WO2022118777A1 - 人工肺 - Google Patents

人工肺 Download PDF

Info

Publication number
WO2022118777A1
WO2022118777A1 PCT/JP2021/043545 JP2021043545W WO2022118777A1 WO 2022118777 A1 WO2022118777 A1 WO 2022118777A1 JP 2021043545 W JP2021043545 W JP 2021043545W WO 2022118777 A1 WO2022118777 A1 WO 2022118777A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
main body
heat exchange
blood
thermal fluid
Prior art date
Application number
PCT/JP2021/043545
Other languages
English (en)
French (fr)
Inventor
将太郎 寺根
浩貴 田中
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Priority to JP2022566899A priority Critical patent/JPWO2022118777A1/ja
Publication of WO2022118777A1 publication Critical patent/WO2022118777A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/031Two or more types of hollow fibres within one bundle or within one potting or tube-sheet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules

Definitions

  • the present invention relates to an artificial lung.
  • artificial lung In the hollow fiber membrane type artificial lung (hereinafter referred to as artificial lung), oxygen flows inside the hollow fiber, blood flows outside the hollow fiber membrane, and gas exchange between oxygen and carbon dioxide is performed through the hollow fiber. Is to be done.
  • Patent Document 1 discloses an artificial lung device characterized in that a heat exchanger for blood is provided at the gas outlet opening.
  • the present invention has been made to solve the above problems, and to provide an artificial lung capable of preventing the occurrence of a wet rung phenomenon, further reducing the pressure loss of a thermal fluid, and reducing the size of the device.
  • the purpose is to provide an artificial lung capable of preventing the occurrence of a wet rung phenomenon, further reducing the pressure loss of a thermal fluid, and reducing the size of the device.
  • the artificial lung that achieves the above object has a main body portion that communicates with a blood inflow passage and a blood outflow passage and is filled with blood, a heat exchange portion that adjusts the temperature of the blood by circulating a heat fluid, and a gas.
  • the gas exchange section that exchanges gas with the blood by circulating the gas, and the end of the main body on the gas outflow path side are provided so as to communicate with the heat exchange section, and at least one of the gas outflow paths. It has a first thermofluid chamber which is arranged so as to cover the portion and creates a flow of the thermofluid crossing the central axis of the main body portion in a side view, and the heat exchange portion and the gas exchange portion are the main body. It is housed in the department.
  • the gas outflow path is provided by the heat fluid flowing through the heat exchange section. Can be heated. Therefore, it is possible to prevent the occurrence of the wet rung phenomenon. Further, since the first thermal fluid chamber creates a flow of the thermal fluid across the central axis of the main body in a side view, the pressure loss of the thermal fluid can be reduced. Further, since the heat exchange unit and the gas exchange unit are housed in the main body unit, the device can be miniaturized. From the above, it is possible to provide an artificial lung that can prevent the occurrence of the wet rung phenomenon, further reduce the pressure loss of the thermal fluid, and can reduce the size of the device.
  • FIG. 2 of the artificial lung which concerns on a comparative example. It is a schematic sectional drawing for demonstrating the effect of the artificial lung which concerns on this embodiment. It is a figure corresponding to FIG. 2 of the artificial lung which concerns on a modification.
  • FIGS. 1 to 4 The following description does not limit the technical scope and the meaning of the terms described in the claims.
  • the dimensional ratios in the drawings are exaggerated for convenience of explanation and may differ from the actual ratios.
  • FIG. 1 is a schematic perspective view showing an artificial lung 1 according to the present embodiment.
  • FIG. 2 is a schematic cross-sectional view showing the artificial lung 1 according to the present embodiment.
  • FIG. 3 is a diagram corresponding to FIG. 2 of the artificial lung 90 according to the comparative example.
  • FIG. 4 is a schematic cross-sectional view for explaining the effect of the artificial lung 1 according to the present embodiment.
  • the artificial lung 1 has a main body portion 10 filled with blood, a heat exchange unit 20 for adjusting the temperature of the blood, and a gas exchange for gas exchange with the blood.
  • the heat fluid inlet side chamber (corresponding to the first heat fluid chamber) 40 provided at the end of the main body 10 on the gas outflow passage 66 side, and the end of the main body 10 on the gas inflow passage 65 side. It has a thermal fluid outlet side chamber (corresponding to a second thermal fluid chamber) 50 provided in.
  • the main body 10 is provided with a blood inflow passage 61 and a blood outflow passage 62, a thermal fluid inflow passage 63 and a thermal fluid outflow passage 64, and a gas inflow passage 65 and a gas outflow passage 66. Has been done.
  • the main body 10 is formed with a flow path 11 that communicates with the blood inflow path 61.
  • the main body 10 is formed with a flow path 12 that communicates with the blood outflow passage 62.
  • the main body 10 is formed in a cylindrical shape as shown in FIGS. 1 and 2, but is not limited to this and may be a square.
  • the heat exchange unit 20 is provided inside the main body unit 10.
  • the temperature of blood is adjusted by the heat fluid flowing inside.
  • the heat exchange unit 20 extends in a cylindrical shape.
  • the heat exchange unit 20 is housed in the main body unit 10.
  • the gas exchange unit 30 is provided so as to be adjacent to the heat exchange unit 20 in the radial direction, and extends in a cylindrical shape around the heat exchange unit 20.
  • the gas exchange unit 30 is housed in the main body unit 10.
  • a partition wall 70 is arranged between the heat exchange unit 20 and the gas exchange unit 30.
  • the material constituting the partition wall 70 is not particularly limited, but is, for example, a resin having biocompatibility.
  • the partition wall 70 is formed with a hole 71 for moving blood from the heat exchange section 20 to the gas exchange section 30.
  • the blood introduced through the blood inflow passage 61 is filled inside the main body portion 10, the temperature is adjusted by the heat exchange unit 20, and then the blood moves to the gas exchange unit 30 via the hole 71 of the partition wall 70. , Gas exchange is performed in the gas exchange unit 30 (see the arrow in FIG. 2). After gas exchange is performed in the gas exchange unit 30, blood is discharged to the outside from the blood outflow tract 62 (see the arrow in FIG. 2).
  • the heat exchange unit 20 is composed of a bundle of a plurality of hollow resin tubes 21. Blood passes through the heat exchange section 20 through the gaps between the plurality of resin tubes 21. That is, blood circulates outside the resin tube 21.
  • the resin tube 21 extends substantially linearly along the axial direction of the main body 10 (vertical direction in FIG. 2).
  • the resin tube 21 communicates with the thermo-fluid inlet-side chamber 40 at one end (lower end of FIG. 2) and at the other end (upper end of FIG. 2) of the thermo-fluid outlet-side chamber. Communicate with 50.
  • a urethane layer 22 is arranged at one end of the resin tube 21 (lower end of FIG. 2).
  • a urethane layer 23 is arranged at the upper end portion (upper end portion in FIG. 2) of the resin tube 21.
  • the thermal fluid is introduced from the thermal fluid inflow path 63 and flows so as to cross the central axis (not shown) of the main body 10 in a side view.
  • the chamber 40 on the hot fluid inlet side first flows in a circumferential shape.
  • the thermal fluid flows inside the resin tube 21 in a ring shape toward the thermal fluid outflow path 64 side (upper side in FIG. 2).
  • the hot fluid flows through the hot fluid outlet side chamber 50 and flows out from the hot fluid outflow path 64 to the outside.
  • the blood flowing on the outer periphery of the resin tube 21 exchanges heat with the heat fluid flowing inside the resin tube 21.
  • the thermal fluid is not particularly limited, but is, for example, hot water adjusted to a predetermined temperature.
  • Both ends of the resin tube 21 are arranged so as to be fixed by urethane layers 22 and 23.
  • the gas exchange unit 30 is composed of a bundle of a plurality of hollow fibers 31. Blood passes through the gas exchange section 30 through the gaps between the plurality of hollow fibers 31. That is, blood circulates around the outer circumference of the hollow fiber 31.
  • the hollow fiber 31 extends substantially linearly along the axial direction of the main body 10 (vertical direction in FIG. 2).
  • the hollow fiber 31 communicates with the gas outflow passage 66 at one end (lower side of FIG. 2) and with the gas inflow passage 65 at the other end (upper side of FIG. 2).
  • a urethane layer 32 is arranged at one end of the hollow fiber 31 (lower end of FIG. 2).
  • a urethane layer 33 is arranged at the other end of the hollow fiber 31 (the upper end in FIG. 2).
  • the gas is introduced from the gas inflow path 65 and flows inside the hollow fiber 31.
  • a fine hole communicating with the inside is formed on the peripheral wall of the hollow fiber 31, and when blood comes into contact with the hollow fiber 31, oxygen contained in the gas flowing inside the hollow fiber 31 passes through the fine hole and becomes blood. Is taken in by. Further, at this time, carbon dioxide in the blood is taken into the inside of the hollow fiber 31, and gas exchange is performed. After flowing inside the hollow fiber 31, the gas flows out from the gas outflow passage 66 to the outside.
  • Both ends of the hollow fiber 31 are arranged so as to be fixed by urethane layers 32 and 33.
  • Blood is appropriately temperature-controlled and gas-exchanged in the heat exchange unit 20 and the gas exchange unit 30, and then flows out through the blood outflow passage 62.
  • thermo-fluid inlet side chamber 40 Next, the configuration of the thermo-fluid inlet side chamber 40 will be described in detail.
  • thermo-fluid inlet-side chamber 40 is provided at the end of the main body 10 on the gas outflow path 66 side so as to communicate with the heat exchange section 20. Further, as shown in FIG. 2, the thermal fluid inlet side chamber 40 is arranged so as to cover a part of the gas outflow passage 66.
  • thermo-fluid inlet side chamber 40 is configured in a ring shape in FIG.
  • the thermo-fluid inlet side chamber 40 is fixed to the main body 10.
  • the method of fixing the thermo-fluid inlet-side chamber 40 to the main body 10 is not particularly limited.
  • a thermal fluid inflow path 63 is formed in the thermal fluid inlet side chamber 40.
  • the heat fluid inflow path 63 does not exist in the region on the extension line in the axial direction of the heat exchange unit 20 from the heat fluid inflow end of the heat exchange unit 20. According to this configuration, as will be described later, a flow of thermal fluid across the central axis of the main body 10 can be suitably created.
  • thermo-fluid inlet side chamber 40 is configured to extend to the outside in the circumferential direction from the main body portion 10 and is arranged on the gas outflow passage 66 side of the gas exchange portion 30. It is arranged so as to cover the urethane layer 32.
  • the thermal fluid inlet side chamber can directly or indirectly cover the urethane layer, and is arranged so as to cover the urethane layer via the wall surface of the main body in FIG.
  • thermo-fluid inlet-side chamber 40 By configuring the thermo-fluid inlet-side chamber 40 in this way, the thermo-fluid inlet-side chamber 40 is arranged so as to cover a part of the gas outflow passage 66 and the urethane layer 32, so that the thermo-fluid inflow passage 63 is used.
  • the gas outflow passage 66 and the urethane layer 32 are heated by the hot fluid that has flowed in. Therefore, the wet rung phenomenon that occurs in the vicinity of the gas outflow passage 66 and the urethane layer 32 can be suitably prevented.
  • the gas outflow passage 66 is configured to protrude from the hole 45 formed in the lower part of FIG. 2 in the thermo-fluid inlet side chamber 40.
  • the hole 45 and the gas outflow passage 66 of the thermo-fluid inlet-side chamber 40 are sealed with an adhesive (not shown), so that the inside of the thermo-fluid inlet-side chamber 40 is hermetically and airtightly sealed.
  • the thermal fluid inlet side chamber 40 creates a flow of thermal fluid across the central axis of the main body 10 when viewed from the side (see arrow A in FIG. 4).
  • thermo-fluid outlet side chamber 50 Next, the configuration of the thermo-fluid outlet side chamber 50 will be described in detail.
  • thermo-fluid outlet side chamber 50 is provided at the end of the main body 10 on the gas inflow path 65 side so as to communicate with the heat exchange section 20.
  • the thermal fluid outlet side chamber 50 is arranged so as to cover the gas inflow path 65 into which the gas flows.
  • thermo-fluid outlet side chamber 50 is configured in a ring shape in FIG.
  • the thermal fluid outlet side chamber 50 is fixed to the main body 10.
  • the method of fixing the thermal fluid outlet side chamber 50 to the main body 10 is not particularly limited.
  • a thermal fluid outflow path 64 is formed in the thermal fluid outlet side chamber 50.
  • the heat fluid outflow path 64 does not exist in the region on the extension line in the axial direction of the heat exchange unit 20 from the heat fluid outflow end of the heat exchange unit 20. According to this configuration, as will be described later, a flow of thermal fluid across the central axis of the main body 10 can be suitably created.
  • the thermal fluid outlet side chamber 50 creates a flow of thermal fluid across the central axis of the main body 10 when viewed from the side (see arrow C in FIG. 4).
  • thermo-fluid inlet side chamber 93 when the thermo-fluid inlet side chamber 93 does not cover the gas outflow passage 66 and the thermo-fluid outlet side chamber 94 does not cover the gas inflow passage 65.
  • the space area of the thermofluid inlet side chamber 93 and the thermofluid outlet side chamber 94 is narrower than that of the artificial lung 1 according to the present embodiment. Therefore, in the first path A and the second path B through which the thermal fluid flows, the flow path resistance of the second path B is larger than that of the first path A, so that the thermal fluid preferentially flows in the first path A. .. Therefore, in the case of the artificial lung 90 according to the comparative example, the efficiency of heat exchange in the heat exchange unit 20 deteriorates. Further, since the fluid resistance of the entire thermal fluid flow path is large, the flow rate of the thermal fluid becomes small, and the efficiency of heat exchange deteriorates.
  • thermo-fluid inlet side chamber 40 is provided so as to cover the gas outflow passage 66
  • thermofluid outlet side chamber 50 is provided so as to cover the gas inflow passage 65.
  • the flow path resistance in the first path A and the third path C is smaller than that in the second path B shown in FIG. 4, and the thermal fluid flows evenly in the second path B in a ring shape. Therefore, the efficiency of heat exchange in the heat exchange unit 20 is improved. Further, since the flow path resistance of the entire hot fluid flow path is small, the flow rate of the hot fluid becomes large and the efficiency of heat exchange is improved.
  • the artificial lung 1 communicates with the blood inflow passage 61 and the blood outflow passage 62 to fill the main body portion 10 with gas, and the temperature of the blood due to the circulation of the thermal fluid.
  • the heat exchange unit 20 for adjustment, the gas exchange unit 30 for exchanging gas with blood by flowing gas, and the end of the main body 10 on the gas outflow path 66 side are communicated with the heat exchange unit 20.
  • It also has a thermal fluid inlet side chamber 40, which is arranged so as to cover a part of the gas outflow passage 66 and creates a flow of thermal fluid across the central axis of the main body 10 in a side view, and has heat.
  • the exchange unit 20 and the gas exchange unit 30 are housed in the main body unit 10.
  • the gas outflow passage 66 is provided by the heat fluid flowing through the heat exchange unit 20. Can be heated. Therefore, it is possible to prevent the occurrence of the wet rung phenomenon that occurs in the gas outflow passage 66. Further, since the thermal fluid inlet side chamber 40 creates a flow of the thermal fluid across the central axis of the main body 10 in a side view, the pressure loss of the thermal fluid can be reduced. Further, since the heat exchange unit 20 and the gas exchange unit 30 are housed in the main body unit 10, the device can be miniaturized. From the above, it is possible to provide an artificial lung 1 that can prevent the occurrence of the wet rung phenomenon, further reduce the pressure loss of the thermal fluid, and can reduce the size of the device.
  • the thermal fluid inlet side chamber 40 has a thermal fluid inflow path 63, and the thermal fluid inflow path 63 is on an extension line in the axial direction of the heat exchange section 20 from the thermal fluid inflow end portion of the heat exchange section 20. Not in the area of. According to the artificial lung 1 configured in this way, the flow of the thermal fluid across the central axis of the main body 10 can be suitably created in the chamber 40 on the thermal fluid inlet side.
  • the artificial lung 1 is provided at the end of the main body 10 on the gas inflow path 65 side so as to communicate with the heat exchange section 20, and is arranged so as to cover the gas inflow path 65, and the main body is viewed from the side. It further comprises a thermofluid outlet side chamber 50 that creates a thermofluid flow across the central axis of the portion 10. According to the artificial lung 1 configured in this way, the flow path resistance of the heat fluid can be reduced, so that the efficiency of heat exchange in the heat exchange unit 20 is improved.
  • the thermal fluid outlet side chamber 50 has a thermal fluid outflow path 64, and the thermal fluid outflow path 64 is on an extension line in the axial direction of the heat exchange section 20 from the thermal fluid outflow end portion of the heat exchange section 20. Not in the area of. According to the artificial lung 1 configured in this way, the flow of the thermal fluid across the central axis of the main body 10 can be suitably created in the thermal fluid outlet side chamber 50.
  • the main body 10 has a substantially cylindrical shape. According to the artificial lung 1 configured in this way, the pressure loss of the thermal fluid can be reduced.
  • thermo-fluid inlet side chamber 40 extends radially outside the main body portion 10 and is arranged so as to cover the urethane layer 32 arranged on the gas outflow passage 66 side of the gas exchange portion 30. According to the artificial lung 1 configured as described above, since the urethane layer 32 can be heated by the thermal fluid, the wet rung phenomenon that occurs in the vicinity of the urethane layer 32 can be more preferably prevented.
  • the heat exchange unit 20 and the gas exchange unit 30 are arranged so as to be adjacent to each other along the radial direction. According to the artificial lung 1 configured as described above, heat exchange and gas exchange can be efficiently performed, and the size of the artificial lung 1 can be reduced.
  • the present invention is not limited to the configurations described in the embodiments and modifications, and may be appropriately modified based on the description of the scope of claims. Is possible.
  • thermo-fluid inlet side chamber 40 is configured to extend to the outside in the circumferential direction from the main body portion 10, and the urethane layer 32 is arranged on the gas outflow passage 66 side of the gas exchange portion 30. It was arranged to cover the.
  • the thermo-fluid inlet-side chamber 140 of the artificial lung 2 according to the modified example may be configured to have the same outer diameter as the outer diameter of the main body 10.
  • the inside of the thermo-fluid inlet-side chamber 140 can be more preferably liquid-tightly and airtightly sealed.
  • the size of the artificial lung 2 can be reduced as compared with the artificial lung 1 according to the above-described embodiment.
  • thermo-fluid outlet side chamber 50 is arranged so as to cover the gas inflow path 65, but the thermo-fluid outlet side chamber 50 may be arranged so as not to cover the gas inflow path 65. Good (see thermal fluid outlet side chamber 94 in FIG. 3).
  • the heat exchange unit 20 and the gas exchange unit 30 are arranged so as to be adjacent to each other along the radial direction, but the heat exchange unit and the gas exchange unit are adjacent to each other along the radial direction. It does not have to be arranged like this.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • External Artificial Organs (AREA)

Abstract

人工肺(1)は、血液流入路(61)および血液流出路(62)と連通して、血液が充填される本体部(10)と、本体部の内部に設けられ、熱流体が流通することによって前記血液の温度調整を行う熱交換部(20)と、本体部の内部に設けられ、ガスが流通することによって血液とガス交換を行うガス交換部(30)と、本体部のうちガス流出路(66)側の端部に、熱交換部と連通するように設けられるとともに、ガス流出路の少なくとも一部を覆うように配置され、側面視で本体部の中心軸を横断する熱流体の流れを作る熱流体入口側チャンバー(40)と、を有する。

Description

人工肺
 本発明は、人工肺に関する。
 中空糸膜型人工肺(以下、人工肺と称する)は、中空糸の内側を酸素が流通し、中空糸膜の外側を血液が流通して、中空糸を介して酸素と二酸化炭素のガス交換が行われるものである。
 このような人工肺では、室温が血液の温度よりも低い場合、人工肺の内部を流通した気体は、血液によって加温・加湿された状態で、中空糸の端部より流出して、その際に端部付近において冷却されるため、気体中の水蒸気が結露するいわゆるウェットラング現象が発生する場合がある。結露によって生じた水は、中空糸を部分的に閉塞して、気体が流通しにくくなり、ガス交換が好適に行われなくなる虞がある。
 このウェットラング現象を防止する上で、下記特許文献1には、ガス流出口開口に血液用熱交換器を設けたことを特徴とする人工肺装置が開示されている。
特開2001-170169号
 しかしながら、特許文献1の人工肺装置では、血液用熱交換器3がハウジング5の外部に付加されているため、構造が複雑となって熱流体の圧力損失増加の懸念があることと、全体的に装置が大型化する懸念がある。
 本発明は、上記の課題を解決するためになされたものであり、ウェットラング現象の発生を防止でき、さらに熱流体の圧力損失を低減し、且つ装置を小型化し得る人工肺を提供することを目的とする。
 上記目的を達成する人工肺は、血液流入路および血液流出路と連通して、血液が充填される本体部と、熱流体が流通することによって前記血液の温度調整を行う熱交換部と、ガスが流通することによって前記血液とガス交換を行うガス交換部と、前記本体部のうちガス流出路側の端部に、前記熱交換部と連通するように設けられるとともに、前記ガス流出路の少なくとも一部を覆うように配置され、側面視で前記本体部の中心軸を横断する前記熱流体の流れを作る第1熱流体チャンバーと、を有し、前記熱交換部と前記ガス交換部は前記本体部に収容されている。
 上記のように構成した人工肺によれば、ガス流出路の少なくとも一部を覆うように配置される第1熱流体側チャンバーが設けられるため、熱交換部を流れる熱流体によって、ガス流出路を加温することができる。したがって、ウェットラング現象の発生を防止することができる。また、第1熱流体チャンバーは、側面視で本体部の中心軸を横断する熱流体の流れを作るため、熱流体の圧力損失を低減することができる。また、熱交換部とガス交換部は本体部に収容されているため、装置を小型化することができる。以上から、ウェットラング現象の発生を防止でき、さらに熱流体の圧力損失を低減し、且つ装置を小型化し得る人工肺を提供することができる。
本発明の実施形態に係る人工肺を示す概略斜視図である。 本実施形態に係る人工肺を示す概略断面図である。 比較例に係る人工肺の図2に対応する図である。 本実施形態に係る人工肺の効果を説明するための概略断面図である。 変形例に係る人工肺の図2に対応する図である。
 以下、図1~図4を参照して、本発明の実施形態を説明する。なお、以下の説明は特許請求の範囲に記載される技術的範囲や用語の意義を限定するものではない。また、図面の寸法比率は説明の都合上誇張されており、実際の比率とは異なる場合がある。
 図1は、本実施形態に係る人工肺1を示す概略斜視図である。図2は、本実施形態に係る人工肺1を示す概略断面図である。図3は、比較例に係る人工肺90の図2に対応する図である。図4は、本実施形態に係る人工肺1の効果を説明するための概略断面図である。
 本実施形態に係る人工肺1は、図1、図2に示すように、血液が充填される本体部10と、血液の温度調整を行う熱交換部20と、血液とガス交換を行うガス交換部30と、本体部10のうちガス流出路66側の端部に設けられる熱流体入口側チャンバー(第1熱流体チャンバーに相当)40と、本体部10のうちガス流入路65側の端部に設けられる熱流体出口側チャンバー(第2熱流体チャンバーに相当)50と、を有する。
 本体部10には、図1、図2に示すように、血液流入路61および血液流出路62、熱流体流入路63および熱流体流出路64、ならびにガス流入路65およびガス流出路66が取り付けられている。
 本体部10には、血液流入路61と連通する流路11が形成されている。本体部10には、血液流出路62と連通する流路12が形成されている。
 本体部10は、図1、図2に示すものは円筒状に構成されているが、これに限られず、方形でもよい。
 熱交換部20は、図2に示すように、本体部10の内部に設けられる。熱交換部20では、熱流体が内部を流通することによって血液の温度調整が行われる。熱交換部20は、筒状に延在している。
 熱交換部20は、本体部10に収容されている。
 ガス交換部30は、図2に示すように、熱交換部20と径方向に隣り合うように設けられ、熱交換部20の周りに筒状に延在している。
 ガス交換部30は、本体部10に収容されている。
 熱交換部20およびガス交換部30の間には、図2に示すように、隔壁70が配置されている。隔壁70を構成する材料は、特に限定されないが、例えば生体適合性を備える樹脂である。隔壁70には血液が熱交換部20からガス交換部30へ移動するための孔部71が形成されている。
 血液流入路61を通じて導入された血液は、本体部10の内部に充填され、熱交換部20で温度調整が行われた後、隔壁70の孔部71を介して、ガス交換部30へ移動し、ガス交換部30でガス交換が行われる(図2の矢印参照)。血液は、ガス交換部30でガス交換が行われた後、血液流出路62から外部に流出される(図2の矢印参照)。
 以下、熱交換部20の構成について詳述する。
 熱交換部20は、図2に示すように、複数の中空の樹脂チューブ21の束によって構成されている。血液は、複数の樹脂チューブ21同士の間の隙間を通って熱交換部20を通過する。すなわち、血液は、樹脂チューブ21の外部を流通する。
 樹脂チューブ21は、本体部10の軸方向(図2の上下方向)に沿って略直線状に延在している。樹脂チューブ21は、一方の端部(図2の下側の端部)で、熱流体入口側チャンバー40と連通し、他方の端部(図2の上側の端部)で熱流体出口側チャンバー50と連通する。樹脂チューブ21の一方の端部(図2の下側の端部)には、ウレタン層22が配置されている。樹脂チューブ21の上側の端部(図2の上側の端部)には、ウレタン層23が配置されている。
 熱流体は、熱流体流入路63から導入され、側面視で本体部10の中心軸(図示せず)を横断するように流れる。具体的には、図2では、熱流体入口側チャンバー40内をまず周状に流れることとなる。その後、熱流体が周状に満たされた後、リング状に樹脂チューブ21の内部を熱流体流出路64側(図2の上側)へ向けて流れる。熱流体は、樹脂チューブ21の内部を流れた後、熱流体出口側チャンバー50を流れて、熱流体流出路64から外部へ流出される。
 樹脂チューブ21の外周を流れる血液は、樹脂チューブ21の内部を流れる熱流体と熱交換する。熱流体としては、特に限定されないが、例えば、所定の温度に調整されたお湯である。
 樹脂チューブ21の両端は、ウレタン層22、23で固定するように配置されている。
 次に、ガス交換部30の構成について詳述する。
 ガス交換部30は、図2に示すように、複数の中空糸31の束によって構成されている。血液は、複数の中空糸31同士の間の隙間を通ってガス交換部30を通過する。すなわち、血液は、中空糸31の外周を流通する。
 中空糸31は、本体部10の軸方向(図2の上下方向)に沿って略直線状に延在している。中空糸31は、一方の端部(図2の下側)でガス流出路66と連通し、他方の端部(図2の上側)でガス流入路65と連通する。中空糸31の一方の端部(図2の下側の端部)には、ウレタン層32が配置されている。中空糸31の他方の端部(図2の上側の端部)には、ウレタン層33が配置されている。
 ガスは、ガス流入路65から導入され、中空糸31の内部を流れる。中空糸31の周壁には、内部と連通する微細な孔が形成されており、血液が中空糸31に接すると、微細な孔を通じて、中空糸31の内部を流れるガスに含まれる酸素が、血液に取り込まれる。また、このとき、血液中の二酸化炭素が、中空糸31の内部に取り込まれて、ガス交換が行われる。ガスは、中空糸31の内部を流れた後、ガス流出路66から外部へ流出される。
 中空糸31の両端は、ウレタン層32、33で固定するように配置されている。
 血液は、熱交換部20およびガス交換部30において適切に温度調整およびガス交換された後、血液流出路62を通じて外部へと流出する。
 次に、熱流体入口側チャンバー40の構成について詳述する。
 熱流体入口側チャンバー40は、図2に示すように、本体部10のうちガス流出路66側の端部に、熱交換部20と連通するように設けられる。また、熱流体入口側チャンバー40は、図2に示すように、ガス流出路66の一部を覆うように配置される。
 熱流体入口側チャンバー40は、図2ではリング状に構成されている。熱流体入口側チャンバー40は、本体部10に固定されている。熱流体入口側チャンバー40の本体部10に対する固定方法は、特に限定されない。熱流体入口側チャンバー40には、熱流体流入路63が形成されている。
 熱流体流入路63は、図2に示すように、熱交換部20の熱流体流入端部から熱交換部20の軸方向の延長線上の領域に存在しない。この構成によれば、後述するように、本体部10の中心軸を横断する熱流体の流れを好適に作ることができる。
 また、熱流体入口側チャンバー40は、図2に示すように、本体部10よりも周方向の外側まで延在して構成されるとともに、ガス交換部30のガス流出路66側に配置されたウレタン層32を覆うように配置されている。尚、熱流体入口側チャンバーは直接的または間接的にウレタン層を覆うことが可能であり、図2では本体部壁面を介して覆うように配置されている。
 このように熱流体入口側チャンバー40が構成されることによって、熱流体入口側チャンバー40がガス流出路66の一部およびウレタン層32を覆うように配置されるため、熱流体流入路63を介して流入した熱流体によって、ガス流出路66およびウレタン層32が温められる。したがって、ガス流出路66およびウレタン層32の近傍で発生するウェットラング現象を好適に防止することができる。
 熱流体入口側チャンバー40のうち、図2の下方に形成された孔部45から、ガス流出路66が突出するように構成されている。熱流体入口側チャンバー40の孔部45およびガス流出路66は、不図示の接着剤によって封止されることによって、熱流体入口側チャンバー40内が液密・気密に密封されている。
 熱流体入口側チャンバー40は、側面視で本体部10の中心軸を横断する熱流体の流れを作る(図4の矢印A参照)。
 次に、熱流体出口側チャンバー50の構成について詳述する。
 熱流体出口側チャンバー50は、図2に示すように、本体部10のうちガス流入路65側の端部に、熱交換部20と連通するように設けられる。熱流体出口側チャンバー50は、ガスが流入するガス流入路65を覆うように配置される。
 熱流体出口側チャンバー50は、図2ではリング状に構成されている。熱流体出口側チャンバー50は、本体部10に固定されている。熱流体出口側チャンバー50の本体部10に対する固定方法は、特に限定されない。熱流体出口側チャンバー50には、熱流体流出路64が形成されている。
 熱流体流出路64は、図2に示すように、熱交換部20の熱流体流出端部から熱交換部20の軸方向の延長線上の領域に存在しない。この構成によれば、後述するように、本体部10の中心軸を横断する熱流体の流れを好適に作ることができる。
 熱流体出口側チャンバー50は、側面視で本体部10の中心軸を横断する熱流体の流れを作る(図4の矢印C参照)。
 ここで、例えば、図3に示すように、熱流体入口側チャンバー93がガス流出路66を覆わない構成であって、熱流体出口側チャンバー94がガス流入路65を覆わない構成である場合、熱流体入口側チャンバー93および熱流体出口側チャンバー94の空間の領域が、本実施形態に係る人工肺1と比較して狭くなる。このため、熱流体が流れる第1経路Aおよび第2経路Bにおいて、第2経路Bの方が第1経路Aよりも流路抵抗が大きいため、第1経路Aに熱流体が優先して流れる。このため、比較例に係る人工肺90の場合、熱交換部20における熱交換の効率が悪くなる。さらに、熱流体流路全体の流体抵抗が大きいので、熱流体の流量が小さくなり、熱交換の効率が悪くなる。
 これに対して、本実施形態に係る人工肺1によれば、熱流体入口側チャンバー40がガス流出路66を覆うとともに、熱流体出口側チャンバー50がガス流入路65を覆うように設けられるため、図4に示す第2経路Bに比べ、第1経路A、および第3経路Cにおける流路抵抗が小さく、熱流体が第2経路Bをリング状に均等に流れる。このため、熱交換部20における熱交換の効率が向上する。さらに、熱流体流路全体の流路抵抗が小さいので、熱流体の流量が大きくなり、熱交換の効率が向上する。
 以上説明したように、本実施形態に係る人工肺1は、血液流入路61および血液流出路62と連通して、血液が充填される本体部10と、熱流体が流通することによって血液の温度調整を行う熱交換部20と、ガスが流通することによって血液とガス交換を行うガス交換部30と、本体部10のうちガス流出路66側の端部に、熱交換部20と連通するように設けられるとともに、ガス流出路66の一部を覆うように配置され、側面視で本体部10の中心軸を横断する熱流体の流れを作る熱流体入口側チャンバー40と、を有し、熱交換部20とガス交換部30は、本体部10に収容されている。このように構成された人工肺1によれば、ガス流出路66を覆うように配置される熱流体入口側チャンバー40が設けられるため、熱交換部20を流れる熱流体によって、ガス流出路66を加温することができる。したがって、ガス流出路66において発生するウェットラング現象の発生を防止することができる。また、熱流体入口側チャンバー40は、側面視で本体部10の中心軸を横断する熱流体の流れを作るため、熱流体の圧力損失を低減することができる。また、熱交換部20とガス交換部30は本体部10に収容されているため、装置を小型化することができる。以上から、ウェットラング現象の発生を防止でき、さらに熱流体の圧力損失を低減し、且つ装置を小型化し得る人工肺1を提供することができる。
 また、熱流体入口側チャンバー40は、熱流体の熱流体流入路63を有し、熱流体流入路63は、熱交換部20の熱流体流入端部から熱交換部20の軸方向の延長線上の領域にない。このように構成された人工肺1によれば、熱流体入口側チャンバー40において、本体部10の中心軸を横断する熱流体の流れを好適に作ることができる。
 また、人工肺1は、本体部10のうちガス流入路65側の端部に、熱交換部20と連通するように設けられるとともに、ガス流入路65を覆うように配置され、側面視で本体部10の中心軸を横断する熱流体の流れを作る熱流体出口側チャンバー50をさらに有する。このように構成された人工肺1によれば、熱流体の流路抵抗を低下させることができるため、熱交換部20における熱交換の効率が向上する。
 また、熱流体出口側チャンバー50は、熱流体の熱流体流出路64を有し、熱流体流出路64は、熱交換部20の熱流体流出端部から熱交換部20の軸方向の延長線上の領域にない。このように構成された人工肺1によれば、熱流体出口側チャンバー50において、本体部10の中心軸を横断する熱流体の流れを好適に作ることができる。
 また、本体部10が略円筒状を呈する。このように構成された人工肺1によれば、熱流体の圧力損失を低減することができる。
 また、熱流体入口側チャンバー40は、本体部10よりも径方向の外側まで延在するとともに、ガス交換部30のガス流出路66側に配置されたウレタン層32を覆うように配置される。このように構成された人工肺1によれば、ウレタン層32を熱流体によって加温することができるため、ウレタン層32の近傍において発生するウェットラング現象をより好適に防止することができる。
 また、熱交換部20およびガス交換部30は、径方向に沿って隣り合うように配置されている。このように構成された人工肺1によれば、効率よく熱交換およびガス交換を行うことができるとともに、人工肺1のサイズを小さくすることができる。
 以上、実施形態を通じて本発明に係る人工肺を説明したが、本発明は実施形態および変形例において説明した構成のみに限定されることはなく、特許請求の範囲の記載に基づいて適宜変更することが可能である。
 例えば、上述した実施形態では、熱流体入口側チャンバー40は、本体部10よりも周方向の外側まで延在して構成され、ガス交換部30のガス流出路66側に配置されたウレタン層32を覆うように配置された。しかしながら、変形例に係る人工肺2の熱流体入口側チャンバー140は、図5に示すように、本体部10の外径と同一の外径を備えるように構成されてもよい。このとき、上述した接着剤によって熱流体入口側チャンバー140内を封止する必要が無いため、より好適に熱流体入口側チャンバー140内を液密・気密に密封することができる。また、上述した実施形態に係る人工肺1と比較して、人工肺2のサイズをコンパクト化することができる。
 また、上述した実施形態では、熱流体出口側チャンバー50は、ガス流入路65を覆うように配置されたが、熱流体出口側チャンバー50は、ガス流入路65を覆わないように配置されてもよい(図3の熱流体出口側チャンバー94参照)。
 また、上述した実施形態では、熱交換部20およびガス交換部30は、径方向に沿って隣り合うように配置されていたが、熱交換部およびガス交換部は、径方向に沿って隣り合うように配置されていなくてもよい。
 本出願は、2020年12月4日に出願された日本国特許出願第2020-201764号に基づいており、その開示内容は、参照により全体として引用されている。
  1、2 人工肺、
  10  本体部、
  20  熱交換部、
  30  ガス交換部、
  22、23、32、33 ウレタン層、
  40、140  熱流体入口側チャンバー(第1熱流体チャンバー)、
  50  熱流体出口側チャンバー(第2熱流体チャンバー)、
  61  血液流入路、
  62  血液流出路、
  63  熱流体流入路、
  64  熱流体流出路、
  65  ガス流入路、
  66  ガス流出路。

Claims (8)

  1.  血液流入路および血液流出路と連通して、血液が充填される本体部と、
     熱流体が流通することによって前記血液の温度調整を行う熱交換部と、
     ガスが流通することによって前記血液とガス交換を行うガス交換部と、
     前記本体部のうちガス流出路側の端部に、前記熱交換部と連通するように設けられるとともに、前記ガス流出路の少なくとも一部を覆うように配置され、側面視で前記本体部の中心軸を横断する前記熱流体の流れを作る第1熱流体チャンバーと、を有し、
     前記熱交換部と前記ガス交換部は前記本体部に収容されている人工肺。
  2.  前記第1熱流体チャンバーは、前記熱流体の熱流体流入路を有し、
     前記熱流体流入路は、前記熱交換部の熱流体流入端部から前記熱交換部の軸方向の延長線上の領域にない、請求項1に記載の人工肺。
  3.  前記本体部のうちガス流入路側の端部に、前記熱交換部と連通するように設けられるとともに、前記ガス流入路の少なくとも一部を覆うように配置され、前記側面視で前記本体部の前記中心軸を横断する前記熱流体の流れを作る第2熱流体チャンバーをさらに有する、請求項1または2に記載の人工肺。
  4.  前記第2熱流体チャンバーは、前記熱流体の熱流体流出路を有し、
     前記熱流体流出路は、前記熱交換部の熱流体流出端部から前記熱交換部の軸方向の延長線上の領域にない、請求項3に記載の人工肺。
  5.  前記本体部が略円筒状を呈する、請求項1~4のいずれか1項に記載の人工肺。
  6.  前記第1熱流体チャンバーは、前記本体部よりも径方向の外側まで延在するとともに、前記ガス交換部の前記ガス流出路側に配置されたウレタン層を覆うように配置される、請求項1~5のいずれか1項に記載の人工肺。
  7.  前記第1熱流体チャンバーおよび/または前記第2熱流体チャンバーは、前記本体部の外径と同一の外径を備える、請求項3に記載の人工肺。
  8.  前記熱交換部および前記ガス交換部は、径方向に沿って隣り合うように配置されている、請求項1~7のいずれか1項に記載の人工肺。
PCT/JP2021/043545 2020-12-04 2021-11-29 人工肺 WO2022118777A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022566899A JPWO2022118777A1 (ja) 2020-12-04 2021-11-29

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-201764 2020-12-04
JP2020201764 2020-12-04

Publications (1)

Publication Number Publication Date
WO2022118777A1 true WO2022118777A1 (ja) 2022-06-09

Family

ID=81854125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/043545 WO2022118777A1 (ja) 2020-12-04 2021-11-29 人工肺

Country Status (2)

Country Link
JP (1) JPWO2022118777A1 (ja)
WO (1) WO2022118777A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09117502A (ja) * 1995-09-25 1997-05-06 Medos Medizintechnik Gmbh 液体、特に血液の処理装置
JP2013056027A (ja) * 2011-09-08 2013-03-28 Senko Medical Instr Mfg Co Ltd 血液酸素加装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09117502A (ja) * 1995-09-25 1997-05-06 Medos Medizintechnik Gmbh 液体、特に血液の処理装置
JP2013056027A (ja) * 2011-09-08 2013-03-28 Senko Medical Instr Mfg Co Ltd 血液酸素加装置

Also Published As

Publication number Publication date
JPWO2022118777A1 (ja) 2022-06-09

Similar Documents

Publication Publication Date Title
JP5418275B2 (ja) 熱交換器および熱交換器一体型人工肺
JP4337573B2 (ja) 熱交換器、その製造方法及び人工心肺装置
WO2011099609A1 (ja) 熱交換器および熱交換器一体型人工肺
JP3059393B2 (ja) 熱交換器
DK2981780T3 (en) PLATE HEAT EXCHANGE AND PROCEDURE FOR CONSTRUCTING MULTIPLE CIRCULATIONS IN THE PLATE HEAT EXCHANGE
JP2007143614A (ja) 中空糸膜型人工肺
JP4622862B2 (ja) 熱交換器、熱交換器の製造方法及び人工心肺装置の製造方法
JP5477034B2 (ja) 熱交換器一体型人工肺
WO2022118777A1 (ja) 人工肺
US8147753B2 (en) Heat exchanger for medical use and artificial heart-lung machine
JP7471281B2 (ja) プレート熱交換器構造及びモジュール構造
US8609022B2 (en) Medical heat exchanger, manufacturing method thereof and artificial lung device
JP2010127582A (ja) 加湿装置
US20230201745A1 (en) Tube unit, degassing module, and method of manufacturing tube unit
JP2012130864A (ja) 中空糸膜モジュール
JP5418274B2 (ja) 熱交換器および熱交換器一体型人工肺
JP2010127583A (ja) 加湿装置
JP2008246141A (ja) 熱交換器及び人工心肺装置
WO2010143457A1 (ja) 医療用熱交換器及びその製造方法並びに人工肺装置
KR102475164B1 (ko) 전기가열 장치를 구비한 핀리스 타입 다관식이중관 열교환기
CN219869249U (zh) 一种换热装置
JP2010035869A (ja) ドーム状血液導入部を有する膜型人工肺
KR100353600B1 (ko) 열교환기및열교환기의제조방법
JP4631224B2 (ja) 熱交換器
JP2008246142A (ja) 熱交換器及び人工心肺装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21900530

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022566899

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21900530

Country of ref document: EP

Kind code of ref document: A1