WO2022120853A1 - 超分辨检测系统及超分辨检测方法 - Google Patents

超分辨检测系统及超分辨检测方法 Download PDF

Info

Publication number
WO2022120853A1
WO2022120853A1 PCT/CN2020/135953 CN2020135953W WO2022120853A1 WO 2022120853 A1 WO2022120853 A1 WO 2022120853A1 CN 2020135953 W CN2020135953 W CN 2020135953W WO 2022120853 A1 WO2022120853 A1 WO 2022120853A1
Authority
WO
WIPO (PCT)
Prior art keywords
super
light
image
resolution
sample
Prior art date
Application number
PCT/CN2020/135953
Other languages
English (en)
French (fr)
Inventor
伯恩
Original Assignee
深圳华大智造科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳华大智造科技股份有限公司 filed Critical 深圳华大智造科技股份有限公司
Priority to PCT/CN2020/135953 priority Critical patent/WO2022120853A1/zh
Priority to CN202080107055.6A priority patent/CN116490812A/zh
Publication of WO2022120853A1 publication Critical patent/WO2022120853A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/40Scaling of whole images or parts thereof, e.g. expanding or contracting

Definitions

  • the invention relates to the field of biochemical information detection, in particular to a super-resolution detection system and a super-resolution detection method.
  • SIM Structured illumination microscopy
  • SLM-SIM spatial light modulator
  • DMD-SIM digital micromirror device
  • DMD Digital Micromirror Device
  • MEMS Micro-electrical-mechanical system
  • a single micro-mirror is called a pixel unit (Pixel), and the pixel unit has two states: ON and OFF.
  • the ON state corresponds to the highly reflective state
  • the OFF state corresponds to the non-reflective state.
  • the ON and OFF states are achieved by controlling the rotation angle of the mirror (the most common system is a deflection angle of ⁇ 12°).
  • DMD-SIM uses electronic control to realize fringe projection in both X/Y directions. DMD achieves high-speed direction switching and fringe phase shifting by switching micromirrors.
  • One aspect of the present invention provides a super-resolution detection system for detecting biological information of a sample to be tested, the super-resolution detection system comprising:
  • the light source module is used to emit light from the light source
  • the light modulator includes a plurality of micro-mirrors, the plurality of micro-mirrors are divided into a plurality of modulation units, and each modulation unit includes two micro-mirrors, and the light modulation module is used to convert the light source
  • the light is modulated to emit structured light, the structured light can be guided to the sample to be tested so that the sample to be tested emits detection light, the structured light forms a striped light spot on the sample to be tested, each of the The modulation unit corresponds to a fringe period;
  • an imaging module for acquiring fringe images according to the detection light, and for acquiring widefield images
  • a controller electrically connected to the light modulator and the imaging module, for adjusting the phase of the fringes formed by the structured light, and for performing super-resolution reconstruction according to the fringe image and the wide-field image, thereby obtaining super-resolution images to obtain biological information of the sample to be tested.
  • Another aspect of the present invention provides a super-resolution detection method for detecting biological information of a sample to be tested, the super-resolution detection method comprising the following steps:
  • a preset evaluation index is set, and a super-resolution image is acquired according to the first fringe image, the second fringe image and the wide-field image in an iterative manner, thereby acquiring the biological information of the sample to be tested.
  • the above-mentioned super-resolution detection system and super-resolution detection method adopt a two-step phase shift method, which is beneficial to increase the fringe density, increase the field of view area, and improve the sequencing throughput.
  • the two-step phase-shift scanning method combined with the iterative super-resolution reconstruction algorithm is conducive to realizing super-resolution reconstruction on the basis of acquiring fewer images, thereby shortening the image acquisition time and image processing. time, saving the cost of biological information detection.
  • FIG. 1 is a schematic structural diagram of a super-resolution detection system, a sample to be tested, and a sequencing chip provided in this embodiment.
  • FIG. 2 is a schematic diagram of the optical path structure of the super-resolution detection system in FIG. 1 .
  • FIG. 3 is a schematic plan view of the light modulator in FIG. 2 .
  • FIG. 4 is a schematic diagram of a deflection state of the micro-mirror in FIG. 2 .
  • FIG. 5 is a schematic diagram of the combination of the deflection states of the micro-mirrors in each modulation unit in the light modulator shown in FIG. 2 .
  • FIG. 6 is another schematic diagram of the combination of the deflection states of the micro-mirrors in each modulation unit in the light modulator shown in FIG. 2 .
  • FIG. 7 is a flowchart of the super-resolution detection method provided in this embodiment.
  • FIG. 8 is a detailed flowchart of step S3 in FIG. 7 .
  • FIG. 9 is a schematic diagram of a verification process based on a binary bitmap as a reference image.
  • the third lens 1231 is the third lens 1231
  • the sample to be tested 20 is carried on the sequencing chip 30 .
  • the reference light is emitted to the sample to be tested 20 .
  • the sequencing chip 30 and the super-resolution detection system 10 can be driven to move relative to each other.
  • the sequencing chip 30 is placed on a loading platform, and the sequencing chip 30 and the sample to be tested 20 and the super-resolution detection system 10 are moved relative to each other by moving the loading platform. That is, in the process of moving the loading platform, the loading platform, the sequencing chip 30 and the sample to be tested 20 are kept stationary.
  • the reference light can be projected to different areas on the sample 20 to be tested, and this process can also be referred to as "scanning". Since the field of view of the reference light on the sample to be tested 20 usually cannot completely cover the sample to be tested 20, by setting the sample to be tested 20 and the super-resolution detection system 10 to generate relative motion to move the sample to be tested 20, the super-resolution detection system 10 can be paired with each other. The entire sample to be tested 20 is scanned.
  • different bases on the sample 20 to be tested are marked with different fluorescent substances.
  • different fluorescent substances are excited to generate fluorescence with different wavelengths as the detection light.
  • the super-resolution detection system 10 is used for acquiring biological information of the sample to be tested 20 according to the detection light.
  • the super-resolution detection system 10 includes a light source module 11, a light modulation module 12, an imaging module 13 and a controller 14, and the light source module 11, the light modulation module 12 and the imaging module 13 are respectively electrically connected to the controller 14.
  • the light source module 11 includes two lasers 111 for emitting the first light and the second light respectively.
  • the wavelengths of the first light and the second light are different.
  • one of the two lasers 111 is used for emitting red laser light, and the other is used for emitting green laser light.
  • the light source module 11 includes other numbers of lasers, and each laser is used for emitting laser light of different wavelengths. The number of lasers may depend on the type of fluorescent substance on the sample 20 to be tested.
  • the light source module 11 further includes a light combining component for combining the first light and the second light to form light source light.
  • the light combining component includes a reflecting mirror 112 and a dichroic mirror 113 , wherein the laser light emitted by one laser 111 is incident on the dichroic mirror 113 and is transmitted by the dichroic mirror 113 , and the other laser 111 The emitted laser light is reflected by the mirror 112 to the dichroic mirror 113 and reflected by the dichroic mirror 113 . That is, the laser beams emitted by the two lasers 111 are combined at the dichroic mirror 113 and emitted as light source light.
  • the light source module 11 further includes a beam expander assembly.
  • the beam expander component is located on the exit path of the light source light, and is used to perform beam expansion processing on the light source light to meet the requirements for the field of view area in the subsequent light path, which will not be described here.
  • the beam expander assembly includes a first lens 114 and a second lens 115 .
  • the first lens 114 cooperates with the second lens 115 to expand the light source light.
  • the light modulator 121 is a digital micromirror device (Digital Micromirror Device, DMD).
  • the light modulator 121 includes a plurality of micro-mirrors 1211 arranged on the same plane.
  • the plurality of micromirrors 1211 are arranged in a micromirror array including rows and columns.
  • each micro-mirror 1211 is substantially rectangular, and the micro-mirror array on the light modulator 121 is substantially rectangular.
  • each micro-mirror 1211 can be deflected within a certain angle range.
  • each micro-mirror 1211 can be deflected in two opposite directions around the axis, and the maximum deflection angles in the two opposite directions are the same, and the maximum deflection angles in the two opposite directions are respectively defined as ⁇ and - ⁇ .
  • the controller 14 controls the state of each micro-mirror 1211 to be the deflection angle ⁇ or the deflection angle - ⁇ .
  • each micro-mirror 1211 When the deflection angle of each micro-mirror 1211 is defined as ⁇ , it is in the "ON" state, and when the deflection angle of each micro-mirror 1211 is defined as - ⁇ , it is in the "OFF" state.
  • the state of each micro-mirror 1211 in the light modulator 121 By adjusting the state of each micro-mirror 1211 in the light modulator 121, the shape and phase of the structured light emitted by the light modulator 121 can be adjusted.
  • the structured light emitted by the light modulator 121 is in the form of stripes.
  • the structured light can be projected onto the sequencing chip 30 .
  • a light spot including a plurality of parallel stripes is formed on the surface of the sequencing chip 30 .
  • the super-resolution detection system 10 works in multiple detection cycles. In each detection cycle, the super-resolution detection system 10 acquires multiple images of the sequencing chip 30 . During the same detection period, multiple images collected by the super-resolution detection system 10 are obtained according to structured light of different phases. In this embodiment, the process of changing the phase of the structured light in one detection period is defined as "phase shift".
  • the sequencing chip 30 is photographed using a three-step phase shift detection method. That is, in one detection cycle, three types of structured light with different phases are projected onto the sequencing chip 30 in two different directions, respectively, and the pictures are taken respectively, then three images can be obtained in each direction, that is, A total of six images were acquired.
  • the biological information of the sample to be tested 20 on the sequencing chip 30 can be acquired according to the six images.
  • the plurality of micro-mirrors 1211 in the light modulator 121 are arranged as a micro-mirror array including a plurality of rows and columns.
  • all the micro-mirrors 1211 in the light modulator 121 are divided into a plurality of mutually independent modulation units, each modulation unit includes four micro-mirrors 1211, and the same modulation unit includes four micro-mirrors 1211.
  • Four micro-mirrors 1211 are arranged adjacently.
  • the four micro-mirrors 1211 in each modulation unit are arranged in the same row, or the four micro-mirrors 1211 in each modulation unit are arranged in the same column.
  • each micro-mirror 1211 In order to realize the three-step phase shift, the state ("ON" or "OFF") of each micro-mirror 1211 is controlled in a manner that each modulation unit corresponds to one fringe period. That is, one fringe period is represented by four micro-mirrors 1211 .
  • FIG. 5 presents eight micro-mirrors 1211 (ie, two modulation units) to represent two fringe periods.
  • the structured light emitted from the light modulator 121 forms binary fringes, and the light intensity of the binary fringes is the duty cycle A square wave shape with a ratio of 50%.
  • the binary fringes are projected onto the surface of the sequencing chip 30 by the multiplier adjustment component 123, due to the limited numerical aperture of the optical elements in the multiplier adjustment component 123, the effect of low-pass filtering is achieved, and the binary fringes are turned into sinusoidal fringes. Then, sinusoidal stripes are projected onto the surface of the sequencing chip 30 .
  • each micro-mirror 1211 in each dimming unit there are three combinations of states of each micro-mirror 1211 in each dimming unit: as shown in (a) “on and off”, the corresponding fringe phase is 0; as shown in (b) The "switch on and off” shown in the figure corresponds to a fringe phase of ⁇ /2; as shown in Figure (c), the corresponding fringe phase is ⁇ .
  • the stripes as shown in (a), (b), and (c) are projected onto the sequencing chip 30 in a time-sharing manner, thereby realizing a three-step phase shift.
  • the dimming device 121 implements three-step phase shifts in the row and column directions respectively, and a total of 6 images are collected for the frequency-domain super-resolution reconstruction method.
  • the present invention proposes a control method in which two micro-mirrors 1211 are used to represent a fringe period, and there are two state combinations for every four adjacent micro-mirrors 1211 (ie, two adjacent modulation units). : As shown in Fig. 6(a), the corresponding fringe phase is 0; as shown in Fig. 6(b), the corresponding fringe phase is ⁇ . a two-step phase shift.
  • the number of micro-mirrors 1211 in the light modulator 121 is: M ⁇ N.
  • the field of view obtained using the three-step phase shift method is:
  • the multiplier adjusting component 123 includes a third lens 1231 and a fourth lens 1232 .
  • the structured light emitted from the light modulator 121 is incident on the third lens 1231 through the total internal emission mirror 122 , and then is incident on the fourth lens 1232 from the third lens 1231 .
  • the third lens 1231 and the fourth lens 1232 are used to jointly adjust the fringe size of the structured light.
  • the third lens 1231 has a focal length f 3
  • the fourth lens 1232 has a focal length f 4 .
  • the fourth lens 1232 is an objective lens.
  • the focal lengths of the objective lenses are usually kept the same, so the focal length ratio between the third lens 1231 and the fourth lens 1232 is adjusted by configuring the third lenses 1231 with different focal lengths.
  • the stripes formed by structured light in one detection cycle have two phases, and two images need to be collected in the X and Y directions respectively, which effectively reduces the number of collected images compared to the three-step phase shift method. It is beneficial to reduce the time-consuming of detection and the time-consuming of processing images.
  • the imaging module 13 includes a first dichroic mirror 131 , a second dichroic mirror 132 , two filters 133 , two fifth lenses 134 and two imaging devices 135 .
  • the controller 14 is used to control the deflection state of each micro-mirror 1211 in the light modulator 121, so as to adjust the fringe shape and phase of the structured light projected onto the sequencing chip 30, and to perform superimposition on the multiple images acquired by the imaging device 135. Resolve and reconstruct to obtain biological information of the sample 20 to be tested.
  • the super-resolution detection method includes the following steps:
  • Step S1 generating structured light, scanning the sample to be tested in a two-step phase shift manner, acquiring the first fringe image and the second fringe image in the first direction, and acquiring the first fringe image in the second direction;
  • Step S2 obtaining a widefield image of the sample to be tested
  • Step S3 setting a preset evaluation index, and obtaining a super-resolution image according to the first fringe image, the second fringe image and the wide-field image in an iterative manner, thereby obtaining the biological information of the sample to be tested .
  • the surface of the sequencing chip 30 be the reference surface, denoted as I obj (x, y), where (x, y) represents the coordinates of the two-dimensional Cartesian coordinate system.
  • the fringe pattern be: P Xm (x, y) and P Yn (x, y), the subscripts X, Y represent the two directions of X and Y in the two-dimensional Cartesian coordinate system, and m, n represent the two directions of X or Y, respectively.
  • the super-resolution detection system 10 images the sequencing chip 30 to obtain a low-resolution wide-field image I 0 (x, y).
  • the low-resolution striped image collected by the super-resolution detection system 10 is: I k (x, y), k ⁇ [1, m+n].
  • step S2 there are mainly two ways to obtain the widefield image:
  • the controller 14 controls all the micro-mirrors 1211 in the light modulator 14 to be in the “ON” (open) state.
  • the image obtained by the structured light incident on the sequencing chip 30 is the low-resolution wide-field image I. 0 (x,y).
  • the phase difference of the fringes on I 1 (x,y) and I 2 (x,y) is ⁇ , so adding I 1 (x,y) and I 2 (x,y) can get a low
  • step S3 specifically includes:
  • Step S31 taking the widefield image as a preliminary estimation of the super-resolution image
  • Step S32 constructing a target function to obtain a target image, and updating the target image
  • Step S33 obtaining a super-resolution image according to the updated target image
  • Step S34 repeating steps S32 and S33, traversing the first fringe image and the second fringe image
  • the optical transfer function of the super-resolution detection system 10 is defined as: OTF; the point spread function is: PSF.
  • the fringe pattern P k (x, y) is projected on the sequencing chip 30, and the optical process in which the super-resolution detection system 10 collects the low-resolution fringe image I k (x, y) can be expressed in the frequency domain as: In the spatial domain, the sequencing chip I obj is multiplied by the fringe pattern P k ; in the frequency domain, the optical transfer function OTF is multiplied by the spectrum of the objective function It tk .
  • deconv stands for "deconvolution” operation, mainly to suppress image noise, improve image quality, and speed up convergence.
  • step S34 steps S32 and S33 are repeated to traverse all m+n fringe patterns P k (x, y), k ⁇ [1,m+n].
  • step S35 multiple iterations are performed until the preset evaluation index converges.
  • the number of iterations is usually 10 to 50 times.
  • the DNA nanospheres are regularly arranged in squares and have a specific structure. Therefore, the above-mentioned preset evaluation index is the Structural Similarity Index (SSIM), which is used to characterize the convergence of multiple iterations. .
  • SSIM Structural Similarity Index
  • l, c, s compare the brightness, contrast, and structure of images I 0 and I obj-update , respectively.
  • C 1 , C 2 , and C 3 are all constants, which are used to maintain the stability of l, c, and s when the denominator is small.
  • the ideal reference image I obj (image (a) in Fig. 9 and Fig. 10 ) is compared with the fringe image P X1 (the first fringe image in the first direction, in Fig. 9 and Fig. 10 ).
  • P X2 the second fringe image in the first direction, Figure 9 and Figure 10 (c)
  • P Y1 the first fringe image in the second direction, in Figures 9 and 10 ) (d) Figure
  • the above process is the process of collecting fringe images.
  • the wide-field image I 0 (Fig. 9 and (h) in Fig. 10 ) can be obtained by adding I 1 +I 2 .
  • a super-resolution image is obtained (Fig. 9 and (i) in Fig. 10).
  • SSIM is selected as the evaluation index ((n) in Figure 9 and Figure 10) to characterize the convergence of the algorithm in the iterative process.
  • (n) in Figure 9 and Figure 10 it can be seen that the SSIM of the reference image has a large gap with the SSIM of the widefield image.
  • the convergence value is larger than that of the wide-field image, which proves that the method achieves the effect of super-resolution.
  • the size of the original reference image shown in (a) in Figure 9 is 1024 ⁇ 1024 pixels, and the time required for 50 iterations is 12.18s; SSIM has converged after 20 iterations, so the 20 iterations of super-resolution reconstruction take 4.87s.
  • the size of the original reference image shown in (a) in Figure 10 is 256 ⁇ 256 pixels, and the time required for 50 iterations is 0.84s; SSIM has converged after 20 iterations, so the 20 iterations of super-resolution reconstruction take 0.33s.
  • Using a graphics processor (Graphics Processing Unit, GPU) or adding a random access memory (Random Access Memory, RAM) can further reduce the time-consuming.
  • the edge of the wide-field image is “flat” compared with the reference image, and the resolution is lower; although the super-resolution reconstructed image has a phenomenon similar to “ripple”, but Significantly more "steep” and higher resolution than widefield images, ie super-resolution is achieved.
  • the LSF of the wide-field image, the LSF of the super-resolution image, and the LSF of the reference image decrease in turn; the narrower the LSF, the higher the resolution; because the LSF of the super-resolution image is higher than that of the wide-field image.
  • the LSF is narrower, so the super-resolution effect is achieved.
  • the center of the two-dimensional spectrum represents the low-frequency spatial frequency, and the spatial frequency gradually increases from the center to the outside; the higher the spatial frequency, the higher the resolution; ) figure), it can be seen that the two-dimensional spectrum of the reference image (figures (j) in Figures 9 and 10) has the widest range; the two-dimensional spectral range of the super-resolution reconstructed image (figures (m) in Figures 9 and 10) is much larger than The two-dimensional spectral range of the wide-field image ( Figure 9 and Figure 10 (l)), so the effect of super-resolution is achieved.
  • step S1 and step S2 are not used to limit that the steps labeled S1 are executed before the steps labeled S2, which should be understood as super-resolution detection.
  • the method also includes an embodiment of first executing step S1 and then executing step S2 and an embodiment of first executing step S2 and then executing step S1.
  • the super-resolution detection system 10 and the super-resolution detection method provided in this embodiment adopt a two-step phase shift method, and set two micro-mirrors corresponding to one fringe period, which is beneficial to increase the fringe density, increase the field of view area, and improve the sequencing throughput .
  • the two-step phase-shift scanning method combined with the above-mentioned super-resolution reconstruction algorithm, is conducive to realizing super-resolution reconstruction on the basis of collecting fewer images, thereby shortening the image acquisition time and the image processing time.
  • the detection cost of biological information is saved.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Multimedia (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

一种超分辨检测系统(10)和一种超分辨检测方法,超分辨检测系统(10)包括:光源模组(11),用于发射光源光;光调制器(121),包括多个微反射镜(1211),多个微反射镜(1211)被划分为多个调制单元,每一调制单元中包括两个微反射镜(1211),光调制模组(12)用于将光源光调制为结构光出射,结构光可被引导至待测样品(20)以使待测样品(20)出射检测光,结构光在待测样品(20)上形成条纹光斑,每一调制单元对应一条纹周期;成像模组(13),用于根据检测光获取条纹图像,并用于获取宽场图像;以及控制器(14),电连接光调制器(121)及成像模组(13),用于调节结构光形成的条纹的相位,并用于根据条纹图像和宽场图像进行超分辨重建,从而获取超分辨图像,以获取待测样品(20)的生物信息。

Description

超分辨检测系统及超分辨检测方法 技术领域
本发明涉及生化信息检测领域,尤其涉及一种超分辨检测系统及超分辨检测方法。
背景技术
基因测序技术是指分析DNA上的四种碱基的序列的技术,至今已广泛应用于生命科学和医学的多个研究领域,包括各类基因组学、复杂疾病的病因学、产前诊断、药物个体化治疗等。基因测序的基本方法为:通过生化方法使四种碱基携带对应的荧光基团,荧光基团受不同波长激光激发后发射不同波长的荧光,通过该荧光识别碱基类型,从而实现测序。
结构光照明显微(structured illumination microscopy,SIM)技术是一种典型的宽场成像技术,适用于基因测序仪的高分率荧光显微成像系统。SIM技术的光学硬件系统实现方式主要基于所采用的器件进行划分,典型器件如:光栅(Grating-SIM),空间光调制器(SLM-SIM),数字微镜器件(DMD-SIM)等。数字微镜器件(Digital Micromirror Device,DMD)是一个由表面镀有高反射铝膜的微反射镜阵列组成的微光机系统(Micro-electrical-mechanical system,MEMS)。单个微反射镜称为一个像素单元(Pixel),像素单元有两种状态:ON和OFF。ON状态对应高反射状态,OFF状态对应无反射状态。ON和OFF的状态是通过控制镜面的旋转角度来实现的(最常见的系统是±12°的偏转角度)。DMD-SIM采用电控方式实现X/Y两个方向的条纹投射。DMD通过开关微镜实现高速的方向切换和条纹相移。
传统的采用DMD-SIM的方式下,需要采集较多条纹图像,图像采集耗时长,从而也增加了处理图像的时长。
发明内容
本发明一方面提供一种超分辨检测系统,用于检测待测样品的生物信息,所述超分辨检测系统包括:
光源模组,用于发射光源光;
光调制器,包括多个微反射镜,所述多个微反射镜被划分为多个调制单元,每一调制单元中包括两个微反射镜,所述光调制模组用于将所述光源光调制为结构光出射,所述结构光可被引导至所述待测样品以使所述待测样品出射检测光,所述结构光在所述待测样品上形成条纹光斑,每一所述调制单元对应一条纹周期;
成像模组,用于根据所述检测光获取条纹图像,并用于获取宽场图像;以及
控制器,电连接所述光调制器及所述成像模组,用于调节所述结构光形成的条纹的相位,并用于根据所述条纹图像和所述宽场图像进行超分辨重建,从而获取超分辨图像,以获取所述待测样品的生物信息。
本发明另一方面提供一种超分辨检测方法,用于检测待测样品的生物信息,所述超分辨检测方法包括如下步骤:
产生结构光,以两步相移的方式扫描待测样品,获取第一方向上的第一条纹图像和第二条纹图像,获取第二方向上的第一条纹图像;
获取所述待测样品的宽场图像;
设定预设评价指标,通过迭代的方式根据所述第一条纹图像、所述第二条纹图像和所述宽场图像,获取超分辨图像,从而获取所述待测样品的生物信息。
上述的超分辨检测系统和超分辨检测方法,采用两步相移的方式,有利于提高条纹密度,增加视场面积,提高测序通量。以两步相移的扫描方式,结合采用迭代方式的超分辨重建算法,有利于在采集更少图像的基础上实现超分辨重建,从而有利于缩短图像采集时间,还有利于缩短对图像的处理时间,节省了生物信息的检测成本。
附图说明
图1为本实施例提供的超分辨检测系统、待测样品及测序芯片的结构示意图。
图2为图1中超分辨检测系统的光路结构示意图。
图3为图2中光调制器的平面结构示意图。
图4为图2中微反射镜的偏转状态示意图。
图5为图2所示光调制器中每个调制单元中各微反射镜的偏转状态组合方式的一示意图。
图6为图2所示光调制器中每个调制单元中各微反射镜的偏转状态组合方式的另一示意图。
图7为本实施例提供的超分辨检测方法的流程图。
图8为图7中步骤S3的细化流程图。
图9为基于二值点阵图作为参考图像的验证过程示意图。
图10为基于测序芯片的荧光图像作为参考图像的验证过程示意图。
主要元件符号说明
超分辨检测系统                   10
光源模组                         11
激光器                           111
反射镜                           112
二向色镜                         113
第一透镜                         114
第二透镜                         115
光调制模组                       12
光调制器                         121
微反射镜                         1211
全内发射镜                       122
倍数调节组件                     123
第三透镜                         1231
第四透镜                         1232
成像模组                         13
第一二向色镜                     131
第二二向色镜                     132
滤光片                            133
第五透镜                          134
成像装置                          135
待测样品                          20
测序芯片                          30
步骤                              S1、S2、S3、S31、S32、S33、S34、S35
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
请参阅图1,本发明实施例的超分辨检测系统10可用于检测待测样品20的生物信息。待测样品20可为核酸样品(DNA或RNA)、蛋白或者细胞等。本实施例中,待测样品20为核酸样品,生物信息可为待测样品20的碱基序列信息。
待测样品20承载于测序芯片30。超分辨检测系统10工作过程中,出射参考光至待测样品20。通过移动设置测序芯片30与超分辨检测系统10产生相对运动,可以带动待测样品20与超分辨检测系统10产生相对运动移动。本实施例中,测序芯片30被放置于一载物平台,通过移动载物平台的方式使得测序芯片30和待测样品20与超分辨检测系统10产生相对运动。也即,在移动载物平台的过程中,载物平台、测序芯片30和待测样品20之间是保持静止的。通过设置移动待测样品20与超分辨检测系统10产生相对运动,可使得参考光投射至待测样品20上的不同区域,该过程也可称之为“扫描”。由于参考光在待测样品20上的视场通常无法完整覆盖待测样品20,通过设置待测样品20与超分辨检测系统10产生相对运动移动待测样品20,可实现超分辨检测系统10对整个待测样品20进行扫描。
本实施例中,待测样品20上不同的碱基通过不同的荧光物质标记。当参考光照射待测样品20时,不同的荧光物质受激产生不同波长的荧光作为检测光。超分辨检测系统10用于根据所述检测光获取待测样品20的生物信息。
请参阅图2,图2中实线箭头表示激光的传播方向,虚线箭头表示荧光的传播方向。超分辨检测系统10包括光源模组11、光调制模组12、成像模组13及 控制器14,光源模组11、光调制模组12及成像模组13分别电连接控制器14。
光源模组11包括两台激光器111,分别用于发射第一光和第二光。本实施例中,第一光和第二光波长不同。例如两台激光器111中其中一者用于发射红色激光,另一者用于发射绿色激光。于其他实施例中,光源模组11包括其他数量的激光器,且每台激光器用于发射不同波长的激光。激光器的数量可取决于待测样品20上的荧光物质的类型。
光源模组11还包括合光组件,所述合光组件用于将第一光和第二光合光,以形成光源光。本实施例中,所述合光组件包括一反射镜112及一二向色镜113,其中一个激光器111出射的激光入射至二向色镜113并被二向色镜113透射,另一激光器111出射的激光经反射镜112反射至二向色镜113,被二向色镜113反射。也即,两台激光器111出射的激光在二向色镜113合束作为光源光出射。
光源模组11还包括扩束组件。所述扩束组件位于所述光源光的出射路径上,用于对所述光源光进行扩束处理,以满足后续光路中对视场面积的需求,此处不作过多描述。本实施例中,所述扩束组件包括第一透镜114和第二透镜115。第一透镜114与第二透镜115配合对光源光进行扩束。
请继续参阅图2,光调制模组12包括全内发射镜122和光调制器121及倍数调节组件123。全内发射镜122用于接收经扩束后的光源光,并用于将其投射至光调制器121。光调制器121用于对接收到的光进行调制以产生结构光。全内发射镜122还用于将所述结构光引导至成像模组13。
请参阅图3,光调制器121为一数字微镜器件(Digital Micromirror Device,DMD)。光调制器121包括多个排列于同一平面的多个微反射镜1211。多个微反射镜1211排列为包括多行和多列的微镜阵列。本实施例中,每一微反射镜1211为大致矩形,光调制器121上微镜阵列为大致矩形。
请参阅图4,每一微反射镜1211可在一定角度范围内偏转。本实施例中,每一微反射镜1211可绕轴在两个相反方向偏转,且在所述两个相反方向的最大偏转角相同,在所述两个相反方向的最大偏转角分别定义为α和-α。超分辨检测系统10工作过程中,通过控制器14分别控制每一微反射镜1211的状态为偏转角度α或偏转角度-α。定义每一微反射镜1211偏转角度为α时为“ON”状态,定义每一微反射镜1211偏转角度为-α时为“OFF”状态。通过调节光调制器121 中的各个微反射镜1211的状态,可调节光调制器121所出射的结构光的形态、相位。
本实施例中,光调制器121所出射的结构光为条纹形态。结构光可被投射至测序芯片30上。结构光被投射至测序芯片30上时,在测序芯片30表面形成包括多个平行条纹形状的光斑。
超分辨检测系统10在工作过程中,工作于多个检测周期。在每一个检测周期,超分辨检测系统10采集测序芯片30的多幅图像。在同一检测周期,超分辨检测系统10采集的多幅图像根据不同相位的结构光获得。本实施例中,将一个检测周期中改变结构光相位的过程定义为“相移”。
在一种超分辨待测系统中,使用三步相移的检测方式对测序芯片30进行拍照。也即,在一个检测周期中,在两个不同的方向上分别投射三种不同相位的结构光至测序芯片30上,分别进行拍照,则在每个方向上皆可获取三幅图像,也即共获取六幅图像。可根据该六幅图像获取测序芯片30上待测样品20的生物信息。
如上述的,光调制器121中的多个微反射镜1211排列为包括多行和多列的微镜阵列。在该超分辨待测系统中,将光调制器121中所有的微反射镜1211划分为多个相互独立的调制单元,每个调制单元中包括四个微反射镜1211,且同一调制单元中的四个微反射镜1211是相邻排列的。每个调制单元中四个微反射镜1211排列在同一行,或每个调制单元中四个微反射镜1211排列在同一列。
为了实现三步相移,以每个调制单元对应一个条纹周期的方式对各个微反射镜1211的状态(“ON”或“OFF”)进行控制。也即,以四个微反射镜1211来代表一个条纹周期。
请参阅图5,图5呈现了8个微反射镜1211(也即两个调制单元)来表示两个条纹周期。首先,通过控制各个微反射镜1211的“ON”(开)和“OFF”(关)状态,使得从光调制器121出射的结构光形成二值条纹,该二值条纹的光强为占空比为50%的方波形状。该二值条纹经倍数调节组件123投射到测序芯片30表面时,由于倍数调节组件123中的光学元件的数值孔径有限,所以起到了低通滤波的效果,将二值条纹变成了正弦条纹。则,投射到测序芯片30表面的为正弦条纹。
如图5所示,每个调光单元中各个微反射镜1211的状态组合方式共有三种:如(a)图所示的“开开关关”,对应的条纹相位为0;如(b)图所示的“开关关开”,对应的条纹相位为π/2;如(c)图所示的“关关开开”,对应的条纹相位为π。分时向测序芯片30投射如(a)、(b)、(c)图所示的条纹,从而实现三步相移。并通过类似的方式,由调光装置121分别在行和列方向上实现三步相移,共采集6张图像用于频域超分辨重建方法。
上述的方式下,在每一个检测周期都要采集6张图像,且需要根据6张图像进行超分辨重建,耗时较长,本发明实施例提供的超分辨检测系统10用于通过改进图像采集方式配合改进图像重建方法减少检测时长。具体的,本发明实施例提供的超分辨检测系统10,采用两步相移的方式采集图像,并采用迭代方式进行超分辨重建。
请参阅图6,本发明提出采用两个微反射镜1211表示一个条纹周期的控制方式,每相邻四个微反射镜1211(也即两个相邻的调制单元)的状态组合方式共有两种:如图6的(a)图所示的“开关开关”,对应的条纹相位为0;如图6中(b)图所示的“关开关开”,对应的条纹相位为π,从而实现了两步相移。
理想情况下,投射到测序芯片30表面的正弦条纹的周期应该等于光学成像系统的分辨率,分辨率通常用瑞利判据表示,即:R=0.61λ/NA;其中λ表示波长,NA表示物镜的数值孔径。
如图3所示,光调制器121中微反射镜1211数量为:M×N。采用三步相移方法得到的视场为:
Figure PCTCN2020135953-appb-000001
采用两步相移得到的视场为:
Figure PCTCN2020135953-appb-000002
显然,FOV 2=4·FOV 1。也即,相较于三步相移的方式,采用两步相移的方式可以将视场提高4倍。
请再参阅图2,本实施例中,倍数调节组件123包括第三透镜1231和第四透镜1232。从光调制器121出射的结构光经全内发射镜122入射至第三透镜1231,进而由第三透镜1231入射至第四透镜1232。第三透镜1231和第四透镜1232用于共同调节结构光的条纹大小。第三透镜1231具有焦距f 3,第四透镜1232具有焦距f 4,通过调节焦距的比值可调节结构光的条纹大小。本实施例中,第四透镜1232为物镜。超分辨检测系统10工作过程中,物镜的焦距通常保持一致,因此通过配置焦距不同的第三透镜1231以调节第三透镜1231与第四透 镜1232之间的焦距比。
定义每一微反射镜1211的尺寸为:Δx=Δy,由于三步相移方式中采用四个微反射镜1211来代表一个条纹周期,条纹周期应该等于光学成像系统的分辨率R,所以结构光形成的条纹的缩小倍数为:
Figure PCTCN2020135953-appb-000003
(该式在Δx=Δy时成立)。两步相移的方式中,采用两个微反射镜1211来代表一个条纹周期,条纹周期也等于光学成像系统的分辨率R,所以结构光形成的条纹周期的缩小倍数为:
Figure PCTCN2020135953-appb-000004
(该式在Δx=Δy时成立)。由此可见,采用三步相移的方式时的条纹缩小倍数是采用两步相移的方式时的两倍。因此采用两步相移的方式时的条纹密度是采用三步相移的方式时的两倍。
在此基础上,一个检测周期中结构光形成的条纹具有两种相位,需在X和Y方向上分别采集两幅图像,由此使得采集的图像数量相对于三步相移的方式有效减少,有利于减少检测耗时,也有利于减少处理图像的耗时。
成像模组13包括第一二向色镜131、第二二向色镜132、两个滤光片133、两个第五透镜134及两个成像装置135。
第一二向色镜131位于第三透镜1231和第四透镜1232之间,用于透射结构光至第四透镜1232,并用于反射检测光至第二二向色镜132。第二二向色镜132用于将接收到的检测光按照波长不同进行分束后,分别引导至两个成像装置135。其中一个滤光片133和一个第五透镜134位于第二二向色镜132和其中一个成像装置135之间,另一滤光片133和另一第五透镜134位于第二二向色镜132和另一成像装置135之间。滤光片133和第五透镜134用于引导检测光至相应的成像装置135。成像装置135用于根据前述的两步相移方式中的各种相位的条纹照射产生的检测光分别成像。
控制器14用于控制光调制器121中各个微反射镜1211的偏转状态,从而调节投射至测序芯片30上的结构光的条纹形态和相位,并对成像装置135所获取的多幅图像进行超分辨重建,获取待测样品20的生物信息。
本实施例还提供一种超分辨检测方法,用于检测待测样品20的生物信息,该超分辨检测方法应用于上述的超分辨检测系统10,具体的,应用于上述控制器14。
请参阅图7,所述超分辨检测方法包括如下步骤:
步骤S1,产生结构光,以两步相移的方式扫描待测样品,获取第一方向上的第一条纹图像和第二条纹图像,获取第二方向上的第一条纹图像;
步骤S2,获取待测样品的宽场图像;
步骤S3,设定预设评价指标,通过迭代的方式根据所述第一条纹图像、所述第二条纹图像和所述宽场图像,获取超分辨图像,从而获取所述待测样品的生物信息。
步骤S1中所述获取第一条纹图像和第二条纹图像的方法已于上文详细描述,不再赘述。
令测序芯片30表面为参考面,记为I obj(x,y),(x,y)表示二维笛卡尔坐标系的坐标。令条纹图案为:P Xm(x,y)和P Yn(x,y),下标X,Y表示二维笛卡尔坐标系的X,Y两个方向,m,n分别表示X或Y两个方向上条纹相移的数量,所以共有m+n个条纹图案,即:{P X1(x,y),P X2(x,y),…,P Xm(x,y),P Y1(x,y),P Y2(x,y),…,P Yn(x,y)}。为了方便起见,这里的m+n个条纹图案统一记作:P k(x,y),k∈[1,m+n]。
当采用宽场光扫描测序芯片30时,超分辨检测系统10对测序芯片30进行成像,得到低分辨率的宽场图像I 0(x,y)。当采用条纹的结构光扫描测序芯片30时,超分辨检测系统10采集的低分辨率条纹图像为:I k(x,y),k∈[1,m+n]。
步骤S2中,宽场图像的获取方式主要有两种方式:
方式一,控制器14控制光调制器14中所有的微反射镜1211均处于“ON”(开)状态,此时结构光入射至测序芯片30得到的图像即为低分辨率的宽场图像I 0(x,y)。
在保证超分辨重建效果的情况下,m+n越小越好。方式二,由于本实施例采用两步相移的方式扫描测序芯片30,在一个检测周期,最少只需采集3(m=2,n=1;或者m=1,n=2)张原始图像即可完成超分辨重建。以m=2,n=1为例,即在X和Y两个方向上分别投射两组和一组条纹,采集的条纹图像记为:I 1(x,y),I 2(x,y),I 3(x,y)。根据前述可知,I 1(x,y)与I 2(x,y)上面的条纹相位差为π,所以将I 1(x,y)与I 2(x,y)相加即可得到低分辨率的宽场图像,即I 1(x,y)+I 2(x,y)=I 0(x,y)。因此,采用本实施例中的两步相移方式时,可无需特意控制光调制器14中所有的微反射镜1211均处于“ON”(开)状态,去采集宽场图像I 0(x,y)。由此可知,方式二相较于方式一,宽场图像通过计算获得,而并非通过实际投射宽场 的结构光获取,有利于减少获取图像的耗时,提高通量。
请参阅图8,步骤S3具体包括:
步骤S31,将所述宽场图像作为超分辨图像的初步估计;
步骤S32,构建目标函数以获取目标图像,更新所述目标图像;
步骤S33,根据所述更新后的目标图像,获取超分辨率图像;
步骤S34,重复步骤S32和步骤S33,遍历所述第一条纹图像和第二条纹图像;及
步骤S35,重复步骤S32、步骤S33及步骤S34,直到所述预设评价指标收敛。
定义超分辨检测系统10的光学传递函数为:OTF;点扩散函数为:PSF。条纹图案P k(x,y)投射在测序芯片30上,超分辨检测系统10采集低分辨率的条纹图像I k(x,y)的这一光学过程,可以在频域内表示为:
Figure PCTCN2020135953-appb-000005
在空域内,测序芯片I obj与条纹图案P k相乘;在频域内,光学传递函数OTF与目标函数I tk的频谱相乘。
步骤S31和步骤S32中,选择宽场图像I 0(x,y)作为超分辨率测序芯片30(I obj)的超分辨图像的初步估计,即I obj=I 0
步骤S32中,构建目标函数:I tk=I obj·P k,然后根据式(1)更新目标图像I tk,获取第一更新图像
Figure PCTCN2020135953-appb-000006
Figure PCTCN2020135953-appb-000007
deconv代表“去卷积”运算,主要是是为了抑制图像噪声,提高图像质量,加快收敛速度。
步骤S33中,将第一更新图像
Figure PCTCN2020135953-appb-000008
带入式(2),得到第二更新图像
Figure PCTCN2020135953-appb-000009
Figure PCTCN2020135953-appb-000010
步骤S34中,重复步骤S32和步骤S33,遍历所有m+n个条纹图案P k(x,y),k∈[1,m+n]。
将步骤S31~步骤S34视作依次迭代,步骤S35中,进行多次迭代,直至预设的评价指标收敛。
本实施例中,迭代次数通常为10~50次。本实施例中,DNA纳米球是成正方形规则排列的,具有特定的结构,因此上述预设的评价指标为选择结构相似 性指标(Structural Similarity Index,SSIM),用于表征多次迭代的收敛性。已知两张条纹图像,宽场图像I 0和每一次迭代的更新后的图像
Figure PCTCN2020135953-appb-000011
(为了简便,将
Figure PCTCN2020135953-appb-000012
的上标“updated”移到下标位置:I obj-updated),SSIM计算公式由式(3)表示:
Figure PCTCN2020135953-appb-000013
其中,l,c,s分别比较图像I 0和I obj-update的亮度,对比度,结构。α>0,β>0,γ>0,用于调整l,c,s的相对重要性,相对数值越大,则相对重要性越高;通常取α=β=γ=1。
Figure PCTCN2020135953-appb-000014
Figure PCTCN2020135953-appb-000015
分别为图像I 0和I obj-updated的平均值;
Figure PCTCN2020135953-appb-000016
Figure PCTCN2020135953-appb-000017
分别为图像I 0和I obj-update标准差;
Figure PCTCN2020135953-appb-000018
为图像I 0和I obj-update的协方差。C 1,C 2,C 3均为常数,用于在分母很小时维持l,c,s的稳定。
以下对上述的超分辨检测系统10及超分辨检测方法的效果进行验证,主要提供两种验证方式:以二值点阵图作为参考图像进行验证和以测序芯片的荧光图像作为参考图像进行验证。
请参阅图9和图10,将理想的参考图像I obj(图9和图10中的(a)图)与条纹图像P X1(第一方向上的第一条纹图像,图9和图10中(b)图)、P X2(第一方向上的第二条纹图像,图9和图10中(c)图)及P Y1(第二方向上的第一条纹图像,图9和图10中(d)图)相乘。经二维傅里叶变换后与系统的光学传递函数OTF(图9和图10中(k)图)作卷积,再做二维逆傅里叶变换,得到条纹照明图像I 1、I 2及I 3。上述过程即是采集条纹图像的过程。宽场图像I 0(图9和图10中(h)图)可以通过将I 1+I 2得到。
根据上述的超分辨重建算法,得到超分辨图像(图9和图10中(i)图)。在迭代过程中,选择SSIM作为评价指标(图9和图10中(n)图),用于表征算法迭代过程中的收敛性。根据图9和图10中(n)图可知:参考图像的SSIM与宽场图像的SSIM有较大差距,超分辨图像的SSIM随着迭代的进行,快速逼近参考图像的SSIM,并且,其最终收敛值大于宽场图像,可以佐证该方法实现了超分辨的效果。
图9中(a)图所示的参考图像原图大小为1024×1024像素,迭代50次耗 时为12.18s;SSIM在20次迭代时已经收敛,所以超分辨重建的20次迭代耗时为4.87s。
图10中(a)图所示的参考图像原图大小为256×256像素,迭代50次耗时为0.84s;SSIM在20次迭代时已经收敛,所以超分辨重建的20次迭代耗时为0.33s。采用图形处理器(Graphics Processing Unit,GPU)或者增加随机存取存储器(Random Access Memory,RAM)可以进一步缩减耗时。
通过展示空域形貌更直观地在空域观察超分辨重建效果,在图9的(o)图中,由于参考图像是二值化的点阵,所以有必要对单个点直径位置的边缘扩展函数(Edge Spread Function,ESF)和线扩展函数(Line Spread Function,LSF)进行表征。图9的(o)图中的左/右坐标轴分别对比了参考图像((a)图),宽场图像((h)图)和超分辨重建图像((i)图)的ESF和LSF。观察左轴可以发现:由于系统的数值孔径有限,宽场图像的边缘与参考图像相比,显得比较“平缓”,分辨率较低;超分辨重建图像虽然有类似“纹波”的现象,但是明显比宽场图像更加“陡峭”,分辨率更高,即实现了超分辨效果。观察右轴可以发现:宽场图像的LSF,超分辨图像的LSF,参考图像的LSF,呈依次减小的趋势;LSF越窄,分辨率越高;由于超分辨图像的LSF比宽场图像的LSF更窄,所以实现了超分辨的效果。
在图10(o)图中,可以直观观察参考图像的ESF,宽场图像的ESF,超分辨图像的ESF。通过对比发现:参考图像中明显区分开的两个峰值点,在宽场图像中由于成像系统数值孔径有限而无法区分,但是在超分辨图像中,两个峰值点重新区分开来,即实现了超分辨的效果。
以上均是从空域直接对比超分辨效果,或者从SSIM侧面佐证超分辨效果;为了更加直观地对比超分辨效果,这里对参考图像(图9和图10中(a)图),宽场图像(图9和图10中(h)图)和超分辨重建图像(图9和图10中(i)图)作二维傅里叶变换,得到其二维频谱(图9和图10中(j)、(l)、(m)图)。二维频谱中心代表低频空间频率,从中心向外,空间频率逐渐增高;空间频率越高,分辨率越高;对比二维频谱(图9和图10中(j)、(l)、(m)图)可知,参考图像的二维频谱(图9和图10中(j)图)范围最广;超分辨重建图像的二维频谱范围(图9和图10中(m)图)远大于宽场图像的二维频谱范围(图9和 图10中(l)图),所以实现了超分辨的效果。
应当理解,本申请中上述的所有方法步骤,除特别说明执行顺序外,并不限定各个步骤的执行顺序。并且,也不因标号顺序限定各个步骤的执行顺序,例如步骤S1和步骤S2,标号S1和标号S2并不用于限定标号为S1的步骤先于标号为S2的步骤执行,应理解为超分辨检测方法同时包括先执行步骤S1后执行步骤S2的实施例和先执行步骤S2再执行步骤S1的实施例。
本实施例提供的超分辨检测系统10和超分辨检测方法,采用两步相移的方式,设置两个微反射镜对应一个条纹周期,有利于提高条纹密度,增加视场面积,提高测序通量。
以两步相移的扫描方式,结合上述的超分辨重建算法,有利于在采集更少图像的基础上实现超分辨重建,从而有利于缩短图像采集时间,还有利于缩短对图像的处理时间,节省了生物信息的检测成本。
本技术领域的普通技术人员应当认识到,以上的实施方式仅是用来说明本发明,而并非用作为对本发明的限定,只要在本发明的实质精神范围之内,对以上实施例所作的适当改变和变化都落在本发明要求保护的范围之内。

Claims (10)

  1. 一种超分辨检测系统,用于检测待测样品的生物信息,其特征在于,所述超分辨检测系统包括:
    光源模组,用于发射光源光;
    光调制器,包括多个微反射镜,所述多个微反射镜被划分为多个调制单元,每一调制单元中包括两个微反射镜,所述光调制模组用于将所述光源光调制为结构光出射,所述结构光可被引导至所述待测样品以使所述待测样品出射检测光,所述结构光在所述待测样品上形成条纹光斑,每一所述调制单元对应一条纹周期;
    成像模组,用于根据所述检测光获取条纹图像,并用于获取宽场图像;以及
    控制器,电连接所述光调制器及所述成像模组,用于调节所述结构光形成的条纹的相位,并用于根据所述条纹图像和所述宽场图像进行超分辨重建,从而获取超分辨图像,以获取所述待测样品的生物信息。
  2. 如权利要求1所述的超分辨检测系统,其特征在于,定义每一微反射镜的尺寸为:Δx×Δy,定义所述超分辨检测系统的分辨率为R,所述结构光形成被投射至待测样品上时,条纹周期的缩小倍数为
    Figure PCTCN2020135953-appb-100001
    其中,Δx=Δy。
  3. 如权利要求1所述的超分辨检测系统,其特征在于,所述超分辨检测系统还包括倍数调节组件,所述倍数调节组件包括第三透镜和第四透镜,所述第三透镜具有焦距f 3,所述第四透镜具体焦距f 4
    Figure PCTCN2020135953-appb-100002
  4. 如权利要求1所述的超分辨检测系统,其特征在于,所述控制器还用于控制每个微反射镜反射所述光源光,以获取所述宽场图像。
  5. 一种超分辨检测方法,用于检测待测样品的生物信息,其特征在于,所述超分辨检测方法包括如下步骤:
    产生结构光,以两步相移的方式扫描待测样品,获取第一方向上的第一条纹图像和第二条纹图像,获取第二方向上的第一条纹图像;
    获取所述待测样品的宽场图像;
    设定预设评价指标,通过迭代的方式根据所述第一条纹图像、所述第二条 纹图像和所述宽场图像,获取超分辨图像,从而获取所述待测样品的生物信息。
  6. 如权利要求5所述的超分辨检测方法,其特征在于,所述获取所述待测样品的宽场图像的步骤,包括:
    叠加所述第一方向上的第一条纹图像和第二条纹图像,获取所述宽场图像。
  7. 如权利要求5所述的超分辨检测方法,其特征在于,所述超分辨检测方法应用于超分辨检测系统,所述超分辨检测系统包括光源模组和多个微反射镜,所述光源模组用于出射光源光,所述获取所述待测样品的宽场图像的步骤,包括:
    控制每一微反射镜反射光源光,以获取所述宽场图像。
  8. 如权利要求5所述的超分辨检测方法,其特征在于,所述设定预设评价指标,通过迭代的方式根据所述第一条纹图像、所述第二条纹图像和所述宽场图像,获取超分辨图像的步骤,包括:
    将所述宽场图像作为超分辨图像的初步估计;
    构建目标函数以获取目标图像,更新所述目标图像;
    根据所述更新后的目标图像,获取超分辨率图像;
    重复上两个步骤,遍历所述第一条纹图像和所述第二条纹图像;及
    重复上一步骤,直到所述预设评价指标收敛。
  9. 如权利要求5所述的超分辨检测方法,其特征在于,所述迭代的步骤中迭代次数为10~50次。
  10. 如权利要求5所述的超分辨检测方法,其特征在于,所述评价指标为选择结构相似性指标。
PCT/CN2020/135953 2020-12-11 2020-12-11 超分辨检测系统及超分辨检测方法 WO2022120853A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/135953 WO2022120853A1 (zh) 2020-12-11 2020-12-11 超分辨检测系统及超分辨检测方法
CN202080107055.6A CN116490812A (zh) 2020-12-11 2020-12-11 超分辨检测系统及超分辨检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/135953 WO2022120853A1 (zh) 2020-12-11 2020-12-11 超分辨检测系统及超分辨检测方法

Publications (1)

Publication Number Publication Date
WO2022120853A1 true WO2022120853A1 (zh) 2022-06-16

Family

ID=81974172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/135953 WO2022120853A1 (zh) 2020-12-11 2020-12-11 超分辨检测系统及超分辨检测方法

Country Status (2)

Country Link
CN (1) CN116490812A (zh)
WO (1) WO2022120853A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116718578A (zh) * 2023-08-11 2023-09-08 深圳赛陆医疗科技有限公司 超分辨显微成像系统和成像方法
WO2024051079A1 (zh) * 2022-09-05 2024-03-14 中国科学院苏州生物医学工程技术研究所 一种主动结构光照明的超分辨显微成像方法及系统
CN117970660A (zh) * 2024-04-02 2024-05-03 华东师范大学 一种时域压缩超分辨高速成像装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101655601A (zh) * 2008-08-22 2010-02-24 麦克奥迪实业集团有限公司 一种基于dmd的结构光显微镜成像方法及系统
CN102540446A (zh) * 2011-12-28 2012-07-04 中国科学院西安光学精密机械研究所 一种基于数字微镜器件的高速结构照明光学显微系统及方法
CN106770147A (zh) * 2017-03-15 2017-05-31 北京大学 一种结构光照明超分辨显微成像系统及其成像方法
US20170168285A1 (en) * 2015-12-14 2017-06-15 The Regents Of The University Of California Systems and methods for image reconstruction
CN109712072A (zh) * 2018-12-15 2019-05-03 浙江大学 基于全内反射的条纹照明傅里叶域迭代更新超分辨显微成像方法
CN111123496A (zh) * 2020-01-19 2020-05-08 西安交通大学 基于希尔伯特变换的结构照明快速三维彩色显微成像方法
CN111308682A (zh) * 2019-11-18 2020-06-19 天津大学 基于结构光照明的超分辨重构方法
CN111458318A (zh) * 2020-05-12 2020-07-28 西安交通大学 利用正方晶格结构光照明的超分辨成像方法及系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101655601A (zh) * 2008-08-22 2010-02-24 麦克奥迪实业集团有限公司 一种基于dmd的结构光显微镜成像方法及系统
CN102540446A (zh) * 2011-12-28 2012-07-04 中国科学院西安光学精密机械研究所 一种基于数字微镜器件的高速结构照明光学显微系统及方法
US20170168285A1 (en) * 2015-12-14 2017-06-15 The Regents Of The University Of California Systems and methods for image reconstruction
CN106770147A (zh) * 2017-03-15 2017-05-31 北京大学 一种结构光照明超分辨显微成像系统及其成像方法
CN109712072A (zh) * 2018-12-15 2019-05-03 浙江大学 基于全内反射的条纹照明傅里叶域迭代更新超分辨显微成像方法
CN111308682A (zh) * 2019-11-18 2020-06-19 天津大学 基于结构光照明的超分辨重构方法
CN111123496A (zh) * 2020-01-19 2020-05-08 西安交通大学 基于希尔伯特变换的结构照明快速三维彩色显微成像方法
CN111458318A (zh) * 2020-05-12 2020-07-28 西安交通大学 利用正方晶格结构光照明的超分辨成像方法及系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024051079A1 (zh) * 2022-09-05 2024-03-14 中国科学院苏州生物医学工程技术研究所 一种主动结构光照明的超分辨显微成像方法及系统
CN116718578A (zh) * 2023-08-11 2023-09-08 深圳赛陆医疗科技有限公司 超分辨显微成像系统和成像方法
CN116718578B (zh) * 2023-08-11 2023-10-27 深圳赛陆医疗科技有限公司 超分辨显微成像系统和成像方法
CN117970660A (zh) * 2024-04-02 2024-05-03 华东师范大学 一种时域压缩超分辨高速成像装置

Also Published As

Publication number Publication date
CN116490812A (zh) 2023-07-25

Similar Documents

Publication Publication Date Title
WO2022120853A1 (zh) 超分辨检测系统及超分辨检测方法
JP6195830B2 (ja) 適応光学系を有する顕微鏡検査法
KR102321151B1 (ko) 패턴화된 어레이의 나노웰을 가진 감소한 차수의 구조화 조명 현미경법
KR102306769B1 (ko) 라인 스캐닝을 이용한 구조화 조명 현미경법
JP2022553713A (ja) 構造化照明顕微鏡法のためのシステム及び方法
JP2016534389A (ja) 開口走査フーリエタイコグラフィ撮像
CN108982452A (zh) 基于双螺旋点扩散函数的多焦点扫描三维成像方法及系统
JP2023503738A (ja) パラメータ推定を提供する装置及び方法
KR20220110661A (ko) 이미지들로부터 값들을 추정하는 장치 및 방법
CN114858760A (zh) 图像生成方法、超分辨检测方法及超分辨检测系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20964786

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202080107055.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20964786

Country of ref document: EP

Kind code of ref document: A1