WO2022118729A1 - 冷凍機及び冷凍機の予冷時の運転方法 - Google Patents

冷凍機及び冷凍機の予冷時の運転方法 Download PDF

Info

Publication number
WO2022118729A1
WO2022118729A1 PCT/JP2021/043164 JP2021043164W WO2022118729A1 WO 2022118729 A1 WO2022118729 A1 WO 2022118729A1 JP 2021043164 W JP2021043164 W JP 2021043164W WO 2022118729 A1 WO2022118729 A1 WO 2022118729A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
temperature
line
refrigerator
expander
Prior art date
Application number
PCT/JP2021/043164
Other languages
English (en)
French (fr)
Inventor
将大 下田
翔太 植田
明登 町田
瑞生 工藤
広晴 矢口
Original Assignee
株式会社前川製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社前川製作所 filed Critical 株式会社前川製作所
Priority to CN202180080138.5A priority Critical patent/CN116529541A/zh
Priority to US18/037,440 priority patent/US20230417465A1/en
Publication of WO2022118729A1 publication Critical patent/WO2022118729A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • F25B1/053Compression machines, plants or systems with non-reversible cycle with compressor of rotary type of turbine type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • F25B41/42Arrangements for diverging or converging flows, e.g. branch lines or junctions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0415Refrigeration circuit bypassing means for the receiver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/072Intercoolers therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2515Flow valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2519On-off valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/15Power, e.g. by voltage or current
    • F25B2700/151Power, e.g. by voltage or current of the compressor motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/195Pressures of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2103Temperatures near a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2108Temperatures of a receiver

Definitions

  • This disclosure relates to a refrigerator and a method of operating the refrigerator during precooling.
  • Cryogenic temperatures can be achieved by using the Brayton cycle for the refrigeration cycle. Has been attracting a great deal of attention.
  • a cooling unit that cools the object to be cooled by heat exchange with the refrigerant, a low-stage compressor for compressing the refrigerant, a middle-stage compressor for compressing the refrigerant, and the refrigerant are expanded.
  • An expander-integrated compressor that integrates an expander to further compress the refrigerant, a high-stage compressor for further compressing the refrigerant, and the refrigerant is supplied and circulated to the plurality of compressors, the expander, the cooling unit, and the like.
  • Some are configured with a refrigerant circulation line to be used (see, for example, Patent Document 1).
  • the compressor integrated compressor may be configured by integrating a high-stage compressor and an expander instead of a middle-stage compressor and an expander.
  • the refrigerant compressed in one stage by the low-stage compressor rotationally driven by the motor is cooled by the heat exchanger and then sent to the middle-stage compressor, which is rotationally driven by the motor. Further compressed by the machine.
  • the refrigerant compressed in two stages by the middle stage compressor is cooled by the heat exchanger and then further compressed by the high stage compressor which is rotationally driven by the motor.
  • the refrigerant compressed in three stages by the high-stage compressor is cooled by the heat exchanger, then further cooled by the cold heat recovery heat exchanger and sent to the expander, and the refrigerant itself is adiabatically expanded by the expander to achieve low pressure and low temperature. Become.
  • the low pressure and low temperature refrigerant is sent to the cooling unit (heat exchanger) to cool the object to be cooled. After that, the refrigerant is sent to the cold heat recovery heat exchanger, where the refrigerant sent to the expander is cooled and then returned to the low-stage compressor.
  • the cooling unit heat exchanger
  • a high pressure line from the high-stage compressor and the expander of the refrigerant circulation line, a buffer line connected to the low-pressure line from the expander to the low-stage compressor, and a buffer line are provided in the buffer line.
  • Some are configured to have a buffer line portion consisting of a buffer tank, valves (on-off valves) provided on the high-pressure line side and low-pressure line side (inlet side and outlet side) of the buffer tank, respectively (for example, a patent). See Document 1).
  • the refrigerating capacity is increased by controlling the flow rate of the refrigerant in the refrigerant line by controlling the opening of the valves before and after the buffer tank. I'm adjusting.
  • the refrigerant pressure increases in the system of the refrigerant circulation line due to the increase in the refrigerant temperature while the refrigerator is stopped, and in this state, the refrigerant circulation line
  • the pressure of the refrigerant is balanced between the high-pressure line from the high-stage compressor and the expander and the low-pressure line from the expander to the low-stage compressor (high and low pressure is equalized).
  • the pressure on the low pressure line side is higher than in normal operation, and if the refrigerator is started and operated with this refrigerant pressure high, the pressure on the high pressure line side tends to rise excessively, especially. Since the compressor-driven compressor-integrated expander is provided, the motor load becomes high, and it may be necessary to limit the operating rotation speed depending on the motor capacity.
  • the minimum cross section exists in the flow path near the inlet of the expander, which has the highest density under the rated operating conditions, in the circulation path.
  • the suction temperature of the expander tends to be high (the refrigerant density tends to be low).
  • surging of the compressor may occur due to the choke phenomenon at the inlet of the expander where the flow rate of the refrigerant at the relevant portion is reduced.
  • a motor-driven compressor-integrated expander is provided, and it is likely to occur when the pressure on the high-voltage line side rises excessively.
  • the high-pressure pressure is suppressed from rising more than the steady-state operating pressure during the initial operation period from the start to the pre-cooling operation, and the operation is suppressed by suppressing the occurrence of excessive load and surging of the motor.
  • the present disclosure can prevent the high pressure from rising significantly from the steady operation pressure during the initial operation period from the start to the precooling operation, and can suppress the occurrence of excessive load and surging of the motor. It is an object of the present invention to provide a refrigerator and a method of operating the refrigerator at the time of precooling, which enables improvement of the operation efficiency (refrigerant, cooling efficiency of the object to be cooled).
  • One aspect of the refrigerator of the present disclosure is a compressor for compressing a refrigerant, and for expanding the refrigerant connected to the compressor via a rotary shaft driveable by a motor and compressed by the compressor.
  • An expander-integrated compressor including an expander, a cooling unit for cooling an object to be cooled by the refrigerant expanded by the expander, and a low-stage compressor from the expander via the cooling unit.
  • bypass valve capable of adjusting the flow rate of the refrigerant flowing through the bypass line was provided. Further, it is desirable to provide a buffer tank for recovering the refrigerant gas of the high pressure line.
  • the buffer tank and the bypass line indicate that the high pressure pressure greatly rises from the steady operation pressure during the initial operation period from the start to the precooling operation. Can be effectively suppressed by using. Further, it is possible to control the opening degree and the rotation speed of the bypass line based on the temperature detection instead of the flow rate detection of the refrigerant. This makes it possible to suppress the occurrence of excessive load and surging of the motor during the initial operation period from the start to the pre-cooling operation, perform stable pre-cooling operation, and operate efficiency (refrigerant, cooling efficiency of the object to be cooled). It becomes possible to improve.
  • FIG. 1 It is a figure which shows an example of the relationship between the refrigerant temperature and the opening degree of a bypass valve when the bypass control operation is performed by the step control in the operation method at the time of precooling of the refrigerator which concerns on one Embodiment of this disclosure. .. It is a figure which shows the bypass control operation in the initial operation period from the start-up to the pre-cooling operation in the operation method at the time of precooling of the refrigerator which concerns on one Embodiment of this disclosure, and is the control flow in the case of performing continuous (proportional) control. It is a figure which shows an example.
  • expressions such as “same”, “equal”, and “homogeneous” that indicate that things are in the same state not only represent exactly the same state, but also have tolerances or differences to the extent that the same function can be obtained. It shall also represent the existing state.
  • an expression representing a shape such as a square shape or a cylindrical shape not only represents a shape such as a square shape or a cylindrical shape in a geometrically strict sense, but also an uneven portion or a chamfering within a range where the same effect can be obtained. It shall also represent the shape including the part and the like.
  • the expressions “to have”, “to have”, “to include”, or "to have” one component are not exclusive expressions that exclude the existence of other components.
  • the present disclosure relates to a refrigerator that can realize a cryogenic temperature by using the Brayton cycle in the freezing cycle and a method of operating the refrigerator during precooling, and in particular, from the start to the precooling operation (until the completion of precooling). It relates to an operation method at the time of precooling of a refrigerator and a refrigerator capable of suitable operation control during the initial operation period.
  • the refrigerating machine 1 of the present embodiment is, for example, as shown in FIG. 1, a cooling unit (in this embodiment, a cooling unit for cooling the refrigerant R2 on the cooling target side by heat exchange with the refrigerant R1). Secondary load heat exchanger) 2, a low-stage compressor C1 for compressing the refrigerant R1, a middle-stage compressor C2 for further compressing the refrigerant R1, and a high-stage compression for further compressing the refrigerant R1.
  • a cooling unit in this embodiment, a cooling unit for cooling the refrigerant R2 on the cooling target side by heat exchange with the refrigerant R1.
  • Secondary load heat exchanger 2
  • a low-stage compressor C1 for compressing the refrigerant R1
  • a middle-stage compressor C2 for further compressing the refrigerant R1
  • a high-stage compression for further compressing the refrigerant R1.
  • An expander-integrated compressor 7 that integrates an expander T for expanding the machine C3 and the refrigerant R1, a low-stage compressor C1, a middle-stage compressor C2, a high-stage compressor C3, an expander T, and a cooling unit 2. It is configured to include a refrigerant circulation line 8 for sequentially feeding and circulating the refrigerant R1 to the like.
  • both ends of the output shaft are connected to the high-stage compressor C3 and the inflator T, respectively, and the output shaft and the high-stage compressor C3 are connected to each other.
  • the low-stage compressor C1 and the middle-stage compressor C2 are also integrally configured, and the integrated compressor 10 has an output shaft on the low-stage compressor C1 and the middle-stage compressor C2. Both ends are connected to each other, and a second motor 11 for rotationally driving the output shaft and thus the low-stage compressor C1 and the middle-stage compressor C2 around the axis is provided.
  • the refrigerator 1 of the present embodiment is configured by connecting a low-stage compressor C1, a middle-stage compressor C2, a high-stage compressor C3, and an expander T in series by a refrigerant circulation line 8.
  • the refrigerant circulation line 8 is a low-pressure line between the expander T and the low-stage compressor C1, and a high-pressure line between the high-stage compressor C3 and the expander T.
  • the medium pressure line is from the low-stage compressor C1 to the high-stage compressor C3.
  • the first medium pressure line includes a first heat exchanger 12 for cooling the refrigerant discharged from the low-stage compressor C1 and a second heat exchanger for cooling the refrigerant R1 discharged from the middle-stage compressor C2. 13.
  • the high-pressure line is provided with a third heat exchanger 14 for cooling the refrigerant discharged from the high-stage compressor C3. Further, a cold heat recovery heat exchanger (regenerated heat exchanger) 15 is provided between the third heat exchanger 14 of the high voltage line and the expander T.
  • the first heat exchanger 12, the second heat exchanger 13, and the third heat exchanger 14 cool the refrigerant R1 with, for example, cooling water w.
  • the cold heat recovery heat exchanger 15 cools the refrigerant R1 in the high-voltage line with the refrigerant R1 after being used for cooling the cooling target R2 in the cooling unit 2.
  • a cooling unit 2 is provided between the expander T of the low pressure line and the cold heat recovery heat exchanger 15.
  • the cooling line is a part of the low pressure line.
  • the cooling target to be cooled by the refrigerant R1 sent to the heat exchanger of the cooling unit 2 is the cooling target refrigerant (secondary refrigerant) R2, and the cooling target refrigerant R2 is the cooling target side circulation line 16. Is circulated and sequentially sent to the cooling unit 2 to be cooled to a predetermined temperature.
  • the refrigerant one-stage compressed by the low-stage compressor C1 rotationally driven by the second motor 11 is cooled by the first heat exchanger 12 and then sent to the middle-stage compressor C2. It is further compressed by the middle stage compressor C2 which is rotationally driven by the second motor 11.
  • the refrigerant R1 that has been two-stage compressed by the middle-stage compressor C2 is cooled by the second heat exchanger 13 and then further compressed by the high-stage compressor C3 that is rotationally driven by the first motor 9.
  • the refrigerant R1 compressed in three stages by the high-stage compressor C3 is cooled by the third heat exchanger 14, further cooled by the cold heat recovery heat exchanger 15, sent to the expander T, and adiabatically expanded by the expander T. And generate cold heat. That is, the refrigerant itself adiabatically expands to a low pressure and a low temperature.
  • the high-stage compressor C3 and the expander T are also connected to both ends of the output shaft of the first motor 9, which is a common power source, so that the power recovered by the expander T can be compressed by the high-stage compressor C3. It contributes to power and improves efficiency.
  • the low-pressure and low-temperature refrigerant R1 is sent to the heat exchanger of the cooling unit 2, and the cooling target refrigerant R2 flowing through the cooling target side circulation line 16 is cooled to a predetermined temperature by this refrigerant.
  • the refrigerant R1 is sent to the cold heat recovery heat exchanger 15, where the refrigerant R1 sent to the expander T is cooled and then returned to the low-stage compressor C1.
  • examples of the refrigerant R1 include helium, neon, hydrogen, nitrogen, air, and hydrocarbons.
  • the temperature of the refrigerant R1 is, for example, about -190 to ⁇ 200 ° C. (83.15 to 73.15K) on the inlet side of the expander T and about -210 to ⁇ 220 ° C. (63.15 to 53) on the outlet side.
  • the temperature can be as low as .15K).
  • the refrigerator 1 of the present embodiment can be used, for example, as a cooling of superconducting equipment, liquefaction of various gases, a substitute for liquid nitrogen, and the like.
  • the cooling target for cooling by exchanging heat with the refrigerant R1 in the cooling unit 2 is liquid nitrogen (refrigerant R2 for cooling target) for cooling the superconducting device 20 such as a superconducting cable.
  • a cooling target side circulation line (liquid nitrogen circulation line) 16 that circulates between the cooling unit 2, the superconducting device 20, and the reservoir tank 21 is provided, and a circulation pump 22 is further provided in the cooling target side circulation line 16. It is configured to circulate the liquid nitrogen R2 cooled to an extremely low temperature by the cooling unit 2 to the superconducting device 20.
  • the refrigerator 1 As described above, while the refrigerator is stopped, the refrigerant pressure increases due to the rise in the refrigerant temperature, and the high and low pressures are equalized in this state. Therefore, when the refrigerator 1 is started and operated while the refrigerant pressure is high, the refrigerant pressure in the high pressure line rises due to the high refrigerant pressure in the low pressure line, and the load on the motor (11 (9)) becomes high. Depending on the motor capacity, it may be necessary to limit the operating rotation speed. Further, when the refrigerator 1 is started and operated in a state where the refrigerant pressure is high, it is conceivable that a choke phenomenon occurs at the inlet of the expander T and surging occurs in the compressors (C1, C2, C3).
  • the refrigerator pre-cooling operation control controls the operation from the start of the refrigerator 1 to the completion of pre-cooling, and is based on the target temperature setting (T1, T2) and the measured temperature (T) at the inlet or outlet of the expander T.
  • the control rotation speed is controlled so that the cooling rate is kept constant.
  • Bypass control controls the opening degree of the on-off valve 32 of the bypass line 31 according to the measured temperature (T), and has a step (step control) and continuous control.
  • step control step control
  • the on-off valve 32 is closed and the control operation without bypass is performed.
  • the buffer tank refrigerant recovery control recovers the refrigerant R1 from the high pressure line to the buffer tank 27 to reduce the load of the precooling operation of the refrigerator 1, and when the pressure difference exceeds the set pressure difference, the open / close valve 28 is opened. Refrigerant R1 flows into the buffer tank 27 from the high pressure line.
  • These controls are a combination of bypass control and buffer tank refrigerant recovery control performed in parallel with the refrigerator precooling operation control, and are constantly monitored.
  • the refrigerator 1 of the present embodiment is provided with a buffer line portion 25.
  • the buffer line portion 25 has one end connected to a third connection portion S3 between the third heat exchanger 14 of the high pressure line and the cold heat recovery heat exchanger 15, and the cold heat recovery heat exchanger 15 and the low stage compressor of the low pressure line.
  • a buffer line 26 having the other end connected to the fourth connection portion S4 between C1, a buffer tank 27 provided in the buffer line 26 for temporarily storing the refrigerant R1, and an inlet side of the buffer tank 27 (
  • the first on-off valve (high pressure side buffer valve) 28 provided on the high pressure line side between the buffer tank 27 and the third connection portion S3, and the outlet side of the buffer tank 27 (buffer tank 27 and the fourth connection portion S4).
  • a second on-off valve (low-pressure side buffer valve) 29 provided on the low-pressure line side) is provided.
  • the refrigerant R1 is temporarily supplied to the buffer tank 27 by using the pressure difference (differential pressure) from the high pressure line.
  • the amount (flow rate) of the refrigerant R1 flowing through the refrigerant circulation line 8 can be adjusted.
  • the refrigerant R1 is sent from the buffer tank 27 to a low pressure line by using the pressure difference. The amount of the refrigerant R1 flowing through the refrigerant circulation line 8 can be adjusted.
  • the refrigerator 1 of the present embodiment includes a bypass line portion 30.
  • the bypass line portion 30 has one end connected to the first connection portion S1 between the third heat exchanger 14 of the high pressure line and the third connection portion S3, and the fourth connection portion S4 of the low pressure line and the low-stage compressor C1.
  • a bypass line 31 provided with the other end connected to the second connecting portion S2 between the two, and a third on-off valve (bypass valve) 32 provided on the bypass line 31 are provided. It should be noted that there is no problem even if the positions of the connection portions of the high-voltage line and the low-voltage line of the buffer line portion 25 and the bypass line portion 30 are exchanged.
  • the refrigerant circulation line 8 is provided with a first temperature sensor 33 for detecting the temperature of the refrigerant R1 flowing therethrough between the cold heat recovery heat exchanger 15 and the expander T of the high pressure line.
  • a second temperature sensor 34 for detecting the temperature of the refrigerant R1 flowing through the expansion unit T and the cooling unit 2 of the cooling line is provided.
  • the cooling target side circulation line 16 is provided with a third temperature sensor (secondary refrigerant temperature sensor) 35 that detects the temperature of the liquid nitrogen R2 to be cooled cooled by the cooling unit 2.
  • a first pressure sensor 36 for detecting the pressure of the refrigerant R1 in the high pressure line is provided on the high pressure line of the refrigerant circulation line 8, for example, between the third connection portion S3 and the first connection portion S1.
  • the buffer tank 27 is provided with a second pressure sensor 37 for detecting the pressure inside the buffer tank 27.
  • the expander-integrated compressor 7 is provided with a first power meter 38 for detecting the drive state of the first motor 9, the rotation shaft, the high-stage compressor C3, and the rotation speed of the expander T.
  • the integrated compressor 10 is provided with a second power meter 39 for detecting the drive state of the second motor, and thus the rotation shaft, the rotation speed of the low-stage compressor C1 and the middle-stage compressor C2.
  • the refrigerating machine 1 of the present embodiment has a first temperature sensor 33, a second temperature sensor 34, a third temperature sensor 35, a first pressure sensor 36, a second pressure sensor 37, a first power meter 38, and a second power.
  • the opening (opening / closing drive) of the first motor 9, the second motor 11, the first on-off valve 28, the second on-off valve 29, and the third on-off valve 32 is controlled. It includes a controller (control device) 40.
  • ⁇ Buffer tank refrigerant recovery control Operation control during the initial operation period using the buffer line section>
  • the precooling operation control for recovering the refrigerant using the buffer tank will be described.
  • the inflow / outflow amount of the refrigerant R1 with respect to the refrigerant circulation line 8 by the buffer line portion 25 can be controlled by adjusting the opening degree of the first on-off valve 28 and the second on-off valve 29 by the controller 40.
  • the first on-off valve 28 and the second on-off valve 29 are electric valves, including the third on-off valve 32 of the bypass line portion 30.
  • a buffer tank 27 is provided between the low pressure line and the high pressure line in order to increase the rotation speed of the refrigerator 1 at the time of starting, and the discharge pressure of the refrigerator 1 is a constant pressure.
  • the excess refrigerant R1 is recovered so as not to be the above.
  • the controller 40 controls the opening / closing drive of the first on-off valve 28 and adjusts the opening based on the detection results of the first pressure sensor 36 and the second pressure sensor 37, whereby the refrigerant in the high-pressure line and the buffer tank 27 is used.
  • the refrigerant R1 can flow in by utilizing the pressure difference, and the excess refrigerant R1 can be recovered in the buffer tank 27 so that the discharge pressure of the refrigerator 1 does not exceed a certain pressure.
  • Step 1 Control at startup / start of precooling operation
  • the high pressure line and the low pressure line are connected with the stop of the refrigerator 1.
  • the buffer line portion 25 recovers the refrigerant to the buffer tank 27 based on the detection results of the first pressure sensor 36 and the second pressure sensor 37 (Step 2). ..
  • the controller 40 receives the detection results of the first pressure sensor 36 and the second pressure sensor 37, obtains the differential pressure between the refrigerant pressures of the high pressure line and the buffer tank 27 (Step 3), and obtains the refrigerant pressure of the high pressure line and the buffer tank 27. Check whether or not the pressure is balanced at high pressure. For example, if the differential pressure of the refrigerant pressure is equal to or higher than the set value (threshold) such as 10 kPa (Step 4), the first on-off valve 28 is opened and controlled (Step 5). ), The refrigerant is recovered by the buffer line unit 25 (Step 6).
  • the set value such as 10 kPa
  • the controller 40 closes the second on-off valve 29.
  • the first on-off valve 28 is open-controlled (Step 5).
  • the refrigerant R1 While controlling the opening of the first on-off valve 28 (Step 5), the refrigerant R1 is sent to the buffer tank 27 due to the pressure difference between the buffer tank 27 and the high pressure line and temporarily stored (Step 6), and the refrigerant flows through the Brayton cycle.
  • the flow rate (pressure) of R1 decreases. This makes it possible to prevent overload operation (excessive motor load of the first motor 9 and the second motor 11) due to the pressure rise of the refrigerant circulation line 8 at the initial stage of precooling.
  • the first The on-off valve 28 is closed and controlled (Step 8). Further, when the differential pressure of the refrigerant pressure falls below the set value in the above (Step 4), the closed state of the first on-off valve 28 is maintained (Step 8).
  • the differential pressure continues to exceed the installed value, the high-pressure refrigerant R1 is recovered in the buffer tank 27, but the refrigerator 1 is operated. If the pressure (discharge pressure) of the refrigerant R1 on the high-pressure line does not fluctuate significantly, the differential pressure between the buffer tank 27 and the high-pressure line becomes small and is maintained in that state. That is, the exchange of the refrigerant R1 between the buffer tank 27 and the high pressure line is eliminated, the increase / decrease of the refrigerant R1 in the refrigerant circulation line 8 does not occur, and the pressure of the high pressure line is maintained.
  • the refrigerant circulation line 8 (refrigerant flow path system) has a closed structure
  • excess refrigerant R1 can be stored in the buffer tank 27 at room temperature. That is, during the precooling operation, as described above, the opening / closing drive control of the first on-off valve 28 is automatically performed based on the detection results of the first pressure sensor 36 and the second pressure sensor 37 without measuring the flow rate.
  • the recovery amount of the refrigerant R1 can be adjusted, and it is possible to maintain this in a suitable state in which an excessive motor load does not occur.
  • the differential pressure of the refrigerant pressure is obtained from the pressure detection results of (Step 3) to (Step 6), and when the differential pressure is equal to or higher than the set value (threshold value) by the controller 40, the first on-off valve 28 is opened and controlled. , An example of recovering the refrigerant by the buffer line unit 25 is shown.
  • the first on-off valve 28 is open-controlled and the buffer line portion 25 recovers the refrigerant. May be possible.
  • the refrigerant R1 on the high pressure line side temporarily pressurizes and stores excess refrigerant in the buffer tank 27, but as the cooling progresses, the low pressure line and the high pressure line, and eventually the apparatus of the refrigerator 1 /
  • the pressure of the refrigerant R1 in the entire system drops and approaches the pressure state during normal operation. In other words, the pressures of the low-voltage line and the high-voltage line become the pressures during normal operation, and the operation proceeds, so that an excessive motor load does not occur.
  • the first on-off valve 28 is closed when the pressure falls below the buffer mechanism pressure set value (Step 8).
  • some refrigerants R1 have an increased density and a reduced capacity when cooled from room temperature to 100 K or less, for example. Specifically, the temperature of the refrigerant R1 becomes 100 K or less in the equipment and piping from the cold heat recovery heat exchanger 15 to the expander T, from the expander T to the cooling unit 2, and from the cooling unit 2 to the cold heat recovery heat exchanger 15, and the refrigerant becomes The density of R1 increases and the capacity becomes insufficient.
  • the refrigerant capacity of the refrigerant R1 does not change from the outlet of the cold heat recovery heat exchanger 15 of the low pressure line to the inlet of the cold heat recovery heat exchanger 15 of the high pressure line via the compressor because the refrigerant temperature is near normal temperature. .. Therefore, it is necessary to keep the amount corresponding to the decrease in the refrigerant capacity on the high pressure line side and the cooling line side, which are the low temperature side, in the system.
  • the refrigerant R1 is preferentially stored in the buffer tank 27.
  • it is detected by the first pressure sensor 36 and the second pressure sensor 37 so that the excess refrigerant R1 is collected in the buffer tank 27 during the initial operation period from the start to the precooling operation (until the completion of precooling), such as immediately after the start.
  • the first on-off valve 28 for recovering the refrigerant is opened under the condition that the pressure difference is 10 kPa or more, which is a preset value or more.
  • the pressure of the high pressure line is set to the set value (differential pressure) instead of the pressure difference (differential pressure) detected by the first pressure sensor 36 and the second pressure sensor 37.
  • the first on-off valve 28 can be controlled to open and the buffer line portion 25 can recover the refrigerant (FIG. 9 (high pressure line, low pressure line, buffer during stepwise control of bypass control operation). See the figure) showing an example of the pressure fluctuation state of the tank 27).
  • the suction temperature tends to be high, in other words, the refrigerant density tends to be low, and the refrigerant flow rate at the throttle portion of the minimum cross section near the inlet of the expander T becomes small, which causes the compressor.
  • Surging may occur in C1, C2, and C3. Therefore, during the precooling operation, it is necessary to secure a sufficient refrigerant flow rate so that this surging can be suppressed.
  • the refrigerator 1 of the present embodiment includes a bypass line portion 30 including a bypass line 31 capable of returning the refrigerant R1 from the high pressure line to the low pressure line and a third on-off valve 32 of the bypass valve.
  • the low-stage compressor C1 and thus the high-stage compressor C1 are again high without supplying a part of the refrigerant R1 compressed by the high-stage compressor C3 to the expander T. It can be returned to the stage compressor C3. Further, by adjusting the opening degree of the third on-off valve 32 by the controller 40, the flow rate of the refrigerant returned to the compressors C1, C2, and C3 can be adjusted.
  • the refrigerator 1 of the present embodiment surging does not occur and the amount of the refrigerant R1 not used for cooling can be reduced by appropriately changing the opening degree of the third on-off valve 32 according to the operating state at the time of precooling. It enables efficient operation (high COP: Coefficient of Performance) without wasting power.
  • the opening degree of the third on-off valve 32 is set as the refrigerant. It is controlled by the temperature condition of R1 (Step 9), and the pre-cooling operation control including the refrigerator pre-cooling operation control and the bypass control using the bypass line unit 30 is performed. Further, the refrigerator precooling operation control and the bypass control are performed in parallel with the above-mentioned bypass control.
  • Step 9 First, in the refrigerator precooling operation control (Step 9), for example, the operation is performed at a rotation speed of 60% for 10 minutes (Step 10).
  • the opening degree of the third on-off valve 32 is adjusted and controlled based on the refrigerant temperature detected by the first temperature sensor 33 provided in the high pressure line or the second temperature sensor 34 provided in the cooling line.
  • the opening degree of the third on-off valve 32 is stepwisely or continuously controlled by the piper while keeping the cooling rate at the time of precooling (decrease rate of the temperature of the refrigerant) at a preset constant cooling rate such as 60 K / h.
  • the size is reduced so that the opening degree of the third on-off valve 32 becomes 0% when the refrigerant R1 reaches the first target temperature (100K in the present embodiment) (Step 11).
  • Step 12 when the expander outlet temperature reaches the first target temperature (100K), the use of the bypass line portion 30 (bypass control) is stopped (Step 12), and the entire amount of the refrigerant is controlled to be supplied to the expander T (bypass). None control) is performed (Step 13).
  • the outlet side of the expander T detected by the second temperature sensor 34 so that the refrigerant temperature is maintained at the second target temperature or less (67K or less in this embodiment).
  • the number of revolutions of the refrigerator is controlled based on the temperature of the refrigerant in the above (Step 14).
  • the second temperature sensor 34 is used on the outlet side of the expander T.
  • the refrigerant temperature is detected, and the second target temperature is set to 67K or higher with the refrigerant temperature on the outlet side of the expander T as the temperature control point. This prevents the liquid nitrogen from freezing in the cooling unit 2.
  • the temperature control point is switched to the third temperature sensor 35 close to the superconducting cable or the like, and based on the refrigerant temperature on the outlet side of the liquid nitrogen detected by the third temperature sensor 35. Then, the operation of the refrigerator 1 is controlled. As a result, the precooling operation of the refrigerator 1 is completed (Step 15), and the liquid nitrogen to be cooled can be cooled easily and accurately.
  • the refrigerator 1 of the present embodiment includes the first temperature sensor 33 and the second temperature sensor 34, but in some cases, it is composed of only one of the temperature sensors, and the temperature monitoring point and the temperature. It is also possible to reduce the number of sensors.
  • Step 16 By performing bypass control (Step 16) by controlling the opening degree of the on-off valve 32 stepwise or continuously (step control or proportional control), the change in the flow rate to the expander T is reduced. That is, the fluctuation of the cooling capacity when the opening degree fluctuates is suppressed, and the cooling speed control is facilitated.
  • the first reason for controlling the cooling rate to be constant during precooling operation control using the bypass line portion 30 is that if the heat exchanger is rapidly cooled, it may be damaged due to thermal deformation. Is.
  • the second reason is that if the change in the cooling temperature is large, the adjustment range of the opening degree of the third on-off valve 32 and the fluctuation of the rotation speed of the refrigerator become large, and stable operation becomes difficult. That is, since the flow rate of the refrigerant flowing through the bypass line 31 also affects the operation efficiency, the cooling rate is kept constant in order to perform efficient operation.
  • the opening degree control of the third on-off valve 32 of the bypass valve of the bypass line portion 30 and the refrigerator 1 are performed. It was decided to perform temperature control to keep the cooling speed constant by combining the two controls of the rotation speed control.
  • the opening degree of the third on-off valve 32 of the bypass line portion 30 is adjusted without supplying a part of the refrigerant R1 to the expander T.
  • the refrigerant R1 is returned while adjusting the flow rate from the high pressure line to the low pressure line through the bypass line 31 without using a flow meter, and the occurrence of surging is suppressed.
  • the opening degree of the third on-off valve 32 is adjusted stepwisely or continuously (step control or step control or) so as to maintain the flow rate at which surging does not occur. (Proportional control) is performed so that the third on-off valve 32 is closed (opening 0%) when the flow rate of the expander T approaches the design flow rate.
  • the opening control of the third on-off valve 32 of the bypass line portion 30 the flow rate of the refrigerant flowing through the two routes of the expander T and the bypass line 31 is adjusted, and the conditions are set so that the operation can be performed efficiently. become. Therefore, it is conceivable that the control of the refrigerant flow rate by the bypass line portion 30 alone cannot always be performed with high accuracy from the viewpoint of temperature control of the refrigerant R1.
  • the rotation speed control of the refrigerator 1 is performed in addition to controlling the opening degree of the third on-off valve 32 of the bypass line portion 30, the rotation speed control of the refrigerator 1 is performed.
  • the cooling rate was adjusted / corrected so that the cooling rate became constant. That is, in the operation method at the time of precooling of the refrigerator 1 of the present embodiment, the rotation speed of the refrigerator 1 is controlled so that the cooling rate becomes constant according to the magnitude of the deviation between the set target temperature of the refrigerant R1 and the measured temperature. Therefore, the refrigerant temperature can be controlled accurately.
  • the opening degree adjustment control of the third on-off valve 32 of the bypass line portion 30 and the rotation speed control of the refrigerator 1 are used in combination to control the rotation speed of the refrigerator 1 at startup.
  • the occurrence of surging can be suitably suppressed, the cooling rate can be kept constant, and the refrigerant R1 can be cooled accurately, and efficient operation control can be performed.
  • the opening degree of the third on-off valve 32 of the bypass line portion 30 is adjusted by the bypass control (Step 16). Do it step by step or continuously.
  • An example of each using stepwise opening control (step control) and continuous opening control (proportional control) of the third on-off valve 32 of the bypass line portion 30 is given, and the refrigerator 1 of the present embodiment is used. The driving method will be described in detail.
  • Step operation control ⁇ Step-by-step operation control using the bypass line (step operation control)> First, a method of stepwisely controlling the opening degree of the third on-off valve 32 of the bypass valve of the bypass line portion 30 will be described.
  • the refrigerator precooling operation control (see FIGS. 1, 2, and 4)
  • the rotation speed is set to 60% of the maximum value by Step 9) (Step 10), and the opening degree of the third on-off valve 32 is set to 40% (Step 17).
  • the temperature of the refrigerant R1 at the time of starting is measured by the first temperature sensor 33 or the second temperature sensor 34 (Step 18).
  • the opening degree of the third on-off valve 32 is changed stepwise according to the detection temperature of the refrigerant by the first temperature sensor 33 or the second temperature sensor 34. Tego (Step 19).
  • the start point and the end point of the temperature of each step determine the opening step of the third on-off valve 32 (steps 1 to 6: FIG. 6 in this embodiment). For example, assuming that a certain step temperature range is T01 to T02 and the opening degree of the third on-off valve 32 is V01%, the measured temperature Ta of the first temperature sensor 33 or the second temperature sensor 34 is T02 ⁇ Ta ⁇ T01. Continue to maintain the opening degree V01% of the third on-off valve 32.
  • steps (steps 1 to 6) are sequentially changed according to the decrease in the cooling temperature, and the opening degree of the third on-off valve 32 is switched to the opening one step lower for each change to the next step.
  • the flow rate of the refrigerant R1 flowing through the bypass line 31 from the high pressure line to the low pressure line is gradually reduced. Since the amount of refrigerant flowing from the low-stage compressor C1 side to the expander T side increases stepwise according to the stepwise decrease in the flow rate of the refrigerant R1, the cooling rate is kept constant in the refrigerator 1 of the present embodiment.
  • the rotation speed control (refrigerator pre-cooling operation control) is also used.
  • the refrigerator rotation speed at the start is 60%
  • the opening degree of the third on-off valve 32 is 40%
  • the first temperature sensor 33 or the second temperature thereafter Five steps are set until the measured temperature of the refrigerant R1 by the sensor 34 reaches the first target temperature of 100K, and the temperature range at 225K, 190K, 155K, 120K, 100K and the opening degree of the third on-off valve 32 are set. ..
  • the precooling operation method of the refrigerator 1 of the present embodiment can be used.
  • the opening degree of the third on-off valve 32 can be set for each temperature section of each step, and PID control etc. so that the cooling speed becomes a predetermined set value (60 K / h, etc.) in each divided temperature section.
  • Step 20 when the first target temperature reaches 100 K, the opening degree of the third on-off valve 32 becomes 0%, the operation control using the bypass line portion 30 ends, and the operation shifts to the control operation without bypass (Step 20). .. By shifting to this control operation without bypass, the entire amount of refrigerant circulation flows from the compressor to the expander T.
  • the rotation speed is controlled toward the next target temperature of 67K, which is the second target temperature.
  • the second target temperature reaches 67 K
  • control is performed so that the second target temperature is maintained until the nitrogen cycle operation under load (Steps 13, 14, 15).
  • the rotation speed control is not limited to using PID (Proportional-Integral-Differential) control.
  • P (Proportional) control, PI (Proportional-Integral) control, or the like may be used, of course.
  • the stepwise opening adjustment control of the third on-off valve 32 of the bypass line portion 30 and the rotation speed control of the refrigerator 1 are used in combination.
  • stepwise opening adjustment control is performed.
  • the rotation speed is set to 60% of the maximum value by the refrigerator precooling operation control (Step 9) (Step 10), and the opening degree of the third on-off valve 32 is set to 40% (Step 17).
  • the temperature of the refrigerant R1 at the time of starting is measured by the first temperature sensor 33 or the second temperature sensor 34 (Step 18).
  • the opening degree of the third on-off valve 32 is continuously changed according to the detection temperature of the refrigerant by the first temperature sensor 33 or the second temperature sensor 34. Tego (Step 20).
  • the start point and the end point of the temperature of each step determine the opening step of the third on-off valve 32 (steps 1 to 6: FIG. 8 in this embodiment).
  • Step 10 the operation control of 60% rotation speed operation (Step 10) and the third on-off valve valve opening 40% (Step 17) is prioritized, and the temperature of the refrigerant R1 is further cooled to 225K in (Step 18). Since the valve opening degree of 40% is maintained until the valve opening is 40%, continuous operation control is substantially started from (step 2).
  • the opening degree of the third on-off valve 32 is gradually reduced from V01% to V02% between the step temperature range T01 and T02. That is, when the temperature measured by the refrigerant R1 by the first temperature sensor 33 or the second temperature sensor 34 is Ta, the opening V% of the third on-off valve 32 is obtained by the following equation (1).
  • V% V01-((V01-V02) / (T01-T02)) ⁇ (T01-Ta) ... (1)
  • the third on-off valve 32 is continuously controlled according to the opening degree thus determined, and the steps (steps 1 to 6: FIG. 8) are sequentially changed according to the decrease in the cooling temperature accompanying this continuous control.
  • the refrigerant flowing through the bypass line 31 and flowing from the high pressure line to the low pressure line when the opening degree of the third on-off valve 32 is continuously reduced, the refrigerant flowing through the bypass line 31 and flowing from the high pressure line to the low pressure line.
  • the flow rate of R1 decreases continuously.
  • the flow rate of the refrigerant flowing through the bypass line from the high pressure line to the low pressure line continuously decreases. Since the amount of refrigerant flowing from the low-stage compressor C1 side to the expander T side continuously increases as the flow rate of the refrigerant continuously decreases, the cooling speed is kept constant in the refrigerator 1 of the present embodiment.
  • the rotation speed control (refrigerator precooling operation control) is also used.
  • the refrigerator rotation speed at the start is 60%
  • the opening degree of the third on-off valve 32 is 40%
  • the first temperature sensor 33 or the second temperature thereafter
  • the temperature range of 225K, 190K, 155K, 120K, and 100K is set for each temperature range as 4 steps from step 2 to step 5 until the measured temperature of the refrigerant R1 by the sensor 34 reaches the first target temperature of 100K.
  • the opening degree of the third on-off valve 32 is continuously set.
  • the refrigerator of the present embodiment is used.
  • the opening degree of the third on-off valve 32 can be set for each temperature section of each step, and the cooling rate is set to a predetermined value (60 K / h, etc.) in each divided temperature section.
  • Step 13 By shifting to this control operation without bypass, all of the refrigerant circulation amount flows from the compressors C1, C2, and C3 to the expander T.
  • the rotation speed is controlled toward the next target temperature of 67K, which is the second target temperature.
  • the rotation speed control is not limited to using PID (Proportional-Integral-Differential) control.
  • P (Proportional) control, PI (Proportional-Integral) control, or the like may be used, of course.
  • the continuous opening adjustment control of the third on-off valve 32 of the bypass line portion 30 and the rotation speed control of the refrigerator 1 are used in combination.
  • the predetermined rotation speed of the refrigerator is set to RPM (1) (at least the rotation speed of the expander T among the compressors C1, C2, C3 and the expander T is set to the predetermined rotation speed RPM (1)).
  • the operation is started with the opening degree of the third on-off valve 32, which is the bypass valve of the bypass line portion 30, as a predetermined opening degree V% (2) (starting operation step).
  • the refrigerant temperature on the inlet side of the expander T or the refrigerant temperature on the outlet side of the expander T is detected by the first temperature sensor 33 or the second temperature sensor 34. Then, the opening degree V% of the third on-off valve 32 until the refrigerant temperature on the inlet side of the expander T or the refrigerant temperature on the outlet side of the expander T becomes, for example, from 190K (225K) to 100K, which is the first target temperature.
  • the refrigerant R1 of the high pressure line is circulated to the low pressure line through the bypass line 31 while gradually or continuously reducing the temperature. Further, the refrigerant R1 is cooled from the temperature at the time of starting to the first target temperature while performing stepwise or continuous control of the opening degree V% of the third on-off valve 32 (bypass control operation step).
  • the cooling rate is kept constant until at least the cooling target temperature (first target temperature, second target temperature) is reached, respectively.
  • the rotation speed of the refrigerator 1 is continuously adjusted and controlled based on the temperature of the refrigerant by the temperature sensor 34 (cooling speed control step).
  • the refrigerant pressure of the high pressure line is set in advance by the first pressure sensor 36 and the second pressure sensor 37 than the pressure of the buffer tank 27.
  • the first on-off valve 28 is opened and the refrigerant R1 is recovered in the buffer tank 27 using the pressure difference (refrigerant recovery step).
  • the pre-cooling operation is completed when the cooling reaches the second target temperature and the refrigerant temperature becomes constant, and after the completion of this pre-cooling operation,
  • the refrigerant of the cooling target side circulation line 16 in the third temperature sensor 35 that detects the temperature of the cooling target refrigerant R2 at the refrigerant temperature detection point by the first temperature sensor 33 or the second temperature sensor 34. Switch to the temperature detection point and shift to the main cooling operation (main cooling operation switching process).
  • the opening adjustment of the third on-off valve 32 and the adjustment control of the bypass flow rate of the refrigerant are performed based on the detected values of the first temperature sensor 33 or the second temperature sensor 34 provided near the inlet and the outlet of the expander T.
  • surging avoidance can be achieved by controlling the flow rate of the refrigerant R1 without detecting the flow rate of the refrigerant R1, so that the apparatus configuration can be simplified. It is possible to improve safety while aiming for. Further, precooling by operating the compressors C1, C2, C3 and the expander T at a high rotation speed becomes possible, and smooth precooling operation can be realized.
  • the rotation speed is controlled steplessly, but in order to carry out the stepless control of the rotation speed, a flow meter that measures the refrigerant flow rate is used. Will be used. This complicates the device configuration. Further, a method of keeping the opening degree of the third on-off valve 32 constant is conceivable, but in this case, the amount of the refrigerant R1 that is unnecessarily bypassed increases as the cooling progresses.
  • the opening degree of the third on-off valve 32 is increased at an appropriate timing, the refrigerant R1 is released from the high pressure line to the low pressure line without recovering the refrigerant R1 in the buffer tank 27.
  • the flow rate of the refrigerant R1 can be secured. This makes it possible to suppress surging of the compressors C1, C2, and C3 during precooling, even if the buffer line portion 25 is not necessarily provided.
  • FIG. 9 is a diagram showing an example of a state of pressure fluctuation of the high-voltage line, the low-voltage line, and the buffer tank 27 in the bypass control operation (during stepwise control).
  • (a) is at the start of refrigerator operation
  • (b) is the end point of step 1 of the initial operation control (refrigerant temperature: 225 K)
  • (c) is stepwise or continuous.
  • the end point of step 2 of the operation control (refrigerant temperature: at 190 K) and (d) indicate the end point of step 5 of the stepwise or continuous operation control (refrigerant temperature: at 100 K), respectively.
  • the refrigerant pressure in the high-pressure line increases from (a) at the start of operation of the refrigerator to (b) at the end point of step 1 (corresponding to step 1). Therefore, the first on-off valve 28 is open-controlled between (a) and (b), and the refrigerant is recovered by the buffer line unit 25. That is, in the operation method of the refrigerator 1 and the refrigerator 1 of the present embodiment, the pressure of the high pressure line becomes the set value (threshold value) or more between (a) and (b), and at this time, the first on-off valve 28 is opened and controlled, and the refrigerant is recovered by the buffer line unit 25.
  • the fluctuation of the internal pressure of the buffer tank 27 between (a) and (b) is substantially the same as the fluctuation of the refrigerant pressure in the high pressure line (shows the same behavior / tendency).
  • step 2 the opening degree of the third on-off valve (bypass valve) 32 of the bypass line portion 30 decreases. (For example, reduced from 40% to 35%), and the amount of refrigerant bypass is reduced. As a result, between (b) and (c), the amount of refrigerant from the compressor C3 to the expander T increases, and the pressure in the high-pressure line temporarily increases.
  • the pressure of the high pressure line is equal to or higher than the set value (threshold value) between (b) and (c) (corresponding to step 2), in other words.
  • the first on-off valve 28 is controlled to be opened between (b) and (c), and the refrigerant is recovered by the buffer line unit 25. That is, the refrigerant is recovered in a region where the refrigerant pressure of the high pressure line is higher than the internal pressure of the buffer tank 27.
  • the opening degree of the third on-off valve 32 is constant between (a) and (b), that is, until the refrigerant temperature reaches approximately 225 K. And continue the cooling operation.
  • the valve control of the third on-off valve 32 is performed between (a) and (b)
  • the disturbance as seen between (b) and (c) occurs, and the refrigerant in the high-pressure line is used. Fluctuations in pressure and rotation speed may occur, resulting in a decrease in operating efficiency when maintaining a constant cooling rate of the refrigerant. Therefore, in the operation method of the refrigerator 1 and the refrigerator 1 of the present embodiment, even when stepwise or continuous operation control is performed, the third opening / closing in step 1 between (a) and (b) is performed. The opening degree of the valve 32 is not changed and is maintained at a constant opening degree.
  • the refrigerant recovery in the buffer tank 27 is firstly carried out during the initial operation between (a) and (b) (refrigerant temperature up to 225 K). ) To recover the excess refrigerant, and secondly, when the opening degree of the third on-off valve 32 is changed, the amount of the pressure increase of the refrigerant can be temporarily recovered.
  • the refrigerating function is adjusted according to the state of the heat load during the normal operation after the transition control to the normal (steady) operation is performed.
  • the second on-off valve 29 is opened and controlled to return the refrigerant R1 stored in the buffer tank 27 to the low pressure line 8a.
  • the first on-off valve 28 is opened and controlled to recover the refrigerant R1 in the buffer tank 27.
  • the set temperature of the refrigerant R1 is used as a determination condition for adjusting the refrigerating functional force, that is, as a determination condition for opening / closing drive control of the first on-off valve 28 and the second on-off valve 29.
  • the rotation speed of the refrigerator 1 (the rotation speed of the first motor 9 and the second motor 11, and by extension, the rotation speeds of the compressors C1, C2, and C3) is used.
  • a third pressure sensor 41 is provided on the low voltage line.
  • the refrigerant temperature detected by the first temperature sensor 33 is equal to or higher than a preset set temperature (insufficient pressure), and the refrigerator rotation speed is 100% (motor).
  • a preset set temperature insufficient pressure
  • the refrigerator rotation speed is 100% (motor).
  • the pressure of the buffer tank 27 is reduced by a certain pressure
  • the refrigerant temperature is below the set temperature (the amount of refrigerant is excessive)
  • the refrigerator rotation speed is below 100% (motor load). Closes when it rises).
  • the pressure of the high-pressure line, the buffer tank 27, and the low-pressure line is measured by each pressure sensor, and the refrigerant R1 is discharged and recovered under the condition of the set differential pressure or higher.
  • the refrigerant temperature detected by the first temperature sensor 33 is equal to or lower than a preset set temperature (the amount of refrigerant is excessive), and the refrigerator rotation speed is 98% or the like.
  • a preset set temperature the amount of refrigerant is excessive
  • the refrigerator rotation speed is 98% or the like.
  • the capacity of the buffer tank 27 is limited, and it is necessary to adjust the amount of refrigerant recovered and the recovery time.
  • the opening / closing drive control of the first on-off valve 28 and the second on-off valve 29 is performed.
  • the amount of refrigerant recovered and the recovery time can be adjusted, and the refrigerating function can be adjusted and maintained in a suitable state during normal operation.
  • the precooling operation method of the refrigerator and the refrigerator of the present disclosure has been described above, the precooling operation method of the refrigerator and the refrigerator according to the present disclosure is limited to the above embodiment. However, it can be changed as appropriate within the range that does not deviate from the purpose, including examples of changes.
  • the refrigerator is provided with three compressors of a low-stage compressor, a middle-stage compressor, and a high-stage compressor, but at least a low-stage compressor and a high-stage compressor are configured. It is not necessary to limit the number of compressors as long as the compressor is provided.
  • one controller 40 includes a first temperature sensor 33, a second temperature sensor 34, a third temperature sensor 35, a first pressure sensor 36, a second pressure sensor 37, a first power meter 38, and a first controller.
  • the opening (opening / closing drive) of the first motor 9, the second motor 11, the first on-off valve 28, the second on-off valve 29, and the third on-off valve 32 is determined. It is supposed to be controlled, but the controller does not necessarily have to be one. That is, it may be configured to include a plurality of controllers that share and receive the detection results of each sensor and share and control each motor and valve.
  • the embodiment of the refrigerator and the operation method at the time of precooling of the refrigerator of the present disclosure is effective not only when the refrigerator is started from a state where the pressure is equalized at room temperature but also when the refrigerator is restarted immediately after stopping. Works for. In that case, even if the refrigerant temperature of the refrigerator or the temperature of the low-temperature equipment has not risen, the controller performs refrigerating machine precooling operation control, bypass control, and buffer tank refrigerant recovery control based on the measured values of various sensors. Therefore, the pre-cooling operation can be started and continued without any trouble.
  • the refrigerator (refrigerator 1) is a compressor (high-stage compressor C3) that compresses a refrigerant (refrigerator R1), and a compressor and a motor (first motor 9).
  • An expander-integrated compressor (expander-integrated compressor 7) including an expander (expander T) for expanding a compressor that is connected via a driveable rotary shaft and compressed by the compressor, and expansion.
  • a cooling unit (cooling unit 2) for cooling the cooling target (cooling target, liquid nitrogen, secondary refrigerant R2) by the refrigerant expanded by the machine, and a low-stage compressor (low-stage compressor) from the expander via the cooling unit.
  • a refrigerant circulation line for circulating a refrigerant with a low pressure line leading to the compressor C1), a medium pressure line from the low stage compressor to the high stage compressor, and a high pressure line from the high stage compressor to the expander.
  • the circulation line 8) and one end are connected to the first connection portion (first connection portion S1) provided in the high pressure line, and the other end is connected to the second connection portion (second connection portion S2) provided in the low pressure line.
  • It is provided with a connected bypass line (bypass line 31) and a bypass valve (third on-off valve 32) provided in the bypass line and capable of adjusting the flow rate of the refrigerant flowing through the bypass line by adjusting the opening degree. ..
  • the low-stage compressor and thus the high-stage compressor can be used again without supplying a part of the refrigerant compressed by the high-stage compressor to the expander. Can be returned to. Further, by adjusting the opening degree of the bypass valve, the flow rate of the refrigerant returned to the compressor and eventually the flow rate of the refrigerant flowing to the expander can be changed.
  • the opening degree of the bypass valve can be appropriately changed according to the operating state to prevent surging and reduce the amount of refrigerant not used for cooling. Efficient (high COP) operation is possible without wasting.
  • the refrigerator according to another aspect of the present disclosure is the refrigerator of the above (1) for detecting the temperature of the refrigerant flowing between the first connection portion and the expander in the high pressure line.
  • a temperature sensor (first temperature sensor 33) and a controller (controller 40, control device) for controlling the opening degree of the bypass valve and the rotation speed of the rotating shaft based on the detection result of the temperature sensor are provided. ..
  • the opening adjustment of the bypass valve and the adjustment control of the flow rate of the bypassing refrigerant are performed, and the temperature of the refrigerant flowing between the first connection portion and the expander, such as near the inlet of the expander, is detected.
  • the temperature of the refrigerant flowing between the first connection portion and the expander is detected.
  • surging avoidance can be achieved by controlling the flow rate of the refrigerant without detecting the flow rate of the refrigerant, so that safety can be improved while simplifying the device configuration.
  • precooling by operating the compressor or expander at high speed becomes possible, and smooth precooling operation can be realized.
  • the occurrence of surging can be suppressed more preferably than before, the cooling rate can be kept constant, and the refrigerant can be cooled accurately, and efficient operation control can be performed.
  • the refrigerator according to another aspect of the present disclosure is the refrigerator of the above (1), and is a temperature sensor for detecting the temperature of the refrigerant between the cooling unit and the expander in the low pressure line (3).
  • a second temperature sensor 34) and a controller for controlling the opening degree of the bypass valve and the rotation speed of the rotating shaft based on the detection result of the temperature sensor are provided.
  • the temperature at which the opening degree of the bypass valve is adjusted and the flow rate of the refrigerant to be bypassed is adjusted to detect the temperature of the refrigerant flowing between the cooling unit and the expander, such as near the outlet of the expander.
  • surging avoidance can be achieved by controlling the flow rate of the refrigerant without detecting the flow rate of the refrigerant, so that safety can be improved while simplifying the device configuration.
  • precooling by operating the compressor or expander at high speed becomes possible, and smooth precooling operation can be realized.
  • the occurrence of surging can be suppressed more preferably than before, the cooling rate can be kept constant, and the refrigerant can be cooled accurately, and efficient operation control can be performed.
  • the refrigerator according to another aspect of the present disclosure is the refrigerator according to the above (2) or (3), and the controller is used in the initial operation period from the start of the refrigerator to the completion of the precooling operation.
  • the bypass valve is controlled so that the opening degree gradually decreases until the temperature of the refrigerant detected by the temperature sensor reaches the preset first target temperature, and the rate of decrease in the temperature of the refrigerant detected by the temperature sensor is reduced.
  • the number of revolutions is controlled so that the temperature is kept constant.
  • the cooling speed is controlled by controlling the rotation speed of the refrigerator (compressor, expander) in addition to controlling the opening degree of the bypass valve during the initial operation period from the start to the completion of precooling.
  • the opening of the bypass valve can be set for each temperature section of each step, and cooling is performed in each divided temperature section.
  • the rotation speed can be controlled so that the speed becomes a predetermined constant value. This enables stable precooling operation with little fluctuation in the rotation speed and pressure of the refrigerator.
  • the refrigerator according to another aspect of the present disclosure is the refrigerator according to the above (2) or (3), and the controller is used in the initial operation period from the start of the refrigerator to the completion of the precooling operation.
  • the bypass valve is controlled so that the opening degree is continuously reduced until the temperature of the refrigerant detected by the temperature sensor reaches the preset first target temperature, and the rate of decrease in the temperature of the refrigerant detected by the temperature sensor is reduced.
  • the number of revolutions is controlled so that the temperature is kept constant.
  • the cooling speed is controlled by controlling the rotation speed of the refrigerator (compressor, expander) in addition to controlling the opening degree of the bypass valve during the initial operation period from the start to the completion of precooling.
  • the opening of the bypass valve can be set for each temperature section of each step, and cooling is performed in each divided temperature section.
  • the rotation speed can be controlled so that the speed becomes a predetermined constant value. This enables stable precooling operation with little fluctuation in the rotation speed and pressure of the refrigerator.
  • the refrigerating machine is the refrigerating machine according to the above (4) or (5), and in the controller, the temperature of the refrigerant detected by the temperature sensor has reached the first target temperature.
  • the bypass valve is controlled so that the opening degree becomes 0% at the stage, and the temperature of the refrigerant detected by the temperature sensor reaches the second target temperature set lower than the first target temperature at a temperature lower than the first target temperature.
  • the rotation speed is controlled so that the rate of decrease in the temperature of the refrigerant detected by the temperature sensor is kept constant while maintaining the opening degree at 0%.
  • the opening degree of the bypass valve becomes 0%
  • the operation control using the bypass line is completed, and the amount of refrigerant circulating from the compressor to the expander. Shift to controlled operation without bypass in which all of the flow flows.
  • the rotation speed is controlled so that the cooling speed is kept constant toward the second target temperature, which is the next target temperature.
  • the stepwise or continuous opening adjustment control of the bypass valve and the rotation speed control of the refrigerator can be used together to more effectively suppress the occurrence of surging during the initial operation period from the start to the completion of pre-cooling.
  • the cooling rate can be kept constant to cool the refrigerant accurately, and efficient operation control can be performed.
  • the refrigerating machine is the refrigerating machine according to the above (6) for heat exchange between a secondary refrigerant (refrigerant R2 for cooling target) for cooling a cooling target and a refrigerant.
  • a heat exchanger cooling unit, secondary load heat exchanger 2
  • a secondary refrigerant temperature sensor third temperature sensor 35
  • the controller is a temperature sensor.
  • the temperature detection point is switched from the temperature sensor to the secondary refrigerant temperature sensor when the second target temperature is reached, and the rotation speed is controlled based on the detection result of the secondary refrigerant temperature sensor. This makes it possible to smoothly shift from the precooling operation during the initial operation period to the normal (steady) operation.
  • the refrigerating machine is the refrigerating machine according to any one of (1) to (7) above, and is a high-pressure line by the refrigerant after being used for cooling the object to be cooled in the cooling unit.
  • a third connection portion (third connection portion S3) provided between the cold heat recovery heat exchanger (cold heat recovery heat exchanger 15) for cooling the refrigerant and the cold heat recovery heat exchanger and the expander having one end of the high pressure line. ), And the other end is provided in the buffer line (buffer line 26) connected to the fourth connection portion (fourth connection portion S4) provided between the expander and the cooling portion of the low pressure line, and the buffer line.
  • a high-pressure side buffer valve (first on-off valve 28) provided between the buffer tank (buffer tank 27) capable of storing the refrigerant sent from the high-pressure line and the buffer tank and the third connection portion of the buffer line. ), The low-pressure side buffer valve (second on-off valve 29) provided between the buffer tank and the fourth connection portion of the buffer line, and between the first connection portion and the third connection portion of the high-pressure line.
  • a first pressure sensor (first pressure sensor 36) for detecting the pressure of the refrigerant in the buffer tank
  • second pressure sensor second pressure sensor 37
  • a controller for controlling the opening degree of the high pressure side buffer valve and the low pressure side buffer valve according to the detection result of the second pressure sensor is provided.
  • the refrigerant pressure in the high-pressure line is larger than the pressure in the buffer tank by the first pressure sensor and the second pressure sensor during the precooling operation from the start.
  • the high pressure side buffer valve can be opened and the pressure difference can be used to recover the refrigerant in the buffer tank. This makes it possible to more effectively suppress the occurrence of excessive motor load and surging.
  • the method of operating the refrigerator during precooling is a compressor that compresses the refrigerant, and is connected via a compressor and a rotary shaft that can be driven by a motor, and is compressed by the compressor.
  • An expander-integrated compressor including an expander for expanding the refrigerant, a cooling unit for cooling the object to be cooled by the refrigerant expanded by the expander, and a low-stage compressor from the expander via the cooling unit.
  • the start-up operation process is performed, and the bypass control operation process is controlled by the controller so that the opening degree of the bypass valve is gradually reduced until the temperature of the refrigerant detected by the temperature sensor reaches the preset first target temperature.
  • the opening degree of the bypass valve is set to 0%, and the refrigerant is cooled from the first target temperature to the preset second target temperature.
  • the cooling rate control process that controls the rotation speed so that the decrease rate of the refrigerant temperature is kept constant at least in the bypass control operation process by the controller. Prepared.
  • the low-stage compressor is compressed again without supplying a part of the refrigerant compressed by the high-stage compressor to the expander. It can be returned to the high-stage compressor. Further, by adjusting the opening degree of the bypass valve, the flow rate of the refrigerant returned to the compressor and eventually the flow rate of the refrigerant flowing to the expander can be changed.
  • the opening degree of the bypass valve can be appropriately changed according to the operating state to prevent surging and reduce the amount of refrigerant not used for cooling. Efficient (high COP) operation without waste is possible.
  • the cooling speed is adjusted / corrected by controlling the rotation speed of the refrigerator (compressor, expander) in addition to controlling the opening of the bypass valve, and the cooling speed is adjusted.
  • the refrigerant is controlled. Compared with the case of detecting the flow rate of the device, it is possible to perform control with high accuracy without complicating the device configuration.
  • surging avoidance can be achieved by controlling the flow rate of the refrigerant without detecting the flow rate of the refrigerant, so that safety can be improved while simplifying the device configuration.
  • precooling by operating the compressor or expander at high speed becomes possible, and smooth precooling operation can be realized.
  • the occurrence of surging can be suppressed more preferably than before, the cooling rate can be kept constant, and the refrigerant can be cooled accurately, and efficient operation control can be performed.
  • the operation method at the time of precooling of the refrigerator according to another aspect of the present disclosure is the operation method of the refrigerator according to the above (9), and is detected by the temperature sensor by the controller in the bypass control operation step.
  • the opening degree of the bypass valve is controlled to be gradually reduced until the temperature of the refrigerant reaches the preset first target temperature.
  • the opening of the bypass valve can be set for each temperature section of each step, and cooling is performed in each divided temperature section.
  • the rotation speed can be controlled so that the speed becomes a predetermined constant value. This enables stable precooling operation with little fluctuation in the rotation speed and pressure of the refrigerator.
  • the operation method at the time of precooling of the refrigerator according to another aspect of the present disclosure is the operation method of the refrigerator according to the above (9), and is detected by the temperature sensor by the controller in the bypass control operation step. It is controlled so that the opening degree of the bypass valve is continuously reduced until the temperature of the refrigerant reaches the preset first target temperature.
  • the opening of the bypass valve can be set for each temperature section of each step, and cooling is performed in each divided temperature section.
  • the rotation speed can be controlled so that the speed becomes a predetermined constant value. This enables stable precooling operation with little fluctuation in the rotation speed and pressure of the refrigerator.
  • the operation method at the time of precooling of the refrigerator according to another aspect of the present disclosure is the operation method of the refrigerator according to any one of (9) to (11) above, and the refrigerator cools the object to be cooled. It is equipped with a heat exchanger for heat exchange between the secondary refrigerant and the refrigerant, and a secondary refrigerant temperature sensor for detecting the temperature of the secondary refrigerant, and the controller has the temperature of the refrigerant detected by the temperature sensor. 2
  • a main cooling operation switching step is provided in which the rotation speed is controlled based on the detection result of the secondary refrigerant temperature sensor when the temperature becomes lower than the target temperature.
  • the temperature detection point by the secondary refrigerant temperature sensor is switched from the temperature sensor when the second target temperature is reached, and the detection result of the secondary refrigerant temperature sensor is obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

低段圧縮機(C1)及び高段圧縮機(C3)の少なくとも2つの圧縮機と、膨張機(T)と、膨張機(T)で膨張させた冷媒(R1)によって冷却対象(R2)を冷却するための冷却部(2)と、冷媒を循環させるための冷媒循環ライン(8)と、冷媒循環ライン(8)の高圧ラインと低圧ラインに接続したバイパスライン(31)と、バイパスバルブ(32)と、膨張機(T)の入口側の冷媒(R1)の温度を検出する第1温度センサ(33)又は膨張機(T)の出口側の冷媒(R1)の温度を検出する第2温度センサ(34)と、第1温度センサ(33)又は第2温度センサ(34)の検出結果に基づいて、バイパスバルブ(32)の開度、及び冷凍機(1)の回転数を制御するためのコントローラ(40)と、を備える。

Description

冷凍機及び冷凍機の予冷時の運転方法
 本開示は、冷凍機及び冷凍機の予冷時の運転方法に関する。
 ブレイトンサイクルを冷凍サイクルに用いることによって極低温を実現でき、例えば、超電導機器の冷却、各種ガスの液化、液体窒素の代替などとして利用可能な冷凍機が医療や食品などの各種技術分野で実用化され、大きな注目を集めている。
 この種の冷凍機の一例としては、冷却対象を冷媒との熱交換によって冷却する冷却部と、冷媒を圧縮するための低段圧縮機と、冷媒を圧縮するための中段圧縮機及び冷媒を膨張させるための膨張機を一体化した膨張機一体型圧縮機と、冷媒をさらに圧縮するための高段圧縮機と、上記複数の圧縮機、膨張機、冷却部等に冷媒を給送して循環させる冷媒循環ラインと、を備えて構成したものがある(例えば、特許文献1参照)。なお、膨張機一体型圧縮機は、中段圧縮機と膨張機ではなく、高段圧縮機と膨張機を一体化して構成されている場合もある。
 上記のように構成した冷凍機では、例えば、モータによって回転駆動する低段圧縮機で一段圧縮した冷媒が熱交換器で冷却された後、中段圧縮機に送られ、モータによって回転駆動する中段圧縮機でさらに圧縮される。中段圧縮機で二段圧縮した冷媒は、熱交換器で冷却された後、モータによって回転駆動する高段圧縮機でさらに圧縮される。高段圧縮機で三段圧縮した冷媒は、熱交換器で冷却された後、冷熱回収熱交換器でさらに冷却されて膨張機に送られ、膨張機によって冷媒自体が断熱膨張して低圧低温となる。
 低圧低温となった冷媒は冷却部(熱交換器)に送られて冷却対象を冷却する。その後、冷媒は冷熱回収熱交換器に送られ、そこで膨張機に送られる冷媒を冷却した後、低段圧縮機に戻される。
 また、この種の冷凍機には、冷媒循環ラインの高段圧縮機と膨張機までの高圧ライン、膨張機から低段圧縮機までの低圧ラインに接続したバッファラインと、バッファラインに設けられたバッファタンクと、バッファタンクの高圧ライン側と低圧ライン側(入口側と出口側)にそれぞれ設けられたバルブ(開閉弁)と、からなるバッファライン部を備えて構成したものがある(例えば、特許文献1参照)。
 これらの冷凍機では、熱負荷検出手段によって冷却対象の熱負荷の変動が検出された場合に、バッファタンクの前後のバルブを開度制御により冷媒ラインにおける冷媒流量を制御することで、冷凍能力を調整している。
再公表WO2016/178272号公報
 ここで、上記従来の圧縮機一体型膨張機を備えた冷凍機においては、冷凍機の停止中、冷媒温度上昇によって冷媒循環ラインの系内で冷媒圧力が高くなり、この状態で、冷媒循環ラインの高段圧縮機と膨張機までの高圧ラインと、膨張機から低段圧縮機までの低圧ラインとの冷媒の圧力が均衡(高低圧が均圧)する。
 このため、均圧状態で、低圧ライン側の圧力が通常運転時よりも高く、この冷媒圧力が高くなった状態で冷凍機を起動運転すると、高圧ライン側の圧力が過大に上昇しやすく、特にモータ駆動の圧縮機一体型膨張機を備えて構成されていることにより、モータ負荷が高くなって、モータ容量によっては運転回転数を制限する必要が生じるケースがあった。
 また、冷媒圧力が高くなった状態で冷凍機を起動運転した際に、循環経路では、定格運転条件で最も密度が高くなる膨張機の入口付近の流路に最小断面が存在するため、予冷時には膨張機の吸入温度が高くなりやすい(冷媒密度が低くなりやすい)。すると、当該箇所における冷媒流量が少なくなる膨張機の入口でチョーク現象によって圧縮機のサージングが発生するおそれがあった。この起動運転時のサージングにおいても、モータ駆動の圧縮機一体型膨張機を備え、高圧ライン側の圧力が過大に上昇した場合に発生しやすくなる。
 よって、上記従来の冷凍機においては、起動時から予冷運転時の初期運転期間に、高圧圧力が定常運転圧力よりも大きく上昇することを抑え、モータの過大負荷やサージングの発生を抑止して運転効率の良い予冷運転を可能にするという点で、改善の余地が残されていた。
 本開示は、上記事情に鑑み、起動時から予冷運転時の初期運転期間において、高圧圧力が定常運転圧力から大きく上昇することを抑止でき、モータの過大負荷やサージングの発生を抑止することを可能にするとともに、運転効率(冷媒、冷却対象の冷却効率)の向上を可能にする冷凍機及び冷凍機の予冷時の運転方法を提供することを目的とする。
 本開示の冷凍機の一態様は、冷媒を圧縮する圧縮機、及び、前記圧縮機とモータによって駆動可能な回転軸を介して連結され、前記圧縮機で圧縮された前記冷媒を膨張させるための膨張機を含む膨張機一体型圧縮機と、前記膨張機で膨張された前記冷媒によって冷却対象を冷却するための冷却部と、前記膨張機から前記冷却部を介して前記低段圧縮機に至る低圧ライン、及び前記低段圧縮機から前記高段圧縮機に至る中圧ライン、前記高段圧縮機から前記膨張機に至る高圧ラインを備えて前記冷媒を循環させるための冷媒循環ラインと、一端を前記高圧ラインに設けられた第1接続部に接続し、他端を前記低圧ラインに設けられた第2接続部に接続されたバイパスラインと、前記バイパスラインに設けられ、開度を調整することにより前記バイパスラインを流れる前記冷媒の流量を調整可能なバイパスバルブと、を備えた。
 さらに、高圧ラインの冷媒ガスを回収するバッファタンクも備えることが望ましい。
 本開示の冷凍機(及びこの冷凍機の予冷時の運転方法)によれば、起動時から予冷運転時の初期運転期間において、高圧圧力が定常運転圧力から大きく上昇することをバッファタンクやバイパスラインを用いて効果的に抑止することができる。さらに、冷媒の流量検出に代わり温度検出に基づいてバイパスラインの開度及び回転数を制御することも可能になる。これにより、起動時から予冷運転時の初期運転期間に、モータの過大負荷やサージングの発生を抑止することが可能になり、安定した予冷運転を行い、運転効率(冷媒、冷却対象の冷却効率)の向上を図ることが可能になる。
本開示の一実施形態に係る冷凍機の一例を示す図である。 本開示の一実施形態に係る冷凍機の予冷時の運転方法において、起動時から予冷運転時(予冷運転完了まで)の初期運転期間における運転方法の一例を示すフロー図である。 本開示の一実施形態に係る冷凍機の予冷時の運転方法において、起動時から予冷運転時(予冷運転完了)までの初期運転期間におけるバッファライン部の制御動作の一例を示すフロー図である。 本開示の一実施形態に係る冷凍機及び冷凍機の予冷時の運転方法を用いた場合の運転時間と冷媒温度の関係、運転時間とバイパスバルブの開度の関係の一例を示す図である。 本開示の一実施形態に係る冷凍機の予冷時の運転方法において、起動時から予冷運転時の初期運転期間におけるバイパス制御運転を示す図であり、段階的(ステップ)制御を行う場合の制御フローの一例を示す図である。 本開示の一実施形態に係る冷凍機の予冷時の運転方法において、段階的(ステップ)制御によってバイパス制御運転を行った場合の冷媒温度とバイパスバルブの開度の関係の一例を示す図である。 本開示の一実施形態に係る冷凍機の予冷時の運転方法において、起動時から予冷運転時の初期運転期間におけるバイパス制御運転を示す図であり、連続的(比例)制御を行う場合の制御フローの一例を示す図である。 本開示の一実施形態に係る冷凍機の予冷時の運転方法において、連続的(比例)制御によってバイパス制御運転を行った場合の冷媒温度とバイパスバルブの開度の関係の一例を示す図である。 本開示の冷凍機の起動時から予冷運転時の初期運転期間における高圧ラインや低圧ライン、バッファタンクの圧力変動の状態の一例を示す図である。
 以下、図1から図9を参照し、本開示の幾つかの実施形態に係る冷凍機及び冷凍機の予冷時の運転方法について説明する。
 ただし、これらの実施形態に記載されている又は図面に示されている構成部品の寸法、材質、形状及びその相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
 例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 一方、一つの構成要素を「備える」、「具える」、「具備する」、「含む」、又は「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
 なお、本開示は、ブレイトンサイクルを冷凍サイクルに用いることによって極低温を実現できる冷凍機及び冷凍機の予冷時の運転方法に関するものであり、特に、起動時から予冷運転時(予冷完了まで)の初期運転期間における好適な運連制御が可能な冷凍機及び冷凍機の予冷時の運転方法に関するものである。
(冷凍機)
 具体的に、本実施形態の冷凍機1は、例えば、図1に示すように、冷却対象(本実施形態では冷却対象側の冷媒R2を冷媒R1との熱交換によって冷却するための冷却部(二次側負荷熱交換器)2と、冷媒R1を圧縮するための低段圧縮機C1と、さらに冷媒R1を圧縮するための中段圧縮機C2と、さらに冷媒R1を圧縮するための高段圧縮機C3及び冷媒R1を膨張させるための膨張機Tを一体化した膨張機一体型圧縮機7と、低段圧縮機C1、中段圧縮機C2、高段圧縮機C3、膨張機T、冷却部2等に冷媒R1を順次給送して循環させる冷媒循環ライン8と、を備えて構成されている。
 膨張機一体型圧縮機7は、高段圧縮機C3と膨張機Tとに加え、高段圧縮機C3及び膨張機Tに出力軸の両端部をそれぞれ接続し、出力軸ひいては高段圧縮機C3と膨張機Tを軸線周りに回転駆動するための第1モータ9を備えている。
 また、本実施形態の冷凍機1では、低段圧縮機C1と中段圧縮機C2も一体型で構成され、この一体型圧縮機10は、低段圧縮機C1と中段圧縮機C2に出力軸の両端部をそれぞれ接続し、出力軸ひいては低段圧縮機C1と中段圧縮機C2を軸線周りに回転駆動するための第2モータ11を備えている。
 また、本実施形態の冷凍機1は、低段圧縮機C1、中段圧縮機C2、高段圧縮機C3、膨張機Tを冷媒循環ライン8で直列に接続して構成されている。
 冷媒循環ライン8は、膨張機Tから低段圧縮機C1までの間が低圧ラインとされ、高段圧縮機C3から膨張機Tまでの間の高圧ラインとされている。低段圧縮機C1から高段圧縮機C3までの間が中圧ラインとされている。
 第1中圧ラインには、低段圧縮機C1から吐出された冷媒を冷却するための第1熱交換器12、中段圧縮機C2から吐出された冷媒R1を冷却するための第2熱交換器13、高圧ラインには、高段圧縮機C3から吐出された冷媒を冷却するための第3熱交換器14がそれぞれ配設されている。また、高圧ラインの第3熱交換器14と膨張機Tの間には、冷熱回収熱交換器(再生熱交換器)15が設けられている。
 第1熱交換器12、第2熱交換器13、第3熱交換器14は、例えば冷却水wなどによって冷媒R1を冷却する。冷熱回収熱交換器15は、冷却部2で冷却対象R2の冷却に用いられた後の冷媒R1によって高圧ラインの冷媒R1を冷却する。
 また、低圧ラインの膨張機Tから冷熱回収熱交換器15の間に冷却部2が設けられている。なお、本実施形態において、冷却ラインは低圧ラインの一部とされている。
 本実施形態では、冷却部2の熱交換器に送られた冷媒R1で冷却する冷却対象が冷却対象用冷媒(二次冷媒)R2であり、この冷却対象用冷媒R2は冷却対象側循環ライン16を循環して順次冷却部2に送られて所定温度に冷却される。
 上記構成からなる本実施形態の冷凍機1では、第2モータ11によって回転駆動する低段圧縮機C1で一段圧縮した冷媒が第1熱交換器12で冷却された後、中段圧縮機C2に送られ、第2モータ11によって回転駆動する中段圧縮機C2でさらに圧縮される。中段圧縮機C2で二段圧縮した冷媒R1は、第2熱交換器13で冷却された後、第1モータ9によって回転駆動する高段圧縮機C3でさらに圧縮される。高段圧縮機C3で三段圧縮した冷媒R1は、第3熱交換器14で冷却された後、さらに冷熱回収熱交換器15で冷却されて膨張機Tに送られ、膨張機Tによって断熱膨張し、冷熱を生成する。すなわち、冷媒自体が断熱膨張して低圧低温となる。高段圧縮機C3及び膨張機Tもまた、共通の動力源である第1モータ9の出力軸の両端にそれぞれ連結されることによって、膨張機Tで回収した動力が高段圧縮機C3の圧縮動力に寄与して効率化が図られる。
 また、低圧低温となった冷媒R1は冷却部2の熱交換器に送られ、この冷媒で冷却対象側循環ライン16を流れる冷却対象用冷媒R2を所定温度に冷却する。その後、冷媒R1は冷熱回収熱交換器15に送られ、そこで膨張機Tに送られる冷媒R1を冷却した後、低段圧縮機C1に戻る。
 ちなみに、この冷凍機1では、冷媒R1として、例えば、ヘリウム、ネオン、水素、窒素、空気、炭化水素等を挙げることができる。そして、冷媒R1の温度は、例えば、膨張機Tの入口側で約-190~-200℃(83.15~73.15K)、出口側で約-210~-220℃(63.15~53.15K)の極低温にすることができる。
 これにより、本実施形態の冷凍機1は、例えば、超電導機器の冷却、各種ガスの液化、液体窒素の代替などとして利用することができる。
 具体的に、図1に示すように、冷却部2で冷媒R1と熱交換して冷却する冷却対象は、超電導ケーブルなどの超電導機器20を冷却するための液体窒素(冷却対象用冷媒R2)を一例として挙げることができる。
 この場合には、例えば、冷却部2、超電導機器20及びリザーバタンク21の間を循環する冷却対象側循環ライン(液体窒素循環ライン)16を設け、さらに冷却対象側循環ライン16に循環ポンプ22を設け、冷却部2で極低温に冷却された液体窒素R2を超電導機器20に循環するように構成される。
 一方、冷凍機1においては、前述の通り、冷凍機停止中、冷媒温度上昇によって冷媒圧力が高くなり、この状態で高低圧が均圧する。このため、冷媒圧力が高くなった状態で冷凍機1を起動運転すると、低圧ラインの冷媒圧力が高いことから高圧ラインの冷媒圧力が上昇し、モータ(11(9))の負荷が高くなってモータ容量によっては運転回転数を制限する必要が生じるケースがあった。
 また、冷媒圧力が高くなった状態で冷凍機1を起動運転した際に、膨張機Tの入口でチョーク現象が生じ、圧縮機(C1、C2、C3)にサージングが発生することも考えられる。
(予冷工程の制御フロー)
 これに対し、本実施形態の冷凍機1の予冷運転工程(冷凍機の予冷時の運転方法)は、図1及び図2に示すように、冷凍機予冷運転制御、バイパス制御、バッファタンク冷媒回収制御で構成されている。
 まず、冷凍機予冷運転制御は、冷凍機1の起動から予冷完了までの運転制御を行うもので、目標温度設定(T1、T2)と膨張機Tの入口または出口の計測温度(T)に基づいて冷却速度が一定に維持されるよう制御回転数制御を行う。
 バイパス制御は、計測温度(T)に従ってバイパスライン31の開閉バルブ32の開度を制御するもので、段階(ステップ制御)と連続制御がある。目標設定温度(T1)まで冷媒R1が冷却されると開閉バルブ32が閉となり、バイパスなし制御運転となる。
 また、バッファタンク冷媒回収制御は、高圧ラインからバッファタンク27に冷媒R1を回収して、冷凍機1の予冷運転の負荷を低減するもので、設定する圧力差以上になると開閉バルブ28が開となり高圧ラインからバッファタンク27に冷媒R1が流入する。
 これらの制御は、冷凍機予冷運転制御に対して並列にバイパス制御、バッファタンク冷媒回収制御が行われ、常時モニタリングする組合せになっている。
 以下、より詳細に制御内容について説明する。
(バッファライン部)
 本実施形態の冷凍機1は、第一に、バッファライン部25が具備されている。
 バッファライン部25は、高圧ラインの第3熱交換器14と冷熱回収熱交換器15の間の第3接続部S3に一端を接続し、低圧ラインの冷熱回収熱交換器15と低段圧縮機C1の間の第4接続部S4に他端を接続したバッファライン26と、このバッファライン26に設けられて冷媒R1を一時的に貯留するためのバッファタンク27と、バッファタンク27の入口側(バッファタンク27と第3接続部S3の間の高圧ライン側)に設けられた第1開閉弁(高圧側バッファバルブ)28と、バッファタンク27の出口側(バッファタンク27と第4接続部S4の間の低圧ライン側)に設けられた第2開閉弁(低圧側バッファバルブ)29と、を備えて構成されている。
 そして、入口側の第1開閉弁28を開くことにより、且つ、第1開閉弁28の開度に応じ、高圧ラインから圧力差(差圧)を利用してバッファタンク27に冷媒R1を一時的に送って貯留し、冷媒循環ライン8を流れる冷媒R1の量(流量)を調節することができる。また、第1開閉弁28を閉じ、出口側の第2開閉弁29を開くことにより、且つ第2開閉弁29の開度に応じ、バッファタンク27から圧力差を利用して冷媒R1を低圧ラインに戻し、冷媒循環ライン8を流れる冷媒R1の量を調節することができる。
(バイパスライン部)
 さらに、本実施形態の冷凍機1においては、バイパスライン部30を備えている。
 バイパスライン部30は、高圧ラインの第3熱交換器14と第3接続部S3の間の第1接続部S1に一端を接続し、低圧ラインの第4接続部S4と低段圧縮機C1の間の第2接続部S2に他端を接続して設けられたバイパスライン31と、このバイパスライン31に設けられた第3開閉弁(バイパスバルブ)32と、備えて構成されている。
 なお、バッファライン部25とバイパスライン部30の高圧ライン及び低圧ラインの接続部は、位置が入れ替わっても何ら支障はない。
(冷媒状態/動力状態検出手段)
 冷媒循環ライン8には、高圧ラインの冷熱回収熱交換器15と膨張機Tの間に、ここを流通する冷媒R1の温度を検出するための第1温度センサ33が具備されている。
 冷却ラインの膨張機Tと冷却部2の間には、ここを流通する冷媒R1の温度を検出する第2温度センサ34が設けられている。
 冷却対象側循環ライン16には、冷却部2によって冷却された冷却対象の液体窒素R2の温度を検出する第3温度センサ(二次冷媒温度センサ)35が設けられている。
 冷媒循環ライン8の高圧ラインのライン上、例えば第3接続部S3と第1接続部S1の間には高圧ラインの冷媒R1の圧力を検出するための第1圧力センサ36が設けられている。
 バッファタンク27には、バッファタンク27の内部の圧力を検出するための第2圧力センサ37が設けられている。
 膨張機一体型圧縮機7には、第1モータ9の駆動状態、ひいては回転軸、高段圧縮機C3及び膨張機Tの回転数を検出するための第1動力計38が設けられている。
 一体型圧縮機10には、第2モータの駆動状態、ひいては回転軸、低段圧縮機C1及び中段圧縮機C2の回転数を検出するための第2動力計39が設けられている。
 さらに、本実施形態の冷凍機1は、第1温度センサ33、第2温度センサ34、第3温度センサ35、第1圧力センサ36、第2圧力センサ37、第1動力計38、第2動力計39のそれぞれの検出結果を受けて、第1モータ9、第2モータ11の駆動、第1開閉弁28、第2開閉弁29、第3開閉弁32の開度(開閉駆動)を制御するコントローラ(制御装置)40を備えている。
<バッファタンク冷媒回収制御:バッファライン部を用いた初期運転期間の運転制御>
 まず、バッファタンクを用いて冷媒回収を行う予冷運転制御について説明する。
 これにより、バッファライン部25による冷媒循環ライン8に対する冷媒R1の流出入量は、コントローラ40による第1開閉弁28、第2開閉弁29の開度調整によって制御することができる。なお、バイパスライン部30の第3開閉弁32を含み、第1開閉弁28、第2開閉弁29は電動弁であることが好ましい。
 より具体的に、冷媒循環ライン8の系内の圧力が高い状態で、冷凍機1(モータ9、11)を運転すると圧縮機でサージングが生じて回転数を高くすることが難しい。
 これに対し、本実施形態の冷凍機1では、起動時の冷凍機1の回転数を高くするために低圧ラインと高圧ラインの間にバッファタンク27を設け、冷凍機1の吐出圧力が一定圧力以上とならないように余分な冷媒R1を回収する。
 これにより、第1圧力センサ36、第2圧力センサ37の検出結果に基づいて、コントローラ40が第1開閉弁28の開閉駆動制御、開度調整を行うことで、高圧ラインとバッファタンク27の冷媒圧力差を利用し、冷媒R1を流入させることができ、冷凍機1の吐出圧力が一定圧力以上とならないように余分な冷媒R1をバッファタンク27に回収することが可能になる。
(起動時/予冷運転開始時の制御)
 そして、図1、図2及び図3に示すように、冷凍機1の停止後に、起動/予冷運転開始を行う際には(Step1)、冷凍機1の停止に伴って高圧ラインと低圧ラインの冷媒圧力が高圧で均衡している場合、第1圧力センサ36、第2圧力センサ37の検出結果に基づいて(Step3)、バッファライン部25でバッファタンク27への冷媒回収を実施する(Step2)。
 このとき、コントローラ40が第1圧力センサ36と第2圧力センサ37の検出結果を受け、高圧ラインとバッファタンク27の冷媒圧力の差圧を求め(Step3)、高圧ラインとバッファタンク27の冷媒圧力が高圧で均衡しているか否かを確認し、例えば、冷媒圧力の差圧が10kPaなどの設定値(閾値)以上である場合には(Step4)、第1開閉弁28を開制御し(Step5)、バッファライン部25による冷媒回収を実施する(Step6)。
 すなわち、バッファタンク27の圧力と高圧ラインの冷媒圧力の差圧を求め、この差圧が予め設定した設定値(10kPaなど)を超える場合には、コントローラ40が第2開閉弁29を閉じた状態で第1開閉弁28を開制御する(Step5)。
 第1開閉弁28の開制御(Step5)を行うとともに、バッファタンク27と高圧ラインとの圧力差によってバッファタンク27に冷媒R1が送られて一時的に貯留され(Step6)、ブレイトンサイクルを流れる冷媒R1の流量(圧力)が減少する。
 これにより、予冷初期における冷媒循環ライン8の圧力上昇による過負荷運転(第1モータ9、第2モータ11の過大なモータ負荷)を防止できる。
 なお、バッファタンク27に冷媒R1が送られて一時的に貯留され、ブレイトンサイクルを流れる冷媒R1の流量(圧力)が減少し、冷媒圧力の差圧が設定値を下回ると(Step7)、第1開閉弁28が閉制御される(Step8)。また、前記(Step4)で冷媒圧力の差圧が設定値を下回る場合には、第1開閉弁28の閉状態が維持される(Step8)。
(予冷運転中の制御)
 前述の通り、バッファタンク27と高圧ラインの差圧が10kPaなどの設定値を超えると、高圧ラインから第1開閉弁を介してバッファタンクに冷媒が回収され、バッファタンクと高圧ラインの差圧が小さくなる(Step6、Step7)。
 このため、冷凍機1の停止後の予冷運転開始時において、差圧が設置値を超え続けている場合には高圧の冷媒R1がバッファタンク27に回収されていくが、冷凍機1の運転に伴い高圧ラインの冷媒R1の圧力(吐出圧力)に大幅な変動が生じなければ、バッファタンク27と高圧ラインの差圧が小さくなって、その状態で維持される。すなわち、バッファタンク27と高圧ラインの間での冷媒R1のやり取りがなくなり、冷媒循環ライン8の冷媒R1の増減が生じず、高圧ラインの圧力は維持される。
 逆に、冷凍機1の停止後の予冷運転開始時において、冷凍機1の運転に伴い高圧ラインの冷媒R1の圧力(吐出圧力)に大幅な変動が生じた場合には、高圧ラインから能力調整用のバッファタンク27に冷媒R1が回収され続ける。
 このように、本実施形態の冷凍機1は冷媒循環ライン8(冷媒流路系)が密閉構造であることによって、常温で余分な冷媒R1をバッファタンク27に貯めることができる。すなわち、予冷運転時には、上記のように、流量を計測することなく、第1圧力センサ36と第2圧力センサ37の検出結果に基づいて第1開閉弁28の開閉駆動制御を行うだけで自動的に冷媒R1の回収量の調整を行うことができ、過大なモータ負荷が生じない好適な状態にしてこれを維持することが可能になる。
 なお、前記(Step3)から(Step6)の圧力検出結果から冷媒圧力の差圧を求めて、コントローラ40により差圧が設定値(閾値)以上である場合には第1開閉弁28を開制御し、バッファライン部25による冷媒回収を行う実施例を示している。
 一方、別の実施例として、差圧に変え、高圧ラインの圧力が設定値(閾値)以上である場合に、第1開閉弁28を開制御して、バッファライン部25によって冷媒回収を行うことができるようにしてもよい。
(通常(定常)運転への移行制御)
 そして、冷凍機1の起動後、高圧ライン側の冷媒R1が一時的に昇圧してバッファタンク27に余分な冷媒を貯めるが、冷却が進むにつれて低圧ラインと高圧ライン、ひいては冷凍機1の装置/システム全体の冷媒R1の圧力が降下して通常運転時の圧力状態に近づいていく。言い換えれば、低圧ラインと高圧ラインのそれぞれの圧力が通常運転時の圧力となって運転が進み、過大なモータ負荷が生じない状態となる。バッファ機構圧力設定値を下回る状態になった段階で第1開閉弁28を閉じられる(Step8)。
 一方、冷媒R1には、例えば、常温から100K以下まで冷却すると密度が大きくなって、容量が減じるものがある。具体的には、冷熱回収熱交換器15から膨張機T、膨張機Tから冷却部2、冷却部2から冷熱回収熱交換器15までの機器や配管で冷媒R1の温度が100K以下となり、冷媒R1の密度が増加して容量不足となる。逆に、運転中も低圧ラインの冷熱回収熱交換器15の出口から圧縮機を経て高圧ラインの冷熱回収熱交換器15の入口までは冷媒温度が常温付近のため冷媒R1の冷媒容量が変わらない。
 このため、低温側である高圧ライン側、冷却ライン側の冷媒容量の減少に応じた分を系内で保持しておく必要がある。
 したがって、本実施形態の冷凍機1及び冷凍機1の運転方法では、優先的にバッファタンク27への冷媒R1の貯留を行うようにする。例えば、起動直後など、起動時から予冷運転時(予冷完了まで)の初期運転期間に余分の冷媒R1がバッファタンク27に回収されるように、第1圧力センサ36と第2圧力センサ37で検出される圧力差が10kPaなどの予め設定した設定値以上の条件で冷媒回収用の第1開閉弁28が開くようにする。
 また、本実施形態の冷凍機1及び冷凍機1の運転方法では、第1圧力センサ36と第2圧力センサ37で検出される圧力差(差圧)に変え、高圧ラインの圧力が設定値(閾値)以上である場合に、第1開閉弁28を開制御し、バッファライン部25により冷媒回収を行うこともできる(図9(バイパス制御運転の段階的制御時の高圧ライン、低圧ライン、バッファタンク27の圧力変動の状態の一例を示す図)参照)。
<冷凍機予冷運転制御/バイパス制御:バイパスライン部を用いた初期運転期間の運転制御>
 次に、冷凍機1は、例えば、常温から100K以下までの大温度差で冷媒R1を冷却していく必要があるため、冷媒循環ライン8には、従来、最も密度が高くなる膨張機Tの入口付近に最小断面の絞り部を設けるようにしている。
 ここで、予冷運転時には、吸入温度が高くなりやすく、言い換えれば、冷媒密度が低くなりやすく、膨張機Tの入口付近の最小断面の絞り部における冷媒流量が小さくなり、これに起因して圧縮機C1、C2、C3にサージングが発生するおそれがある。このため、予冷運転時には、このサージングを抑止できるように十分な冷媒流量を確保することが必要になる。
 これに対し、本実施形態の冷凍機1においては、高圧ラインから低圧ラインに冷媒R1を返送可能なバイパスライン31及びバイパスバルブの第3開閉弁32からなるバイパスライン部30を備えている。
 これにより、コントローラ40によって第3開閉弁32を開制御することにより、高段圧縮機C3で圧縮された冷媒R1の一部を膨張機Tに供給することなく、再び低段圧縮機C1ひいては高段圧縮機C3に戻すことができる。また、コントローラ40によって第3開閉弁32の開度を調整することにより、圧縮機C1、C2、C3に戻される冷媒流量を調整できる。
 よって、本実施形態の冷凍機1においては、予冷時に、第3開閉弁32の開度を運転状態に応じて適宜変更することでサージングを起こさず、且つ冷却に使用されない冷媒R1を減らすことができ、動力が無駄とならない効率的(高COP:Coefficient of Performance)な運転が可能になる。
 次に、本実施形態の冷凍機1、及び冷凍機1の予冷時の運転方法では、図2(図5、図7、図1)に示すように、第3開閉弁32の開度を冷媒R1の温度条件によって制御し(Step9)、バイパスライン部30を用いた冷凍機予冷運転制御とパイパス制御からなる予冷時運転制御を行う。また、冷凍機予冷運転制御とバイパス制御は前述のバイパス制御と並列で行われる。
(冷凍機予冷運転制御)
 まず、冷凍機予冷運転制御(Step9)では、例えば、回転数60%で10分間運転を行う(Step10)。
 また、高圧ラインに設けられた第1温度センサ33、又は冷却ラインに設けられた第2温度センサ34で検出した冷媒温度に基づいて、第3開閉弁32の開度を調整、制御する。
 このとき、予冷時の冷却速度(冷媒の温度の減少速度)を60K/hなど、予め設定した一定の冷却速度に保ちながら第3開閉弁32の開度をパイバス制御によって段階的あるいは連続的に小さくしてゆき、冷媒R1が第1目標温度(本実施形態では100K)に達した段階で第3開閉弁32の開度が0%となるようにする(Step11)。
 そして、膨張機出口温度が第1目標温度(100K)に達した段階で(Step12)バイパスライン部30の使用(バイパス制御)が停止され、冷媒全量を膨張機Tに供給するように制御(バイパス無し制御)を行う(Step13)。
 また、バイパスライン部30の使用を停止した後、冷媒温度が第2目標温度以下(本実施形態では67K以下)で維持されるように、第2温度センサ34によって検出した膨張機Tの出口側の冷媒温度に基づいて冷凍機回転数の制御を行う(Step14)。
 すなわち、本実施形態において、冷却対象側循環ライン16である液体窒素循環ラインで冷却対象用冷媒R2である液体窒素の循環を開始するまでは、第2温度センサ34によって膨張機Tの出口側の冷媒温度を検出し、膨張機Tの出口側の冷媒温度を温度制御点として第2目標温度を67K以上に設定しておく。これにより、冷却部2で液体窒素が凍結することを回避する。
 液体窒素循環ラインで液体窒素の循環を開始した後、温度制御点を超電導ケーブル等に近い第3温度センサ35に切り替え、この第3温度センサ35で検出した液体窒素の出口側の冷媒温度に基づいて、冷凍機1の運転制御を行う。これにより、冷凍機1の予冷運転が完了し(Step15)、容易で精度よく冷却対象の液体窒素を冷却することができる。
 なお、第1温度センサ33、第2温度センサ34のどちらの検出結果を用いて第3開閉弁32の開度制御を行っても、特に熱負荷変動がなければ、同様の作用効果が得られることが確認されている。このため、本実施形態の冷凍機1では、第1温度センサ33、第2温度センサ34を備えているが、場合によってはどちらか一方の温度センサのみで構成して、温度の監視点、温度センサの数を減らすことも可能である。
(バイパス制御)
 一方、本実施形態の冷凍機1及び冷凍機1の予冷時の運転方法では、図2、図5、図7(図1)に示すように、上記の冷凍機予冷運転制御と並列に、第3開閉弁32の開度を段階的あるいは連続的に制御(ステップ制御あるいは比例制御)してバイパス制御(Step16)を行うことによって、膨張機Tへ流れる流量変化を小さくする。すなわち、開度変動時の冷却能力の変動を抑え、冷却速度制御を行いやすくする。
 具体的に、バイパスライン部30を用いた予冷運転制御時に、冷却速度を一定に制御する第一の理由は、熱交換器が急激に冷却されると、熱変形によって破損が生じるおそれがあるためである。
 第二の理由は、冷却温度の変化が大きいと、第3開閉弁32の開度の調整幅や冷凍機回転数の変動が大きくなり、安定した運転が難しくなるためである。すなわち、バイパスライン31を流れる冷媒流量は運転効率にも影響するため、効率的な運転を行うために冷却速度を一定にする。
 そして、これに基づき、本実施形態の冷凍機1の予冷時の運転方法では、前述の通り、予冷時において、バイパスライン部30のバイパスバルブの第3開閉弁32の開度制御と冷凍機1の回転数制御の2つの制御を組み合わせ、冷却速度を一定にする温度制御を行うこととした。
 また、本実施形態の冷凍機1の予冷時の運転方法では、冷媒R1の一部を膨張機Tに供給することなく、バイパスライン部30の第3開閉弁32の開度を調整することで、流量計を用いることなく、バイパスライン31を通じて高圧ラインから低圧ラインに流量を調整しながら冷媒R1を戻し、サージングの発生を抑止している。
 この一方で、第3開閉弁32を開けすぎると、必要以上の流量が圧縮機に供給され、無駄な動力を消費することになって、結果、効率的な運転ができなくなる。
 このため、本実施形態の冷凍機1の予冷時の運転方法では、サージングが生じない流量を保持するように、第3開閉弁32の開度を段階的又は連続的に調整制御(ステップ制御又は比例制御)し、膨張機Tの設計流量に近づいた段階で第3開閉弁32が閉(開度0%)となるようにしている。
 また、バイパスライン部30の第3開閉弁32の開度制御では、膨張機Tとバイパスライン31の2つのルートに流れる冷媒流量を調整し、効率的な運転ができるように条件を設定することになる。このため、バイパスライン部30による冷媒流量の調整制御だけでは、冷媒R1の温度制御という観点からは必ずしも高精度で制御が行えないことも考えられる。
 これに基づき、本実施形態の冷凍機1の予冷時の予冷時運転方法では、前述の通り、バイパスライン部30の第3開閉弁32の開度制御に加え、冷凍機1の回転数制御を行うことで冷却速度を調整/修正し、冷却速度が一定となるようにした。
 すなわち、本実施形態の冷凍機1の予冷時の運転方法では、冷媒R1の設定目標温度と実測温度の乖離の大きさに応じ、冷却速度が一定となるように冷凍機1の回転数を制御して、冷媒温度を精度よく制御できるようにした。
 このように、本実施形態の冷凍機1の予冷時の運転方法では、バイパスライン部30の第3開閉弁32の開度調整制御と冷凍機1の回転数制御を併用することで、起動時から予冷完了までの初期運転期間において、サージングの発生を好適に抑制でき、且つ冷却速度を一定にして精度よく冷媒R1を冷却でき、効率的な運転制御を行うことが可能になる。
 ここで、本実施形態の冷凍機1の予冷時の運転方法では、上記作用効果を好適に奏功するために、バイパス制御(Step16)でバイパスライン部30の第3開閉弁32の開度調整を段階的あるいは連続的に行う。
 これらバイパスライン部30の第3開閉弁32の段階的な開度制御(ステップ制御)と連続的な開度制御(比例制御)を用いたそれぞれの一例を挙げ、本実施形態の冷凍機1の運転方法について詳細に説明する。
<バイパスライン部を用いた段階的運転制御(ステップ運転制御)>
 まず、バイパスライン部30のバイパスバルブの第3開閉弁32の開度を段階的に制御する方法について説明する。
 このバイパスライン部30の第3開閉弁32の段階的な開度調整制御では、図5、図6(図1、図2、図4参照)に示すように、例えば、冷凍機予冷運転制御(Step9)によって最大値の60%の回転数とするとともに(Step10)、第3開閉弁32の開度40%とする(Step17)。また、第1温度センサ33又は第2温度センサ34に起動時の冷媒R1の温度を計測する(Step18)。そして、冷凍機1を起動し、予冷運転を開始した段階から、第3開閉弁32の開度を第1温度センサ33又は第2温度センサ34による冷媒の検出温度に応じて段階的に変更してゆく(Step19)。
 このバイパスライン部30を用いた段階的運転制御では、各ステップの温度の始点と終点が第3開閉弁32の開度ステップ(本実施形態では、ステップ1~6:図6)を決定する。例えば、あるステップ温度幅をT01からT02として、第3開閉弁32の開度をV01%とすると、第1温度センサ33又は第2温度センサ34の計測温度TaがT02<Ta≦T01の状態で第3開閉弁32の開度V01%を維持し続ける。
 そして、冷媒温度が徐々に下がってゆき、計測温度TaがT02となった段階で次のステップ温度幅のT02からT03(T03<Ta≦T02)に対応する第3開閉弁32の開度V02%(V02<V01)を維持し続ける。
 このように、冷却温度の降下に従いステップ(ステップ1~6)を順次変え、次段のステップへ変更毎に第3開閉弁32の開度を一段下の開度に切り替えてゆく。
 順次ステップを変更して第3開閉弁32の開度を段階的に小さくすると、バイパスライン31を流通して高圧ラインから低圧ラインに流れる冷媒R1の流量が、段階的に減少する。この冷媒R1の流量の段階的な減少に応じ、低段圧縮機C1側から膨張機T側に流れる冷媒量が段階的に増えるため、本実施形態の冷凍機1では、冷却速度を一定に維持するように回転数制御(冷凍機予冷運転制御)を併用する。
 例えば、図5、図6では、起動時(回転開始時)の冷凍機回転数を60%、第3開閉弁32の開度を40%とし、それ以降の第1温度センサ33又は第2温度センサ34による冷媒R1の計測温度が第1目標温度の100Kに達するまで5ステップとし、225K、190K、155K、120K、100K、での温度範囲と第3開閉弁32の開度を設定している。
 このように、バイパスライン部30の第3開閉弁32の段階的な開度制御と、冷凍機1の回転数制御とを併用することによって、本実施形態の冷凍機1の予冷時運転方法では、各ステップの温度区間ごとに第3開閉弁32の開度を設定でき、それぞれの区分けした温度区間において冷却速度が予め設定した一定の設定値(60K/hなど)となるようにPID制御などを用いて回転数制御(例えば、回転数N=60~75%)を行うことができる。
 これにより、本実施形態の冷凍機1の予冷時運転方法によれば、冷凍機1の回転数や圧力の変動が少ない安定した予冷運転が可能になる。
 また、第1目標温度の100Kに達した段階で、第3開閉弁32の開度が0%となり、バイパスライン部30を用いた運転制御は終了し、バイパス無し制御運転に移行する(Step20)。このバイパス無し制御運転に移行することで、圧縮機から膨張機Tに冷媒循環量の全てが流れる。
 そして、バイパス無し制御運転の予冷運転では、次の目標温度である第2目標温度の67Kに向けて回転数制御を行う。このとき、第2目標温度の67Kまで、冷却速度が予め設定した一定の設定値(60K/hなど)となるようにPID制御などを用いて回転数制御(例えば、回転数N=75~95%)を行う(Step13)。また、第2目標温度の67Kに達するとともに、負荷のかかる窒素循環運転まで第2目標温度を維持するように制御を行う(Step13、14、15)。
 なお、回転数制御は、PID(Proportional-Integral-Differential)制御を用いることに限定する必要はない。例えば、P(Proportional)制御、PI(Proportional-Integral)制御などを用いても勿論構わない。
 したがって、本実施形態の冷凍機1及び冷凍機1の予冷時運転方法によれば、バイパスライン部30の第3開閉弁32の段階的な開度調整制御と冷凍機1の回転数制御を併用することで、起動時から予冷完了までの初期運転期間において、サージングの発生を好適に抑制でき、且つ冷却速度を一定にして精度よく冷媒R1を冷却でき、効率的な運転制御を行うことが可能になる。
<バイパスライン部を用いた連続的運転制御(比例運転制御)>
 次に、バイパスライン部30のバイパスバルブの第3開閉弁32の開度を連続的に制御する方法について説明する。
 このバイパスライン部30の第3開閉弁32の連続的な開度調整制御では、図7、図8(図1、図2、図4参照)に示すように、段階的な開度調整制御と同様、例えば、冷凍機予冷運転制御(Step9)によって最大値の60%の回転数とするとともに(Step10)、第3開閉弁32の開度40%とする(Step17)。また、第1温度センサ33、又は第2温度センサ34に起動時の冷媒R1の温度を計測する(Step18)。そして、冷凍機1を起動し、予冷運転を開始した段階から、第3開閉弁32の開度を第1温度センサ33又は第2温度センサ34による冷媒の検出温度に応じて連続的に変更してゆく(Step20)。
 このバイパスライン部30を用いた連続的運転制御では、各ステップの温度の始点と終点が第3開閉弁32の開度ステップ(本実施形態ではステップ1~6:図8)を決定する。
 ただし、運転初期の状態は、回転数60%運転(Step10)や第3開閉弁バルブ開度40%(Step17)の運転制御が優先し、さらに(Step18)で冷媒R1の温度が225Kに冷却されるまでバルブ開度40%を維持されるので、連続的運転制御は実質的には(ステップ2)から開始される。
 例えば、あるステップ温度幅をT01からT02とした場合、ステップ温度幅T01からT02となるまでの間で、第3開閉弁32の開度をV01%からV02%まで漸次小さくしてゆく。
 すなわち、第1温度センサ33又は第2温度センサ34による冷媒R1の計測温度をTaとした場合に、第3開閉弁32の開度V%は、次の式(1)によって求める。
[数1]
  V%=V01-((V01-V02)/(T01-T02))×(T01-Ta)・・・・(1)
 ここで、T02<Ta<T01
 このように求めた開度に従って第3開閉弁32を連続的に制御し、この連続的制御に伴う冷却温度の降下に従いステップ(ステップ1~6:図8)を順次変えてゆく。
 順次ステップが変わって第3開閉弁32の開度を連続的に小さくすると、第3開閉弁32の開度を連続的に小さくすると、バイパスライン31を流通して高圧ラインから低圧ラインに流れる冷媒R1の流量が連続的に減少する。バイパスラインを流通して高圧ラインから低圧ラインに流れる冷媒の流量が連続的に減少する。この冷媒の流量の連続的な減少に応じ、低段圧縮機C1側から膨張機T側に流れる冷媒量が連続的に増えるため、本実施形態の冷凍機1では、冷却速度を一定に維持するように回転数制御(冷凍機予冷運転制御)を併用する。
 例えば、図7、図8では、起動時(回転開始時)の冷凍機回転数を60%、第3開閉弁32の開度を40%とし、それ以降の第1温度センサ33又は第2温度センサ34による冷媒R1の計測温度が第1目標温度の100Kに達するまでのステップ2からステップ5までの4ステップとし、225K、190K、155K、120K、100Kで温度範囲を、各温度範囲ごとに式(1)に従って第3開閉弁32の開度を連続的に設定している。
 このように、式(1)に従ったバイパスライン部30の第3開閉弁32の連続的な開度制御と、冷凍機1の回転数制御とを併用することによって、本実施形態の冷凍機1の予冷時運転方法では、各ステップの温度区間ごとに第3開閉弁32の開度を設定でき、それぞれの区分けした温度区間において冷却速度が予め設定した一定の設定値(60K/hなど)となるようにPID制御などを用いて回転数制御(例えば、回転数N=60~75%)を行うことができる。
 これにより、本実施形態の冷凍機1の予冷時運転方法によれば、冷凍機1の回転数や圧力の変動が少ない安定した予冷運転が可能になる。
 また、段階的開度制御と同様、第1目標温度の100Kに達した段階で、第3開閉弁32の開度が0%となり、バイパスライン部30を用いた運転制御は終了し、バイパス無し制御運転に移行する(Step13)。このバイパス無し制御運転に移行することで、圧縮機C1、C2、C3から膨張機Tに冷媒循環量の全てが流れる。
 そして、バイパス無し制御運転の予冷運転では、次の目標温度である第2目標温度の67Kに向けて回転数制御を行う。このとき、第2目標温度の67Kまで、冷却速度が予め設定した一定の設定値(60K/hなど)となるようにPID制御などを用いて回転数制御(例えば、回転数N=75~95%)を行う(Step13)。また、第2目標温度の67Kに達するとともに、負荷のかかる窒素循環運転まで第2目標温度を維持するように制御を行う(Step13、14、15)。
 なお、連続的開度制御を用いた場合においても、回転数制御は、PID(Proportional-Integral-Differential)制御を用いることに限定する必要はない。例えば、P(Proportional)制御、PI(Proportional-Integral)制御などを用いても勿論構わない。
 したがって、本実施形態の冷凍機1及び冷凍機1の予冷時運転方法によれば、バイパスライン部30の第3開閉弁32の連続的な開度調整制御と冷凍機1の回転数制御を併用することで、起動時から予冷完了までの初期運転期間において、サージングの発生を好適に抑制でき、且つ冷却速度を一定にして精度よく冷媒R1を冷却でき、効率的な運転制御を行うことが可能になる。
<予冷時の温度冷却制御>
 バイパスライン部30、バッファライン部25を備えた本実施形態の冷凍機1による予定時の温度冷却制御(予定時の運転方法)の要点をまとめると、以下のようになる。
 1)起動時に、冷凍機の所定回転数をRPM(1)とし(圧縮機C1、C2、C3と膨張機Tのうち少なくとも膨張機Tの回転数を所定の回転数RPM(1)とし)、バイパスライン部30のバイパスバルブである第3開閉弁32の開度を所定の開度V%(2)として運転を開始する(起動運転工程)。
 2)また、膨張機Tの入口側の冷媒温度又は膨張機Tの出口側の冷媒温度を第1温度センサ33又は第2温度センサ34で検出する。そして、膨張機Tの入口側の冷媒温度又は膨張機Tの出口側の冷媒温度が、例えば、190K(225K)から第1目標温度の100Kとなるまで、第3開閉弁32の開度V%を段階的又は連続的に小さくしつつ、高圧ラインの冷媒R1を低圧ラインにバイパスライン31を通じて流通させる。また、第3開閉弁32の開度V%の段階的又は連続的制御を行いつつ、冷媒R1を起動時の温度から第1目標温度となるまで冷却する(バイパス制御運転工程)。
 3)次に、第3開閉弁32の開度が0%(閉)となって冷媒温度が第1目標温度になった段階で、第2温度センサ34で検出される膨張機Tの出口側の冷媒温度(又は第1温度センサ33で検出される冷媒温度)に基づき、冷媒温度が第1目標温度から第2目標温度となるまで冷却する(バイパス無し制御運転工程)。
 4)また、バイパス制御運転工程とバイパス無し制御運転工程を行う際にはそれぞれ、少なくとも冷却目標温度(第1目標温度、第2目標温度)になるまで冷却速度を一定に保持するように、第2温度センサ34による冷媒温度に基づいて冷凍機1の回転数を連続的に調整制御する(冷却速度制御工程)。
 5)また、上記の1)から4)の起動から予冷運転を行っている間で、第1圧力センサ36と第2圧力センサ37によって高圧ラインの冷媒圧力がバッファタンク27の圧力よりも予め設定した設定値(10kPa)以上大きくなる状態が検出された場合には、第1開閉弁28を開き、圧力差を利用してバッファタンク27に冷媒R1を回収する(冷媒回収工程)。
 6)そして、上記の1)から5)の起動から予冷運転の制御によって、第2目標温度まで冷却到達して冷媒温度が一定になった段階で予冷運転が完了し、この予冷運転完了後に、液体窒素の循環開始とともに、第1温度センサ33又は第2温度センサ34による冷媒温度検出点を、冷却対象用冷媒R2の温度を検出する第3温度センサ35での冷却対象側循環ライン16の冷媒温度検出点に切り替え、本冷却運転に移行する(本冷却運転切替工程)。
 このように冷凍機1の起動から本冷却運に移行するまでの予定運転を制御することにより、例えば、図4に示すように、予冷中、一定の温度勾配で冷媒R1を冷却することが可能になる。
 さらに、第3開閉弁32の開度調整ひいてはバイパスする冷媒流量の調整制御を、膨張機Tの入口付近や出口付近に設けた第1温度センサ33又は第2温度センサ34の検出値に基づいて段階的又は連続的に制御することで、冷媒R1の流量を検出する場合と比較して、装置構成の複雑化を招くことなく精度よく制御を行うことが可能になる。
 したがって、本実施形態の冷凍機1及び冷凍機1の予冷時の運転方法によれば、冷媒R1の流量を検出することなく冷媒R1の流量制御によってサージング回避を達成できるので、装置構成の簡略化を図りつつ、安全性を向上することができる。また、圧縮機C1、C2、C3や膨張機Tを高回転で運転した予冷が可能になり、スムーズな予冷運転が実現できる。
 ちなみに、例えば、サージングの回避を回転数制御のみによって行おうとすると、回転数の無段階制御を行うことになるが、この回転数の無段階制御を実施するためには冷媒流量を計測する流量計を用いることになる。これにより、装置構成が複雑になってしまう。また、第3開閉弁32の開度を一定とする方法も考えられるが、この場合には、冷却が進むにつれて不要にバイパスされる冷媒R1が増加してしまう。
 そして、本実施形態の冷凍機1では、適宜タイミングで第3開閉弁32の開度を大きくすれば、バッファタンク27に冷媒R1を回収することなく、高圧ラインから低圧ラインに冷媒R1を逃がし、冷媒R1の流量を確保することができる。これにより、必ずしもバッファライン部25を備えなくても、予冷時における圧縮機C1、C2、C3のサージングを抑止することが可能である。
 ここで、図9は、バイパス制御運転(段階的制御時)の高圧ライン、低圧ライン、バッファタンク27の圧力変動の状態の一例を示す図である。
 また、例えば、図9及び図4において、(a)は冷凍機運転開始時、(b)は初期運転制御のステップ1の終点(冷媒温度:225K時)、(c)は段階的あるいは連続的な運転制御のステップ2の終点(冷媒温度:190K時)、(d)は段階的あるいは連続的な運転制御のステップ5の終点(冷媒温度:100K時)をそれぞれ示している。
 そして、図9(及び図4)に示すように、冷凍機運転開始の(a)からステップ1の終点の(b)までの間(ステップ1に相当)は、高圧ラインの冷媒圧力が高くなるため、この(a)から(b)までの間で第1開閉弁28を開制御し、バッファライン部25によって冷媒回収を行う。すなわち、本実施形態の冷凍機1及び冷凍機1の運転方法では、(a)から(b)までの間において高圧ラインの圧力が設定値(閾値)以上となり、このときに、第1開閉弁28を開制御し、バッファライン部25によって冷媒回収を行う。
 なお、この(a)から(b)までの間におけるバッファタンク27の内部圧力の変動はほぼ高圧ラインの冷媒圧力の変動と同様となる(同様の挙動/傾向を示す)。
 次に、ステップ1の終点の(b)からステップ2の終点の(c)までの間(ステップ2に相当)は、バイパスライン部30の第3開閉弁(バイパスバルブ)32の開度が減少(例えば40%から35%に減少)し、冷媒のバイパス量が減少する。これにより、(b)から(c)までの間では、圧縮機C3から膨張機Tに向かう冷媒量が増加し、一時的に高圧ラインの圧力が高くなる。
 このため、本実施形態の冷凍機1及び冷凍機1の運転方法では、(b)から(c)までの間(ステップ2に相当)において、高圧ラインの圧力が設定値(閾値)以上、言い換えればバッファタンク27の内部圧力以上となり、この(b)から(c)までの間で、第1開閉弁28を開制御し、バッファライン部25によって冷媒回収を行う。すなわち、高圧ラインの冷媒圧力がバッファタンク27の内部圧力よりも高い領域で冷媒の回収を行う。
 さらに、(a)から(b)、(b)から(c)までの間では、冷却速度を一定に維持するように回転数を増加する制御を行うことにより(例えば、第3開閉弁32の開度を一定(40%)、回転数を60%で(10分間)運転後に60~75%の回転数制御を行うことにより)、冷媒の冷却速度を一定に保ち、この冷媒の温度降下に伴って高圧ラインの冷媒圧力が低下していく。
 また、本実施形態の冷凍機1及び冷凍機1の運転方法では(a)から(b)までの間、すなわち、冷媒温度が概ね225Kになるまでは、第3開閉弁32の開度を一定にして冷却運転を継続する。
 具体的に、(a)から(b)までの間で、第3開閉弁32のバルブ制御を行うと、(b)から(c)の間で見られるような外乱が生じ、高圧ラインの冷媒圧力の変動、さらに回転数の変化が生じて、冷媒の冷却速度を一定に維持する際の運転効率の低下を招くおそれがある。
 このため、本実施形態の冷凍機1及び冷凍機1の運転方法では、段階的あるいは連続的な運転制御を行う場合にも、(a)から(b)までの間のステップ1では第3開閉弁32の開度を変更せず、一定開度で維持するようにしている。
 そして、本実施形態の冷凍機1及び冷凍機1の運転方法において、バッファタンク27での冷媒回収は、第一に、(a)から(b)までの間の初期運転時(冷媒温度225Kまで)で行って余分な冷媒を回収し、第二に、それ以降、第3開閉弁32の開度の変更時に一時的に冷媒の圧力上昇分だけ回収できるように行われる。
(通常運転中の冷凍機能力の調整制御)
 なお、本実施形態において、通常(定常)運転への移行制御を行った後の通常運転中は熱負荷の状況に応じて冷凍機能力の調整を行う。
 冷凍機1の能力を上げる際には、第2開閉弁29を開制御して低圧ライン8aにバッファタンク27内に貯留した冷媒R1を戻す。
 冷凍機1の能力を下げる際には、第1開閉弁28を開制御してバッファタンク27に冷媒R1を回収する。
 このとき、本実施形態の冷凍機1では、冷凍機能力の調整を行う判断条件、すなわち、第1開閉弁28と第2開閉弁29の開閉駆動制御の判断条件として、冷媒R1の設定温度と冷凍機1の回転数(第1モータ9と第2モータ11、ひいては各圧縮機C1、C2、C3の回転数)を用いる。また、低圧ラインには第3圧力センサ41を設ける。
 例えば、第2開閉弁29は、第1温度センサ33(又は第2温度センサ34)で検出される冷媒温度が予め設定した設定温度以上(圧力不足)で、且つ冷凍機回転数100%(モータ負荷が好適)の場合に開とし、バッファタンク27の圧力が一定圧力分減少、又は冷媒温度が設定温度以下(冷媒量が過大)で、且つ冷凍機回転数が100%を下回った(モータ負荷が上昇)場合に閉とする。高圧ライン、バッファタンク27、低圧ラインは各圧力センサで圧力を計測し、設定差圧以上の条件で冷媒R1の放出や回収を行う。
 第1開閉弁28は、第1温度センサ33(又は第2温度センサ34)で検出される冷媒温度が予め設定した設定温度以下(冷媒量が過大)で、冷凍機回転数が98%など、予め設定した閾値を下回った(モータ負荷が過大)場合に開(冷媒循環ラインの冷媒量低減)とし、バッファタンク27の圧力が一定圧力分増加、又は冷媒温度が設定温度以上(冷媒量が減少)で、且つ冷凍機回転数が増加(モータ負荷が低減)して98%などの閾値以上になった場合に閉(冷媒回収停止)とする。
 これにより、バッファタンク27の容量は限られ、冷媒回収量や回収時間を調整することが必要になるが、上記のように第1開閉弁28と第2開閉弁29の開閉駆動制御を行うことによって、冷媒回収量や回収時間の調整を行うことができ、通常運転中、冷凍機能力を好適な状態に調整して維持することが可能になる。
 以上、本開示の冷凍機及び冷凍機の予冷時の運転方法の実施形態について説明したが、本開示に係る冷凍機及び冷凍機の予冷時の運転方法は、上記の実施形態に限定されるものではなく、変更例等を含め、その趣旨を逸脱しない範囲で適宜変更可能である。
 例えば、本実施形態では、低段圧縮機、中段圧縮機、高段圧縮機の3つの圧縮機を備えて冷凍機が構成されているものとしたが、少なくとも低段圧縮機、高段圧縮機を備えていれば、特に圧縮機の数を限定する必要はない。
 また、本実施形態では、一つのコントローラ40が、第1温度センサ33、第2温度センサ34、第3温度センサ35、第1圧力センサ36、第2圧力センサ37、第1動力計38、第2動力計39のそれぞれの検出結果を受けて、第1モータ9、第2モータ11の駆動、第1開閉弁28、第2開閉弁29、第3開閉弁32の開度(開閉駆動)を制御するものとしたが、コントローラは必ずしも一つである必要はない。すなわち、各センサなどの検出結果を分担して受け、各モータや弁などを分担して駆動制御する複数のコントローラを備えて構成してもよい。
 なお、本開示の冷凍機及び冷凍機の予冷時の運転方法の実施形態については、冷凍機が常温で均圧している状態からの起動だけでなく、冷凍機の停止直後の再起動においても有効に機能する。その場合は、冷凍機の冷媒温度や低温機器の温度が昇温していない条件でも、各種センサの計測値をもとにコントローラで冷凍機予冷運転制御、バイパス制御、バッファタンク冷媒回収制御が行われるので、支障なく予冷運転が開始、継続できる。
 最後に、実施形態に記載の内容は、例えば以下のように把握される。
(1)本開示の一態様に係る冷凍機(冷凍機1)は、冷媒(冷媒R1)を圧縮する圧縮機(高段圧縮機C3)、及び、圧縮機とモータ(第1モータ9)によって駆動可能な回転軸を介して連結され、圧縮機で圧縮された冷媒を膨張させるための膨張機(膨張機T)を含む膨張機一体型圧縮機(膨張機一体型圧縮機7)と、膨張機で膨張された冷媒によって冷却対象(冷却対象、液体窒素、二次冷媒R2)を冷却するための冷却部(冷却部2)と、膨張機から冷却部を介して低段圧縮機(低段圧縮機C1)に至る低圧ライン、及び低段圧縮機から高段圧縮機に至る中圧ライン、高段圧縮機から膨張機に至る高圧ラインを備えて冷媒を循環させるための冷媒循環ライン(冷媒循環ライン8)と、一端を高圧ラインに設けられた第1接続部(第1接続部S1)に接続し、他端を低圧ラインに設けられた第2接続部(第2接続部S2)に接続されたバイパスライン(バイパスライン31)と、バイパスラインに設けられ、開度を調整することによりバイパスラインを流れる冷媒の流量を調整可能なバイパスバルブ(第3開閉弁32)と、を備えた。
 上記(1)の冷凍機においては、バイパスバルブを開制御することにより、高段圧縮機で圧縮された冷媒の一部を膨張機に供給することなく、再び低段圧縮機ひいては高段圧縮機に戻すことができる。また、バイパスバルブの開度を調整することにより、圧縮機に戻される冷媒流量、ひいては膨張機に流れる冷媒流量を変化させることができる。
 これにより、起動時から予冷完了までの初期運転期間において、バイパスバルブの開度を運転状態に応じて適宜変更することでサージングを起こさず、且つ、冷却に使用されない冷媒を減らすことができ、動力が無駄とならない効率的(高COP)な運転が可能になる。
(2)本開示の別の態様に係る冷凍機は、上記(1)の冷凍機であって、高圧ラインのうち第1接続部と膨張機との間を流れる冷媒の温度を検出するための温度センサ(第1温度センサ33)と、温度センサの検出結果に基づいて、バイパスバルブの開度、及び回転軸の回転数を制御するためのコントローラ(コントローラ40、制御装置)と、を備えた。
 上記(2)の冷凍機においては、バイパスバルブの開度調整ひいてはバイパスする冷媒流量の調整制御を、膨張機の入口付近など、第1接続部と膨張機との間を流れる冷媒の温度を検出する温度センサの検出値に基づいて制御することで、冷媒の流量を検出する場合と比較し、装置構成の複雑化を招くことなく精度よく制御を行うことが可能になる。
 よって、冷媒の流量を検出することなく冷媒の流量制御によってサージング回避を達成できるので、装置構成の簡略化を図りつつ、安全性を向上することができる。また、圧縮機や膨張機を高回転で運転した予冷が可能になり、スムーズな予冷運転が実現できる。
 すなわち、初期運転期間において、従来よりも、サージングの発生を好適に抑制でき、且つ冷却速度を一定にして精度よく冷媒を冷却でき、効率的な運転制御を行うことが可能になる。
(3)本開示の別の態様に係る冷凍機は、上記(1)の冷凍機であって、低圧ラインのうち冷却部と膨張機との間の冷媒の温度を検出するための温度センサ(第2温度センサ34)と、温度センサの検出結果に基づいて、バイパスバルブの開度、及び回転軸の回転数を制御するためのコントローラと、を備えた。
 上記(3)の冷凍機においては、バイパスバルブの開度調整ひいてはバイパスする冷媒流量の調整制御を、膨張機の出口付近など、冷却部と膨張機との間を流れる冷媒の温度を検出する温度センサの検出値に基づいて制御することで、冷媒の流量を検出する場合と比較し、装置構成の複雑化を招くことなく精度よく制御を行うことが可能になる。
 よって、冷媒の流量を検出することなく冷媒の流量制御によってサージング回避を達成できるので、装置構成の簡略化を図りつつ、安全性を向上することができる。また、圧縮機や膨張機を高回転で運転した予冷が可能になり、スムーズな予冷運転が実現できる。
 すなわち、初期運転期間において、従来よりも、サージングの発生を好適に抑制でき、且つ冷却速度を一定にして精度よく冷媒を冷却でき、効率的な運転制御を行うことが可能になる。
(4)本開示の別の態様に係る冷凍機は、上記(2)又は(3)の冷凍機であって、コントローラは、冷凍機の起動開始時から予冷運転完了時までの初期運転期間において、温度センサによって検出される冷媒の温度が予め設定した第1目標温度に達するまで段階的に開度が小さくなるようにバイパスバルブを制御するとともに、温度センサによって検出される冷媒の温度の減少速度が一定に維持されるように回転数を制御する。
 上記(4)の冷凍機においては、起動時から予冷完了までの初期運転期間において、バイパスバルブの開度制御に加え、冷凍機(圧縮機、膨張機)の回転数制御を行うことで冷却速度を調整/修正し、冷却速度を一定に維持することによって、冷媒温度を精度よく制御することが可能になる。
 また、バイパスバルブの段階的な開度制御と、冷凍機の回転数制御とを併用することによって、各ステップの温度区間ごとにバイパスバルブの開度を設定でき、それぞれの区分けした温度区間において冷却速度が予め設定した一定の設定値になるように回転数制御を行うことができる。
 これにより、冷凍機の回転数や圧力の変動が少ない安定した予冷運転が可能になる。
(5)本開示の別の態様に係る冷凍機は、上記(2)又は(3)の冷凍機であって、コントローラは、冷凍機の起動開始時から予冷運転完了時までの初期運転期間において、温度センサによって検出される冷媒の温度が予め設定した第1目標温度に達するまで連続的に開度が小さくなるようにバイパスバルブを制御するとともに、温度センサによって検出される冷媒の温度の減少速度が一定に維持されるように回転数を制御する。
 上記(5)の冷凍機においては、起動時から予冷完了までの初期運転期間において、バイパスバルブの開度制御に加え、冷凍機(圧縮機、膨張機)の回転数制御を行うことで冷却速度を調整/修正し、冷却速度を一定に維持することによって、冷媒温度を精度よく制御することが可能になる。
 また、バイパスバルブの連続的な開度制御と、冷凍機の回転数制御とを併用することによって、各ステップの温度区間ごとにバイパスバルブの開度を設定でき、それぞれの区分けした温度区間において冷却速度が予め設定した一定の設定値になるように回転数制御を行うことができる。
 これにより、冷凍機の回転数や圧力の変動が少ない安定した予冷運転が可能になる。
(6)本開示の別の態様に係る冷凍機は、上記(4)又は(5)の冷凍機であって、コントローラは、温度センサによって検出される冷媒の温度が第1目標温度に達した段階で開度が0%となるようにバイパスバルブを制御し、温度センサによって検出される冷媒の温度が第1目標温度よりも低温で第1目標温度より低く設定された第2目標温度に達するまで開度を0%に維持しながら、温度センサによって検出される冷媒の温度の減少速度が一定に維持されるように回転数を制御する。
 上記(6)の冷凍機においては、第1目標温度に達した段階で、バイパスバルブの開度が0%となり、バイパスラインを用いた運転制御が終了し、圧縮機から膨張機に冷媒循環量の全てが流れるバイパス無し制御運転に移行する。そして、バイパス無し制御運転の予冷運転で、次の目標温度である第2目標温度に向けて冷却速度が一定に維持されるように回転数制御を行う。
 これにより、バイパスバルブの段階的又は連続的な開度調整制御と冷凍機の回転数制御を併用し、起動時から予冷完了までの初期運転期間において、一層効果的に、サージングの発生を抑制でき、且つ冷却速度を一定にして精度よく冷媒を冷却でき、効率的な運転制御を行うことが可能になる。
(7)本開示の別の態様に係る冷凍機は、上記(6)の冷凍機であって、冷却対象を冷却する二次冷媒(冷却対象用冷媒R2)と冷媒とを熱交換するための熱交換器(冷却部、二次側負荷熱交換器2)と、二次冷媒の温度を検出するための二次冷媒温度センサ(第3温度センサ35)と、を備え、コントローラは、温度センサによって検出される冷媒の温度が第2目標温度より低くなった場合、二次冷媒温度センサの検出結果に基づいて回転数を制御する。
 上記(7)の冷凍機においては、第2目標温度に達した段階で温度センサから二次冷媒温度センサに温度検出点を切り替え、二次冷媒温度センサの検出結果に基づいて回転数を制御することで、初期運転期間の予冷運転から円滑に通常(定常)運転に移行することが可能になる。
(8)本開示の別の態様に係る冷凍機は、上記(1)乃至(7)の何れかの冷凍機であって、冷却部で冷却対象の冷却に用いられた後の冷媒によって高圧ラインの冷媒を冷却する冷熱回収熱交換器(冷熱回収熱交換器15)と、一端を高圧ラインの冷熱回収熱交換器と膨張機との間に設けられた第3接続部(第3接続部S3)に接続し、他端を低圧ラインの膨張機と冷却部との間に設けられた第4接続部(第4接続部S4)に接続したバッファライン(バッファライン26)と、バッファラインに設けられ、高圧ラインから送られた冷媒を貯留可能なバッファタンク(バッファタンク27)と、バッファラインのうちバッファタンクと第3接続部との間に設けられた高圧側バッファバルブ(第1開閉弁28)と、バッファラインのうちバッファタンクと第4接続部との間に設けられた低圧側バッファバルブ(第2開閉弁29)と、高圧ラインのうち第1接続部と第3接続部との間における冷媒の圧力を検出するための第1圧力センサ(第1圧力センサ36)と、バッファタンクの内部圧力を検出するための第2圧力センサ(第2圧力センサ37)と、第1圧力センサ及び第2圧力センサの検出結果に応じて高圧側バッファバルブ及び低圧側バッファバルブの開度を制御するためのコントローラと、を備えた。
 上記(8)の冷凍機においては、起動から予冷運転を行っている間で、第1圧力センサと第2圧力センサによって高圧ラインの冷媒圧力がバッファタンクの圧力よりも予め設定した設定値以上大きくなる状態が検出された場合に、高圧側バッファバルブを開き、圧力差を利用してバッファタンクに冷媒を回収することができる。
 これにより、過大なモータ負荷の発生、サージングの発生をより効果的に抑止することが可能になる。
(9)本開示の一態様に係る冷凍機の予冷時の運転方法は、冷媒を圧縮する圧縮機及び、圧縮機とモータによって駆動可能な回転軸を介して連結され、圧縮機で圧縮された冷媒を膨張させるための膨張機を含む膨張機一体型圧縮機と、膨張機で膨張された冷媒によって冷却対象を冷却するための冷却部と、膨張機から冷却部を介して低段圧縮機に至る低圧ライン、及び低段圧縮機から高段圧縮機に至る中圧ライン、高段圧縮機から膨張機に至る高圧ラインを備えて冷媒を循環させるための冷媒循環ラインと、一端を高圧ラインに設けられた第1接続部に接続し、他端を低圧ラインに設けられた第2接続部に接続されたバイパスラインと、バイパスラインに設けられ、開度を調整することによりバイパスラインを流れる冷媒の流量を調整可能なバイパスバルブと、高圧ラインのうち第1接続部と膨張機との間を流れる冷媒の温度、又は低圧ラインのうち冷却部と膨張機との間の冷媒の温度を検出するための温度センサと、温度センサの検出結果に基づいて、バイパスバルブの開度、及び回転軸の回転数を制御するためのコントローラと、を備えた冷凍機の起動時から予冷完了までの初期運転期間の運転方法であって、回転軸の回転数を初期運転期間の後の定常運転時よりも低い予め設定した回転数にするとともにバイパスバルブの開度を予め設定した開度にして運転を開始する起動運転工程と、コントローラによって、温度センサで検出される冷媒の温度が予め設定した第1目標温度に達するまで段階的にバイパスバルブの開度が小さくなるように制御するバイパス制御運転工程と、冷媒の温度が第1目標温度になった段階で、バイパスバルブの開度を0%として、第1目標温度から予め設定した第2目標温度になるまで冷媒を冷却するバイパス無し制御運転工程と、コントローラによって、バイパス制御運転工程とバイパス無し制御運転工程とのうち、少なくともバイパス制御運転工程で、冷媒の温度の減少速度が一定に維持されるように回転数を制御する冷却速度制御工程と、を備えた。
 上記(9)の冷凍機の予冷時の運転方法においては、バイパスバルブを開制御することにより、高段圧縮機で圧縮された冷媒の一部を膨張機に供給することなく、再び低段圧縮機ひいては高段圧縮機に戻すことができる。また、バイパスバルブの開度を調整することにより、圧縮機に戻される冷媒流量、ひいては膨張機に流れる冷媒流量を変化させることができる。
 これにより、起動時から予冷完了までの初期運転期間において、バイパスバルブの開度を運転状態に応じて適宜変更することでサージングを起こさず、且つ冷却に使用されない冷媒を減らすことができ、動力が無駄とならない効率的(高COP)な運転が可能になる。
 また、起動時から予冷完了までの初期運転期間において、バイパスバルブの開度制御に加え、冷凍機(圧縮機、膨張機)の回転数制御を行うことで冷却速度を調整/修正し、冷却速度を一定に維持することによって、冷媒温度を精度よく制御することが可能になる。
 そして、バイパスバルブの開度調整ひいてはバイパスする冷媒流量の調整制御を、膨張機の入口付近や出口付近に設けた第1温度センサ又は第2温度センサの検出値に基づいて制御することで、冷媒の流量を検出する場合と比較し、装置構成の複雑化を招くことなく精度よく制御を行うことが可能になる。
 よって、冷媒の流量を検出することなく冷媒の流量制御によってサージング回避を達成できるので、装置構成の簡略化を図りつつ、安全性を向上することができる。また、圧縮機や膨張機を高回転で運転した予冷が可能になり、スムーズな予冷運転が実現できる。
 すなわち、初期運転期間において、従来よりも、サージングの発生を好適に抑制でき、且つ冷却速度を一定にして精度よく冷媒を冷却でき、効率的な運転制御を行うことが可能になる。
(10)本開示の別の態様に係る冷凍機の予冷時の運転方法は、上記(9)の冷凍機の運転方法であって、バイパス制御運転工程では、コントローラによって、温度センサで検出される冷媒の温度が予め設定した第1目標温度に達するまで段階的にバイパスバルブの開度が小さくなるように制御する。
 上記(10)の冷凍機の予冷時の運転方法においては、起動時から予冷完了までの初期運転期間において、バイパスバルブの開度制御に加え、冷凍機(圧縮機、膨張機)の回転数制御を行うことで冷却速度を調整/修正し、冷却速度を一定に維持することによって、冷媒温度を精度よく制御することが可能になる。
 また、バイパスバルブの段階的な開度制御と、冷凍機の回転数制御とを併用することによって、各ステップの温度区間ごとにバイパスバルブの開度を設定でき、それぞれの区分けした温度区間において冷却速度が予め設定した一定の設定値になるように回転数制御を行うことができる。
 これにより、冷凍機の回転数や圧力の変動が少ない安定した予冷運転が可能になる。
(11)本開示の別の態様に係る冷凍機の予冷時の運転方法は、上記(9)の冷凍機の運転方法であって、バイパス制御運転工程では、コントローラによって、温度センサで検出される冷媒の温度が予め設定した第1目標温度に達するまで連続的にバイパスバルブの開度が小さくなるように制御する。
 上記(11)の冷凍機の予冷時の運転方法においては、起動時から予冷完了までの初期運転期間において、バイパスバルブの開度制御に加え、冷凍機(圧縮機、膨張機)の回転数制御を行うことで冷却速度を調整/修正し、冷却速度を一定に維持することによって、冷媒温度を精度よく制御することが可能になる。
 また、バイパスバルブの連続的な開度制御と、冷凍機の回転数制御とを併用することによって、各ステップの温度区間ごとにバイパスバルブの開度を設定でき、それぞれの区分けした温度区間において冷却速度が予め設定した一定の設定値になるように回転数制御を行うことができる。
 これにより、冷凍機の回転数や圧力の変動が少ない安定した予冷運転が可能になる。
(12)本開示の別の態様に係る冷凍機の予冷時の運転方法は、上記(9)乃至(11)の何れかの冷凍機の運転方法であって、冷凍機は冷却対象を冷却する二次冷媒と冷媒とを熱交換するための熱交換器と、二次冷媒の温度を検出するための二次冷媒温度センサと、を備え、コントローラは温度センサによって検出される冷媒の温度が第2目標温度より低くなった場合に、二次冷媒温度センサの検出結果に基づいて回転数を制御する本冷却運転切替工程を備えた。
 上記(12)の冷凍機の予冷時の運転方法においては、第2目標温度に達した段階で温度センサから二次冷媒温度センサでの温度検出点を切り替え、二次冷媒温度センサの検出結果に基づいて回転数を制御することで、初期運転期間の予冷運転から円滑に通常(定常)運転に移行することが可能になる。
 1 冷凍機
 2 冷却部(二次側負荷熱交換器)
 7 膨張機一体型圧縮機
 8 冷媒循環ライン
 9 第1モータ
 10 一体型圧縮機
 11 第2モータ
 12 第1熱交換器
 13 第2熱交換器
 14 第3熱交換器
 15 冷熱回収熱交換器(再生熱交換器)
 16 冷却対象側循環ライン
 20 超電導機器(冷却対象)
 25 バッファライン部
 26 バッファライン
 27 バッファタンク
 28 第1開閉弁(高圧側バッファバルブ)
 29 第2開閉弁(低圧側バッファバルブ)
 30 バイパスライン部
 31 バイパスライン
 32 第3開閉弁(バイパスバルブ)
 33 第1温度センサ(温度センサ)
 34 第2温度センサ(温度センサ)
 35 第3温度センサ(二次冷媒温度センサ)
 36 第1圧力センサ
 37 第2圧力センサ
 41 第3圧力センサ
 38 第1動力計
 39 第2動力計
 40 コントローラ(制御装置)
 C1    低段圧縮機
 C2    中段圧縮機
 C3    高段圧縮機
 T     膨張機
 R1 冷媒
 R2 冷却対象用冷媒(液体窒素、二次冷媒、冷却対象)
 S1 第1接続部
 S2 第2接続部
 S3 第3接続部
 S4 第4接続部
 w     冷却水

Claims (12)

  1.  冷媒を圧縮する圧縮機、及び、前記圧縮機とモータによって駆動可能な回転軸を介して連結され、前記圧縮機で圧縮された前記冷媒を膨張させるための膨張機を含む膨張機一体型圧縮機と、
     前記膨張機で膨張された前記冷媒によって冷却対象を冷却するための冷却部と、
     前記膨張機から前記冷却部を介して前記低段圧縮機に至る低圧ライン、及び前記低段圧縮機から前記高段圧縮機に至る中圧ライン、前記高段圧縮機から前記膨張機に至る高圧ラインを備えて前記冷媒を循環させるための冷媒循環ラインと、
     一端を前記高圧ラインに設けられた第1接続部に接続し、他端を前記低圧ラインに設けられた第2接続部に接続されたバイパスラインと、
     前記バイパスラインに設けられ、開度を調整することにより前記バイパスラインを流れる前記冷媒の流量を調整可能なバイパスバルブと、を備えた、
     冷凍機。
  2.  前記高圧ラインのうち前記第1接続部と前記膨張機との間を流れる前記冷媒の温度を検出するための温度センサと、
     前記温度センサの検出結果に基づいて、前記バイパスバルブの開度、及び前記回転軸の回転数を制御するためのコントローラと、を備えた、
     請求項1に記載の冷凍機。
  3.  前記低圧ラインのうち前記冷却部と前記膨張機との間の冷媒の温度を検出するための温度センサと、
     前記温度センサの検出結果に基づいて、前記バイパスバルブの開度、及び前記回転軸の回転数を制御するためのコントローラと、を備えた、
     請求項1に記載の冷凍機。
  4.  前記コントローラは、
     前記冷凍機の起動開始時から予冷運転完了時までの初期運転期間において、前記温度センサによって検出される前記冷媒の温度が予め設定した第1目標温度に達するまで段階的に開度が小さくなるように前記バイパスバルブを制御するとともに、前記温度センサによって検出される前記冷媒の温度の減少速度が一定に維持されるように前記回転数を制御する、
     請求項2又は3に記載の冷凍機。
  5.  前記コントローラは、
     前記冷凍機の起動開始時から予冷運転完了時までの初期運転期間において、前記温度センサによって検出される前記冷媒の温度が予め設定した第1目標温度に達するまで連続的に開度が小さくなるように前記バイパスバルブを制御するとともに、前記温度センサによって検出される前記冷媒の温度の減少速度が一定に維持されるように前記回転数を制御する、
     請求項2又は3に記載の冷凍機。
  6.  前記コントローラは、
     前記温度センサによって検出される前記冷媒の温度が前記第1目標温度に達した段階で前記開度が0%となるように前記バイパスバルブを制御し、前記温度センサによって検出される前記冷媒の温度が前記第1目標温度よりも低温で前記第1目標温度より低く設定された第2目標温度に達するまで前記開度を0%に維持しながら、前記温度センサによって検出される前記冷媒の温度の減少速度が一定に維持されるように前記回転数を制御する、
     請求項4又は5に記載の冷凍機。
  7.  前記冷却対象を冷却する二次冷媒と前記冷媒とを熱交換するための熱交換器と、
     前記二次冷媒の温度を検出するための二次冷媒温度センサと
    を備え、
     前記コントローラは、
     前記温度センサによって検出される前記冷媒の温度が前記第2目標温度より低くなった場合、前記二次冷媒温度センサの検出結果に基づいて前記回転数を制御する、
     請求項6に記載の冷凍機。
  8.  前記冷却部で前記冷却対象の冷却に用いられた後の冷媒によって前記高圧ラインの冷媒を冷却する冷熱回収熱交換器と、
     一端を前記高圧ラインの前記冷熱回収熱交換器と前記膨張機との間に設けられた第3接続部に接続し、他端を前記低圧ラインの前記膨張機と前記冷却部との間に設けられた第4接続部に接続したバッファラインと、
     前記バッファラインに設けられ、前記高圧ラインから送られた前記冷媒を貯留可能なバッファタンクと、
     前記バッファラインのうち前記バッファタンクと前記第3接続部との間に設けられた高圧側バッファバルブと、
     前記バッファラインのうち前記バッファタンクと前記第4接続部との間に設けられた低圧側バッファバルブと、
     前記高圧ラインのうち前記第1接続部と前記第3接続部との間における前記冷媒の圧力を検出するための第1圧力センサと、
     前記バッファタンクの内部圧力を検出するための第2圧力センサと、
     前記第1圧力センサ及び前記第2圧力センサの検出結果に応じて前記高圧側バッファバルブ及び前記低圧側バッファバルブの開度を制御するためのコントローラと、を備えた、
     請求項1乃至7の何れか1項に記載の冷凍機。
  9.  冷媒を圧縮する圧縮機、及び、前記圧縮機とモータによって駆動可能な回転軸を介して連結され、前記圧縮機で圧縮された前記冷媒を膨張させるための膨張機を含む膨張機一体型圧縮機と、
     前記膨張機で膨張された前記冷媒によって冷却対象を冷却するための冷却部と、
     前記膨張機から前記冷却部を介して前記低段圧縮機に至る低圧ライン、及び前記低段圧縮機から前記高段圧縮機に至る中圧ライン、前記高段圧縮機から前記膨張機に至る高圧ラインを備えて前記冷媒を循環させるための冷媒循環ラインと、
     一端を前記高圧ラインに設けられた第1接続部に接続し、他端を前記低圧ラインに設けられた第2接続部に接続されたバイパスラインと、
     前記バイパスラインに設けられ、開度を調整することにより前記バイパスラインを流れる前記冷媒の流量を調整可能なバイパスバルブと、
     前記高圧ラインのうち前記第1接続部と前記膨張機との間を流れる前記冷媒の温度、又は前記低圧ラインのうち前記冷却部と前記膨張機との間の冷媒の温度を検出するための温度センサと、
     前記温度センサの検出結果に基づいて、前記バイパスバルブの開度、及び前記回転軸の回転数を制御するためのコントローラと、を備えた冷凍機の起動時から予冷完了までの初期運転期間の運転方法であって、
     前記回転軸の回転数を前記初期運転期間の後の定常運転時よりも低い予め設定した回転数にするとともに前記バイパスバルブの開度を予め設定した開度にして運転を開始する起動運転工程と、
     前記コントローラによって、前記温度センサで検出される冷媒の温度が予め設定した第1目標温度に達するまで前記バイパスバルブの開度が小さくなるように制御するバイパス制御運転工程と、
     冷媒の温度が前記第1目標温度になった段階で、前記バイパスバルブの開度を0%として、前記第1目標温度から予め設定した第2目標温度になるまで冷媒を冷却するバイパス無し制御運転工程と、
     前記コントローラによって、バイパス制御運転工程とバイパス無し制御運転工程とのうち、少なくともバイパス制御運転工程で、前記冷媒の温度の減少速度が一定に維持されるように前記回転数を制御する冷却速度制御工程と、を備えた、
     冷凍機の予冷時の運転方法。
  10.  前記バイパス制御運転工程では、前記コントローラによって、前記温度センサで検出される冷媒の温度が予め設定した第1目標温度に達するまで段階的に前記バイパスバルブの開度が小さくなるように制御する、
     請求項9に記載の冷凍機の予冷時の運転方法。
  11.  前記バイパス制御運転工程では、前記コントローラによって、前記温度センサで検出される冷媒の温度が予め設定した第1目標温度に達するまで連続的に前記バイパスバルブの開度が小さくなるように制御する、
     請求項9に記載の冷凍機の予冷時の運転方法。
  12.  前記冷凍機は、
     前記冷却対象を冷却する二次冷媒と前記冷媒とを熱交換するための熱交換器と、
     前記二次冷媒の温度を検出するための二次冷媒温度センサと、を備え、
     前記コントローラは、
     前記温度センサによって検出される前記冷媒の温度が前記第2目標温度より低くなった場合、前記二次冷媒温度センサの検出結果に基づいて前記回転数を制御する本冷却運転切替工程を備えた、
     請求項9乃至11の何れか1項に記載の冷凍機の予冷時の運転方法。
PCT/JP2021/043164 2020-12-01 2021-11-25 冷凍機及び冷凍機の予冷時の運転方法 WO2022118729A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180080138.5A CN116529541A (zh) 2020-12-01 2021-11-25 制冷机以及制冷机的预冷时的运转方法
US18/037,440 US20230417465A1 (en) 2020-12-01 2021-11-25 Refrigerator and operation method during precooling of refrigerator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-199614 2020-12-01
JP2020199614A JP2022087598A (ja) 2020-12-01 2020-12-01 冷凍機及び冷凍機の予冷時の運転方法

Publications (1)

Publication Number Publication Date
WO2022118729A1 true WO2022118729A1 (ja) 2022-06-09

Family

ID=81853533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/043164 WO2022118729A1 (ja) 2020-12-01 2021-11-25 冷凍機及び冷凍機の予冷時の運転方法

Country Status (4)

Country Link
US (1) US20230417465A1 (ja)
JP (1) JP2022087598A (ja)
CN (1) CN116529541A (ja)
WO (1) WO2022118729A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006258331A (ja) * 2005-03-15 2006-09-28 Daikin Ind Ltd 冷凍装置
WO2006103821A1 (ja) * 2005-03-29 2006-10-05 Mitsubishi Denki Kabushiki Kaisha スクロール膨張機
WO2010073586A1 (ja) * 2008-12-22 2010-07-01 パナソニック株式会社 冷凍サイクル装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006258331A (ja) * 2005-03-15 2006-09-28 Daikin Ind Ltd 冷凍装置
WO2006103821A1 (ja) * 2005-03-29 2006-10-05 Mitsubishi Denki Kabushiki Kaisha スクロール膨張機
WO2010073586A1 (ja) * 2008-12-22 2010-07-01 パナソニック株式会社 冷凍サイクル装置

Also Published As

Publication number Publication date
CN116529541A (zh) 2023-08-01
JP2022087598A (ja) 2022-06-13
US20230417465A1 (en) 2023-12-28

Similar Documents

Publication Publication Date Title
KR101735623B1 (ko) 브레이턴 사이클 냉동기
DK2737265T3 (en) COOLING TEMPERATURE CONTROL LOGIC
JP5495499B2 (ja) ターボ冷凍機および冷凍システムならびにこれらの制御方法
JP3990186B2 (ja) 超臨界蒸気圧縮回路における高圧側圧力制御方法と回路装置
JP5010364B2 (ja) 熱源機およびその制御方法、並びに、熱源システムおよびその運転方法
CN111854119B (zh) 冷水机组负荷输出无极调节控制方法及冷水机组
JP4767133B2 (ja) 冷凍サイクル装置
JP2013155972A (ja) 冷凍装置
JP4563269B2 (ja) タービン型冷凍機の冷凍能力制御装置
JP2013164250A (ja) 冷凍装置
WO2022118729A1 (ja) 冷凍機及び冷凍機の予冷時の運転方法
JP2014119187A (ja) 冷凍装置及び冷凍サイクル装置
JP2013064573A (ja) コンテナ用冷凍装置
US11959676B2 (en) Method for controlling a vapour compression system at a reduced suction pressure
JP5927553B2 (ja) 冷凍装置
JP2014040953A (ja) 冷凍空調装置
JP5713570B2 (ja) 冷凍機ユニットおよびその制御方法
JP2014159950A (ja) 冷凍装置
JP7080801B2 (ja) ターボ冷凍機
JP5412073B2 (ja) 熱源システムおよびその制御方法
JP2581622B2 (ja) スクリュー圧縮機の容量制御方法及び装置
JP4690574B2 (ja) 冷凍機における膨張弁の制御方法及び制御装置
KR102532023B1 (ko) 초임계 냉각 시스템 및 그 제어방법
JPH08121892A (ja) タービン式膨張機の運転制御方法
CN110312902B (zh) 涡轮制冷机及涡轮制冷机的运行方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21900483

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18037440

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180080138.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21900483

Country of ref document: EP

Kind code of ref document: A1