WO2022118960A1 - Microorganism carrier and method for producing same - Google Patents

Microorganism carrier and method for producing same Download PDF

Info

Publication number
WO2022118960A1
WO2022118960A1 PCT/JP2021/044483 JP2021044483W WO2022118960A1 WO 2022118960 A1 WO2022118960 A1 WO 2022118960A1 JP 2021044483 W JP2021044483 W JP 2021044483W WO 2022118960 A1 WO2022118960 A1 WO 2022118960A1
Authority
WO
WIPO (PCT)
Prior art keywords
fish
carrier
microorganism
shellfish
inorganic powder
Prior art date
Application number
PCT/JP2021/044483
Other languages
French (fr)
Japanese (ja)
Inventor
友子 荒川
克敏 堀
Original Assignee
国立大学法人東海国立大学機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020202257A external-priority patent/JP2022089672A/en
Priority claimed from JP2020202256A external-priority patent/JP2022089671A/en
Application filed by 国立大学法人東海国立大学機構 filed Critical 国立大学法人東海国立大学機構
Publication of WO2022118960A1 publication Critical patent/WO2022118960A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K61/00Culture of aquatic animals
    • A01K61/10Culture of aquatic animals of fish
    • A01K61/13Prevention or treatment of fish diseases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/74Bacteria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a microbial carrier (hereinafter, also simply referred to as a carrier) and a method for producing the same, and more particularly to a microbial carrier that carries, proliferates, and desorbs microorganisms and a method for producing the same.
  • the present invention also relates to a method for preventing diseases of fish and shellfish, and more particularly to a method for preventing diseases of fish and shellfish bred in aquaculture farms, ornamental plants, aquariums and the like.
  • a method using microorganisms is known as a method for purifying industrial wastewater such as factory wastewater, domestic wastewater, breeding water for fish and shellfish, breeding water for aquatic plants, and the like. For example, by putting a carrier carrying a microorganism into the water to be treated and allowing water to pass therethrough, harmful substances in the water to be treated can be decomposed by the action of the microorganism.
  • a carrier carrying a microorganism into the water to be treated and allowing water to pass therethrough, harmful substances in the water to be treated can be decomposed by the action of the microorganism.
  • aerobic microorganisms that require oxygen for growth and anaerobic microorganisms that do not require oxygen for growth are used.
  • Patent Document 1 describes a carrier made of a ceramic molded product containing warastonite and anorthite. On the surface of this carrier, two types of voids having a large pore diameter in the range of 50 to 1000 ⁇ m and a pore diameter in the range of 0.1 to 10 ⁇ m are formed.
  • Patent Document 2 describes a carrier obtained by heat-treating cast waste sand at 180 ° C. or higher and 400 ° C. or lower.
  • Patent Document 3 describes oral administration of antibacterial agents such as oxytetracycline and doxycycline to fish.
  • Patent Document 4 describes a vaccine containing an inactivated fish Streptococcus disgalactier as an antigen.
  • the carrier made of a ceramic molded body has a large surface area because it has a porous structure, and has excellent adhesion to microorganisms.
  • the weight of the carrier is heavy, and it cannot be said that the handling is good.
  • firing is required, the cost tends to be high.
  • a carrier made of a resin molded body is also known, but the surface area is smaller than that of a carrier made of a ceramic molded body, and the carrier tends to be inferior in durability.
  • the treatment capacity is improved by flowing the water to be treated or the carrier by stirring or the like, but it is desirable that the treatment capacity of microorganisms can be improved more easily.
  • the present invention has been made to deal with such a situation, and an object of the present invention is to provide a microbial carrier having good handleability and excellent microbial processing ability and a method for producing the same. Another object of the present invention is to provide a preventive method capable of sustainably and easily preventing fish and shellfish diseases.
  • the microbial carrier of the present invention is a microbial carrier that carries a microbial substance
  • the microbial carrier is a foamed molded product containing a thermoplastic resin and an inorganic powder, and has irregularities on the surface. , 15% by mass to 70% by mass with respect to the total amount of the thermoplastic resin and the inorganic powder.
  • the foam molded product is an extruded foam molded product
  • the inorganic powder is characterized by containing 35% by mass to 70% by mass with respect to the total amount of the thermoplastic resin and the inorganic powder.
  • the inorganic powders include silicon dioxide, aluminum oxide, calcium silicate hydrate, diatomaceous earth, barley stone, shell, bone meal, calcium carbonate, boehmite, zeolite, apatite, kaolin, mulite, spinel, olivine, sericite, bentonite, etc. It is characterized by being at least one selected from the group consisting of wallastonite, anausite and mica.
  • the specific surface area of the microbial carrier is 1 m 2 / g to 5 m 2 / g.
  • the production method for producing the microbial carrier of the present invention is characterized in that at least the above-mentioned thermoplastic resin, the above-mentioned inorganic powder and the foaming agent are kneaded and foam-molded.
  • the manufacturing method is characterized in that raw materials other than the foaming agent are pelletized in advance, the obtained pellets and the foaming agent are kneaded, and extrusion foam molding is performed.
  • the preventive method of the present invention is a preventive method for preventing a disease of fish and shellfish, and is a step of adding a microorganism having an inhibitory action against the pathogenic microorganism of the disease to a microbial carrier having a desorbing action of the microorganism. It is characterized by having a step of putting the above-mentioned microbial carrier into water in which the above-mentioned fish and shellfish grow and fixing the above-mentioned microorganism on the epidermis of the above-mentioned fish and shellfish, and the above-mentioned microbial carrier is the microbial carrier of the present invention. do.
  • the "inhibitory action against pathogenic microorganisms” includes an action of reducing the growth and proliferation of pathogenic microorganisms and an action of killing pathogenic microorganisms.
  • the “desorption action of microorganisms” refers to the action of releasing the microorganisms once carried on the carrier into water.
  • the preventive method of the present invention is a preventive method for preventing a disease of fish and shellfish, and is a step of adding a microorganism having an inhibitory action against the pathogenic microorganism of the disease to a microbial carrier having a desorbing action of the microorganism. It is characterized by having a step of putting the above-mentioned microbial carrier into water in which the above-mentioned fish and shellfish grow, and fixing the above-mentioned microorganism on the epidermis of the above-mentioned fish and shellfish.
  • fish and shellfish are characterized as being farmed fish and shellfish, fish and shellfish bred in an aquarium, ornamental fish, and tropical fish.
  • fish and shellfish cultivated include eel, ayu, yellowtail, trout, Thai, carp, amberjack, tuna, salmon, horse mackerel, flounder, tirapia, blowfish, hamachi, hata, mackerel, yellowtail, catfish, butterfly shark, crab, etc.
  • Examples include shrimp, octopus, amberjack, and catfish.
  • ornamental fish and tropical fish include goldfish, killifish, tetra, betta, and osteoglossidae.
  • the microorganism added to the microorganism carrier is characterized by being a microorganism derived from the epidermis of the fish and shellfish.
  • the above-mentioned microorganism is a microorganism of the genus Pseudomonas.
  • the microbial carrier of the present invention is a foam molded product containing a thermoplastic resin and an inorganic powder, and has irregularities on the surface, and the inorganic powder is 15 with respect to the total amount of the thermoplastic resin and the inorganic powder. Since it is contained in an amount of% to 70% by mass, the amount of microorganisms attached to the carrier is increased, and the processing capacity of the microorganisms can be improved. Further, by combining the thermoplastic resin and the inorganic powder, it becomes a microbial carrier having the features of a lightweight resin and a durable inorganic powder having a large specific surface area.
  • the above-mentioned microbial carrier has an action of releasing the microbial carrier once carried on the carrier into water (desorption action) in addition to the action of supporting and propagating the microbial carrier.
  • the microbial carrier of the present invention has an excellent desorption action because the potential of the carrier and the potential of the microorganism have an appropriate relationship by combining the thermoplastic resin and the inorganic powder. It is thought that it will be.
  • the water to be treated can be treated even by the microorganism desorbed from the carrier, and the treatment capacity of the microorganism can be easily improved.
  • thermoplastic resin an inorganic powder and a foaming agent are kneaded and foam-molded, so that unlike a carrier made of a ceramic molded body, firing is not required and the cost is relatively low.
  • foaming agent a thermoplastic resin, an inorganic powder and a foaming agent are kneaded and foam-molded, so that unlike a carrier made of a ceramic molded body, firing is not required and the cost is relatively low.
  • raw materials other than the foaming agent are pelletized in advance, and the obtained pellets and the foaming agent are kneaded and extruded and foamed. Therefore, even if the content of the inorganic powder is increased, the inorganic powder in the carrier It is easy to secure the dispersibility of the body. In addition, it becomes easy to disperse the foaming agent in the entire composition, and it becomes easy to prevent uneven distribution of pores and the like.
  • the preventive method of the present invention includes a step of adding a microorganism having an inhibitory effect on pathogenic microorganisms (useful microorganism) to a microbial carrier having a desorbing action of the microorganism, and putting the microbial carrier into water in which fish and shellfish grow. Since the microorganism carrier of the present invention is used as the microbial carrier, it has an excellent desorption action of useful microorganisms into water and has a preventive effect on microbial diseases. Can be improved.
  • the preventive method of the present invention includes a step of adding a microorganism having an inhibitory effect on pathogenic microorganisms (useful microorganism) to a microbial carrier having a desorbing action of the microorganism, and putting the microbial carrier into water in which fish and shellfish grow. Since it has a step of fixing the microorganisms on the epidermis of fish and shellfish, the useful microorganisms are continuously grown on the epidermis of fish and shellfish by proliferating the useful microorganisms on the carrier and further desorbing the proliferated useful microorganisms. Can be supplied. That is, by using useful microorganisms as probiotics of the epidermis of fish and shellfish, diseases of fish and shellfish can be prevented sustainably and easily. This preventive method can replace traditional fish and shellfish disease control such as antibacterial and vaccination.
  • the above-mentioned fish and shellfish are the fish and shellfish listed above, and by applying the preventive method of the present invention to aquaculture, ornamental use, breeding in an aquarium, etc., the diseases of those fish and shellfish can be effectively prevented.
  • fish and shellfish are often bred under high density, so the epidermis is easily damaged by contact between fish and shellfish, and the damage may cause infectious diseases, especially fish and shellfish.
  • This method using probiotics for the epidermis of aquaculture is particularly useful as a countermeasure against diseases of fish and shellfish in aquaculture and the like.
  • the microorganism added to the microbial carrier is a microorganism derived from the epidermis of fish and shellfish, it has excellent colonization to the epidermis and supplements the useful microorganisms originally possessed by the fish and shellfish. Can protect the epidermis of.
  • microorganism is a microorganism belonging to the genus Pseudomonas, it has an excellent inhibitory effect on pathogenic microorganisms.
  • FIG. 1A shows a perspective view of the carrier
  • FIG. 1B shows a schematic cross-sectional view thereof.
  • This carrier carries a microorganism, and is used, for example, in water, and the action of the microorganism causes decomposition, inactivation, removal, growth inhibition, killing, and the like of a specific substance in the water to be treated.
  • Specific substances include substances that adversely affect the human body and fish and shellfish (for example, harmful substances such as ammonia and nitrite and pathogenic microorganisms), and unnecessary substances (sludge, suspended solids, odors) and the like.
  • the carrier 1 is an extruded foam molded product containing a thermoplastic resin and an inorganic powder, and has a large number of irregularities 2 on the surface.
  • the unevenness 2 is an unevenness formed on the surface of the molded body when the carrier is extruded and foamed, and is also called a melt fracture. Specifically, the unevenness 2 is formed by partially raising the resin portion by foaming, and is coarser than the fine unevenness (several micro-order) formed by a roughening treatment such as general etching. be.
  • the unevenness 2 is formed over substantially the entire outer surface 1a of the cylinder and the inner surface 1b of the cylinder.
  • an injection foam molded product may be used as the foam molded product. In this case, unevenness is formed on the surface by the foamed resin portion and the inorganic powder exposed on the surface.
  • the size of the carrier 1 is not particularly limited, but for example, the outer diameter ⁇ is 10 mm to 50 mm, and the axial length L is 20 mm to 100 mm.
  • the axial length L of the carrier 1 is in the same direction as the direction of extrusion from the extruder, and is adjusted by the cut length of the molded body extruded from the extruder.
  • the shape of the carrier 1 is not limited to a cylinder, and a cylinder, a sphere, a cube, a rectangular parallelepiped, a plate, or the like can be adopted.
  • the inorganic powder 4 is dispersed in the thermoplastic resin 3.
  • the carrier 1 is formed with communication holes 6 and closed pores 7 as pores 5 generated by foam molding.
  • the communication hole 6 is a hole that communicates from the cylindrical surfaces 1a and 1b
  • the air-closing hole 7 is a hole that is surrounded by a wall surface.
  • a part of the inorganic powder 4 is exposed inside the pores 5 and on the cylindrical surfaces 1a and 1b, and is configured to come into contact with the water to be treated.
  • the carrier 1 has a porous structure, and its specific surface area is preferably 0.1 m 2 / g or more from the viewpoint of microbial adhesion.
  • the specific surface area is preferably 0.1 m 2 / g to 10 m 2 / g, more preferably 1 m 2 / g to 5 m 2 / g.
  • the specific surface area is a value measured by the nitrogen gas adsorption method. The nitrogen gas adsorption method is performed by measuring the amount of nitrogen gas adsorbed and desorbed per unit mass.
  • the bulk density of the carrier 1 is preferably 0.9 g / cm 3 to 2 g / cm 3 .
  • Bulk density is measured using an apparent density measuring device compliant with JIS K6911. By setting the bulk density within the above range, the carrier can be easily flowed in water, and the processing capacity by microorganisms can be improved.
  • the bulk density is more preferably 0.9 g / cm 3 to 1.5 g / cm 3 , and even more preferably 0.9 g / cm 3 to 1.2 g / cm 3 .
  • composition of the composition constituting the microbial carrier of the present invention will be described below.
  • the thermoplastic resin is not particularly limited, and is a polyolefin resin such as polyethylene (PE) resin or polypropylene (PP) resin, a polystyrene resin, an ABS (acrylonitrile butadiene styrene) resin, a vinyl chloride resin, a polyethylene terephthalate or a polyethylene na.
  • a polyolefin resin such as polyethylene (PE) resin or polypropylene (PP) resin
  • a polystyrene resin such as polystyrene resin, an ABS (acrylonitrile butadiene styrene) resin, a vinyl chloride resin, a polyethylene terephthalate or a polyethylene na.
  • polyester-based resins such as phthalate and polycarbonate-based resins. These may be used alone or in combination of two or more.
  • polyolefin-based resins are preferable because they are excellent in lightness and moldability.
  • the thermoplastic resin is preferably contained in an amount of 30% by mass to 85% by mass, more preferably 30% by mass to 65% by mass, based on the total amount of the thermoplastic resin and the inorganic powder.
  • the content is less than 30% by mass, it tends to be difficult to secure the fluidity at the time of molding, and the retention of the inorganic powder may decrease. Further, the content of the thermoplastic resin may be lower than that of the inorganic powder in terms of mass ratio.
  • the inorganic powder is preferably contained in an amount of 15% by mass to 70% by mass and preferably 35% by mass to 70% by mass with respect to the total amount of the thermoplastic resin and the inorganic powder.
  • the inorganic powder is not particularly limited, and minerals, fine ceramics, natural products such as shells, bone powder and the like can be used. Examples of minerals include diatomaceous earth, bakuhan stone, boehmite, zeolite, apatite, kaolin, mullite, spinel, olivine, sericite, bentonite, wallastonite, anausite, and mica. In addition, these minerals may be natural minerals or artificially synthesized minerals (for example, synthetic zeolites).
  • Examples of fine ceramics include aluminum nitride, silicon carbide, silicon nitride, boron nitride, and alumina.
  • Examples of the shell include oysters and Akoya pearl oyster shells.
  • silicon dioxide which is a component contained in minerals and shells, aluminum oxide, calcium silicate hydrate, calcium carbonate and the like can also be used.
  • the inorganic powder may be used alone or in combination of two or more.
  • the average particle size of the inorganic powder is not particularly limited, but is preferably 1 ⁇ m to 100 ⁇ m. If the average particle size of the inorganic powder exceeds 100 ⁇ m, the dispersibility in the resin may decrease, and the amount of the inorganic powder exposed on the surface of the carrier or the pores of the carrier may decrease. On the other hand, if the average particle size of the inorganic powder is less than 1 ⁇ m, aggregation between the particles is likely to occur, and the dispersibility may be impaired.
  • the average particle size is obtained by measuring by a laser diffraction / scattering method.
  • Inorganic powders include silicon dioxide, aluminum oxide, calcium silicate hydrate, diatomaceous earth, barley stone, shells, bone meal, calcium carbonate, boehmite, zeolite, apatite, kaolin, mulite, spinel, olivine, sericite, bentonite, and wa. It is preferable to use at least one selected from the group consisting of lastnite, anausite and mica, and it is more preferable to use at least one of diatomaceous earth and zeolite.
  • Diatomaceous earth is a porous rock whose main component is silicon dioxide, which is composed of fossils of diatom, which is a kind of algae. Diatomaceous earth contains a small amount of alumina, iron oxide, and other components. Further, by using diatomaceous earth having excellent water absorption and hygroscopicity as the inorganic powder, water absorption can be imparted to the carrier.
  • Zeolites are referred to as crystalline aluminosilicates and contain silicon, aluminum and oxygen atoms. Many skeleton structures of zeolite are known, and LTA type zeolite, FER type zeolite, MWW type zeolite, MFI type zeolite, MOR type zeolite, LTL type zeolite, FAU type zeolite and the like can be used. Zeolites are also known to have a function of adsorbing harmful ammonia emitted from fish droppings and food residues to release sodium, and are therefore suitable for, for example, fish breeding water.
  • diatomaceous earth is contained, for example, 15% by mass to 55% by mass, preferably 20% by mass to 45% by mass, based on the total amount of the thermoplastic resin and the inorganic powder.
  • zeolite is contained, for example, 15% by mass to 55% by mass, preferably 20% by mass to 45% by mass, based on the total amount of the thermoplastic resin and the inorganic powder. Is done. Further, even in a configuration containing diatomaceous earth and zeolite, each of the above numerical ranges can be adopted. Further, in this case, it is preferable that the content of diatomaceous earth is higher than the content of zeolite.
  • the carrier of the present invention is a foam molded product and can be obtained by foam molding using a foaming agent.
  • This carrier may contain a component derived from a foaming agent.
  • a foaming agent a physical foaming agent, a chemical foaming agent, or the like is used.
  • Physical foaming agents include hydrocarbons such as propane, butane and pentane, hydrocarbons such as dichloroethane and dichloromethane, fluorinated hydrocarbons such as trichloromonofluoromethane and dichlorodifluoromethane, carbon dioxide and nitrogen. Examples include gas and water.
  • the chemical foaming agent include azo compounds such as sodium hydrogen carbonate and barium azodicarboxylate, and nitroso compounds such as N, N-dinitrosopentamethylenetetramine.
  • a lubricant may be added to the carrier in order to improve fluidity during molding.
  • the lubricant include aliphatic hydrocarbons such as synthetic paraffin, higher fatty acids such as stearic acid, higher fatty alcohols, metal soaps such as sodium stearate, and higher fatty acid esters.
  • the blending amount of the lubricant is, for example, 0.5% by mass to 10% by mass with respect to the total amount of the thermoplastic resin and the inorganic powder.
  • other well-known additives may be added to the microbial carrier of the present invention.
  • the water absorption rate of the carrier is preferably 5% or more.
  • the carrier quickly adapts to water, so that it is easy to fill when immersed in a filter tank.
  • the water absorption rate of the carrier is more preferably 5% to 15%.
  • the water absorption rate is measured by the method described in Examples described later.
  • the pH of the solution leached from the carrier is preferably near neutral. Specifically, the pH is preferably 6.0 to 8.5, more preferably 6.5 to 8.0.
  • FIG. 2 shows a manufacturing method by extrusion foam molding
  • the carrier may be manufactured by injection foam molding.
  • raw materials other than the foaming agent are obtained in advance as pellets 18.
  • the pellet 18 is obtained, for example, by kneading a thermoplastic resin, an inorganic powder, and a lubricant, extruding the kneaded product with a pelletizer, and then cutting the pellet into a predetermined length.
  • the lubricant is added as needed.
  • the blending amount of the foaming agent and the foaming ratio in foam molding are adjusted as appropriate.
  • the blending amount of the foaming agent is not particularly limited, but is, for example, 1% by mass to 60% by mass, preferably 20% by mass to 60% by mass, more preferably, with respect to the total amount of the thermoplastic resin and the inorganic powder. Is blended in an amount of 40% by mass to 60% by mass.
  • a chemical foaming agent is used as the foaming agent 19, but a physical foaming agent may be used instead.
  • the foaming agent is a gas such as carbon dioxide
  • the pressure-controlled gas is added to the cylinder 13 so as to have a predetermined ratio with respect to the molten pellets 18 and kneaded.
  • each raw material may be directly charged into the hopper 12 of the extruder 11 without obtaining the pellet 18 in advance.
  • the thermoplastic resin, the inorganic powder, the lubricant, and the foaming agent are put into the hopper 12, respectively, kneaded, and extruded and foamed as described above.
  • the amount of the inorganic powder to be blended can be increased and bubbles can be formed uniformly and well over the entire carrier, a method of pre-kneading to obtain pellets 18 in advance is preferable.
  • the carrier of the present invention is used, for example, under water and is used for improving the water quality of the water to be treated.
  • the microorganism carried on this carrier may be any microorganism that decomposes a specific substance in the water to be treated, and either an aerobic microorganism or an anaerobic microorganism can be used.
  • an aerobic microorganism or an anaerobic microorganism can be used.
  • the genus Pseudomonas the genus Rhodococcus, the genus Alcaligenes, the genus Burkholderia, the genus Bacillus, the genus Corynebacterium, the genus Corynebacterium.
  • Genus Rhodobacter Genus Ralstonia, Genus Acidovorax, Genus Serratia, Genus Flavobacterium, Genus Nitrosomonas, Nitrobacter-Nit And other microorganisms can be used.
  • the microorganism to be used is appropriately selected depending on the conditions of use of the carrier and the like. For example, when it is used for breeding water for fish and shellfish, it is appropriately selected depending on the type of fish and shellfish, the type of fish disease, and the like.
  • the carrier of the present invention can carry (fix) the above-mentioned microorganisms, proliferate, and desorb (sustained release).
  • a general carrier especially water treatment
  • the performance of a general carrier is judged by how to fix and increase microorganisms, and there is no concept of "sustained release".
  • a carrier that has only the action of adhering and growing microorganisms it is the contact surface that mainly exerts the action, so it is important how the carrier is brought into contact with the water to be treated.
  • the carrier of the present invention having the three actions of fixation, proliferation and sustained release releases microorganisms slowly, it is possible to reduce the measures for contacting the carrier with the water to be treated.
  • the microorganisms desorbed (sustainedly released) from the carrier can further adhere to other carriers in the water to be treated, structures, surfaces of living organisms such as fish and shellfish, and exert microbial activity there. Further, the desorbed microorganisms may aggregate to form flocs or granules. As described above, by using the carrier of the present invention, excellent water treatment capacity can be exhibited, and various wastewater, aquaculture farms, aquariums, and the like can be efficiently improved in water quality.
  • Examples of the use of the carrier of the present invention include use in aquaculture farms, ornamental breeding, and aquariums.
  • closed-circulation aquaculture performed on land has attracted attention.
  • water quality management is particularly important because it is a closed environment, and it is regarded as a problem that fish and shellfish get sick as the water quality deteriorates.
  • fish are often bred under high density, so that the epidermis of fish is easily damaged by contact between fish, and there is a risk of developing an infectious disease due to the damage. Under these circumstances, it is conceivable to use probiotics targeting the epidermis of fish.
  • FIG. 3 shows a schematic diagram of using the microorganism supported on the carrier of the present invention as a probiotic of fish epidermis.
  • microorganisms useful as probiotics are added to the carrier, and the carrier is put into the water in which cultured fish and ornamental fish are bred.
  • the microorganisms carried on the carrier proliferate under a normal breeding environment (for example, about 20 to 30 ° C., pH 6.0 to 8.5) to form a biofilm.
  • the grown microorganisms are constantly desorbed from the carrier and settled on the epidermis of fish.
  • the microorganisms can be continuously supplied to fish.
  • the action of the microorganisms settled on the epidermis can prevent infection by pathogenic microorganisms. The details will be described in the section of the preventive method of the present invention.
  • FIG. 4 shows a schematic diagram of an example of a biological deodorizing system.
  • the biological deodorization system is mainly used as an odor treatment device in sewage treatment plants and organic waste treatment such as livestock manure.
  • the biological deodorizing system 21 mainly includes a biological deodorizing tower 22 that deodorizes odorous gas using a microbial carrier 23, and an activated carbon adsorption tower 28 that absorbs and desorbs odorous gas using activated carbon.
  • the eliminator 26 and the deodorizing fan 27 are installed in the path connecting the biological deodorizing tower 22 and the activated carbon adsorption tower 28.
  • the odorous gas introduced from the lower part of the biological deodorizing tower 22 passes through the microbial carrier 23 and is discharged from the upper exhaust port.
  • a sprinkler pipe 24 is installed in the upper part of the biological deodorizing tower 22, and the water supply water containing nutrients and the like is sprayed on the microbial carrier 23 by the sprinkler pipe 24 to supply a nutrient source to the microorganisms.
  • the water collected at the bottom of the biological deodorizing tower 22 is drained through a process such as pH measurement.
  • the odorous gas discharged from the biological deodorizing tower 22 is introduced into the activated carbon adsorption tower 28 via the eliminator 26 and the deodorizing fan 27.
  • the activated carbon adsorption tower 28 is introduced into the lower part of the activated carbon adsorption tower 28, and as it rises, it is deodorized by passing through the activated carbon filled in the activated carbon filling portion 29.
  • the gas discharged from the activated carbon adsorption tower 28 is released to the atmosphere or the like.
  • the carrier string-like, pumice-like, etc.
  • water is run for 1 to 2 months for training. I had to do it.
  • the carrier is densely packed in order to increase the contact area, but in reality, the microorganisms did not spread over the entire carrier, and in many cases, the microorganisms adhered and proliferated only partially. As a result, there is a problem that the device becomes large in order to increase the effectiveness and the initial cost increases.
  • the carrier of the present invention By applying the carrier of the present invention to the microbial carrier 23 in the biological deodorizing tower 22, it is considered that the training time can be significantly shortened because the microorganisms grown on the carrier are effectively released.
  • the sustained release action facilitates the distribution of microorganisms throughout the carrier, leading to miniaturization of the device. Further, even during use, the water sprinkled on the sprinkler pipe 24 releases microorganisms, which is expected to have a further deodorizing effect.
  • the carrier of the present invention is considered to be effective for other soil treatment and sewage treatment.
  • the method of waiting for the diffusion of useful microorganisms or the treatment by forced stirring is adopted, but by using the carrier of the present invention, the microorganisms are effectively released and the treatment ability by the microorganisms is enhanced. Can be improved.
  • FIG. 5 shows an example of applying this method to aquaculture farms such as closed circulation land farms.
  • the target fish and shellfish are, for example, eel, ayu, yellowtail, trout, tie, carp, campachi, tuna, salmon, horse mackerel, flatfish, tirapia, blowfish, hamachi, hata, mackerel, sama, catfish, butterfly shark, etc.
  • Fish, crabs, shellfish such as shrimp, head and foot such as octopus, shellfish such as abalone, and catfish.
  • this method includes a step A of adding useful microorganisms to a carrier and a step B of putting the carrier into water in which fish and shellfish are bred to fix the useful microorganisms on the epidermis of fish and shellfish.
  • useful microorganism refers to a microorganism having an inhibitory effect on pathogenic microorganisms of fish and shellfish diseases.
  • Diseases of fish and shellfish to be targeted are preferably diseases caused by transcutaneous infection, for example, vibrio disease, asthma disease, atypical Eromonas salmonicida infection, Eromonas hydrophila infection, Edowagellosis, red spot disease. , Ayu's Pseudomonas disease, Redmouth disease, Bacterial gill disease, Columnnaris disease (selected, tailed, torn, squeezed), cold water disease, gliding bacillosis, bacterial kidney disease, mycobacteriosis, nocardiosis, Examples include Lenza bacillosis.
  • the useful microorganism used here is preferably a microorganism derived from the epidermis of the target farmed fish or the like.
  • the farmed fish is trout
  • both aerobic microorganisms and anaerobic microorganisms can be used.
  • the genus Pseudomonas the genus Rhodococcus, the genus Alcaligenes, the genus Burkholderia, the genus Bacillus, the genus Corynebacterium, the genus Corynebacterium.
  • Genus Rhodobacter Genus Ralstonia, Genus Acidovorax, Genus Serratia, Genus Flavobacterium, Genus Nitrosomonas, Nitrobacter-Nit And other microorganisms can be used.
  • the useful microorganism to be used is appropriately selected depending on the type of farmed fish and the type of fish disease.
  • various commercially available microorganisms can be used as a useful microorganisms can be used.
  • useful microorganisms may be obtained by screening after collecting candidate microorganisms from the epidermis of fish and shellfish.
  • Candidate microorganisms can be collected by rubbing the epidermis of fish and shellfish with a cotton swab or the like. Then, the collected candidate microorganisms are cultured on the medium, and useful microorganisms are selected from the microorganisms derived from each formed colony.
  • a growth inhibition test and a competitive test as shown in FIG. 6 are performed.
  • the growth inhibition test shown in FIG. 6 (a) first, the candidate microorganisms are linearly drawn on the Nutrient Broth agar medium (NB agar medium) and cultured at 28 ° C. overnight. Subsequently, the pathogenic microorganism is drawn vertically from the candidate microorganism so as not to touch the candidate microorganism, and the cells are cultured at 28 ° C. overnight. After this culture, it is judged from the image line of the candidate microorganism that there is a growth inhibitory effect when a clear zone exists over a range of, for example, 10 mm or more. The clear zone can be determined visually.
  • the method for the growth inhibition test is not limited to the method shown in FIG. 6A, and the culture conditions and the like can be appropriately changed. Further, as shown in FIG. 12 described later, the candidate microorganism may be placed in the center of the medium in the petri dish, and the pathogenic microorganism may be radially drawn around the candidate microorganism to determine the presence or absence of the growth inhibitory action.
  • the candidate microorganisms are linearly drawn on the NB agar medium and cultured at 28 ° C. overnight.
  • the pathogenic microorganism is drawn in a direction perpendicular to the image so as to intersect the image of the candidate microorganism, the candidate microorganism and the pathogenic microorganism are mixed, and then cultured at 28 ° C. overnight.
  • the useful microorganism used in the preventive method of the present invention is preferably an aerobic microorganism because it is fixed on the epidermis of fish and shellfish to prevent diseases.
  • microorganisms of the genus Pseudomonas are more preferable, and Pseudomonas mossellii, Pseudomonas marginalis, Pseudomonas colenesis (Pseudomonas korensis) Pseudomonas korensis (Pseudomonas korensis) Pseudomonas parafulva) is more preferred.
  • a carrier having a desorbing action of useful microorganisms As a microbial carrier to which useful microorganisms are added, a carrier having a desorbing action of useful microorganisms is used.
  • the shape and material of the carrier are not particularly limited as long as they have an eliminating action of microorganisms.
  • a shape of the carrier for example, a cylinder, a cylinder, a sphere, a cube, a rectangular parallelepiped, a plate, or the like can be adopted.
  • a resin such as a polyolefin resin, an inorganic powder, a metal, glass, carrageenan, dextrin, gelatin, charcoal or the like can be used, and two or more kinds may be used.
  • the microbial carrier used in the preventive method of the present invention it is preferable to use the carrier of the present invention described above, and for example, the carrier 1 of FIG. 1 can be used.
  • Step B In this step, first, a carrier to which useful microorganisms are added is put into water in which cultured fish and the like are bred (see FIG. 5).
  • the useful microorganisms carried on the carrier grow in a normal breeding environment (for example, about 20 to 30 ° C., pH 6.0 to 8.5) to form a biofilm.
  • the proliferated useful microorganisms are constantly desorbed from the carrier and settled on the epidermis of cultured fish and the like.
  • the useful microorganisms By slowly releasing the useful microorganisms from the carrier, the useful microorganisms can be continuously supplied to farmed fish and the like.
  • the action of useful microorganisms established on the epidermis infection by pathogenic microorganisms can be prevented.
  • the preventive method of the present invention can be said to be a method of breeding and cultivating fish and shellfish, and this method desorbs useful microorganisms having an inhibitory effect on pathogenic microorganisms of fish and shellfish diseases. It is characterized by having a step of adding it to an actionable microbial carrier and a step of putting the microbial carrier into water in which fish and shellfish grow to fix the microorganism on the epidermis of the fish and shellfish.
  • FIG. 7 shows a schematic diagram of a closed circulation type land-based aquaculture system as an example.
  • the breeding water in the breeding aquarium circulates. Suspended solids and the like are removed from the water discharged from the breeding aquarium in the settling tank. Further, in the biological filtration tank, for example, ammonia in water is nitrified by the action of aerobic microorganisms, and nitrate produced by nitrification is reduced by the action of anaerobic microorganisms. The water purified in this way is returned to the breeding aquarium by a pump. As shown in FIG. 7, the microbial carrier is charged into the breeding water and is arranged along the bottom surface and the side surface of the breeding aquarium.
  • the water flow in the tank causes the microorganisms to be released slowly from the microbial carrier and settles on the epidermis of farmed fish.
  • the installation of the microbial carrier is not limited to this, and may be installed so as to be suspended in a tank, for example. Further, if necessary, the breeding water may be agitated by a stirring blade or the like.
  • preventive method of the present invention is applied to aquaculture
  • ornamental fish and shellfish can be targeted as fish and shellfish
  • the preventive method of the present invention can be applied to aquarium tanks and homes. It can also be applied to water tanks.
  • microbial carriers were prepared by each molding method.
  • Thermoplastic resin Polypropylene resin
  • Inorganic powder Diatomaceous earth and zeolite (mass ratio 3: 2)
  • Lubricant Stearic acid and paraffin foaming agent: Inorganic foaming agent Cellmic 417 (manufactured by Sankyo Kasei Co., Ltd.)
  • Test Example 1 40.0% by mass of the thermoplastic resin and 60.0% by mass of the inorganic powder were used with respect to the total amount of the thermoplastic resin and the inorganic powder. Further, the foaming agent was used in an amount of 50.0% by mass based on the total amount of the thermoplastic resin and the inorganic powder. After pelletizing the thermoplastic resin and the inorganic powder in advance according to the method of FIG. 2, the pellet and the foaming agent were simultaneously put into the hopper of the extruder and kneaded for extrusion foam molding. The rod-shaped molded product discharged from the base was cooled in a water bath and then cut to a length of 10 mm. An external photograph of the obtained extruded foam molded product is shown in FIG. 8 (a).
  • FIG. 9A shows a micrograph of a cross section of the extruded foam molded body cut along the radial direction
  • FIG. 9B shows a micrograph of a cross section cut along the axial direction.
  • 9 (c) and (d) show SEM photographs of each magnification.
  • Test Example 2 57.1% by mass of the thermoplastic resin, 42.9% by mass of the inorganic powder, and 0.9% by mass of the lubricant were used with respect to the total amount of the thermoplastic resin and the inorganic powder. Further, the foaming agent was used in an amount of 1.4% by mass based on the total amount of the thermoplastic resin and the inorganic powder.
  • the thermoplastic resin, inorganic powder, lubricant, and foaming agent were directly charged into an extrusion molding machine without pre-kneading and extruded and foamed. An external photograph of the obtained extruded foam molded product is shown in FIG. 8 (b). Further, FIG. 10 shows a photograph similar to that in FIG.
  • Test Example 3 76.7% by mass of thermoplastic resin, 23.3% by mass of inorganic powder, 3.8% by mass of lubricant (2.2% by mass of stearic acid) with respect to the total amount of thermoplastic resin and inorganic powder. , Paraffin 1.6% by mass) was used. Further, the foaming agent was used in an amount of 5.4% by mass based on the total amount of the thermoplastic resin and the inorganic powder.
  • the thermoplastic resin, the inorganic powder, the lubricant, and the foaming agent were directly injected into an injection molding machine without pre-kneading to perform injection foam molding. An external photograph of the obtained injection foam molded product is shown in FIG. 8 (c). Further, FIG. 11 shows a photograph similar to that of FIG. In FIGS. 9 to 11, the black portion in the carrier indicates pores, the white portion indicates inorganic powder, and the remaining portion indicates resin.
  • the carriers of Test Examples 1 to 3 have irregularities formed on the surface by foam molding.
  • the carrier of the extruded foam molded product had a larger degree of unevenness on the cylindrical surface than the carrier of the injection foam molded product, and many pores were observed.
  • the carrier of Test Example 1 had irregularities formed over the entire surface, and had higher shape uniformity than the carrier of Test Example 2.
  • the inorganic powder and pores are evenly dispersed in the carrier (see FIG. 9), whereas in the carrier of Test Example 2, the inorganic powder and pores tend to be unevenly distributed. It was seen (see FIG. 10).
  • the water absorption rate was calculated from the following formula (1).
  • W1 indicates the weight measured after drying a 10 mm ⁇ 10 mm ⁇ 10 mm test piece collected from each molded body at 105 ° C. for one day
  • W2 indicates the weight after drying.
  • the weight W2 measured after immersing each test piece in 50 mL of distilled water for 24 hours and then removing the water adhering to the surface of the test piece is shown.
  • Water absorption rate (%) (W2-W1) / W1 ⁇ 100 ... (1)
  • test pieces with a length of about 10 mm ⁇ ⁇ 10 to 15 mm collected from each molded product were immersed in 50 mL of distilled water for 30 minutes for pre-cleaning.
  • the excess water of the test piece after washing was wiped off, immersed in a container containing 200 mL of distilled water, the lid of the container was closed, and the mixture was allowed to stand in a room temperature environment.
  • the lid was opened regularly (1 day, 3 days, 1 week) and the pH was measured.
  • the specific surface area was measured by the nitrogen gas adsorption method using a specific surface area meter (manufactured by Nippon Bell Co., Ltd.).
  • the bulk density was obtained from the following formula (2) using an apparent density measuring instrument conforming to JIS K6911.
  • Bulk density [(Weight of graduated cylinder containing sample (g))-(Weight of graduated cylinder (g))] / (Capacity of graduated cylinder (cm 3 )) ...
  • the carriers of Test Example 1 and Test Example 2 had a specific surface area of 1 m 2 / g or more, which was larger than that of the carrier of Test Example 3. It is considered that this result is largely due to the difference in the surface shape of each carrier. Also, regarding the water absorption rate, the carriers of Test Example 1 and Test Example 2 were higher than the carriers of Test Example 3. In Test Example 1 and Test Example 2, a large amount of inorganic powder was exposed on the surface of the cylinder and inside the pores, and it is considered that the exposed inorganic powder exerted a water absorption effect. The pH of the liquids leached from the carriers of Test Example 1 and Test Example 2 was almost neutral.
  • microorganisms were added to a plurality of carriers, and the growth and desorption of the microorganisms in water were observed.
  • the growth inhibition test shown in FIG. 6A was carried out, and it was determined that there was a growth inhibition effect when a clear zone was present over a range of 10 mm or more from the image line of the candidate microorganism.
  • Aeromonas hydrophila ATCC 700183
  • Aeromonas hydrophila JCM 1027
  • Aeromonas caviae JCM 1043
  • Flavobacterium colorYer35eri JCM2
  • Yersinia JCM2 13
  • KH-ZF1 NITE BP-20967
  • KH-ZF1 was identified as Pseudomonas mossellii by molecular phylogenetic analysis using a 16s ribosomal RNA gene sequence.
  • FIG. 12 shows the results of a growth inhibition test against a pathogenic microorganism of KH-ZF1.
  • ⁇ Aeromonas caviae ⁇ Aeromonas hydrophila(ATCC 700183) ⁇ Aeromonas hydrophila(JCM 1027) ⁇ Yersinia ruckeri(NVH 3578) ⁇ Yersinia ruckeri(DSMZ 18506) ⁇ Edwardsiella tarda(NRIA 44) ⁇ Edwardsiella tarda(NRIA 51), Vibrio angillalum, Vibrio ordalii, Streptococcus iniae were used.
  • two types of non-pathogenic microorganisms were used as negative controls.
  • the carrier of Test Example 4 was a carrier mainly composed of foundry waste sand, and BTS (biotope sand, manufactured by Esaki Sangyo Co., Ltd.) black clay was used.
  • the main constituents of this carrier are silicon dioxide (about 49%), carbon (about 15%) and Fe 2 O 3 (about 11%).
  • the carrier of Test Example 5 was a carrier containing casting waste sand as a main component, and the carrier of Test Example 4 was calcined at 700 to 800 ° C. was used.
  • the carrier of Test Example 6 was a carrier made of a ceramic molded product, and was produced as follows. With respect to 60 parts by mass of diatomaceous earth, 20 parts by mass of kaolin-based clay and 20 parts by mass of frog-like clay, which is an aluminum-containing clay mineral, and 20 parts by mass of rice bran were mixed. An appropriate amount of water was added to this mixture and kneaded, and coating granulation was performed to obtain a spherical molded product. This molded product was calcined at 900 to 950 ° C. to obtain a carrier. The main constituents of this carrier are silicon dioxide (about 78%) and Al 2 O 3 (about 15%).
  • the carrier of Test Example 7 was a carrier made of a ceramic molded product, and was produced as follows. A mixture of 65 parts by mass of crushed material of lightweight cellular concrete (ALC) containing tovamorite, which is a kind of calcium silicate hydrate, with 30 parts by mass of frogme clay and 5 parts by mass of inorganic reinforcing fiber (sepiolite). Then, 20 parts by mass of a powdery and granular organic void forming material was further mixed with 100 parts by mass of the obtained mixture to obtain a raw material for molding. An appropriate amount of water was added to this molding raw material and kneaded, and the obtained kneaded product was supplied to an extrusion molding machine to obtain a molded product. This molded product was calcined at 1000 to 1100 ° C. to obtain a carrier. The main constituents of this carrier are silicon dioxide (about 55%), calcium oxide (about 16%) and Al 2 O 3 (about 14%).
  • KH-ZF1 was supported on any of the carriers of Test Examples 4 to 8 after 24 hours. In addition, it was observed that the supported KH-ZF1 on each carrier was proliferating after one week. Since all of these carriers have a porous structure, it is considered that they are excellent in the engraftment property of microorganisms, that is, the action of supporting and proliferating microorganisms.
  • the microbial activity can be exhibited not only on the carrier but also in the place where the microorganism desorbed from the carrier is newly attached, so that the water treatment capacity of the microorganism can be further improved. Can be done.
  • KH-ZF1 had settled in the vicinity of the wound on the epidermis of the zebrafish 6 hours after the exposure. It was also confirmed that KH-ZF1 was established in other parts as well.
  • ⁇ Infection control test> 200 mL of breeding water (1 L of ultrapure water plus 3 g of instant ocean) was placed in a test container, 5 zebrafish were placed, and the zebrafish were bred at 28 ° C. for 2 days. Then, the breeding water was replaced, KH-ZF1 was added so that OD 600 0.01, and the animals were bred at 28 ° C. for 24 hours. Then, the zebrafish was anesthetized with an anesthetic solution containing trikine, and the muscle at the base of the dorsal fin of the zebrafish was injured with an injection needle.
  • KH-ZF1 and Yersinia ruckeri were prepared as follows.
  • KH-ZF1 cultured on a plate was inoculated into a tube containing 2 mL of NB medium, and cultured at 28 ° C. with shaking for 24 hours. 100 ⁇ L of this culture solution was inoculated into 10 mL of NB medium and cultured at 28 ° C. with shaking for 24 hours. Then, it was subjected to a centrifugation operation of 8000 ⁇ g for 5 minutes to remove the supernatant and collect the bacteria. The cells were resuspended in breeding water, washed, centrifuged at 8000 ⁇ g for 5 minutes, and the supernatant was removed to collect bacteria. After repeating this operation three times, it was resuspended in breeding water and OD 600 was measured.
  • Yersinia ruckeri cultured on a plate was inoculated into a tube containing 2 mL of LB medium, and cultured at 28 ° C. with shaking for 24 hours. 100 ⁇ L of this culture solution was inoculated into 10 mL of LB medium and cultured at 28 ° C. with shaking for 12 hours. Then, it was subjected to a centrifugation operation of 8000 ⁇ g for 5 minutes to remove the supernatant and collect the bacteria. The cells were resuspended in breeding water, washed, centrifuged at 8000 ⁇ g for 5 minutes, and the supernatant was removed to collect bacteria. After repeating this operation three times, it was resuspended in breeding water and OD 600 was measured.
  • the microbial carrier of the present invention is easy to handle and has excellent microbial treatment capacity, it is useful for purifying industrial wastewater such as factory wastewater, domestic wastewater, fish breeding water, and aquatic plant breeding water.
  • the method for preventing fish and shellfish diseases of the present invention can prevent fish and shellfish diseases sustainably and easily. Therefore, in particular, aquaculture, ornamental, and aquariums for breeding fish and shellfish in a closed environment. It is useful for breeding in such places.

Abstract

Provided are: a microorganism carrier which has good handling properties and excellent microorganism treatment performance; and a method for producing the microorganism carrier. A carrier 1 is a microorganism carrier capable of carrying a microorganism. The carrier 1 comprises an expansion-molded article comprising a thermoplastic resin 3 and an inorganic powder 4, and has asperities 2 on the surface thereof, in which the inorganic powder 4 is contained in an amount of 15 to 70% by mass relative to the total amount of the thermoplastic resin 3 and the inorganic powder 4, and the inorganic powder comprises at least one component selected from the group consisting of silicon dioxide, aluminum oxide, calcium silicate hydrate, diatomaceous earth, maifan stone, shell, bone meal, calcium carbonate, boehmite, zeolite, apatite, kaolin, mullite, spinel, olivine, sericite, bentonite, wollastonite, anorthite and mica.

Description

微生物担体およびその製造方法Microbial carrier and its manufacturing method
 本発明は、微生物担体(以下、単に担体ともいう。)およびその製造方法に関し、特に、微生物を担持、増殖、脱離する微生物担体およびその製造方法に関する。また、本発明は、魚介類の病気の予防方法に関し、特に、養殖場や、観賞用、水族館などで飼育される魚介類の病気を予防する方法に関する。 The present invention relates to a microbial carrier (hereinafter, also simply referred to as a carrier) and a method for producing the same, and more particularly to a microbial carrier that carries, proliferates, and desorbs microorganisms and a method for producing the same. The present invention also relates to a method for preventing diseases of fish and shellfish, and more particularly to a method for preventing diseases of fish and shellfish bred in aquaculture farms, ornamental plants, aquariums and the like.
 工場排水などの産業排水や、生活排水、魚介類の飼育水、水生植物用飼育水などを浄化する方法として微生物を用いた方法が知られている。例えば、微生物が担持された担体を被処理水中に投入して通水させることで、その微生物による働きで被処理水中の有害物質などを分解することができる。このような微生物としては、増殖に酸素を必要とする好気性微生物や、増殖に酸素を必要としない嫌気性微生物が用いられている。 A method using microorganisms is known as a method for purifying industrial wastewater such as factory wastewater, domestic wastewater, breeding water for fish and shellfish, breeding water for aquatic plants, and the like. For example, by putting a carrier carrying a microorganism into the water to be treated and allowing water to pass therethrough, harmful substances in the water to be treated can be decomposed by the action of the microorganism. As such microorganisms, aerobic microorganisms that require oxygen for growth and anaerobic microorganisms that do not require oxygen for growth are used.
 従来、担体として、無機粉体であるセラミックス粉体からなる担体が知られている。セラミックスは表面に多数の空孔を有しているため、微生物の付着に適している。例えば特許文献1には、ワラストナイトおよびアノーサイトを含有するセラミックス成形体からなる担体が記載されている。この担体の表面には、50~1000μmの範囲の大孔径と0.1~10μmの範囲の細孔径を有する2種の空隙が形成されている。 Conventionally, a carrier made of ceramic powder, which is an inorganic powder, is known as a carrier. Since ceramics have many pores on the surface, they are suitable for the adhesion of microorganisms. For example, Patent Document 1 describes a carrier made of a ceramic molded product containing warastonite and anorthite. On the surface of this carrier, two types of voids having a large pore diameter in the range of 50 to 1000 μm and a pore diameter in the range of 0.1 to 10 μm are formed.
 また、鋳物製造工程から生じる鋳物廃砂を微生物担体として利用した技術も知られている。例えば、特許文献2には、鋳物廃砂を180℃以上400℃以下で加熱処理した担体が記載されている。 In addition, a technique using casting waste sand generated from the casting manufacturing process as a microbial carrier is also known. For example, Patent Document 2 describes a carrier obtained by heat-treating cast waste sand at 180 ° C. or higher and 400 ° C. or lower.
 一方で、動物タンパク質として魚介類の需要が世界中で増加している。その需要に応えるため、安定的な供給手段となる魚介類の養殖は重要な位置付けになっている。近年では、陸上で行う閉鎖循環式陸上養殖が注目されている。この養殖は、閉鎖した設備内で環境を管理するため、天候や赤潮などの外的要因を受けにくく、また、水温調整が可能であり生産性に優れている。しかし、閉鎖環境となることから水質管理が特に重要であり、水質の悪化に伴って魚介類が病気にかかることなどが問題視されている。 On the other hand, the demand for fish and shellfish as animal protein is increasing all over the world. In order to meet the demand, the cultivation of fish and shellfish, which is a stable supply means, has become an important position. In recent years, closed-circulation aquaculture performed on land has attracted attention. Since this aquaculture manages the environment in a closed facility, it is not easily affected by external factors such as weather and red tide, and the water temperature can be adjusted, resulting in excellent productivity. However, water quality management is particularly important due to the closed environment, and it is regarded as a problem that fish and shellfish get sick as the water quality deteriorates.
 従来、魚介類(特に魚類)の病気を予防するため、抗菌剤投与やワクチン投与が行われている。例えば、特許文献3には、抗菌剤であるオキシテトラサイクリンやドキシサイクリンを魚類に経口投与することが記載されている。また、特許文献4には、不活化した魚類ストレプトコッカス・ディスガラクティエを抗原として含有するワクチンが記載されている。 Conventionally, antibacterial agents and vaccines have been administered to prevent diseases of fish and shellfish (especially fish). For example, Patent Document 3 describes oral administration of antibacterial agents such as oxytetracycline and doxycycline to fish. Further, Patent Document 4 describes a vaccine containing an inactivated fish Streptococcus disgalactier as an antigen.
特開平7-60279号公報Japanese Unexamined Patent Publication No. 7-60279 特開2018-114494号公報Japanese Unexamined Patent Publication No. 2018-114494 特開2019-172619号公報Japanese Unexamined Patent Publication No. 2019-172619 特開2007-326794号公報Japanese Unexamined Patent Publication No. 2007-326794
 微生物が担持された担体について、セラミックス成形体からなる担体は、多孔質構造であることから表面積が大きく、微生物の付着性に優れている。しかし、担体の重量が重く、取り扱い性がよいとはいえない。また、焼成が必要になることから、コストが高くなる傾向がある。また、鋳物廃砂を原料にした担体も同様のことがいえる。一方で、軽量で比較的低コストな担体として、樹脂成形体からなる担体も知られているが、セラミックス成形体の担体に比べて表面積が小さく、耐久性の面で劣る傾向がある。 Regarding the carrier on which microorganisms are carried, the carrier made of a ceramic molded body has a large surface area because it has a porous structure, and has excellent adhesion to microorganisms. However, the weight of the carrier is heavy, and it cannot be said that the handling is good. In addition, since firing is required, the cost tends to be high. The same can be said for carriers made from foundry waste sand. On the other hand, as a lightweight and relatively low-cost carrier, a carrier made of a resin molded body is also known, but the surface area is smaller than that of a carrier made of a ceramic molded body, and the carrier tends to be inferior in durability.
 ところで、担体に担持された微生物の働きを十分に発揮させるためには、微生物に対して、被処理水をできるだけ多く接触させることが重要である。そのため、一般には撹拌などすることにより被処理水や担体を流動させることで処理能力を向上させているが、より簡便に微生物の処理能力を向上できることが望ましい。 By the way, in order to fully exert the function of the microorganisms carried on the carrier, it is important to bring the treated water into contact with the microorganisms as much as possible. Therefore, in general, the treatment capacity is improved by flowing the water to be treated or the carrier by stirring or the like, but it is desirable that the treatment capacity of microorganisms can be improved more easily.
 一方で、魚介類の病気の予防において、抗菌剤は多くの微生物に有効であるものの、耐性菌の出現や出荷前の使用制限などの問題がある。また、ワクチンは注射による投与を行う場合が多く、投与作業が煩雑であり、さらに対応できる病原体の種類も限られている。そのため、簡易な方法で持続的に病気の予防対策を行えることが望ましい。 On the other hand, although antibacterial agents are effective against many microorganisms in the prevention of fish and shellfish diseases, there are problems such as the emergence of resistant bacteria and restrictions on use before shipment. In addition, vaccines are often administered by injection, the administration work is complicated, and the types of pathogens that can be dealt with are limited. Therefore, it is desirable to be able to continuously take preventive measures against illness by a simple method.
 また、魚類は、水中において微生物と常に表皮が接していることから、特に、経皮感染によって引き起こされる病気が問題になり得る。 In addition, since the epidermis of fish is always in contact with microorganisms in water, diseases caused by transdermal infection can be a problem.
 本発明は、このような事情に対処するためになされたものであり、取り扱い性がよく、微生物の処理能力に優れる微生物担体およびその製造方法を提供することを目的とする。また、本発明は、魚介類の病気を持続的に、かつ、簡便に予防できる予防方法を提供することを目的とする。 The present invention has been made to deal with such a situation, and an object of the present invention is to provide a microbial carrier having good handleability and excellent microbial processing ability and a method for producing the same. Another object of the present invention is to provide a preventive method capable of sustainably and easily preventing fish and shellfish diseases.
 本発明の微生物担体は、微生物を担持する微生物担体であって、上記微生物担体は、熱可塑性樹脂および無機粉体を含む発泡成形体で、表面に凹凸を有しており、上記無機粉体は、上記熱可塑性樹脂および上記無機粉体の合計量に対して15質量%~70質量%含まれることを特徴とする。また、上記発泡成形体は押出発泡成形体であり、上記無機粉体は、上記熱可塑性樹脂および上記無機粉体の合計量に対して35質量%~70質量%含まれることを特徴とする。 The microbial carrier of the present invention is a microbial carrier that carries a microbial substance, and the microbial carrier is a foamed molded product containing a thermoplastic resin and an inorganic powder, and has irregularities on the surface. , 15% by mass to 70% by mass with respect to the total amount of the thermoplastic resin and the inorganic powder. Further, the foam molded product is an extruded foam molded product, and the inorganic powder is characterized by containing 35% by mass to 70% by mass with respect to the total amount of the thermoplastic resin and the inorganic powder.
 上記無機粉体は、二酸化ケイ素、酸化アルミニウム、ケイ酸カルシウム水和物、珪藻土、麦飯石、貝殻、骨粉、炭酸カルシウム、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、セリサイト、ベントナイト、ワラストナイト、アノーサイトおよびマイカからなる群より選ばれる少なくとも1つであることを特徴とする。 The inorganic powders include silicon dioxide, aluminum oxide, calcium silicate hydrate, diatomaceous earth, barley stone, shell, bone meal, calcium carbonate, boehmite, zeolite, apatite, kaolin, mulite, spinel, olivine, sericite, bentonite, etc. It is characterized by being at least one selected from the group consisting of wallastonite, anausite and mica.
 上記微生物担体の比表面積が1m/g~5m/gであることを特徴とする。 The specific surface area of the microbial carrier is 1 m 2 / g to 5 m 2 / g.
 本発明の微生物担体を製造する製造方法は、少なくとも上記熱可塑性樹脂と上記無機粉体と発泡剤とを混錬して、発泡成形することを特徴とする。 The production method for producing the microbial carrier of the present invention is characterized in that at least the above-mentioned thermoplastic resin, the above-mentioned inorganic powder and the foaming agent are kneaded and foam-molded.
 上記製造方法は、上記発泡剤以外の原材料を予めペレット化し、得られたペレットと上記発泡剤とを混錬して、押出発泡成形することを特徴とする。 The manufacturing method is characterized in that raw materials other than the foaming agent are pelletized in advance, the obtained pellets and the foaming agent are kneaded, and extrusion foam molding is performed.
 本発明の予防方法は、魚介類の病気を予防する予防方法であって、上記病気の病原微生物に対して抑制作用を有する微生物を、該微生物の脱離作用のある微生物担体に添加する工程と、上記微生物担体を上記魚介類が生育する水中に投入して、上記魚介類の表皮に上記微生物を定着させる工程とを有し、上記微生物担体が、本発明の微生物担体であることを特徴とする。ここで、「病原微生物に対する抑制作用」とは、病原微生物の生育や増殖を低下させる作用および病原微生物を殺傷する作用を含む。また、「微生物の脱離作用」とは、担体上に一度担持した微生物を水中へ放出する作用のことをいう。 The preventive method of the present invention is a preventive method for preventing a disease of fish and shellfish, and is a step of adding a microorganism having an inhibitory action against the pathogenic microorganism of the disease to a microbial carrier having a desorbing action of the microorganism. It is characterized by having a step of putting the above-mentioned microbial carrier into water in which the above-mentioned fish and shellfish grow and fixing the above-mentioned microorganism on the epidermis of the above-mentioned fish and shellfish, and the above-mentioned microbial carrier is the microbial carrier of the present invention. do. Here, the "inhibitory action against pathogenic microorganisms" includes an action of reducing the growth and proliferation of pathogenic microorganisms and an action of killing pathogenic microorganisms. Further, the "desorption action of microorganisms" refers to the action of releasing the microorganisms once carried on the carrier into water.
 本発明の予防方法は、魚介類の病気を予防する予防方法であって、上記病気の病原微生物に対して抑制作用を有する微生物を、該微生物の脱離作用のある微生物担体に添加する工程と、上記微生物担体を上記魚介類が生育する水中に投入して、上記魚介類の表皮に上記微生物を定着させる工程とを有することを特徴とする。 The preventive method of the present invention is a preventive method for preventing a disease of fish and shellfish, and is a step of adding a microorganism having an inhibitory action against the pathogenic microorganism of the disease to a microbial carrier having a desorbing action of the microorganism. It is characterized by having a step of putting the above-mentioned microbial carrier into water in which the above-mentioned fish and shellfish grow, and fixing the above-mentioned microorganism on the epidermis of the above-mentioned fish and shellfish.
 上記魚介類が、養殖される魚介類、水族館で飼育される魚介類、観賞魚、および、熱帯魚であることを特徴とする。例えば、養殖される魚介類としては、ウナギ、アユ、ブリ、マス、タイ、コイ、カンパチ、マグロ、サケ、アジ、ヒラメ、ティラピア、フグ、ハマチ、ハタ、サバ、サンマ、ナマズ、チョウザメ、カニ、エビ、タコ、アワビ、ナマコなどが挙げられる。また、観賞魚や熱帯魚としては、金魚、メダカ、テトラ、ベタ、アロワナなどが挙げられる。 The above-mentioned fish and shellfish are characterized as being farmed fish and shellfish, fish and shellfish bred in an aquarium, ornamental fish, and tropical fish. For example, fish and shellfish cultivated include eel, ayu, yellowtail, trout, Thai, carp, amberjack, tuna, salmon, horse mackerel, flounder, tirapia, blowfish, hamachi, hata, mackerel, yellowtail, catfish, butterfly shark, crab, etc. Examples include shrimp, octopus, amberjack, and catfish. Examples of ornamental fish and tropical fish include goldfish, killifish, tetra, betta, and osteoglossidae.
 上記微生物担体に添加する上記微生物は、上記魚介類の表皮由来の微生物であることを特徴とする。 The microorganism added to the microorganism carrier is characterized by being a microorganism derived from the epidermis of the fish and shellfish.
 上記微生物がシュードモナス属の微生物であることを特徴とする。 The above-mentioned microorganism is a microorganism of the genus Pseudomonas.
 本発明の微生物担体は、熱可塑性樹脂および無機粉体を含む発泡成形体であり、表面に凹凸を有しており、無機粉体が熱可塑性樹脂および無機粉体の合計量に対して、15質量%~70質量%含まれるので、担体への微生物の付着量が増大し、該微生物の処理能力を向上させることができる。また、熱可塑性樹脂と無機粉体を複合化することにより、軽量な樹脂と、大きな比表面積を有し耐久性のある無機粉体の特長を併せ持つ微生物担体になる。 The microbial carrier of the present invention is a foam molded product containing a thermoplastic resin and an inorganic powder, and has irregularities on the surface, and the inorganic powder is 15 with respect to the total amount of the thermoplastic resin and the inorganic powder. Since it is contained in an amount of% to 70% by mass, the amount of microorganisms attached to the carrier is increased, and the processing capacity of the microorganisms can be improved. Further, by combining the thermoplastic resin and the inorganic powder, it becomes a microbial carrier having the features of a lightweight resin and a durable inorganic powder having a large specific surface area.
 さらに、上記微生物担体は、驚くべきことに、微生物を担持して増殖させる作用に加えて、担体上に一度担持した微生物を水中へ放出する作用(脱離作用)も有する。後述の実施例で示すように、本発明の微生物担体は優れた脱離作用を有するのは、熱可塑性樹脂と無機粉体を複合することで、担体の電位と微生物の電位が適度な関係になるためと考えられる。このように、本発明の微生物担体によれば、担体から脱離した微生物によっても被処理水などを処理可能になり、微生物の処理能力を簡便に向上させることができる。 Further, surprisingly, the above-mentioned microbial carrier has an action of releasing the microbial carrier once carried on the carrier into water (desorption action) in addition to the action of supporting and propagating the microbial carrier. As shown in Examples described later, the microbial carrier of the present invention has an excellent desorption action because the potential of the carrier and the potential of the microorganism have an appropriate relationship by combining the thermoplastic resin and the inorganic powder. It is thought that it will be. As described above, according to the microbial carrier of the present invention, the water to be treated can be treated even by the microorganism desorbed from the carrier, and the treatment capacity of the microorganism can be easily improved.
 本発明の微生物担体の製造方法は、少なくとも熱可塑性樹脂と無機粉体と発泡剤とを混錬して発泡成形するので、セラミックス成形体からなる担体のように焼成を必要とせず、比較的安価に担体を製造できる。 In the method for producing a microbial carrier of the present invention, at least a thermoplastic resin, an inorganic powder and a foaming agent are kneaded and foam-molded, so that unlike a carrier made of a ceramic molded body, firing is not required and the cost is relatively low. Can produce carriers.
 上記製造方法は、発泡剤以外の原材料を予めペレット化し、得られたペレットと発泡剤とを混錬して押出発泡成形するので、無機粉体の含有量を多くしても、担体における無機粉体の分散性を確保しやすい。また、発泡剤を組成物全体に分散させやすくなり、気孔の偏在などを防止しやすくなる。 In the above manufacturing method, raw materials other than the foaming agent are pelletized in advance, and the obtained pellets and the foaming agent are kneaded and extruded and foamed. Therefore, even if the content of the inorganic powder is increased, the inorganic powder in the carrier It is easy to secure the dispersibility of the body. In addition, it becomes easy to disperse the foaming agent in the entire composition, and it becomes easy to prevent uneven distribution of pores and the like.
 本発明の予防方法は、病原微生物に対して抑制作用を有する微生物(有用微生物)を、該微生物の脱離作用のある微生物担体に添加する工程と、微生物担体を魚介類が生育する水中に投入して、魚介類の表皮に微生物を定着させる工程とを有し、微生物担体として本発明の微生物担体を用いるので、有用微生物の水中への脱離作用に優れ、魚介類の病気の予防効果を向上できる。 The preventive method of the present invention includes a step of adding a microorganism having an inhibitory effect on pathogenic microorganisms (useful microorganism) to a microbial carrier having a desorbing action of the microorganism, and putting the microbial carrier into water in which fish and shellfish grow. Since the microorganism carrier of the present invention is used as the microbial carrier, it has an excellent desorption action of useful microorganisms into water and has a preventive effect on microbial diseases. Can be improved.
 本発明の予防方法は、病原微生物に対して抑制作用を有する微生物(有用微生物)を、該微生物の脱離作用のある微生物担体に添加する工程と、微生物担体を魚介類が生育する水中に投入して、魚介類の表皮に微生物を定着させる工程とを有するので、担体上で有用微生物を増殖させ、さらに増殖した有用微生物を脱離させることで、魚介類の表皮に有用微生物を持続的に供給できる。つまり、有用微生物を魚介類の表皮のプロバイオティクスとして利用することで、魚介類の病気を持続的に、かつ、簡便に予防できる。この予防方法は、抗菌剤投与やワクチン投与といった従来の魚介類の病気対策の代わりになり得る。 The preventive method of the present invention includes a step of adding a microorganism having an inhibitory effect on pathogenic microorganisms (useful microorganism) to a microbial carrier having a desorbing action of the microorganism, and putting the microbial carrier into water in which fish and shellfish grow. Since it has a step of fixing the microorganisms on the epidermis of fish and shellfish, the useful microorganisms are continuously grown on the epidermis of fish and shellfish by proliferating the useful microorganisms on the carrier and further desorbing the proliferated useful microorganisms. Can be supplied. That is, by using useful microorganisms as probiotics of the epidermis of fish and shellfish, diseases of fish and shellfish can be prevented sustainably and easily. This preventive method can replace traditional fish and shellfish disease control such as antibacterial and vaccination.
 上記魚介類が上記に列挙した魚介類であり、本発明の予防方法を養殖や、観賞用、水族館などでの飼育に適用することで、それらの魚介類の病気を効果的に予防できる。例えば、養殖では高密度下で魚介類を飼育する場合が多いことから、魚介類同士の接触などにより表皮に傷が付きやすく、その傷が原因で感染症を発症するおそれがあるところ、特に魚介類の表皮を対象としたプロバイオティクスを利用した本方法は、養殖などにおける魚介類の病気対策として特に有用である。 The above-mentioned fish and shellfish are the fish and shellfish listed above, and by applying the preventive method of the present invention to aquaculture, ornamental use, breeding in an aquarium, etc., the diseases of those fish and shellfish can be effectively prevented. For example, in aquaculture, fish and shellfish are often bred under high density, so the epidermis is easily damaged by contact between fish and shellfish, and the damage may cause infectious diseases, especially fish and shellfish. This method using probiotics for the epidermis of aquaculture is particularly useful as a countermeasure against diseases of fish and shellfish in aquaculture and the like.
 微生物担体に添加する微生物は、魚介類の表皮由来の微生物であるので、表皮への定着性に優れ、また、魚介類が元々有している有用微生物を補充することになり、安全に魚介類の表皮を保護することができる。 Since the microorganism added to the microbial carrier is a microorganism derived from the epidermis of fish and shellfish, it has excellent colonization to the epidermis and supplements the useful microorganisms originally possessed by the fish and shellfish. Can protect the epidermis of.
 特に、上記微生物がシュードモナス属の微生物であるので、病原微生物に対する抑制作用に優れる。 In particular, since the above-mentioned microorganism is a microorganism belonging to the genus Pseudomonas, it has an excellent inhibitory effect on pathogenic microorganisms.
本発明の微生物担体の一例を示す図である。It is a figure which shows an example of the microbial carrier of this invention. 本発明の微生物担体の製造方法の一例を示す図である。It is a figure which shows an example of the manufacturing method of the microbial carrier of this invention. 本発明の微生物担体を魚類表皮のプロバイオティクスに利用した概略図である。It is a schematic diagram which used the microbial carrier of this invention for the probiotic of the fish epidermis. 本発明の微生物担体を生物脱臭システムに利用した概略図である。It is a schematic diagram which used the microbial carrier of this invention for a biological deodorization system. 本発明の魚介類の病気の予防方法の概略図を示す図である。It is a figure which shows the schematic diagram of the prevention method of the disease of the fish and shellfish of this invention. 有用微生物のスクリーニングの一例を示す図である。It is a figure which shows an example of the screening of useful microorganisms. 閉鎖循環式陸上養殖システムの概略図である。It is a schematic diagram of a closed circulation type aquaculture system. 試験例1~3の担体の外観写真である。It is a photograph of the appearance of the carrier of Test Examples 1 to 3. 試験例1の担体の断面の顕微鏡写真およびSEM写真である。It is a micrograph and an SEM photograph of the cross section of the carrier of Test Example 1. 試験例2の担体の断面の顕微鏡写真およびSEM写真である。It is a micrograph and an SEM photograph of the cross section of the carrier of Test Example 2. 試験例3の担体の断面の顕微鏡写真およびSEM写真である。3 is a photomicrograph and an SEM photograph of a cross section of the carrier of Test Example 3. KH-ZF1の病原微生物に対する増殖阻害試験の結果を示す図である。It is a figure which shows the result of the growth inhibition test against the pathogenic microorganism of KH-ZF1. 微生物の増殖・脱離試験に用いた担体の性状を示す図である。It is a figure which shows the property of the carrier used for the growth / desorption test of a microorganism. 微生物の増殖・脱離試験の概略図である。It is a schematic diagram of the growth / desorption test of microorganisms. 微生物の増殖・脱離試験の結果を示す写真である。It is a photograph showing the result of the growth / desorption test of microorganisms. 魚類の表皮への定着試験の結果を示す写真である。It is a photograph which shows the result of the colonization test to the epidermis of a fish. 感染防除試験の結果を示す図である。It is a figure which shows the result of the infection control test.
 まず、本発明の微生物担体の一例について、図1に基づいて説明する。図1(a)は担体の斜視図を示し、図1(b)はその一部の断面概略図を示す。この担体は、微生物を担持するものであり、例えば水中で使用されて、該微生物の働きによって、被処理水中の特定の物質が分解、不活性化、除去、増殖阻害、殺傷などされる。特定の物質には、人体や魚介類などに悪影響を与える物質(例えば、アンモニアや亜硝酸などの有害物質や病原微生物)、不要物(汚泥、懸濁物質、臭い)などが含まれる。 First, an example of the microbial carrier of the present invention will be described with reference to FIG. FIG. 1A shows a perspective view of the carrier, and FIG. 1B shows a schematic cross-sectional view thereof. This carrier carries a microorganism, and is used, for example, in water, and the action of the microorganism causes decomposition, inactivation, removal, growth inhibition, killing, and the like of a specific substance in the water to be treated. Specific substances include substances that adversely affect the human body and fish and shellfish (for example, harmful substances such as ammonia and nitrite and pathogenic microorganisms), and unnecessary substances (sludge, suspended solids, odors) and the like.
 図1(a)に示すように、担体1は、熱可塑性樹脂および無機粉体を含む押出発泡成形体であり、表面に多数の凹凸2を有している。この凹凸2は、担体を押出発泡成形する際に、成形体の表面に形成される凹凸であり、メルトフラクチャーとも言われる。具体的には、凹凸2は、樹脂部分が発泡により部分的に隆起することで形成され、一般的なエッチングなどの粗面化処理で形成される微細凹凸(数マイクロオーダー)よりも粗い凹凸である。凹凸2は、円筒外面1aおよび円筒内面1bの略全体にわたって形成される。なお、図1では押出発泡成形体を示しているが、発泡成形体として射出発泡成形体を用いてもよい。この場合、発泡した樹脂部分や表面に露出した無機粉体によって表面に凹凸が形成される。 As shown in FIG. 1 (a), the carrier 1 is an extruded foam molded product containing a thermoplastic resin and an inorganic powder, and has a large number of irregularities 2 on the surface. The unevenness 2 is an unevenness formed on the surface of the molded body when the carrier is extruded and foamed, and is also called a melt fracture. Specifically, the unevenness 2 is formed by partially raising the resin portion by foaming, and is coarser than the fine unevenness (several micro-order) formed by a roughening treatment such as general etching. be. The unevenness 2 is formed over substantially the entire outer surface 1a of the cylinder and the inner surface 1b of the cylinder. Although the extruded foam molded product is shown in FIG. 1, an injection foam molded product may be used as the foam molded product. In this case, unevenness is formed on the surface by the foamed resin portion and the inorganic powder exposed on the surface.
 担体1のサイズは、特に限定されないが、例えば外径φが10mm~50mmであり、軸方向長さLが20mm~100mmである。担体1の軸方向長さLは、押出成形機から押し出す方向と同じ方向であり、押出成形機から押し出された成形体のカット長さによって調整される。なお、担体1の形状は円筒体に限らず、円柱体、球体、立方体、直方体、板状などを採用できる。 The size of the carrier 1 is not particularly limited, but for example, the outer diameter φ is 10 mm to 50 mm, and the axial length L is 20 mm to 100 mm. The axial length L of the carrier 1 is in the same direction as the direction of extrusion from the extruder, and is adjusted by the cut length of the molded body extruded from the extruder. The shape of the carrier 1 is not limited to a cylinder, and a cylinder, a sphere, a cube, a rectangular parallelepiped, a plate, or the like can be adopted.
 図1(b)に示すように、担体1において、無機粉体4は熱可塑性樹脂3に分散している。担体1には、発泡成形によって生じた気孔5として連通孔6と閉気孔7が形成されている。連通孔6は円筒表面1a、1bから連通する孔であり、閉気孔7は周囲が壁面に囲まれた孔である。図1(b)に示すように、無機粉体4の一部は、気孔5の内部や円筒表面1a、1bに露出しており、被処理水と接触するように構成されている。 As shown in FIG. 1 (b), in the carrier 1, the inorganic powder 4 is dispersed in the thermoplastic resin 3. The carrier 1 is formed with communication holes 6 and closed pores 7 as pores 5 generated by foam molding. The communication hole 6 is a hole that communicates from the cylindrical surfaces 1a and 1b, and the air-closing hole 7 is a hole that is surrounded by a wall surface. As shown in FIG. 1 (b), a part of the inorganic powder 4 is exposed inside the pores 5 and on the cylindrical surfaces 1a and 1b, and is configured to come into contact with the water to be treated.
 図1(b)に示すように、担体1は多孔質構造を有しており、その比表面積は、微生物の付着性の観点から0.1m/g以上であることが好ましい。具体的な範囲として、比表面積は0.1m/g~10m/gが好ましく、1m/g~5m/gがより好ましい。なお、比表面積は窒素ガス吸着法により測定された値をいう。窒素ガス吸着法は、単位質量あたりの窒素ガスの吸着脱離量を計測することで行われる。 As shown in FIG. 1 (b), the carrier 1 has a porous structure, and its specific surface area is preferably 0.1 m 2 / g or more from the viewpoint of microbial adhesion. As a specific range, the specific surface area is preferably 0.1 m 2 / g to 10 m 2 / g, more preferably 1 m 2 / g to 5 m 2 / g. The specific surface area is a value measured by the nitrogen gas adsorption method. The nitrogen gas adsorption method is performed by measuring the amount of nitrogen gas adsorbed and desorbed per unit mass.
 また、担体1のかさ密度は0.9g/cm~2g/cmであることが好ましい。かさ密度は、JIS K6911に準拠した見掛け密度測定器を用いて測定される。かさ密度を上記範囲にすることで、水中で担体を容易に流動させることができ、微生物による処理能力を向上できる。かさ密度は、より好ましくは0.9g/cm~1.5g/cmであり、さらに好ましくは0.9g/cm~1.2g/cmである。 The bulk density of the carrier 1 is preferably 0.9 g / cm 3 to 2 g / cm 3 . Bulk density is measured using an apparent density measuring device compliant with JIS K6911. By setting the bulk density within the above range, the carrier can be easily flowed in water, and the processing capacity by microorganisms can be improved. The bulk density is more preferably 0.9 g / cm 3 to 1.5 g / cm 3 , and even more preferably 0.9 g / cm 3 to 1.2 g / cm 3 .
 以下には、本発明の微生物担体を構成する組成物の組成について説明する。 The composition of the composition constituting the microbial carrier of the present invention will be described below.
 熱可塑性樹脂は、特に限定されず、ポリエチレン(PE)樹脂やポリプロピレン(PP)樹脂などのポリオレフィン系樹脂、ポリスチレン系樹脂、ABS(アクリロニトリル・ブタジエン・スチレン)樹脂、塩化ビニル樹脂、ポリエチレンテレフタレートやポリエチレンナフタレートなどのポリエステル系樹脂、ポリカーボネート系樹脂などが挙げられる。これらは単独で使用してもよく、二種類以上を組み合わせて使用してもよい。上記熱可塑性樹脂の中でも、軽量性や成形性に優れることからポリオレフィン系樹脂が好ましい。 The thermoplastic resin is not particularly limited, and is a polyolefin resin such as polyethylene (PE) resin or polypropylene (PP) resin, a polystyrene resin, an ABS (acrylonitrile butadiene styrene) resin, a vinyl chloride resin, a polyethylene terephthalate or a polyethylene na. Examples thereof include polyester-based resins such as phthalate and polycarbonate-based resins. These may be used alone or in combination of two or more. Among the above-mentioned thermoplastic resins, polyolefin-based resins are preferable because they are excellent in lightness and moldability.
 熱可塑性樹脂は、該熱可塑性樹脂および無機粉体の合計量に対して、30質量%~85質量%含まれることが好ましく、30質量%~65質量%含まれることがより好ましい。上記含有量が30質量%未満の場合には、成形時の流動性を確保することが困難になりやすく、無機粉体の保持性が低下するおそれがある。また、熱可塑性樹脂の含有量は、質量比で無機粉体よりも少なくしてもよい。 The thermoplastic resin is preferably contained in an amount of 30% by mass to 85% by mass, more preferably 30% by mass to 65% by mass, based on the total amount of the thermoplastic resin and the inorganic powder. When the content is less than 30% by mass, it tends to be difficult to secure the fluidity at the time of molding, and the retention of the inorganic powder may decrease. Further, the content of the thermoplastic resin may be lower than that of the inorganic powder in terms of mass ratio.
 微生物担体において、無機粉体は、熱可塑性樹脂および無機粉体の合計量に対して15質量%~70質量%含まれ、35質量%~70質量%含まれることが好ましい。無機粉体は、特に限定されず、鉱物、ファインセラミックス、貝殻などの天然物、骨粉などを用いることができる。鉱物としては、珪藻土、麦飯石、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、セリサイト、ベントナイト、ワラストナイト、アノーサイト、マイカなどが挙げられる。なお、これら鉱物は天然鉱物でもよく、人工的に合成されたもの(例えば合成ゼオライト)でもよい。ファインセラミックスとしては、窒化アルミニウム、炭化ケイ素、窒化ケイ素、窒化硼素、アルミナなどが挙げられる。貝殻としては、牡蠣やアコヤ貝の貝殻などが挙げられる。また、無機粉体として、鉱物や貝殻に含まれる成分である二酸化ケイ素や、酸化アルミニウム、ケイ酸カルシウム水和物、炭酸カルシウムなども使用できる。上記無機粉体は、単独で使用してもよく、二種類以上を組み合わせて使用してもよい。 In the microbial carrier, the inorganic powder is preferably contained in an amount of 15% by mass to 70% by mass and preferably 35% by mass to 70% by mass with respect to the total amount of the thermoplastic resin and the inorganic powder. The inorganic powder is not particularly limited, and minerals, fine ceramics, natural products such as shells, bone powder and the like can be used. Examples of minerals include diatomaceous earth, bakuhan stone, boehmite, zeolite, apatite, kaolin, mullite, spinel, olivine, sericite, bentonite, wallastonite, anausite, and mica. In addition, these minerals may be natural minerals or artificially synthesized minerals (for example, synthetic zeolites). Examples of fine ceramics include aluminum nitride, silicon carbide, silicon nitride, boron nitride, and alumina. Examples of the shell include oysters and Akoya pearl oyster shells. Further, as the inorganic powder, silicon dioxide, which is a component contained in minerals and shells, aluminum oxide, calcium silicate hydrate, calcium carbonate and the like can also be used. The inorganic powder may be used alone or in combination of two or more.
 無機粉体の平均粒子径は、特に限定されないが、1μm~100μmが好ましい。無機粉体の平均粒子径が100μmを超えると、樹脂への分散性が低下し、無機粉体が担体表面や担体の気孔に露出する量が低下するおそれがある。一方、無機粉体の平均粒子径が1μm未満になると、粒子間の凝集が起こりやすく、分散性を損なうおそれがある。平均粒子径は、レーザー回折・散乱法により測定して得られる。 The average particle size of the inorganic powder is not particularly limited, but is preferably 1 μm to 100 μm. If the average particle size of the inorganic powder exceeds 100 μm, the dispersibility in the resin may decrease, and the amount of the inorganic powder exposed on the surface of the carrier or the pores of the carrier may decrease. On the other hand, if the average particle size of the inorganic powder is less than 1 μm, aggregation between the particles is likely to occur, and the dispersibility may be impaired. The average particle size is obtained by measuring by a laser diffraction / scattering method.
 無機粉体は、二酸化ケイ素、酸化アルミニウム、ケイ酸カルシウム水和物、珪藻土、麦飯石、貝殻、骨粉、炭酸カルシウム、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、セリサイト、ベントナイト、ワラストナイト、アノーサイトおよびマイカからなる群より選ばれる少なくとも1つを用いることが好ましく、珪藻土およびゼオライトの少なくともいずれかを用いることがより好ましい。珪藻土は、藻類の一種である珪藻の化石から構成され、二酸化ケイ素を主成分とする多孔性の岩石である。珪藻土には、アルミナや酸化鉄、他の成分が僅かに含まれる。また、無機粉体として吸水性・吸湿性に優れる珪藻土を用いることで、担体に吸水性を付与できる。 Inorganic powders include silicon dioxide, aluminum oxide, calcium silicate hydrate, diatomaceous earth, barley stone, shells, bone meal, calcium carbonate, boehmite, zeolite, apatite, kaolin, mulite, spinel, olivine, sericite, bentonite, and wa. It is preferable to use at least one selected from the group consisting of lastnite, anausite and mica, and it is more preferable to use at least one of diatomaceous earth and zeolite. Diatomaceous earth is a porous rock whose main component is silicon dioxide, which is composed of fossils of diatom, which is a kind of algae. Diatomaceous earth contains a small amount of alumina, iron oxide, and other components. Further, by using diatomaceous earth having excellent water absorption and hygroscopicity as the inorganic powder, water absorption can be imparted to the carrier.
 ゼオライトは、結晶性アルミノケイ酸塩と称され、ケイ素原子、アルミニウム原子、および酸素原子を含む。ゼオライトの骨格構造は多数知られており、LTA型ゼオライト、FER型ゼオライト、MWW型ゼオライト、MFI型ゼオライト、MOR型ゼオライト、LTL型ゼオライト、FAU型ゼオライトなどを用いることができる。また、ゼオライトは、魚類のフンや餌の残留物から出る有害なアンモニアを吸着して、ナトリウムを放出する働きが知られていることから、例えば魚類の飼育水などに好適である。 Zeolites are referred to as crystalline aluminosilicates and contain silicon, aluminum and oxygen atoms. Many skeleton structures of zeolite are known, and LTA type zeolite, FER type zeolite, MWW type zeolite, MFI type zeolite, MOR type zeolite, LTL type zeolite, FAU type zeolite and the like can be used. Zeolites are also known to have a function of adsorbing harmful ammonia emitted from fish droppings and food residues to release sodium, and are therefore suitable for, for example, fish breeding water.
 無機粉体として珪藻土を含む構成では、熱可塑性樹脂および無機粉体の合計量に対して、珪藻土が、例えば15質量%~55質量%含まれ、好ましくは20質量%~45質量%含まれる。また、無機粉体としてゼオライトを含む構成では、熱可塑性樹脂および無機粉体の合計量に対して、ゼオライトが、例えば15質量%~55質量%含まれ、好ましくは20質量%~45質量%含まれる。また、珪藻土およびゼオライトを含む構成でも、上記の各数値範囲を採用できる。さらにこの場合、珪藻土の含有量がゼオライトの含有量よりも多いことが好ましい。 In the configuration containing diatomaceous earth as the inorganic powder, diatomaceous earth is contained, for example, 15% by mass to 55% by mass, preferably 20% by mass to 45% by mass, based on the total amount of the thermoplastic resin and the inorganic powder. Further, in the configuration containing zeolite as the inorganic powder, zeolite is contained, for example, 15% by mass to 55% by mass, preferably 20% by mass to 45% by mass, based on the total amount of the thermoplastic resin and the inorganic powder. Is done. Further, even in a configuration containing diatomaceous earth and zeolite, each of the above numerical ranges can be adopted. Further, in this case, it is preferable that the content of diatomaceous earth is higher than the content of zeolite.
 本発明の担体は発泡成形体であり、発泡剤を用いた発泡成形により得られる。この担体には発泡剤に由来する成分が含まれていてもよい。発泡剤としては、物理的発泡剤や化学的発泡剤などが使用される。物理的発泡剤としては、プロパン、ブタン、ペンタンなどの炭化水素類、ジクロロエタン、ジクロロメタンなどの塩化炭化水素類、トリクロロモノフロロメタン、ジクロロジフロロメタンなどのフッ化塩化炭化水素類、炭酸ガス、窒素ガス、水などが挙げられる。また、化学的発泡剤としては、炭酸水素ナトリウム、バリウムアゾジカルボキシレートなどのアゾ化合物、N,N-ジニトロソペンタメチレンテトラミンなどのニトロソ化合物などが挙げられる。 The carrier of the present invention is a foam molded product and can be obtained by foam molding using a foaming agent. This carrier may contain a component derived from a foaming agent. As the foaming agent, a physical foaming agent, a chemical foaming agent, or the like is used. Physical foaming agents include hydrocarbons such as propane, butane and pentane, hydrocarbons such as dichloroethane and dichloromethane, fluorinated hydrocarbons such as trichloromonofluoromethane and dichlorodifluoromethane, carbon dioxide and nitrogen. Examples include gas and water. Examples of the chemical foaming agent include azo compounds such as sodium hydrogen carbonate and barium azodicarboxylate, and nitroso compounds such as N, N-dinitrosopentamethylenetetramine.
 上記担体には、成形時の流動性向上などのため、潤滑剤を配合してもよい。潤滑剤としては、合成パラフィンなどの脂肪族炭化水素、ステアリン酸などの高級脂肪酸、高級脂肪族アルコール、ステアリン酸ナトリウムなどの金属石けん、高級脂酸エステルなどが挙げられる。潤滑剤の配合量は、例えば、熱可塑性樹脂および無機粉体の合計量に対して0.5質量%~10質量%である。また、本発明の微生物担体には、その他の周知の添加剤を配合してもよい。 A lubricant may be added to the carrier in order to improve fluidity during molding. Examples of the lubricant include aliphatic hydrocarbons such as synthetic paraffin, higher fatty acids such as stearic acid, higher fatty alcohols, metal soaps such as sodium stearate, and higher fatty acid esters. The blending amount of the lubricant is, for example, 0.5% by mass to 10% by mass with respect to the total amount of the thermoplastic resin and the inorganic powder. In addition, other well-known additives may be added to the microbial carrier of the present invention.
 担体の吸水率は5%以上であることが好ましい。吸水率が5%以上であると、担体が水に早く馴染みやすくなるため、ろ槽に浸漬させる場合は充填しやすい。また、被処理水との接触が頻繁になるため、増殖した微生物が徐放されやすくなる。担体の吸水率は5%~15%であることがより好ましい。なお、吸水率は後述の実施例に記載の方法で測定される。
 また、担体から浸出される溶液のpHは中性付近であることが好ましい。具体的にはpHは6.0~8.5が好ましく、6.5~8.0がより好ましい。
The water absorption rate of the carrier is preferably 5% or more. When the water absorption rate is 5% or more, the carrier quickly adapts to water, so that it is easy to fill when immersed in a filter tank. In addition, since the contact with the water to be treated becomes frequent, the grown microorganisms are easily released. The water absorption rate of the carrier is more preferably 5% to 15%. The water absorption rate is measured by the method described in Examples described later.
Further, the pH of the solution leached from the carrier is preferably near neutral. Specifically, the pH is preferably 6.0 to 8.5, more preferably 6.5 to 8.0.
 次に、本発明の担体の製造方法の一例について図2を用いて説明する。図2には押出発泡成形による製造方法を示すが、担体を射出発泡成形で製造してもよい。図2に示す方法では、発泡剤以外の原材料を予めペレット18として得ている。ペレット18は、例えば、熱可塑性樹脂と無機粉体と潤滑剤とを混錬し、その混錬物をペレタイザにより押出した後、所定長さにカットすることで得られる。なお、潤滑剤は必要に応じて配合される。 Next, an example of the method for producing the carrier of the present invention will be described with reference to FIG. Although FIG. 2 shows a manufacturing method by extrusion foam molding, the carrier may be manufactured by injection foam molding. In the method shown in FIG. 2, raw materials other than the foaming agent are obtained in advance as pellets 18. The pellet 18 is obtained, for example, by kneading a thermoplastic resin, an inorganic powder, and a lubricant, extruding the kneaded product with a pelletizer, and then cutting the pellet into a predetermined length. The lubricant is added as needed.
 図2に示すように、ペレット18と発泡剤19を押出成形機11のホッパー12に投入することで、これらがシリンダ13に導入される。シリンダ13内において、ペレット18および発泡剤19はヒータ14で加熱溶融され、スクリュー15によって混練され、シリンダノズル16からダイ17へと移送される。そして、溶融した混錬物がダイ17を流れる際の圧力降下によって気泡が形成されて、押出発泡成形体が得られる。 As shown in FIG. 2, by charging the pellet 18 and the foaming agent 19 into the hopper 12 of the extruder 11, these are introduced into the cylinder 13. In the cylinder 13, the pellet 18 and the foaming agent 19 are heated and melted by the heater 14, kneaded by the screw 15, and transferred from the cylinder nozzle 16 to the die 17. Then, bubbles are formed by the pressure drop when the molten kneaded product flows through the die 17, and an extruded foam molded product is obtained.
 発泡成形における発泡剤の配合量や発泡倍率は適宜調整される。発泡剤の配合量は特に限定されないが、熱可塑性樹脂と無機粉体の合計量に対して、例えば1質量%~60質量%配合され、好ましくは20質量%~60質量%配合され、より好ましくは40質量%~60質量%配合される。 The blending amount of the foaming agent and the foaming ratio in foam molding are adjusted as appropriate. The blending amount of the foaming agent is not particularly limited, but is, for example, 1% by mass to 60% by mass, preferably 20% by mass to 60% by mass, more preferably, with respect to the total amount of the thermoplastic resin and the inorganic powder. Is blended in an amount of 40% by mass to 60% by mass.
 なお、図2に示す方法では、発泡剤19として化学的発泡剤を用いているが、これに代えて物理的発泡剤を用いてもよい。例えば、発泡剤が二酸化炭素などのガスの場合は、溶融したペレット18に対して、圧力制御されたガスが所定の割合となるようにシリンダ13内に添加されて混練される。 In the method shown in FIG. 2, a chemical foaming agent is used as the foaming agent 19, but a physical foaming agent may be used instead. For example, when the foaming agent is a gas such as carbon dioxide, the pressure-controlled gas is added to the cylinder 13 so as to have a predetermined ratio with respect to the molten pellets 18 and kneaded.
 また、図2に示すように、ペレット18を予め得ることなく、各原材料を押出成形機11のホッパー12に直接投入してもよい。その場合、熱可塑性樹脂と無機粉体と潤滑剤と発泡剤とをホッパー12にそれぞれ投入し、混錬して、上述のように押出発泡成形する。ただし、無機粉体の配合量を多くでき、また、担体全体に均一よく気泡を形成できることから、予備混錬してペレット18を予め得る方法が好ましい。 Further, as shown in FIG. 2, each raw material may be directly charged into the hopper 12 of the extruder 11 without obtaining the pellet 18 in advance. In that case, the thermoplastic resin, the inorganic powder, the lubricant, and the foaming agent are put into the hopper 12, respectively, kneaded, and extruded and foamed as described above. However, since the amount of the inorganic powder to be blended can be increased and bubbles can be formed uniformly and well over the entire carrier, a method of pre-kneading to obtain pellets 18 in advance is preferable.
 本発明の担体は、例えば水中下で使用され、被処理水の水質の改善などに用いられる。この担体に担持される微生物は、被処理水中の特定の物質を分解などする微生物であればよく、好気性微生物および嫌気性微生物のいずれも使用できる。例えば、シュードモナス(Pseudomonas)属、ロドコッカス(Rhodococcus)属、アルカリゲネス(Alcaligenes)属、バークホルデリア(Burkholderia)属、バチルス(Bacillus)属、コリネバクテリウム(Corynebacterium)属、アシネトバクター(Acinetobacter)属、ロドバクター(Rhodobacter)属、ラルストニア(Ralstonia)属、アシドボラックス(Acidovorax)属、セラチア(Serratia)属、フラボバクテリウム(Flavobacterium)属、硝化菌(ニトロソモナス(Nitrosomonas)属、ニトロバクタ―(Nitrobacter)属など)などの微生物を用いることができる。用いる微生物は、担体の使用条件などによって適宜選択される。例えば、魚介類の飼育水で用いる場合は、魚介類の種類や魚病の種類などによって適宜選択される。 The carrier of the present invention is used, for example, under water and is used for improving the water quality of the water to be treated. The microorganism carried on this carrier may be any microorganism that decomposes a specific substance in the water to be treated, and either an aerobic microorganism or an anaerobic microorganism can be used. For example, the genus Pseudomonas, the genus Rhodococcus, the genus Alcaligenes, the genus Burkholderia, the genus Bacillus, the genus Corynebacterium, the genus Corynebacterium. Genus Rhodobacter, Genus Ralstonia, Genus Acidovorax, Genus Serratia, Genus Flavobacterium, Genus Nitrosomonas, Nitrobacter-Nit And other microorganisms can be used. The microorganism to be used is appropriately selected depending on the conditions of use of the carrier and the like. For example, when it is used for breeding water for fish and shellfish, it is appropriately selected depending on the type of fish and shellfish, the type of fish disease, and the like.
 本発明の担体は、上記のような微生物を担持(固着)させ、増殖させ、脱離(徐放)させることができる。従来、一般的な担体(特に水処理)の性能は、いかに微生物を固着させ、いかに増やすかということで判断され、「徐放」という概念はなかった。微生物を固着および増殖させる作用のみを有する担体では、その作用を主に発揮するのは接触面であることから、いかに担体に被処理水を接触させるかが重要となる。これに対して、固着、増殖、徐放の3つの作用を有する本発明の担体は微生物を徐放させることから、担体に被処理水を接触させるための措置を軽減できる。また、担体から脱離(徐放)した微生物は、さらに被処理水における他の担体や、構造体、魚介類などの生体の表面に付着して、そこで微生物活性を発揮することができる。また、脱離した微生物が凝集などしてフロックやグラニュールを形成してもよい。このように、本発明の担体を用いることで、優れた水処理能力を発揮でき、各種排水や、養殖場、水槽などの水質改善を効率的に行うことができる。 The carrier of the present invention can carry (fix) the above-mentioned microorganisms, proliferate, and desorb (sustained release). Conventionally, the performance of a general carrier (especially water treatment) is judged by how to fix and increase microorganisms, and there is no concept of "sustained release". In a carrier that has only the action of adhering and growing microorganisms, it is the contact surface that mainly exerts the action, so it is important how the carrier is brought into contact with the water to be treated. On the other hand, since the carrier of the present invention having the three actions of fixation, proliferation and sustained release releases microorganisms slowly, it is possible to reduce the measures for contacting the carrier with the water to be treated. In addition, the microorganisms desorbed (sustainedly released) from the carrier can further adhere to other carriers in the water to be treated, structures, surfaces of living organisms such as fish and shellfish, and exert microbial activity there. Further, the desorbed microorganisms may aggregate to form flocs or granules. As described above, by using the carrier of the present invention, excellent water treatment capacity can be exhibited, and various wastewater, aquaculture farms, aquariums, and the like can be efficiently improved in water quality.
 本発明の担体の使用例として、例えば養殖場、観賞用飼育、水族館での使用が挙げられる。近年では、陸上で行う閉鎖循環式陸上養殖(後述の図7参照)が注目されている。しかし、この養殖は、閉鎖環境となることから水質管理が特に重要であり、水質の悪化に伴って魚介類が病気にかかることなどが問題視されている。例えば、養殖では高密度下で魚を飼育する場合が多いことから、魚同士の接触などにより魚の表皮に傷が付きやすく、その傷が原因で感染症を発症するおそれがある。このような事情から、魚類の表皮を対象としたプロバイオティクスを利用することが考えられる。 Examples of the use of the carrier of the present invention include use in aquaculture farms, ornamental breeding, and aquariums. In recent years, closed-circulation aquaculture performed on land (see FIG. 7 described later) has attracted attention. However, in this aquaculture, water quality management is particularly important because it is a closed environment, and it is regarded as a problem that fish and shellfish get sick as the water quality deteriorates. For example, in aquaculture, fish are often bred under high density, so that the epidermis of fish is easily damaged by contact between fish, and there is a risk of developing an infectious disease due to the damage. Under these circumstances, it is conceivable to use probiotics targeting the epidermis of fish.
 図3には、本発明の担体に担持される微生物を魚類表皮のプロバイオティクスとして利用した概要図を示す。まず、プロバイオティクスとして有用な微生物を担体に添加し、その担体を養殖魚や観賞魚などが飼育される水中に投入する。担体上に担持された微生物は、通常の飼育環境下(例えば20~30℃程度、pH6.0~8.5程度)で増殖して、バイオフィルムを形成する。その後、増殖した微生物が担体から定常的に脱離して魚類の表皮に定着する。微生物が担体から徐放されることで、微生物を魚類に持続的に供給できる。そして、表皮に定着した微生物の働きによって、病原微生物による感染を防ぐことができる。なお、詳細は、本発明の予防方法の箇所で説明する。 FIG. 3 shows a schematic diagram of using the microorganism supported on the carrier of the present invention as a probiotic of fish epidermis. First, microorganisms useful as probiotics are added to the carrier, and the carrier is put into the water in which cultured fish and ornamental fish are bred. The microorganisms carried on the carrier proliferate under a normal breeding environment (for example, about 20 to 30 ° C., pH 6.0 to 8.5) to form a biofilm. After that, the grown microorganisms are constantly desorbed from the carrier and settled on the epidermis of fish. By the sustained release of microorganisms from the carrier, the microorganisms can be continuously supplied to fish. Then, the action of the microorganisms settled on the epidermis can prevent infection by pathogenic microorganisms. The details will be described in the section of the preventive method of the present invention.
 また、本発明の担体の他の使用例として、生物脱臭システムでの使用が挙げられる。図4には、生物脱臭システムの一例の概要図を示す。生物脱臭システムは、主に下水処理場や畜糞などの有機廃棄物処理における臭気処理装置として使用される。図4に示すように、生物脱臭システム21は、主に、微生物担体23を用いて臭気ガスを脱臭する生物脱臭塔22と、活性炭を用いて臭気ガスを吸脱着処理する活性炭吸着塔28とを有する。図4では、生物脱臭塔22と活性炭吸着塔28を繋ぐ経路に、エリミネーター26、脱臭ファン27が設置されている。 Further, as another example of use of the carrier of the present invention, there is a use in a biological deodorization system. FIG. 4 shows a schematic diagram of an example of a biological deodorizing system. The biological deodorization system is mainly used as an odor treatment device in sewage treatment plants and organic waste treatment such as livestock manure. As shown in FIG. 4, the biological deodorizing system 21 mainly includes a biological deodorizing tower 22 that deodorizes odorous gas using a microbial carrier 23, and an activated carbon adsorption tower 28 that absorbs and desorbs odorous gas using activated carbon. Have. In FIG. 4, the eliminator 26 and the deodorizing fan 27 are installed in the path connecting the biological deodorizing tower 22 and the activated carbon adsorption tower 28.
 まず、生物脱臭塔22の下部から導入された臭気ガスは、微生物担体23を通過して上部の排気口から排出される。生物脱臭塔22の上部には散水管24が設置されており、養分などを含む供給水が散水管24によって微生物担体23に散布され、微生物に栄養源が供給される。なお、生物脱臭塔22の底部に溜まった水はpH測定などの工程を経て排水される。生物脱臭塔22から排出された臭気ガスは、エリミネーター26、脱臭ファン27を経由して活性炭吸着塔28に導入される。そして、活性炭吸着塔28の下部に導入され、上昇に伴って、活性炭充填部29に充填された活性炭を通過することで脱臭される。活性炭吸着塔28から排出されたガスは大気などへ放出される。 First, the odorous gas introduced from the lower part of the biological deodorizing tower 22 passes through the microbial carrier 23 and is discharged from the upper exhaust port. A sprinkler pipe 24 is installed in the upper part of the biological deodorizing tower 22, and the water supply water containing nutrients and the like is sprayed on the microbial carrier 23 by the sprinkler pipe 24 to supply a nutrient source to the microorganisms. The water collected at the bottom of the biological deodorizing tower 22 is drained through a process such as pH measurement. The odorous gas discharged from the biological deodorizing tower 22 is introduced into the activated carbon adsorption tower 28 via the eliminator 26 and the deodorizing fan 27. Then, it is introduced into the lower part of the activated carbon adsorption tower 28, and as it rises, it is deodorized by passing through the activated carbon filled in the activated carbon filling portion 29. The gas discharged from the activated carbon adsorption tower 28 is released to the atmosphere or the like.
 従来、このような生物脱臭システムで用いられる微生物担体に、脱臭効果のある微生物を固着させるには、担体(ひも状や軽石状など)を密に詰め込んで1~2ヵ月水を流して訓養する必要があった。また、接触面積を増やすために担体を密に詰め込むことになるが、実際は担体全体に微生物が行き渡らず、部分的にしか微生物が固着、増殖していないことも多かった。その結果、効力を上げるために装置が大きくなり、イニシャルコストが増大するなどの問題があった。 Conventionally, in order to fix a microbial carrier having a deodorizing effect to a microbial carrier used in such a biological deodorizing system, the carrier (string-like, pumice-like, etc.) is tightly packed and water is run for 1 to 2 months for training. I had to do it. In addition, the carrier is densely packed in order to increase the contact area, but in reality, the microorganisms did not spread over the entire carrier, and in many cases, the microorganisms adhered and proliferated only partially. As a result, there is a problem that the device becomes large in order to increase the effectiveness and the initial cost increases.
 本発明の担体を生物脱臭塔22における微生物担体23に適用することで、担体上で増殖した微生物が効果的に放出されるので訓養時間を大幅に短縮できると考えられる。また、徐放作用により担体全体に微生物が行き渡りやすくなるので、装置の小型化にも繋がる。さらに、使用時においても散水管24に散水される水により微生物が放出されることで、一層の脱臭効果も期待される。 By applying the carrier of the present invention to the microbial carrier 23 in the biological deodorizing tower 22, it is considered that the training time can be significantly shortened because the microorganisms grown on the carrier are effectively released. In addition, the sustained release action facilitates the distribution of microorganisms throughout the carrier, leading to miniaturization of the device. Further, even during use, the water sprinkled on the sprinkler pipe 24 releases microorganisms, which is expected to have a further deodorizing effect.
 本発明の担体は、その他の土壌処理や汚水処理にも有効であると考えられる。現状、土壌処理では有用微生物の拡散を待つか、強制撹拌して処理するかの方法がとられているが、本発明の担体を用いることで微生物を効果的に放出して微生物による処理能力を向上させることができる。 The carrier of the present invention is considered to be effective for other soil treatment and sewage treatment. At present, in soil treatment, the method of waiting for the diffusion of useful microorganisms or the treatment by forced stirring is adopted, but by using the carrier of the present invention, the microorganisms are effectively released and the treatment ability by the microorganisms is enhanced. Can be improved.
 次に、本発明の予防方法の概略について、図5を用いて説明する。図5は、この方法を閉鎖循環式陸上養殖場などの養殖場に適用した例を示している。この場合、対象となる魚介類は、例えば、ウナギ、アユ、ブリ、マス、タイ、コイ、カンパチ、マグロ、サケ、アジ、ヒラメ、ティラピア、フグ、ハマチ、ハタ、サバ、サンマ、ナマズ、チョウザメなどの魚類、カニ、エビなどの甲殻類、タコなどの頭足類、アワビなどの貝類、ナマコなどが挙げられる。 Next, the outline of the preventive method of the present invention will be described with reference to FIG. FIG. 5 shows an example of applying this method to aquaculture farms such as closed circulation land farms. In this case, the target fish and shellfish are, for example, eel, ayu, yellowtail, trout, tie, carp, campachi, tuna, salmon, horse mackerel, flatfish, tirapia, blowfish, hamachi, hata, mackerel, sama, catfish, butterfly shark, etc. Fish, crabs, shellfish such as shrimp, head and foot such as octopus, shellfish such as abalone, and catfish.
 図5に示すように、この方法は、有用微生物を担体に添加する工程Aと、その担体を魚介類が飼育される水中に投入して、魚介類の表皮に有用微生物を定着させる工程Bとを有する。本明細書において、有用微生物とは、魚介類の病気の病原微生物に対して抑制作用を有する微生物のことをいう。有用微生物を最終的に魚介類の表皮に定着させることで、病原微生物に曝される水中環境下であっても表皮や傷口などからの感染を予防することができる。なお、魚介類の表皮には、魚類の体、眼、鱗、ひれ、えら、口などの表面、カニ、エビなどの甲殻類の体などの表面が含まれる。 As shown in FIG. 5, this method includes a step A of adding useful microorganisms to a carrier and a step B of putting the carrier into water in which fish and shellfish are bred to fix the useful microorganisms on the epidermis of fish and shellfish. Has. As used herein, the term "useful microorganism" refers to a microorganism having an inhibitory effect on pathogenic microorganisms of fish and shellfish diseases. By finally colonizing the epidermis of fish and shellfish with useful microorganisms, it is possible to prevent infection from the epidermis and wounds even in an aquatic environment exposed to pathogenic microorganisms. The epidermis of fish and shellfish includes the surface of the body of fish, eyes, scales, fins, gills, mouth and the like, and the surface of crustaceans such as crabs and shrimp.
 対象とする魚介類の病気としては、経皮感染によって引き起こされる病気が好ましく、例えば、ビブリオ病、せっそう病、非定型エロモナス・サルモニサイダ感染症、エロモナス・ハイドロフィラ感染症、エドワジエラ症、赤班病、アユのシュードモナス病、レッドマウス病、細菌性鰓病、カラムナリス病(えらぐされ、尾ぐされ、ひれぐされ、くちぐされ)、冷水病、滑走細菌症、細菌性腎臓病、ミコバクテリア症、ノカルジア症、レンサ球菌症などが挙げられる。 Diseases of fish and shellfish to be targeted are preferably diseases caused by transcutaneous infection, for example, vibrio disease, asthma disease, atypical Eromonas salmonicida infection, Eromonas hydrophila infection, Edowagellosis, red spot disease. , Ayu's Pseudomonas disease, Redmouth disease, Bacterial gill disease, Columnnaris disease (selected, tailed, torn, squeezed), cold water disease, gliding bacillosis, bacterial kidney disease, mycobacteriosis, nocardiosis, Examples include Lenza bacillosis.
 以下には、各工程について具体的に説明する。 Below, each process will be described in detail.
[工程A]
 この工程では有用微生物を担体に添加する。ここで用いる有用微生物は、図5に示すように、対象とする養殖魚などの表皮由来の微生物であることが好ましい。例えば養殖魚がマスの場合は、マスの表皮由来の微生物を用いることが好ましい。元々、魚介類の表皮に存在する微生物を用いることで、安全にその魚介類を保護することができる。
[Step A]
In this step, useful microorganisms are added to the carrier. As shown in FIG. 5, the useful microorganism used here is preferably a microorganism derived from the epidermis of the target farmed fish or the like. For example, when the farmed fish is trout, it is preferable to use microorganisms derived from the epidermis of trout. By using microorganisms originally present in the epidermis of fish and shellfish, the fish and shellfish can be safely protected.
 工程Aで用いる有用微生物としては、好気性微生物および嫌気性微生物のいずれも使用できる。例えば、シュードモナス(Pseudomonas)属、ロドコッカス(Rhodococcus)属、アルカリゲネス(Alcaligenes)属、バークホルデリア(Burkholderia)属、バチルス(Bacillus)属、コリネバクテリウム(Corynebacterium)属、アシネトバクター(Acinetobacter)属、ロドバクター(Rhodobacter)属、ラルストニア(Ralstonia)属、アシドボラックス(Acidovorax)属、セラチア(Serratia)属、フラボバクテリウム(Flavobacterium)属、硝化菌(ニトロソモナス(Nitrosomonas)属、ニトロバクタ―(Nitrobacter)属など)などの微生物を用いることができる。用いる有用微生物は、養殖魚などの種類や魚病の種類などによって適宜選択される。また、有用微生物としては、市販されている各種微生物を用いることができる。 As useful microorganisms used in step A, both aerobic microorganisms and anaerobic microorganisms can be used. For example, the genus Pseudomonas, the genus Rhodococcus, the genus Alcaligenes, the genus Burkholderia, the genus Bacillus, the genus Corynebacterium, the genus Corynebacterium. Genus Rhodobacter, Genus Ralstonia, Genus Acidovorax, Genus Serratia, Genus Flavobacterium, Genus Nitrosomonas, Nitrobacter-Nit And other microorganisms can be used. The useful microorganism to be used is appropriately selected depending on the type of farmed fish and the type of fish disease. Moreover, as a useful microorganism, various commercially available microorganisms can be used.
 また、工程Aの一形態として、魚介類の表皮から候補微生物を採取した後、スクリーニングによって有用微生物を取得してもよい。候補微生物は、魚介類の表皮を綿棒などで擦り取ることで採取できる。そして、採取した候補微生物を培地上で培養し、形成された各コロニー由来の微生物の中から有用微生物を選別する。 Further, as one form of step A, useful microorganisms may be obtained by screening after collecting candidate microorganisms from the epidermis of fish and shellfish. Candidate microorganisms can be collected by rubbing the epidermis of fish and shellfish with a cotton swab or the like. Then, the collected candidate microorganisms are cultured on the medium, and useful microorganisms are selected from the microorganisms derived from each formed colony.
 スクリーニングでは、図6に示すような増殖阻害試験や競合試験が行われる。図6(a)に示す増殖阻害試験では、まず、候補微生物をNutrient Broth寒天培地(NB寒天培地)上に直線状に画線して、28℃で一晩培養する。続いて、候補微生物に触れないようにその候補微生物から垂直方向に病原微生物を画線して、28℃で一晩培養する。この培養後、候補微生物の画線から、例えば10mm以上の範囲にわたってクリアゾーンが存在する場合に増殖阻害作用があると判断する。クリアゾーンの判定は目視で行うことができる。 In the screening, a growth inhibition test and a competitive test as shown in FIG. 6 are performed. In the growth inhibition test shown in FIG. 6 (a), first, the candidate microorganisms are linearly drawn on the Nutrient Broth agar medium (NB agar medium) and cultured at 28 ° C. overnight. Subsequently, the pathogenic microorganism is drawn vertically from the candidate microorganism so as not to touch the candidate microorganism, and the cells are cultured at 28 ° C. overnight. After this culture, it is judged from the image line of the candidate microorganism that there is a growth inhibitory effect when a clear zone exists over a range of, for example, 10 mm or more. The clear zone can be determined visually.
 なお、増殖阻害試験の方法は、図6(a)の方法に限らず、培養条件などを適宜変更できる。また、後述の図12で示すように、候補微生物をシャーレ中の培地の中央に配置し、その周囲に放射状に病原微生物を画線して、増殖阻害作用の有無を判定してもよい。 The method for the growth inhibition test is not limited to the method shown in FIG. 6A, and the culture conditions and the like can be appropriately changed. Further, as shown in FIG. 12 described later, the candidate microorganism may be placed in the center of the medium in the petri dish, and the pathogenic microorganism may be radially drawn around the candidate microorganism to determine the presence or absence of the growth inhibitory action.
 図6(b)に示す競合試験では、まず、候補微生物をNB寒天培地上に直線状に画線して、28℃で一晩培養する。続いて、候補微生物の画線と交差するように該画線に対して垂直方向に病原微生物を画線して、候補微生物と病原微生物とを混合した後、例えば28℃で一晩培養する。この培養後、病原微生物の画線上で、候補微生物の画線と交差した後の部分において、候補微生物が優先的に生育している場合に競合優位性があると判断する。競合優位性がある場合には、病原微生物が魚介類の表皮に付着することを防止できる。 In the competitive test shown in FIG. 6 (b), first, the candidate microorganisms are linearly drawn on the NB agar medium and cultured at 28 ° C. overnight. Subsequently, the pathogenic microorganism is drawn in a direction perpendicular to the image so as to intersect the image of the candidate microorganism, the candidate microorganism and the pathogenic microorganism are mixed, and then cultured at 28 ° C. overnight. After this culture, it is judged that there is a competitive advantage when the candidate microorganism grows preferentially in the portion after crossing the image of the candidate microorganism on the image of the pathogenic microorganism. When there is a competitive advantage, it is possible to prevent pathogenic microorganisms from adhering to the epidermis of fish and shellfish.
 本発明の予防方法に用いる有用微生物は、魚介類の表皮に定着させて病気の予防を図ることから好気性微生物が好ましい。具体的には、シュードモナス属の微生物がより好ましく、シュードモナス・モセリー(Pseudomonas mosselii)、シュードモナス・マルギナリス(Pseudomonas marginalis)、シュードモナス・コレンシス(Pseudomonas koreensis)、シュードモナス・プロテゲンス(Pseudomonas protegens)、またはシュードモナス・パラフルバ(Pseudomonas parafulva)がさらに好ましい。 The useful microorganism used in the preventive method of the present invention is preferably an aerobic microorganism because it is fixed on the epidermis of fish and shellfish to prevent diseases. Specifically, microorganisms of the genus Pseudomonas are more preferable, and Pseudomonas mossellii, Pseudomonas marginalis, Pseudomonas colenesis (Pseudomonas korensis) Pseudomonas korensis (Pseudomonas korensis) Pseudomonas parafulva) is more preferred.
 有用微生物を添加する微生物担体には、有用微生物の脱離作用を有する担体を用いる。担体の形状や材質は、微生物の脱離作用を有していれば特に制限されない。担体の形状としては、例えば、円筒体、円柱体、球体、立方体、直方体、板状などを採用できる。また、担体の材質には、ポリオレフィン系樹脂などの樹脂や、無機粉体、金属、ガラス、カラギーナン、デキストリン、ゼラチン、木炭などを用いることができ、2種以上を用いてもよい。 As a microbial carrier to which useful microorganisms are added, a carrier having a desorbing action of useful microorganisms is used. The shape and material of the carrier are not particularly limited as long as they have an eliminating action of microorganisms. As the shape of the carrier, for example, a cylinder, a cylinder, a sphere, a cube, a rectangular parallelepiped, a plate, or the like can be adopted. Further, as the material of the carrier, a resin such as a polyolefin resin, an inorganic powder, a metal, glass, carrageenan, dextrin, gelatin, charcoal or the like can be used, and two or more kinds may be used.
 本発明の予防方法に用いる微生物担体としては、上述した本発明の担体を用いることが好ましく、例えば、図1の担体1を用いることができる。 As the microbial carrier used in the preventive method of the present invention, it is preferable to use the carrier of the present invention described above, and for example, the carrier 1 of FIG. 1 can be used.
[工程B]
 この工程では、まず、有用微生物を添加した担体を養殖魚などが飼育される水中に投入する(図5参照)。担体上に担持された有用微生物は、通常の飼育環境下(例えば20~30℃程度、pH6.0~8.5程度)で増殖して、バイオフィルムを形成する。その後、増殖した有用微生物が担体から定常的に脱離して養殖魚などの表皮に定着する。有用微生物が担体から徐放されることで、有用微生物を養殖魚などに持続的に供給できる。そして、表皮に定着した有用微生物の働きによって、病原微生物による感染を防ぐことができる。
[Step B]
In this step, first, a carrier to which useful microorganisms are added is put into water in which cultured fish and the like are bred (see FIG. 5). The useful microorganisms carried on the carrier grow in a normal breeding environment (for example, about 20 to 30 ° C., pH 6.0 to 8.5) to form a biofilm. After that, the proliferated useful microorganisms are constantly desorbed from the carrier and settled on the epidermis of cultured fish and the like. By slowly releasing the useful microorganisms from the carrier, the useful microorganisms can be continuously supplied to farmed fish and the like. Then, by the action of useful microorganisms established on the epidermis, infection by pathogenic microorganisms can be prevented.
 図5の構成において、本発明の予防方法は魚介類の飼育・養殖方法ともいえ、この方法は、魚介類の病気の病原微生物に対して抑制作用を有する有用微生物を、該有用微生物の脱離作用のある微生物担体に添加する工程と、微生物担体を魚介類が生育する水中に投入して、魚介類の表皮に微生物を定着させる工程とを有することを特徴とする。 In the configuration of FIG. 5, the preventive method of the present invention can be said to be a method of breeding and cultivating fish and shellfish, and this method desorbs useful microorganisms having an inhibitory effect on pathogenic microorganisms of fish and shellfish diseases. It is characterized by having a step of adding it to an actionable microbial carrier and a step of putting the microbial carrier into water in which fish and shellfish grow to fix the microorganism on the epidermis of the fish and shellfish.
 図7には、一例として、閉鎖循環式陸上養殖システムの概略図を示す。このシステムにおいて、飼育水槽内の飼育水は循環している。飼育水槽から排出された水は、沈殿槽において懸濁物質などが除去される。さらに、生物ろ過槽では、例えば、好気性微生物などの作用によって水中のアンモニアを硝化したり、硝化により生成した硝酸塩を嫌気性微生物などの作用によって還元したりする。このように浄化された水は、ポンプによって飼育水槽に戻される。図7に示すように、飼育水中に微生物担体が投入されており、飼育水槽の底面および側面に沿って配置されている。槽内の水流によって、微生物担体から微生物が徐放され、養殖魚などの表皮に定着する。このように微生物担体を養殖魚とともに飼育水中に入れることで、養殖魚などの病気を予防することができる。また、微生物担体の設置はこれに限らず、例えば槽内に吊り下げるように設置してもよい。また、必要に応じて、撹拌翼などによって飼育水を撹拌させてもよい。 FIG. 7 shows a schematic diagram of a closed circulation type land-based aquaculture system as an example. In this system, the breeding water in the breeding aquarium circulates. Suspended solids and the like are removed from the water discharged from the breeding aquarium in the settling tank. Further, in the biological filtration tank, for example, ammonia in water is nitrified by the action of aerobic microorganisms, and nitrate produced by nitrification is reduced by the action of anaerobic microorganisms. The water purified in this way is returned to the breeding aquarium by a pump. As shown in FIG. 7, the microbial carrier is charged into the breeding water and is arranged along the bottom surface and the side surface of the breeding aquarium. The water flow in the tank causes the microorganisms to be released slowly from the microbial carrier and settles on the epidermis of farmed fish. By putting the microbial carrier together with the farmed fish in the breeding water in this way, it is possible to prevent diseases such as the farmed fish. Further, the installation of the microbial carrier is not limited to this, and may be installed so as to be suspended in a tank, for example. Further, if necessary, the breeding water may be agitated by a stirring blade or the like.
 上記図5の説明では、本発明の予防方法を養殖に適用した例を示したが、例えば、魚介類として観賞用の魚介類なども対象にでき、本発明の予防方法を水族館の水槽や家庭用水槽などにも適用できる。 In the explanation of FIG. 5 above, an example in which the preventive method of the present invention is applied to aquaculture is shown, but for example, ornamental fish and shellfish can be targeted as fish and shellfish, and the preventive method of the present invention can be applied to aquarium tanks and homes. It can also be applied to water tanks.
 以下に示す原材料を用いて、各成形方法によって微生物担体を作製した。
熱可塑性樹脂:ポリプロピレン樹脂
無機粉体:珪藻土およびゼオライト(質量比3:2)
潤滑剤:ステアリン酸およびパラフィン
発泡剤:無機系発泡剤セルマイク417(三協化成社製)
Using the raw materials shown below, microbial carriers were prepared by each molding method.
Thermoplastic resin: Polypropylene resin Inorganic powder: Diatomaceous earth and zeolite (mass ratio 3: 2)
Lubricant: Stearic acid and paraffin foaming agent: Inorganic foaming agent Cellmic 417 (manufactured by Sankyo Kasei Co., Ltd.)
試験例1
 熱可塑性樹脂および無機粉体の合計量に対して、熱可塑性樹脂を40.0質量%、無機粉体を60.0質量%用いた。また、発泡剤は、熱可塑性樹脂および無機粉体の合計量に対して50.0質量%用いた。図2の方法に従って、熱可塑性樹脂および無機粉体をあらかじめペレット化した後、ペレットと発泡剤を押出成形機のホッパーに同時に投入し、混錬して押出発泡成形した。口金から排出された棒状の成形体をウォーターバスで冷却した後、長さが10mmになるように裁断した。得られた押出発泡成形体の外観写真を図8(a)に示す。また、図9(a)には押出発泡成形体を径方向に沿って切断した断面の顕微鏡写真を示し、図9(b)には軸方向に沿って切断した断面の顕微鏡写真を示し、図9(c)、(d)には各倍率のSEM写真を示す。
Test Example 1
40.0% by mass of the thermoplastic resin and 60.0% by mass of the inorganic powder were used with respect to the total amount of the thermoplastic resin and the inorganic powder. Further, the foaming agent was used in an amount of 50.0% by mass based on the total amount of the thermoplastic resin and the inorganic powder. After pelletizing the thermoplastic resin and the inorganic powder in advance according to the method of FIG. 2, the pellet and the foaming agent were simultaneously put into the hopper of the extruder and kneaded for extrusion foam molding. The rod-shaped molded product discharged from the base was cooled in a water bath and then cut to a length of 10 mm. An external photograph of the obtained extruded foam molded product is shown in FIG. 8 (a). Further, FIG. 9A shows a micrograph of a cross section of the extruded foam molded body cut along the radial direction, and FIG. 9B shows a micrograph of a cross section cut along the axial direction. 9 (c) and (d) show SEM photographs of each magnification.
試験例2
 熱可塑性樹脂および無機粉体の合計量に対して、熱可塑性樹脂を57.1質量%、無機粉体を42.9質量%、潤滑剤を0.9質量%用いた。また、発泡剤は、熱可塑性樹脂および無機粉体の合計量に対して1.4質量%用いた。熱可塑性樹脂、無機粉体、潤滑剤、および発泡剤を予備混錬することなく、押出成形機に直接投入して押出発泡成形した。得られた押出発泡成形体の外観写真を図8(b)に示す。また、図10には、図9と同様の写真を示す。
Test Example 2
57.1% by mass of the thermoplastic resin, 42.9% by mass of the inorganic powder, and 0.9% by mass of the lubricant were used with respect to the total amount of the thermoplastic resin and the inorganic powder. Further, the foaming agent was used in an amount of 1.4% by mass based on the total amount of the thermoplastic resin and the inorganic powder. The thermoplastic resin, inorganic powder, lubricant, and foaming agent were directly charged into an extrusion molding machine without pre-kneading and extruded and foamed. An external photograph of the obtained extruded foam molded product is shown in FIG. 8 (b). Further, FIG. 10 shows a photograph similar to that in FIG.
試験例3
 熱可塑性樹脂および無機粉体の合計量に対して、熱可塑性樹脂を76.7質量%、無機粉体を23.3質量%、潤滑剤を3.8質量%(ステアリン酸2.2質量%、パラフィン1.6質量%)用いた。また、発泡剤は、熱可塑性樹脂および無機粉体の合計量に対して5.4質量%用いた。熱可塑性樹脂、無機粉体、潤滑剤、および発泡剤を予備混錬することなく、射出成形機に直接投入して射出発泡成形した。得られた射出発泡成形体の外観写真を図8(c)に示す。また、図11には、図9と同様の写真を示す。なお、図9~図11において、担体中の黒い部分が気孔を示し、白い部分が無機粉体を示し、残りの部分が樹脂を示している。
Test Example 3
76.7% by mass of thermoplastic resin, 23.3% by mass of inorganic powder, 3.8% by mass of lubricant (2.2% by mass of stearic acid) with respect to the total amount of thermoplastic resin and inorganic powder. , Paraffin 1.6% by mass) was used. Further, the foaming agent was used in an amount of 5.4% by mass based on the total amount of the thermoplastic resin and the inorganic powder. The thermoplastic resin, the inorganic powder, the lubricant, and the foaming agent were directly injected into an injection molding machine without pre-kneading to perform injection foam molding. An external photograph of the obtained injection foam molded product is shown in FIG. 8 (c). Further, FIG. 11 shows a photograph similar to that of FIG. In FIGS. 9 to 11, the black portion in the carrier indicates pores, the white portion indicates inorganic powder, and the remaining portion indicates resin.
 図8~図11に示すように、試験例1~試験例3の担体は表面に、発泡成形による凹凸が形成されている。また、押出発泡成形体の担体の方が、射出発泡成形体の担体に比べて円筒表面の凹凸の程度が大きく、気孔が数多く観察された。特に、試験例1の担体は表面全体にわたって凹凸が形成されており、試験例2の担体に比べて、形状均一性が高かった。また、試験例1の担体は、無機粉体および気孔が担体中にまんべんなく分散している(図9参照)のに対して、試験例2の担体は、無機粉体および気孔が偏在する傾向が見られた(図10参照)。 As shown in FIGS. 8 to 11, the carriers of Test Examples 1 to 3 have irregularities formed on the surface by foam molding. In addition, the carrier of the extruded foam molded product had a larger degree of unevenness on the cylindrical surface than the carrier of the injection foam molded product, and many pores were observed. In particular, the carrier of Test Example 1 had irregularities formed over the entire surface, and had higher shape uniformity than the carrier of Test Example 2. Further, in the carrier of Test Example 1, the inorganic powder and pores are evenly dispersed in the carrier (see FIG. 9), whereas in the carrier of Test Example 2, the inorganic powder and pores tend to be unevenly distributed. It was seen (see FIG. 10).
 続いて、得られた各成形体の物性を下記の方法によって測定した。結果を表1に示す。 Subsequently, the physical characteristics of each obtained molded product were measured by the following method. The results are shown in Table 1.
 吸水率は、下記式(1)より算出した。下記式(1)中、W1は、各成形体から採取した10mm×10mm×10mmの試験片を、105℃にて1日乾燥させた後に測定した重量を示しており、W2は、乾燥後の各試験片を蒸留水50mLに24時間浸漬した後、試験片の表面についた水分を取り除いた後に測定した重量W2を示している。
吸水率(%)=(W2-W1)/W1×100・・・(1)
The water absorption rate was calculated from the following formula (1). In the following formula (1), W1 indicates the weight measured after drying a 10 mm × 10 mm × 10 mm test piece collected from each molded body at 105 ° C. for one day, and W2 indicates the weight after drying. The weight W2 measured after immersing each test piece in 50 mL of distilled water for 24 hours and then removing the water adhering to the surface of the test piece is shown.
Water absorption rate (%) = (W2-W1) / W1 × 100 ... (1)
 各成形体から採取した長さ約10mm×φ10~15mmの試験片5個を蒸留水50mLに30分浸漬し、予備洗浄をした。洗浄後の試験片の余分な水分を拭き取り、蒸留水200mLの入った容器に浸漬し、容器の蓋を閉めて常温環境に静置した。定期的(1日後、3日後、1週間後)に蓋を開けてpHを測定した。 Five test pieces with a length of about 10 mm × φ10 to 15 mm collected from each molded product were immersed in 50 mL of distilled water for 30 minutes for pre-cleaning. The excess water of the test piece after washing was wiped off, immersed in a container containing 200 mL of distilled water, the lid of the container was closed, and the mixture was allowed to stand in a room temperature environment. The lid was opened regularly (1 day, 3 days, 1 week) and the pH was measured.
 比表面積は、比表面積計(日本ベル社製)を用いて窒素ガス吸着法により測定した。 The specific surface area was measured by the nitrogen gas adsorption method using a specific surface area meter (manufactured by Nippon Bell Co., Ltd.).
 かさ密度は、JIS K6911に準拠した見掛け密度測定器を用いて、下記式(2)より求めた。
かさ密度=[(試料を入れたメスシリンダーの重量(g))-(メスシリンダーの重量(g))]/(メスシリンダーの容量(cm))・・・(2)
The bulk density was obtained from the following formula (2) using an apparent density measuring instrument conforming to JIS K6911.
Bulk density = [(Weight of graduated cylinder containing sample (g))-(Weight of graduated cylinder (g))] / (Capacity of graduated cylinder (cm 3 )) ... (2)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、試験例1および試験例2の担体は、比表面積が1m/g以上であり、試験例3の担体に比べて大きかった。この結果は、各担体の表面形状の違いによるところが大きいと考えられる。また、吸水率についても、試験例1および試験例2の担体は、試験例3の担体に比べて高かった。試験例1および試験例2では、円筒表面や気孔の内部に無機粉体が数多く露出しており、この露出した無機粉体によって吸水作用が発揮されたためと考えられる。また、試験例1および試験例2の担体から浸出した液のpHは、ほぼ中性であった。 As shown in Table 1, the carriers of Test Example 1 and Test Example 2 had a specific surface area of 1 m 2 / g or more, which was larger than that of the carrier of Test Example 3. It is considered that this result is largely due to the difference in the surface shape of each carrier. Also, regarding the water absorption rate, the carriers of Test Example 1 and Test Example 2 were higher than the carriers of Test Example 3. In Test Example 1 and Test Example 2, a large amount of inorganic powder was exposed on the surface of the cylinder and inside the pores, and it is considered that the exposed inorganic powder exerted a water absorption effect. The pH of the liquids leached from the carriers of Test Example 1 and Test Example 2 was almost neutral.
 次に、複数の担体に対して微生物を添加し、該微生物の水中下における増殖および脱離の様子を観察した。 Next, microorganisms were added to a plurality of carriers, and the growth and desorption of the microorganisms in water were observed.
<有用微生物の取得>
 まず、魚類の表皮から候補微生物を採取した後、スクリーニングによって有用微生物を取得した。具体的な手順を以下に示す。
<Acquisition of useful microorganisms>
First, candidate microorganisms were collected from the epidermis of fish, and then useful microorganisms were obtained by screening. The specific procedure is shown below.
 魚類にはゼブラフィッシュ(Danio rerio)の成魚を使用した。実験に際してゼブラフィッシュは飼育水の水槽で数日間馴らした。まず、ゼブラフィッシュの体表上の粘膜を綿棒で擦り取り、その綿棒を超純水1mLに浸し撹拌して懸濁液を得た。この懸濁液および希釈液(懸濁液を超純水で5倍希釈した液)を、それぞれ200μLずつ、NB寒天培地、Enriched Cytophaga寒天培地、改変Zobell 2216E寒天培地上に滴下し、スプレッティングした。その後、各寒天培地を28℃で2日間培養した。培養後、得られたコロニー(124個)をそれぞれCross Streak法によって、スクリーニングした。 Adult zebrafish (Dario rerio) was used as the fish. During the experiment, the zebrafish were acclimatized in the breeding water tank for several days. First, the mucous membrane on the body surface of the zebrafish was rubbed with a cotton swab, and the cotton swab was immersed in 1 mL of ultrapure water and stirred to obtain a suspension. 200 μL each of this suspension and diluted solution (a solution obtained by diluting the suspension with ultrapure water 5 times) was dropped onto NB agar medium, Enriched Cytophaga agar medium, and modified Zobel 2216E agar medium and sprayed. .. Then, each agar medium was cultured at 28 ° C. for 2 days. After culturing, the obtained colonies (124) were individually screened by the CrossStrak method.
 スクリーニングでは、図6(a)に示した増殖阻害試験を実施し、候補微生物の画線から10mm以上の範囲にわたってクリアゾーンが存在する場合に増殖阻害作用があると判定した。病原微生物には、Aeromonas hydrophila(ATCC 700183)、Aeromonas hydrophila(JCM 1027)、Aeromonas caviae(JCM 1043)、Flavobacterium columnare(JCM 21327)、Yersinia ruckeri(NVH 3578)、Yersinia ruckeri(DSMZ 18506)を用いた。この試験の結果、種々の候補微生物の中でも、特にKH-ZF1(NITE BP-02967)が優れた増殖阻害作用を示した。このKH-ZF1は、16sリボゾームRNA遺伝子配列を用いた分子系統解析により、Pseudomonas mosseliiであると同定された。 In the screening, the growth inhibition test shown in FIG. 6A was carried out, and it was determined that there was a growth inhibition effect when a clear zone was present over a range of 10 mm or more from the image line of the candidate microorganism. For pathogenic microorganisms, Aeromonas hydrophila (ATCC 700183), Aeromonas hydrophila (JCM 1027), Aeromonas caviae (JCM 1043), Flavobacterium colorYer35eri (JCM2), Yersinia (JCM2) 13 (JCM2) As a result of this test, among various candidate microorganisms, KH-ZF1 (NITE BP-20967) showed an excellent growth inhibitory effect. This KH-ZF1 was identified as Pseudomonas mossellii by molecular phylogenetic analysis using a 16s ribosomal RNA gene sequence.
 図12には、KH-ZF1の病原微生物に対する増殖阻害試験の結果を示す。この試験では、病原微生物として、Aeromonas caviae、Aeromonas hydrophila(ATCC 700183)、Aeromonas hydrophila(JCM 1027)、Yersinia ruckeri(NVH 3578)、Yersinia ruckeri(DSMZ 18506)、Edwardsiella tarda(NRIA 44)、Edwardsiella tarda(NRIA 51)、Vibrio angillarum、Vibrio ordalii、Streptococcus iniaeを用いた。また、陰性対照として2種類の非病原微生物を用いた。KH-ZF1の細胞懸濁液(KH-ZF1をNB寒天培地で培養した後、5000×g、10分遠心分離操作にかけ、沈殿した菌体を回収して、滅菌水にOD600が1.0になるように再懸濁したもの)を調整した。この懸濁液を、シャーレ中のNB寒天培地の中央に置いたペーパーディスクに染み込ませ、20℃で2日間静置した。その後、KH-ZF1に触れないようにKH-ZF1の添加部位から放射状に上記試験微生物を画線して、20℃で2日間培養した。図12に示すように、非病原微生物と比較して、病原微生物において選択的な抑制が確認された。 FIG. 12 shows the results of a growth inhibition test against a pathogenic microorganism of KH-ZF1.この試験では、病原微生物として、Aeromonas caviae、Aeromonas hydrophila(ATCC 700183)、Aeromonas hydrophila(JCM 1027)、Yersinia ruckeri(NVH 3578)、Yersinia ruckeri(DSMZ 18506)、Edwardsiella tarda(NRIA 44)、Edwardsiella tarda(NRIA 51), Vibrio angillalum, Vibrio ordalii, Streptococcus iniae were used. In addition, two types of non-pathogenic microorganisms were used as negative controls. Cell suspension of KH-ZF1 (after culturing KH-ZF1 on NB agar medium, centrifuge at 5000 × g for 10 minutes to collect the precipitated cells, and OD 600 is 1.0 in sterile water. (Resuspended so as to be) was adjusted. This suspension was soaked in a paper disc placed in the center of the NB agar medium in a petri dish and allowed to stand at 20 ° C. for 2 days. Then, the above-mentioned test microorganisms were radially drawn from the addition site of KH-ZF1 so as not to touch KH-ZF1, and cultured at 20 ° C. for 2 days. As shown in FIG. 12, selective suppression was confirmed in pathogenic microorganisms as compared with non-pathogenic microorganisms.
<微生物担体の作製>
 次に、図13に示す試験例4~8の担体をそれぞれ作製した。試験例8の担体は、上述の試験例1の担体と同様に作製した。
<Preparation of microbial carrier>
Next, the carriers of Test Examples 4 to 8 shown in FIG. 13 were prepared respectively. The carrier of Test Example 8 was prepared in the same manner as the carrier of Test Example 1 described above.
 試験例4の担体は、鋳物廃砂を主成分とする担体であり、BTS(ビオトープサンド、江崎産業社製)黒土を用いた。この担体の主な構成成分は、二酸化ケイ素(約49%)、炭素(約15%)、Fe(約11%)である。 The carrier of Test Example 4 was a carrier mainly composed of foundry waste sand, and BTS (biotope sand, manufactured by Esaki Sangyo Co., Ltd.) black clay was used. The main constituents of this carrier are silicon dioxide (about 49%), carbon (about 15%) and Fe 2 O 3 (about 11%).
 試験例5の担体は、鋳物廃砂を主成分とする担体であり、試験例4の担体を700~800℃で焼成したものを用いた。 The carrier of Test Example 5 was a carrier containing casting waste sand as a main component, and the carrier of Test Example 4 was calcined at 700 to 800 ° C. was used.
 試験例6の担体はセラミックス成形体からなる担体であり、以下のようにして作製した。珪藻土60質量部に対して、カオリン系粘土であり、アルミニウム含有粘土鉱物である蛙目粘土を20質量部、米糠20質量部をそれぞれ混合した。この混合物に、適量の水を加えて混練し、コーティング造粒をして、球状の成形物を得た。この成形物を900~950℃で焼成して担体を得た。この担体の主な構成成分は、二酸化ケイ素(約78%)、Al(約15%)である。 The carrier of Test Example 6 was a carrier made of a ceramic molded product, and was produced as follows. With respect to 60 parts by mass of diatomaceous earth, 20 parts by mass of kaolin-based clay and 20 parts by mass of frog-like clay, which is an aluminum-containing clay mineral, and 20 parts by mass of rice bran were mixed. An appropriate amount of water was added to this mixture and kneaded, and coating granulation was performed to obtain a spherical molded product. This molded product was calcined at 900 to 950 ° C. to obtain a carrier. The main constituents of this carrier are silicon dioxide (about 78%) and Al 2 O 3 (about 15%).
 試験例7の担体はセラミックス成形体からなる担体であり、以下のようにして作製した。ケイ酸カルシウム水和物の一種であるトバモライトを主成分とする軽量気泡コンクリート(ALC)の破砕物65質量部に、蛙目粘土を30質量部および無機補強繊維(セピオライト)を5質量部それぞれ混合し、得られた混合物100質量部に対して更に粉粒状の有機空隙形成材を20質量部混合して成形用原料を得た。この成形用原料に、適量の水を加えて混練し、得られた混錬物を押出成形機に供給して成形物を得た。この成形物を1000~1100℃で焼成して担体を得た。この担体の主な構成成分は、二酸化ケイ素(約55%)、酸化カルシウム(約16%)、Al(約14%)である。 The carrier of Test Example 7 was a carrier made of a ceramic molded product, and was produced as follows. A mixture of 65 parts by mass of crushed material of lightweight cellular concrete (ALC) containing tovamorite, which is a kind of calcium silicate hydrate, with 30 parts by mass of frogme clay and 5 parts by mass of inorganic reinforcing fiber (sepiolite). Then, 20 parts by mass of a powdery and granular organic void forming material was further mixed with 100 parts by mass of the obtained mixture to obtain a raw material for molding. An appropriate amount of water was added to this molding raw material and kneaded, and the obtained kneaded product was supplied to an extrusion molding machine to obtain a molded product. This molded product was calcined at 1000 to 1100 ° C. to obtain a carrier. The main constituents of this carrier are silicon dioxide (about 55%), calcium oxide (about 16%) and Al 2 O 3 (about 14%).
<微生物の増殖・脱離試験>
 上記で得た各担体を図14に示す試験に付した。まず、各担体に対してKH-ZF1をOD600=1.5になるように20μL添加した。KH-ZF1を添加した担体を、20mLの飼育水中に投入し、20℃で24時間保温した。その後、飼育水を入れ替え、新たに加えた20mLの飼育水中で20℃で1週間保温した。24時間保温した後の担体、および1週間保温した後の担体をそれぞれ顕微鏡で観察した。また、1週間保温した後の飼育水を選択培地である、カナマイシンを含むPseudomonas isolation寒天培地(Becton Dickinson社製)に播種し、28℃で1日間培養して、KH-ZF1の量をコロニーの形成により観察した。これらの結果を図15に示す。
<Microbial growth / desorption test>
Each carrier obtained above was subjected to the test shown in FIG. First, 20 μL of KH-ZF1 was added to each carrier so that OD 600 = 1.5. The carrier to which KH-ZF1 was added was put into 20 mL of breeding water and kept warm at 20 ° C. for 24 hours. Then, the breeding water was replaced, and the mixture was kept warm at 20 ° C. for 1 week in newly added 20 mL of breeding water. The carrier after heat insulation for 24 hours and the carrier after heat insulation for 1 week were observed under a microscope. In addition, the breeding water after keeping warm for one week is inoculated on a Pseudomonas isolation agar medium (manufactured by Becton Dickinson) containing kanamycin, which is a selective medium, and cultured at 28 ° C. for one day, and the amount of KH-ZF1 is adjusted to the colony. Observed by formation. These results are shown in FIG.
 図15に示すように、試験例4~8のいずれの担体も、24時間後においてKH-ZF1が担持されていた。また、いずれの担体においても担持されたKH-ZF1が1週間後に増殖している様子が観察された。これら担体は、いずれも多孔質構造を有しているため、微生物の生着性、つまり微生物を担持して増殖する作用に優れていると考えられる。 As shown in FIG. 15, KH-ZF1 was supported on any of the carriers of Test Examples 4 to 8 after 24 hours. In addition, it was observed that the supported KH-ZF1 on each carrier was proliferating after one week. Since all of these carriers have a porous structure, it is considered that they are excellent in the engraftment property of microorganisms, that is, the action of supporting and proliferating microorganisms.
 一方で、微生物の脱離は、試験例7~8の担体を用いた場合に観察された。特に、試験例8の担体では、シャーレ上の培地のほぼ全体にわたって多数のコロニーが観察された。これに対して、試験例4~6ではコロニーは観察されなかった。この結果より、試験例7~8の担体は、微生物を担持して増殖させるとともに、微生物を水中へ脱離させる作用を有しており、本発明の方法に使用できることが分かった。すなわち、試験例7~8の担体は、有用微生物を固着させ、増殖させ、脱離(徐放)させることができる。また、試験例7~8の担体によれば、担体上のみならず、担体から脱離した微生物が新たに付着した場所などでも微生物活性を発揮できるため、微生物の水処理能力を一層向上させることができる。 On the other hand, desorption of microorganisms was observed when the carriers of Test Examples 7 to 8 were used. In particular, in the carrier of Test Example 8, a large number of colonies were observed over almost the entire medium on the petri dish. On the other hand, no colonies were observed in Test Examples 4 to 6. From this result, it was found that the carriers of Test Examples 7 to 8 have an action of supporting and proliferating microorganisms and desorbing microorganisms into water, and can be used in the method of the present invention. That is, the carriers of Test Examples 7 to 8 can adhere useful microorganisms, proliferate them, and release them (sustained release). Further, according to the carriers of Test Examples 7 to 8, the microbial activity can be exhibited not only on the carrier but also in the place where the microorganism desorbed from the carrier is newly attached, so that the water treatment capacity of the microorganism can be further improved. Can be done.
<微生物の魚類の表皮への定着試験>
 蛍光タンパク質(mCherry)の遺伝子を導入した遺伝子組換えKH-ZF1株を用いて、定着試験を行った。水槽に飼育水およびゼブラフィッシュを入れた。一部のゼブラフィッシュには、背びれの根元部分の筋肉に注射針で傷を付けた。この飼育水にmCherryを導入したKH-ZF1をOD600=0.01になるように添加し、20℃でゼブラフィッシュを飼育した。KH-ZF1の暴露6時間後および暴露24時間後に一部のゼブラフィッシュを採取して顕微鏡観察を行った。結果を図16に示す。
<Test for colonization of microorganisms on the epidermis of fish>
A colonization test was performed using a recombinant KH-ZF1 strain into which a fluorescent protein (mCherry) gene was introduced. The aquarium was filled with breeding water and zebrafish. For some zebrafish, the muscle at the base of the dorsal fin was injured with a needle. KH-ZF1 in which mCherry was introduced was added to this breeding water so that OD 600 = 0.01, and zebrafish were bred at 20 ° C. A part of the zebrafish was collected and observed under a microscope 6 hours after the exposure to KH-ZF1 and 24 hours after the exposure. The results are shown in FIG.
 図16に示すように、ゼブラフィッシュの表皮の傷口付近では暴露6時間後において、KH-ZF1が定着しているのが確認された。また、その他の部位でもKH-ZF1がそれぞれ定着しているのが確認された。 As shown in FIG. 16, it was confirmed that KH-ZF1 had settled in the vicinity of the wound on the epidermis of the zebrafish 6 hours after the exposure. It was also confirmed that KH-ZF1 was established in other parts as well.
<感染防除試験>
 試験容器に飼育水(超純水1Lに対してインスタントオーシャン3gを添加したもの)を200mL入れ、5匹のゼブラフィッシュを入れて、28℃で2日間ゼブラフィッシュを飼育した。その後、飼育水を入れ替え、KH-ZF1をOD600=0.01になるように添加し、28℃で24時間飼育した。その後、ゼブラフィッシュをトリカイン含有の麻酔液で麻酔して、ゼブラフィッシュの背びれの根本部分の筋肉に注射針で傷を付けた。飼育水を入れ替えた後、傷を付けたゼブラフィッシュを入れ、KH-ZF1をOD600=0.01になるように添加し、28℃で24時間、20℃で24時間飼育した。再び飼育水を入れ替え、KH-ZF1およびYersinia ruckeri(NVH3758)をそれぞれOD600=0.01になるように添加し、20℃で1時間ゼブラフィッシュを泳がせた。さらに飼育水を入れ替え、KH-ZF1をOD600=0.01になるように添加し、20℃でゼブラフィッシュの飼育を続け、生死の状況を経過観察した。なお、上記処置群とは別に、上記手順におけるKH-ZF1の添加を全く行わなかった対照群についても試験を行った。また、KH-ZF1およびYersinia ruckeri(NVH3758)は以下のように調製した。
<Infection control test>
200 mL of breeding water (1 L of ultrapure water plus 3 g of instant ocean) was placed in a test container, 5 zebrafish were placed, and the zebrafish were bred at 28 ° C. for 2 days. Then, the breeding water was replaced, KH-ZF1 was added so that OD 600 = 0.01, and the animals were bred at 28 ° C. for 24 hours. Then, the zebrafish was anesthetized with an anesthetic solution containing trikine, and the muscle at the base of the dorsal fin of the zebrafish was injured with an injection needle. After the breeding water was replaced, the injured zebrafish was added, KH-ZF1 was added so that OD 600 = 0.01, and the animals were bred at 28 ° C for 24 hours and at 20 ° C for 24 hours. The breeding water was replaced again, KH-ZF1 and Yersinia ruckeri (NVH3758) were added so that OD 600 = 0.01, respectively, and the zebrafish was allowed to swim at 20 ° C. for 1 hour. Furthermore, the breeding water was replaced, KH-ZF1 was added so that OD 600 = 0.01, and the zebrafish was continued to be bred at 20 ° C., and the life and death conditions were followed up. In addition to the above-mentioned treatment group, a control group in which KH-ZF1 was not added at all in the above-mentioned procedure was also tested. In addition, KH-ZF1 and Yersinia ruckeri (NVH3758) were prepared as follows.
 NB培地を2mL入れたチューブに、プレート上で培養したKH-ZF1を植菌し、28℃で24時間振とう培養した。この培養液100μLを、10mLのNB培地に植菌し、28℃で24時間振とう培養した。その後、8000×g、5分遠心分離操作にかけ、上清を除去して集菌した。飼育水に再懸濁して洗浄し、8000×g、5分遠心分離操作にかけ、上清を除去して集菌した。この作業を3回反復した後、飼育水に再懸濁してOD600を測定した。 KH-ZF1 cultured on a plate was inoculated into a tube containing 2 mL of NB medium, and cultured at 28 ° C. with shaking for 24 hours. 100 μL of this culture solution was inoculated into 10 mL of NB medium and cultured at 28 ° C. with shaking for 24 hours. Then, it was subjected to a centrifugation operation of 8000 × g for 5 minutes to remove the supernatant and collect the bacteria. The cells were resuspended in breeding water, washed, centrifuged at 8000 × g for 5 minutes, and the supernatant was removed to collect bacteria. After repeating this operation three times, it was resuspended in breeding water and OD 600 was measured.
 LB培地を2mL入れたチューブに、プレート上で培養したYersinia ruckeriを植菌し、28℃で24時間振とう培養した。この培養液100μLを、10mLのLB培地に植菌し、28℃で12時間振とう培養した。その後、8000×g、5分遠心分離操作にかけ、上清を除去して集菌した。飼育水に再懸濁して洗浄し、8000×g、5分遠心分離操作にかけ、上清を除去して集菌した。この作業を3回反復した後、飼育水に再懸濁してOD600を測定した。 Yersinia ruckeri cultured on a plate was inoculated into a tube containing 2 mL of LB medium, and cultured at 28 ° C. with shaking for 24 hours. 100 μL of this culture solution was inoculated into 10 mL of LB medium and cultured at 28 ° C. with shaking for 12 hours. Then, it was subjected to a centrifugation operation of 8000 × g for 5 minutes to remove the supernatant and collect the bacteria. The cells were resuspended in breeding water, washed, centrifuged at 8000 × g for 5 minutes, and the supernatant was removed to collect bacteria. After repeating this operation three times, it was resuspended in breeding water and OD 600 was measured.
 図17に感染防除試験の結果を示す。図17に示すように、KH-ZF1を加えた処置群は、対照群に対して感染後一週間までの生存率が有意に上昇した。ログランク検定を行ったところ、処置群と対照群との間でP=0.004であった。 Figure 17 shows the results of the infection control test. As shown in FIG. 17, the treatment group to which KH-ZF1 was added had a significantly increased survival rate up to one week after infection compared to the control group. A logrank test showed P = 0.004 between the treatment group and the control group.
 本発明の微生物担体は、取り扱い性がよく、微生物の処理能力に優れるので、工場排水などの産業排水や、生活排水、魚類飼育水、水生植物用飼育水などの浄化に有用である。また、本発明の魚介類の病気の予防方法は、魚介類の病気を持続的に、かつ、簡便に予防できるので、特に、閉鎖環境で魚介類を飼育する、養殖業や、観賞用、水族館などでの飼育に有用である。 Since the microbial carrier of the present invention is easy to handle and has excellent microbial treatment capacity, it is useful for purifying industrial wastewater such as factory wastewater, domestic wastewater, fish breeding water, and aquatic plant breeding water. In addition, the method for preventing fish and shellfish diseases of the present invention can prevent fish and shellfish diseases sustainably and easily. Therefore, in particular, aquaculture, ornamental, and aquariums for breeding fish and shellfish in a closed environment. It is useful for breeding in such places.
 1  担体(微生物担体)
 2  凹凸
 3  熱可塑性樹脂
 4  無機粉体
 5  気孔
 6  連通孔
 7  閉気孔
 11 押出成形機
 12 ホッパー
 13 シリンダ
 14 ヒータ
 15 スクリュー
 16 シリンダノズル
 17 ダイ
 18 ペレット
 19 発泡剤
 21 生物脱臭システム
 22 生物脱臭塔
 23 微生物担体
 24 散水管
 25 排水弁
 26 エリミネーター
 27 脱臭ファン
 28 活性炭吸着塔
1 Carrier (microbial carrier)
2 Concavities and convexities 3 Thermoplastic resin 4 Inorganic powder 5 Porosity 6 Communication holes 7 Closed pores 11 Extrusion molding machine 12 Hopper 13 Cylinder 14 Heater 15 Screw 16 Cylinder nozzle 17 Die 18 Pellet 19 Foaming agent 21 Biological deodorizing system 22 Biological deodorizing tower 23 Microbial Carrier 24 Sprinkler pipe 25 Drain valve 26 Eliminator 27 Deodorizing fan 28 Activated carbon adsorption tower

Claims (11)

  1.  微生物を担持する微生物担体であって、
     前記微生物担体は、熱可塑性樹脂および無機粉体を含む発泡成形体で、表面に凹凸を有しており、
     前記無機粉体は、前記熱可塑性樹脂および前記無機粉体の合計量に対して15質量%~70質量%含まれることを特徴とする微生物担体。
    A microbial carrier that carries microorganisms
    The microbial carrier is a foamed molded product containing a thermoplastic resin and an inorganic powder, and has irregularities on the surface.
    The microbial carrier is characterized in that the inorganic powder is contained in an amount of 15% by mass to 70% by mass with respect to the total amount of the thermoplastic resin and the inorganic powder.
  2.  前記発泡成形体は押出発泡成形体であり、
     前記無機粉体は、前記熱可塑性樹脂および前記無機粉体の合計量に対して35質量%~70質量%含まれることを特徴とする請求項1記載の微生物担体。
    The foam molded product is an extruded foam molded product.
    The microbial carrier according to claim 1, wherein the inorganic powder is contained in an amount of 35% by mass to 70% by mass with respect to the total amount of the thermoplastic resin and the inorganic powder.
  3.  前記無機粉体は、二酸化ケイ素、酸化アルミニウム、ケイ酸カルシウム水和物、珪藻土、麦飯石、貝殻、骨粉、炭酸カルシウム、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、セリサイト、ベントナイト、ワラストナイト、アノーサイトおよびマイカからなる群より選ばれる少なくとも1つであることを特徴とする請求項1記載の微生物担体。 The inorganic powder includes silicon dioxide, aluminum oxide, calcium silicate hydrate, diatomaceous earth, barley stone, shell, bone meal, calcium carbonate, boehmite, zeolite, apatite, kaolin, mulite, spinel, olivine, sericite, bentonite, etc. The microbial carrier according to claim 1, wherein the microbial carrier is at least one selected from the group consisting of wallastonite, anausite and mica.
  4.  前記微生物担体の比表面積が1m/g~5m/gであることを特徴とする請求項1記載の微生物担体。 The microbial carrier according to claim 1, wherein the specific surface area of the microbial carrier is 1 m 2 / g to 5 m 2 / g.
  5.  請求項1記載の微生物担体を製造する方法であって、
     少なくとも前記熱可塑性樹脂と前記無機粉体と発泡剤とを混錬して、発泡成形することを特徴とする微生物担体の製造方法。
    The method for producing the microbial carrier according to claim 1.
    A method for producing a microbial carrier, which comprises kneading at least the thermoplastic resin, the inorganic powder, and a foaming agent to form a foam.
  6.  前記製造方法は、前記発泡剤以外の原材料を予めペレット化し、得られたペレットと前記発泡剤とを混錬して、押出発泡成形することを特徴とする請求項5記載の微生物担体の製造方法。 The method for producing a microbial carrier according to claim 5, wherein the production method comprises pelletizing raw materials other than the foaming agent in advance, kneading the obtained pellets with the foaming agent, and performing extrusion foam molding. ..
  7.  魚介類の病気を予防する予防方法であって、
     前記病気の病原微生物に対して抑制作用を有する微生物を、該微生物の脱離作用のある微生物担体に添加する工程と、
     前記微生物担体を前記魚介類が生育する水中に投入して、前記魚介類の表皮に前記微生物を定着させる工程とを有し、
     前記微生物担体が、請求項1記載の微生物担体であることを特徴とする魚介類の病気の予防方法。
    It is a preventive method to prevent fish and shellfish diseases.
    A step of adding a microorganism having an inhibitory effect on the pathogenic microorganism of the disease to a microbial carrier having an desorbing effect of the microorganism, and a step of adding the microorganism.
    It has a step of putting the microbial carrier into water in which the fish and shellfish grow, and fixing the microorganism on the epidermis of the fish and shellfish.
    A method for preventing diseases of fish and shellfish, wherein the microbial carrier is the microbial carrier according to claim 1.
  8.  魚介類の病気を予防する予防方法であって、
     前記病気の病原微生物に対して抑制作用を有する微生物を、該微生物の脱離作用のある微生物担体に添加する工程と、
     前記微生物担体を前記魚介類が生育する水中に投入して、前記魚介類の表皮に前記微生物を定着させる工程とを有することを特徴とする魚介類の病気の予防方法。
    It is a preventive method to prevent fish and shellfish diseases.
    A step of adding a microorganism having an inhibitory effect on the pathogenic microorganism of the disease to a microbial carrier having an desorbing effect of the microorganism, and a step of adding the microorganism.
    A method for preventing diseases of fish and shellfish, which comprises a step of putting the microorganism carrier into water in which the fish and shellfish grow, and fixing the microorganism on the epidermis of the fish and shellfish.
  9.  前記魚介類が、養殖される魚介類、水族館で飼育される魚介類、観賞魚、および、熱帯魚であることを特徴とする請求項8記載の魚介類の病気の予防方法。 The method for preventing diseases of fish and shellfish according to claim 8, wherein the fish and shellfish are farmed fish and shellfish, fish and shellfish bred in an aquarium, ornamental fish, and tropical fish.
  10.  前記微生物担体に添加する前記微生物は、前記魚介類の表皮由来の微生物であることを特徴とする請求項8記載の魚介類の病気の予防方法。 The method for preventing a disease of fish and shellfish according to claim 8, wherein the microorganism added to the microorganism carrier is a microorganism derived from the epidermis of the fish and shellfish.
  11.  前記微生物がシュードモナス属の微生物であることを特徴とする請求項8記載の魚介類の病気の予防方法。 The method for preventing a disease of fish and shellfish according to claim 8, wherein the microorganism is a microorganism of the genus Pseudomonas.
PCT/JP2021/044483 2020-12-04 2021-12-03 Microorganism carrier and method for producing same WO2022118960A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020202257A JP2022089672A (en) 2020-12-04 2020-12-04 Method for preventing disease of seafood
JP2020-202256 2020-12-04
JP2020202256A JP2022089671A (en) 2020-12-04 2020-12-04 Microorganism carrier and production method thereof
JP2020-202257 2020-12-04

Publications (1)

Publication Number Publication Date
WO2022118960A1 true WO2022118960A1 (en) 2022-06-09

Family

ID=81853366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/044483 WO2022118960A1 (en) 2020-12-04 2021-12-03 Microorganism carrier and method for producing same

Country Status (1)

Country Link
WO (1) WO2022118960A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06190385A (en) * 1992-12-28 1994-07-12 Tonen Corp Bacteria carrier
JP2001000180A (en) * 1999-06-17 2001-01-09 Denka Consult & Eng Co Ltd Microorganism carrier and sewage treatment apparatus
JP2007222162A (en) * 2006-01-26 2007-09-06 Bioproject Co Ltd New bacterium belonging to genus flavobacterium and new bacterium belonging to genus pseudomonas, and feed containing them
JP2009066592A (en) * 2007-08-23 2009-04-02 Nisshinbo Ind Inc Carrier for treating fluid and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06190385A (en) * 1992-12-28 1994-07-12 Tonen Corp Bacteria carrier
JP2001000180A (en) * 1999-06-17 2001-01-09 Denka Consult & Eng Co Ltd Microorganism carrier and sewage treatment apparatus
JP2007222162A (en) * 2006-01-26 2007-09-06 Bioproject Co Ltd New bacterium belonging to genus flavobacterium and new bacterium belonging to genus pseudomonas, and feed containing them
JP2009066592A (en) * 2007-08-23 2009-04-02 Nisshinbo Ind Inc Carrier for treating fluid and method for manufacturing the same

Similar Documents

Publication Publication Date Title
CN101264985B (en) Microorganism water purification slow release body and preparation method thereof
CN1500749A (en) Modifying agent for microorganism breeding water and preparing method thereof
CN104164392B (en) One bacillus licheniformis and the application in aquaculture thereof
CN109052655A (en) A kind of disinfection oxygenation agent used for aquiculture
CN101935105A (en) Microbial purifying agent for aquaculture water and preparation method thereof
JP2017209647A (en) Inclusion carrier of microorganism for water treatment, water treatment method and manufacturing method of inclusion carrier
KR20180002443A (en) Adsorption method of microbes for growth environment of microbes when putting microbes in concrete
JPH1085782A (en) Bacterium implantation tool
CN109618997A (en) The ecological purification method of oyster culture
WO2022118960A1 (en) Microorganism carrier and method for producing same
Achuthan et al. Development of nitrifying bacterial consortia for immobilizing in nitrifying bioreactors designed for penaeid and non-penaeid larval rearing systems in the tropics
JP2010158649A (en) Wastewater treatment method
CN109133361A (en) A kind of biological slow-released ball and preparation method and application for black smelly river improvement
JPH09205922A (en) Aquiculture method for fish and shellfish
JP2022089672A (en) Method for preventing disease of seafood
JP2022089671A (en) Microorganism carrier and production method thereof
JP2002239573A (en) Method for cleaning water
CN114717149B (en) South-sea deep-sea fish-source heterologous alkane-eating bacterium AXMZ1 and application thereof
WO2018190772A1 (en) Composition for aquaculture
CN106745821A (en) Sea-farming special microorganism water purification agent and preparation method thereof and application method
CN112126641B (en) Shell-silicon dioxide microorganism immobilization carrier and preparation method thereof
JP2002346594A (en) Molded object for immobilizing denitrifying bacterium
JP4161124B2 (en) Biological nitrification equipment
CN109292984A (en) Improver of water quality used for aquiculture and preparation method thereof
CN111018127A (en) Method for treating aquaculture wastewater by algae

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21900709

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21900709

Country of ref document: EP

Kind code of ref document: A1