WO2022120827A1 - 曝光调节方法、拍摄装置、可移动平台及存储介质 - Google Patents

曝光调节方法、拍摄装置、可移动平台及存储介质 Download PDF

Info

Publication number
WO2022120827A1
WO2022120827A1 PCT/CN2020/135872 CN2020135872W WO2022120827A1 WO 2022120827 A1 WO2022120827 A1 WO 2022120827A1 CN 2020135872 W CN2020135872 W CN 2020135872W WO 2022120827 A1 WO2022120827 A1 WO 2022120827A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
exposure
interrupt signal
time
photographing device
Prior art date
Application number
PCT/CN2020/135872
Other languages
English (en)
French (fr)
Inventor
郑子翔
王浩伟
童焦龙
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2020/135872 priority Critical patent/WO2022120827A1/zh
Publication of WO2022120827A1 publication Critical patent/WO2022120827A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene

Definitions

  • the present application relates to the field of imaging technologies, and in particular, to an exposure adjustment method, a photographing device, a movable platform and a storage medium.
  • the photographing devices can be applied to drones or smart phones. Users have higher and higher requirements on the image quality collected by the photographing device, among which, the exposure parameter is one of the key factors determining the image quality.
  • the exposure parameters are usually set to be sent to each element in the photographing device at a specified time.
  • the process of generating the exposure parameters may require a long calculation time, so that the exposure parameters cannot be
  • the specified time is sent to the components in the photographing device in time, which affects the image quality.
  • one of the objectives of the present application is to provide an exposure adjustment method, a photographing device, a movable platform and a storage medium.
  • an exposure adjustment method comprising:
  • N is an integer greater than 0;
  • the exposure parameters are sent to each element in the photographing device, so as to adjust the effective delay of the exposure parameter in the various elements.
  • an embodiment of the present application provides a photographing device, including:
  • a memory for storing the processor-executable instructions
  • the processor invokes the executable instruction, and when the executable instruction is executed, is used to execute:
  • N is an integer greater than 0;
  • the exposure parameters are sent to each element in the photographing device, so as to adjust the effective delay of the exposure parameter in the various elements.
  • an embodiment of the present application provides a movable platform, including:
  • a power system provided on the body is used to provide power for the movable platform; and the photographing device according to the first aspect.
  • an embodiment of the present application provides a computer-readable storage medium, characterized in that a computer instruction is stored thereon, and when the instruction is executed by a processor, the method described in the first aspect is implemented.
  • a photographing device, a movable platform, and a storage medium provided by the embodiments of the present application, firstly, the brightness statistical information of the Nth frame image is obtained and exposure parameters are determined according to the brightness statistical information, and then the Nth frame image can be During the acquisition of one frame of image, in response to a preset interrupt signal, the exposure parameters are sent to each element in the photographing device, so as to adjust the effective delay of the exposure parameter in the various elements.
  • an interrupt signal can be used to send the exposure parameter to each element in the photographing device in time, so that the exposure parameter can be faster in each element. effective, which is beneficial to improve the image quality.
  • FIG. 1 is a schematic diagram of sending exposure parameters in a related art provided by an embodiment of the present application
  • FIG. 2 and FIG. 3 are schematic diagrams of different application scenarios of the photographing device provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of an exposure adjustment method provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a photographing device provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of sending exposure parameters in response to an interrupt signal provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another photographing apparatus provided by an embodiment of the present application.
  • the exposure parameters are usually set to be sent to each element in the photographing device at a specified time.
  • the process of generating the exposure parameters may require a long calculation time, so that the exposure parameters cannot be
  • the specified time is sent to the components in the photographing device in time, which affects the image quality.
  • the start identifier SOF of each frame is used as the delivery time for sending exposure parameters to various elements of the photographing device, and the start identifier is used to indicate the origin of each frame of image.
  • the initial time of acquisition however, the process of generating exposure parameters may require a long calculation time. If the exposure parameters determined according to the brightness statistics of the Nth frame are generated after the start identifier SOF of the N+1th frame, missed Given the delivery time of the start identifier SOF of the N+1th frame, it is necessary to send the exposure parameters of the Nth frame only after the start identifier SOF of the N+2th frame. After the exposure parameters are set, it also takes a certain time for the exposure parameters to take effect. Therefore, the delayed delivery of the exposure parameters will further delay the effective time of the exposure parameters in each element, thereby affecting the image quality.
  • the automatic exposure is that the camera automatically adjusts the exposure according to the intensity of the light to prevent over or underexposure.
  • the automatic exposure strategy mainly controls the shutter, analog gain and digital gain of the image sensor, and controls the image Digital gain of the signal processor to achieve exposure balance. That is to say, in the automatic exposure scene, the generated exposure parameters are usually sent to the image sensor and the image signal processor for use. Usually, the image sensor needs to set the exposure parameters after receiving the exposure parameters, which requires a certain response time.
  • the image signal processor also needs a certain response time to set the exposure parameters, assuming that there is also a delay of 1 frame, that is, there is a delay of 2 frames in total, please refer to Figure 1, if according to the Nth If the exposure parameters generated by the brightness statistics of the frame are not sent to the image sensor and the image signal processor until the start identifier SOF of the N+2th frame, it may not take effect until the N+4th frame, resulting in the exposure parameters in the image sensor. And the effective time in the image signal processor is further delayed, which affects the image quality.
  • the principle of exposure bracketing is to press the shutter button, and the shooting device continuously shoots 3 or 5 photos with different exposure values.
  • the control strategy of automatic exposure bracketing is to change the shutter or aperture value of the image sensor. That is to say, in an automatic exposure bracketing (AEB) scene, the generated exposure parameters are usually sent to the image sensor for use, and usually the image sensor needs a certain amount of exposure parameters (shutter value and/or aperture value) to receive and set.
  • HDR images can provide more dynamic range and image details than ordinary images. Dynamic Range, low dynamic range images), and utilize the LDR images corresponding to the best detail at each exposure time to synthesize the final HDR image. It can better reflect the visual effect in the real environment.
  • LDR image it is necessary to control the exposure time of the LDR image by controlling the shutter. That is to say, in the scene of shooting an HDR image, the generated exposure parameters are usually sent to the image sensor for use, and the image sensor usually receives the exposure parameters after receiving the exposure parameters.
  • an embodiment of the present application provides an exposure adjustment method.
  • the brightness statistics of the Nth frame image are obtained, and exposure parameters are determined according to the brightness statistics, and then during the N+1th frame image acquisition process, the response Based on the preset interrupt signal, the exposure parameters are sent to each element in the photographing device, so as to adjust the effective delay of the exposure parameters in the various elements.
  • the exposure parameters can be sent to each element in the photographing device in time by using an interrupt signal, and there is no need to wait for the N+2th frame to send the exposure parameters , so that the exposure parameters can take effect more quickly in the respective elements, thereby helping to improve the image quality.
  • the exposure adjustment method may be applied to a photographing device, and the photographing device may be a physical imaging device.
  • the camera may be configured to detect electromagnetic radiation (eg, visible light, infrared light, and/or ultraviolet light) and generate image data based on the detected electromagnetic radiation.
  • the photographing device may include a Charge Coupled Device (CCD) sensor or a Complementary Metal Oxide Semiconductor (CMOS) sensor that generates an electrical signal in response to a wavelength of light.
  • the generated electrical signals can be processed to generate image data.
  • the image data generated by the camera may include one or more images, which may be still images (eg, photographs), dynamic images (eg, videos), or a suitable combination thereof.
  • Image data may be multi-color (eg, RGB, CMYK, HSV) or monochrome (eg, grayscale, black and white, sepia).
  • the camera may include a lens configured to direct light onto the image sensor.
  • the photographing device may be a camera.
  • the camera may be a movie camera or a video camera that captures moving image data (eg, video).
  • the camera may be a camera that captures still images (eg, photographs).
  • the camera can also capture moving image data and still images.
  • the camera can switch between capturing moving image data and still images.
  • Cameras can be used to generate 2D images of a 3D scene (eg, the environment, one or more objects, etc.).
  • the image generated by the camera can represent the projection of the 3D scene onto the 2D image plane. Therefore, each point in the 2D image corresponds to a 3D spatial coordinate in the scene.
  • the camera may include optical elements (eg, lenses, mirrors, filters, etc.). Cameras can capture color images, grayscale images, infrared images, and more.
  • the photographing device may photograph an image or sequence of images at a specified image resolution.
  • the image resolution may be defined by the number of pixels in the image.
  • the camera may be a 4K camera or a camera with a higher resolution.
  • the camera may capture a sequence of images at a specified frame rate.
  • the sequence of images may be captured at a standard frame rate such as about 24p, 25p, 30p, 48p, 50p, 60p, 72p, 90p, 100p, 120p, 300p, 50i or 60i.
  • Capture image sequences at frame rates of one image per second, 2 seconds, 5 seconds, or 10 seconds.
  • the photographing device may have adjustable photographing parameters. Under different capture parameters, the capture device may capture different images despite being subjected to exactly the same external conditions (eg location, lighting). Capture parameters may include exposure (eg, exposure time, shutter speed, aperture, film speed), gain, gamma, region of interest, binning/subsampling, pixel clock, offset, trigger, ISO, and the like. Exposure-related parameters can control the amount of light reaching the image sensor in the camera. For example, shutter speed can control the amount of time light reaches the image sensor and aperture can control the amount of light that reaches the image sensor in a given time. A gain-related parameter can control the amplification of the signal from the optical sensor. ISO controls the level of sensitivity of the camera to the available light.
  • exposure eg, exposure time, shutter speed, aperture, film speed
  • gain gamma
  • region of interest e.g., binning/subsampling
  • pixel clock e.g., pixel clock
  • offset e.g., offset
  • the photographing device may be mounted on a movable platform or terminal device
  • the movable platform include but are not limited to unmanned aerial vehicles, unmanned vehicles, pan-tilts, unmanned ships or mobile Robots etc.
  • the terminal device include, but are not limited to, a device that can install a camera, such as a smart phone/mobile phone, a tablet computer, a personal digital assistant (PDA), a laptop computer, a desktop computer, a remote control, or a wearable device.
  • a camera such as a smart phone/mobile phone, a tablet computer, a personal digital assistant (PDA), a laptop computer, a desktop computer, a remote control, or a wearable device.
  • PDA personal digital assistant
  • FIG. 2 shows an unmanned aerial vehicle 20 equipped with a photographing device 10 , and the photographing device 10 can be connected in communication with the unmanned aerial vehicle 20 .
  • the unmanned aerial vehicle 20 may include a flight controller (not shown in the figure), and the photographing device 10 may be connected in communication with the flight controller, and photograph under the control of the flight controller.
  • the photographing device 10 may be directly fixed on the unmanned aerial vehicle 20, or may be installed on the unmanned aerial vehicle 20 through a pan/tilt, which is not limited in this embodiment.
  • the images and/or videos captured by the capturing device 10 can also be sent to the remote control terminal 21 so that the user can view the images and/or videos captured by the capturing device 10 on the interface of the remote control terminal 21 .
  • the user can also control the UAV 20 to fly and/or control the photographing device 10 to take pictures through the remote control terminal 21 .
  • FIG. 3 shows a gimbal 30 equipped with the photographing device 10
  • the gimbal may be, for example, a single-axis handheld gimbal, a dual-axis handheld gimbal, a three-axis handheld gimbal, and the like.
  • FIG. 3 is an example with a three-axis handheld pan/tilt head, and the pan/tilt head 30 may include a handle mechanism 31 and a pan/tilt mechanism 32 .
  • the handle mechanism 31 is connected to the pan-tilt mechanism 32 .
  • the pan-tilt mechanism 32 may be used to carry the photographing device 10, and the photographing device 20 in this embodiment may be, for example, a camera, a video camera, a mobile phone, or the like.
  • the handle mechanism 31 may be provided with a control button 33, and the pan/tilt mechanism 31 may be controlled to rotate through the control button 33, thereby driving the photographing device 20 to rotate to photograph different images.
  • the photographing device 10 may be detachably mounted on the gimbal, or the photographing device may be a part integrated in the hand-held gimbal.
  • FIG. 4 is a schematic flowchart of an exposure adjustment method provided by an embodiment of the present application.
  • the method may be performed by a photographing device, and the method includes:
  • step S101 the brightness statistical information of the Nth frame image is acquired, and the exposure parameter is determined according to the brightness statistical information; N is an integer greater than 0.
  • step S102 in the N+1 th frame image acquisition process, in response to a preset interrupt signal, the exposure parameters are sent to each element in the photographing device, so as to adjust the exposure parameters in the various elements effective delay.
  • the photographing device may include elements such as a body 15 , a lens 11 , an image sensor 12 , an image signal processor (ISP) 13 , and a memory 14 .
  • the lens of the photographing device can focus the light on the image sensor, and then the image sensor can use the photoelectric conversion function of the photoelectric device to convert the light image focused on the photosensitive surface into An electrical signal that is proportional to the light image; specifically, the light reflected by the scene is transmitted to the image sensor through the lens of the photographing device;
  • the image sensor may include light-emitting diodes, amplifiers and A/D converters (analog/ When the image sensor is exposed to light, the photodiode in the image sensor is excited by light to release charges and generate electrical signals.
  • the image sensor will collect the electrical signals generated by one imaging and output them uniformly. To the amplifier, the amplifier will amplify and filter these electrical signals. Since the electronic image is still an analog signal at this time, it cannot be recognized by the computer, so the analog signal needs to be converted by an A/D converter (analog/digital converter). Digital signal, therefore, the amplified and filtered electrical signal is sent to the A/D converter, and the A/D converter converts the electrical signal as an analog signal into an electrical signal of a digital signal to obtain raw data, raw data
  • the file is almost the information obtained directly from the image sensor (such as CCD or CMOS) without processing.
  • the raw data cannot directly generate images, and the raw data needs to be processed by the image signal processor (ISP), such as color correction, White balance processing, automatic exposure control, noise removal, dead pixel removal, interpolation, etc., to obtain an image that can be presented to the user.
  • the raw data generated by the image sensor can be cached in a memory, and stored by The image signal processor reads the raw data in the re-storage and processes it, and further, the processed image data can be encoded into the image format and resolution supported by the photographing device, and then stored as an image file and saved. to the memory.
  • the image signal processor obtains the Nth frame of image by performing brightness statistics on the Nth frame of image, and then the image signal processor will count the obtained
  • the brightness statistics of the N frames are buffered into a memory, and the shooting device reads the brightness statistics of the Nth frame from the memory, and determines an exposure parameter according to the brightness statistics.
  • the photographing device can calculate the exposure parameter that needs to be adjusted next time according to the difference between the brightness statistical data and the target brightness, so that the brightness of the image can be made more and more bright.
  • the exposure parameters include but are not limited to electronic shutter value, analog gain value, digital gain value, aperture value, and the like.
  • the SOF is used as the delivery time for sending exposure parameters to each element of the photographing device
  • the start identifier is used to indicate the initial time of acquisition of each frame of image.
  • the time interval between the end acquisition time of N frame images and the start acquisition time of the N+1 frame image is usually relatively small, and the generation process of exposure parameters generally takes a long time.
  • the time interval between the end acquisition time and the start acquisition time of the N+1th frame image is not enough for the photographing device to generate the exposure parameter based on the brightness statistics, that is, at the end acquisition time of the Nth frame image
  • the time interval between the start of the acquisition time of the N+1 th frame image is less than the generation duration of the exposure parameter, there is a missed delivery time at the N+1 th frame, so that the exposure parameter needs to be delayed in delivery. , resulting in a further delay in the effective time of exposure parameters in each element, thus affecting the image quality.
  • an interrupt signal can be set in advance between the start identifier and the end identifier of the N+1th frame image, and the start identifier (SOF) is defined as
  • the end identifier (EOF) is used to indicate the acquisition end time of the N+1th frame image, and then during the N+1th frame image acquisition process , the photographing device may send the exposure parameter to each element in the photographing device in response to a preset interrupt signal, so as to adjust the effective delay of the exposure parameter in each element.
  • an interrupt signal can be used to send the exposure parameters to each element in the photographing device in time, and there is no need to wait until the start identifier (SOF) of the N+2th frame before sending the exposure parameters.
  • SOF start identifier
  • the delivery time of the exposure parameters is shortened, so that the exposure parameters can take effect in the respective components faster, thereby helping to improve image quality.
  • the interruption signal takes effect after the exposure parameter is generated, so as to ensure that the photographing device can accurately obtain the exposure parameter generated according to the brightness statistical data of the Nth frame in response to the interruption signal, and timely
  • the parameters are issued to each element that needs to use the exposure parameter, so that the exposure parameter can take effect faster in the various elements, thereby helping to improve image quality.
  • the photographing device in response to the interrupt signal, sends the exposure parameter to the image sensor and the image signal processor that need to use the exposure parameter. After reaching the exposure parameters, it needs to be set, which requires a certain response time.
  • the image signal processor also needs a certain response time when setting the exposure parameters.
  • there is also a delay of 1 frame That is, there is a total delay of 2 frames. Since the photographing device sends the exposure parameters to the image sensor and the image signal processor during the acquisition of the N+1th frame of image, when the N+3th frame of image is collected, The exposure parameters generated according to the brightness statistics of the Nth frame can take effect.
  • the exposure parameters are sent and the N+4th frame image is collected.
  • the exposure parameters in this embodiment can take effect faster in the image sensor and the image signal processor, which is beneficial to improve the exposure convergence speed, and improve the stability and image quality of image shooting.
  • the photographing device sends the exposure parameter to the image sensor that needs to use the exposure parameter in response to the interrupt signal.
  • the image sensor receives the exposure parameter (shutter value) and/or aperture value) and setting requires a certain response time, assuming that a delay of 1 frame is required, since the shooting device sends the exposure parameters to the image sensor during the acquisition of the N+1th frame image, then When the N+2 frame image is collected, the exposure parameter generated according to the brightness statistical data of the N frame can take effect.
  • the exposure parameter is sent to the image sensor in the photographing device in time through an interrupt signal, The exposure parameters can take effect faster in the image sensor, thereby helping to improve image quality.
  • the shooting device sends the exposure parameter to the image sensor that needs to use the exposure parameter in response to the interrupt signal, and usually The image sensor needs a certain response time when receiving and setting the exposure parameters (shutter value), assuming that there is a delay of 1 frame, because the shooting device sends the exposure parameters during the acquisition of the N+1 frame image.
  • the exposure parameters are sent to the shooting device in time through an interrupt signal.
  • the image sensor in the image sensor enables the exposure parameters to take effect faster in the image sensor, thereby helping to improve image quality.
  • the effective time of the interrupt signal may be determined according to the determined generation duration of the exposure parameter.
  • the photographing device may count the generation duration of the exposure parameters according to the historical data for generating the exposure parameters, and then determine, according to the generation duration of the exposure parameters, the effect of the interrupt signal during the N+1 th frame image acquisition process. time.
  • the photographing device may predict the generation duration of the exposure parameter according to the size of the captured image and the processing capability of the photographing device, and then determine, according to the generation duration of the exposure parameter, that the interrupt signal is in the Nth +1 Effective time during image acquisition.
  • the photographing device may The effective time of the interrupt signal in the N+1 th frame image acquisition process is determined according to the acquisition duration of the luminance statistical information and the generation duration of the exposure parameters, thereby ensuring accurate delivery of the exposure parameters.
  • the image signal processor will perform statistics on the brightness information of the Nth frame image collected by the image sensor, and cache the obtained brightness statistics in a memory, and then the photographing device will read the statistics from the memory.
  • the acquisition duration of the brightness statistical information includes the statistical duration of the image signal processor for the brightness information of the Nth frame image, and the image signal processor will The duration for which the brightness statistics are written to the memory and the duration for which the memory reads the brightness statistics from the memory.
  • the effective time of the interrupt signal is determined by the acquisition duration of the brightness statistics information and the generation duration of the exposure parameter, so as to ensure that the exposure parameter has been generated when the interrupt signal takes effect, and further ensure that the exposure parameter accurate delivery.
  • the interrupt signal may be generated in a hardware interrupt manner, or may be generated in a software interrupt manner, which is not limited in this embodiment of the present application.
  • the interrupt signal may be generated by an image signal processor.
  • the terminal signals already existing in the image signal processor can be reused, for example, the interrupt signal generated by the automatic white balance circuit in the image signal processor can be used, thereby facilitating shortening The set time of the interrupt signal.
  • the image signal processor can also be controlled to generate an interrupt signal set between the start identifier and the end identifier of the N+1 th frame image. Specific settings can be made according to actual application scenarios.
  • an embodiment of the present application further provides a photographing device 10 , including:
  • a memory 202 for storing executable instructions of the processor 201;
  • processor 201 calls the executable instruction, and when the executable instruction is executed, is used to execute:
  • N is an integer greater than 0;
  • the exposure parameters are sent to each element in the photographing device, so as to adjust the effective delay of the exposure parameter in the various elements.
  • the processor 201 executes the executable instructions included in the memory 202, and the processor 201 may be a central processing unit (Central Processing Unit, CPU), or other general-purpose processors, digital signal processors (Digital Signal Processors) Processor, DSP), Application Specific Integrated Circuit (ASIC), Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • CPU Central Processing Unit
  • DSP Digital Signal Processors
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory 202 stores executable instructions for the exposure adjustment method, and the memory 202 may include at least one type of storage medium, including flash memory, hard disk, multimedia card, card-type memory (eg, SD or DX memory, etc.) , Random Access Memory (RAM), Static Random Access Memory (SRAM), Read Only Memory (ROM), Electrically Erasable Programmable Read Only Memory (EEPROM), Programmable Read Only Memory (PROM), Magnetic Memory, Disk, CD and so on. Also, the device may cooperate with a network storage device that performs the storage function of the memory through a network connection.
  • the memory 202 may be an internal storage unit of the photographing apparatus 10 , such as a hard disk or a memory of the photographing apparatus 10 .
  • the memory 202 may also be an external storage device of the photographing device 10, such as a plug-in hard disk, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) card, a flash memory card (Flash card) equipped on the photographing device 10. Card), etc. Further, the memory 202 may also include both an internal storage unit of the photographing apparatus 10 and an external storage device. The memory 202 is used to store the computer program 55 and other programs and data required by the device. The memory 202 may also be used to temporarily store data that has been or will be output.
  • an external storage device of the photographing device 10 such as a plug-in hard disk, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) card, a flash memory card (Flash card) equipped on the photographing device 10. Card), etc. Further, the memory 202 may also include both an internal storage unit of the photographing apparatus 10 and an external storage device. The memory 202 is used to store the computer program 55 and
  • the various embodiments described herein can be implemented using computer readable media such as computer software, hardware, or any combination thereof.
  • the embodiments described herein can be implemented using application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays ( FPGA), processors, controllers, microcontrollers, microprocessors, electronic units designed to perform the functions described herein are implemented.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, electronic units designed to perform the functions described herein are implemented.
  • embodiments such as procedures or functions may be implemented with separate software modules that allow the performance of at least one function or operation.
  • the software codes may be implemented by a software application (or program) written in any suitable programming language, which may be stored in
  • the photographing device 10 may be a mobile phone, a camera, or a video camera.
  • the photographing apparatus 10 may include, but is not limited to, a processor 201 and a memory 202 .
  • FIG. 7 is only an example of the photographing device 10 , and does not constitute a limitation on the photographing device 10 , and may include more or less components than shown, or combine some components, or different components
  • the device may also include an input and output device, a network access device, a bus, and the like.
  • the time interval between the end acquisition time of the Nth frame image and the start acquisition time of the N+1th frame image is less than the generation duration of the exposure parameter.
  • the interrupt signal is set between the start identifier and the end identifier of the N+1th frame image; the start identifier is used to indicate the acquisition of the N+1th frame image.
  • the initial time, the end identifier is used to indicate the end time of the acquisition of the N+1 th frame image.
  • the interrupt signal takes effect after the exposure parameter is determined.
  • the effective time of the interrupt signal is determined according to the generation duration of the exposure parameter.
  • the effective time of the interrupt signal is determined according to the acquisition duration of the luminance statistical information and the generation duration of the exposure parameter.
  • the luminance statistical information of the Nth frame image is obtained by an image signal processor after performing statistics on the luminance data of the Nth frame image, and the luminance statistical information is cached by the image signal processor to a memory.
  • the elements include at least one of: an image sensor, an image signal processor, and a lens.
  • the exposure parameters include at least one of the following: an electronic shutter value, an analog gain value, a digital gain value, and an aperture value.
  • the interrupt signal is generated by an image signal processor.
  • the interrupt signal is generated by a hardware interrupt method or a software interrupt method.
  • the interrupt signal includes an interrupt signal generated by an automatic white balance circuit in an image signal processor.
  • the exposure parameters take effect when the N+3 th frame of images is captured.
  • an embodiment of the present application further provides a movable platform, including: a body; a power system provided on the body, for providing power for the movable platform; and the above-mentioned photographing device.
  • the movable platform includes, but is not limited to, an unmanned aerial vehicle, an unmanned vehicle, a gimbal, an unmanned vessel, or a mobile robot.
  • non-transitory computer-readable storage medium such as a memory including instructions, executable by a processor of an apparatus to perform the above-described method.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
  • a non-transitory computer-readable storage medium when the instructions in the storage medium are executed by the processor of the photographing apparatus, enable the photographing apparatus to perform the above method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)

Abstract

一种曝光调节方法、拍摄装置,可移动平台及存储介质,所述方法包括:获取第N帧图像的亮度统计信息,根据所述亮度统计信息生成曝光参数;N为大于0的整数;在第N+1帧图像采集过程中,响应于预置的中断信号,将所述曝光参数发送给拍摄装置中的各个元件,以调节所述曝光参数在所述各个元件中的生效时延。本实施例能够使用中断信号将所述曝光参数及时发送给所述拍摄装置中的各个元件,使得所述曝光参数在所述各个元件中能够更快生效,从而有利于提升图像质量。

Description

曝光调节方法、拍摄装置、可移动平台及存储介质 技术领域
本申请涉及成像技术领域,具体而言,涉及一种曝光调节方法、拍摄装置,可移动平台及存储介质。
背景技术
随着拍摄装置的普及,拍摄装置的应用场景越来越广,例如:拍摄装置可以应用于无人机或智能手机中。用户对拍摄装置采集的图像质量的要求也越来越高,其中,曝光参数是决定图像质量的关键因素之一。
在一些应用场景中,在拍摄装置中,通常会设置在指定时间将曝光参数下发给拍摄装置中的各个元件,然而,产生曝光参数的过程可能需要较长的计算时间,使得曝光参数无法在指定时间及时下发给拍摄装置中的元件使用,从而影响图像质量。
发明内容
有鉴于此,本申请的目的之一是提供一种曝光调节方法、拍摄装置,可移动平台及存储介质。
第一方面,本申请实施例提供了一种曝光调节方法,所述方法包括:
获取第N帧图像的亮度统计信息,根据所述亮度统计信息生成曝光参数;N为大于0的整数;
在第N+1帧图像采集过程中,响应于预置的中断信号,将所述曝光参数发送给拍摄装置中的各个元件,以调节所述曝光参数在所述各个元件中的生效时延。
第二方面,本申请实施例提供了一种拍摄装置,包括:
处理器;
用于存储所述处理器可执行指令的存储器;
用于使用曝光参数的至少一个元件;
其中,所述处理器调用所述可执行指令,当可执行指令被执行时,用于执行:
获取第N帧图像的亮度统计信息,根据所述亮度统计信息生成曝光参数;N为大于0的整数;
在第N+1帧图像采集过程中,响应于预置的中断信号,将所述曝光参数发送给拍摄装置中的各个元件,以调节所述曝光参数在所述各个元件中的生效时延。
第三方面,本申请实施例提供了一种可移动平台,包括:
机体;
设置于所述机体上的动力系统,用于为所述可移动平台提供动力;以及,如第一方面所述的拍摄装置。
第四方面,本申请实施例提供了一种计算机可读存储介质,其特征在于,其上存储有计算机指令,该指令被处理器执行时实现第一方面所述的方法。
本申请实施例所提供的一种曝光调节方法、拍摄装置,可移动平台及存储介质,首先获取第N帧图像的亮度统计信息并根据所述亮度统计信息确定曝光参数,然后能够在第N+1帧图像采集过程中,响应于预置的中断信号,将所述曝光参数发送给拍摄装置中的各个元件,从而调节所述曝光参数在所述各个元件中的生效时延。本实施例中,在第N+1帧图像采集过程中能够使用中断信号将所述曝光参数及时发送给所述拍摄装置中的各个元件,使得所述曝光参数在所述各个元件中能够更快生效,从而有利于提升图像质量。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一个实施例提供的相关技术发送曝光参数的示意图;
图2以及图3是本申请一个实施例提供的拍摄装置的不同应用场景示意图;
图4是本申请一个实施例提供的一种曝光调节方法的流程示意图;
图5是本申请一个实施例提供的一种拍摄装置的结构示意图;
图6是本申请一个实施例提供的响应于中断信号发送曝光参数的示意图;
图7是本申请一个实施例提供的另一种拍摄装置的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
在一些应用场景中,在拍摄装置中,通常会设置在指定时间将曝光参数下发给拍摄装置中的各个元件,然而,产生曝光参数的过程可能需要较长的计算时间,使得曝光参数无法在指定时间及时下发给拍摄装置中的元件使用,从而影响图像质量。
示例性的,请参阅图1,假设将每一帧的起始标识符SOF作为将曝光参数发送给拍摄装置的各个元件的下发时间,所述起始标识符用于指示每一帧图像的采集初始时间,但是,产生曝光参数的过程可能需要较长的计算时间,根据第N帧的亮度统计信息确定的曝光参数在第N+1帧的起始标识符SOF之后产生的情况下,错过了第N+1帧的起始标识符SOF的下发时间,需要在第N+2帧的起始标识符SOF才发送第N帧的曝光参数,而通常拍摄装置的各个元件在接收到所述曝光参数之后,也需要一定的时间进行设置后所述曝光参数才能生效,因此,曝光参数的延迟下发会导致曝光参数在各个元件中的生效时间进一步延迟,从而影响了图像质量。
例如在自动曝光(AE)场景中,自动曝光是相机根据光线的强弱自动调整曝光量,防止曝光过度或者不足,自动曝光策略主要是控制图像传感器的快门、模拟增益和数字增益,以及控制图像信号处理器的数字增益,从而达到曝光平衡。即是说,在自动曝光场景中,产生的曝光参数通常会发送给图像传感器以及图像信号处理器使用,通常图像传感器在接收到曝光参数后需要进行设置,需要一定的反应时间,假设需要有1帧的延时,而图像信号处理器在设置所述曝光参数也需要一定的反应时间,假设也存在1帧的延时,即总共存在2帧的延时,请参阅图1,如果根据第N帧的亮度统计信息产生的曝光参数在第N+2帧的起始标识符SOF才发送给图像传感器以及图像信号处理器的话,可能在第N+4帧才开始生效,导致曝光参数在图像传感器以及图像信号处理器中的生效时间进一步延迟,从而影响了图像质量。
例如在自动包围曝光(AEB)场景中,包围曝光的原理是按下快门按钮,拍摄装置连续拍摄3张或5张不同曝光值的照片。这样,摄影师就可以从中挑选曝光值相对更准确的照片使用,避免拍摄失误。自动包围曝光的控制策略是改变图像传感器的快门或者光圈值等。即是说,自动包围曝光(AEB)场景中,产生的曝光参数通常会发送给图像传感器使用,而通常图像传感器在接收到曝光参数(快门值和/或光圈值)并进行设置时需要一定的反应时间,假设需要有1帧的延时,如果根据第N帧的亮度统 计信息产生的曝光参数在第N+2帧的起始标识符SOF才发送给图像传感器的话,可能在第N+3帧才开始生效,导致曝光参数在图像传感器中的生效时间进一步延迟,从而影响了图像质量。
例如在拍摄高动态范围(High-Dynamic Range,简称HDR)图像的场景下,HDR图像相比普通的图像,可以提供更多的动态范围和图像细节,其根据不同的曝光时间的LDR(Low-Dynamic Range,低动态范围图像),并利用每个曝光时间相对应最佳细节的LDR图像来合成最终HDR图像。它能够更好的反映出真实环境中的视觉效果。在获取LDR图像时,需要通过控制快门以控制LDR图像的曝光时间,即是说,在拍摄HDR图像场景中,产生的曝光参数通常会发送给图像传感器使用,而通常图像传感器在接收到曝光参数(快门值)并进行设置时需要一定的反应时间,假设需要有1帧的延时,如果根据第N帧的亮度统计信息产生的曝光参数在第N+2帧的起始标识符SOF才发送给图像传感器的话,可能在第N+3帧才开始生效,导致曝光参数在图像传感器中的生效时间进一步延迟,从而影响了图像质量。
基于此,本申请实施例提供了一种曝光调节方法,首先获取第N帧图像的亮度统计信息并根据所述亮度统计信息确定曝光参数,然后能够在第N+1帧图像采集过程中,响应于预置的中断信号,将所述曝光参数发送给拍摄装置中的各个元件,从而调节所述曝光参数在所述各个元件中的生效时延。本实施例中,在第N+1帧图像采集过程中能够使用中断信号将所述曝光参数及时发送给所述拍摄装置中的各个元件,无需等待到第N+2帧才发送所述曝光参数,使得所述曝光参数在所述各个元件中能够更快生效,从而有利于提升图像质量。
其中,所述曝光调节方法可以应用于拍摄装置上,所述拍摄装置可以是物理成像装置。所述拍摄装置可以被配置成用于检测电磁辐射(例如,可见光、红外光和/或紫外光)并基于检测到的电磁辐射生成图像数据。所述拍摄装置可以包括响应于光的波长生成电信号的电荷耦合装置(CCD)传感器或互补型金属氧化物半导体(CMOS)传感器。所生成的电信号可以被处理以产生图像数据。由所述拍摄装置生成的图像数据可以包括一张或多张图像,该一张或多张图像可以是静态图像(例如,照片)、动态图像(例如,视频)或其合适的组合。图像数据可以是多色的(例如,RGB、CMYK、HSV)或单色的(例如,灰度、黑白、棕褐)。所述拍摄装置可以包括被配置成将光引导到图像传感器上的镜头。
在一实施方式中,所述拍摄装置可以是相机。相机可以是捕捉动态图像数据(例如视频)的电影摄影机或视频相机。相机可以是捕捉静态图像(例如照片)的照相机。相机 也可以捕捉动态图像数据和静态图像。相机可以在捕捉动态图像数据和静态图像之间切换。相机可以被用来生成3D场景(例如环境、一个或多个物体等等)的2D图像。由相机生成的图像可以表示3D场景到2D图像平面上的投影。因此,2D图像中的每个点对应于场景中的3D空间坐标。该相机可以包括光学元件(例如镜头、反射镜、滤波器等)。相机可以捕捉彩色图像、灰度图像、红外图像等等。
所述拍摄装置可以按指定图像分辨率拍摄图像或图像序列。在一些实施方式中,图像分辨率可以由图像中的像素数目所定义。在一些实施方式中,该相机可以是4K相机或者具有更高分辨率的相机。
所述拍摄装置可以以指定帧率捕捉图像序列。在一些实施方式中,可以以如约24p、25p、30p、48p、50p、60p、72p、90p、100p、120p、300p、50i或60i的标准帧率拍摄图像序列。在一些实施方式中,可以以小于或等于约每0.0001秒、0.0002秒、0.0005秒、0.001秒、0.002秒、0.005秒、0.01秒、0.02秒、0.05秒、0.1秒、0.2秒、0.5秒、1秒、2秒、5秒或10秒一张图像的帧率拍摄图像序列。
所述拍摄装置可以具有可调的拍摄参数。在不同拍摄参数下,尽管经受完全相同的外部条件(例如,位置、光照),所述拍摄装置可以拍摄不同的图像。拍摄参数可以包括曝光(例如,曝光时间、快门速度、孔径、胶片速度)、增益、伽玛、兴趣区、像素合并(binning)/子采样、像素时钟、偏移、触发、ISO等。与曝光相关的参数可以控制到达所述拍摄装置中的图像传感器的光量。例如,快门速度可以控制光到达图像传感器的时间量而孔径可以控制在给定时间内到达图像传感器的光量。与增益相关的参数可以控制对来自光学传感器的信号的放大。ISO可以控制相机对可用光的灵敏度水平。
在一些实施例中,所述拍摄装置可以安装于可移动平台或者终端设备上,所述可移动平台的示例包括但不限于无人飞行器、无人驾驶车辆、云台、无人驾驶船只或者移动机器人等。所述终端设备的示例包括但不限于:智能电话/手机、平板计算机、个人数字助理(PDA)、膝上计算机、台式计算机、遥控器或者可穿戴设备等可安装拍摄装置的设备。
示例性的,如图2示出了搭载有拍摄装置10的无人飞行器20,所述拍摄装置10可以与所述无人飞行器20通信连接。其中,所述无人飞行器20可以包括有飞行控制器(图中未示出),所述拍摄装置10可以与所述飞行控制器通信连接,并在所述飞行控制器的控制下进行拍摄。所述拍摄装置10可以直接固定于所述无人飞行器20上,也可以通过云台安装于所述无人飞行器20上,本实施例对此不做任何限制。进一步地, 所述拍摄装置10拍摄的图像和/或视频还可以发送给遥控终端21,以便用户可以在遥控终端21的界面上观看到所述拍摄装置10拍摄的图像和/或视频。以及,用户还可以通过所述遥控终端21控制所述无人飞行器20飞行和/或控制所述拍摄装置10进行拍摄。
示例性的,如图3示出了搭载有拍摄装置10的云台30,所述云台例如可以是单轴手持云台、双轴手持云台、三轴手持云台等。图3以三轴手持云台进行示例,所述云台30可以包括手柄机构31和云台机构32。手柄机构31与云台机构32连接。其中,云台机构32可以用于承载所述拍摄装置10,本实施例中的拍摄装置20例如可以是照相机、摄像机、手机等。其中,手柄机构31上可以设置控制按键33,可以通过所述控制按键33控制所述云台机构31转动,从而带动所述拍摄装置20转动,以拍摄不同画面。所述拍摄装置10可以以可拆卸方式安装于所述云台上,或者,所述拍摄装置可以为集成在手持云台中的一部分。
接下来对本申请实施例的曝光调节方法进行说明:请参阅图4,图4为本申请实施例提供的一种曝光调节方法的流程示意图。所述方法可以由拍摄装置来执行,所述方法包括:
在步骤S101中,获取第N帧图像的亮度统计信息,根据所述亮度统计信息确定曝光参数;N为大于0的整数。
在步骤S102中,在第N+1帧图像采集过程中,响应于预置的中断信号,将所述曝光参数发送给拍摄装置中的各个元件,以调节所述曝光参数在所述各个元件中的生效时延。
在一实施例中,请参阅图5,所述拍摄装置可以包括有机体15、镜头11、图像传感器12、图像信号处理器(ISP)13以及存储器14等元件。这里先简要介绍一下所述拍摄装置的成像过程:拍摄装置的镜头可将光线聚焦到图像传感器上,然后所述图像传感器可以用光电器件的光电转换功能将聚焦在感光面上的光像转换为与光像成相应比例关系的电信号;具体来说,景物反射的光线通过拍摄装置的镜头透射到图像传感器上;所述图像传感器可以包括有发光二极管、放大器和A/D转换器(模/数转换器)等,当所述图像传感器曝光后,图像传感器中的光电二极管受到光线的激发而释放出电荷,生成电信号,所述图像传感器会将一次成像产生的电信号收集起来,统一输出到放大器,由放大器对这些电信号进行放大和滤波处理,由于这时电子图像还是模拟信号,还不能被计算机识别,所以需要通过A/D转换器(模/数转换器)将模拟信号转换成数字信号,因此,经过放大和滤波后的电信号被传送到过A/D转换器,由A/D转 换器将作为模拟信号的电信号转换成数字信号的电信号,得到raw数据,raw数据文件几乎是未经过处理而直接从图像传感器(如CCD或CMOS)上得到的信息,这些raw数据还不能直接生成图像,需要由图像信号处理器(ISP)对raw数据进行处理,比如色彩校正、白平衡处理、自动曝光控制、噪声去除、坏点去除以及内插等,从而获得可以呈现给用户观看的图像,在一些实施例里,所述图像传感器生成的raw数据可以缓存在存储器中,由所述图像信号处理器重存储器中读取raw数据并进行处理,进一步地,可以将处理后的图像数据编码为所述拍摄装置所支持的图像格式、分辨率,然后将其存储为图像文件,保存至存储器上。
在一些实施例中,所述图像传感器在采集第N帧图像之后,由所述图像信号处理器对所述第N帧图像进行亮度统计之后得到,然后所述图像信号处理器将统计得到的第N帧的亮度统计数据缓存至存储器中,由所述拍摄装置从所述存储器中读取所述第N帧的亮度统计数据,并根据所述亮度统计数据确定曝光参数。在一个例子中,比如在自动曝光场景下,所述拍摄装置可以根据所述亮度统计数据与目标亮度之间的差异,计算出下一次需要调整的曝光参数,从而可以让图像的亮度越来越接近所述目标亮度;其中,所述曝光参数包括但不限于电子快门值、模拟增益值、数字增益值和光圈值等。
考虑到通常图像传感器的采集过程,所述图像信号处理器的处理过程以及所述曝光参数的生成过程三者存在时序不同步的问题,请参阅图1,通常会将每一帧的起始标识符SOF作为将曝光参数发送给拍摄装置的各个元件的下发时间,所述起始标识符用于指示每一帧图像的采集初始时间,而随着用户对帧率要求的提高,所述第N帧图像的结束采集时间与所述第N+1帧图像的开始采集时间之间的时间间隔通常会比较小,而曝光参数的生成过程一般需要较长的时间,所述第N帧图像的结束采集时间与所述第N+1帧图像的开始采集时间之间的时间间隔不足以让所述拍摄装置基于亮度统计信息生成所述曝光参数,即在所述第N帧图像的结束采集时间与所述第N+1帧图像的开始采集时间之间的时间间隔小于所述曝光参数的生成时长的情况下,存在错过了在第N+1帧的下发时间使得曝光参数需要延迟下发的问题,导致曝光参数在各个元件中的生效时间进一步延迟,从而影响了图像质量。
基于此,本实施例在步骤S102中,请参阅图6,可以预先在第N+1帧图像的起始标识符和结束标识符之间设置中断信号,所述起始标识符(SOF)用于指示所述第N+1帧图像的采集初始时间,所述结束标识符(EOF)用于指示所述第N+1帧图像的采集结束时间,然后在第N+1帧图像采集过程中,所述拍摄装置可以响应于预置的中断信号,将所述曝光参数发送给拍摄装置中的各个元件,以调节所述曝光参数在所述各个 元件中的生效时延。本实施例中能够使用中断信号将所述曝光参数及时发送给所述拍摄装置中的各个元件,无需等待到第N+2帧的起始标识符(SOF)处才发送所述曝光参数,改变了所述曝光参数的下发时间,使得所述曝光参数在所述各个元件中能够更快生效,从而有利于提升图像质量。
其中,所述中断信号是在所述曝光参数产生后生效的,从而确保所述拍摄装置可以响应于所述中断信号准确获得根据第N帧的亮度统计数据产生的曝光参数并及时将所述曝光参数下发给需要使用该曝光参数的各个元件,使得所述曝光参数在所述各个元件中能够更快生效,从而有利于提升图像质量。
例如在自动曝光场景下,请参阅图6,所述拍摄装置响应于所述中断信号,将所述曝光参数下发给需要使用该曝光参数的图像传感器和图像信号处理器,通常图像传感器在接收到曝光参数后需要进行设置,需要一定的反应时间,假设需要有1帧的延时,而图像信号处理器在设置所述曝光参数也需要一定的反应时间,假设也存在1帧的延时,即总共存在2帧的延时,由于所述拍摄装置在第N+1帧图像的采集过程中将曝光参数发送给图像传感器和图像信号处理器,则在采集第N+3帧图像的时候,根据第N帧的亮度统计数据产生的曝光参数即可生效,相比于图1中在第N+2帧的起始标识符SOF才发送曝光参数并在采集第N+4帧图像才开始生效的情形,本实施例的曝光参数能够在所述图像传感器和图像信号处理器中更快生效,有利于提高曝光收敛速度,提升图像拍摄的稳定性以及图像质量。
例如在自动包围曝光(AEB)场景中,所述拍摄装置响应于所述中断信号,将所述曝光参数下发给需要使用该曝光参数的图像传感器,通常图像传感器在接收到曝光参数(快门值和/或光圈值)并进行设置时需要一定的反应时间,假设需要有1帧的延时,由于所述拍摄装置在第N+1帧图像的采集过程中将曝光参数发送给图像传感器,则在采集第N+2帧图像的时候,根据第N帧的亮度统计数据产生的曝光参数即可生效,本实施例通过中断信号将所述曝光参数及时发送给所述拍摄装置中的图像传感器,使得所述曝光参数在所述图像传感器中能够更快生效,从而有利于提升图像质量。
例如在拍摄高动态范围(High-Dynamic Range,简称HDR)图像的场景中,所述拍摄装置响应于所述中断信号,将所述曝光参数下发给需要使用该曝光参数的图像传感器,而通常图像传感器在接收到曝光参数(快门值)并进行设置时需要一定的反应时间,假设需要有1帧的延时,由于所述拍摄装置在第N+1帧图像的采集过程中将曝光参数发送给图像传感器,则在采集第N+2帧图像的时候,根据第N帧的亮度统计数据产生的曝光参数即可生效,本实施例通过中断信号将所述曝光参数及时发送给所述 拍摄装置中的图像传感器,使得所述曝光参数在所述图像传感器中能够更快生效,从而有利于提升图像质量。
在一些实施例中,所述中断信号的生效时间可以根据所述曝光参数的确定生成时长所确定。作为例子,所述拍摄装置可以根据生成曝光参数的历史数据统计曝光参数的生成时长,然后根据所述曝光参数的生成时长确定所述中断信号在所述第N+1帧图像采集过程中的生效时间。作为例子,所述拍摄装置可以根据采集的图像的大小以及所述拍摄装置的处理能力预测所述曝光参数的生成时长,然后根据所述曝光参数的生成时长确定所述中断信号在所述第N+1帧图像采集过程中的生效时间。
在另一些实施例中,考虑到在获取第N帧图像的亮度统计信息的时候也需要耗费一定的时长,为了确保在所述中断信号生效时所述曝光参数已经产生,则所述拍摄装置可以根据所述亮度统计信息的获取时长以及所述曝光参数的生成时长确定所述中断信号在所述第N+1帧图像采集过程中的生效时间,从而保证所述曝光参数的准确下发。在一个例子中,所述图像信号处理器会对图像传感器采集的第N帧图像进行亮度信息统计并将得到的亮度统计信息缓存至存储器中,然后由所述拍摄装置从存储器中读取所述亮度统计信息以便进行后续的曝光参数生成过程,则所述亮度统计信息的获取时长包括所述图像信号处理器针对于所述第N帧图像的亮度信息的统计时长,所述图像信号处理器将亮度统计信息写入存储器的时长以及所述存储器从存储器中读取所述亮度统计信息的时长。本实施例中,通过亮度统计信息的获取时长以及所述曝光参数的生成时长确定所述中断信号的生效时间,确保在所述中断信号生效时所述曝光参数已经产生,进一步保证所述曝光参数的准确发送。
其中,所述中断信号可以通过硬件中断方式产生,也可以通过软件中断方式产生,本申请实施例对此不做任何限制。
在一种实现方式中,所述中断信号可以由图像信号处理器产生。在一个例子中,为了提高开发效率,可以复用所述图像信号处理器中已经存在的终端信号,例如可以使用所述图像信号处理器中的自动白平衡电路产生的中断信号,从而有利于缩短中断信号的设置时间。在另一个例子中,也可以控制图像信号处理器产生一个设置于所述第N+1帧图像的起始标识符和结束标识符之间的中断信号。可依据实际应用场景进行具体设置。
相应地,请参阅图7,本申请实施例还提供了一种拍摄装置10,包括:
处理器201;
用于存储所述处理器201可执行指令的存储器202;
用于使用曝光参数的至少一个元件203;
其中,所述处理器201调用所述可执行指令,当可执行指令被执行时,用于执行:
获取第N帧图像的亮度统计信息,根据所述亮度统计信息生成曝光参数;N为大于0的整数;
在第N+1帧图像采集过程中,响应于预置的中断信号,将所述曝光参数发送给拍摄装置中的各个元件,以调节所述曝光参数在所述各个元件中的生效时延。
所述处理器201执行所述存储器202中包括的可执行指令,所述处理器201可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
所述存储器202存储曝光调节方法的可执行指令,所述存储器202可以包括至少一种类型的存储介质,存储介质包括闪存、硬盘、多媒体卡、卡型存储器(例如,SD或DX存储器等等)、随机访问存储器(RAM)、静态随机访问存储器(SRAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、可编程只读存储器(PROM)、磁性存储器、磁盘、光盘等等。而且,设备可以与通过网络连接执行存储器的存储功能的网络存储装置协作。存储器202可以是拍摄装置10的内部存储单元,例如拍摄装置10的硬盘或内存。存储器202也可以是拍摄装置10的外部存储设备,例如拍摄装置10上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,存储器202还可以既包括拍摄装置10的内部存储单元也包括外部存储设备。存储器202用于存储计算机程序55以及设备所需的其他程序和数据。存储器202还可以用于暂时地存储已经输出或者将要输出的数据。
这里描述的各种实施方式可以使用例如计算机软件、硬件或其任何组合的计算机可读介质来实施。对于硬件实施,这里描述的实施方式可以通过使用特定用途集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理装置(DSPD)、可编程逻辑装置(PLD)、现场可编程门阵列(FPGA)、处理器、控制器、微控制器、微处理器、被设计为执行这里描述的功能的电子单元中的至少一种来实施。对于软件实施,诸如过程或功能的实施方式可以与允许执行至少一种功能或操作的单独的软件模块来实施。软件代码可以 由以任何适当的编程语言编写的软件应用程序(或程序)来实施,软件代码可以存储在存储器中并且由控制器执行。
拍摄装置10可以是手机、相机或者摄像机等。拍摄装置10可包括,但不仅限于,处理器201、存储器202。本领域技术人员可以理解,图7仅仅是拍摄装置10的示例,并不构成对拍摄装置10的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如设备还可以包括输入输出设备、网络接入设备、总线等。
在一实施例中,所述第N帧图像的结束采集时间与所述第N+1帧图像的开始采集时间之间的时间间隔小于所述曝光参数的生成时长。
在一实施例中,所述中断信号被设置于第N+1帧图像的起始标识符和结束标识符之间;所述起始标识符用于指示所述第N+1帧图像的采集初始时间,所述结束标识符用于指示所述第N+1帧图像的采集结束时间。
在一实施例中,所述中断信号在所述曝光参数确定完成后生效。
在一实施例中,所述中断信号的生效时间根据所述曝光参数的生成时长所确定。
在一实施例中,所述中断信号的生效时间根据所述亮度统计信息的获取时长以及所述曝光参数的生成时长所确定。
在一实施例中,所述第N帧图像的亮度统计信息由图像信号处理器对第N帧图像进行亮度数据统计之后得到,且所述亮度统计信息由所述图像信号处理器缓存至存储器。
在一实施例中,所述元件包括以下至少一个:图像传感器、图像信号处理器以及镜头。
在一实施例中,所述曝光参数包括以下至少一种:电子快门值、模拟增益值、数字增益值和光圈值。
在一实施例中,所述中断信号由图像信号处理器产生。
在一实施例中,所述中断信号通过硬件中断方式或软件中断方式产生。
在一实施例中,所述中断信号包括由图像信号处理器中的自动白平衡电路产生的中断信号。
在一实施例中,所述曝光参数在采集第N+3帧图像时生效。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。
相应地,本申请实施例还提供了一种可移动平台,包括:机体;设置于所述机体上的动力系统,用于为所述可移动平台提供动力;以及,上述的拍摄装置。
其中,所述可移动平台包括但不限于无人飞行器、无人驾驶车辆、云台、无人驾驶船只或者移动机器人等。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器,上述指令可由装置的处理器执行以完成上述方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
一种非临时性计算机可读存储介质,当存储介质中的指令由拍摄装置的处理器执行时,使得拍摄装置能够执行上述方法。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本申请实施例所提供的方法和装置进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (28)

  1. 一种曝光调节方法,其特征在于,包括:
    获取第N帧图像的亮度统计信息,根据所述亮度统计信息生成曝光参数;N为大于0的整数;
    在第N+1帧图像采集过程中,响应于预置的中断信号,将所述曝光参数发送给拍摄装置中的各个元件,以调节所述曝光参数在所述各个元件中的生效时延。
  2. 根据权利要求1所述的方法,其特征在于,所述第N帧图像的结束采集时间与所述第N+1帧图像的开始采集时间之间的时间间隔小于所述曝光参数的生成时长。
  3. 根据权利要求1所述的方法,其特征在于,所述中断信号被设置于第N+1帧图像的起始标识符和结束标识符之间;所述起始标识符用于指示所述第N+1帧图像的采集初始时间,所述结束标识符用于指示所述第N+1帧图像的采集结束时间。
  4. 根据权利要求1所述的方法,其特征在于,所述中断信号在所述曝光参数生成后生效。
  5. 根据权利要求4所述的方法,其特征在于,所述中断信号的生效时间根据所述曝光参数的生成时长所确定。
  6. 根据权利要求4或5所述的方法,其特征在于,所述中断信号的生效时间根据所述亮度统计信息的获取时长以及所述曝光参数的生成时长所确定。
  7. 根据权利要求1所述的方法,其特征在于,所述第N帧图像的亮度统计信息由图像信号处理器对第N帧图像进行亮度数据统计之后得到,且所述亮度统计信息由所述图像信号传感器缓存至存储器。
  8. 根据权利要求1所述的方法,其特征在于,所述元件包括以下至少一个:图像传感器、图像信号处理器以及镜头。
  9. 根据权利要求1所述的方法,其特征在于,所述曝光参数包括以下至少一种:电子快门值、模拟增益值、数字增益值和光圈值。
  10. 根据权利要求1所述的方法,其特征在于,所述中断信号由图像信号处理器产生。
  11. 根据权利要求1所述的方法,其特征在于,所述中断信号通过硬件中断方式或软件中断方式产生。
  12. 根据权利要求10或11所述的方法,其特征在于,所述中断信号包括由图像信号处理器中的自动白平衡电路产生的中断信号。
  13. 根据权利要求1所述的方法,其特征在于,所述曝光参数在采集第N+3帧图像时生效。
  14. 一种拍摄装置,其特征在于,包括:
    处理器;
    用于存储所述处理器可执行指令的存储器;
    用于使用曝光参数的至少一个元件;
    其中,所述处理器调用所述可执行指令,当可执行指令被执行时,用于执行:
    获取第N帧图像的亮度统计信息,根据所述亮度统计信息生成曝光参数;N为大于0的整数;
    在第N+1帧图像采集过程中,响应于预置的中断信号,将所述曝光参数发送给拍摄装置中的各个元件,以调节所述曝光参数在所述各个元件中的生效时延。
  15. 根据权利要求14所述的装置,其特征在于,所述第N帧图像的结束采集时间与所述第N+1帧图像的开始采集时间之间的时间间隔小于所述曝光参数的生成时长。
  16. 根据权利要求14所述的装置,其特征在于,所述中断信号被设置于第N+1帧图像的起始标识符和结束标识符之间;所述起始标识符用于指示所述第N+1帧图像的采集初始时间,所述结束标识符用于指示所述第N+1帧图像的采集结束时间。
  17. 根据权利要求14所述的装置,其特征在于,所述中断信号在所述曝光参数确定完成后生效。
  18. 根据权利要求17所述的装置,其特征在于,所述中断信号的生效时间根据所述曝光参数的生成时长所确定。
  19. 根据权利要求17或18所述的装置,其特征在于,所述中断信号的生效时间根据所述亮度统计信息的获取时长以及所述曝光参数的生成时长所确定。
  20. 根据权利要求14所述的装置,其特征在于,所述第N帧图像的亮度统计信息由图像信号处理器对第N帧图像进行亮度数据统计之后得到,且所述亮度统计信息由所述图像信号处理器缓存至存储器。
  21. 根据权利要求14所述的装置,其特征在于,所述元件包括以下至少一个:图像传感器、图像信号处理器以及镜头。
  22. 根据权利要求14所述的装置,其特征在于,所述曝光参数包括以下至少一种:电子快门值、模拟增益值、数字增益值和光圈值。
  23. 根据权利要求14所述的装置,其特征在于,所述中断信号由图像信号处理器产生。
  24. 根据权利要求14所述的装置,其特征在于,所述中断信号通过硬件中断方式或 软件中断方式产生。
  25. 根据权利要求23或24所述的装置,其特征在于,所述中断信号包括由图像信号处理器中的自动白平衡电路产生的中断信号。
  26. 根据权利要求14所述的装置,其特征在于,所述曝光参数在采集第N+3帧图像时生效。
  27. 一种可移动平台,其特征在于,包括:
    机体;
    设置于所述机体上的动力系统,用于为所述可移动平台提供动力;以及,
    如权利要求14至26任意一项所述的拍摄装置。
  28. 一种计算机可读存储介质,其特征在于,其上存储有计算机指令,该指令被处理器执行时实现权利要求1至13任意一项所述的方法。
PCT/CN2020/135872 2020-12-11 2020-12-11 曝光调节方法、拍摄装置、可移动平台及存储介质 WO2022120827A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/135872 WO2022120827A1 (zh) 2020-12-11 2020-12-11 曝光调节方法、拍摄装置、可移动平台及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/135872 WO2022120827A1 (zh) 2020-12-11 2020-12-11 曝光调节方法、拍摄装置、可移动平台及存储介质

Publications (1)

Publication Number Publication Date
WO2022120827A1 true WO2022120827A1 (zh) 2022-06-16

Family

ID=81974115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/135872 WO2022120827A1 (zh) 2020-12-11 2020-12-11 曝光调节方法、拍摄装置、可移动平台及存储介质

Country Status (1)

Country Link
WO (1) WO2022120827A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102223484A (zh) * 2011-08-04 2011-10-19 浙江工商大学 一种摄像机前端参数配置的方法和装置
US20130027581A1 (en) * 2011-07-29 2013-01-31 Apple Inc. Adaptive auto exposure adjustment
CN110798626A (zh) * 2019-12-02 2020-02-14 重庆紫光华山智安科技有限公司 一种自动曝光调节方法、系统及设备
CN111345033A (zh) * 2019-03-12 2020-06-26 深圳市大疆创新科技有限公司 参数同步方法、拍摄装置和可移动平台
CN111586312A (zh) * 2020-05-14 2020-08-25 Oppo(重庆)智能科技有限公司 自动曝光的控制方法及装置、终端、存储介质
CN111614909A (zh) * 2020-06-24 2020-09-01 成都国科微电子有限公司 一种自动曝光控制方法、设备及存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130027581A1 (en) * 2011-07-29 2013-01-31 Apple Inc. Adaptive auto exposure adjustment
CN102223484A (zh) * 2011-08-04 2011-10-19 浙江工商大学 一种摄像机前端参数配置的方法和装置
CN111345033A (zh) * 2019-03-12 2020-06-26 深圳市大疆创新科技有限公司 参数同步方法、拍摄装置和可移动平台
CN110798626A (zh) * 2019-12-02 2020-02-14 重庆紫光华山智安科技有限公司 一种自动曝光调节方法、系统及设备
CN111586312A (zh) * 2020-05-14 2020-08-25 Oppo(重庆)智能科技有限公司 自动曝光的控制方法及装置、终端、存储介质
CN111614909A (zh) * 2020-06-24 2020-09-01 成都国科微电子有限公司 一种自动曝光控制方法、设备及存储介质

Similar Documents

Publication Publication Date Title
US9723159B2 (en) RAW camera peripheral for handheld mobile unit
US8937677B2 (en) Digital photographing apparatus, method of controlling the same, and computer-readable medium
JP6455601B2 (ja) 制御システム、撮像装置、およびプログラム
WO2006013945A1 (ja) 撮像装置、撮像方法および撮像制御プログラム
JP6119235B2 (ja) 撮像制御装置、撮像システム、撮像制御方法およびプログラム
JP5843027B1 (ja) 撮像装置、制御方法およびプログラム
WO2019037781A1 (zh) 终端及其防抖拍照方法、存储装置
TWI543615B (zh) 影像處理方法及其電子裝置
CN107613190B (zh) 一种拍照方法及终端
JP2011103659A (ja) カメラモジュール
KR102072731B1 (ko) 촬영 장치, 그 제어 방법, 및 컴퓨터 판독가능 저장매체
WO2017054475A1 (zh) 拍照的方法、装置及终端
WO2015192545A1 (zh) 拍照的方法、装置及计算机存储介质
US10110826B2 (en) Imaging with adjustment of angle of view
JP7247609B2 (ja) 撮像装置、撮像方法およびプログラム
WO2022120827A1 (zh) 曝光调节方法、拍摄装置、可移动平台及存储介质
JP4844220B2 (ja) 露出補正装置、撮影装置、露出値設定装置、露出補正値算出方法および制御プログラム
WO2016074414A1 (zh) 一种图像的处理方法和装置
TW201911853A (zh) 雙攝像頭影像擷取裝置及其攝像方法
JP2006217249A (ja) 電子カメラ、電子カメラシステムおよびプログラム
KR20110074417A (ko) 촬상 장치와 이를 이용한 촬상 방법 및 프로그램
US10212357B2 (en) Imaging apparatus and control method to realize accurate exposure
KR20100112788A (ko) 손떨림 방지 기능과 플래쉬 기능의 제어 방법, 이를 이용한 촬영 방법 및 디지털 카메라 모듈
WO2022000974A1 (zh) 红外图像处理方法、装置、设备及存储介质
JP5803873B2 (ja) 露出装置、露出方法、およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20964763

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20964763

Country of ref document: EP

Kind code of ref document: A1