WO2022120987A1 - 一种结露系统及其露点仪 - Google Patents

一种结露系统及其露点仪 Download PDF

Info

Publication number
WO2022120987A1
WO2022120987A1 PCT/CN2020/139394 CN2020139394W WO2022120987A1 WO 2022120987 A1 WO2022120987 A1 WO 2022120987A1 CN 2020139394 W CN2020139394 W CN 2020139394W WO 2022120987 A1 WO2022120987 A1 WO 2022120987A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
cavity
layer
cooling
dew
Prior art date
Application number
PCT/CN2020/139394
Other languages
English (en)
French (fr)
Inventor
张宾
何伟生
陈新准
马鹏飞
邱国财
刘新雅
郑晓银
刘光亮
林惠庭
李修龙
Original Assignee
广州奥松电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州奥松电子有限公司 filed Critical 广州奥松电子有限公司
Publication of WO2022120987A1 publication Critical patent/WO2022120987A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/56Investigating or analyzing materials by the use of thermal means by investigating moisture content
    • G01N25/66Investigating or analyzing materials by the use of thermal means by investigating moisture content by investigating dew-point
    • G01N25/68Investigating or analyzing materials by the use of thermal means by investigating moisture content by investigating dew-point by varying the temperature of a condensing surface

Definitions

  • the present invention relates to the technical field of dew condensation measurement, and more particularly, to a dew condensation system and a dew point meter thereof.
  • the water vapor in the gas has an important impact on the operation.
  • the dew point temperature of water vapor in the gas is often detected by a dew point meter, thereby indirectly measuring the humidity in the gas.
  • Dew point meters can be divided into various types according to the cooling method and detection control method used.
  • the dew point meter can use a thermoelectric cooler (Peltier element) to cool the dew layer sensor, so that the water vapor in the gas condenses on the dew layer sensor, resulting in dew or frost, and at the same time, the signal collected by the receiver is passed through the automatic control circuit.
  • the dew or frost on the layer sensor is in equilibrium with the water vapor in the gas, and then use the thermometer to accurately measure the temperature of the dew layer sensor, that is, the temperature of the dew or frost layer, so as to obtain the dew point temperature of the gas, and thus indirectly measure the gas humidity in.
  • the exposed layer sensor includes components such as mirror surface and light-emitting tube, receiving tube or surface acoustic wave device.
  • the dew point temperature of the gas is to cool the water vapor in the gas under the condition of equal pressure until the condensed phase appears, and then by controlling the temperature of the dew layer of the dew layer sensor, the water vapor in the gas and the flat surface of water or ice are in thermodynamic equilibrium. At this time, the temperature of the dew layer is the dew point temperature of the gas.
  • the dew point meter is composed of a heat dissipation system, a thermoelectric refrigeration system, a precision temperature measuring resistance, a mirror surface, a photoelectric detection and other components.
  • the dew point meter has corresponding requirements for its size, adaptability to dust pollution environment, measurement temperature difference limit, sealing resistance to gas pressure, corrosion resistance, etc.
  • Conventional dew point meters use Kovar alloys as heat sinks and are sealed against gas pressure by glass sintering.
  • Kovar alloys have relatively poor thermal conductivity and poor heat dissipation performance, resulting in small measurement temperature differences, limited use cases and high costs.
  • the conventional dew point meter uses copper gold plating as the mirror surface, which has poor anti-pollution ability and is easy to be scratched.
  • the surface of the mirror surface is dirty and scratched, which will reduce the detection accuracy and is not conducive to long-term use.
  • the sealing performance of the conventional dew point meter is not good.
  • the humidity of the gas is detected, the water vapor in the working environment condenses on the dew layer of the dew point sensor, and some water vapor seeps into the interior of the dew point meter, which will affect the dew point meter. Internal circuits and other components are damaged, reducing the service life of the dew point meter.
  • the water vapor in the gas has an important impact on the operation.
  • the dew point temperature of water vapor in the gas is often detected by a dew point meter, thereby indirectly measuring the humidity in the gas.
  • Dew point meters can be divided into various types according to the cooling method and detection control method used.
  • the dew point meter can use a thermoelectric cooler (Peltier element) to cool the dew layer sensor, so that the water vapor in the gas condenses on the dew layer sensor, resulting in dew or frost, and at the same time, the signal collected by the receiver is passed through the automatic control circuit.
  • the dew or frost on the layer sensor is in equilibrium with the water vapor in the gas, and then use the thermometer to accurately measure the temperature of the dew layer sensor, that is, the temperature of the dew or frost layer, so as to obtain the dew point temperature of the gas, and thus indirectly measure the gas humidity in.
  • the exposed layer sensor includes components such as mirror surface and light-emitting tube, receiving tube or surface acoustic wave device.
  • the dew point temperature of the gas is to cool the water vapor in the gas under the condition of equal pressure until the condensed phase appears, and then by controlling the temperature of the dew layer of the dew layer sensor, the water vapor in the gas and the flat surface of water or ice are in thermodynamic equilibrium. At this time, the temperature of the dew layer is the dew point temperature of the gas.
  • the dew point meter is composed of a heat dissipation system, a thermoelectric refrigeration system, a precision temperature measuring resistance, a mirror surface, a photoelectric detection and other components.
  • the dew point meter has corresponding requirements for its size, adaptability to dust pollution environment, measurement temperature difference limit, sealing resistance to gas pressure, corrosion resistance, etc.
  • Conventional dew point meters use Kovar alloys as heat sinks and are sealed against gas pressure by glass sintering.
  • Kovar alloys have relatively poor thermal conductivity and poor heat dissipation performance, resulting in small measurement temperature differences, limited use cases and high costs.
  • the conventional dew point meter uses copper gold plating as the mirror surface, which has poor anti-pollution ability and is easy to be scratched.
  • the surface of the mirror surface is dirty and scratched, which will reduce the detection accuracy and is not conducive to long-term use.
  • the sealing performance of the conventional dew point meter is not good.
  • the humidity of the gas is detected, the water vapor in the working environment condenses on the dew layer of the dew point sensor, and some water vapor seeps into the interior of the dew point meter, which will affect the dew point meter. Internal circuits and other components are damaged, reducing the service life of the dew point meter.
  • the present invention aims to overcome the above-mentioned defects of the mirror surface of the prior art that the anti-pollution ability is poor and is easily scratched, thereby reducing the detection accuracy, and provides a dew condensation system for improving the anti-pollution ability of the mirror surface, so that the mirror surface can be improved. It is not easy to be scratched, so that the dew point meter applying the condensation system maintains the detection accuracy, which is beneficial to the long-term use of the condensation system and the dew point meter applying the condensation system.
  • the technical scheme adopted by the present invention is: a dew condensation system, including a thermometer; a cooling sheet, the upper surface of which is a cooling surface, and the lower surface is a cooling surface; a heat conduction structure, the lower surface of which is connected to the cooling surface, so as to The cooling energy of the cooling surface is transferred to the upper surface of the heat conduction structure; the mirror surface, the lower surface of which is connected with the upper surface of the heat conduction structure, so as to transfer the cooling energy of the upper surface of the heat conduction structure to the upper surface of the mirror surface , so that the water vapor in the working environment is condensed on the upper surface of the mirror surface; wherein, the mirror surface is a silicon wafer, and its outer surface is provided with a platinum layer or a gold layer or a rhodium layer; and/or, the mirror surface is The silicon wafer is provided with a platinum layer, a gold layer or a rhodium layer on its outer surface, and a hydrophobic material coating is provided on the upper surface
  • thermometer indirectly measures the temperature of the mirror surface by detecting the temperature of the heat-conducting structure, thereby measuring the temperature of the water vapor.
  • the refrigerating sheet adopts the principle of thermoelectric refrigerating, and its refrigerating surface forms cold energy to act on the heat conduction structure, and its radiating surface forms heat to act on the components connected to the radiating surface.
  • the heat conducting structure is used for transferring the cooling energy from the cooling sheet to the mirror surface.
  • the upper surface of the mirror surface is a place where dew condensation occurs.
  • the mirror surface is set as a silicon wafer, and its surface is flat and bright and has high thermal conductivity.
  • the cooling energy generated by the cooling surface of the cooling sheet is transmitted to the upper surface of the mirror surface through the heat conduction structure, so that the water vapor in the working environment condenses on the upper surface of the mirror surface, and then the temperature is measured
  • the meter detects the temperature of the heat-conducting structure, thereby indirectly detecting the temperature of the mirror surface, that is, detecting the dew point temperature of the gas, so as to obtain the humidity in the gas.
  • the condensation system is divided into three parts: a cooling sheet, a heat conduction structure, and a mirror surface, and a silicon wafer with higher thermal conductivity is used as the mirror surface, which can reduce the volume of the condensation system, thereby reducing the volume of the condensation system. Improve response speed and avoid cooling performance loss.
  • the outer surface of the mirror is provided with a platinum layer, a gold layer or a rhodium layer, and a hydrophobic material coating is added, and the conventional mirror surface is copper and copper.
  • the technology of providing a gold layer on the outer surface enables the solution to improve the anti-fouling capability of the mirror surface, and makes the mirror surface less likely to be scratched, thereby avoiding adverse effects on detection accuracy.
  • the dew condensation system further includes a sealing ring, and the side surface of the sealing ring forms a frame along the heat conducting structure, and wraps the periphery of the mirror surface.
  • this solution uses a sealing ring to wrap the periphery of the mirror surface to prevent water vapor from infiltrating into the dew point meter using the condensation system through the condensation system, causing damage to the circuits and components inside the dew point meter.
  • the sealing ring surrounds the heat-conducting structure, and the heat-conducting structure is surrounded by the heat-conducting structure, so as to avoid damage to the heat-conducting structure caused by water vapor, and also prevent the water vapor from infiltrating into the dew point meter through the heat-conducting structure.
  • the heat-conducting structure is recessed inward from the side surface, the upper surface and the lower surface to remove part of the structure to form an open area, the open area is used for accommodating the thermometer, and the thermometer is enclosed by the seal inside the circle.
  • the heat-conducting structure is improved in itself, and only part of the structure is removed to form an open area that can accommodate the thermometer.
  • this arrangement reduces costs and facilitates popularization and application;
  • the thermometer is also added, that is, the components are added without increasing the existing space.
  • the thermometer is also enclosed in the sealing ring to prevent the thermometer from being damaged by external water vapor, and to prevent the thermometer from being affected by external factors, thereby affecting the detection accuracy.
  • the thermometer is a platinum resistance, and its outer surface is provided with a thermally conductive silicone grease layer or a thermally conductive adhesive layer.
  • a thermally conductive silicone grease layer or a thermally conductive adhesive layer is used to make the thermometer and the thermally conductive structure adhere closely without gaps, thereby increasing the area of heat conduction and improving the heat transfer efficiency.
  • the sealing ring encloses the upper end of the refrigerating sheet of the column to prevent water vapor from infiltrating the upper end of the refrigerating sheet, and also completely encloses the heat conducting structure, the mirror surface and the thermometer inside the sealing ring.
  • a dew point meter includes a control system, a photoelectric detection system arranged above the dew condensation system, a dew condensation system, and a heat dissipation system;
  • the control system includes a control adapter board, an electrical pin, and a remote control host;
  • the heat dissipation system includes a heat dissipation system
  • the heat sink is provided with a cavity; wherein, the control adapter board is located in the cavity and is electrically connected to the remote control host; the electrical pins are inserted into the cavity and electrically connected to the control switch A connecting plate, the electrical pins are insulated and connected to the heat sink; wherein, the electrical pins are also electrically connected to the photoelectric detection system and the dew condensation system; the heat dissipation surface of the cooling sheet is connected to the upper surface of the heat sink.
  • the photoelectric detection system detects the thickness of the condensate on the mirror surface by using the change of the light intensity reflected by the mirror surface, and the condensate on the mirror surface refers to the dew or frost condensed on the mirror surface.
  • the heat dissipation seat is used to dissipate the heat generated by the heat dissipation surface of the cooling fin.
  • the electrical pins are connected to the heat sink in an insulating manner, so as to avoid the heat sink from affecting the normal use of the dew point meter.
  • the cavity is used for accommodating the control adapter board, and the electrical pins are inserted into the cavity and electrically connected to the control adapter board, so that the circuits of the dew point meter are concentrated in the heat dissipation In the cavity of the seat, avoid the circuit from being exposed to the outside of the dew point meter, which will affect the detection effect and cause damage to the circuit.
  • the cooling plate in the dew condensation system is used for cooling.
  • the temperature of the upper surface of the mirror surface drops below the dew point temperature of the gas
  • the upper surface of the mirror surface begins to condense.
  • the photoelectric detection system The thickness of the condensate on the upper surface of the mirror is detected, and the detected thickness of the condensate is fed back to the remote control host.
  • the cooling power of the cooling sheet is adjusted so that the temperature of the mirror surface is kept consistent with the dew point temperature of the gas.
  • the remote control host performs information exchange with both the dew condensation system and the photoelectric detection system through the control adapter board.
  • glue is poured into the cavity to seal the cavity.
  • This solution is set up in this way.
  • the cavity is sealed by pouring glue to prevent water vapor and air from entering and causing damage to the internal circuits and components of the dew point meter;
  • the toxic gas leaks to the outside through the cavity, threatening the life safety of the staff;
  • the glue insulates the electrical needle and the heat sink to prevent the electrical needle and the heat sink from conducting electricity;
  • this solution is fixed by glue Hold the electrical needle and the control adapter board to prevent the connection between the electrical needle and the control adapter board from being misaligned, resulting in failure of smooth detection.
  • the heat dissipation system further includes a heat dissipation tail cover; the cavity is arranged on the lower end of the heat dissipation base and is installed in a matching manner with the heat dissipation tail cover; the control adapter plate is arranged on the heat dissipation tail cover after the heat dissipation tail cover and the cavity are installed, the control adapter board is located in the cavity.
  • the cavity is disposed at the lower end of the heat dissipation base, so that the cavity and the heat dissipation tail cover can be matched, which facilitates the installation of the cavity and the heat dissipation tail cover.
  • control system further includes an aviation joint; the aviation joint is located on the heat dissipation tail cover and is electrically connected to the control adapter board and the remote control host. After the cooling tail cover and the cavity are installed, the aviation joint is located in the cavity.
  • the control adapter board and the remote control host are both connected to the aviation connector, so that the remote control host and the dew point meter can exchange information.
  • the photoelectric detection system includes a photodetection device and a detection cover, the detection cover is provided with a detection cavity, and the photoelectric detection device is located at the upper end of the detection cavity; the detection cover is mounted on the detection cover After the cooling system is installed, the condensation system is located in the detection cavity.
  • the water vapor passes through the detection chamber and condenses in the detection chamber, so as to avoid the influence of airflow fluctuations on the detection results, resulting in inaccurate detection results.
  • the dew condensation system of the present invention divides the heat conduction component into three parts: a cooling sheet, a heat conduction structure and a mirror surface, which can reduce the volume of the dew condensation system, thereby improving the response speed and avoiding the loss of refrigeration performance; the sealing ring can prevent the passage of water vapor.
  • the condensation system penetrates into the dew point meter where the condensation system is applied, causing damage to the circuits and components inside the dew point meter.
  • the dew point meter of the present invention is provided with a heat sink with a cavity, an electrical needle, and a control adapter plate, so that the circuits of the dew point meter are concentrated in the cavity of the heat sink, so as to prevent the lines from being exposed to the outside of the dew point meter, thereby affecting the detection effect. and cause damage to the circuit; the present invention prevents water vapor and air from entering the dew point meter and causes damage to the internal circuits and components by pouring glue into the cavity, avoids the leakage of toxic gas to the outside through the cavity, and avoids electrical needles and heat sinks. Misaligned connections between electrical pins and control adapter board.
  • FIG. 1 is an exploded view of Embodiment 1 of the present invention.
  • FIG. 2 is a structural diagram of Embodiment 1 of the present invention.
  • FIG. 3 is an exploded view of Embodiment 2 of the present invention.
  • FIG. 4 is a cross-sectional view of Embodiment 2 of the present invention.
  • detection cover 100 photoelectric detection device 101 , detection cover 102 , mirror surface 103 , sealing ring 104 , heat conduction structure 105 , thermometer 106 , cooling sheet 107 , electrical needle 108 , heat sink 109 , cavity 1091 , Control adapter board 110 , aviation connector 111 , heat dissipation tail cover 112 .
  • this embodiment provides a dew condensation system, including a mirror surface 103 , a sealing ring 104 , a heat conduction structure 105 , a thermometer 106 , and a cooling sheet 107 .
  • Embodiment 1 of the present application an application scenario of the dew condensation system is first described.
  • the condensation system is applied to a dew point meter.
  • the dew point meter causes water vapor to condense through the condensation system, and then detects the humidity in the gas by detecting the dew point temperature of the gas.
  • the dew point meter can be used in a variety of operating environments, such as natural gas, metallurgy, health and quarantine, and operating environments containing toxic and corrosive gases. It is precisely because the dew point meter is used in a variety of different operating environments. will have higher requirements on the performance of the dew point meter. Among them, the performance of the condensation system has a great influence on the application of the dew point meter.
  • the specific working process of the dew condensation system is as follows: the cooling sheet 107 generates cooling capacity through the principle of thermoelectric cooling, and the cooling capacity generated by the cooling sheet 107 is transferred to the upper surface of the mirror surface 103 through the heat conducting structure 105, so that the water in the working environment can be cooled.
  • the vapor condenses on the upper surface of the mirror surface 103 to form condensate.
  • the dew condensation system detects the temperature of the heat conduction structure 107 through the thermometer 106 , thereby indirectly detecting the temperature of the mirror surface 103 .
  • the cooling sheet 107 has a cooling surface and a heat dissipation surface, the upper surface of the cooling sheet 107 is a cooling surface, and the lower surface is a heat dissipation surface.
  • the cooling sheet 107 may have a three-layer structure, but is not limited to a three-layer structure.
  • the cooling sheet 107 adopts a cooling sheet having a three-layer structure, and the cross-sectional area of the structure of the uppermost layer of the cooling sheet 107 is smaller than that of the structures of other layers.
  • the heat conduction structure 105 is used for transferring the cooling energy from the cooling surface of the cooling sheet 107 .
  • the heat-conducting structure 105 has an upper surface and a lower surface, and the lower surface of the heat-conducting structure 105 is connected to the cooling surface, so as to transfer the cooling energy of the cooling surface to the upper surface of the heat-conducting structure.
  • the thermally conductive structure 105 is generally in the shape of a rectangular parallelepiped.
  • further improvements are made to the heat-conducting structure 105.
  • the heat-conducting structure 105 is recessed from the side surface, the upper surface and the lower surface to remove part of the structure to form an open area. to accommodate the thermometer 106 .
  • the open area is generally in the shape of a rectangular parallelepiped.
  • the thermally conductive structure 105 may be made of thermally conductive metal, preferably copper.
  • the thermally conductive structure 105 is further improved, the outer wall of the thermally conductive structure 105 is recessed to the inside to form a groove, and the thermometer 106 is arranged in the groove and match the grooves.
  • the mirror surface 103 is the dew condensation place of the dew condensation system.
  • the lower surface of the mirror surface 103 is connected to the upper surface of the thermally conductive structure 105 to transfer the cooling energy from the upper surface of the thermally conductive structure 105 to the upper surface of the mirror surface 103, so that the water vapor in the working environment is condensed on the mirror surface 103's upper surface.
  • the mirror surface 103 is a silicon wafer, and the cross section of the silicon wafer is generally square.
  • a platinum layer, a gold layer or a rhodium layer and a hydrophobic material coating are provided on the outer surface of the mirror surface 103. Further, the The platinum layer, the gold layer or the rhodium layer is arranged on the upper surface of the mirror surface 103, and the hydrophobic material coating is arranged on the upper surface of the platinum layer, the gold layer or the rhodium layer.
  • thermometer 106 is used for temperature measurement.
  • the thermometer 106 is generally in the shape of a cuboid, and the thermometer 106 matches the open area.
  • the thermometer is a platinum resistor.
  • the outer surface of the platinum resistor is provided with a thermally conductive silicone grease layer or a thermally conductive adhesive layer, so that the thermometer 106 and the thermally conductive structure are attached without gaps. tight.
  • the embodiment of the present application adopts a sealing ring 104 for sealing.
  • the sealing ring 104 is generally in the shape of a trapezoid table, and the side surface of the trapezoid table surrounds the heat conduction structure 105 to form a frame body, and wraps the periphery of the mirror surface 103 . enclosed in the sealing ring 104 .
  • the lower end of the sealing ring 104 is wrapped around the periphery of the uppermost structure of the cooling sheet 107 .
  • the sealing ring 104 may be a rubber sealing ring.
  • the upper surface of the sealing ring 104 is flush with the upper surface of the mirror surface 103 .
  • the upper surface of the sealing ring 104 and the upper surface of the mirror surface 103 have a certain distance, and the The upper surface of the sealing ring 104 is higher than the upper surface of the mirror surface 103 .
  • this embodiment provides a dew point meter, and the dew point meter includes a photoelectric detection system, the dew condensation system in Embodiment 1, a heat dissipation system, and a control system.
  • the photoelectric detection system includes a photoelectric detection device 101 and a detection cover 102 .
  • the photoelectric detection device 101 is composed of an LED emitting light source and a photosensitive receiving tube, and the thickness of the condensate is measured by detecting the change of the light intensity reflected by the dew condensation specular surface through the LED emitting light source and the photosensitive receiving tube.
  • the detection cover 102 is provided with a detection cavity, and the photoelectric detection device 101 is located at the upper end of the detection cavity; after the detection cover 102 is installed on the heat dissipation system, the dew condensation system is located at the upper end of the detection cavity. in the detection cavity.
  • the upper end of the detection cover 102 is provided with a detection cover 100 , and the detection cover 100 is detachably mounted on the detection cover 102 .
  • the dew condensation system is located in the detection chamber.
  • the control system includes electrical pins 108 , a control adapter board 110 , an aviation connector 111 , and a remote control host.
  • the remote control host is not shown in the figure.
  • the electrical pins 108 are used for electrical conduction.
  • the electrical needles 108 are made of conductive metal, and several of them are provided. The sizes of the electrical needles 108 can be set to be the same or different.
  • the aviation connector 111 is also connected to the remote control host, so that the remote control host and the control adapter board 110 can exchange information.
  • the control adapter board 110 can observe the current detection state and corresponding parameters through the screen provided by the remote control host, and set the detection parameters through the remote control host.
  • the electrical pins 108 can be connected with the control adapter board 110 by welding.
  • the electrical needle 108 can also be electrically connected to the thermometer 106 of the photoelectric detection system and the dew condensation system through a cable.
  • the heat dissipation system includes a heat dissipation base 109 and a heat dissipation tail cover 112 .
  • the heat sink 109 is generally cylindrical.
  • the upper surface of the heat dissipation base 109 is connected to the heat dissipation surface of the cooling fin 107 of the dew condensation system, so as to dissipate the heat generated by the heat dissipation surface through the heat dissipation base 109 .
  • the heat dissipation seat 109 may be formed of a metal material.
  • the heat dissipation base 109 is provided with a cavity 1091 , and the cavity 1091 is formed by the lower surface of the heat dissipation base 109 being recessed upward to remove part of the structure.
  • an aviation joint 111 and a control adapter board 110 are installed on the heat dissipation tail cover 112 in order from bottom to top, and the aviation joint 111 is connected with the control adapter board 110 .
  • the heat dissipation tail cover 112 is installed on the lower end of the heat dissipation base 109 , and the heat dissipation tail cover 112 can be connected to the heat dissipation base 109 by means of threads.
  • the aviation connector 111 and the control adapter board 110 are all located in the cavity 1091 .
  • the aviation connector 111 can also be connected to the electrical pin 108 .
  • the electrical pins 108 are inserted into the cavity 1091 and electrically connected to the control adapter board 110 , and the electrical pins 108 are connected to the heat sink 109 in an insulating manner.
  • the electrical pins 108 can be inserted downwardly into the cavity 1091 from the upper end of the heat sink 109 .
  • an insulating pad may be provided on the inner wall of the cavity 1091, and the insulating pad may be a rubber pad.
  • the electrical pins 108 and the control adapter board 110 may be fixed by a glass frit process.
  • the sealing between the electrical pins 108 and the heat sink 109 may be resistant to gas pressure through a glass sintering process.
  • the specific working process of the dew point meter is as follows: when the water vapor in the working environment passes through the detection cavity, it sweeps over the upper surface of the mirror surface 103 . When the temperature of the upper surface of the mirror surface 103 is higher than the dew point temperature of the gas, the upper surface of the mirror surface 103 is in a dry state. At this time, under the control of the control system, the photoelectric detection device 101 transmits a signal to the remote control host through the switching control board 110 and the aviation connector 111, and receives the feedback signal from the remote control host, and the feedback signal is compared by the control loop. , and after amplification, the cooling sheet 107 is driven to perform cooling.
  • the photoelectric detection device 101 When the temperature of the upper surface of the mirror surface 103 drops below the dew point temperature of the gas, the upper surface of the mirror surface 103 begins to condense to form condensate. At this time, the photoelectric detection device 101 continues to transmit signals through the switching control board 110 and the aviation connector 111 to Remote control the host, and receive the feedback signal from the remote control host. According to the change of the feedback signal, the feedback signal is compared and amplified by the control loop to adjust the excitation current of the cooling chip 107, and the cooling power of the cooling chip 107 is changed to make the mirror surface The temperature of the upper surface of 103 corresponds to the dew point temperature of the gas. At this time, the temperature of the mirror surface 103 can be detected by the thermometer 106 to obtain the dew point or frost point in the gas.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

一种结露系统,包括测温计(106);制冷片(107),其上表面为制冷面,下表面为散热面;导热结构(105);镜面(103);其中,镜面(103)为硅片,且其外表面设有铂层或金层或铑层;和/或,镜面(103)为硅片,且其外表面设有铂层或金层或铑层,铂层或金层或铑层上表面设有疏水性材料涂层。该结露系统能够减小体积,提高响应速度,避免制冷性能损耗,还能防止水汽渗入到应用该结露系统的露点仪内部。

Description

一种结露系统及其露点仪 技术领域
本发明涉及结露测量技术领域,更具体地,涉及一种结露系统及其露点仪。
背景技术
在天然气、冶金、卫生检疫、含有有毒腐蚀性气体等作业环境中,气体中的水蒸气对作业产生重要的影响。而目前常常通过露点仪来检测气体中水蒸气的露点温度,从而间接测量气体中的湿度。
露点仪根据所使用的冷却方法和检测控制方法,可以分为多种类型。露点仪可利用热电制冷器(Peltier元件) 冷却露层传感器,从而使气体中的水蒸气在露层传感器上发生冷凝,产生露或霜,同时将经接收器采集的信号通过自动控制电路使露层传感器上的露或霜与气体中的水蒸气呈相平衡状态,再用温度计准确测量露层传感器的温度,即露或霜层的温度,从而获得气体的露点温度,也从而间接测量得气体中的湿度。露层传感器包括镜面及发光管、接收管或声表面波器件等元器件。
气体的露点温度是在等压的条件下使气体中水蒸气冷却至凝聚相出现,再通过控制露层传感器露层的温度,使气体中的水蒸气与水或冰的平展表面呈热力学相平衡状态,此时露层的温度即为气体的露点温度。
现有技术中,露点仪是由散热系统、热电制冷系统、精密测温电阻、镜面、光电检测等部件组成。露点仪在实际应用场合中,对其体积大小、粉尘污染环境适应能力、测量温差极限、密封耐气体压力、耐腐蚀性等都有相应要求。常规的露点仪是用可伐合金作为散热部件并通过玻璃烧结实现密封耐气体压力。但可伐合金的导热性相对差,散热性能差,导致测量温差小,使用场合受限并且成本高。
常规的露点仪用铜镀金作为镜面,这种镜面的抗污染能力差且容易被划损,镜面的表面脏污、被划损,会降低检测精度,不利于长期使用。
常规的露点仪密封性能不佳,在对气体的湿度进行检测时,作业环境中的水蒸气在露层传感器露层上发生冷凝过程中,有部分水蒸气渗入露点仪的内部,会对露点仪内部的电路及其他元器件造成损坏,降低了露点仪的使用寿命。
在天然气、冶金、卫生检疫、含有有毒腐蚀性气体等作业环境中,气体中的水蒸气对作业产生重要的影响。而目前常常通过露点仪来检测气体中水蒸气的露点温度,从而间接测量气体中的湿度。
露点仪根据所使用的冷却方法和检测控制方法,可以分为多种类型。露点仪可利用热电制冷器(Peltier元件) 冷却露层传感器,从而使气体中的水蒸气在露层传感器上发生冷凝,产生露或霜,同时将经接收器采集的信号通过自动控制电路使露层传感器上的露或霜与气体中的水蒸气呈相平衡状态,再用温度计准确测量露层传感器的温度,即露或霜层的温度,从而获得气体的露点温度,也从而间接测量得气体中的湿度。露层传感器包括镜面及发光管、接收管或声表面波器件等元器件。
气体的露点温度是在等压的条件下使气体中水蒸气冷却至凝聚相出现,再通过控制露层传感器露层的温度,使气体中的水蒸气与水或冰的平展表面呈热力学相平衡状态,此时露层的温度即为气体的露点温度。
现有技术中,露点仪是由散热系统、热电制冷系统、精密测温电阻、镜面、光电检测等部件组成。露点仪在实际应用场合中,对其体积大小、粉尘污染环境适应能力、测量温差极限、密封耐气体压力、耐腐蚀性等都有相应要求。常规的露点仪是用可伐合金作为散热部件并通过玻璃烧结实现密封耐气体压力。但可伐合金的导热性相对差,散热性能差,导致测量温差小,使用场合受限并且成本高。
常规的露点仪用铜镀金作为镜面,这种镜面的抗污染能力差且容易被划损,镜面的表面脏污、被划损,会降低检测精度,不利于长期使用。
常规的露点仪密封性能不佳,在对气体的湿度进行检测时,作业环境中的水蒸气在露层传感器露层上发生冷凝过程中,有部分水蒸气渗入露点仪的内部,会对露点仪内部的电路及其他元器件造成损坏,降低了露点仪的使用寿命。
技术问题
本发明旨在克服上述现有技术镜面的抗污染能力差且容易被划损,从而降低检测精度的的缺陷,提供一种结露系统,用于提高提高镜面的抗污能力,使得所述镜面不易被划损,从而使得应用该结露系统的露点仪保持检测精度,有利于结露系统及应用该结露系统的露点仪的长期使用。
技术解决方案
本发明采取的技术方案是,一种结露系统,包括测温计;制冷片,其上表面为制冷面,下表面为散热面;导热结构,其下表面与所述制冷面连接,以将所述制冷面的冷量传递至所述导热结构的上表面;镜面,其下表面与所述导热结构上表面连接,以将所述导热结构上表面的冷量传递至所述镜面的上表面,使作业环境中的水蒸气结露于所述镜面的上表面;其中,所述镜面为硅片,且其外表面设有铂层或金层或铑层;和/或,所述镜面为硅片,且其外表面设有铂层或金层或铑层,所述铂层或金层或铑层上表面设有疏水性材料涂层。
本方案中, 所述测温计通过检测导热结构的温度,间接测量出镜面的温度,从而测量出水汽的温度。所述制冷片通过热电制冷原理,其制冷面形成冷量作用于导热结构,其散热面形成热量作用于连接该散热面的部件。所述导热结构用于将来自制冷片的冷量传递至所述镜面。所述镜面的上表面为结露的场所。所述镜面设置为硅片,其表面平整光亮且导热效率较高。
本方案中,所述制冷片的制冷面所产生的冷量通过所述导热结构传递到所述镜面的上表面,以使作业环境中的水蒸气结露到镜面的上表面,再通过测温计检测出导热结构的温度,从而间接检测出镜面的温度,即检测出气体的露点温度,从而获得气体中的湿度。
相比现有技术,本方案将结露系统拆分成制冷片、导热结构、镜面三个部分,加上采用了导热效率较高的硅片作为镜面,能够减小结露系统的体积,从而提高响应速度,避免制冷性能损耗。
另外,相比现有技术,本方案更进一步地改进,在镜面的外表面设有铂层或金层或铑层,且增设了疏水性材料涂层,舍弃了常规的镜面为铜且铜的外表面设有金层的技术,从而使得本方案能够提高镜面的抗污能力,且使得所述镜面不易被划损,避免检测精度受到不利影响。
优选地,所述结露系统还包括密封圈,所述密封圈的侧面沿所述导热结构围绕形成一个框架体,并包裹住所述镜面的周边。相比现有技术,本方案采用密封圈包裹住所述镜面的周边,防止水汽通过结露系统渗入到应用该结露系统的露点仪内部,对露点仪内部的电路及元器件造成损坏。同时,所述密封圈沿所述导热结构围绕,以及所述导热结构包围住,避免水汽对导热结构造成损坏,也避免水汽通过导热结构渗入到露点仪内部。
优选地,所述导热结构由侧面、上表面、下表面向内部凹陷以去除部分结构形成开放区域,所述开放区域用于容纳所述测温计,所述测温计围蔽于所述密封圈内。本方案中,所述导热结构在本身进行改进,仅仅去除本身的部分结构形成能够容纳所述测温计的开放区域,如此设置,相对现有技术,首先,其缩减了成本,便于推广应用;其次,在所述导热结构所占区域的空间内,还增设了所述测温计,也就是说,在不增加现有空间的情况下,增设了部件。另外,所述测温计也围蔽于所述密封圈内,避免测温计被外界水汽损坏,且防止温度计受外界因素影响,而导致检测精度受到影响。
优选地,所述测温计为铂电阻,且其外表面设有导热硅脂层或导热胶层。本方案采用导热硅脂层或导热胶层使测温计和导热结构无间隙贴紧,从而增大热量传导的面积,以提高热量传递效率。
优选地,所述密封圈的上表面与其下表面之间具有一定的距离,且其下端部围蔽于所述制冷片的上端部。本方案中将密封圈的上表面和下表面之间设置一定的距离,以使所述密封圈具有足够的高度空间以容纳所述制冷片、导热结构、镜面、温度计。所述密封圈围蔽柱所述制冷片的上端部,防止水汽渗入所述制冷片上端部,也彻底将所述导热结构、镜面、温度计围蔽于密封圈内部。
一种露点仪,包括控制系统、设置于结露系统上方的光电检测系统、结露系统、散热系统;所述控制系统包括控制转接板、电气针、远程控制主机;所述散热系统包括散热座,所述散热座设有腔体;其中,所述控制转接板位于所述腔体内并电连接至远程控制主机;所述电气针插装于所述腔体内且电连接所述控制转接板,所述电气针与所述散热座绝缘连接;其中,所述电气针还电连接于光电检测系统、结露系统;所述制冷片的散热面连接于所述散热座的上表面。
本方案中,所述光电检测系统利用镜面反射光强的变化,从而检测镜面上的冷凝物厚度,所述镜面上的冷凝物,是指结露于镜面上的露或霜。所述散热座用于将所述制冷片的散热面产生的热量散发出去。所述电气针与所述散热座绝缘连接,避免散热座对露点仪的正常使用产生影响。所述腔体用于容纳所述控制转接板,且所述电气针插装于所述腔体内且电连接于所述控制转接板,以使得所述露点仪的线路集中位于所述散热座的腔体内,避免线路露出露点仪外界,从而影响检测效果并对线路造成损坏。
本方案通过结露系统中的制冷片进行制冷,当镜面的上表面的温度下降至气体的露点温度以下时,镜面的上表面开始结露,在远程控制主机的控制下,所述光电检测系统对镜面的上表面的冷凝物厚度进行检测,并将检测出的冷凝物厚度信息反馈至远程控制主机。在远程控制主机的控制下,调节制冷片的制冷功率,从而使得镜面的温度保持与气体的露点温度一致。其中,所述远程控制主机通过控制转接板与结露系统和光电检测系统二者进行信息交互。
优选地,灌胶于所述腔体内,以密封所述腔体。本方案如此设置,首先,通过灌胶水将腔体密封住,防止水汽和空气进入对露点仪内部电路和元器件造成损坏;其次,当所述露点仪应用到有毒气体的作业环境中,能够避免有毒气体通过腔体泄露到外界,对工作人员的生命安全产生威胁;再次,胶水将所述电气针和所述散热座绝缘开来,避免电气针和散热座导电;再次,本方案通过胶水固定住所述电气针和所述控制转接板,避免电气针和控制转接板之间连接产生错位,而导致无法顺利检测。
优选地,所述散热系统还包括散热尾盖; 所述腔体设置于所述散热座的下端部,且与所述散热尾盖匹配安装;所述控制转接板设于所述散热尾盖上;所述散热尾盖与所述腔体完成安装后,所述控制转接板位于所述腔体内。本方案中,所述腔体设置于所述散热座的下端部,能够使得所述腔体和所述散热尾盖进行匹配,便于所述腔体与所述散热尾盖安装。
优选地,所述控制系统还包括航空接头;所述航空接头位于所述散热尾盖上,并电连接于所述控制转接板和所述远程控制主机。所述散热尾盖与所述腔体完成安装后,所述航空接头位于所述腔体内。所述控制转接板、远程控制主机均连接于所述航空接头,以便于远程控制主机与所述露点仪进行信息交互。
优选地,所述光电检测系统包括光电检测装置和检测盖体,所述检测盖体设有检测腔,所述光电检测装置位于所述检测腔的上端部;所述检测盖体安装于所述散热系统上后,所述结露系统位于所述检测腔内。本方案中,水蒸气通过检测腔,在检测腔内结露,避免气流波动对检测结果产生影响,使得检测结果不精准。
有益效果
本发明的结露系统将热量传导部件拆分成制冷片、导热结构、镜面三个部分,能够减小结露系统的体积,从而提高响应速度,避免制冷性能损耗;设置密封圈能够防止水汽通过结露系统渗入到应用该结露系统的露点仪内部,对露点仪内部的电路及元器件造成损坏。本发明的露点仪设置了具有腔体的散热座、电气针、控制转接板,使得所述露点仪的线路集中位于所述散热座的腔体内,避免线路露出露点仪外界,从而影响检测效果并对线路造成损坏;本发明通过灌胶于腔体内,防止水汽和空气进入对露点仪内部电路和元器件造成损坏、避免有毒气体通过腔体泄露到外界、避免电气针和散热座导电、避免电气针和控制转接板之间连接产生错位。
附图说明
图1为本发明实施1的爆炸图。
图2为本发明实施1的结构图。
图3为本发明实施2的爆炸图。
图4为本发明实施2的剖面图。
附图标记:检测上盖100、光电检测装置101、检测盖体102、镜面103、密封圈104、导热结构105、测温计106、制冷片107、电气针108、散热座109、腔体1091、控制转接板110、航空接头111、散热尾盖112。
本发明的实施方式
本发明附图仅用于示例性说明,不能理解为对本发明的限制。为了更好说明以下实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;对于本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。
实施例 1
如图1、图2所示,本实施例提供一种结露系统,包括镜面103、密封圈104、导热结构105、测温计106、制冷片107。
为了方便理解本申请实施例1所述的结露系统,首先阐述所述结露系统的应用场景。所述结露系统应用于露点仪,所述露点仪通过结露系统使得水蒸气结露,再通过检测气体的露点温度,从而检测出气体中的湿度。所述露点仪可应用于多种作业环境,如天然气、冶金、卫生检疫、含有有毒腐蚀性气体等作业环境,也正是由于露点仪应用于多种不同的作业环境,因此,从应用层面上来将,对露点仪的性能具有更高的要求。其中,结露系统的性能对于露点仪的应用影响较大。
所述结露系统的具体工作过程为:制冷片107通过热电制冷原理产生冷量,制冷片107产生的冷量通过所述导热结构105传递到镜面103的上表面,以使作业环境中的水蒸气结露到镜面103的上表面,形成冷凝物。所述结露系统再通过测温计106检测出导热结构107的温度,从而间接检测出镜面103的温度。
其中,制冷片107具有制冷面和散热面,制冷片107的上表面为制冷面,其下表面为散热面。具体地,制冷片107可以为具有三层结构,但不仅限于三层结构。
在一个申请实施例中,制冷片107采用具有三层结构的制冷片,制冷片107最上层的结构的横截面积小于其它层的结构的横截面积。
其中,导热结构105用于传递来自于制冷片107的制冷面的冷量。具体地,导热结构105具有上表面和下表面,导热结构105的下表面与所述制冷面连接,以将所述制冷面的冷量传递至所述导热结构的上表面。具体地,为了减小导热结构105的体积,导热结构105大体呈长方体状。具体地,为了减小所述结露系统的体积,对导热结构105作进一步的改进,导热结构105由侧面、上表面、下表面向内部凹陷以去除部分结构形成开放区域,所述开放区域用于容纳所述测温计106。详细地,所述开放区域大体呈长方体状。具体地,导热结构105可以由导热金属制成,优选为铜。
在一个申请实施例中,所述为了进一步容纳所述测温计106,导热结构105作进一步改进,所述导热结构105由其外壁向内部凹陷形成凹槽,测温计106设置于凹槽内并与凹槽匹配。
其中,镜面103为所述结露系统的结露场所。镜面103的下表面与所述导热结构105上表面连接,以将所述导热结构105上表面的冷量传递至所述镜面103的上表面,使作业环境中的水蒸气结露于所述镜面103的上表面。具体地,为了提高导热效率,镜面103为硅片,所述硅片的截面大体上呈正方形状。具体地,为了提高镜面的抗污能力,且使得所述镜面不易被划损,在镜面103的外表面上设有铂层或金层或铑层和疏水性材料涂层,进一步地,所述铂层或金层或铑层设置于镜面103的上表面,疏水性材料涂层设置于铂层或金层或铑层的上表面。
其中,所述测温计106用于测温。具体地,测温计106大体呈长方体状,且测温计106与所述开放区域匹配。具体地,所述测温计为铂电阻,为了进一步增大热量传导面积,所述铂电阻的外表面设有导热硅脂层或导热胶层,以使测温计106和导热结构无间隙贴紧。
其中,为了避免水汽通过结露系统渗入到露点仪内部,本申请实施例采用了密封圈104进行密封。具体地,密封圈104大体为梯形台状,所述梯形台侧面沿导热结构105围绕形成一个框架体,并包裹住镜面103的周边,详细地,导热结构105、镜面103、测温计106均围蔽于密封圈104内。具体地,密封圈104的上表面与其下表面之间具有一定的距离,密封圈104的下端部围蔽于制冷片107的上端部。详细地,密封圈104的下端部包裹于制冷片107最上层结构的外围。具体地,密封圈104可以为橡胶密封圈。本申请实施例中,密封圈104的上表面与镜面103的上表面齐平。
在另一个申请实施例中,为了将结露于镜面103上表面的水汽位于镜面103的上表面所在区域内,密封圈104的上表面与所述镜面103的上表面具有一定距离,且所述密封圈104的上表面高于所述镜面103的上表面。
实施例 2
如图3所示,本实施例提供一种露点仪,所述露点仪包括光电检测系统、实施例1中的结露系统、散热系统、控制系统。
其中,所述光电检测系统包括光电检测装置101和检测盖体102。详细地,光电检测装置101包括LED发射光源和光敏接收管组成,通过LED发射光源和光敏接收管检测结露镜面反射光强的变化测量冷凝物的厚度。详细地,所述检测盖体102设有检测腔,所述光电检测装置101位于所述检测腔的上端部;所述检测盖体102安装于所述散热系统上后,所述结露系统位于所述检测腔内。详细地,为了方便将光电检测装置101安装于检测盖体102上端部,所述检测盖体102上端部设有检测上盖100,所述检测上盖100可拆卸安装于检测盖体102。具体地,所述结露系统位于所述检测腔内。
其中,所述控制系统包括电气针108、控制转接板110、航空接头111、远程控制主机。所述远程控制主机在图中尚未示出。
具体地,电气针108用于电传导。详细地,电气针108由导电金属构成,且其设有若干根。电气针108的大小可以设置相同,也可以设置不相同。具体地,航空接头111还连接于远程控制主机,以便于远程控制主机与所述控制转接板110进行信息交互。所述控制转接板110,可通过远程控制主机设有的屏幕对当前检测状态和对应的参数进行观察,并通过远程控制主机对检测参数进行设置。详细地,电气针108可以通过焊接的方式与控制转接板110进行连接。另外,电气针108还可通过电缆电连接于光电检测系统、结露系统的测温计106。
其中,所述散热系统包括散热座109、散热尾盖112。
具体地,散热座109大体呈圆柱状。散热座109的上表面与所述结露系统的制冷片107的散热面连接,以便将所述散热面所产生的热量通过散热座109散发出去。具体地,为了便于散热,散热座109可以由金属材料构成。如图4所示,详细地,散热座109设有腔体1091,所述腔体1091由所述散热座109的下表面向上凹陷以去除部分结构所形成。
具体地,所述散热尾盖112上由下往上依次安装有航空接头111、控制转接板110,且航空接头111与控制转接板110连接。详细地,散热尾盖112安装于散热座109的下端部,散热尾盖112可以通过螺纹的方式连接于散热座109。
当散热尾盖112与散热座109完成安装,航空接头111、控制转接板110均位于所述腔体1091内。详细地,所述航空接头111还可连接于电气针108。详细地,电气针108插装于所述腔体1091内且电连接所述控制转接板110,所述电气针108与所述散热座109绝缘连接。电气针108可以由散热座109上端向下插装至所述腔体1091。
其中,为了防止水汽和空气进入对露点仪内部电路和元器件造成损坏、避免有毒气体通过腔体1091泄露到外界、避免电气针108和散热座109导电、避免电气针108和控制转接板110之间连接产生错位,本申请实施例通过灌胶于所述腔体1091内,胶水密封所述腔体1091。
在一个申请实施例中,为避免电气针108和散热座109导电,可以在所述腔体1091内壁设置绝缘垫,所述绝缘垫可以为橡胶垫。
在一个申请实施例中,可以通过玻璃烧结工艺固定电气针108和控制转接板110。
在一个申请实施例中,可以通过玻璃烧结工艺实现电气针108和散热座109之间密封耐气体压力。
所述露点仪的具体工作过程为:作业环境中的水蒸气通过检测腔时掠过镜面103的上表面。当镜面103的上表面的温度高于该气体的露点温度时,镜面103的上表面呈干燥状态。此时,在控制系统的控制下,光电检测装置101通过转接控制板110和航空接头111发射信号至远程控制主机,并接收来自远程控制主机的反馈信号,所述反馈信号再经控制回路比较、放大后,使驱动制冷片107进行制冷。当镜面103的上表面的温度降至气体的露点温度以下时,镜面103的上表面开始结露,形成冷凝物,这时光电检测装置101继续通过转接控制板110和航空接头111发射信号至远程控制主机,并接收来自远程控制主机的反馈信号,根据反馈信号的变化,再将所述反馈信号经控制回路比较、放大后调节制冷片107激励电流,改变制冷片107的制冷功率,使镜面103的上表面的温度与气体的露点温度一致。此时,通过测温计106,可以检测出镜面103的温度,从而获得气体中的露点或霜点。
显然,本发明的上述实施例仅仅是为清楚地说明本发明技术方案所作的举例,而并非是对本发明的具体实施方式的限定。凡在本发明权利要求书的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (10)

  1. 一种结露系统,其特征在于,包括
    测温计(106);
    制冷片(107),其上表面为制冷面,下表面为散热面;
    导热结构(105),其下表面与所述制冷面连接,以将所述制冷面的冷量传递至所述导热结构(105)的上表面,所述导热结构(105)还连接于所述测温计(106);
    镜面(103),其下表面与所述导热结构(105)上表面连接,以将所述导热结构(105)上表面的冷量传递至所述镜面(103)的上表面,使作业环境中的水蒸气结露于所述镜面(103)的上表面;
    其中,所述镜面为硅片,且其外表面设有铂层或金层或铑层;和/或,所述镜面为硅片,且其外表面设有铂层或金层或铑层,所述铂层或金层或铑层上表面设有疏水性材料涂层。
  2. 根据权利要求1所述的一种结露系统,其特征在于,所述结露系统还包括密封圈(104),所述密封圈(104)的侧面沿所述导热结构(105)围绕形成一个框架体,并包裹住所述镜面(103)的周边。
  3. 根据权利要求2所述的一种结露系统,其特征在于,所述导热结构(105)由侧面、上表面、下表面向内部凹陷以去除部分结构形成开放区域,所述开放区域用于容纳所述测温计(106),所述测温计(106)围蔽于所述密封圈(104)内。
  4. 根据权利要求3所述的一种结露系统,其特征在于,所述测温计(106)为铂电阻,且其外表面设有导热硅脂层或导热胶层。
  5. 根据权利要求2所述的一种结露系统,其特征在于,所述密封圈(104)的上表面与其下表面之间具有一定的距离,且其下端部围蔽于所述制冷片(107)的上端部。
  6. 一种露点仪,包括控制系统、设置于结露系统上方的光电检测系统,其特征在于,还包括如权利要求1至5任一项所述的结露系统、散热系统;
    所述控制系统包括控制转接板(110)、电气针(108)、远程控制主机;
    所述散热系统包括散热座(109),所述散热座(109)设有腔体(1091);
    其中,所述控制转接板(110)位于所述腔体(1091)内并电连接于所述远程控制主机;所述电气针(108)插装于所述腔体(1091)内且电连接所述控制转接板(110),所述电气针(108)与所述散热座(109)绝缘连接;
    其中,所述电气针(108)还电连接于光电检测系统、结露系统;所述制冷片(107)的散热面连接于所述散热座(109)的上表面。
  7. 根据权利要求6所述的一种露点仪,其特征在于,灌胶于所述腔体(1091)内,以密封所述腔体(1091)。
  8. 根据权利要求6所述的一种露点仪,其特征在于,所述散热系统还包括散热尾盖(112);
    所述腔体(1091)设置于所述散热座(109)的下端部,且与所述散热尾盖(112)匹配安装;所述控制转接板(110)设于所述散热尾盖(112)上;
    所述散热尾盖(112)与所述腔体(1091)完成安装后,所述控制转接板(110)位于所述腔体(1091)内。
  9. 根据权利要求8所述的一种露点仪,其特征在于,所述控制系统还包括航空接头(111);
    所述航空接头位于所述散热尾盖(112)上,并电连接于所述控制转接板(110)和所述远程控制主机;
    所述散热尾盖(112)与所述腔体(1091)完成安装后,所述航空接头(111)位于所述腔体(1091)内。
  10. 根据权利要求6至9任一项所述的一种露点仪,其特征在于,所述光电检测系统包括光电检测装置(101)和检测盖体(102),所述检测盖体(102)设有检测腔,所述光电检测装置(101)位于所述检测腔的上端部;所述检测盖体(102)安装于所述散热系统上后,所述结露系统位于所述检测腔内。
PCT/CN2020/139394 2020-12-07 2020-12-25 一种结露系统及其露点仪 WO2022120987A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011418274.4 2020-12-07
CN202011418274.4A CN112394086B (zh) 2020-12-07 2020-12-07 一种结露系统及其露点仪

Publications (1)

Publication Number Publication Date
WO2022120987A1 true WO2022120987A1 (zh) 2022-06-16

Family

ID=74604375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/139394 WO2022120987A1 (zh) 2020-12-07 2020-12-25 一种结露系统及其露点仪

Country Status (2)

Country Link
CN (1) CN112394086B (zh)
WO (1) WO2022120987A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4216669A (en) * 1978-10-06 1980-08-12 General Eastern Instruments Corporation Contaminant error reduction system for dew point hygrometers
US20070211781A1 (en) * 2004-03-30 2007-09-13 Yoshiyuki Kanai Moisture Detection Device
CN103187370A (zh) * 2011-12-28 2013-07-03 辉能科技股份有限公司 电子模组的侧封装结构
CN104849313A (zh) * 2015-04-10 2015-08-19 北京兴迪仪器有限责任公司 冷镜法露点仪基座结构设计
CN105424751A (zh) * 2015-12-23 2016-03-23 天津市泓诚泰科技发展有限公司 超低湿冷镜露点仪及其制冷装置和方法
CN107153081A (zh) * 2017-03-24 2017-09-12 北京航空航天大学 一种基于双通道的露点测量装置
CN210690460U (zh) * 2019-10-09 2020-06-05 广州西森自动化控制设备有限公司 一种露点仪

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0323348U (zh) * 1989-07-17 1991-03-11
JP4575213B2 (ja) * 2005-04-04 2010-11-04 株式会社山武 鏡面冷却式センサ
CN2906609Y (zh) * 2006-05-12 2007-05-30 北京京虹天科技有限公司 改进型冷镜露点传感器
CN101004397B (zh) * 2007-01-16 2010-10-06 丁五行 智能化快速测量冷镜露点仪
WO2010134834A1 (ru) * 2009-05-22 2010-11-25 Derevyagin Alexandr Mikhailovich Способ измерения температуры точки росы по углеводородам и устройство для его осуществления
CN201740753U (zh) * 2010-07-08 2011-02-09 中国兵器工业集团第五三研究所 一种双冷式露点仪
CN202281759U (zh) * 2011-09-20 2012-06-20 成都兰华电子工程有限公司 高压镜面露点检测仪
CN202974910U (zh) * 2012-12-24 2013-06-05 成都兰华电子工程有限公司 压缩天然气水露点检测专用制冷镜头
CN104696606B (zh) * 2015-03-17 2016-12-07 常州依科迪环境科技有限公司 一种密封传感器
CN106501313A (zh) * 2016-10-12 2017-03-15 江苏鸿源动力科技有限公司 一种双镜面双光路的冷镜式露点仪
CN209961716U (zh) * 2019-01-04 2020-01-17 中国人民解放军国防科技大学 一体化的空气露点温度测量探头
CN110687163A (zh) * 2019-09-06 2020-01-14 中海油(天津)管道工程技术有限公司 一种天然气水露点光学检测仪
CN112268930B (zh) * 2020-12-07 2021-04-13 广州奥松电子有限公司 一种露点传感器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4216669A (en) * 1978-10-06 1980-08-12 General Eastern Instruments Corporation Contaminant error reduction system for dew point hygrometers
US20070211781A1 (en) * 2004-03-30 2007-09-13 Yoshiyuki Kanai Moisture Detection Device
CN103187370A (zh) * 2011-12-28 2013-07-03 辉能科技股份有限公司 电子模组的侧封装结构
CN104849313A (zh) * 2015-04-10 2015-08-19 北京兴迪仪器有限责任公司 冷镜法露点仪基座结构设计
CN105424751A (zh) * 2015-12-23 2016-03-23 天津市泓诚泰科技发展有限公司 超低湿冷镜露点仪及其制冷装置和方法
CN107153081A (zh) * 2017-03-24 2017-09-12 北京航空航天大学 一种基于双通道的露点测量装置
CN210690460U (zh) * 2019-10-09 2020-06-05 广州西森自动化控制设备有限公司 一种露点仪

Also Published As

Publication number Publication date
CN112394086B (zh) 2021-08-03
CN112394086A (zh) 2021-02-23

Similar Documents

Publication Publication Date Title
WO2022120990A1 (zh) 一种露点传感器
US7946178B2 (en) Vacuum measuring cell device having a heater
JP2019523884A (ja) 高温プロセスアプリケーションにおいて測定パラメータを取得するためのカプセル化された計装基板装置
CN1231745C (zh) 流量传感器
WO2023092779A1 (zh) 一种光电冷镜式露点传感器
CN101285722A (zh) 光纤传感器温度性能的测试装置
WO2022120987A1 (zh) 一种结露系统及其露点仪
US11703470B2 (en) Sensor device for determining heat transfer parameters of a fluid
CN116773051A (zh) 一种高温热流传感器
CN110672556A (zh) 一种高热稳定性多普勒差分干涉仪热控装置
WO2022141175A1 (zh) 一种冷镜式露点仪探头
CN216285029U (zh) 一种新型结露系统及露点仪
CN111948342B (zh) 一种钯合金氢气传感器
WO2022141143A1 (zh) 一种带有清洗装置的露点仪
CN216247759U (zh) 一种光电检测系统及露点仪
CN112730517A (zh) 一种露点制冷系统及其露点检测器
CN216484743U (zh) 一种带封装台的结露系统及露点仪
CN112730518A (zh) 一种高散热的露点检测装置
CN112858388B (zh) 一种冷镜式露点仪探头
CN112858389B (zh) 一种成像式露点仪
CN213902695U (zh) 取像装置
CN110205600A (zh) 一种耐高温双用途晶控仪
CN109827671A (zh) 一种热电偶成型方法
TWI747673B (zh) 取像裝置
CN212845054U (zh) 一种摄像探头及侵入式在线多相测量仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20964916

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE