WO2022120766A1 - 一种微米级微丝穿微管引导器件 - Google Patents

一种微米级微丝穿微管引导器件 Download PDF

Info

Publication number
WO2022120766A1
WO2022120766A1 PCT/CN2020/135481 CN2020135481W WO2022120766A1 WO 2022120766 A1 WO2022120766 A1 WO 2022120766A1 CN 2020135481 W CN2020135481 W CN 2020135481W WO 2022120766 A1 WO2022120766 A1 WO 2022120766A1
Authority
WO
WIPO (PCT)
Prior art keywords
neck
opening
main body
microfilament
scale
Prior art date
Application number
PCT/CN2020/135481
Other languages
English (en)
French (fr)
Inventor
汤勇
詹阳
Original Assignee
中国科学院深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院深圳先进技术研究院 filed Critical 中国科学院深圳先进技术研究院
Priority to PCT/CN2020/135481 priority Critical patent/WO2022120766A1/zh
Publication of WO2022120766A1 publication Critical patent/WO2022120766A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G1/00Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines
    • H02G1/06Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for laying cables, e.g. laying apparatus on vehicle
    • H02G1/08Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for laying cables, e.g. laying apparatus on vehicle through tubing or conduit, e.g. rod or draw wire for pushing or pulling

Definitions

  • the invention relates to the field of medical technology, in particular to a micrometer-level microfilament guiding device through a microtube.
  • micron-scale electrode wires When making some precision electrodes by hand, it is often necessary to prepare a large number of micron-scale electrode wires and thread them into silicon tubes, and thread 15 ⁇ m to 75 ⁇ m microwires into microtubes with an inner diameter of 100 ⁇ m to 200 ⁇ m.
  • the 100 ⁇ m-level microtube hollow cavity is difficult to identify with the naked eye, and it is extremely difficult to distinguish the alignment between the 10 ⁇ m-level microfilament end and the microtube hollow cavity by manual operation under the naked eye.
  • the drift of the hand-held microfilaments in the diameter range of 300 ⁇ m caused by the natural shaking of the human body makes it very difficult to directly dock the cavities and microfilaments in the microtubules under the microscope.
  • the manual microfilament threading operation is currently carried out entirely by manual dexterity, which requires the operator to concentrate heavily, keep his head down and keep his eyes on the microtubule with an inner diameter of 100 ⁇ m to 200 ⁇ m for a long time, and it takes a long time to stabilize the hand to complete. Due to the narrow cavity in the microtubule, the position of the microwire relative to the microtubule is not fixed when the human hand shakes naturally. It is very difficult to accurately insert the microwire into the microtubule cavity. This operation requires a lot of energy for skilled operators and can easily lead to occupational diseases such as joint strain and vision loss due to excessive concentration of operators for a long time. .
  • the present invention proposes a micrometer-scale microwire and microtube guiding device which is easy to operate and can quickly and accurately complete the operation of micrometer-scale microfilaments through microtubes.
  • the micrometer-scale microfilament threading microtube guiding device used for threading the micrometer-scale microfilaments into the microtube, includes a main body and a neck that communicate with each other, the main body has a first opening and a second opening, and the The first opening and the second opening are connected through the side wall, and the inner diameter of the second opening is larger than the inner diameter of the first opening; the neck is a hollow structure, and one end of the neck is connected to the first opening Connected.
  • the main body has an open structure. Further, the side wall is a smooth inclined surface; or, the side wall is an arc surface.
  • the neck is used to fix the microtube, and the microwire is inserted from the main body, guided along the side wall to enter the neck and docked with the hollow cavity of the microtube, so that the operation is simple and convenient.
  • the inner diameter of the second opening of the main body is at least 600 ⁇ m, so that the natural shaking of the human hand has no influence on the operation of manually inserting the microwire into the guiding device.
  • the gap between the neck and the microtubes is 0-20 ⁇ m. It can be ensured that the microtubes can be put into the neck of the micrometer-scale microfilaments penetrating the microtube guiding device and can stay naturally without slipping out.
  • the device for guiding micro-scale microfilaments through micro-tubes further comprises a guide port, the main body and the guide port are respectively connected to opposite ends of the neck, and the guide port has an open structure, which is in the same way as the One end of the neck connection is a narrow mouth.
  • the microtube is inserted from the guide port, and is guided along the inner wall of the guide port to the neck and fixed, so that the operation of inserting the microtube into the neck and fixing it is simpler, and the entire micrometer-scale microfilament is further reduced. Difficulty of penetrating microtubules.
  • the neck includes a first neck and a second neck; one end of the first neck is connected to the main body, and the other end of the first neck is connected to the second neck One end of the second neck is sleeved, and the other end of the second neck is connected with the guide port.
  • the inner diameter can be changed by using the wall thickness of the second neck.
  • the second neck portion corresponding to the inner diameter of the microtube is selected according to the actual size of the microtube, and the second neck portion is sheathed into the first neck portion for fixing.
  • the neck includes two or more accommodating cavities connected in sequence, and the inner diameter of the accommodating cavities increases step by step, A reducer is used to connect the two adjacent accommodating cavities, and one end of the reducer close to the main body is a narrow mouth.
  • the central axes of the accommodating cavities are on the same straight line; or, the orthogonal projection of each accommodating cavity is included in the projection of the accommodating cavity with the largest inner diameter.
  • the present invention also provides a device for guiding micrometer-level microfilaments through microtubes, which is used for threading micrometer-level microfilaments into microtubes.
  • Several micrometer-scale microfilaments as described above pass through the microtubule guiding device. It solves the problem that the size of the guiding device is very small, and it is inconvenient to hold in use.
  • the main body of the micrometer-scale microfilament penetrating microtube guiding device of the present invention has a first opening and a second opening with different opening sizes, and the first opening with a smaller opening on the main body is connected to the neck, and the neck is used for fixing Microtubes, microfilaments are inserted from the main body, the size of the second opening is set so that the natural shaking of the human hand has no effect on the operation of manually inserting the microfilaments into the guide device, and the microfilaments can be guided along the sidewall to enter the neck and the hollow of the microtube.
  • the cavity realizes butt joint.
  • the matching design of the main body and the neck allows the operator to easily, quickly and high-quality complete the micro-scale microfilament threading operation.
  • a guide port is also provided on the neck, which makes the operation of inserting the microtube into the neck and fixing it easier. Simple, saves operator time and effort.
  • the necks can be provided with different inner diameter sizes, depending on the application selected.
  • a plurality of accommodating cavities with different inner diameters can also be arranged on one guiding device, so that a single guiding device can be adapted to the application of microtubes of different sizes, and is flexible and easy to use.
  • the present invention also provides a micro-scale micro-filament guiding device for passing through a micro-tube, and the guiding device is installed on the base to facilitate the operator to hold the device.
  • Fig. 1 is the structural schematic diagram of the micron-scale microfilament passing through the micropipe guiding device of the present invention
  • Fig. 2 is another structural schematic diagram of the micro-scale micro-filament passing through the micro-pipe guiding device of the present invention
  • Fig. 3 is another structural schematic diagram of the micrometer-scale microfilament passing through the microtube guiding device of the present invention.
  • Fig. 4 is another structural schematic diagram of the micrometer-scale microfilament passing through the microtube guiding device of the present invention.
  • FIG. 5 is a schematic view of the structure of the device for guiding micrometer-scale microfilaments through microtubules according to the present invention.
  • the invention provides a guiding device for microfilaments passing through microtubules using the principle of "funnel pulling".
  • FIG. 1 of the description it is a schematic structural diagram of the microfilament guiding device through the microtubule of the present invention.
  • the guide device includes a funnel-shaped main body 11 and a neck 12 that communicate with each other.
  • the main body 11 includes a first opening 111 and a second opening 112.
  • the first opening 111 and the second opening 112 are connected through the sidewall.
  • One end of the neck portion 12 communicates with the first opening 111 larger than the inner diameter of the first opening 111 .
  • the guiding device includes a main body 11 and a neck 12 , the main body 11 is an open structure, the side wall is a smooth inclined surface or an arc surface, and the neck 12 is a hollow cavity.
  • the microtube 21 is fixed inside the guide device neck 12 .
  • the inner diameter dimension of the guide device neck 12 may be slightly larger than the overall outer diameter dimension of the microtubes 21 .
  • the overall outer diameter dimension of the microtubes 21 is equal to the inner diameter dimension of the guide device neck 12 .
  • the microwires 22 are inserted from the direction of the main body 11 , guided along the inner wall of the main body 11 to the interior of the neck 12 , and then precisely butted with the hollow cavity of the microtubes 21 , thereby completing the operation of the microfilaments passing through the microtubes.
  • the microfilament 22 of 75 ⁇ m is to be threaded into the microtube 21 with an inner diameter of 100 ⁇ m and a total outer diameter of 160 ⁇ m, and the gap between the inner wall of the neck 12 and the outer surface of the microtube 21 can be 0-20 ⁇ m.
  • a guide device with an inner diameter of the neck 12 of 180 ⁇ m is used. The neck 12 with an inner diameter of 180 ⁇ m can ensure that the microtubes 21 with a total outer diameter of 160 ⁇ m can be put into the neck 12 of the guiding device and stay naturally and not easily slip out.
  • the inner diameter of the second opening 112 on the main body 11 is at least 600 ⁇ m, so that the natural shaking of the human hand has no effect on the operation of manually inserting the microwire 22 into the guiding device.
  • the inner diameter of the second opening 112 on the main body 11 is 900 ⁇ m.
  • the side wall of the main body 11 is a smooth inclined surface, and the whole is in the shape of an inverted truncated cone.
  • the guide device of this embodiment includes a main body 11 , a neck 12 and a guide port 14 .
  • the opposite ends of the neck 12 are respectively connected to the main body 11 and the guide opening 14 , the main body 11 and the guide opening 14 are both open structures, and the end connected to the neck 12 is a narrow opening.
  • the side wall of the guide opening 14 may be a smooth inclined surface or an arc surface.
  • the side wall of the main body 11 is an arc surface, and the whole is bowl-shaped, and the side wall of the guide port 14 is a smooth inclined surface.
  • the micro-scale microfilament threading operation When performing the micro-scale microfilament threading operation, firstly insert the microtube 21 from the direction of the guide port 14, guide it to the neck 12 along the inner wall of the guide port 14 and fix it in the neck 12, and then insert the microwire 22 from the direction of the main body 11, along the arc surface. Guided into the neck 12 and docked with the hollow cavity of the microtube 21 . Both ends of the neck 12 are designed with the principle of "funnel traction", so that the operations of fixing the tiny microtubes 21 and penetrating the microfilaments 22 can be carried out quickly and accurately, reducing the operation time of the entire micrometer-scale microfilament threading through the microtubes. Difficulty, simplify the operation, the operator can easily, simply and quickly complete the operation.
  • the neck of the guiding device includes a first neck 121 and a second neck 122 that are independent of each other.
  • One end of the first neck 121 is connected to the main body 11 , and the other end is sleeved with the second neck 122 .
  • the other ends of the two necks 122 are connected to the guide port 14 .
  • the first neck 121 has a fixed size
  • the second neck 122 has an outer diameter equal to the inner diameter of the first neck 121
  • different second necks 122 have different inner diameters.
  • the inner diameter size can be changed by using the wall thickness of the second neck portion 122 .
  • the inner diameter may be 180 ⁇ m, or the inner diameter may be 160 ⁇ m by increasing the wall thickness.
  • the second neck 122 corresponding to the inner diameter is selected according to the actual size of the microtube 21, and the second neck 122 is inserted into the first neck 121 to be fixed.
  • FIG. 4 of the description it is a schematic diagram of a specific structure of a micrometer-scale microfilament-penetrating microtubule guiding device capable of accommodating microtubules 21 of various sizes.
  • the neck includes two or more accommodating cavities connected in sequence, the accommodating cavity is a hollow cavity, the inner diameter of the accommodating cavity increases step by step, and the two adjacent accommodating cavities are connected by a reducing tube 134, and the reducing tube One end of 134 close to the main body 11 is a narrow opening, and the orthogonal projection of each accommodating cavity is included in the projection of the accommodating cavity with the largest inner diameter.
  • the neck includes a first accommodating cavity 131 , a second accommodating cavity 132 and a third accommodating cavity 133 .
  • the inner diameter of the first accommodating cavity 131 is 200 ⁇ m and can accommodate microtubes 21 with an outer diameter of 180-200 ⁇ m.
  • the inner diameter of the second accommodating cavity 132 is 175 ⁇ m, which can accommodate microtubes 21 with an outer diameter of 155-175 ⁇ m, and the inner diameter of the third accommodating cavity 133 is 150 ⁇ m, which can accommodate microtubes 21 with an outer diameter of 130-150 ⁇ m.
  • the projection of the third accommodating cavity 133 is within the projection of the second accommodating cavity 132
  • the projection of the second accommodating cavity 132 is within the projection of the first accommodating cavity 131 .
  • the central axes of the first accommodating cavity 131 , the second accommodating cavity 132 and the third accommodating cavity 133 are on the same straight line.
  • the guiding device When using the guiding device to perform the microfilament threading operation, insert the microtube 21 from the direction of the guide port 14, enter the position where it can be stably fixed with the neck 12 along the guide port 14, and then insert the microwire 22 from the direction of the main body 11, It is guided along the side wall of the main body 11 into the neck 12 to precisely butt with the hollow cavity of the microtube 21 .
  • the device for guiding micrometer-scale microfilaments through microtubes includes a base and a guiding device mounted on the base 15 .
  • the base is in the shape of a plate with a side length of 2 cm, and a guide device is installed in the middle position of the base 15, which solves the problem that the size of the guide device is very small and it is inconvenient to hold during use.
  • a plurality of guiding devices may be mounted on one base 15 .
  • the operator When using the micro-scale micro-filament threading micro-tube guiding device, the operator holds the base, first inserts the micro-tube 21 into the main body 12 of the guiding device, and then inserts the micro-filament 22 from the main body 11, and the micro-filament 22 is guided along the side wall of the main body 11.
  • the inside of the main body 12 is butted with the hollow cavity of the microtube 21 .
  • the present invention provides a micrometer-scale microfilament through microtube guiding device, the main body has a first opening and a second opening with different opening sizes, the first opening with a smaller opening on the main body is connected to the neck, and the neck is The microtube is fixed, and the microfilament is inserted from the second opening with a larger opening on the main body, so that the natural shaking of the human hand has no effect on the operation of manually inserting the microfilament into the guiding device, and the microfilament can be retracted along the main body to the neck and the microtube.
  • the hollow cavity realizes butt joint.
  • the matching design of the main body and the neck allows the operator to easily, quickly and high-quality complete the micro-scale microfilament threading micro-tube operation, saving the operator's time and energy, and reducing the loss of materials during the operation.
  • some other designs have also been made.
  • a guide port is also provided on the neck, which makes the operation of inserting the microtube into the neck and fixing it easier. Simple, saving operator time and experience.
  • the necks can be provided with different inner diameter sizes, depending on the application selected.
  • a plurality of accommodating cavities with different inner diameters can also be arranged on one guiding device, so that a single guiding device can adapt to the application of microtubes of different sizes, and is flexible and easy to use.
  • the present invention also provides a micro-scale micro-filament guiding device for passing through a micro-tube.
  • the guiding device is installed on the base so that the operator can hold the device.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

本发明提出了一种微米级微丝穿微管引导器件,用于将微米级微丝穿入微管中,包括相连通的主体和颈部,主体具有第一开口和第二开口,第一开口与第二开口通过侧壁连接,第二开口的内径大于第一开口的内径;颈部为中空结构,一端与第一开口连通。颈部用于固定微管,微丝从主体方向插入,沿主体侧壁引导至进入颈部与微管的中空腔对接,第二开口的尺寸设置使得人体手部的自然抖动对于将微丝手动插入引导器件的操作无影响,主体与颈部的配合设计使得操作人员能够轻松、快速且高质量地完成微米级微丝穿微管操作,节省操作人员的时间和精力。运用相同的原理还设置有引导口用于将微管伸入颈部固定,进一步简化微丝穿微管的整体操作。

Description

一种微米级微丝穿微管引导器件 技术领域
本发明涉及医疗技术领域,尤其涉及一种微米级微丝穿微管引导器件。
背景技术
在手工制作一些精密电极时,往往需要制备大量的微米级电极丝穿入硅管,将15μm至75μm微丝穿入100μm至200μm内径的微管内。100μm级微管中空腔肉眼下难以辨识,10微米级微丝端与微管中空腔对接在肉眼下手工操作极难分辨对准。即便借助显微镜可分辨出微管中空腔、微丝,但人体自然抖动引起的手持微丝在300μm直径范围内的漂移不定也导致显微镜下直接对接微管中空腔和微丝非常困难。
而手工微丝穿微管操作目前完全是靠人工的手巧能力进行,需要操作人员高度集中精力,长时间保持低头眼睛紧盯100μm至200μm内径的微管上,并需要手部长时间稳定才能完成。由于微管中空腔狭小,微丝在人体手部自然抖动时相对微管位置漂移不定,要想将微丝精准插入微管中空腔非常困难。该操作对于熟练操作人员需要消耗大量精力而且易导致操作人员长时间过度精力集中产生关节劳损、视力下降等职业病;对于初学者想要做好更是非常困难,耗时耗力、可用成品数量少。
发明内容
有鉴于此,为了克服上述现有技术的缺陷,本发明提出了一种操作简便、能够快速精准完成微米级微丝穿微管操作的微米级微丝穿微管引导器件。
具体地,所述微米级微丝穿微管引导器件,用于将微米级微丝穿入微管中,包括相连通的主体和颈部,所述主体具有第一开口和第二开口,所述第一开口与所述第二开口通过侧壁连接,所述第二开口的内径大于所述第一开口的内径;所述颈部为中空结构,所述颈部的一端与所述第一开口连通。所述主 体呈敞口式结构。进一步,所述侧壁为平滑的斜面;或者,所述侧壁为弧面。所述颈部用于固定所述微管,所述微丝从所述主体插入,沿所述侧壁引导至进入所述颈部并与所述微管的中空腔对接,使操作简单方便。
具体地,所述主体的第二开口的内径尺寸至少为600μm,使得人体手部的自然抖动对于将所述微丝手动插入引导器件的操作无影响。所述颈部与所述微管的间隙为0-20μm。可以保证所述微管能放入所述微米级微丝穿微管引导器件的所述颈部并可自然停留不滑出。
进一步,所述微米级微丝穿微管引导器件还包括引导口,所述主体与所述引导口分别连接所述颈部相对的两端,所述引导口呈敞口式结构,与所述颈部连接的一端为窄口。所述微管从所述引导口插入,沿所述引导口的内壁引导至所述颈部并固定,以使所述微管插入颈部固定的操作更为简单,进一步降低整个微米级微丝穿微管操作的难度。
在一些实施例中,所述颈部包括第一颈部和第二颈部;所述第一颈部的一端与所述主体连接,所述第一颈部的另一端与所述第二颈部的一端套接,所述第二颈部的另一端与所述引导口连接。具体地,可以利用所述第二颈部的壁厚改变内径尺寸。在需要使用引导器件时,根据所述微管的实际尺寸选择内径尺寸对应的所述第二颈部,并将所述第二颈部套接入所述第一颈部进行固定。
为了增强单个引导器件的适用性,使引导器件能够适用于不同尺寸的所述微管,所述颈部包括两个以上依次连接的容置腔,所述容置腔的内径逐级增大,相邻两所述容置腔之间采用异径管连接,所述异径管靠近所述主体的一端为窄口。优选地,所述容置腔的中心轴在同一直线上;或者,各所述容置腔的正交投影均包含于最大内径的容置腔的投影内部。
本发明还提出了一种微米级微丝穿微管引导装置,用于将微米级微丝穿入微管中,所述微米级微丝穿微管引导器件包括基座和安装在所述基座上的若干个如上所述的微米级微丝穿微管引导器件。解决了引导器件的尺寸十分微小,使用时不便于手持的问题。
综上所述,本发明的微米级微丝穿微管引导器件的主体具有开口尺寸不同的第一开口和第二开口,主体上开口较小的第一开口连接颈部,颈部用于固定微管,微丝从主体插入,第二开口的尺寸设置使人体手部的自然抖动对于将微丝手动插入引导器件的操作无影响,微丝能够沿侧壁引导至进入颈部与微管中空腔实现对接。主体与颈部的配合设计使得操作人员能够轻松、快速且高质量地完成微米级微丝穿微管操作。为了使得微米级微丝穿微管引导器件的使用更加方便,还做出了一些其他设计,例如,在颈部上还设置有引导口,使将微管插入颈部固定的这一步操作更为简单,节省操作人员的时间和精力。进一步,可以将颈部设置为具有不同的内径尺寸,根据需要选择应用。还可以在一个引导器件上设置多个内径尺寸不同的容置腔,使单个引导器件能够适应不同尺寸的微管应用,使用灵活简便。本发明还提出了一种微米级微丝穿微管引导装置,将引导器件安装在基座上便于操作人员手持。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明微米级微丝穿微管引导器件的结构示意图;
图2为本发明微米级微丝穿微管引导器件的另一结构示意图;
图3为本发明微米级微丝穿微管引导器件的又一结构示意图;
图4为本发明微米级微丝穿微管引导器件的再一结构示意图;
图5为本发明微米级微丝穿微管引导装置的结构示意图。
附图标记:
11-主体;12-颈部;121-第一颈部;122-第二颈部;131-第一容置腔;132-第二容置腔;133-第三容置腔;134-异径管;14-引导口;15-基座;21-微管;22-微丝。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供了一种采用“漏斗牵引”原理的微丝穿微管引导器件。参见说明书附图1,为本发明微丝穿微管引导器件的结构示意图。引导器件包括呈漏斗状的相连通的主体11和颈部12,主体11包括第一开口111和第二开口112,第一开口111与第二开口112通过侧壁连接,第二开口112的内径大于第一开口111的内径,颈部12的一端与第一开口111连通。
实施例1
在本实施例中,引导器件包括主体11和颈部12,主体11呈敞口式结构,侧壁为平滑的斜面或者的弧面,颈部12为一个中空腔体。进行微丝穿微管操作时,将微管21固定在引导器件颈部12的内部。可选地,引导器件颈部12的内径尺寸可以略大于微管21的总外径尺寸。优选地,微管21的总外径尺寸与引导器件颈部12的内径尺寸相等。微丝22从主体11方向插入,沿主体11的内壁引导到颈部12的内部,然后与微管21的中空腔精准对接,从而完成微丝穿微管操作。
在具体的微米级微丝穿微管操作中,要将75μm的微丝22穿进内径100μm、总外径160μm的微管21中,颈部12的内壁与微管21的外表面的间隙可以为0-20μm。在一些实施例中,使用颈部12内径为180μm的引导器件。180μm内径的颈部12可以保证总外径为160μm的微管21能放入引导器件颈部12并可自然停留不易滑出。主体11上第二开口112的内径尺寸至少为600μm,使得人体手部的自然抖动对于将微丝22手动插入引导器件的操作无影响。优选地,主体11上第二开口112的内径尺寸为900μm。在本实施例中, 主体11的侧壁为平滑的斜面,整体呈倒置的圆台状,微丝22从主体插入后,沿斜面引导至颈部12内与微管21的中空腔对接。
实施例2
参见说明书附图2,本实施例的引导器件包括主体11、颈部12和引导口14。颈部12相对的两端分别连接主体11和引导口14,主体11和引导口14均呈敞口式结构,与颈部12连接的一端为窄口。可选地,引导口14的侧壁可以为平滑的斜面或者是弧面。在本实施例中,主体11侧壁为弧面,整体呈碗状,引导口14的侧壁为平滑的斜面。进行微米级微丝穿微管操作时,先将微管21从引导口14方向插入,沿引导口14内壁引导至颈部12内固定,然后将微丝22从主体11方向插入,沿弧面引导至颈部12内与微管21中空腔对接。颈部12两端均采用“漏斗牵引”原理设计,使对尺寸微小的微管21固定、微丝22穿入的操作均可快速且准确地进行,降低整个微米级微丝穿微管操作的难度,将操作简单化,操作人员可以轻松、简易、快速地完成这项操作。
实施例3
由于引导器件需要对微管21进行稳定的固定,而微管21的尺寸根据实际需要进行选择,在实际使用引导器件时,需要应用到颈部12内径尺寸不同的引导器件匹配微管21使用。参见说明书附图3,引导器件的颈部包括相互独立的第一颈部121与第二颈部122,第一颈部121一端与主体11连接,另一端与第二颈部122套接,第二颈部122的另一端与引导口14连接。具体地,第一颈部121具有固定尺寸,第二颈部122具有与第一颈部121内径尺寸相等的外径尺寸,不同的第二颈部122的内径尺寸不同。具体地,可以利用第二颈部122的壁厚改变内径尺寸。例如,在第二颈部122外径尺寸为200μm的情况下,内径尺寸可以为180μm,也可以通过增加壁厚,使内径尺寸为160μm。在需要使用引导器件时,根据微管21的实际尺寸选择内径尺寸对应的第二颈部122,将第二颈部122插入第一颈部121固定。
进一步,为了使单个引导器件具有更强的适用性,设计了一种能够容纳不同尺寸的微管21的微米级微丝穿微管引导器件。参见说明书附图4,为一个能够容纳多种尺寸的微管21的微米级微丝穿微管引导器件的具体结构示意图。颈部包括两个以上依次连接的容置腔,容置腔为中空腔体,容置腔的内径逐级增大,相邻两个容置腔之间采用异径管134连接,异径管134靠近主体11的一端为窄口,各容置腔的正交投影均包含于最大内径的容置腔的投影内部。具体地,颈部包括第一容置腔131、第二容置腔132和第三容置腔133,第一容置腔131的内径为200μm,能够容纳外径为180-200μm的微管21;第二容置腔132的内径为175μm,能够容纳外径为155-175μm的微管21,第三容置腔133的内径为150μm,能够容纳外径为130-150μm的微管21。在由主体11向引导口14方向的正投影上,第三容置腔133的投影在第二容置腔132的投影内,第二容置腔132的投影在第一容置腔131的投影内。优选地,第一容置腔131、第二容置腔132和第三容置腔133的中心轴在同一直线上。
使用引导器件进行微丝穿微管操作时,将微管21从引导口14方向插入,沿引导口14进入到能够与颈部12稳定固定的位置,然后将微丝22从主体11方向插入,沿主体11的侧壁引导至颈部12内与微管21中空腔精准对接。在使用时无需花费时间选择与微管21尺寸匹配的引导器件,单个引导器件能够适用于不同尺寸的微管21,使用灵活简便。
实施例4
参见说明书附图5,为微米级微丝穿微管引导装置的结构示意图。微米级微丝穿微管引导装置包括基座和安装在基座15上的引导器件。在一些实施例中,基座为边长2cm的板状,一个引导器件安装在基座15的中间位置,解决了引导器件的尺寸十分微小,使用时不便于手持的问题。可选地,一个基座15上可以安装多个引导器件。使用微米级微丝穿微管引导装置时,操作人员手持基座,先将微管21插入引导器件的主体12,然后从主体11插入微丝22,微丝22沿主体11的侧壁引导进入主体12内部,与微管21的中空腔对接。
综上所述,本发明提供了一种微米级微丝穿微管引导器件,主体具有开口尺寸不同的第一开口和第二开口,主体上开口较小的第一开口连接颈部,颈部固定微管,微丝从主体上开口较大的第二开口插入,使人体手部的自然抖动对于将微丝手动插入引导器件的操作无影响,微丝能够沿主体收缩到颈部与微管中空腔实现对接。主体与颈部的配合设计使得操作人员能够轻松、快速且高质量地完成微米级微丝穿微管操作,节省操作人员的时间和精力,降低操作过程中对材料的损耗。为了使得微米级微丝穿微管引导器件的使用更加方便,还做出了一些其他设计,例如,在颈部上还设置有引导口,使将微管插入颈部固定的这一步操作更为简单,节省操作人员的时间和经历。进一步,可以将颈部设置为具有不同的内径尺寸,根据需要选择应用。还可以在一个引导器件上设置多个具有不同内径尺寸的容置腔,使单个引导器件能够适应不同尺寸的微管应用,使用灵活简便。本发明还提出了一种微米级微丝穿微管引导装置,将引导器件安装在基座上以便操作人员手持。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,除了以上实施例以外,还可以具有不同的变形例,以上实施例的技术特征可以相互组合,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种微米级微丝穿微管引导器件,用于将微米级微丝穿入微管中,其特征在于,包括相连通的主体和颈部,所述主体具有第一开口和第二开口,所述第一开口与所述第二开口通过侧壁连接,所述第二开口的内径大于所述第一开口的内径;所述颈部为中空结构,所述颈部的一端与所述第一开口连通。
  2. 根据权利要求1所述的微米级微丝穿微管引导器件,其特征在于,所述主体呈敞口式结构。
  3. 根据权利要求1或2所述的微米级微丝穿微管引导器件,其特征在于,所述主体的侧壁为平滑的斜面;
    或者,所述主体的侧壁为弧面。
  4. 根据权利要求1所述的微米级微丝穿微管引导器件,其特征在于,还包括引导口,所述主体与所述引导口分别连接所述颈部相对的两端;所述引导口呈敞口式结构,与所述颈部连接的一端为窄口。
  5. 根据权利要求1-4任一项所述的微米级微丝穿微管引导器件,其特征在于,所述颈部包括第一颈部和第二颈部;所述第一颈部一端与所述主体连接,所述第一颈部另一端与所述第二颈部一端套接,所述第二颈部的另一端与所述引导口连接。
  6. 根据权利要求1-4任一项所述的微米级微丝穿微管引导器件,其特征在于,所述颈部包括两个以上依次连接的容置腔,所述容置腔的内径逐级增大,相邻两所述容置腔之间采用异径管连接,所述异径管靠近所述主体的一端为窄口。
  7. 根据权利要求6所述的微米级微丝穿微管引导器件,其特征在于,各所述容置腔的中心轴在同一直线上;
    或者,各所述容置腔的正交投影均包含于最大内径的容置腔的投影内部。
  8. 根据权利要求1-4任一项所述的微米级微丝穿微管引导器件,其特征在于,所述颈部与所述微管的间隙为0-20μm。
  9. 根据权利要求1-4任一项所述的微米级微丝穿微管引导器件,其特征在于,所述主体的第二开口的内径尺寸至少为600μm。
  10. 一种微米级微丝穿微管引导装置,用于将微米级微丝穿入微管中,其特征在于,包括基座和安装在所述基座上的若干个权利要求1-9任一项所述的微米级微丝穿微管引导器件。
PCT/CN2020/135481 2020-12-10 2020-12-10 一种微米级微丝穿微管引导器件 WO2022120766A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/135481 WO2022120766A1 (zh) 2020-12-10 2020-12-10 一种微米级微丝穿微管引导器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/135481 WO2022120766A1 (zh) 2020-12-10 2020-12-10 一种微米级微丝穿微管引导器件

Publications (1)

Publication Number Publication Date
WO2022120766A1 true WO2022120766A1 (zh) 2022-06-16

Family

ID=81974072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/135481 WO2022120766A1 (zh) 2020-12-10 2020-12-10 一种微米级微丝穿微管引导器件

Country Status (1)

Country Link
WO (1) WO2022120766A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5170788A (en) * 1991-04-24 1992-12-15 Vickers Plc Needle electrode and method of assembly thereof
CN103236346A (zh) * 2013-05-28 2013-08-07 国家电网公司 变压器套管穿线专用工具
CN208835614U (zh) * 2018-11-07 2019-05-07 声佗医疗科技(上海)有限公司 一种穿线辅助器
CN209621797U (zh) * 2019-01-17 2019-11-12 中国工程物理研究院激光聚变研究中心 基于微预紧力监测的微米级金属丝高精度自动微装配设备
CN110464330A (zh) * 2019-08-27 2019-11-19 中国科学院深圳先进技术研究院 一种多脑区记录电极、制作方法及植入方法
CN110666264A (zh) * 2019-10-25 2020-01-10 苏州电加工机床研究所有限公司 一种具有液气分级引导结构的电极丝导向器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5170788A (en) * 1991-04-24 1992-12-15 Vickers Plc Needle electrode and method of assembly thereof
CN103236346A (zh) * 2013-05-28 2013-08-07 国家电网公司 变压器套管穿线专用工具
CN208835614U (zh) * 2018-11-07 2019-05-07 声佗医疗科技(上海)有限公司 一种穿线辅助器
CN209621797U (zh) * 2019-01-17 2019-11-12 中国工程物理研究院激光聚变研究中心 基于微预紧力监测的微米级金属丝高精度自动微装配设备
CN110464330A (zh) * 2019-08-27 2019-11-19 中国科学院深圳先进技术研究院 一种多脑区记录电极、制作方法及植入方法
CN110666264A (zh) * 2019-10-25 2020-01-10 苏州电加工机床研究所有限公司 一种具有液气分级引导结构的电极丝导向器

Similar Documents

Publication Publication Date Title
US5078721A (en) Device for surgical ligation
CA2056627C (en) Sterile disposable linguiform laryngoscope blade sheath
US5595172A (en) Suction stylet for use with an endotracheal tube
US10556056B2 (en) Angular cap for dispensing liquids
US6632095B2 (en) Tongue lifter
ITMI981811A1 (it) Pinza laparoscopica per sutura
WO2022120766A1 (zh) 一种微米级微丝穿微管引导器件
US20120150132A1 (en) Disposable dispenser drop diverter
US9364631B2 (en) Intubating forceps and associated method
US563236A (en) Speculum
CN108124426A (zh) Iud加载装置和用于将iud插入到插入装置中的方法
CN109069183A (zh) 用于神经阻滞的针装置
CN114620674A (zh) 一种微米级微丝穿微管引导器件
WO2021175092A1 (zh) 成像导管、端头、管体和医疗设备
CN107148308B (zh) 线状构件输送装置
CN110101358A (zh) 可调弯鞘管系统
JP6723245B2 (ja) 液体分注用の角度つきキャップ
CN208973813U (zh) 一种腹腔镜光纤支架
JP2008080047A (ja) ガイドワイヤー挿入システム
CN208447658U (zh) 一种用于埋线的针管
CN214804992U (zh) 一种用于腹腔镜手术的组织牵引装置
JPS6235455Y2 (zh)
CN219185225U (zh) 一种腹腔镜冲洗装置
JP3146951B2 (ja) 内視鏡のアングル部
JP3195784U (ja) パウチ支え

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20964704

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20964704

Country of ref document: EP

Kind code of ref document: A1