipment, which includes There are a horizontal platform carrying the automatic driving equipment, a parking positioning device for automatically adjusting the forward parking position of the automatic driving equipment, and a parking positioning device for automatically adjusting the fixed position of the tires of the automatic driving equipment; the acceptance detection device is close to the main body of the workshop and the entrance and exit The wall on the opposite side is arranged, and the front end of the automatic driving equipment faces the acceptance detection device during inspection and use.
  • the acceptance control system is used to control the operation of the equipment traction device, the acceptance parking platform and the acceptance detection device in the main body of the workshop;
  • the acceptance detection The device includes a function detection device for detecting whether the laser scanning function of the multi-line lidar is normal and an installation detection device for detecting whether the installation position of the multi-line lidar is accurate;
  • the installation detection device is a plurality of wires according to a set distance.
  • the scanning benchmark is erected vertically, and the scanning benchmark corresponds to the horizontal layout in front of the acceptance parking platform;
  • the function detection device includes a motion track, a moving trolley, and a target object, and the motion track corresponds to the front of the acceptance parking platform and the installation
  • the detection devices are arranged horizontally according to the set distance and position, the mobile trolley is equipped with a driving device that drives the mobile trolley to move on the moving track, and the target object is erected and installed on the mobile trolley;
  • the automatic driving equipment is entered from the entrance and exit. It is parked on the acceptance parking platform.
  • the acceptance detection device with the front end of the automatic driving equipment facing the opposite side of the entrance and exit and the front and rear wheels of the automatic driving equipment correspond to the parking positioning device respectively; 2.
  • the front and rear wheels are positioned in the front and rear directions and cannot move forward or backward; 3. Control the action of the parking positioning device so that the front and rear wheels are adjusted to the fixed position on the parking positioning device and fixed; 4. Start the automatic driving equipment
  • the scanning work of the multi-line lidar includes the multi-line lidar performing laser scanning on multiple scanning benchmarks, and generating the installation detection laser scanning data, and starting the mobile car to move at the set moving speed, the multi-line lidar Perform laser scanning at the same time, and generate functional detection laser scanning data; 5.
  • the acceptance control system acquires installation detection laser scanning data and functional detection laser scanning data to process, analyze and judge the data, and the processing and analysis judgment includes frequency judgment, cluster judgment, Level judgment and orientation judgment; the frequency judgment is such that the acceptance control system detects the laser scanning data through the function to judge the number of frames of the laser scanning target object in a time period in the data and calculates the laser scanning in the corresponding time period through the known data.
  • the clustering judgment is as follows, whether there is a cluster of target objects in the laser scanning data is detected by the clustering method calculation function, if it does not exist, it is judged that the laser scanning error is unqualified, and if it exists, it is judged that the cluster center point Whether the coordinates conform to the coordinate system of the multi-line lidar, if so, it is judged that the multi-line lidar function has passed the acceptance;
  • the installation detection laser scanning data uses the least squares method to fit the linear equation of the multi-line lidar scanning each scanning benchmark in the multi-line lidar coordinate system.
  • X , Y , Z are the variables of the scanning point in the multi-line lidar coordinate system
  • x 1, y 1, z 1 are the coordinates of a point in the multi-line lidar coordinate system
  • m is the direction along the X axis
  • n In order to be along the Y- axis direction, p is along the Z -axis direction, calculate the value of p in the Z -axis direction of each scanning benchmark, and then calculate the mean value of p of multiple scanning benchmarks, and place each scanning benchmark on the multi-line.
  • k is the slope of the straight line
  • b is the intercept of the straight line
  • the mean value of p is close to 1
  • the value of k is close to 0
  • the roll angle, pitch angle, and direction angle of the multi-line lidar installation are qualified (the installation is horizontal And the O direction angle is facing the front state), end the detection, if the mean value of p is not close to 1 and/or the value of k is not close to 0, it is judged that the installation
  • a method for using an offline acceptance workshop of multi-line lidar automatic driving equipment the method steps are as follows: 1. Initially, the offline acceptance workshop is in an initial state, and the offline acceptance workshop includes a workshop main body, an acceptance parking platform, and an acceptance inspection. device and acceptance control system; the main body of the workshop is a square-shaped workshop with walls on three sides and an entrance and exit on the other side; the acceptance parking platform is arranged on the ground in the main body of the workshop for parking automatic driving equipment, which includes There are a horizontal platform carrying the automatic driving equipment, a parking positioning device for automatically adjusting the forward parking position of the automatic driving equipment, and a parking positioning device for automatically adjusting the fixed position of the tires of the automatic driving equipment; the acceptance detection device is close to the main body of the workshop and the entrance and exit The wall on the opposite side is set up, and the front end of the automatic driving equipment faces the acceptance detection device during inspection and use.
  • the acceptance control system is used to control the equipment traction device, acceptance parking platform and acceptance inspection device in the main body of the workshop to work; the offline
  • the acceptance workshop also includes an equipment parking platform and an equipment pulling device, the equipment pulling device is used for pulling the automatic driving equipment from the equipment parking platform to the acceptance parking platform or from the acceptance parking platform to the equipment parking platform, which are respectively arranged on two opposite sides.
  • the equipment parking platform is used for the parking adjustment before the automatic driving equipment enters the main body of the workshop, and it includes a bearing platform that carries the automatic driving equipment, an orientation adjustment mechanism that drives the rotation angle of the bearing platform, and drives the bearing platform to move laterally.
  • the acceptance detection device includes a function detection device for detecting whether the laser scanning function of the multi-line lidar is normal and an installation detection device for detecting whether the installation position of the multi-line lidar is accurate;
  • the The installation and detection device is a plurality of scanning benchmarks erected vertically according to the set distance and position, and the scanning benchmarks are correspondingly arranged horizontally in front of the acceptance and parking platform;
  • the functional detection device includes a moving track, a moving trolley, and a target object.
  • the moving track is arranged horizontally according to the set distance between the front of the acceptance and parking platform and the installation and detection device.
  • the moving trolley is equipped with a driving device that drives the moving trolley to move on the moving track.
  • the scanning work of the multi-line lidar on the driving equipment includes the multi-line lidar performing laser scanning on multiple scanning benchmarks, and generating the installation detection laser scanning data, and starting the mobile car to move at the set moving speed.
  • the line lidar performs laser scanning at the same time, and generates functional detection laser scanning data; 8.
  • the acceptance control system obtains the installation detection laser scanning data and the functional detection laser scanning data to process, analyze and judge the data, and the processing and analysis judgment includes frequency judgment, aggregation Class judgment, level judgment and orientation judgment; the frequency judgment is such that the acceptance control system detects the laser scanning data through the function to judge the number of frames of the laser scanning target object in a time period in the data and calculates the corresponding time period through the known data.
  • the laser scanning frequency is judged to be qualified, if not, the laser scanning frequency is judged to be unqualified; the clustering judgment is as follows, the laser scanning frequency is detected by the clustering method calculation function Whether there is a cluster of target objects in the data, if not, it is judged that there is an error in laser scanning, and if it exists, it is judged whether the coordinates of the cluster center point conform to the coordinate system of the multi-line lidar, and if so, it is judged that the multi-line lidar function Acceptance is qualified, if not, it is judged that the laser scanning has errors and unqualified; the level judgment and orientation judgment are like this, the acceptance control system uses the least squares method to fit the multi-line lidar scanning each root scan through the installation and detection laser scanning data.
  • the straight line equation of the benchmark in the multi-line lidar coordinate system is as follows, , where X , Y , Z are the variables of the scanning point in the multi-line lidar coordinate system, x 1, y 1, z 1 are the coordinates of a point in the multi-line lidar coordinate system, m is the direction along the X axis, n is the direction along the Y- axis, p is the direction along the Z -axis; the value of p in the Z -axis direction of each scanning benchmark is calculated, and then the mean value of p of multiple scanning benchmarks is calculated, and each scanning benchmark is calculated in multiple
  • the automatic driving equipment fails the offline acceptance, first control the parking positioning device and the parking positioning device to reset, and then control the action of the equipment traction device to pull the automatic driving equipment from the entrance and exit to exit the acceptance parking platform, and exit to the carrying platform of the equipment parking platform.
  • the control orientation adjustment mechanism to rotate the carrying platform, and then move the automatic driving equipment away from the offline acceptance workshop; if the automatic driving equipment passes the offline acceptance, first control the parking positioning device and the parking point The device and the equipment traction device are reset, and then directly control the automatic driving equipment to move out of the offline acceptance workshop; or, first control the parking positioning device and the parking positioning device to reset, and then control the action of the equipment traction device to pull the automatic driving equipment from the entrance and exit to exit the acceptance Park the platform, exit to the carrying platform of the equipment parking platform, and select the control orientation adjustment mechanism to rotate the carrying platform according to the orientation of the automatic driving equipment, and then move the automatic driving equipment away from the offline acceptance workshop.
  • the equipment pulling device includes a pulling moving track arranged on the inner side of the wall, a pulling moving block sliding on the moving track, a pulling connecting rod hinged on the pulling moving block, and a pulling connecting rod arranged on the pulling moving block and connected to the pulling connecting rod.
  • the pushing cylinder and the moving driving mechanism arranged on the pulling moving block and the pulling moving track; the pulling connecting rod and the automatic driving equipment are respectively provided with pulling matching parts.
  • the ground outside the main entrance and exit of the workshop is provided with a sinking space for installing a bearing platform
  • the traverse adjustment mechanism includes a traverse track arranged at the bottom of the sink space, a traverse platform sliding on the traverse track, and a connecting traverse.
  • the traverse drive mechanism that the moving platform drives its traverse movement; the carrying platform is a circular carrying platform covering the sinking space, and the orientation adjustment mechanism includes a The rotating support connection plate and the rotating drive mechanism.
  • the horizontal platform is provided with a front wheel positioning section slot and a rear wheel positioning section slot, and the parking positioning devices are respectively arranged in the front wheel positioning section slot and the rear wheel positioning section slot. It includes a plurality of bearing steel beams arranged to fill the front wheel positioning section groove or the rear wheel positioning section groove, support driving cylinders respectively provided at the bottom of each steel beam, and guide structures respectively provided at both ends of each steel beam and a pressure sensor set on each steel beam, the bearing steel beam can make its upper surface flush with the upper surface of the horizontal platform under the driving support of the supporting drive cylinder, or the upper surfaces of the multiple bearing steel beams form staggered and concave wheel grooves .
  • the parking positioning device includes a rear wheel positioning adjustment device and a front wheel positioning adjustment device.
  • the rear wheel positioning adjustment device is correspondingly arranged at both ends of the rear wheel positioning section groove, and includes a rear wheel moving push block and a rear wheel pusher.
  • Block drive the rear wheel moving push block is arranged on the upper surface of the horizontal platform and vertically spans the rear wheel positioning section slot, the rear wheel push block is driven outside the end of the rear wheel positioning section slot and is connected to the rear wheel
  • the movable push block is used to drive it to move, and a rear wheel push block guide structure is provided on the rear wheel movable push block.
  • the front wheel fixed-point adjustment device is correspondingly arranged at both ends of the front wheel positioning segment slot, which includes a front wheel moving push block and a front wheel push block drive, and the front wheel moving push block is arranged on the upper surface of the horizontal platform and is vertical.
  • the front wheel push block is drivingly arranged outside the end of the front wheel positioning section slot and is connected to the front wheel moving push block to drive it to move, and the front wheel moving push block is provided with
  • There is a front wheel push block guide structure; and/or, the front wheel fixed point adjustment device is symmetrically arranged on both sides of the middle point of the front wheel positioning segment groove, which includes a T-shaped moving push block, a T-shaped push block drive and a T-shaped push block.
  • the T-shaped moving push block has a T-shaped cross section, which is arranged on the upper surface of the horizontal platform and vertically straddles the front wheel positioning section groove, on both sides of the front wheel positioning section groove Sliding grooves are respectively opened on the sides, two ends of the T-shaped vertical arms of the T-shaped mobile push block are respectively provided with connecting rods embedded in the corresponding sliding grooves, and the T-shaped push block drives are respectively arranged in the sliding grooves and connected to each other.
  • the connecting rod is used to drive it to move, and the T-shaped push block guide structure is arranged between the connecting rod and the sliding groove.
  • the acceptance parking platform, the acceptance detection device, the equipment parking platform and the equipment traction device of the offline acceptance workshop can achieve better automatic work, that is, the automation performance is high, and the structure can automatically adjust the automatic driving equipment.
  • the structure can automatically adjust the automatic driving equipment.
  • a better fixed-point positioning can be achieved to improve the detection accuracy of the acceptance inspection.
  • the overall structure of the workshop is compact and occupies a small space, which can be used to quickly and effectively detect whether the multi-line laser radar is installed. Accuracy and functionality.
  • the fixed-point positioning operation of the automatic driving vehicle in the above method steps is simple and fast, and the acceptance result of the installation and detection of the multi-line laser radar is accurate and reliable. It is easy to implement, and is especially suitable for inspection and use on the production line of mass-produced automatic driving equipment, so as to achieve the above purpose and effect of the present invention.
  • the multi-line laser radar scans the moving target object to obtain the function detection laser scanning data to calculate and analyze the result. Specifically, whether the number of laser scanning frames in a time period conforms to the theoretical frame number and the clustering method is used to judge. Whether the cluster exists or not, and whether the coordinates of the cluster center point conform to the coordinate system of the multi-line lidar can be used to judge whether the scanning frequency of the multi-line lidar and whether the laser scanning data is consistent with the actual scene to determine whether the multi-line lidar can be used normally.
  • the accurate judgment of the installation of the multi-line lidar is based on the above-mentioned horizontal judgment and orientation judgment.
  • There are three basis for the judgment of the two namely whether the direction angle of the multi-line lidar is 0 direction corresponding to the front, and the pitch angle.
  • the acceptance method of the present invention uses the multi-line laser radar to scan a plurality of scanning benchmarks to obtain the installation detection laser scanning data to judge the direction angle, the roll angle and the pitch angle, which is exactly corresponding to the multi-line laser radar.
  • the value of k of a straight line on the X and Y planes is used to determine whether the direction angle of the multi-line laser scanning radar is 0 degrees corresponding to the front, and whether the roll angle and pitch angle are horizontal.
  • FIG. 1 is a schematic structural diagram of an off-line acceptance workshop of a multi-line lidar automatic driving device involved in the invention.
  • FIG. 2 and FIG. 3 are schematic structural diagrams of different states of the parking positioning device of the acceptance parking platform according to the present invention.
  • FIG. 4 is a schematic structural diagram of the parking fixation device of the acceptance parking platform according to the present invention.
  • FIG. 5 is a schematic structural diagram of the equipment parking platform of the acceptance parking platform involved in the present invention.
  • FIG. 6 is a schematic structural diagram of the equipment pulling device of the acceptance stop platform according to the present invention.
  • the invention discloses a method for using an offline acceptance workshop of a multi-line laser radar automatic driving equipment, and discloses an offline acceptance workshop, as shown in Figure 1, Figure 2, Figure 3, Figure 4, Figure 5 and Figure 6, including the workshop Main body 1, acceptance parking platform 2, acceptance testing device 3, equipment parking platform 4, equipment pulling device 5 and acceptance control system (this system mainly includes the electronic control system of the circuit structure and the detection system of the program part of the work, not shown in the figure). visible).
  • the off-line acceptance workshop is used for the detection of multi-line lidar of some unmanned and autonomous vehicles with multi-line lidar inspection, cleaning and other operation vehicles.
  • the automatic driving equipment can be used offline after the inspection is qualified.
  • the bottom of the car body of these automatic driving equipment usually includes the front wheel and the rear wheel, the rear wheel usually includes the left rear wheel and the right rear wheel, and there are two kinds of front wheels.
  • One is that there is only one front in the middle.
  • the other is to include the left front wheel and the right front wheel, and its multi-line lidar is usually installed in the middle of the top surface of the front of the car.
  • the workshop main body 1 in the present invention is a square-shaped independent workshop with walls on three sides.
  • the surrounding environment is unified through the walls to avoid other substances that affect the results of laser scanning, and to avoid the existence of factors that affect the detection results.
  • the main body of the workshop 1 The other side is the entrance 11.
  • the acceptance detection device 3 is arranged in the workshop main body 1 near the wall on the side opposite to the entrance and exit 11 , and the front end of the automatic driving device faces the acceptance detection device 3 during detection and use.
  • the acceptance control system is used to control the equipment in the workshop main body 1
  • the work of the traction device 5 , the acceptance parking platform 2 and the acceptance detection device 3 is carried out.
  • the system part is not described in detail and does not affect the clear understanding of the structure of the workshop.
  • the acceptance detection device 3 in the present invention includes a function detection device 31 for detecting whether the laser scanning function of the multi-line laser radar is normal, and an installation detection device 32 for detecting whether the installation position of the multi-line laser radar is accurate; the installation The detection device 32 is a plurality of scanning benchmarks vertically erected according to the set distance position. The distance between the scanning benchmarks and the acceptance parking platform 2 should not exceed the optimal scanning distance for laser scanning detection.
  • the scanning benchmarks correspond to The horizontal layout is placed in front of the acceptance parking platform 2. As shown in the figure, there are 3 vertical and vertical installations. The middle one corresponds to the 0-direction angle of the multi-line laser radar during operation, and the next two are at the same interval.
  • the height of each scanning benchmark should be higher than the height of the vehicle from the height of the horizontal plane of the acceptance parking platform 2, so as to meet the scanning range of multi-line lidar, and the width of each scanning benchmark should be about 5 cm; the function detection
  • the device 31 includes a moving track 311, a moving trolley 312, and a target object 313.
  • the moving track 311 corresponds to a set distance position between the front of the acceptance and parking platform 2 and the installation and detection device 31 according to the set distance position laterally set to be different. It is appropriate to exceed the preferred scanning distance of laser scanning detection, and the length of the moving track 32 should be greater than the width of the vehicle 1.
  • the moving distance of the moving track is 2 meters as an example
  • the mobile trolley 312 is equipped with a driving mobile trolley 312
  • the drive device moves on the motion track 311
  • the target object 313 is erected and installed on the moving trolley 312 .
  • the target object 313 is erected and installed on the mobile trolley 312.
  • the target object 313 can be a humanoid prop or other profiling props, etc.
  • the above-mentioned scanning benchmark is at the rear relative to the target object 313. Such a structure can avoid multi-line lidar scanning.
  • the target object is affected by the scanning benchmark.
  • the acceptance parking platform 2 is arranged on the bottom surface of the workshop main body 1 for parking the automatic driving equipment 100, which includes a horizontal platform 21 carrying the automatic driving equipment 100, and is used for automatically adjusting the automatic driving equipment.
  • the wheelbase range of the front wheel and the rear wheel is set, and the opening width of each slot can be the same or different, so that the acceptance parking platform 2 can be adapted to the positioning and parking of vehicles of various sizes and types;
  • the parking The positioning devices 22 are respectively arranged in the front wheel positioning section slot 211 and the rear wheel positioning section slot 212 , and include a plurality of bearing steel beams arranged to fill the front wheel positioning section slot 211 or the rear wheel positioning section slot 212 221.
  • the bearing steel beam 221 can lift the bearing steel beam 221 under the driving support of the support driving cylinder 222 and the limitation of the guide structure 223 until the upper surface of the bearing steel beam 221 is flush with the upper surface of the horizontal platform 21 or descends to a plurality of bearing steel beams.
  • the upper surface of 221 is formed with staggered and concave wheel grooves 225, through which the positioning of the front and rear wheels of the vehicle in the front and rear directions of the horizontal platform 21 is achieved.
  • a load-bearing steel beam 221 at the lowest position of the 225 can be controlled according to the wheelbase of the vehicle, so as to achieve the alignment of the wheels of vehicles of different sizes and types.
  • the position of the front and rear wheels that is, the position of the vehicle
  • the concave shape formed by the staggered and descending of the wheel groove 225 is a It fits the arc shape of the circumference of the wheel. After the wheel is embedded in the wheel groove 225, it cannot move back and forth to complete the positioning in this direction.
  • the acceptance control system can quickly and accurately determine the position of the front and rear wheels, and perform the wheel positioning in the front and rear directions.
  • all the downward bearing steel beams 221 are driven to rise and reset to be flush with the horizontal platform 21 by controlling the action of the support driving cylinder 222, which is convenient for exiting.
  • the parking positioning device 23 is used for positioning in the left and right directions of the vehicle. The positioning in this direction is the final positioning position of the vehicle.
  • the parking position to be detected includes the rear wheel positioning adjustment device 231 and the front wheel positioning adjustment device 232. , usually the rear wheel has two wheels.
  • the rear wheel fixed-point adjustment device 231 is correspondingly arranged at both ends of the rear wheel positioning section groove 212, which includes a rear wheel moving push block 2311 and a rear wheel push block drive 2312 , the rear wheel moving push block 2311 is a rectangular block arranged on the upper surface of the horizontal platform 21 and vertically across the rear wheel positioning section groove 212 as shown in the figure, and the rear wheel push block drive 2312 is arranged on the rear wheel
  • the end of the positioning section groove 212 is connected to the rear wheel moving push block 2311 for driving it to move.
  • the rear wheel moving push block 2311 is provided with a rear wheel push block guide structure 2313 so that the rear wheel moving push block 2311 can be stably When moving and working, the side of the rear wheel moving push block 2311 is in contact with the outer side of the corresponding rear wheel, so as to push the rear wheel to move left and right.
  • the two rear wheel moving push blocks 2311 push and clamp the two rear wheels according to the setting , which is the fixed-point position.
  • the present embodiment discloses that the settings of the two front wheel fixed point adjustment devices 232 are actually set according to needs, and both can be set or only one can be set.
  • the first type as shown in the figure, the front wheel positioning adjustment device 232 is respectively provided at both ends of the front wheel positioning section groove 211, and includes a front wheel moving push block 2321 and a front wheel push block drive 2322.
  • the front wheel moving push block 2321 is arranged on the upper surface of the horizontal platform 21 and vertically spans the front wheel positioning section groove 211.
  • the wheel moving push block 2321 is used to drive it to move.
  • the front wheel moving push block 2321 is provided with a front wheel push block guide structure 2323, which is the same as the rear wheel fixed point adjustment device 231.
  • the adjustment and use of the front wheel of a vehicle with two wheels, the action and the use principle are the same, refer to the above description, and will not repeat them here.
  • the second type, the front wheel positioning adjustment device 232 is symmetrically arranged on both sides of the middle point of the front wheel positioning section groove, as shown in the figure, it includes a T-shaped moving push block 2324, a T-shaped push block drive 2325 and a T-shaped push block
  • the push block guide structure 2326, the T-shaped moving push block 234 has a T-shaped cross section, which is arranged on the upper surface of the horizontal platform 21 and vertically spans the front wheel positioning section groove 211, the front wheel positioning section
  • Two sides of the segment groove 211 are respectively provided with sliding grooves 2327, and two ends of the T-shaped vertical arms of the T-shaped moving push block 2324 are respectively provided with connecting rods 2328 embedded in the corresponding sliding grooves 2327.
  • the sliding grooves 2327 There is an installation cavity inside, the T-shaped push block drive 2325 is respectively arranged in the installation cavity of the sliding slot and connected to the connecting rod 2328 to drive it to move, the T-shaped push block guide structure 2326 is arranged on the connecting rod 2328 to slide Between the grooves 2327, the action principle of the fixed-point adjusting device 232 of the front wheel of this structure is the same as that of the previous one, but such a structure can realize the adjustment of the front wheel in two directions.
  • the front wheel is a one-wheel vehicle
  • the front wheel is corresponding between the two T-shaped moving push blocks 2324, so during adjustment, the two T-shaped moving push blocks 2324 move to clamp the front wheel to complete the positioning of the front road, and when the front wheel is a vehicle with two wheels, the two The T-shaped moving push blocks 2324 are moved away from each other in the opposite direction, respectively, to be close to the inner side of the front wheel on the corresponding side, that is, the adjustment of the front wheel is completed.
  • the above-mentioned rear wheel positioning adjustment device 231 and front wheel positioning adjustment device 232 are simultaneously driven to achieve better driving force to push the vehicle to move. After the detection, the rear wheel positioning adjustment device 231 and the front wheel positioning adjustment device 232 are reset.
  • the equipment parking platform 4 and the equipment pulling device 5 are mainly used for vehicles entering and exiting the acceptance parking platform to achieve automatic adjustment and traction use.
  • This embodiment discloses a structure provided with these two parts, specifically, as shown in the figure, the equipment pulling device 5 is used to move the automatic driving equipment (ie, the aforementioned vehicle) from the equipment parking platform 4 Pulled to the acceptance parking platform 2 or pulled from the acceptance parking platform 2 to the equipment parking platform 4, which are respectively arranged on the two opposite walls on the left and right sides, which include traction moving rails 51 arranged on the inner side of the wall, sliding
  • the moving driving mechanism 55 on the moving track 51, the moving driving mechanism 55 here can be a structure of a motor-driven driving mechanism, and the driving mechanism can be a combination of a rack and pinion, this structure is the prior
  • the traction connecting rod 53 and the automatic driving device are respectively provided with traction matching parts.
  • the traction matching parts on the automatic driving device are fixed on the side of the vehicle.
  • the traction moving block 52 is driven to move by the moving drive mechanism 55, so that the traction matching parts on the traction connecting rod 53 correspond to the U-shaped block (the function of automatic correspondence can be achieved by setting the sensor) , control the action of the push cylinder 54, insert the traction matching part on the traction connecting rod 53 into the U-shaped groove of the U-shaped block, and then start the mobile driving mechanism 55 after completing the traction connection on both sides to drive the traction moving block 52 to move, so as to achieve traction Work in and out.
  • the equipment parking platform 4 is used for the parking adjustment before the automatic driving equipment enters the main body of the workshop.
  • the adjustment can facilitate the precise alignment of the traction work.
  • the orientation adjustment mechanism 42 and the traverse adjustment mechanism 43 that drives the carrying platform 41 to traverse the position.
  • a sinking space for installing the carrying platform 41 is provided on the ground outside the entrance and exit 11 of the workshop main body 1.
  • the said The traverse adjustment mechanism 43 includes a traverse track 431 arranged at the bottom of the sinking space (the traverse direction here is as shown in the figure, which is consistent with the left-right direction in the workshop main body 1 ), a traverse track 431 that slides on the traverse track 431 .
  • the orientation adjustment mechanism 42 includes a connection setting Between the lower surface of the bearing platform 41 and the upper surface of the traversing platform 432, the rotating support connection plate 421 and the rotating driving mechanism 422 are rotated.
  • the rotating driving mechanism 422 drives the bearing platform 41 to rotate and adjust the head direction of the vehicle.
  • the traverse platform 432 moves on the traverse track 431 to adjust the position of the head of the vehicle, which can correspond to the central position of the entrance and exit.
  • the adjustment here can also be realized through the sensing device to automatically sense whether it is adjusted to the desired position, which is also conducive to the traction of the equipment.
  • the pulling action of the device 5 is realized.
  • the first one is the use of the offline acceptance workshop without the two structures of the equipment parking platform 4 and the equipment pulling device 5 Method
  • the second is the use method of the off-line acceptance workshop with the two structures of the equipment parking platform 4 and the equipment pulling device 5 .
  • the first is a method of using the offline acceptance workshop of multi-line lidar automatic driving equipment.
  • the method steps are as follows: 1. Initially, the offline acceptance workshop is in the initial state, and the automatic driving equipment 100 is parked from the entrance and exit at the acceptance parking lot. On the platform 2, when parking, the front end of the automatic driving device 100 faces the acceptance detection device 4 on the opposite side of the entrance and exit 11, and the front and rear wheels of the automatic driving device 100 correspond to the parking positioning device 22 respectively; 2. Control the parking positioning The action of the device 22 makes the front wheel and the rear wheel be positioned in the front and rear directions and cannot move forward or backward; 3. Control the action of the parking positioning device 23 to make the front wheel and the rear wheel adjust to the fixed position on the parking positioning device 22 and fix it; 4. .
  • the scanning work includes laser scanning of multiple scanning benchmarks by the multi-line laser radar, and generating installation detection laser scanning data, and starting the mobile car according to the set movement.
  • Speed moving, multi-line laser radar scans simultaneously, and generates functional detection laser scan data; 5.
  • the acceptance control system obtains installation detection laser scan data and functional detection laser scan data to process, analyze and judge the data, and the processing, analysis and judgment include: Frequency judgment, clustering judgment, level judgment and orientation judgment; the frequency judgment is such that the acceptance control system detects the laser scanning data through the function to judge the number of frames of the laser scanning target object in a time period in the data and the known data passing through Calculate whether the number of theoretical frames of the target object scanned by the laser in the corresponding time period is consistent.
  • the above-mentioned motion track is 2 meters
  • the moving speed of the mobile car is 1 meter per second
  • the frequency of the multi-line lidar is 10 meters per second.
  • the function detection laser scan data should have 20 frames, and at this time, if the function detection laser scan data has 18-22 frames of data, it is considered to be consistent, then It is judged that the laser scanning frequency is qualified. If the laser scanning data does not reach 18 frames, it does not match, and the laser scanning frequency is judged to be unqualified; the clustering judgment is as follows, whether there is a target object in the laser scanning data through the clustering method calculation function. If it does not exist, it is judged that there is an error in the laser scanning, and if it exists, it is judged whether the coordinates of the cluster center point conform to the coordinate system of the multi-line lidar.
  • the acceptance control system uses the least squares method to fit the multi-line lidar scanning data by installing and detecting the laser scanning data.
  • the straight line equation of the coordinate system the equation is as follows, , where X , Y , Z are the variables of the scanning point in the multi-line lidar coordinate system, x 1, y 1, z 1 are the coordinates of a point in the multi-line lidar coordinate system, m is the direction along the X axis, n is the direction along the Y- axis, p is the direction along the Z -axis, calculate the value of p in the Z -axis direction of each scanning benchmark, and then calculate the mean value of p of multiple scanning benchmarks, and put each scanning benchmark in multiple.
  • the center of the X and Y planes in the line lidar coordinate system is fitted into a straight line on the X and Y planes, and the value of k is calculated according to
  • control the The parking positioning device 22 and the parking positioning device 23 are reset, and the automatic driving device 100 is removed from the acceptance parking platform. If the off-line acceptance fails, the technicians will carry out the corresponding processing of the multi-line laser radar according to the unqualified judgment data given by the acceptance control system, such as the replacement of the multi-line laser radar, parameter adjustment, installation adjustment, etc., and the processing is completed. Then go back to the above steps to perform laser scanning detection again.
  • a method for using the offline acceptance workshop of multi-line lidar automatic driving equipment the method steps are as follows: 1. Initially, the offline acceptance workshop is in the initial state, and the automatic driving equipment 100 is moved to the equipment parking platform 4. On the carrying platform 41; 2. Control the action of the orientation adjustment mechanism 42 to rotate the carrying platform 41 to the direction in which the front end of the automatic driving device 100 faces the entrance and exit 11, and the orientation here is the direction corresponding to the vertical and parallel, not the directional 3. Control the movement of the traverse adjustment mechanism 43 to make the carrying platform 41 traverse and move to the automatic driving equipment 100 corresponding to the entrance and exit 11 in the middle section; 4.
  • Control the equipment traction device 5 first control its action and the automatic driving equipment 100 is lapped, and the specific action is detailed in the description of the above structural part, and then the traction movement is controlled, and the automatic driving device 100 is pulled from the entrance 11 and parked on the acceptance parking platform 2.
  • the front wheel of the automatic driving device 100 Corresponding to the parking positioning device 22 with the rear wheel respectively; 5.
  • Control the action of the parking positioning device 22 so that the front wheel and the rear wheel are positioned in the front and rear directions and cannot move forward or backward;
  • the rear wheel is adjusted to the fixed position on the parking positioning device 22 and fixed; 7.
  • the scanning work of the multi-line laser radar 101 on the automatic driving device 100 is started.
  • the acceptance control system obtains installation inspection laser scanning data and functions Detect laser scanning data for data processing, analysis and judgment.
  • the processing and analysis judgment includes frequency judgment, cluster judgment, level judgment, and orientation judgment; the frequency judgment is such that the acceptance control system detects the laser scanning data through the function to judge the data in the data. Whether the number of frames of the laser scanning target object in a time period is consistent with the theoretical frame number of the laser scanning target object in the corresponding time period calculated from the known data.
  • the frequency of the multi-line lidar is 10 Hz per second, then theoretically, after the moving car moves 2 meters on the moving track, the function detection laser scan data should have 20 frames, and if the function If the laser scanning data has 18-22 frames of data, it is considered as conforming, and the laser scanning frequency is judged to be qualified. If the laser scanning data does not reach 18 frames, it is not consistent, and the laser scanning frequency is judged to be unqualified; the clustering judgment is as follows If there is no cluster of target objects in the laser scanning data, it is judged that there is an error in the laser scanning, and if it exists, it is judged whether the coordinates of the cluster center point conform to the coordinates of the multi-line lidar.
  • the acceptance control system uses the least squares method to fit the linear equation of the multi-line lidar scanning each scanning benchmark in the multi-line lidar coordinate system through the installation and detection laser scanning data.
  • X , Y , Z are the variables of the scanning point in the multi-line lidar coordinate system
  • x 1, y 1, z 1 are the coordinates of a point in the multi-line lidar coordinate system
  • m is the direction along the X axis
  • n is the direction along the Y- axis
  • p is the direction along the Z -axis
  • calculate the value of p in the Z -axis direction of each scanning benchmark and then calculate the mean value of p of multiple scanning benchmarks, and put each scanning benchmark in multiple
  • the center of the X and Y planes in the line lidar coordinate system is fitted into a straight line on the X and Y planes
  • k is the slope of the straight line
  • b is the intercept of the straight line, judge whether the mean value of p is close
  • the automatic driving device 100 fails the offline acceptance, first control the parking positioning device 22 and the parking positioning device 23 to reset, and then control the equipment pulling device 5 to act to pull the automatic driving device 100 from the entrance and exit 11 to exit the acceptance parking platform 2, and exit to the equipment Park on the carrying platform 41 of the platform 4, and select and control the orientation adjustment mechanism 42 to rotate the carrying platform 41 according to the orientation of the automatic driving equipment 100, and then move the automatic driving equipment 100 away from the offline acceptance workshop.
  • the device can realize normal automatic driving. Therefore, the parking positioning device 22, the parking positioning device 23 and the equipment traction device 5 can be controlled to reset first, and then the automatic driving device 100 can be directly controlled to drive automatically. Move away from the off-line acceptance workshop; or operate in the same way as the above-mentioned non-pass method, first control the parking positioning device 22 and the parking positioning device 23 to reset, and then control the action of the equipment pulling device 5 to pull the automatic driving equipment 100 from the entrance 11 to exit the acceptance Park the platform 2, exit to the carrying platform 41 of the equipment parking platform 4, and select and control the orientation adjustment mechanism 42 to rotate the carrying platform 41 according to the orientation of the automatic driving device 100, and then move the automatic driving device 100 away from the offline acceptance workshop.
  • the technicians will carry out the corresponding processing of the multi-line laser radar according to the unqualified judgment data given by the acceptance control system, such as the replacement of the multi-line laser radar, parameter adjustment, installation adjustment, etc. , after the processing is completed, go back to the above steps to perform laser scanning detection again.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Traffic Control Systems (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种多线激光雷达自动驾驶设备(100)的下线验收车间的使用方法,下线验收车间包括车间主体(1)、验收停放平台(2)、验收检测装置(3)和验收控制系统,验收停放平台(2)包括水平平台(21)、停放定位装置(22)和停放定点装置(23);验收检测装置(3)在车间主体(1)靠近与出入口(11)相对的一侧墙体设置,验收控制系统用于控制工作进行,车间能够自动定点定位自动驾驶设备(100),能够快速有效地检测多线激光雷达的安装是否精准、功能是否正常。

Description

多线激光雷达自动驾驶设备的下线验收车间的使用方法 技术领域
本发明涉及用于自动驾驶设备安装多线激光雷达的下线验收检测的车间及其使用方法。
背景技术
随着智能科技的快速发展,多线激光雷达的应用越来越广泛,特别是在一些自动驾驶设备上的使用更是不可或缺,在自动驾驶设备中多线激光雷达通过同时发射和接收多束激光达到360度范围内的激光扫描,获得激光扫描数据用于车辆周围环境、物体的判断。因此,在自动驾驶设备上多线激光雷达的精准安装、功能能够正常使用这两点是非常重要的,是自动驾驶设备实现安全有效自动驾驶的基本要求。
目前,对于多线激光雷达是否精准安装和功能是否能够正常使用的检测方法有多种,但是根据多线激光雷达在不同的室外移动设备上的使用、在设备上不同位置的安装等等,现有的检测方法不一定能够适用,不一定能够达到功能的全面检测,能够有效检测所需的功能正常的要求,能够有效检测所需的精度,例如,检测激光扫描功能的响应频率是否达到正常要求、检测激光扫描数据是否出现方位偏差、检测激光扫描数据是否与现实场景相符等等,因此,现有的一些多线激光雷达是否精准安装和功能是否能够正常使用的检测方法并不适于用于量产自动驾驶设备对多线激光雷达安装的下线验收。
技术问题
现有的一些多线激光雷达是否精准安装和功能是否能够正常使用的检测方法并不适于用于量产自动驾驶设备对多线激光雷达安装的下线验收。
技术解决方案
一种多线激光雷达自动驾驶设备的下线验收车间的使用方法,方法步骤如下:一、初始,下线验收车间处于初始状态;所述下线验收车间包括车间主体、验收停放平台、验收检测装置和验收控制系统;所述车间主体为四方型的车间,其三面设有墙体,另一面为出入口;所述验收停放平台设置在车间主体内的地面上用于停放自动驾驶设备,其包括有承载自动驾驶设备的水平平台、用于自动调整自动驾驶设备前进停放位置的停放定位装置和用于自动调整自动驾驶设备轮胎定点位置的停放定点装置;所述验收检测装置在车间主体靠近与出入口相对的一侧墙体设置,检测使用时自动驾驶设备的前端朝向验收检测装置,所述验收控制系统用于控制车间主体内设备牵引装置、验收停放平台和验收检测装置工作进行;所述验收检测装置包括用于检测多线激光雷达的激光扫描使用功能是否正常的功能检测装置和用于检测多线激光雷达安装位置是否精准的安装检测装置;所述安装检测装置为多根按设定的距离位置垂直立设的扫描标杆,所述扫描标杆对应在验收停放平台前放横向布设;所述功能检测装置包括运动轨道、移动小车、目标物体,所述运动轨道对应在验收停放平台的前方与安装检测装置之间按设定的距离位置横向设置,所述移动小车搭载有带动移动小车在运动轨道上移动的驱动装置,所述目标物体立设安装在移动小车上;将自动驾驶设备从出入口进入停放在验收停放平台上,停放时,自动驾驶设备的前端朝向出入口相对的一侧的验收检测装置以及自动驾驶设备的前轮和后轮分别对应在停放定位装置上;二、控制停放定位装置动作使得前轮和后轮在前后方向上被定位住不能前进或后退;三、控制停放定点装置动作使得前轮和后轮在停放定位装置上调整至定点的位置固定住;四、启动自动驾驶设备上多线激光雷达的扫描工作,扫描工作包括多线激光雷达对多根扫描标杆进行激光扫描,且生成安装检测激光扫描数据,以及,启动移动小车按设定的移动速度移动,多线激光雷达同时进行激光扫描,且生成功能检测激光扫描数据;五、验收控制系统获取安装检测激光扫描数据和功能检测激光扫描数据进行数据的处理分析判断,所述处理分析判断包括频率判断、聚类判断、水平判断和朝向判断;所述频率判断是这样的,验收控制系统通过功能检测激光扫描数据判断数据中一个时间段内激光扫描目标物体的帧数与通过已知的数据计算相应时间段内激光扫描目标物体的理论帧数是否相符,如果相符则判断激光扫描频率合格,如果不相符则判断激光扫描频率不合格;所述聚类判断是这样的,通过聚类方法计算功能检测激光扫描数据中是否存在目标物体的聚类,如果不存在则判断激光扫描出现错误不合格,如果存在则判断聚类中心点坐标是否符合多线激光雷达的坐标系,如果符合则判断多线激光雷达功能验收合格,如果不符合则判断激光扫描出现错误不合格;所述水平判断和朝向判断是这样的,验收控制系统通过安装检测激光扫描数据采用最小二乘法拟合出多线激光雷达扫描各根扫描标杆在多线激光雷达坐标系的直线方程,方程如下,
Figure 498898dest_path_image001
X Y Z为扫描点在多线激光雷达坐标系的变量, x1、 y1、 z1为某个点在多线激光雷达坐标系下的坐标, m为沿 X轴方向, n为沿 Y轴方向, p为沿 Z轴方向,计算得出各根扫描标杆的 Z轴方向 p 值,再计算得出多根扫描标杆的 p的均值,以及将各根扫描标杆在多线激光雷达坐标系下的 X Y平面的中心拟合成一条在 X Y平面上的一条直线,根据下面的公式计算得出k的值,y=kx+b,其中x、y为直线上的点在 X Y平面上的坐标,k为直线的斜率,b为直线的截距,判断 p的均值是否接近于1([-0.998, 0.998]区间内)和k的值是否接近于0 ([-0.002, 0.002]区间内),如果 p的均值为接近于1,且k的值为接近于0,则判断多线激光雷达安装的翻滚角、俯仰角、方向角合格(安装为水平且O向角朝向正前方状态),结束检测,如果 p的均值为不接近于1和/或k的值为不接近于0,则判断多线激光雷达的安装存在偏向为安装不合格;在上述频率判断、聚类判断、水平判断和朝向判断均为合格时验收控制系统判断多线激光雷达的下线验收通过,并给出检测结果,结束检测;在上述频率判断、聚类判断、水平判断和/或朝向判断中存在不合格时验收控制系统判断多线激光雷达的下线验收不通过,并给出存在不合格的判断数据的检测结果,结束检测;六、结束检测后,控制停放定位装置和停放定点装置复位,将自动驾驶设备从验收停放平台移出。
一种多线激光雷达自动驾驶设备的下线验收车间的使用方法,方法步骤如下:一、初始,下线验收车间处于初始状态,所述下线验收车间包括车间主体、验收停放平台、验收检测装置和验收控制系统;所述车间主体为四方型的车间,其三面设有墙体,另一面为出入口;所述验收停放平台设置在车间主体内的地面上用于停放自动驾驶设备,其包括有承载自动驾驶设备的水平平台、用于自动调整自动驾驶设备前进停放位置的停放定位装置和用于自动调整自动驾驶设备轮胎定点位置的停放定点装置;所述验收检测装置在车间主体靠近与出入口相对的一侧墙体设置,检测使用时自动驾驶设备的前端朝向验收检测装置,所述验收控制系统用于控制车间主体内设备牵引装置、验收停放平台和验收检测装置工作进行;所述下线验收车间还包括有设备停放平台和设备牵引装置,所述设备牵引装置用于将自动驾驶设备从设备停放平台牵引至验收停放平台或者从验收停放平台牵引至设备停放平台,其分别设置在两相对的墙体上;所述设备停放平台用于自动驾驶设备进入车间主体内前的停放调整,其包括有承载自动驾驶设备的承载平台、带动承载平台转动角度的朝向调整机构和带动承载平台横移位置的横移调整机构;所述验收检测装置包括用于检测多线激光雷达的激光扫描使用功能是否正常的功能检测装置和用于检测多线激光雷达安装位置是否精准的安装检测装置;所述安装检测装置为多根按设定的距离位置垂直立设的扫描标杆,所述扫描标杆对应在验收停放平台前放横向布设;所述功能检测装置包括运动轨道、移动小车、目标物体,所述运动轨道对应在验收停放平台的前方与安装检测装置之间按设定的距离位置横向设置,所述移动小车搭载有带动移动小车在运动轨道上移动的驱动装置,所述目标物体立设安装在移动小车上;将自动驾驶设备移动至设备停放平台的承载平台上;二、控制朝向调整机构动作使承载平台转动,转动至自动驾驶设备的前端朝向出入口的方向;三、控制横移调整机构动作使承载平台横移,移动至自动驾驶设备对应在出入口在中间区段内;四、控制设备牵引装置,先控制其动作与自动驾驶设备搭接上,然后再控制牵引移动动作,将自动驾驶设备从出入口牵引进入停放在验收停放平台上,停放时,自动驾驶设备的前轮和后轮分别对应在停放定位装置上;五、控制停放定位装置动作使得前轮和后轮在前后方向上被定位住不能前进或后退;六、控制停放定点装置动作使得前轮和后轮在停放定位装置上调整至定点的位置固定住;七、启动自动驾驶设备上多线激光雷达的扫描工作,扫描工作包括多线激光雷达对多根扫描标杆进行激光扫描,且生成安装检测激光扫描数据,以及,启动移动小车按设定的移动速度移动,多线激光雷达同时进行激光扫描,且生成功能检测激光扫描数据;八、验收控制系统获取安装检测激光扫描数据和功能检测激光扫描数据进行数据的处理分析判断,所述处理分析判断包括频率判断、聚类判断、水平判断和朝向判断;所述频率判断是这样的,验收控制系统通过功能检测激光扫描数据判断数据中一个时间段内激光扫描目标物体的帧数与通过已知的数据计算相应时间段内激光扫描目标物体的理论帧数是否相符,如果相符则判断激光扫描频率合格,如果不相符则判断激光扫描频率不合格;所述聚类判断是这样的,通过聚类方法计算功能检测激光扫描数据中是否存在目标物体的聚类,如果不存在则判断激光扫描出现错误不合格,如果存在则判断聚类中心点坐标是否符合多线激光雷达的坐标系,如果符合则判断多线激光雷达功能验收合格,如果不符合则判断激光扫描出现错误不合格;所述水平判断和朝向判断是这样的,验收控制系统通过安装检测激光扫描数据采用最小二乘法拟合出多线激光雷达扫描各根扫描标杆在多线激光雷达坐标系的直线方程,方程如下,
Figure 353721dest_path_image001
,其中 X Y Z为扫描点在多线激光雷达坐标系的变量, x1、 y1、 z1为某个点在多线激光雷达坐标系下的坐标, m为沿 X轴方向, n为沿 Y轴方向, p为沿 Z轴方向;计算得出各根扫描标杆的 Z轴方向 p 值,再计算得出多根扫描标杆的 p的均值,以及将各根扫描标杆在多线激光雷达坐标系下的 X Y平面的中心拟合成一条在 X Y平面上的一条直线,根据下面的公式计算得出k的值,y=kx+b,其中x、y为直线上的点在 X Y平面上的坐标,k为直线的斜率,b为直线的截距;判断 p的均值是否接近于1([-0.998, 0.998]区间内)和k的值是否接近于0 ([-0.002, 0.002]区间内),如果 p的均值为接近于1,且k的值为接近于0,则判断多线激光雷达安装的翻滚角、俯仰角、方向角合格(安装为水平且O向角朝向正前方状态),结束检测,如果 p的均值为不接近于1和/或k的值为不接近于0,则判断多线激光雷达的安装存在偏向为安装不合格;在上述频率判断、聚类判断、水平判断和朝向判断均为合格时验收控制系统判断多线激光雷达的下线验收通过,并给出检测结果,结束检测;在上述频率判断、聚类判断、水平判断和/或朝向判断中存在不合格时验收控制系统判断多线激光雷达的下线验收不通过,并给出存在不合格的判断数据的检测结果,结束检测;九、结束检测后,如果自动驾驶设备为下线验收不通过,则先控制停放定位装置和停放定点装置复位,再控制设备牵引装置动作将自动驾驶设备从出入口牵引退出验收停放平台,退出至设备停放平台的承载平台上,并根据自动驾驶设备的朝向需要来选择控制朝向调整机构动作使承载平台转动,再将自动驾驶设备移动离开下线验收车间;如果自动驾驶设备为下线验收通过,先控制停放定位装置、停放定点装置和设备牵引装置复位,然后直接控制自动驾驶设备自动驾驶移动离开下线验收车间;或者,先控制停放定位装置和停放定点装置复位,再控制设备牵引装置动作将自动驾驶设备从出入口牵引退出验收停放平台,退出至设备停放平台的承载平台上,并根据自动驾驶设备的朝向需要来选择控制朝向调整机构动作使承载平台转动,再将自动驾驶设备移动离开下线验收车间。
所述设备牵引装置包括设置在墙体内侧面上的牵引移动轨道、滑动在移动轨道上的牵引移动块、铰接在牵引移动块上的牵引连接杆、设置在牵引移动块上并连接牵引连接杆的推动缸以及设置在牵引移动块和牵引移动轨道上的移动驱动机构;所述牵引连接杆和自动驾驶设备上分别设有牵引配合部件。
所述车间主体出入口外的地面上开设有供安装承载平台的下沉空间,所述横移调整机构包括设置在下沉空间底部的横移轨道、滑动在横移轨道上的横移平台、连接横移平台驱动其横移的横移驱动机构;所述承载平台为圆形承载平台覆盖在下沉空间的上面,所述朝向调整机构包括连接设置在承载平台下表面与横移平台上表面之间的转动支撑连接盘和转动驱动机构。
所述水平平台上横向开设有前轮定位区段槽和后轮定位区段槽,所述停放定位装置分别设置在前轮定位区段槽和后轮定位区段槽内,所述停放定位装置包括排布填满前轮定位区段槽或后轮定位区段槽的多根承载钢梁、各钢梁的底部分别设有的支撑驱动缸、各钢梁的两端分别设有的导向结构以及各钢梁上设置的压力传感器,所述承载钢梁在支撑驱动缸的驱动支撑下可使得其上表面与水平平台上表面齐平或多根承载钢梁上表面构成错落下凹的车轮槽。
所述停放定点装置包括后轮定点调整装置和前轮定点调整装置,所述后轮定点调整装置对应在后轮定位区段槽的两端分别设置,其包括后轮移动推块和后轮推块驱动,所述后轮移动推块设置在水平平台上表面上并垂直跨过后轮定位区段槽、所述后轮推块驱动设置在后轮定位区段槽的端部外并连接后轮移动推块用于带动其移动,所述后轮移动推块上设有后轮推块导向结构。
所述前轮定点调整装置对应在前轮定位段槽的两端分别设置,其包括前轮移动推块和前轮推块驱动,所述前轮移动推块设置在水平平台上表面上并垂直跨过前轮定位区段槽、所述前轮推块驱动设置在前轮定位区段槽的端部外并连接前轮移动推块用于带动其移动,所述前轮移动推块上设有前轮推块导向结构;和/或,所述前轮定点调整装置在前轮定位段槽的中间点两侧对称设置,其包括T型移动推块、T型推块驱动和T型推块导向结构,所述T型移动推块为其截断面呈T型状,其设置在水平平台上表面上并垂直跨过前轮定位区段槽,所述前轮定位区段槽的两侧边上分别开设有滑动槽,所述T型移动推块的T型竖臂两端分别设有连接杆嵌入在对应的滑动槽内,所述T型推块驱动分别设置在滑动槽内并连接连接杆用于带动其移动,所述T型推块导向结构设置在连接杆于滑动槽之间。
有益效果
本发明的方法中下线验收车间其验收停放平台、验收检测装置、设备停放平台和设备牵引装置能够达到较好的自动化工作进行,即自动化性能高,且其结构设置能够自动的对自动驾驶设备进行位置的调整,能够达到一种较佳的定点定位以提高验收检查是的检测精度,车间的整体结构设置紧凑、且占用空间小,能够用于快速且有效的检测多线激光雷达的安装是否精准、功能是否正常。上述方法步骤中对自动驾驶车辆的定点定位操作简便且快速,对多线激光雷达的安装检测的验收结果精准、可靠,该方法能够进行合理有序的步骤进行、达到提高检测精度的使用操作且易于实施,特别适用于量产自动驾驶设备生产线上检测使用,从而实现本发明的上述目的效果。
上述方法中对多线激光雷达扫描移动的目标物体获得功能检测激光扫描数据来计算分析判断得出结果,具体的通过一个时间段内的激光扫描帧数是否符合理论帧数以及采用聚类方法判断聚类是否存在,聚类中心点坐标是否符合多线激光雷达的坐标系来判断多线激光雷达的扫描频率、激光扫描数据是否与现实场景相符从而来确定多线激光雷达是否能正常使用。
上述方法中对多线激光雷达的安装精准判断是通过上述的水平判断和朝向判断,这两者的判断有三个依据,分别是多线激光雷达的方向角是否为0向角对应正前方,俯仰角和翻滚角是否为水平,本发明的验收方法通过多线激光雷达扫描多根扫描标杆获得安装检测激光扫描数据来判断方向角、翻滚角和俯仰角,这正是对应了多线激光雷达的安装精准判断的三个依据,一次扫描多根标杆综合计算分析判断得出结果,具体的是采用最小二乘法拟合出多线激光雷达扫描多根扫描标杆在多线激光雷达坐标系的直线方程,计算得出各根扫描标杆的 p的值,再计算得出多根扫描标杆 p的均值,以及计算得出各根扫描标杆在多线激光雷达坐标系下的 X Y平面的中心拟合成一条在 X Y平面上的一条直线的k的值,从而判断多线激光扫描雷达的方向角是否为0度角对应正前方,翻滚角和俯仰角是否为水平。
附图说明
图1是发明涉及的一种多线激光雷达自动驾驶设备的下线验收车间的结构示意图。
图2和图3是本发明涉及的验收停平台的停放定位装置的不同状态结构示意图。
图4是本发明涉及的验收停平台的停放定点装置的结构示意图。
图5是本发明涉及的验收停平台的设备停放平台的结构示意图。
图6是本发明涉及的验收停平台的设备牵引装置的结构示意图。
本发明的最佳实施方式
本发明一种多线激光雷达自动驾驶设备的下线验收车间的使用方法,公开了下线验收车间,如图1、图2、图3、图4、图5和图6所示,包括车间主体1、验收停放平台2、验收检测装置3、设备停放平台4、设备牵引装置5和验收控制系统(该系统主要包括电路结构的电控系统和工作进行的程序部分的检测系统,图中不可见)。该下线验收车间用于一些具有多线激光雷达的无人自动驾驶的巡检、清洁等作业车辆的多线激光雷达的检测,检测合格自动驾驶设备即可下线使用,检测不合格则回线上调整更换,通常这些自动驾驶设备的车体底部包括前轮和后轮,后轮通常包括左后轮和右后轮,前轮则有两种,一种就是只有一个前在中间部位,另一种则是包括左前轮和右前轮,其多线激光雷达通常安装设置在车头的顶面中间部位。
本发明中所述车间主体1为四方型的独立车间,其三面设有墙体,通过墙体来统一周围环境,避免其他影响激光扫描结果的物质,避免影响检测结果的因素存在,车间主体1的另一面为出入口11。所述验收检测装置3在车间主体1内靠近与出入口11相对的一侧墙体设置,检测使用时自动驾驶设备的前端朝向验收检测装置3,所述验收控制系统用于控制车间主体1内设备牵引装置5、验收停放平台2和验收检测装置3的工作进行,本实施例中该系统部分不详细描述,不影响对本车间结构的清楚理解。
本发明中所述验收检测装置3包括用于检测多线激光雷达的激光扫描使用功能是否正常的功能检测装置31和用于检测多线激光雷达安装位置是否精准的安装检测装置32;所述安装检测装置32为多根按设定的距离位置垂直立设的扫描标杆,扫描标杆与验收停放平台2的间隔距离,以不超出于激光扫描检测的较佳扫描距离为宜,所述扫描标杆对应在验收停放平台2前放横向布设,如图中所示为设置3根间隔垂直立设,中间的一根对应工作时多线激光雷达的0向角正前方,旁边两根以相同的间隔距离设置,各扫描标杆的高度从验收停放平台2的水平面高度算起高度宜高于车辆高度,以符合达到多线激光雷达的扫描范围,各扫描标杆的宽度宜为5厘米左右;所述功能检测装置31包括运动轨道311、移动小车312、目标物体313,所述运动轨道311对应在验收停放平台2的前方与安装检测装置31之间按设定的距离位置横向设置设定的距离位置以不超出于激光扫描检测的较佳扫描距离为宜,运动轨道32的长度宜大于车辆1宽度,本实施例以运动轨道的运动行程为2米为例,所述移动小车312搭载有带动移动小车312在运动轨道311上移动的驱动装置,所述目标物体313立设安装在移动小车312上。所述目标物体313立设安装在移动小车312上,目标物体313可为人形道具或其他仿形道具等,上述扫描标杆相对于目标物体313在后方,这样的结构设置能够避免多线激光雷达扫描目标物体时受扫描标杆的影响。
所述验收停放平台2,如图中所示,设置在车间主体1内的底面上用于停放自动驾驶设备100,其包括有承载自动驾驶设备100的水平平台21、用于自动调整自动驾驶设备100前进停放位置的停放定位装置22和用于自动调整自动驾驶设备100轮胎定点位置的停放定点装置23;如图中所示,本实施例涉及的具体结构是这样的:所述水平平台21上朝向出入口11一侧的横向开设有后轮定位区段槽212和朝向与出入口11相对一侧横向开设有前轮定位区段槽211,这两个槽的开设距离根据常见的自动驾驶设备车辆的前轮与后轮的轴距范围来设定,还有各槽的开设宽度可为相同或不同,从而来使得验收停放平台2能够适应多种不同大小类型的车辆的定位停放使用;所述停放定位装置22分别设置在前轮定位区段槽211和后轮定位区段槽212内,其包括排布填满前轮定位区段槽211或后轮定位区段槽212的多根承载钢梁221、各钢梁221的底部分别设有的支撑驱动缸222、各钢梁221的两端分别设有的导向结构223以及各钢梁221上设置的压力传感器224,如图中所示,所述承载钢梁221在支撑驱动缸222的驱动支撑下和导向结构223的限定下可使得承载钢梁221实现升降,上升至其上表面与水平平台21上表面齐平或下降至多根承载钢梁221上表面构成错落下凹的车轮槽225,通过这样来达到车辆前轮与后轮在水平平台21前后方向上的定位,由于是多根承载钢梁221排布的,因此下凹时车轮槽225最低处的一根承载钢梁221是可以根据车辆轴距来控制的,从而来实现达到适应不同大小类型的车辆车轮定位使用,另外,上述各承载钢梁221上设有压力传感器224,可用于感应前轮和后轮位置,即车辆位置,还有可通过此来自动判断错落下降时最低处的承载钢梁221从而形成车轮槽225,这里车轮槽225错落下降形成的下凹形状为构成贴合车轮圆周面的弧形状,车轮嵌入车轮槽225后就不能够前后移动完成该方向上的定位,通过上述结构设置,验收控制系统快速精准的确定前后轮位置,进行前后方向的车轮定位从而达到自动调整适应的自动化定位效果,在检测结束后通过控制支撑驱动缸222动作驱动所有下降的承载钢梁221上升复位为与水平平台21齐平,便于退出。
所述停放定点装置23是用于车辆左右方向上的定位,完成这个方向上的定位就是最终车辆的定点位置,进行检测的停放位置,包括有后轮定点调整装置231和前轮定点调整装置232,通常后轮为两轮,本实施例中所述后轮定点调整装置231对应在后轮定位区段槽212的两端分别设置,其包括后轮移动推块2311和后轮推块驱动2312,所述后轮移动推块2311如图中所述为长方型块设置在水平平台21上表面上并垂直跨过后轮定位区段槽212,所述后轮推块驱动2312设置在后轮定位区段槽212的端部外并连接后轮移动推块2311用于带动其移动,所述后轮移动推块2311上设有后轮推块导向结构2313使得后轮移动推块2311能够平稳移动,工作时,后轮移动推块2311的侧面与对应的后轮外侧面接触,从而达到推动后轮左右移动位置,当两后轮移动推块2311根据设定推动夹紧了两后轮时,即为定点位置。
由于车辆的前轮有一轮和两轮的两种情况,本实施例中公开了两种前轮定点调整装置232的设置实际根据需要来设置,可两种都设置也可仅设置一种。第一种,如图中所示,所述前轮定点调整装置232对应在前轮定位段槽211的两端分别设置,其包括前轮移动推块2321和前轮推块驱动2322,所述前轮移动推块2321设置在水平平台21上表面上并垂直跨过前轮定位区段槽211、所述前轮推块驱动2322设置在前轮定位区段槽211的端部外并连接前轮移动推块2321用于带动其移动,所述前轮移动推块2321上设有前轮推块导向结构2323,该结构与上述后轮定点调整装置231的结构设置相同,较为适合用于前轮为两轮的车辆前轮的调整使用,动作和使用原理相同,参考上述描述,这里就不再赘述。第二种,所述前轮定点调整装置232在前轮定位段槽的中间点两侧对称设置,如图中所示,其包括T型移动推块2324、T型推块驱动2325和T型推块导向结构2326,所述T型移动推块234为其截断面呈T型状,其设置在水平平台21上表面上并垂直跨过前轮定位区段槽211,所述前轮定位区段槽211的两侧边上分别开设有滑动槽2327,所述T型移动推块2324的T型竖臂两端分别设有连接杆2328嵌入在对应的滑动槽2327内,所述滑动槽2327内设有安装腔,所述T型推块驱动2325分别设置在滑动槽的安装腔内并连接连接杆2328用于带动其移动,所述T型推块导向结构2326设置在连接杆2328于滑动槽2327之间,该结构的前轮定点调整装置232其动作原理与上一种的原理相同,但是这样的结构设置能够实现两个方向的调整前轮,在前轮为一轮的车辆时,前轮是对应在两T型移动推块2324之间的,因此调整时两T型移动推块2324移动至夹紧前轮即完成前路的定位,而当前轮为两轮的车辆时,两T型移动推块2324相背方向移动开分别移动至与对应侧的前轮内侧面贴近,即完成前轮的调整。
上述后轮定点调整装置231与前轮定点调整装置232为同时进行能够达到较好的驱动力驱动来推动车辆移动,结束检测后后轮定点调整装置231与前轮定点调整装置232复位。
本实施例中设备停放平台4、设备牵引装置5主要是用于车辆进出验收停放平台达到自动调整牵引使用,对于无需自动调整牵引使用的车间,这两个部分可对应去除掉。本实施例公开的是设置有这两部分的结构,具体是这样的,如图中所示,所述设备牵引装置5用于将自动驾驶设备(即前面所述的车辆)从设备停放平台4牵引至验收停放平台2或者从验收停放平台2牵引至设备停放平台4,其分别设置在左右两侧这两相对的墙体上,其包括设置在墙体内侧面上的牵引移动轨道51、滑动在移动轨道51上的牵引移动块52、铰接在牵引移动块52上的牵引连接杆53、设置在牵引移动块52上并连接牵引连接杆53的推动缸54以及设置在牵引移动块52和牵引移动轨道51上的移动驱动机构55,这里所述移动驱动机构55可为电机驱动带动机构的结构设置,带动机构可为齿轮齿条的配合方式,这种结构为现有技术,本领域的技术人员能够容易获得,这里不再对此详细描述,所述牵引连接杆53和自动驾驶设备上分别设有牵引配合部件,如图中所示自动驾驶设备上的牵引配合部件为车辆的侧面上固定设有U型块,在需要牵引车辆时,通过移动驱动机构55带动牵引移动块52移动,使得牵引连接杆53上的牵引配合部件与U型块对应(可通过传感器设置达到自动对应的功能),控制推动缸54动作,将牵引连接杆53上的牵引配合部件嵌入U型块的U型槽内,两侧都完成牵引连接后再启动移动驱动机构55带动牵引移动块52移动,从而达到牵引进入和退出的工作。
所述设备停放平台4用于自动驾驶设备进入车间主体内前的停放调整,该调整能够便于牵引工作的精准对位,其包括有承载自动驾驶设备的承载平台41、带动承载平台41转动角度的朝向调整机构42和带动承载平台41横移位置的横移调整机构43,如图中所示,所述车间主体1出入口11外的地面上开设有供安装承载平台41的下沉空间,所述横移调整机构43包括设置在下沉空间底部的横移轨道431(这里的横移方向如图中所示的,与车间主体1内的左右方向一致)、滑动在横移轨道431上的横移平台432、连接横移平台432驱动其横移的横移驱动机构(图中不可见);所述承载平台432为圆形承载平台覆盖在下沉空间的上面,所述朝向调整机构42包括连接设置在承载平台41下表面与横移平台432上表面之间的转动支撑连接盘421和转动驱动机构422,通过转动驱动机构422带动承载平台41转动调整车辆的车头方向,通过横移驱动机构来带动横移平台432在横移轨道431上移动从而调整车头位置能够对应出入口处于居中的位置,这里的调整也可通过传感设备来实现自动感应是否调整到所需位置,这样也就能够利于设备牵引装置5的牵引动作实现。
下面公开两种本发明的一种多线激光雷达自动驾驶设备的下线验收车间的使用方法,第一种是没有设备停放平台4和设备牵引装置5这两种结构的下线验收车间的使用方法,第二种是具有设备停放平台4和设备牵引装置5这两种结构的下线验收车间的使用方法。
第一种,一种多线激光雷达自动驾驶设备的下线验收车间的使用方法,方法步骤如下:一、初始,下线验收车间处于初始状态,将自动驾驶设备100从出入口进入停放在验收停放平台2上,停放时,自动驾驶设备100的前端朝向出入口11相对的一侧的验收检测装置4以及自动驾驶设备100的前轮和后轮分别对应在停放定位装置22上;二、控制停放定位装置22动作使得前轮和后轮在前后方向上被定位住不能前进或后退;三、控制停放定点装置23动作使得前轮和后轮在停放定位装置22上调整至定点的位置固定住;四、启动自动驾驶设备100上多线激光雷达101的扫描工作,扫描工作包括多线激光雷达对多根扫描标杆进行激光扫描,且生成安装检测激光扫描数据,以及,启动移动小车按设定的移动速度移动,多线激光雷达同时进行激光扫描,且生成功能检测激光扫描数据;五、验收控制系统获取安装检测激光扫描数据和功能检测激光扫描数据进行数据的处理分析判断,所述处理分析判断包括频率判断、聚类判断、水平判断和朝向判断;所述频率判断是这样的,验收控制系统通过功能检测激光扫描数据判断数据中一个时间段内激光扫描目标物体的帧数与通过已知的数据计算相应时间段内激光扫描目标物体的理论帧数是否相符,例如本实施例中上述运动轨道为2米,移动小车的移动速度为每秒移动一米,多线激光雷达的频率为每秒10赫兹,那么理论上移动小车在运动轨道上移动完2米,功能检测激光扫描数据应该会有20帧,而这时如果的功能检测激光扫描数据有18-22帧的数据都算为符合,则判断激光扫描频率合格,如果激光扫描数据没有达到18帧,则不相符,判断激光扫描频率不合格;所述聚类判断是这样的,通过聚类方法计算功能检测激光扫描数据中是否存在目标物体的聚类,如果不存在则判断激光扫描出现错误不合格,如果存在则判断聚类中心点坐标是否符合多线激光雷达的坐标系,如果符合则判断多线激光雷达功能验收合格,如果不符合则判断激光扫描出现错误不合格;所述水平判断和朝向判断是这样的,验收控制系统通过安装检测激光扫描数据采用最小二乘法拟合出多线激光雷达扫描各根扫描标杆在多线激光雷达坐标系的直线方程,方程如下,
Figure 133458dest_path_image001
,其中 X Y Z为扫描点在多线激光雷达坐标系的变量, x1、 y1、 z1为某个点在多线激光雷达坐标系下的坐标, m为沿 X轴方向, n为沿 Y轴方向, p为沿 Z轴方向,计算得出各根扫描标杆的 Z轴方向 p 值,再计算得出多根扫描标杆的 p的均值,以及将各根扫描标杆在多线激光雷达坐标系下的 X Y平面的中心拟合成一条在 X Y平面上的一条直线,根据下面的公式计算得出k的值,y=kx+b,其中x、y为直线上的点在 X Y平面上的坐标,k为直线的斜率,b为直线的截距,判断 p的均值是否接近于1([-0.998, 0.998]区间内)和k的值是否接近于0 ([-0.002, 0.002]区间内),如果 p的均值为接近于1,且k的值为接近于0,则判断多线激光雷达安装的翻滚角、俯仰角、方向角合格(安装为水平且O向角朝向正前方状态),结束检测,如果 p的均值为不接近于1和/或k的值为不接近于0,则判断多线激光雷达的安装存在偏向为安装不合格;在上述频率判断、聚类判断、水平判断和朝向判断均为合格时验收控制系统判断多线激光雷达的下线验收通过,并给出检测结果,结束检测;在上述频率判断、聚类判断、水平判断和/或朝向判断中存在不合格时验收控制系统判断多线激光雷达的下线验收不通过,并给出存在不合格的判断数据的检测结果,结束检测;六、结束检测后,控制停放定位装置22和停放定点装置23复位,将自动驾驶设备100从验收停放平台移出。对于下线验收不通过的,技术人员根据验收控制系统给出的不合格的判断数据进行多线激光雷达的对应处理,如多线激光雷达的更换、参数调整、安装调整等的处理,处理完成后重回上述步骤重新进行激光扫描检测。
第二种,一种多线激光雷达自动驾驶设备的下线验收车间的使用方法,方法步骤如下:一、初始,下线验收车间处于初始状态,将自动驾驶设备100移动至设备停放平台4的承载平台41上;二、控制朝向调整机构42动作使承载平台41转动,转动至自动驾驶设备100的前端朝向出入口11的方向,这里的朝向是竖直平行对应的方向,而不是至指向性的方向;三、控制横移调整机构43动作使承载平台41横移,移动至自动驾驶设备100对应在出入口11在中间区段内;四、控制设备牵引装置5,先控制其动作与自动驾驶设备100搭接上,具体动作详见上述结构部分的描述,然后再控制牵引移动动作,将自动驾驶设备100从出入口11牵引进入停放在验收停放平台2上,停放时,自动驾驶设备100的前轮和后轮分别对应在停放定位装置22上;五、控制停放定位装置22动作使得前轮和后轮在前后方向上被定位住不能前进或后退;六、控制停放定点装置23动作使得前轮和后轮在停放定位装置22上调整至定点的位置固定住;七、启动自动驾驶设备100上多线激光雷达101的扫描工作,扫描工作包括多线激光雷达对多根扫描标杆进行激光扫描,且生成安装检测激光扫描数据,以及,启动移动小车按设定的移动速度移动,多线激光雷达同时进行激光扫描,且生成功能检测激光扫描数据;八、验收控制系统获取安装检测激光扫描数据和功能检测激光扫描数据进行数据的处理分析判断,所述处理分析判断包括频率判断、聚类判断、水平判断和朝向判断;所述频率判断是这样的,验收控制系统通过功能检测激光扫描数据判断数据中一个时间段内激光扫描目标物体的帧数与通过已知的数据计算相应时间段内激光扫描目标物体的理论帧数是否相符,例如本实施例中上述运动轨道为2米,移动小车的移动速度为每秒移动一米,多线激光雷达的频率为每秒10赫兹,那么理论上移动小车在运动轨道上移动完2米,功能检测激光扫描数据应该会有20帧,而这时如果的功能检测激光扫描数据有18-22帧的数据都算为符合,则判断激光扫描频率合格,如果激光扫描数据没有达到18帧,则不相符,判断激光扫描频率不合格;所述聚类判断是这样的,通过聚类方法计算功能检测激光扫描数据中是否存在目标物体的聚类,如果不存在则判断激光扫描出现错误不合格,如果存在则判断聚类中心点坐标是否符合多线激光雷达的坐标系,如果符合则判断多线激光雷达功能验收合格,如果不符合则判断激光扫描出现错误不合格;所述水平判断和朝向判断是这样的,验收控制系统通过安装检测激光扫描数据采用最小二乘法拟合出多线激光雷达扫描各根扫描标杆在多线激光雷达坐标系的直线方程,方程如下,
Figure 715618dest_path_image001
,其中 X Y Z为扫描点在多线激光雷达坐标系的变量, x1、 y1、 z1为某个点在多线激光雷达坐标系下的坐标, m为沿 X轴方向, n为沿 Y轴方向, p为沿 Z轴方向,计算得出各根扫描标杆的 Z轴方向 p 值,再计算得出多根扫描标杆的 p的均值,以及将各根扫描标杆在多线激光雷达坐标系下的 X Y平面的中心拟合成一条在 X Y平面上的一条直线,根据下面的公式计算得出k的值,y=kx+b,其中x、y为直线上的点在 X Y平面上的坐标,k为直线的斜率,b为直线的截距,判断 p的均值是否接近于1([-0.998, 0.998]区间内)和k的值是否接近于0 ([-0.002, 0.002]区间内),如果 p的均值为接近于1,且k的值为接近于0,则判断多线激光雷达安装的翻滚角、俯仰角、方向角合格(安装为水平且O向角朝向正前方状态),结束检测,如果 p的均值为不接近于1和/或k的值为不接近于0,则判断多线激光雷达的安装存在偏向为安装不合格;在上述频率判断、聚类判断、水平判断和朝向判断均为合格时验收控制系统判断多线激光雷达的下线验收通过,并给出检测结果,结束检测;在上述频率判断、聚类判断、水平判断和/或朝向判断中存在不合格时验收控制系统判断多线激光雷达的下线验收不通过,并给出存在不合格的判断数据的检测结果,结束检测;九、结束检测后,如果自动驾驶设备100为下线验收不通过,则先控制停放定位装置22和停放定点装置23复位,再控制设备牵引装置5动作将自动驾驶设备100从出入口11牵引退出验收停放平台2,退出至设备停放平台4的承载平台41上,并根据自动驾驶设备100的朝向需要来选择控制朝向调整机构42动作使承载平台41转动,再将自动驾驶设备100移动离开下线验收车间。
如果自动驾驶设备100为下线验收通过,则该设备可实现正常的自动驾驶,因此可先控制停放定位装置22、停放定点装置23和设备牵引装置5复位,然后直接控制自动驾驶设备100自动驾驶移动离开下线验收车间;或者也可与上述不通过的方式进行操作,先控制停放定位装置22和停放定点装置23复位,再控制设备牵引装置5动作将自动驾驶设备100从出入口11牵引退出验收停放平台2,退出至设备停放平台4的承载平台41上,并根据自动驾驶设备100的朝向需要来选择控制朝向调整机构42动作使承载平台41转动,再将自动驾驶设备100移动离开下线验收车间。同样的,对于下线验收不通过的,技术人员根据验收控制系统给出的不合格的判断数据进行多线激光雷达的对应处理,如多线激光雷达的更换、参数调整、安装调整等的处理,处理完成后重回上述步骤重新进行激光扫描检测。

Claims (7)

  1. 一种多线激光雷达自动驾驶设备的下线验收车间的使用方法,其特征在于,方法步骤如下:
    一、初始,下线验收车间处于初始状态;所述下线验收车间包括车间主体、验收停放平台、验收检测装置和验收控制系统;所述车间主体为四方型的车间,其三面设有墙体,另一面为出入口;所述验收停放平台设置在车间主体内的地面上用于停放自动驾驶设备,其包括有承载自动驾驶设备的水平平台、用于自动调整自动驾驶设备前进停放位置的停放定位装置和用于自动调整自动驾驶设备轮胎定点位置的停放定点装置;所述验收检测装置在车间主体靠近与出入口相对的一侧墙体设置,检测使用时自动驾驶设备的前端朝向验收检测装置,所述验收控制系统用于控制车间主体内设备牵引装置、验收停放平台和验收检测装置工作进行;
    所述验收检测装置包括用于检测多线激光雷达的激光扫描使用功能是否正常的功能检测装置和用于检测多线激光雷达安装位置是否精准的安装检测装置;所述安装检测装置为多根按设定的距离位置垂直立设的扫描标杆,所述扫描标杆对应在验收停放平台前放横向布设;所述功能检测装置包括运动轨道、移动小车、目标物体,所述运动轨道对应在验收停放平台的前方与安装检测装置之间按设定的距离位置横向设置,所述移动小车搭载有带动移动小车在运动轨道上移动的驱动装置,所述目标物体立设安装在移动小车上;
    将自动驾驶设备从出入口进入停放在验收停放平台上,停放时,自动驾驶设备的前端朝向出入口相对的一侧的验收检测装置以及自动驾驶设备的前轮和后轮分别对应在停放定位装置上;
    二、控制停放定位装置动作使得前轮和后轮在前后方向上被定位住不能前进或后退;
    三、控制停放定点装置动作使得前轮和后轮在停放定位装置上调整至定点的位置固定住;
    四、启动自动驾驶设备上多线激光雷达的扫描工作,扫描工作包括多线激光雷达对多根扫描标杆进行激光扫描,且生成安装检测激光扫描数据,以及,启动移动小车按设定的移动速度移动,多线激光雷达同时进行激光扫描,且生成功能检测激光扫描数据;
    五、验收控制系统获取安装检测激光扫描数据和功能检测激光扫描数据进行数据的处理分析判断,所述处理分析判断包括频率判断、聚类判断、水平判断和朝向判断;
    所述频率判断是这样的,验收控制系统通过功能检测激光扫描数据判断数据中一个时间段内激光扫描目标物体的帧数与通过已知的数据计算相应时间段内激光扫描目标物体的理论帧数是否相符,如果相符则判断激光扫描频率合格,如果不相符则判断激光扫描频率不合格,
    所述聚类判断是这样的,通过聚类方法计算功能检测激光扫描数据中是否存在目标物体的聚类,如果不存在则判断激光扫描出现错误不合格,如果存在则判断聚类中心点坐标是否符合多线激光雷达的坐标系,如果符合则判断多线激光雷达功能验收合格,如果不符合则判断激光扫描出现错误不合格;
    所述水平判断和朝向判断是这样的,验收控制系统通过安装检测激光扫描数据采用最小二乘法拟合出多线激光雷达扫描各根扫描标杆在多线激光雷达坐标系的直线方程,方程如下,
    Figure 386937dest_path_image001
    其中 X 、Y 、Z为扫描点在多线激光雷达坐标系的变量, x1、 y1、 z1为某个点在多线激光雷达坐标系下的坐标, m为沿 X轴方向, n为沿 Y轴方向, p为沿 Z轴方向;
    计算得出各根扫描标杆的 Z轴方向 p 值,再计算得出多根扫描标杆的 p的均值,以及将各根扫描标杆在多线激光雷达坐标系下的 X 、Y平面的中心拟合成一条在 X 、Y平面上的一条直线,根据下面的公式计算得出k的值,
    y=kx+b,
    其中x、y为直线上的点在 X 、Y平面上的坐标,k为直线的斜率,b为直线的截距;
    判断 p的均值是否接近于1([-0.998, 0.998]区间内)和k的值是否接近于0 ([-0.002, 0.002]区间内),如果 p的均值为接近于1,且k的值为接近于0,则判断多线激光雷达安装的翻滚角、俯仰角、方向角合格(安装为水平且O向角朝向正前方状态),结束检测,如果 p的均值为不接近于1和/或k的值为不接近于0,则判断多线激光雷达的安装存在偏向为安装不合格;
    在上述频率判断、聚类判断、水平判断和朝向判断均为合格时验收控制系统判断多线激光雷达的下线验收通过,并给出检测结果,结束检测;
    在上述频率判断、聚类判断、水平判断和/或朝向判断中存在不合格时验收控制系统判断多线激光雷达的下线验收不通过,并给出存在不合格的判断数据的检测结果,结束检测;
    六、结束检测后,控制停放定位装置和停放定点装置复位,将自动驾驶设备从验收停放平台移出。
  2. 一种多线激光雷达自动驾驶设备的下线验收车间的使用方法,其特征在于,方法步骤如下:
    一、初始,下线验收车间处于初始状态,所述下线验收车间包括车间主体、验收停放平台、验收检测装置和验收控制系统;所述车间主体为四方型的车间,其三面设有墙体,另一面为出入口;所述验收停放平台设置在车间主体内的地面上用于停放自动驾驶设备,其包括有承载自动驾驶设备的水平平台、用于自动调整自动驾驶设备前进停放位置的停放定位装置和用于自动调整自动驾驶设备轮胎定点位置的停放定点装置;所述验收检测装置在车间主体靠近与出入口相对的一侧墙体设置,检测使用时自动驾驶设备的前端朝向验收检测装置,所述验收控制系统用于控制车间主体内设备牵引装置、验收停放平台和验收检测装置工作进行;所述下线验收车间还包括有设备停放平台和设备牵引装置,所述设备牵引装置用于将自动驾驶设备从设备停放平台牵引至验收停放平台或者从验收停放平台牵引至设备停放平台,其分别设置在两相对的墙体上;所述设备停放平台用于自动驾驶设备进入车间主体内前的停放调整,其包括有承载自动驾驶设备的承载平台、带动承载平台转动角度的朝向调整机构和带动承载平台横移位置的横移调整机构;
    所述验收检测装置包括用于检测多线激光雷达的激光扫描使用功能是否正常的功能检测装置和用于检测多线激光雷达安装位置是否精准的安装检测装置;所述安装检测装置为多根按设定的距离位置垂直立设的扫描标杆,所述扫描标杆对应在验收停放平台前放横向布设;所述功能检测装置包括运动轨道、移动小车、目标物体,所述运动轨道对应在验收停放平台的前方与安装检测装置之间按设定的距离位置横向设置,所述移动小车搭载有带动移动小车在运动轨道上移动的驱动装置,所述目标物体立设安装在移动小车上;
    将自动驾驶设备移动至设备停放平台的承载平台上;
    二、控制朝向调整机构动作使承载平台转动,转动至自动驾驶设备的前端朝向出入口的方向;
    三、控制横移调整机构动作使承载平台横移,移动至自动驾驶设备对应在出入口在中间区段内;
    四、控制设备牵引装置,先控制其动作与自动驾驶设备搭接上,然后再控制牵引移动动作,将自动驾驶设备从出入口牵引进入停放在验收停放平台上,停放时,自动驾驶设备的前轮和后轮分别对应在停放定位装置上;
    五、控制停放定位装置动作使得前轮和后轮在前后方向上被定位住不能前进或后退;
    六、控制停放定点装置动作使得前轮和后轮在停放定位装置上调整至定点的位置固定住;
    七、启动自动驾驶设备上多线激光雷达的扫描工作,扫描工作包括多线激光雷达对多根扫描标杆进行激光扫描,且生成安装检测激光扫描数据,以及,启动移动小车按设定的移动速度移动,多线激光雷达同时进行激光扫描,且生成功能检测激光扫描数据;
    八、验收控制系统获取安装检测激光扫描数据和功能检测激光扫描数据进行数据的处理分析判断,所述处理分析判断包括频率判断、聚类判断、水平判断和朝向判断;
    所述频率判断是这样的,验收控制系统通过功能检测激光扫描数据判断数据中一个时间段内激光扫描目标物体的帧数与通过已知的数据计算相应时间段内激光扫描目标物体的理论帧数是否相符,如果相符则判断激光扫描频率合格,如果不相符则判断激光扫描频率不合格,
    所述聚类判断是这样的,通过聚类方法计算功能检测激光扫描数据中是否存在目标物体的聚类,如果不存在则判断激光扫描出现错误不合格,如果存在则判断聚类中心点坐标是否符合多线激光雷达的坐标系,如果符合则判断多线激光雷达功能验收合格,如果不符合则判断激光扫描出现错误不合格;
    所述水平判断和朝向判断是这样的,验收控制系统通过安装检测激光扫描数据采用最小二乘法拟合出多线激光雷达扫描各根扫描标杆在多线激光雷达坐标系的直线方程,方程如下,
    Figure 782147dest_path_image001
    其中 X 、Y 、Z为扫描点在多线激光雷达坐标系的变量, x1、 y1、 z1为某个点在多线激光雷达坐标系下的坐标, m为沿 X轴方向, n为沿 Y轴方向, p为沿 Z轴方向;计算得出各根扫描标杆的 Z轴方向 p 值,再计算得出多根扫描标杆的 p的均值,以及将各根扫描标杆在多线激光雷达坐标系下的 X 、Y平面的中心拟合成一条在 X 、Y平面上的一条直线,根据下面的公式计算得出k的值,
    y=kx+b
    其中x、y为直线上的点在 X 、Y平面上的坐标,k为直线的斜率,b为直线的截距;判断 p的均值是否接近于1([-0.998, 0.998]区间内)和k的值是否接近于0 ([-0.002, 0.002]区间内),如果 p的均值为接近于1,且k的值为接近于0,则判断多线激光雷达安装的翻滚角、俯仰角、方向角合格(安装为水平且O向角朝向正前方状态),结束检测,如果 p的均值为不接近于1和/或k的值为不接近于0,则判断多线激光雷达的安装存在偏向为安装不合格;
    在上述频率判断、聚类判断、水平判断和朝向判断均为合格时验收控制系统判断多线激光雷达的下线验收通过,并给出检测结果,结束检测;
    在上述频率判断、聚类判断、水平判断和/或朝向判断中存在不合格时验收控制系统判断多线激光雷达的下线验收不通过,并给出存在不合格的判断数据的检测结果,结束检测;
    九、结束检测后,如果自动驾驶设备为下线验收不通过,则先控制停放定位装置和停放定点装置复位,再控制设备牵引装置动作将自动驾驶设备从出入口牵引退出验收停放平台,退出至设备停放平台的承载平台上,并根据自动驾驶设备的朝向需要来选择控制朝向调整机构动作使承载平台转动,再将自动驾驶设备移动离开下线验收车间;
    如果自动驾驶设备为下线验收通过,先控制停放定位装置、停放定点装置和设备牵引装置复位,然后直接控制自动驾驶设备自动驾驶移动离开下线验收车间;或者,先控制停放定位装置和停放定点装置复位,再控制设备牵引装置动作将自动驾驶设备从出入口牵引退出验收停放平台,退出至设备停放平台的承载平台上,并根据自动驾驶设备的朝向需要来选择控制朝向调整机构动作使承载平台转动,再将自动驾驶设备移动离开下线验收车间。
  3. 如权利要求2所述的一种多线激光雷达自动驾驶设备的下线验收车间的使用方法,其特征在于,所述设备牵引装置包括设置在墙体内侧面上的牵引移动轨道、滑动在移动轨道上的牵引移动块、铰接在牵引移动块上的牵引连接杆、设置在牵引移动块上并连接牵引连接杆的推动缸以及设置在牵引移动块和牵引移动轨道上的移动驱动机构;所述牵引连接杆和自动驾驶设备上分别设有牵引配合部件。
  4. 如权利要求2所述的一种多线激光雷达自动驾驶设备的下线验收车间的使用方法,其特征在于,所述车间主体出入口外的地面上开设有供安装承载平台的下沉空间,所述横移调整机构包括设置在下沉空间底部的横移轨道、滑动在横移轨道上的横移平台、连接横移平台驱动其横移的横移驱动机构;所述承载平台为圆形承载平台覆盖在下沉空间的上面,所述朝向调整机构包括连接设置在承载平台下表面与横移平台上表面之间的转动支撑连接盘和转动驱动机构。
  5. 如权利要求1或2所述的一种多线激光雷达自动驾驶设备的下线验收车间的使用方法,其特征在于,所述水平平台上横向开设有前轮定位区段槽和后轮定位区段槽,所述停放定位装置分别设置在前轮定位区段槽和后轮定位区段槽内,所述停放定位装置包括排布填满前轮定位区段槽或后轮定位区段槽的多根承载钢梁、各钢梁的底部分别设有的支撑驱动缸、各钢梁的两端分别设有的导向结构以及各钢梁上设置的压力传感器,所述承载钢梁在支撑驱动缸的驱动支撑下可使得其上表面与水平平台上表面齐平或多根承载钢梁上表面构成错落下凹的车轮槽。
  6. 如权利要求5所述的一种多线激光雷达自动驾驶设备的下线验收车间的使用方法,其特征在于,所述停放定点装置包括后轮定点调整装置和前轮定点调整装置,所述后轮定点调整装置对应在后轮定位区段槽的两端分别设置,其包括后轮移动推块和后轮推块驱动,所述后轮移动推块设置在水平平台上表面上并垂直跨过后轮定位区段槽、所述后轮推块驱动设置在后轮定位区段槽的端部外并连接后轮移动推块用于带动其移动,所述后轮移动推块上设有后轮推块导向结构。
  7. 如权利要求5所述的一种多线激光雷达自动驾驶设备的下线验收车间的使用方法,其特征在于,所述前轮定点调整装置对应在前轮定位段槽的两端分别设置,其包括前轮移动推块和前轮推块驱动,所述前轮移动推块设置在水平平台上表面上并垂直跨过前轮定位区段槽、所述前轮推块驱动设置在前轮定位区段槽的端部外并连接前轮移动推块用于带动其移动,所述前轮移动推块上设有前轮推块导向结构;
    和/或,所述前轮定点调整装置在前轮定位段槽的中间点两侧对称设置,其包括T型移动推块、T型推块驱动和T型推块导向结构,所述T型移动推块为其截断面呈T型状,其设置在水平平台上表面上并垂直跨过前轮定位区段槽,所述前轮定位区段槽的两侧边上分别开设有滑动槽,所述T型移动推块的T型竖臂两端分别设有连接杆嵌入在对应的滑动槽内,所述T型推块驱动分别设置在滑动槽内并连接连接杆用于带动其移动,所述T型推块导向结构设置在连接杆于滑动槽之间。
PCT/CN2021/106041 2020-12-07 2021-07-13 多线激光雷达自动驾驶设备的下线验收车间的使用方法 WO2022121310A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/265,444 US20240027594A1 (en) 2020-12-07 2021-07-13 Method for using offline acceptance workshop of multi-line laser radar automatic driving device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011437055.0 2020-12-07
CN202011437055.0A CN112684434B (zh) 2020-12-07 2020-12-07 多线激光雷达自动驾驶设备的下线验收车间的使用方法

Publications (1)

Publication Number Publication Date
WO2022121310A1 true WO2022121310A1 (zh) 2022-06-16

Family

ID=75447545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/106041 WO2022121310A1 (zh) 2020-12-07 2021-07-13 多线激光雷达自动驾驶设备的下线验收车间的使用方法

Country Status (3)

Country Link
US (1) US20240027594A1 (zh)
CN (1) CN112684434B (zh)
WO (1) WO2022121310A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112684434B (zh) * 2020-12-07 2021-09-21 福建(泉州)哈工大工程技术研究院 多线激光雷达自动驾驶设备的下线验收车间的使用方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6573982B1 (en) * 1991-09-18 2003-06-03 Raytheon Company Method and arrangement for compensating for frequency jitter in a laser radar system by utilizing double-sideband chirped modulator/demodulator system
CN104820217A (zh) * 2015-04-14 2015-08-05 同济大学 一种多法向平面的多元线阵探测成像激光雷达的检校方法
CN108196260A (zh) * 2017-12-13 2018-06-22 北京汽车集团有限公司 无人驾驶车辆多传感器融合系统的测试方法和装置
CN111796257A (zh) * 2020-07-28 2020-10-20 南京理工大学 一种适用于智能产线的激光雷达全自动检测系统
CN112684434A (zh) * 2020-12-07 2021-04-20 福建(泉州)哈工大工程技术研究院 多线激光雷达自动驾驶设备的下线验收车间的使用方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014068302A1 (en) * 2012-11-05 2014-05-08 The Chancellor Masters And Scholars Of The University Of Oxford Extrinsic calibration of imaging sensing devices and 2d lidars mounted on transportable apparatus
CN103176180B (zh) * 2013-02-27 2017-05-03 四川省科学城久利科技实业有限责任公司 高精度机载激光雷达系统的定位精度检测装置及检测方法
CN205787112U (zh) * 2016-05-24 2016-12-07 奇瑞汽车股份有限公司 一种车载激光雷达的检测装置
CN107870324B (zh) * 2017-05-09 2021-06-25 吉林大学 一种多线激光雷达的标定装置和方法
CN107991662B (zh) * 2017-12-06 2023-12-15 南京添马机械科技股份有限公司 一种3d激光和2d成像同步扫描装置及其扫描方法
US11782141B2 (en) * 2018-02-05 2023-10-10 Centre Interdisciplinaire De Developpement En Cartographie Des Oceans (Cidco) Method and apparatus for automatic calibration of mobile LiDAR systems
CN109483508A (zh) * 2018-12-20 2019-03-19 福建(泉州)哈工大工程技术研究院 一种电力巡检机器人
CN109933075A (zh) * 2019-04-12 2019-06-25 成都宇俊盛科技有限公司 一种用于全自动无人轨道车辆的单线激光雷达测障方法
CN111175725B (zh) * 2019-12-23 2024-06-11 吉林大学 一种车载多线激光雷达自动标定系统及标定方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6573982B1 (en) * 1991-09-18 2003-06-03 Raytheon Company Method and arrangement for compensating for frequency jitter in a laser radar system by utilizing double-sideband chirped modulator/demodulator system
CN104820217A (zh) * 2015-04-14 2015-08-05 同济大学 一种多法向平面的多元线阵探测成像激光雷达的检校方法
CN108196260A (zh) * 2017-12-13 2018-06-22 北京汽车集团有限公司 无人驾驶车辆多传感器融合系统的测试方法和装置
CN111796257A (zh) * 2020-07-28 2020-10-20 南京理工大学 一种适用于智能产线的激光雷达全自动检测系统
CN112684434A (zh) * 2020-12-07 2021-04-20 福建(泉州)哈工大工程技术研究院 多线激光雷达自动驾驶设备的下线验收车间的使用方法

Also Published As

Publication number Publication date
US20240027594A1 (en) 2024-01-25
CN112684434B (zh) 2021-09-21
CN112684434A (zh) 2021-04-20

Similar Documents

Publication Publication Date Title
KR102613316B1 (ko) Crtsⅲ형 궤도판 고속 지능화 정밀 조정 시스템 및 정밀 조정 방법
CN108981580B (zh) 一种起重机轨道在线检测装置及方法
CN111268530B (zh) 电梯井道测量、定位及电梯安装方法和设备
CN212505664U (zh) 一种用于crtsⅲ型轨道板施工的精调机器人
WO2022121310A1 (zh) 多线激光雷达自动驾驶设备的下线验收车间的使用方法
WO2023178713A1 (zh) 预制构件拼装面智能扫描和误差自动标识系统及方法
CN111897253B (zh) 一种基于5g技术的远程可监控多轴协同智能控制器
CN111441198A (zh) 一种用于crtsⅲ型轨道板施工的精调机器人
CN113910444B (zh) 一种匹配台车自动调节的节段梁短线法预制方法
CN112278011A (zh) 用于起重机轨道综合检测的机器人装置及综合检测方法
CN110895133A (zh) 汽车玻璃球面检测装置及其检测方法
CN207113813U (zh) 一种crtsiii型轨道板检测装置
CN214041726U (zh) 多线激光雷达自动驾驶设备的下线验收车间
WO2022121311A1 (zh) 一种具有多线激光雷达智能设备的下线验收方法
CN112558045B (zh) 自动驾驶设备多线激光雷达功能下线验收方法
CN112444799B (zh) 多线激光雷达自动驾驶设备的下线验收车间
CN116300963A (zh) 人机协作地板铺贴机器人的运动控制与检测方法及机器人
CN107246851A (zh) 一种crtsiii型轨道板外形测量装置及其控制方法
CN108645384A (zh) 一种放线仪及放线方法
CN214402938U (zh) 自动驾驶设备下线验收车间的自动出入库装置
CN111055647B (zh) 一种可在水泥回转窑变径弧面行走小车的控制系统
CN213749089U (zh) 自动驾驶设备下线验收车间的验收停放平台
CN214151045U (zh) 自动驾驶设备多线激光雷达的下线验收简易型车间
CN216577832U (zh) 一种空中轨道箱梁检测机器人
CN112578368B (zh) 自动驾驶设备多线激光雷达安装下线验收方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21902021

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18265444

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21902021

Country of ref document: EP

Kind code of ref document: A1