WO2022118552A1 - 光検出装置および光検出システム - Google Patents

光検出装置および光検出システム Download PDF

Info

Publication number
WO2022118552A1
WO2022118552A1 PCT/JP2021/038568 JP2021038568W WO2022118552A1 WO 2022118552 A1 WO2022118552 A1 WO 2022118552A1 JP 2021038568 W JP2021038568 W JP 2021038568W WO 2022118552 A1 WO2022118552 A1 WO 2022118552A1
Authority
WO
WIPO (PCT)
Prior art keywords
light receiving
unit
counters
threshold value
count
Prior art date
Application number
PCT/JP2021/038568
Other languages
English (en)
French (fr)
Inventor
拳文 高塚
泰二 池田
祐輔 大池
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2022118552A1 publication Critical patent/WO2022118552A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection

Definitions

  • the present disclosure relates to a photodetector and a photodetection system that detect light.
  • Patent Document 1 discloses a distance measuring device that reduces the amount of ambient light received by turning off any of a plurality of light receiving elements.
  • the first photodetector includes one or a plurality of light receiving units, a plurality of first counters, and a subtraction processing unit.
  • Each of the one or a plurality of light receiving units has a light receiving element and is configured to generate a pulse signal including a pulse corresponding to the light receiving result of the light receiving element.
  • the plurality of first counters are configured to generate a plurality of count values by performing a count process based on the one or a plurality of pulse signals generated by the one or a plurality of light receiving units.
  • the subtraction processing unit is configured to perform subtraction processing in which each of the plurality of count values is subtracted by a predetermined value based on one or more count values among the plurality of count values.
  • the second photodetector includes one or a plurality of light receiving units, a plurality of first counters, a stop processing unit, and a threshold value setting unit.
  • Each of the one or a plurality of light receiving units has a light receiving element and is configured to generate a pulse signal including a pulse corresponding to the light receiving result of the light receiving element.
  • the plurality of first counters are configured to generate a plurality of count values by performing a count process based on the one or a plurality of pulse signals generated by the one or a plurality of light receiving units.
  • the stop control unit is configured to stop the count processing in the plurality of first counters when one or more of the plurality of count values reaches the first threshold value.
  • the threshold value setting unit is configured to increase the first threshold value based on the count value of one or more of the plurality of count values.
  • the first photodetection system includes a light emitting unit and a photodetection unit.
  • the light emitting unit is configured to emit light.
  • the photodetector is configured to detect the light reflected by the detection target among the light emitted from the light emitting unit.
  • This photodetector has one or more light receiving units, a plurality of first counters, and a subtraction processing unit.
  • Each of the one or a plurality of light receiving units has a light receiving element and is configured to generate a pulse signal including a pulse corresponding to the light receiving result of the light receiving element.
  • the plurality of first counters are configured to generate a plurality of count values by performing a count process based on the one or a plurality of pulse signals generated by the one or a plurality of light receiving units.
  • the subtraction processing unit is configured to perform subtraction processing in which each of the plurality of count values is subtracted by a predetermined value based on one or more count values among the plurality of count values.
  • the second photodetection system includes a light emitting unit and a photodetection unit.
  • the light emitting unit is configured to emit light.
  • the photodetector is configured to detect the light reflected by the detection target among the light emitted from the light emitting unit.
  • This photodetector has one or more light receiving units, a plurality of first counters, a stop processing unit, and a threshold value setting unit.
  • Each of the one or a plurality of light receiving units has a light receiving element and is configured to generate a pulse signal including a pulse corresponding to the light receiving result of the light receiving element.
  • the plurality of first counters are configured to generate a plurality of count values by performing a count process based on the one or a plurality of pulse signals generated by the one or a plurality of light receiving units.
  • the stop control unit is configured to stop the count processing in the plurality of first counters when one or more of the plurality of count values reaches the first threshold value.
  • the threshold value setting unit is configured to increase the first threshold value based on the count value of one or more of the plurality of count values.
  • a pulse signal including a pulse corresponding to the light receiving result of the light receiving element is generated in each of one or a plurality of light receiving units. ..
  • a plurality of count values are generated by performing a count process based on one or a plurality of pulse signals generated by one or a plurality of light receiving units.
  • a subtraction process is performed in which each of the plurality of count values is subtracted by a predetermined value based on the count value of one or more of the plurality of count values.
  • a pulse signal including a pulse corresponding to the light receiving result of the light receiving element is generated in each of one or a plurality of light receiving units. ..
  • a plurality of count values are generated by performing a count process based on one or a plurality of pulse signals generated by one or a plurality of light receiving units.
  • the count process in the plurality of first counters is stopped by the stop control unit when one or more of the plurality of count values reaches the first threshold value.
  • This first threshold value is changed by the threshold value setting unit to increase the first threshold value based on one or more count values among the plurality of count values.
  • FIG. 1 shows a configuration example of a photodetection system (photodetection system 1) according to an embodiment.
  • the light detection system 1 is a ToF (Time-of-Flight) sensor, and is configured to emit light and detect the reflected light reflected by the detection object OBJ.
  • the photodetection system 1 includes a light emitting unit 11, an optical system 12, a photodetection unit 20, and a control unit 14.
  • the light emitting unit 11 is configured to emit an optical pulse L0 toward the detection target OBJ based on an instruction from the control unit 14.
  • the light emitting unit 11 emits a light pulse L0 by performing a light emitting operation in which light emission and non-light emission are alternately repeated based on an instruction from the control unit 14.
  • the light emitting unit 11 has, for example, a light source that emits infrared light. This light source is configured by using, for example, a laser light source, an LED (Light Emitting Diode), or the like.
  • the optical system 12 includes a lens that forms an image on the light receiving surface S of the photodetector 20.
  • An optical pulse (reflected light pulse L1) emitted from the light emitting unit 11 and reflected by the detection object OBJ is incident on the optical system 12.
  • the light detection unit 20 is configured to detect the reflected light pulse L1 based on an instruction from the control unit 14. Then, the light detection unit 20 generates a distance image based on the detection result, and outputs the image data of the generated distance image as data DT.
  • the control unit 14 is configured to control the operation of the photodetection system 1 by supplying control signals to the light emitting unit 11 and the photodetection unit 20 and controlling their operations.
  • FIG. 2 shows an example of the configuration of the photodetector 20.
  • the photodetection unit 20 includes a photodetection array 21, a signal generation unit 22, a read control unit 23, a signal processing unit 24, and a photodetection control unit 25.
  • the photodetection array 21 has a plurality of photodetection units U arranged in a matrix.
  • the photodetection unit U is configured to detect the reflected light pulse L1 and count the number of detections thereof.
  • FIG. 3 shows an example of a configuration of the photodetector unit U.
  • the optical detection unit U includes a light receiving unit 31, a plurality of AND circuits 33 (four logical product circuits 33A to 33D in this example), and a plurality of switches 34 (four switches 34A to 34D in this example). It has a plurality of counters 35 (four counters 35A to 35D in this example), a subtraction determination unit 36, a subtraction control unit 37, and a saturation determination unit 38.
  • four circuits including the AND circuit 33, the switch 34, and the counter 35 are provided, but the present invention is not limited to this, and for example, the AND circuit 33, the switch 34, and the counter 35 are provided. Three or more circuits including the circuit can be provided.
  • the light receiving unit 31 is configured to generate a pulse signal PLS having a pulse corresponding to the detected light by detecting the light.
  • FIG. 4A shows an example of the configuration of the light receiving unit 31.
  • the light receiving unit 31 has a photodiode PD, a resistance element R1, and an inverter IV1.
  • the photodiode PD is a photoelectric conversion element that converts light into electric charges.
  • a power supply voltage VSS is supplied to the anode of the photodiode PD, and the cathode is connected to the node N1.
  • an avalanche photodiode Avalanche Photodiode
  • SPAD Single Photon Avalanche Diode
  • the power supply voltage VDD is supplied to one end of the resistance element R1, and the other end is connected to the node N1.
  • the inverter IV1 generates a pulse signal PLS by outputting a low level when the voltage at the node N1 is higher than the logical threshold value and outputting a high level when the voltage at the node N1 is lower than the logical threshold value. It is configured as follows.
  • the photodiode PD detects light, so that avalanche amplification occurs and the voltage at the node N1 drops. Then, when the voltage at the node N1 becomes lower than the logical threshold value of the inverter IV1, the pulse signal PLS changes from a low level to a high level. After that, a current flows through the node N1 via the resistance element R1, so that the voltage of the node N1 rises. Then, when the voltage at the node N1 becomes higher than the logical threshold value of the inverter IV1, the pulse signal PLS changes from a high level to a low level. In this way, the light receiving unit 31 is adapted to generate a pulse signal PLS having a pulse corresponding to the detected light.
  • FIG. 4B shows another configuration example of the light receiving unit 31.
  • the light receiving unit 31 has a photodiode PD, a transistor MP1, an inverter IV1, and a control circuit CKT1.
  • the transistor MP1 is a P-type MOS (Metal Oxide Semiconductor) transistor, the gate is connected to the output terminal of the control circuit CKT1, the power supply voltage VDD is supplied to the source, and the drain is connected to the node N1.
  • MOS Metal Oxide Semiconductor
  • the control circuit CKT1 is configured to control the operation of the transistor MP1 based on the pulse signal PLS. Specifically, the control circuit CKT1 lowers the voltage at the gate of the transistor MP1 after the pulse signal PLS changes from low level to high level, and after the pulse signal PLS changes from high level to low level, the transistor MP1 The gate voltage is designed to be at a high level.
  • the photodiode PD detects light, so that the voltage at the node N1 drops. Then, when the voltage at the node N1 becomes lower than the logical threshold value of the inverter IV1, the pulse signal PLS changes from a low level to a high level.
  • the control circuit CKT1 lowers the voltage of the gate of the transistor MP1 after the change of the pulse signal PLS. As a result, the transistor MP1 is turned on, and a current flows through the transistor MP1 to the node N1, so that the voltage of the node N1 rises. Then, when the voltage at the node N1 becomes higher than the logical threshold value of the inverter IV1, the pulse signal PLS changes from a high level to a low level.
  • the control circuit CKT1 raises the voltage of the gate of the transistor MP1 to a high level after the change of the pulse signal PLS. As a result, the transistor MP1 is turned off. In this way, the light receiving unit 31 is adapted to generate a pulse signal PLS having a pulse corresponding to the detected light.
  • the logical product circuit 33A (FIG. 3) is configured to obtain the logical product of the clock signal CLKA and the inverted signal of the control signal STP.
  • the switch 34A is configured to turn on / off the supply of the pulse signal PLS to the counter 35A based on the output signal of the AND circuit 33A. Specifically, the switch 34A supplies the pulse signal PLS to the counter 35A when the output signal of the logic product circuit 33A is high level, and is low when the output signal of the logic product circuit 33A is low level. The level signal is supplied to the counter 35A.
  • the switch 34A is configured by using, for example, a AND circuit or an OR circuit.
  • the logical product circuit 33B is configured to obtain the logical product of the clock signal CLKB and the inverted signal of the control signal STP.
  • the switch 34B is configured to turn on / off the supply of the pulse signal PLS to the counter 35B based on the output signal of the AND circuit 33B.
  • the logical product circuit 33C is configured to obtain the logical product of the clock signal CLKC and the inverted signal of the control signal STP.
  • the switch 34C is configured to turn on / off the supply of the pulse signal PLS to the counter 35C based on the output signal of the AND circuit 33C.
  • the logical product circuit 33D is configured to obtain the logical product of the clock signal CLKD and the inverted signal of the control signal STP.
  • the switch 34D is configured to turn on / off the supply of the pulse signal PLS to the counter 35D based on the output signal of the AND circuit 33D.
  • the counter 35A is configured to increment the count value CNTA by performing a count process based on the rising edge of the pulse signal supplied from the switch 34A.
  • the counter 35B is configured to increment the count value CNTB by performing a count process based on the rising edge of the pulse signal supplied from the switch 34B.
  • the counter 35C is configured to increment the count value CNTC by performing a count process based on the rising edge of the pulse signal supplied from the switch 34C.
  • the counter 35D is configured to increment the count value CNTD by performing a count process based on the rising edge of the pulse signal supplied from the switch 34D.
  • the subtraction determination unit 36 is configured to generate a control signal CTL by determining whether or not any of the count values CNTA to CNT has reached the threshold value THA. In other words, the subtraction determination unit 36 generates the control signal CTL by determining whether or not the minimum value of the count values CNTA to CNT has reached the threshold value THA.
  • FIG. 5 shows a configuration example of the subtraction determination unit 36.
  • the subtraction determination unit 36 has a comparison circuit CP1A, CP1B, CP1C, CP1D and a logical AND circuit AND1.
  • the comparison circuit CP1A is configured to determine if the count value CNTA is greater than the threshold THA.
  • the comparison circuit CP1B is configured to determine whether the count value CNTB is greater than the threshold THA.
  • the comparison circuit CP1C is configured to determine if the count value CNTC is greater than the threshold THA.
  • the comparison circuit CP1D is configured to determine if the count value CNTD is greater than the threshold THA.
  • the AND1 circuit AND1 is configured to generate a control signal CTL by obtaining the AND1 of the output signal of the comparison circuit CP1A, the output signal of the comparison circuit CP1B, the output signal of the comparison circuit CP1C, and the output signal of the comparison circuit CP1D. Will be done. With this configuration, the subtraction determination unit 36 can determine whether or not any of the count values CNTA to CNTD has reached the threshold value THA.
  • the subtraction control unit 37 (FIG. 3) is configured to subtract each of the count values CNTA to CNT in the counters 35A to 35D by a predetermined value based on the determination result of the subtraction determination unit 36.
  • the saturation determination unit 38 is configured to generate a control signal STP by determining whether or not one or more of the count values CNTA to CNT has reached the threshold value THB. Specifically, the saturation determination unit 38 raises the control signal STP to a high level when one or more of the count values CNTA to CNT reaches the threshold value THB, and any of the count values CNTA to CNTD.
  • the control signal STP is set to a low level when the threshold value THB has not been reached.
  • the threshold THB is set to a value larger than the threshold THA.
  • FIG. 6 shows an example of the configuration of the saturation determination unit 38.
  • the saturation determination unit 38 has a comparison circuit CP2A, CP2B, CP2C, CP2D and an OR circuit OR1.
  • the comparison circuit CP2A is configured to determine if the count value CNTA is greater than the threshold THB.
  • the comparison circuit CP2B is configured to determine whether the count value CNTB is greater than the threshold THB.
  • the comparison circuit CP2C is configured to determine if the count value CNTC is greater than the threshold THB.
  • the comparison circuit CP2D is configured to determine if the count value CNT is greater than the threshold THB.
  • the OR1 is configured to generate a control signal STP by obtaining the OR of the output signal of the comparison circuit CP2A, the output signal of the comparison circuit CP2B, the output signal of the comparison circuit CP2C, and the output signal of the comparison circuit CP2D. Will be done.
  • the saturation determination unit 38 can determine whether or not one or more of the count values CNTA to CNT has reached the threshold value THB.
  • each of the AND circuits 33A to 33D outputs. Lower the signal to a low level.
  • the switches 34A to 34D stop supplying the pulse signal PLS to the counters 35A to 35D, and the counters 35A to 35D stop the counting process.
  • the signal generation unit 22 (FIG. 2) generates the clock signals CLKA to CLKD and the threshold values THA and THB based on the instruction from the photodetection control unit 25, and the generated clock signals CLKA to CLKD and the threshold value THA,
  • the THB is configured to supply the THB to a plurality of photodetection units U in the photodetection array 21.
  • the read control unit 23 operates to supply the count values CTAN to CNT generated in each of the plurality of photodetection units U in the photodetection array 21 to the signal processing unit 24 based on the instruction from the photodetection control unit 25. Configured to control.
  • the read control unit 23 sequentially selects, for example, one row of photodetector units U, and a plurality of photodetector units so that the selected photodetector unit U supplies the count values CNTA to CNT to the signal processing unit 24. It is designed to control the operation of U.
  • the signal processing unit 24 is configured to generate a distance image based on an instruction from the light detection control unit 25. Specifically, the signal processing unit 24 emits the light pulse L0 after the light emitting unit 11 emits the light pulse L0 based on the count values CNTA to CNT supplied from each of the plurality of light detection units U in the light detection array 21. A distance image is generated by measuring the time (TOF value) until the light detection unit U detects the reflected light pulse L1. Then, the signal processing unit 24 outputs the image data of the generated distance image as data DT.
  • the optical detection control unit 25 supplies control signals to the signal generation unit 22, the read control unit 23, and the signal processing unit 24 based on the instruction from the control unit 14 (FIG. 1), and controls these operations. Is configured to control the operation of the light detection unit 20.
  • the light receiving unit 31 corresponds to a specific example of the "light receiving unit” in the present disclosure.
  • the photodiode PD corresponds to a specific example of the "light receiving element” in the present disclosure.
  • the pulse signal PLS corresponds to a specific example of the "pulse signal” in the present disclosure.
  • the switches 34A to 34D correspond to a specific example of the "distribution unit” in the present disclosure.
  • the counter 35 corresponds to a specific example of the "counter” in the present disclosure.
  • the subtraction determination unit 36 and the subtraction control unit 37 correspond to a specific example of the "subtraction processing unit” in the present disclosure.
  • the saturation determination unit 38 and the AND circuits 33A to 33D correspond to a specific example of the "stop processing unit” in the present disclosure.
  • the signal processing unit 24 corresponds to a specific example of the "first processing unit” in the present disclosure.
  • the threshold THB corresponds to a specific example of the "first threshold” in the present disclosure.
  • the threshold THA corresponds to a specific example of the "second threshold” in the present disclosure.
  • the light emitting unit 11 emits an optical pulse L0 toward the detection target OBJ.
  • the optical system 12 forms an image on the light receiving surface S of the photodetector 20.
  • the photodetection unit 20 detects the reflected light pulse L1.
  • the control unit 14 supplies control signals to the light emitting unit 11 and the photodetection unit 20, and controls these operations to control the distance measuring operation of the photodetection system 1.
  • the photodetection unit U of the photodetection array 21 generates count values CNTA to CNT by detecting the reflected light pulse L1.
  • the signal generation unit 22 generates clock signals CLKA to CLKD and threshold values THA and THB, and supplies the clock signals CLKA to CLKD and threshold values THA and THB to a plurality of photodetection units U.
  • the read control unit 23 controls an operation of supplying the count values CNTA to CNT generated in each of the plurality of photodetection units U in the photodetection array 21 to the signal processing unit 24.
  • the signal processing unit 24 generates a distance image based on the count values CNTA to CNT supplied from the plurality of light detection units U in the light detection array 21, and outputs the image data of the generated distance image as data DT.
  • the photodetection control unit 25 supplies control signals to the signal generation unit 22, the read control unit 23, and the signal processing unit 24 based on the instruction from the control unit 14, and controls their operations to detect light. The operation of the unit 20 is controlled.
  • FIG. 7 shows an operation example of the light detection unit 20, in which (A) shows the waveform of the light emitted from the light emitting unit 11, and (B) is reflected by the detection object OBJ to detect a certain light.
  • the waveforms of the light incident on the unit U are shown, (C) to (F) show the waveforms of the clock signals CLKA to CLKD, respectively, and (G) to (J) show the waveforms of the count values CNTA to CNTD, respectively.
  • K) shows the waveform of the control signal STP, and (L) shows the operation of the read control unit 23.
  • the light detection system 1 During the period from timing t11 to t18 (exposure period P1), the light detection system 1 repeatedly emits the light pulse L0 and repeatedly detects the reflected light pulse L1 reflected by the detection object OBJ.
  • the light emitting unit 11 emits light (FIG. 7 (A)).
  • the signal generation unit 22 raises the clock signal CLKA to a high level during the timing t12 to t13, raises the clock signal CLKB to a high level during the timing t13 to t14, and raises the clock signal CLKC to a high level during the timing t14 to t15.
  • the clock signal CLKD is set to a high level during the period from timing t15 to t16 (FIGS. 7 (C) to (F)).
  • the reflected light pulse L1 occurs during the period when the clock signal CLKB becomes high level and during the period when the clock signal CLKC becomes high level (FIG.
  • the switch 34A supplies the pulse signal PLS to the counter 35A during the period from timing t12 to t13
  • the switch 34B supplies the pulse signal PLS to the counter 35B during the period from timing t13 to t14
  • the switch 34C supplies the timing.
  • the pulse signal PLS is supplied to the counter 35C during the period from t14 to t15
  • the switch 34D supplies the pulse signal PLS to the counter 35D during the period from timing t15 to t16.
  • the switches 34A to 34D distribute the pulse signal PLS to the counters 35A to 35D in a time-division manner based on the clock signals CLKA to CLKD.
  • the counter 35A increments the count value CNTA by performing a count process based on the rising edge of the pulse signal PLS supplied from the switch 34A during the period from timing t12 to t13 (FIG. 7 (G)).
  • the counter 35B increments the count value CNTB by performing count processing based on the rising edge in the pulse signal PLS supplied from the switch 34B during the period from timing t13 to t14 (FIG. 7 (H)).
  • the counter 35C increments the count value CNTC by performing a count process based on the rising edge of the pulse signal PLS supplied from the switch 34C during the period from timing t14 to t15 (FIG. 7 (I)).
  • the counter 35D increments the count value CNTD by performing a count process based on the rising edge of the pulse signal PLS supplied from the switch 34D during the period from timing t15 to t16 (FIG. 7 (J)).
  • the photodetection unit U repeats such operations at timings t11 to t17.
  • the counter 35A generates the count value CNTA by performing the count processing in the plurality of periods when the clock signal CLKA is high level
  • the counter 35B generates the count value CNTA in the plurality of periods when the clock signal CLKB is high level.
  • the count value CNTB is generated by performing the count processing
  • the counter 35C generates the count value CNTC by performing the count processing in a plurality of periods when the clock signal CLKC is at a high level
  • the counter 35D generates the count value CNTC
  • the counter 35D is the clock signal CLKD.
  • the count value CNTD is generated by performing the counting process in a plurality of periods in which is a high level.
  • the read control unit 23 performs read control CR to signal the count values CNTA to CNT generated in each of the plurality of photodetection units U.
  • the operation of the plurality of photodetector units U is controlled so as to supply to 24 (FIG. 7 (L)). After that, the count values CNTA to CNTD in the counters 35A to 35D are reset.
  • CNTC includes a component corresponding to the reflected light (reflected light component C1).
  • the count values CNTA to CNTD include a component corresponding to the ambient light (environmental light component C2). The magnitude of this ambient light component C2 is about the same in the count values CNTA to CNTD.
  • FIG. 8 shows an example of changes in the count values CNTA to CNTD during the exposure period P1.
  • the shaded area indicates the reflected light component C1
  • the white area indicates the ambient light component C2.
  • the count values CNTB and CNTC include the reflected light component C1 and the ambient light component C2
  • the count values CNTA and CNTD include the ambient light component C2.
  • the count values CNTA to CNT gradually increase with the passage of time.
  • the ambient light component C2 in the count values CNTA to CNTD is smaller than the threshold value THA.
  • the ambient light component C2 in the count values CNTA to CNT reaches the threshold value THA.
  • the subtraction determination unit 36 determines that all of the count values CNTA to CNT have reached the threshold value THA. In other words, the subtraction determination unit 36 determines that the minimum value of the count values CNTA to CNT has reached the threshold value THA.
  • the subtraction control unit 37 subtracts each of the count values CNTA to CNT by a predetermined value (FIG. 8 (C)). As a result, a part of the ambient light component C2 in the count values CNTA to CNTD is removed, and the reflected light component C1 is maintained.
  • the count value CNTC reaches the threshold value THB.
  • the saturation determination unit 38 determines that one or more of the count values CNTA to CNT has reached the threshold value THB, and changes the control signal STP from a low level to a high level.
  • the AND circuits 33A to 33D lower the output signal based on this control signal STP.
  • the switches 34A to 34D stop supplying the pulse signal PLS to the counters 35A to 35D, and the counters 35A to 35D stop the counting process. That is, when one or more of the count values CNTA to CNT reaches the threshold value THB, the counters 35A to 35D stop the counting process even if the exposure period P1 has not ended.
  • FIG. 9 shows an operation example of the photodetector 20.
  • the light detection control unit 25 starts the exposure period P1 (step S101).
  • the signal generation unit 22 generates the clock signals CLKA to CLKD based on the instruction from the photodetection control unit 25.
  • step S102 the photodetection control unit 25 confirms whether or not the exposure period P1 having a predetermined time length has ended.
  • the exposure period P1 is completed (“Y” in step S102)
  • the process proceeds to step S107.
  • the saturation determination unit 38 has a count value CNT of one or more of the four count value CNTs (count values CNTs to CNTD). It is determined whether or not the threshold value THB has been reached (step S103). When the count value CNT of 1 or more has reached the threshold value THB (“Y” in step S103), the process proceeds to step S106.
  • step S103 when none of the count value CNTs has reached the threshold value THB (“N” in step S103), the subtraction determination unit 36 has any of the four count value CNTs (count values CNTs to CNTD). Determines whether or not has reached the threshold THA (step S104). If all the count value CNTs have not reached the threshold value THA (“N” in step S104), the process returns to step S102.
  • step S104 when all of the four count value CNTs reach the threshold value THA (“Y” in step S104), the subtraction control unit 37 sets the count values CNT to CNT in the counters 35A to 35D, respectively. Is subtracted by a predetermined value (step S105). That is, in the example of FIG. 8, as shown in FIGS. 8 (B) and 8 (C), since all of the four count value CNTs have reached the threshold value THA, the subtraction control unit 37 has the count value CNTA. Each of ⁇ CNTD is subtracted by a predetermined value. Then, the process returns to step S102.
  • step S103 when the count value CNT of 1 or more reaches the threshold value THB (“Y” in step S103), the counters 35A to 35D stop the counting process (step S106). That is, in the example of FIG. 8, as shown in FIG. 8D, since the count value CNT of one or more of the four count value CNTs has reached the threshold value THB, the saturation determination unit 38 controls.
  • the signal STP is changed from low level to high level.
  • the AND circuits 33A to 33D lower the output signal based on this control signal STP.
  • the switches 34A to 34D stop supplying the pulse signal PLS to the counters 35A to 35D, and the counters 35A to 35D stop the counting process.
  • the plurality of photodetection units U perform such operations individually.
  • the photodetector 20 performs a read process (step S107). Specifically, the read control unit 23 controls the operation of the plurality of photodetection units U so as to supply the count values CNTA to CNT generated in each of the plurality of photodetection units U to the signal processing unit 24. ..
  • the signal processing unit 24 generates a distance image based on the count values CNTA to CNT supplied from each of the plurality of photodetection units U.
  • FIG. 10 shows an operation example of the signal processing unit 24.
  • the signal processing unit 24 subtracts the minimum value of the count values CNTA to CNTD from the count values CNTA to CNT supplied from the photodetection unit U. That is, as shown in FIG. 8D, the count values CNTA to CNT generated by the photodetector unit U include the reflected light component C1 and the ambient light component C2.
  • the signal processing unit 24 removes the ambient light component C2 by subtracting the minimum value of the count values CNTA to CNTD from the count values CNTA to CNTD.
  • the light emitting unit 11 emits the light pulse L0 based on the count values CNTA to CNTD from which the ambient light component C2 is removed, and then the light detecting unit U detects the reflected light pulse L1.
  • the signal processing unit 24 generates a distance image by performing such processing based on the count values CNTA to CNTD obtained from each of the plurality of photodetection units U. Then, the signal processing unit 24 outputs the image data of the generated distance image as data DT.
  • the subtraction determination unit 36 and the subtraction control unit 37 set each of the plurality of count value CNTs by a predetermined value based on the count value of one or more of the plurality of count value CNTs. Changed to perform subtraction processing.
  • the subtraction determination unit 36 and the subtraction control unit 37 perform the subtraction process when any of the plurality of count value CNTs reaches the threshold value THA.
  • the subtraction determination unit 36 and the subtraction control unit 37 perform the subtraction process when the minimum value among the plurality of count value CNTs reaches the threshold value THA.
  • the final ambient light component C2 can be set to the threshold value THA or less, so that the signal amount of the reflected light component C1 can be secured.
  • THA threshold value
  • the accuracy of detecting time (TOF value) and distance can be improved.
  • the operation shown in FIG. 7 can be performed a plurality of times. In this case, as shown in FIG. 11A, since a plurality of exposure periods P1 and a plurality of read periods P2 are provided, the detection time becomes long.
  • the subtraction determination unit 36 and the subtraction control unit 37 subtract each of the plurality of count value CNTs by a predetermined value based on the count value of one or more of the plurality of count value CNTs. Changed to perform subtraction processing. As a result, the signal amount of the reflected light component C1 can be secured, so that the detection accuracy of the time (TOF value) and the distance can be improved. Further, as shown in FIG. 11B, since the read period P2 can be set to once, the detection period can be shortened.
  • the subtraction determination unit 36 and the subtraction control unit 37 perform a subtraction process of subtracting each of the plurality of count value CNTs by a predetermined value, so that the number of bits of the counter is suppressed, for example. Therefore, the circuit scale can be reduced. That is, in order to secure the signal amount when the subtraction process is not performed, there may be a method of increasing the number of bits of the counter. However, in this case, the circuit scale becomes large. When the circuit scale of the photodetection unit U is large, for example, the number of photodetection units U in the photodetection array may decrease, or the resolution may decrease.
  • the number of bits of the counter can be suppressed, so that the circuit scale can be reduced. ..
  • the number of the photodetection units U in the photodetection array 21 can be increased, or the resolution can be increased.
  • the subtraction determination unit 36 and the subtraction control unit 37 perform subtraction processing for subtracting each of the plurality of count value CNTs by a predetermined value. ..
  • the ambient light component C2 can be adaptively removed according to the amount of ambient light in each of the plurality of light detection units U, and the signal amount of the reflected light component C1 can be secured.
  • the time (TOF value) and distance detection accuracy can be effectively improved in each of the plurality of photodetection units U.
  • the subtraction process of subtracting each of the plurality of count values by a predetermined value is performed based on the count value of one or more of the plurality of count values. Therefore, the detection accuracy can be improved.
  • the light receiving unit 31 has one photodiode PD, but the present invention is not limited to this.
  • the light receiving unit 31 may have a plurality of photodiodes PD (four photodiodes PD1 to PD4 in this example).
  • the photodiodes PD1 to PD4 are connected in parallel with each other, a power supply voltage VSS is supplied to the anodes of the photodiodes PD1 to PD4, and the cathode is connected to the node N1.
  • VSS power supply voltage
  • the cathode is connected to the node N1.
  • the photodetector unit U has one light receiving unit 31, but the present invention is not limited to this, and instead, for example, FIG. 13 As shown in the above, a plurality of light receiving units 31 may be provided.
  • the photodetection unit U has a plurality of light receiving units 31 (in this example, four light receiving units 31A to 31D) and an OR circuit 32.
  • the light receiving units 31A to 31D generate pulse signals PLSA to PLSD, respectively.
  • Each of the plurality of light receiving units 31 has, for example, the circuit configuration shown in FIG. 4A and the circuit configuration shown in FIG. 4B.
  • the OR circuit 32 is configured to generate the pulse signal PLS by obtaining the OR of the pulse signals PLSA to PLSD.
  • the disjunction circuit 32 corresponds to a specific example of the "addition unit" in the present disclosure. As a result, in the photodetection unit U, for example, the light receiving sensitivity can be increased.
  • the photodetector unit U may have a plurality of light receiving units 41 (four light receiving units 41A to 41D in this example) and a negative logical product (NAND) circuit 42. ..
  • the light receiving units 41A to 41D generate pulse signals PLSA to PLSD, respectively.
  • the light receiving unit 41A has a photodiode PD and a resistance element R1. That is, the light receiving unit 41A omits the inverter IV1 from the light receiving unit 31 (FIG. 4A).
  • the negative logical product circuit 42 is configured to generate the pulse signal PLS by obtaining the negative logical product of the pulse signals PLSA to PLSD. Even in this case, for example, the light receiving sensitivity can be increased.
  • the subtraction control unit 37 performs a subtraction process in which each of the count values CNTA to CNT in the counters 35A to 35D is subtracted by a predetermined value based on the determination result of the subtraction determination unit 36. ..
  • the subtraction control unit 37 may perform the subtraction process by changing the bit value of a predetermined count bit in the counters 35A to 35D, for example. Specifically, for example, as shown in FIG. 16, the subtraction control unit 37 changes the bit value of the most significant bit (MSB; Most Significant Bit) in the counters 35A to 35D from “1” to “0”. Therefore, the subtraction process can be performed.
  • MSB most significant bit
  • the circuit configuration of the subtraction control unit 37 can be simplified and the circuit scale can be reduced.
  • the bit value of the most significant bit is changed, but the bit value is not limited to this, and the bit value of another bit may be changed, or the bit value of a plurality of bits may be changed. May be good.
  • the subtraction determination unit 36 determines whether or not any of the count values CNTA to CNT has reached the threshold value THA, but the present invention is not limited to this. Hereinafter, this modification will be described in detail with some examples.
  • FIG. 17 shows a configuration example of the photodetection unit U according to this modification.
  • the light detection unit U has a subtraction determination unit 46.
  • the subtraction determination unit 46 determines whether or not the count value CNT of a predetermined counter 35 among the four counters 35A to 35D (in this example, the count value CNT of the counter 35D) has reached the threshold value THA. It is configured to generate a control signal CTL.
  • FIG. 18 shows a configuration example of the subtraction determination unit 46.
  • the subtraction determination unit 46 has a comparison circuit CP1D.
  • the comparison circuit CP1D is configured to generate a control signal CTL by determining whether the count value CNTD is greater than the threshold THA.
  • FIG. 19 shows an operation example of the light detection unit U according to this modification during the exposure period P1, in which (A) shows the waveform of the light emitted from the light emitting unit 11, and (B) shows the waveform of the light emitted from the light emitting unit 11.
  • the waveforms of the light reflected by the object OBJ and incident on the light detection unit U are shown, and (C) to (F) show the waveforms of the clock signals CLKA to CLKD, respectively.
  • the light emitting unit 11 emits light (FIG. 19 (A)).
  • the signal generation unit 22 raises the clock signal CLKA to a high level during the timing t22 to t23, raises the clock signal CLKB to a high level during the timing t23 to t24, and raises the clock signal CLKC to a high level during the timing t24 to t25.
  • FIGGS. 19 (C) to (E) the timing of the reflected light pulse L1 is predicted to some extent, and the signal generation unit 22 sequentially raises the clock signals CLKA to CLKC to high levels at the timings t22 to t25 including the period in which the reflected light pulse L1 is generated. ..
  • the signal generation unit 22 raises the clock signal CLKD to a high level in the period of timings t26 to t27, which is separated from the period of timings t22 to t25 (FIG. 19 (F)). That is, in this example, since the photodetection unit U does not detect the reflected light pulse L1 during the period from timing t26 to t27, it is expected to detect ambient light. Therefore, the count value CNTD does not include the reflected light component C1 but includes the ambient light component C2.
  • the subtraction determination unit 46 determines whether or not the count value CNTD of the counter 35D has reached the threshold value THA, and if the count value CNTD reaches the threshold value THA, the subtraction control unit 46. 37 subtracts each of the count values CNTA to CNT in the counters 35A to 35D by a predetermined value.
  • the circuit configuration can be simplified and the circuit scale can be reduced.
  • This modification is particularly effective when the number of circuits including the AND circuit 33, the switch 34, and the counter 35 is large. For example, when 16 counters 35 are provided, it can be determined whether or not the subtraction process is performed based on the count value CNT of one of the 16 counters 35, and 15 counters. A distance image can be generated based on the count value CNT of 35.
  • FIG. 20 shows a configuration example of another photodetector unit U according to this modification.
  • the light detection unit U has a subtraction determination unit 56.
  • all of the count values CNTs of the predetermined two counters 35 among the four counters 35A to 35D (in this example, the count values CNTC and CNTD of the counters 35C and 35D) reach the threshold value THA. It is configured to generate a control signal CTL by determining whether or not it has been done.
  • FIG. 21 shows an example of the configuration of the subtraction determination unit 56.
  • the subtraction determination unit 56 has a comparison circuit CP1C, CP1D and a logical AND circuit AND2.
  • the comparison circuit CP1C is configured to determine if the count value CNTC is greater than the threshold THA.
  • the comparison circuit CP1D is configured to determine if the count value CNTD is greater than the threshold THA.
  • the logical product circuit AND2 is configured to generate a control signal CTL by obtaining the logical product of the output signals of the comparison circuits CP1C and CP1D. With this configuration, the subtraction determination unit 56 can determine whether or not any of the count values CNTC and CNTD has reached the threshold value THA.
  • the count values CNTC and CNTD do not include the reflected light component C1 but include the ambient light component C2, as in the example of FIG. This modification is effective when the number of circuits including the AND circuit 33, the switch 34, and the counter 35 is large, as in the example of FIG.
  • the subtraction determination unit 56 is not limited to this, and may generate a control signal CTL by, for example, determining whether or not the sum of the count values CNTC and CNT reaches the threshold value THA. good.
  • FIG. 22 shows a configuration example of the subtraction determination unit 56 in this case.
  • the subtraction determination unit 56 has an addition circuit ADD1 and a comparison circuit CP1.
  • the adder circuit ADD1 is configured to obtain the sum of the count value CNTC and the count value CNTD.
  • the comparison circuit CP1 is configured to generate a control signal CTL by determining whether the value calculated by the addition circuit ADD1 is larger than the threshold THA.
  • the subtraction determination unit 56 determines whether or not the sum of the count values CNTC and CNT reaches the threshold value THA, but instead, for example, the average value of the count values CNTC and CNT is the threshold. It may be determined whether the value THA is reached.
  • FIG. 23 shows a configuration example of the photodetection unit U according to this modification.
  • the photodetection unit U has a subtraction determination unit 66, a saturation determination unit 68, and a logical product circuit 69.
  • the subtraction determination unit 66 has a logical AND circuit AND3.
  • the logical product circuit AND3 has a bit value of the most significant bit of the signal indicating the count value CTAN, a bit value of the most significant bit of the signal indicating the count value CNTB, a bit value of the most significant bit of the signal indicating the count value CNTC, and a count value. It is configured to obtain the bit value of the most significant bit of the signal indicating CNT and the logical product of the output signal of the logical product circuit 69.
  • the subtraction determination unit 66 is adapted to determine whether or not any of the count value CNTA to the count value CNT has reached the intermediate value in the count range of the counters 35A to 35D.
  • the saturation determination unit 68 has latch LTA to LTD and a logical sum circuit OR2.
  • the latch LTA is configured to raise the output signal to a high level when all the bits of the signal indicating the count value CNTA become "1".
  • the latch LTD is configured to raise the output signal to a high level when all bits of the signal indicating the count value CNTB are "1".
  • the latch LTC is configured to raise the output signal to a high level when all bits of the signal indicating the count value CNT are "1".
  • the latch LTD is configured to raise the output signal to a high level when all the bits of the signal indicating the count value CNT become "1".
  • the OR circuit OR2 is configured to generate a control signal STP by obtaining the OR of the output signal of the latch LTA, the output signal of the latch LTD, the output signal of the latch LTC, and the output signal of the latch LTD.
  • the saturation determination unit 68 generates the control signal STP by determining whether or not one or more of the counters 35A to 35D are in the overflow state.
  • the logical product circuit 69 is configured to obtain the logical product of the inverting signal of the control signal STP and the control signal REJEN.
  • the control signal REJEN is generated, for example, by the signal generation unit 22.
  • FIG. 24 shows an operation example of the light detection unit U according to this modification during the exposure period P1, in which (A) shows the waveform of the light emitted from the light emitting unit 11, and (B) shows the waveform of the light emitted from the light emitting unit 11.
  • the waveforms of the light reflected by the object OBJ and incident on the light detection unit U are shown, (C) to (F) show the waveforms of the clock signals CLKA to CLKD, respectively, and (G) shows the waveforms of the control signal REJEN. ..
  • the light emitting unit 11 emits light (FIG. 24 (A)).
  • the signal generation unit 22 raises the clock signal CLKA to a high level during the timing t32 to t33, raises the clock signal CLKB to a high level during the timing t33 to t34, and raises the clock signal CLKC to a high level during the timing t34 to t35.
  • the clock signal CLKD is set to a high level during the period from timing t35 to t36 (FIGS. 24 (C) to 24 (F)).
  • the signal generation unit 22 raises the control signal REJEN to a high level in a period of timings t37 to t38 different from the period of timings t32 to t36 (FIG. 24 (G)).
  • FIG. 25 shows a more specific operation example of the light detection unit U according to this modification
  • (A) shows the waveform of the light emitted from the light emitting unit 11
  • (B) shows the waveform of the light emitted from the light emitting unit 11.
  • the waveforms of the light reflected by the object OBJ and incident on the light detection unit U are shown
  • (C) to (F) show the waveforms of the clock signals CLKA to CLKD, respectively
  • (G) shows the waveform of the control signal REJEN.
  • (H) to (K) indicate the count values CNTA to CNT, respectively
  • (L) shows the waveform of the control signal CTL
  • (M) shows the waveform of the control signal STP.
  • the counters 35A to 35D are 4-bit counters
  • the threshold THA is "8”
  • the threshold THB is "15".
  • the light detection system 1 repeatedly emits the light pulse L0 and repeatedly detects the reflected light pulse L1 reflected by the detection object OBJ.
  • the counter 35A increments the count value CNTA by performing a count process during the period when the clock signal CLKA is at a high level (FIGS. 25 (C) and 25 (H)).
  • the counter 35B increments the count value CNTB by performing count processing during the period when the clock signal CLKB is at a high level (FIGS. 25 (D) and 25 (I)), and the counter 35C has the clock signal CLKC.
  • the count value CNTC is incremented by performing the count process in the period of high level (FIGS. 25 (E) and 25 (J)), and the counter 35D performs the count process in the period of high level of the clock signal CLKD.
  • the count value CNTD is incremented (FIGS. 25 (F) and 25 (K)).
  • the count value CNTA changes from "7" to "8" (FIG. 25 (H)). Since the count value CNTA is the minimum value among the count values CNTA to CNTD, the minimum value of the count values CNTA to CNTD reaches the threshold value THA (“8” in this example) at this timing t42. Then, at the timing t43 when the control signal REJ becomes a high level after the timing t42, the subtraction determination unit 66 changes the control signal CTL from a low level to a high level (FIG. 25 (L)), and the subtraction control unit 37 sets the subtraction control unit 37.
  • Each of the count values CNTA to CNTD in the counters 35A to 35D is subtracted by a predetermined value (“8” in this example) (FIGS. 25 (H) to (K)). That is, the photodetector unit U subtracts each of the count values CNTA to CNT in the counters 35A to 35D by a predetermined value at this timing t43 in synchronization with the control signal REJEN. Since the count values CNTA to CNT become smaller due to this subtraction process, the subtraction determination unit 66 changes the control signal CTL from a high level to a low level at the timing immediately after the timing t43 (FIG. 25 (L)).
  • the saturation determination unit 68 changes the control signal STP from a low level to a high level (FIG. 25 (M)).
  • the switches 34A to 34D stop supplying the pulse signal PLS to the counters 35A to 35D, and the counters 35A to 35D stop the counting process.
  • the output signal of the AND circuit 69 becomes a low level, so that the subtraction determination unit 66 maintains the control signal CTL at a low level.
  • the control signal REGEN is set to a high level in a period different from the period in which the clock signals CLKA to CLKD are at a high level. Therefore, the counters 35A to 35D have a high control signal REGEN. No counting process is performed during the level period. Therefore, the subtraction control unit 37 can subtract each of the count values CTAN to CNT in the counters 35A to 35D by a predetermined value during the period when the counters 35A to 35D do not perform the counting process. As a result, the counting process and the subtraction process are not performed at the same time, so that the possibility of a problem can be reduced.
  • the photodetector 20 according to the above embodiment may be formed on one semiconductor substrate or may be formed on a plurality of semiconductor substrates.
  • the present modification will be described in detail below with some examples.
  • FIG. 26 shows an example of mounting the photodetector 20.
  • the photodetector 20 is formed on two semiconductor substrates 101 and 102.
  • the semiconductor substrate 101 is arranged on the light receiving surface S side of the photodetection unit 20, and the semiconductor substrate 102 is arranged on the side opposite to the light receiving surface S side of the photodetection unit 20.
  • the semiconductor substrates 101 and 102 are superposed on each other.
  • the wiring of the semiconductor substrate 101 and the wiring of the semiconductor substrate 102 are connected by the wiring 103.
  • a metal bond such as Cu—Cu or a bump can be used.
  • the photodetector unit U is arranged, for example, over these two semiconductor substrates 101 and 102.
  • FIG. 27 shows an example of the configuration of the light receiving unit 31.
  • the light receiving unit 31 has the same circuit configuration as the light receiving unit 31 shown in FIG. 4A.
  • the light receiving unit 31 is arranged over two semiconductor substrates 101 and 102.
  • the photodiode PD is arranged on the semiconductor substrate 101, and the resistance element R1 and the inverter IV1 are arranged on the semiconductor substrate 102.
  • the cathode of the photodiode PD is connected to the other end of the resistance element R1 and the input terminal of the inverter IV1 via the wiring 103.
  • the inverter IV1 corresponds to a specific example of the "pulse generation circuit" in the present disclosure.
  • the present modification is applied to the photodetector 20 having the light receiving unit 31 shown in FIG. 4A, but similarly to the photodetector 20 having the light receiving unit 31 shown in FIG. 4B. This modification may be applied.
  • the AND circuits 33A to 33D, switches 34A to 34D, counters 35A to 35D, subtraction determination unit 36, subtraction control unit 37, and saturation determination unit 38 are arranged on the semiconductor substrate 102, for example.
  • FIG. 28 shows another mounting example of the photodetector 20.
  • the photodetector 20 is formed on three semiconductor substrates 111 to 113.
  • the semiconductor substrate 111 is arranged on the light receiving surface S side of the photodetector 20, the semiconductor substrate 113 is arranged on the side opposite to the light receiving surface S side of the photodetector 20, and the semiconductor substrate 112 is the semiconductor substrate 111 and the semiconductor. It is arranged between the substrates 113.
  • the semiconductor substrates 111 to 113 are superposed on each other.
  • the wiring of the semiconductor substrate 111 and the wiring of the semiconductor substrate 112 are connected by the wiring 114.
  • the wiring of the semiconductor substrate 112 and the wiring of the semiconductor substrate 113 are connected by the wiring 115.
  • the photodetection unit U is arranged, for example, over these three semiconductor substrates 111 to 113. Specifically, for example, the photodiode PD is arranged on the semiconductor substrate 111, the resistance element R1 and the inverter IV1 are arranged on the semiconductor substrate 112, and the subtraction determination unit 36, the subtraction control unit 37, and the saturation determination unit 38 are semiconductors. It is arranged on the substrate 113.
  • the photodetection system 1 is set to perform only the distance measuring operation, but the present invention is not limited to this, and instead, for example, the distance measuring operation and the imaging operation can be performed. You may do so.
  • the present modification will be described in detail below.
  • FIG. 29 shows a configuration example of the photodetection system 1A according to this modification.
  • the photodetection system 1A is configured to be able to operate as an image sensor as well as a TOF sensor.
  • the photodetection system 1A includes a photodetection unit 80 and a control unit 74.
  • the light detection unit 80 is configured to detect light based on an instruction from the control unit 74. Then, the photodetection unit 20 outputs the image data based on the detection result as data DT.
  • the control unit 74 is configured to control the operation of the photodetection system 1A by supplying control signals to the light emitting unit 11 and the photodetection unit 80 and controlling their operations.
  • the control unit 74 has a mode setting unit 75.
  • the mode setting unit 75 is configured to set the operation mode M of the photodetection system 1A.
  • the photodetection system 1A can operate in the imaging mode MA and the ranging mode MB.
  • the image pickup mode MA is a mode in which an image of the subject is imaged based on the light L10 from the subject.
  • the distance measuring mode MB emits the light pulse L0 and detects the reflected light pulse L1 reflected by the detection object OBJ, so that between the timing of emitting the light pulse L0 and the timing of detecting the reflected light pulse L1. It is a mode to measure the time difference of.
  • the mode setting unit 75 sets one of the image pickup mode MA and the distance measurement mode MB as the operation mode M. Then, the control unit 74 controls the operation of the photodetection system 1A according to the set operation mode M.
  • FIG. 30 shows an example of the configuration of the photodetector unit 80.
  • the photodetection unit 80 includes a photodetection array 81, a signal generation unit 82, a signal processing unit 84, and a photodetection control unit 85.
  • the photodetection array 81 has a plurality of photodetection units U arranged in a matrix.
  • the photodetection unit U is configured to detect light and count the number of detections.
  • FIG. 31 shows an example of a configuration of the photodetector unit U.
  • the photodetector unit U has a plurality of light receiving units 31 (four light receiving units 31A to 31D in this example), a logical sum circuit 32, and a plurality of selectors 93 (four selectors 93A to 93D in this example). ing.
  • the light receiving units 31A to 31D generate pulse signals PLSA to PLSD, respectively.
  • Each of the light receiving units 31A to 31D has, for example, the circuit configuration shown in FIG. 4A and the circuit configuration shown in FIG. 4B.
  • the OR circuit 32 is configured to generate the pulse signal PLS by obtaining the OR of the pulse signals PLSA to PLSD.
  • the selector 93A is configured to select one of the pulse signal PLSA and the pulse signal PLS based on the mode control signal SMODE and supply the selected pulse signal to the switch 34A.
  • the mode control signal SMODE is a low level “0” when the operation mode M is the image pickup mode MA, and is a high level “1” when the operation mode M is the distance measurement mode MB. ..
  • the selector 93A selects the pulse signal PLSA when the operation mode M is the image pickup mode MA, and selects the pulse signal PLS when the operation mode M is the distance measurement mode MB. Then, the selector 93A supplies the selected pulse signal to the switch 34A.
  • the selector 93B is configured to select one of the pulse signal PLSB and the pulse signal PLS based on the mode control signal SMODE and supply the selected pulse signal to the switch 34B.
  • the selector 93C is configured to select one of the pulse signal PLSC and the pulse signal PLS based on the mode control signal SMODE and supply the selected pulse signal to the switch 34C.
  • the selector 93D is configured to select one of the pulse signal PLSD and the pulse signal PLS based on the mode control signal SMODE and supply the selected pulse signal to the switch 34A.
  • the clock signals CLKA to CLKD rise at the same timing and fall at the same timing.
  • the switches 34A to 34D supply the pulse signals PLSA to PLSD to the counters 35A to 35D, respectively, during the period when the clock signals CLKA to CLKD are at a high level.
  • the clock signals CLKA to CLKD are four-phase clock signals as shown in FIG. 7.
  • the switches 34A to 34D are configured to time-divisionly distribute the pulse signal PLS to the four counters 35A to 35D based on the clock signals CLKA to CLKD.
  • the signal generation unit 82 (FIG. 30) generates clock signals CLKA to CLKD and mode control signals SMODE based on instructions from the photodetection control unit 85, and the clock signals CLKA to CLKD and mode control signals SMODE are photodetected arrays. It is configured to supply to a plurality of photodetection units U in 81.
  • the signal processing unit 84 is configured to perform predetermined signal processing based on an instruction from the light detection control unit 85. Specifically, when the operation mode M is the image pickup mode MA, the signal processing unit 84 is based on the count values CNTA to CNT supplied from each of the plurality of photodetection units U in the photodetection array 81. Image data of the captured image is generated by performing predetermined image processing. Further, when the operation mode M is the distance measuring mode MB, the signal processing unit 84 is a light emitting unit based on the count values CNTA to CNT supplied from each of the plurality of optical detection units U in the optical detection array 81. Image data of a distance image is generated by measuring the time from when the 11 emits the light pulse L0 until the light detection unit U detects the reflected light pulse L1. Then, the signal processing unit 84 outputs the generated image data as data DT.
  • the optical detection control unit 85 supplies control signals to the signal generation unit 82, the read control unit 23, and the signal processing unit 84 based on the instruction from the control unit 74 (FIG. 29), and controls these operations. Is configured to control the operation of the light detection unit 80.
  • the present embodiment is configured to provide a counter that counts the number of times the subtraction process for subtracting the count values CNTA to CNT of the counters 35A to 35D is performed.
  • the components substantially the same as those of the photodetector system 1 according to the first embodiment are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
  • the photodetection system 2 includes a photodetection unit 120, similarly to the photodetection system 1 (FIG. 1) according to the first embodiment.
  • FIG. 32 shows an example of the configuration of the photodetector 120.
  • the photodetection unit 120 includes a photodetection array 121, a read control unit 123, and a signal processing unit 124.
  • FIG. 33 shows an example of the configuration of the photodetection unit U in the photodetection array 121.
  • the photodetection unit U has a counter 131.
  • the counter 131 is configured to count the number of times the subtraction control unit 37 performs a subtraction process of subtracting each of the count values CNTA to CNT by a predetermined value based on the control signal CTL generated by the subtraction determination unit 36. To. Then, the counter 131 outputs the number of times the subtraction process is performed as a count value CNTN.
  • the read control unit 123 (FIG. 32) signals the count values CNTA to CNTD and CNT generated in each of the plurality of photodetection units U in the photodetection array 121 based on the instruction from the photodetection control unit 25. It is configured to control the operation supplied to 124.
  • the signal processing unit 124 is configured to generate a distance image based on an instruction from the photodetection control unit 25. Specifically, the signal processing unit 124 emits the light pulse L0 after the light emitting unit 11 emits the light pulse L0 based on the count values CNTA to CNT supplied from each of the plurality of light detection units U in the light detection array 21. A distance image is generated by measuring the time (TOF value) until the light detection unit U detects the reflected light pulse L1.
  • the signal processing unit 124 has a distance measuring correction unit 126.
  • the distance measurement correction unit 126 is configured to correct the TOF value based on the count value CNTN. Specifically, the distance measuring correction unit 126 first calculates the total count value of the ambient light component C2 in the photodetection unit U based on the count value CNTN, and uses the total count value of the environmental term component C2. , The TOF value is corrected.
  • FIG. 34 shows an example of the count values CNTA to CNTD.
  • Part W1 indicates the count values CNTA to CNT supplied from the photodetector unit U.
  • Part W2 indicates a component removed by the subtraction process for the number of times indicated by the count value CNTN.
  • the count value of the portion W1 can be represented by the threshold THB.
  • the count value of the removed component shown in the portion W2 can be expressed by the product of the threshold value THA and the count value CNTN.
  • the total count value of the ambient light component C2 is the minimum value of the count values CNTA to CNT supplied from the photodetector unit U shown in the portion W1 and the count value (threshold value) of the removed component shown in the portion W2. It can be expressed as the sum of the value THA and the count value CNTN).
  • the distance measurement correction unit 126 corrects the TOF value based on the total count value of the ambient light component C2. That is, in the photodetection unit U, the light receiving unit 31 cannot detect the next light for a while after detecting the light. Due to such a dead time, the TOF value deviates to a smaller value than the actual value.
  • FIG. 35 shows an example of the deviation of the TOF value due to the dead time in the absence of ambient light
  • (A) shows the distribution of the count value CNT
  • (B) shows the light receiving probability in the light receiving unit 31. Is shown.
  • the horizontal axis indicates the elapsed time based on the timing at which the light emitting unit 11 emits the light pulse L0.
  • the characteristic W11 shows the distribution of the count value CNTs that should be originally obtained
  • the characteristic W12 shows the distribution of the count value CNTs actually obtained.
  • the light receiving unit 31 cannot detect the next light for a while after detecting the light. Therefore, the light receiving probability of the light receiving unit 31 is as shown in FIG. 35 (B). That is, when the elapsed time is short, as shown in the characteristic W11, the probability that the reflected light is incident on the light receiving unit 31 is low, so that the light receiving probability is high. As shown in the characteristic W11, as time passes, the probability that the reflected light is incident on the light receiving unit 31 increases. As described above, when the light receiving unit 31 receives the reflected light, the light cannot be detected during the dead time period described above. As a result, as time elapses and the probability that the reflected light is incident on the light receiving unit 31 increases, the light receiving probability decreases. In this way, the light receiving unit 11 receives the reflected light with the light receiving probability shown in FIG. 35 (B).
  • the distribution of the count value CNT that should be originally obtained is a distribution like the characteristic W11, and the light receiving probability decreases in this way with the passage of time, the actual distribution of the count value CNT becomes the distribution of the characteristic W12. Therefore, the time corresponding to the peak of the distribution of the count value CNT is shifted. That is, the TOF value (TOF2) obtained by the characteristic W12 is smaller than the TOF value (TOF1) obtained by the characteristic W11. In this way, the TOF value may deviate due to the dead time of the light receiving unit 31.
  • the light receiving unit 11 receives both the reflected light and the ambient light with the light receiving probability shown in FIG. 35 (B). Therefore, the probability of receiving the reflected light is lower than that in the case where there is no ambient light. In this way, since the light receiving probability of the reflected light changes, the deviation of the TOF value can also change.
  • the distance measuring correction unit 126 corrects the TOF value from TOF1 to TOF2 in FIG. 35, for example, based on the total count value of the ambient light component C2. Specifically, the distance measuring correction unit 126 uses, for example, a look-up table showing the relationship between the total count value of the ambient light component C2 and the correction amount, and the TOF value is based on the total count value of the ambient light component C2. Can be corrected.
  • the counter 131 corresponds to a specific example of the "second counter” in the present disclosure.
  • the range-finding correction unit 124 corresponds to a specific example of the "second processing unit” in the present disclosure.
  • the TOF value is calculated based on the count values CNTA to CNTD of the counters 35A to 35D, and the TOF value is corrected based on the count value CNTN of the counter 131. (TOF value) and distance detection accuracy can be improved.
  • the TOF value is calculated based on the count values CNTA to CNTD, and the TOF value is corrected based on the count value CNTN, so that the detection accuracy can be improved.
  • the light detection system 2 has generated a distance image, but the present invention is not limited to this, and instead, for example, in addition to the distance image, an image indicating the amount of received light (light received amount image). ) May be generated.
  • an image indicating the amount of received light (light received amount image). ) May be generated.
  • the present modification will be described in detail below.
  • the photodetection system 2A includes a photodetection unit 140, similarly to the photodetection system 2 according to the above embodiment.
  • FIG. 36 shows an example of the configuration of the photodetector unit 140.
  • the photodetection unit 140 includes a photodetection array 141, a signal generation unit 142, a read control unit 143, and a signal processing unit 144.
  • FIG. 37 shows a configuration example of the photodetection unit U in the photodetection array 141.
  • the photodetection unit U has a counter 151.
  • the counter 151 counts the pulse of the clock signal CLK based on the control signal STP generated by the saturation determination unit 38, thereby counting one or more of the count values CNTA to CNTD after the exposure period P1 starts. It is configured to count the time it takes for the value to reach the threshold THB.
  • the counter 151 performs counting processing based on the clock signal CLK generated in the exposure period P1, and stops the counting processing based on the control signal STP, whereby the exposure period P1 starts. Therefore, it is possible to count the time until the count value of 1 or more of the count values CNTA to CNT reaches the threshold value THB. Then, the counter 151 outputs the result of the count processing as a count value CNTM.
  • the signal generation unit 142 generates clock signals CLKA to CLKD, CLK and threshold values THA, THB based on instructions from the optical detection control unit 25, and the generated clock signals CLKA to CLKD, CLK and threshold value THA,
  • the THB is configured to supply the THB to a plurality of light detection units U in the light detection array 141.
  • the read control unit 143 transfers the count values CNTA to CNTD, CNTN, and CNTM generated in each of the plurality of photodetection units U in the photodetection array 141 to the signal processing unit 144. It is configured to control the feeding operation.
  • the signal processing unit 144 has a light receiving amount image generation unit 147.
  • the light receiving amount image generation unit 147 calculates the count value Nexp indicating the brightness value in the photodetection unit U by using the following equation.
  • Nexp Nsat x Texp / Tsat
  • Texp is the time length of the exposure period P1
  • Tsat is a count value in which one or more of the count values CNTA to CNT reaches the threshold value THB after the exposure period P1 starts. It is the time length of the period (count period) until the processing is stopped.
  • the light receiving amount image generation unit 147 uses this equation to convert the count value Nsat obtained in the time Tsat, which is the time length of the count period, into the time Texp, which is the time length of the exposure period P1.
  • the light receiving amount image generation unit 147 converts the count value Nsat obtained in the time Tsat into the count value Nexp that will be obtained in the time Texp which is the time length of the exposure period P1. As a result, the light receiving amount image generation unit 147 can generate a light receiving amount image based on the count value Nexp in the plurality of photodetection units U.
  • the counter 151 corresponds to a specific example of the "third counter” in the present disclosure.
  • the received light amount image generation unit 147 corresponds to a specific example of the "third processing unit” in the present disclosure.
  • the received light amount is obtained by converting the count value Nsat, which is the total count value of the maximum count value CNT (count value CNTC in the example of FIG. 34) among the count values CNTA to CNT, into the count value Nexp. Generated an image, but is not limited to this.
  • a light receiving amount image may be generated by converting the total value of all the count values of the four count values CNTA to CNT into the count value Nexp.
  • a light receiving amount image is generated by converting all the count values of the smallest count value CNT (for example, the count value CNT in the example of FIG. 34) among the four count values CNTA to CNT to the count value Nexp. It is also good.
  • the light receiving amount image generation unit 147 is based on these information.
  • the received light amount image can be generated by such various methods.
  • the counter 151 counts the time from the start of the exposure period P1 until the count value of 1 or more of the count values CNTA to CNT reaches the threshold value THB.
  • the counter 151 may count the time from when one or more of the count values CNTA to CNT reaches the threshold value THB until the end of the exposure period P1. ..
  • the light receiving amount image generation unit 147 counts the result of the count processing of the counter 151 (count value CNTM) as one or more of the count values CNTA to CNTD after the exposure period P1 starts. It can be converted into the time until the threshold value THB is reached, and the count value Nexp can be calculated based on the conversion result.
  • a latch 161 for latching the time code CODE may be provided based on the control signal STP generated by the saturation determination unit 38.
  • the time code CODE is generated by, for example, the signal generation unit 142.
  • the latch 161 generates the code CODE by latching the time code TCODE at the timing when one or more of the count values CNTA to CNT reaches the threshold value THB.
  • the light receiving amount image generation unit 147 has, for example, based on the timing at which the exposure period P1 starts and the timing indicated by this code CODE, after the exposure period P1 starts, the count values are CNTA to CNTD. The time until one or more of the count values reach the threshold value THB can be obtained, and the count value Nexp can be calculated based on this time.
  • the latch 161 corresponds to a specific example of the "latch circuit" in the present disclosure.
  • the present technique is applied to the TOF sensor, but the present invention is not limited to this, and instead, the technique may be applied to, for example, an image sensor.
  • FIG. 40 shows a configuration example of the photodetector 170 according to this modification.
  • the photodetection unit 170 includes a photodetection array 171, a signal generation unit 172, a read control unit 143, and a signal processing unit 174.
  • FIG. 41 shows a configuration example of the photodetection unit U in the photodetection array 171.
  • the photodetection unit U has light receiving units 31A to 31D, an inverter 133, and a counter 151.
  • the light receiving units 31A to 31D generate pulse signals PLSA to PLSD, respectively.
  • the inverter 133 is configured to invert the control signal STP and supply the inverted signal to the switches 34A to 34D.
  • the switches 34A to 34D supply the pulse signals PLSA to PLSD to the counters 35A to 35D when the control signal STP is at a low level, and the pulse signals PLSA to PLSA when the control signal STP is at a high level.
  • the supply of the PLSD to the counters 35A to 35D is stopped.
  • the counter 151 counts the pulse of the clock signal CLK based on the control signal STP generated by the saturation determination unit 38, thereby counting one or more of the count values CNTA to CNTD after the exposure period P1 starts. It is configured to count the time it takes for the value to reach the threshold THB. Then, the counter 151 outputs the count result of the pulse of the clock signal CLK as the count value CNTM.
  • four circuits including the light receiving unit 31, the switch 34, and the counter 35 are provided, but the present invention is not limited to this, and for example, the circuit including the light receiving unit 31, the switch 34, and the counter 35 is provided. Can be provided in two or more.
  • the signal generation unit 172 (FIG. 40) generates a clock signal CLK and threshold values THA and THB based on an instruction from the optical detection control unit 25, and optically detects the generated clock signal CLK and threshold values THA and THB. It is configured to supply a plurality of light detection units U in the array 171.
  • the read control unit 143 transfers the count values CNTA to CNTD, CNTN, and CNTM generated in each of the plurality of photodetection units U in the photodetection array 171 to the signal processing unit 174. It is configured to control the feeding operation.
  • the signal processing unit 174 is configured to generate an captured image based on an instruction from the light detection control unit 25. Specifically, the signal processing unit 174 is one or more of the count values CNTA to CNTD after the exposure period P1 is started, based on the count value CNTA and the count value CNTN supplied from the photodetection unit U. The total count value of the count value CNCA obtained until the count value reaches the threshold value THB and the count process is stopped is calculated. Then, the signal processing unit 174 converts the total count value of the count value CNTA into a count value that will be obtained in the time Texp, which is the time length of the exposure period P1, in the same manner as the light receiving amount image generation unit 147. The same applies to the count values CNTB to CNTD. The signal processing unit 174 can generate a captured image in this way.
  • Each modification of the first embodiment may be applied to the photodetection system 2 according to the first embodiment.
  • the photodetection system 3 according to the third embodiment will be described.
  • the threshold values THA and THB can be changed.
  • the components substantially the same as those of the photodetector system 1 according to the first embodiment are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
  • the photodetection system 3 includes a photodetection unit 220, similarly to the photodetection system 1 (FIG. 1) according to the first embodiment.
  • FIG. 42 shows an example of the configuration of the photodetector 220.
  • the photodetection unit 220 includes a photodetection array 221 and a signal generation unit 222.
  • FIG. 43 shows a configuration example of the photodetection unit U in the photodetection array 221.
  • the photodetection unit U has a determination unit 236 and a threshold value setting unit 239.
  • the determination unit 236 is configured to determine whether or not any of the count values CNTA to CNT has reached the threshold value THA. In other words, the determination unit 236 determines whether or not the minimum value of the count values CNTA to CNT has reached the threshold value THA.
  • the circuit configuration of the determination unit 236 can be, for example, the same as the circuit configuration of the subtraction determination unit 36 (FIG. 6).
  • the threshold value setting unit 239 is configured to set the threshold values THA and THB based on the determination result of the determination unit 236. Then, the threshold value setting unit 231 supplies the set threshold value THA to the determination unit 236 and supplies the set threshold value THB to the saturation determination unit 38.
  • the signal generation unit 222 (FIG. 42) generates clock signals CLKA to CLKD based on an instruction from the photodetection control unit 25, and the generated clock signals CLKA to CLKD are transmitted to a plurality of photodetection units U in the photodetection array 221. Configured to supply.
  • the determination unit 236 and the threshold value setting unit 239 correspond to a specific example of the "threshold value setting unit” in the present disclosure.
  • the saturation determination unit 38 and the AND circuits 33A to 33D correspond to a specific example of the "stop processing unit” in the present disclosure.
  • FIG. 44 shows an example of changes in the count values CNTA to CNTD during the exposure period P1.
  • the count values CNTA to CNT gradually increase with the passage of time.
  • the ambient light component C2 in the count values CNTA to CNTD is smaller than the threshold value THA.
  • the ambient light component C2 in the count values CNTA to CNT reaches the threshold value THA.
  • the determination unit 236 determines that all of the count values CNTA to CNT have reached the threshold value THA. In other words, the determination unit 236 determines that the minimum value of the count values CNTA to CNT has reached the threshold value THA.
  • the threshold value setting unit 239 sets the threshold value THA to a higher value by adding a predetermined value to the threshold value THB, for example, and adds a predetermined value to the threshold value THB, for example. Thereby, the threshold value THB is set to a higher value (FIG. 44 (C)).
  • the count value CNTC reaches the threshold value THB.
  • the saturation determination unit 38 determines that one or more of the count values CNTA to CNT has reached the threshold value THB, and changes the control signal STP from a low level to a high level.
  • the AND circuits 33A to 33D lower the output signal based on this control signal STP.
  • the switches 34A to 34D stop supplying the pulse signal PLS to the counters 35A to 35D, and the counters 35A to 35D stop the counting process.
  • FIG. 45 shows an operation example of the photodetector 220.
  • the photodetection control unit 25 starts the exposure period P1 (step S201).
  • the signal generation unit 22 generates the clock signals CLKA to CLKD based on the instruction from the photodetection control unit 25.
  • step S202 the photodetection control unit 25 confirms whether or not the exposure period P1 having a predetermined time length has ended.
  • step S202 the exposure period P1 is completed (“Y” in step S202)
  • the process proceeds to step S207.
  • the saturation determination unit 38 has a count value CNT of one or more of the four count value CNTs (count values CNTs to CNTD). It is determined whether or not the threshold value THB has been reached (step S203). When the count value CNT of 1 or more has reached the threshold value THB (“Y” in step S203), the process proceeds to step S206.
  • step S203 when none of the count value CNTs has reached the threshold value THB (“N” in step S203), the determination unit 236 determines that any of the four count value CNTs (count values CNTs to CNTD) is used. It is determined whether or not the threshold value THA has been reached (step S204). If all the count value CNTs have not reached the threshold THA (“N” in step S204), the process returns to step S202.
  • the threshold value setting unit 239 sets a predetermined value to the threshold value THA, for example.
  • the threshold THA is set to a higher value, for example, by adding a predetermined value to the threshold THB, the threshold THB is set to a higher value (step S205). That is, in the example of FIG. 44, as shown in FIGS. 44 (B) and 44 (C), since all of the four count value CNTs reached the threshold value THA, the threshold value setting unit 239 was set. Set the threshold values THA and THB to higher values, respectively. Then, the process returns to step S202.
  • step S206 When the count value CNT of 1 or more reaches the threshold value THB in step S203 (“Y” in step S203), the counters 35A to 35D stop the count process (step S206). That is, in the example of FIG. 44, as shown in FIG. 44 (D), since the count value CNT of one or more of the four count value CNTs has reached the threshold value THB, the saturation determination unit 38 controls.
  • the signal STP is changed from low level to high level.
  • the AND circuits 33A to 33D lower the output signal based on this control signal STP.
  • the switches 34A to 34D stop supplying the pulse signal PLS to the counters 35A to 35D, and the counters 35A to 35D stop the counting process.
  • the plurality of photodetection units U perform such operations individually.
  • the photodetector 220 performs a read process (step S207). Specifically, the read control unit 23 controls the operation of the plurality of photodetection units U so as to supply the count values CNTA to CNT generated in each of the plurality of photodetection units U to the signal processing unit 24. ..
  • the signal processing unit 24 generates a distance image based on the count values CNTA to CNT supplied from each of the plurality of photodetection units U.
  • the determination unit 236 and the threshold value setting unit 239 are changed so as to increase the threshold value THB based on the count value of one or more of the plurality of count value CNTs. I did it.
  • the determination unit 236 and the threshold value setting unit 239 are changed so as to increase the threshold value THB when any of the plurality of count value CNTs reaches the threshold value THA. did.
  • the determination unit 236 and the threshold value setting unit 239 are changed to increase the threshold value THB when the minimum value of the plurality of count value CNTs reaches the threshold value THA. ..
  • the signal amount of the reflected light component C1 can be secured when there is a lot of ambient light.
  • the accuracy of detecting time (TOF value) and distance can be improved.
  • the threshold value THB is not changed, so that the counting process can be stopped in a shorter time. Thereby, for example, the power consumption can be reduced and the distance measuring time can be shortened.
  • the determination unit 236 and the threshold value setting unit 239 are changed so as to increase the threshold value THB.
  • the threshold value THB can be adaptively set according to the amount of ambient light in each of the plurality of photodetection units U.
  • the time (TOF value) and distance detection accuracy can be effectively improved in each of the plurality of photodetection units U.
  • the threshold value THB is changed to increase based on the count value of 1 or more of the plurality of count values, so that the signal amount can be secured. Therefore, the detection accuracy can be improved.
  • the determination unit 236 determines whether or not any of the count values CNTA to CNT has reached the threshold value THA, but the present invention is not limited to this, and for example, in the first embodiment. Similar to the modification 1-4 of the embodiment, it may be determined whether or not the count value CNT of the predetermined counter 35 among the plurality of counters 35 has reached the threshold value THA, or among the plurality of counters 35. It may be determined whether or not any of the count values CNTs of the two predetermined counters 35 of the above has reached the threshold value THA. Further, it may be determined whether or not the sum of the count values of these two counters 35 reaches the threshold value THA, and the average value of the count values of these two counters 35 reaches the threshold value THA. You may decide whether or not to do so.
  • Each modification of the first embodiment may be applied to the photodetection system 3 according to the first embodiment.
  • the photodetection system 4 includes a photodetection unit 320, similarly to the photodetection system 3 according to the third embodiment.
  • the photodetection unit 320 has a photodetection array 321 and a signal generation unit 222, similarly to the photodetection unit 220 (FIG. 42) according to the third embodiment.
  • FIG. 46 shows a configuration example of the photodetection unit U in the photodetection array 321.
  • the optical detection unit U has a threshold value setting unit 339, a subtraction determination unit 336, and a subtraction control unit 37.
  • the threshold value setting unit 339 is configured to set the threshold values THA and THB based on the determination result of the determination unit 236 and the threshold value THB. Specifically, the threshold value setting unit 339 determines that the threshold value THB has reached a predetermined threshold value when the determination unit 236 determines that any of the count values CNTA to CNT has reached the threshold value THA. When the THB0 has not been reached, the threshold values THA and THB are set, the set threshold value THA is supplied to the determination unit 236, and the set threshold value THB is supplied to the saturation determination unit 38. It has become.
  • the subtraction determination unit 336 is configured to determine whether or not to perform the subtraction process based on the determination result of the determination unit 236 and the threshold value THB. Specifically, the subtraction determination unit 336 sets the threshold value THB to a predetermined threshold value THB0 when the determination unit 236 determines that all of the count values CNTA to CNT have reached the threshold value THA. When it has been reached, it is determined that the subtraction process is performed.
  • the subtraction control unit 37 is configured to subtract each of the count values CNTA to CNT in the counters 35A to 35D by a predetermined value based on the determination result of the subtraction determination unit 336.
  • the signal generation unit 222 generates clock signals CLKA to CLKD based on an instruction from the photodetection control unit 25, and supplies the generated clock signals CLKA to CLKD to a plurality of photodetection units U in the photodetection array 321. It is composed.
  • the determination unit 236, the subtraction determination unit 336, and the subtraction control unit 37 correspond to a specific example of the "subtraction processing unit” in the present disclosure.
  • the determination unit 236 and the threshold value setting unit 339 correspond to a specific example of the "threshold value setting unit” in the present disclosure.
  • the saturation determination unit 38 and the AND circuits 33A to 33D correspond to a specific example of the "stop processing unit” in the present disclosure.
  • FIG. 47 shows an example of changes in the count values CNTA to CNTD during the exposure period P1.
  • the count values CNTA to CNT gradually increase with the passage of time.
  • the ambient light component C2 in the count values CNTA to CNTD is smaller than the threshold value THA.
  • the ambient light component C2 in the count values CNTA to CNT reaches the threshold value THA.
  • the determination unit 236 determines that all of the count values CNTA to CNT have reached the threshold value THA. In other words, the determination unit 236 determines that the minimum value of the count values CNTA to CNT has reached the threshold value THA.
  • the threshold value THB has not yet reached the predetermined threshold value THB0. Therefore, the threshold value setting unit 239 sets the threshold value THA to a higher value by, for example, adding a predetermined value to the threshold value THA, and adds a predetermined value to the threshold value THB, for example. Therefore, the threshold value THB is set to a higher value (FIG. 47 (C)).
  • the ambient light component C2 in the count values CNTA to CNT reaches the changed threshold value THA.
  • the determination unit 236 determines that all of the count values CNTA to CNT have reached the threshold value THA. In other words, the determination unit 236 determines that the minimum value of the count values CNTA to CNT has reached the threshold value THA.
  • the threshold value THB has reached a predetermined threshold value THB0. Therefore, the subtraction determination unit 336 determines that the subtraction process is performed, and the subtraction control unit 37 subtracts each of the count values CNTA to CNT by a predetermined value (FIG. 47 (E)). As a result, a part of the ambient light component C2 in the count values CNTA to CNTD is removed, and the reflected light component C1 is maintained.
  • the count value CNTC reaches the threshold value THB.
  • the saturation determination unit 38 determines that one or more of the count values CNTA to CNT has reached the threshold value THB, and changes the control signal STP from a low level to a high level.
  • the AND circuits 33A to 33D lower the output signal based on this control signal STP. As a result, the switches 34A to 34D stop supplying the pulse signal PLS to the counters 35A to 35D, and the counters 35A to 35D stop the counting process.
  • FIG. 48 shows an operation example of the photodetector 320.
  • the photodetection control unit 25 starts the exposure period P1 (step S301).
  • the signal generation unit 22 generates the clock signals CLKA to CLKD based on the instruction from the photodetection control unit 25.
  • step S302 the photodetection control unit 25 confirms whether or not the exposure period P1 having a predetermined time length has ended.
  • step S302 the exposure period P1 is completed (“Y” in step S302), the process proceeds to step S309.
  • the saturation determination unit 38 determines the count value CNT of one or more of the four count value CNTs (count values CNTs to CNTD). It is determined whether or not the threshold value THB has been reached (step S303). When the count value CNT of 1 or more has reached the threshold value THB (“Y” in step S303), the process proceeds to step S308.
  • step S303 when none of the count value CNTs has reached the threshold value THB (“N” in step S303), the determination unit 236 determines that any of the four count value CNTs (count values CNTs to CNTD) is used. It is determined whether or not the threshold value THA has been reached (step S304). If all the count value CNTs have not reached the threshold THA (“N” in step S304), the process returns to step S302.
  • step S304 when all of the four count value CNTs reach the threshold value THA (“Y” in step S304), the threshold value THB is set in the threshold value setting unit 339 and the subtraction determination unit 336. It is confirmed whether or not the predetermined threshold value THB0 has been reached (step S305).
  • the threshold value setting unit 339 sets a predetermined value to, for example, the threshold value THA.
  • the threshold THA is set to a higher value, for example, by adding a predetermined value to the threshold THB
  • the threshold THB is set to a higher value (step S306). That is, in the example of FIG. 47, as shown in FIGS. 47 (B) and 47 (C), all of the four count value CNTs reach the threshold value THA, and the threshold value THB becomes a predetermined threshold value. Since THB0 has not been reached, the threshold value setting unit 239 sets the threshold values THA and THB to higher values, respectively. Then, the process returns to step S302.
  • step S305 when the threshold value THB reaches a predetermined threshold value THB0 (“Y” in step S305), the subtraction determination unit 336 determines that the subtraction process is performed, and the subtraction control unit 37 determines that the subtraction process is performed.
  • Each of the count values CNTA to CNTD is subtracted by a predetermined value (step S307). That is, in the example of FIG. 47, as shown in FIGS. 47 (D) and 47 (E), all of the four count value CNTs reach the threshold value THA, and the threshold value THB is a predetermined threshold value.
  • the subtraction determination unit 336 determines that the subtraction process is to be performed, and the subtraction control unit 37 subtracts each of the count values CNTA to CNT by a predetermined value. Then, the process returns to step S302.
  • step S308 When the count value CNT of 1 or more reaches the threshold value THB in step S303 (“Y” in step S303), the counters 35A to 35D stop the count process (step S308). That is, in the example of FIG. 47, as shown in FIG. 47 (F), when the count value CNT of one or more of the four count value CNTs reaches the threshold value THB, the saturation determination unit 38 is set. , The control signal STP is changed from low level to high level. The AND circuits 33A to 33D lower the output signal based on this control signal STP. As a result, the switches 34A to 34D stop supplying the pulse signal PLS to the counters 35A to 35D, and the counters 35A to 35D stop the counting process.
  • the plurality of photodetection units U perform such operations individually.
  • the photodetector 320 performs a read process (step S309). Specifically, the read control unit 23 controls the operation of the plurality of photodetection units U so as to supply the count values CNTA to CNT generated in each of the plurality of photodetection units U to the signal processing unit 24. ..
  • the signal processing unit 24 generates a distance image based on the count values CNTA to CNT supplied from each of the plurality of photodetection units U.
  • the determination unit 236, the subtraction determination unit 336, and the subtraction control unit 37 each of the plurality of count value CNTs based on the count value of one or more of the plurality of count value CNTs. Is now subtracted by a predetermined value.
  • the final ambient light component C2 can be set to the threshold value THA or less, so that the signal of the reflected light component C1 can be set.
  • the amount can be secured.
  • the photodetection system 4 can improve the detection accuracy of time (TOF value) and distance.
  • the determination unit 236 and the threshold value setting unit 339 are changed so as to increase the threshold value THB based on the count value of one or more of the plurality of count value CNTs. did.
  • the signal amount of the reflected light component C1 can be secured when there is a lot of ambient light.
  • the photodetection system 4 can improve the detection accuracy of time (TOF value) and distance.
  • the threshold value THB is not changed, so that the counting process can be stopped in a shorter time. Thereby, for example, the power consumption can be reduced and the distance measuring time can be shortened.
  • the subtraction process of subtracting each of the plurality of count value CNTs by a predetermined value based on the count value of one or more of the plurality of count value CNTs is performed, and the threshold value is performed. Since the THB is changed to increase, the signal amount can be secured, and the detection accuracy can be improved.
  • the determination unit 236 determines whether or not any of the count values CNTA to CNT has reached the threshold value THA, but the present invention is not limited to this, and for example, in the first embodiment. Similar to the modification 1-4 of the embodiment, it may be determined whether or not the count value CNT of the predetermined counter 35 among the plurality of counters 35 has reached the threshold value THA, or among the plurality of counters 35. It may be determined whether or not any of the count values CNTs of the two predetermined counters 35 of the above has reached the threshold value THA. Further, it may be determined whether or not the sum of the count values of these two counters 35 reaches the threshold value THA, and the average value of the count values of these two counters 35 reaches the threshold value THA. You may decide whether or not to do so.
  • Each modification of the first embodiment may be applied to the photodetection system 4 according to the first embodiment.
  • the technique according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure is realized as a device mounted on a moving body of any kind such as an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, a personal mobility, an airplane, a drone, a ship, and a robot. You may.
  • FIG. 49 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a mobile control system to which the technique according to the present disclosure can be applied.
  • the vehicle control system 12000 includes a plurality of electronic control units connected via the communication network 12001.
  • the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an outside information detection unit 12030, an in-vehicle information detection unit 12040, and an integrated control unit 12050.
  • a microcomputer 12051, an audio image output unit 12052, and an in-vehicle network I / F (interface) 12053 are shown as a functional configuration of the integrated control unit 12050.
  • the drive system control unit 12010 controls the operation of the device related to the drive system of the vehicle according to various programs.
  • the drive system control unit 12010 has a driving force generator for generating a driving force of a vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to the wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism for adjusting and a braking device for generating braking force of the vehicle.
  • the body system control unit 12020 controls the operation of various devices mounted on the vehicle body according to various programs.
  • the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as headlamps, back lamps, brake lamps, turn signals or fog lamps.
  • the body system control unit 12020 may be input with radio waves transmitted from a portable device that substitutes for the key or signals of various switches.
  • the body system control unit 12020 receives inputs of these radio waves or signals and controls a vehicle door lock device, a power window device, a lamp, and the like.
  • the outside information detection unit 12030 detects information outside the vehicle equipped with the vehicle control system 12000.
  • the image pickup unit 12031 is connected to the vehicle outside information detection unit 12030.
  • the vehicle outside information detection unit 12030 causes the image pickup unit 12031 to capture an image of the outside of the vehicle and receives the captured image.
  • the out-of-vehicle information detection unit 12030 may perform object detection processing or distance detection processing such as a person, a vehicle, an obstacle, a sign, or a character on the road surface based on the received image.
  • the image pickup unit 12031 is an optical sensor that receives light and outputs an electric signal according to the amount of the light received.
  • the image pickup unit 12031 can output an electric signal as an image or can output it as distance measurement information. Further, the light received by the image pickup unit 12031 may be visible light or invisible light such as infrared light.
  • the in-vehicle information detection unit 12040 detects the in-vehicle information.
  • a driver state detection unit 12041 that detects a driver's state is connected to the vehicle interior information detection unit 12040.
  • the driver state detection unit 12041 includes, for example, a camera that images the driver, and the in-vehicle information detection unit 12040 determines the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated, or it may be determined whether or not the driver has fallen asleep.
  • the microcomputer 12051 calculates the control target value of the driving force generator, the steering mechanism, or the braking device based on the information inside and outside the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, and the drive system control unit.
  • a control command can be output to 12010.
  • the microcomputer 12051 realizes ADAS (Advanced Driver Assistance System) functions including vehicle collision avoidance or impact mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, vehicle lane deviation warning, and the like. It is possible to perform cooperative control for the purpose of.
  • ADAS Advanced Driver Assistance System
  • the microcomputer 12051 controls the driving force generating device, the steering mechanism, the braking device, and the like based on the information around the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040. It is possible to perform coordinated control for the purpose of automatic driving that runs autonomously without depending on the operation.
  • the microcomputer 12051 can output a control command to the body system control unit 12020 based on the information outside the vehicle acquired by the vehicle outside information detection unit 12030.
  • the microcomputer 12051 controls the headlamps according to the position of the preceding vehicle or the oncoming vehicle detected by the outside information detection unit 12030, and performs cooperative control for the purpose of anti-glare such as switching the high beam to the low beam. It can be carried out.
  • the audio image output unit 12052 transmits an output signal of at least one of audio and an image to an output device capable of visually or audibly notifying information to the passenger or the outside of the vehicle.
  • an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are exemplified as output devices.
  • the display unit 12062 may include, for example, at least one of an onboard display and a head-up display.
  • FIG. 50 is a diagram showing an example of the installation position of the imaging unit 12031.
  • the vehicle 12100 has image pickup units 12101, 12102, 12103, 12104, 12105 as image pickup units 12031.
  • the image pickup units 12101, 12102, 12103, 12104, 12105 are provided, for example, at positions such as the front nose, side mirrors, rear bumpers, back doors, and the upper part of the windshield in the vehicle interior of the vehicle 12100.
  • the image pickup unit 12101 provided on the front nose and the image pickup section 12105 provided on the upper part of the windshield in the vehicle interior mainly acquire an image in front of the vehicle 12100.
  • the image pickup units 12102 and 12103 provided in the side mirrors mainly acquire images of the sides of the vehicle 12100.
  • the image pickup unit 12104 provided in the rear bumper or the back door mainly acquires an image of the rear of the vehicle 12100.
  • the images in front acquired by the image pickup units 12101 and 12105 are mainly used for detecting a preceding vehicle, a pedestrian, an obstacle, a traffic light, a traffic sign, a lane, or the like.
  • FIG. 50 shows an example of the shooting range of the imaging units 12101 to 12104.
  • the imaging range 12111 indicates the imaging range of the imaging unit 12101 provided on the front nose
  • the imaging ranges 12112 and 12113 indicate the imaging range of the imaging units 12102 and 12103 provided on the side mirrors, respectively
  • the imaging range 12114 indicates the imaging range.
  • the imaging range of the imaging unit 12104 provided on the rear bumper or the back door is shown. For example, by superimposing the image data captured by the imaging units 12101 to 12104, a bird's-eye view image of the vehicle 12100 can be obtained.
  • At least one of the image pickup units 12101 to 12104 may have a function of acquiring distance information.
  • at least one of the image pickup units 12101 to 12104 may be a stereo camera including a plurality of image pickup elements, or may be an image pickup element having pixels for phase difference detection.
  • the microcomputer 12051 has a distance to each three-dimensional object within the imaging range 12111 to 12114 based on the distance information obtained from the imaging units 12101 to 12104, and a temporal change of this distance (relative speed with respect to the vehicle 12100). By obtaining can. Further, the microcomputer 12051 can set an inter-vehicle distance to be secured in advance in front of the preceding vehicle, and can perform automatic braking control (including follow-up stop control), automatic acceleration control (including follow-up start control), and the like. In this way, it is possible to perform coordinated control for the purpose of automatic driving or the like that autonomously travels without relying on the driver's operation.
  • automatic braking control including follow-up stop control
  • automatic acceleration control including follow-up start control
  • the microcomputer 12051 converts three-dimensional object data related to a three-dimensional object into two-wheeled vehicles, ordinary vehicles, large vehicles, pedestrians, electric poles, and other three-dimensional objects based on the distance information obtained from the image pickup units 12101 to 12104. It can be classified and extracted and used for automatic avoidance of obstacles. For example, the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into obstacles that are visible to the driver of the vehicle 12100 and obstacles that are difficult to see. Then, the microcomputer 12051 determines the collision risk indicating the risk of collision with each obstacle, and when the collision risk is equal to or higher than the set value and there is a possibility of collision, the microcomputer 12051 via the audio speaker 12061 or the display unit 12062. By outputting an alarm to the driver and performing forced deceleration and avoidance steering via the drive system control unit 12010, driving support for collision avoidance can be provided.
  • At least one of the image pickup units 12101 to 12104 may be an infrared camera that detects infrared rays.
  • the microcomputer 12051 can recognize a pedestrian by determining whether or not a pedestrian is present in the captured image of the imaging unit 12101 to 12104.
  • recognition of a pedestrian is, for example, a procedure for extracting feature points in an image captured by an image pickup unit 12101 to 12104 as an infrared camera, and a pattern matching process for a series of feature points showing the outline of an object to determine whether or not the pedestrian is a pedestrian. It is done by the procedure to determine.
  • the audio image output unit 12052 determines the square contour line for emphasizing the recognized pedestrian.
  • the display unit 12062 is controlled so as to superimpose and display. Further, the audio image output unit 12052 may control the display unit 12062 so as to display an icon or the like indicating a pedestrian at a desired position.
  • the above is an example of a vehicle control system to which the technique according to the present disclosure can be applied.
  • the technique according to the present disclosure can be applied to the imaging unit 12031 among the configurations described above.
  • the time (TOF value) and distance detection accuracy can be improved.
  • the vehicle control system 12000 realizes a vehicle collision avoidance or collision mitigation function, a follow-up driving function based on the inter-vehicle distance, a vehicle speed maintenance driving function, a vehicle collision warning function, a vehicle lane deviation warning function, etc. with high accuracy. can.
  • the light receiving unit 31 as shown in FIGS. 4A and 4B is provided, but the circuit configuration of the light receiving unit 31 is not limited to this, and various circuit configurations are applied. can do.
  • this technology can be configured as follows. According to this technique having the following configuration, the detection accuracy can be improved.
  • One or more light receiving units each of which has a light receiving element and generates a pulse signal including a pulse corresponding to the light receiving result of the light receiving element.
  • a plurality of first counters that generate a plurality of count values by performing a count process based on the one or a plurality of the pulse signals generated by the one or a plurality of light receiving units, and a plurality of first counters.
  • a photodetector including a subtraction processing unit that performs a subtraction process of subtracting a predetermined value from each of the plurality of count values based on one or more of the plurality of count values.
  • the stop processing unit further includes a stop processing unit for stopping the count processing in the plurality of first counters when one or more of the plurality of count values reaches the first threshold value.
  • the subtraction processing unit performs the subtraction processing by changing the bit value of a predetermined count bit among the plurality of count bits in each of the plurality of first counters (2) to (5).
  • the photodetector according to any. The photodetector according to (6) above, wherein the predetermined count bit is the most significant bit among the plurality of count bits.
  • a threshold value setting unit for changing the first threshold value to be increased based on one or more of the plurality of count values.
  • the threshold value setting unit is changed so as to increase the first threshold value when the first threshold value has not reached a predetermined threshold value.
  • the threshold value setting unit is changed so as to increase the first threshold value when any of the plurality of count values reaches the second threshold value. (10).
  • Photodetector. (12) The threshold value setting unit is changed to the above (11) to further increase the second threshold value when any of the plurality of count values reaches the second threshold value.
  • the photodetector described. (13) The threshold value setting unit is changed so as to increase the first threshold value based on the count value of one or more predetermined first counters among the plurality of first counters.
  • the stop processing unit further includes a first processing unit that subtracts the minimum value among the plurality of count values from the plurality of count values after the stop processing unit stops the count processing in the plurality of first counters.
  • the light detection timing is calculated based on the plurality of count values, and the light is calculated based on the count values of the second counter.
  • the photodetector according to (15) above further comprising a second processing unit that corrects the detection timing.
  • the detection unit has a third counter that measures the time from when the plurality of first counters start the counting process until the stop processing unit stops the counting process. The photodetector described.
  • the one or more light receiving parts include one light receiving part.
  • the distribution unit distributes the pulse signal generated by the light receiving unit to the plurality of first counters in a time-division manner.
  • the photodetector according to any one of (1) to (21), wherein each of the plurality of first counters performs the counting process based on the distributed signal. (23) It has an adder and a distributor,
  • the one or more light receiving parts include a plurality of light receiving parts.
  • the addition unit generates an addition pulse signal by performing addition processing based on the plurality of pulse signals generated by the plurality of light receiving units.
  • the distribution unit distributes the addition pulse signal to the plurality of first counters in a time-division manner.
  • the photodetector according to any one of (1) to (21), wherein the plurality of first counters perform the counting process based on the distributed signal.
  • the one or more light receiving units include a plurality of light receiving units provided corresponding to the plurality of first counters.
  • Each of the plurality of first counters is one of the above (1) to (21), which performs the counting process based on the pulse signal generated by the corresponding light receiving unit among the plurality of light receiving units.
  • the photodetector described. (25) It is equipped with a plurality of photodetector units arranged side by side in the first direction and the second direction.
  • each of the plurality of photodetection units includes the one or a plurality of light receiving units, the plurality of first counters, and the subtraction processing unit. .. (26)
  • Each of the one or a plurality of light receiving units has a pulse generation circuit connected to the light receiving element and generating the pulse signal.
  • the light receiving element is provided on the first semiconductor substrate, and the light receiving element is provided on the first semiconductor substrate.
  • One or more light receiving units each of which has a light receiving element and generates a pulse signal including a pulse corresponding to the light receiving result of the light receiving element.
  • a plurality of first counters that generate a plurality of count values by performing a count process based on the one or a plurality of the pulse signals generated by the one or a plurality of light receiving units, and a plurality of first counters.
  • a stop processing unit that stops the count processing in the plurality of first counters when one or more of the plurality of count values reaches the first threshold value.
  • a photodetector comprising a threshold value setting unit that changes the first threshold value to increase based on one or more of the plurality of count values.
  • the threshold value setting unit is changed to increase the first threshold value when any of the plurality of count values reaches the second threshold value.
  • Photodetector. The threshold value setting unit is changed to the above (28) so as to further increase the second threshold value when any of the plurality of count values reaches the second threshold value. The photodetector described.
  • the threshold value setting unit is changed so as to increase the first threshold value based on the count value of one or more predetermined first counters among the plurality of first counters.
  • the stop processing unit further includes a first processing unit that subtracts the minimum value among the plurality of count values from the plurality of count values after the stop processing unit stops the count processing in the plurality of first counters.
  • the one or more light receiving parts include one light receiving part.
  • the distribution unit distributes the pulse signal generated by the light receiving unit to the plurality of first counters in a time-division manner.
  • the one or more light receiving parts include a plurality of light receiving parts.
  • the addition unit generates an addition pulse signal by performing addition processing based on the plurality of pulse signals generated by the plurality of light receiving units.
  • the distribution unit distributes the addition pulse signal to the plurality of first counters in a time-division manner.
  • the photodetector according to any one of (27) to (31), wherein the plurality of first counters perform the counting process based on the distributed signal.
  • the one or more light receiving units include a plurality of light receiving units provided corresponding to the plurality of first counters.
  • Each of the plurality of first counters is one of the above (27) to (31), which performs the counting process based on the pulse signal generated by the corresponding light receiving unit among the plurality of light receiving units.
  • the photodetector described. (35) It is equipped with a plurality of photodetector units arranged side by side in the first direction and the second direction.
  • Each of the plurality of photodetector units is any of the above (27) to (34) including the one or a plurality of light receiving units, the plurality of first counters, the stop processing unit, and the threshold value setting unit.
  • Each of the one or a plurality of light receiving units has a pulse generation circuit connected to the light receiving element and generating the pulse signal.
  • the light receiving element is provided on the first semiconductor substrate, and the light receiving element is provided on the first semiconductor substrate.
  • the photodetector according to any one of (27) to (35), wherein the pulse generation circuit is provided on a second semiconductor substrate attached to the first semiconductor substrate.
  • a light emitting unit that emits light
  • a photodetector that detects the light reflected by the detection target among the light emitted from the light emitting unit.
  • the photodetector One or more light receiving units, each of which has a light receiving element and generates a pulse signal including a pulse corresponding to the light receiving result of the light receiving element.
  • a plurality of first counters that generate a plurality of count values by performing a count process based on the one or a plurality of the pulse signals generated by the one or a plurality of light receiving units, and a plurality of first counters.
  • An optical detection system including a subtraction processing unit that performs a subtraction process of subtracting a predetermined value from each of the plurality of count values based on one or more of the plurality of count values. (38) It is provided with a light emitting unit that emits light and a photodetector that detects the light reflected by the detection target among the light emitted from the light emitting unit.
  • the photodetector One or more light receiving units, each of which has a light receiving element and generates a pulse signal including a pulse corresponding to the light receiving result of the light receiving element.
  • a plurality of first counters that generate a plurality of count values by performing a count process based on the one or a plurality of the pulse signals generated by the one or a plurality of light receiving units, and a plurality of first counters.
  • a stop processing unit that stops the count processing in the plurality of first counters when one or more of the plurality of count values reaches the first threshold value.
  • a photodetection system comprising a threshold value setting unit that changes the first threshold value to increase based on one or more of the plurality of count values.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本開示の光検出装置は、それぞれが、受光素子を有し、受光素子の受光結果に応じたパルスを含むパルス信号を生成する1または複数の受光部と、1または複数の受光部により生成された1または複数のパルス信号に基づいてカウント処理を行うことにより複数のカウント値をそれぞれ生成する複数の第1のカウンタと、複数のカウント値のうちの1以上のカウント値に基づいて、複数のカウント値のそれぞれを所定の値だけ減算する減算処理を行う減算処理部とを備える。

Description

光検出装置および光検出システム
 本開示は、光を検出する光検出装置および光検出システムに関する。
 検出対象物までの距離を計測する際、しばしば、TOF(Time Of Flight)法が用いられる。このTOF法では、光を射出するとともに、検出対象物により反射された反射光を検出する。そして、TOF法では、光を射出したタイミングおよび反射光を検出したタイミングの間の時間差を計測することにより、検出対象物までの距離を計測する。例えば、特許文献1には、複数の受光素子のいずれかをオフにすることにより、環境光の受光量を減らす測距装置が開示されている。
特開2014-77658号公報
 光検出装置では、検出精度を高めることが望まれており、さらなる検出精度の向上が期待されている。
 検出精度を高めることができる光検出装置および光検出システムを提供することが望ましい。
 本開示の一実施の形態における第1の光検出装置は、1または複数の受光部と、複数の第1のカウンタと、減算処理部とを備えている。1または複数の受光部のそれぞれは、受光素子を有し、受光素子の受光結果に応じたパルスを含むパルス信号を生成するように構成される。複数の第1のカウンタは、1または複数の受光部により生成された1または複数のパルス信号に基づいてカウント処理を行うことにより複数のカウント値をそれぞれ生成するように構成される。減算処理部は、複数のカウント値のうちの1以上のカウント値に基づいて、複数のカウント値のそれぞれを所定の値だけ減算する減算処理を行うように構成される。
 本開示の一実施の形態における第2の光検出装置は、1または複数の受光部と、複数の第1のカウンタと、停止処理部と、しきい値設定部とを備えている。1または複数の受光部のそれぞれは、受光素子を有し、受光素子の受光結果に応じたパルスを含むパルス信号を生成するように構成される。複数の第1のカウンタは、1または複数の受光部により生成された1または複数のパルス信号に基づいてカウント処理を行うことにより複数のカウント値をそれぞれ生成するように構成される。停止制御部は、複数のカウント値のうちの1以上のカウント値が、第1のしきい値に到達した場合に、複数の第1のカウンタにおけるカウント処理を停止させるように構成される。しきい値設定部は、複数のカウント値のうちの1以上のカウント値に基づいて、第1のしきい値を増加させるように変更するように構成される。
 本開示の一実施の形態における第1の光検出システムは、発光部と、光検出部とを備えている。発光部は、光を射出するように構成される。光検出部は、発光部から射出された光のうちの、検出対象により反射された光を検出するように構成される。この光検出部は、1または複数の受光部と、複数の第1のカウンタと、減算処理部とを有している。1または複数の受光部のそれぞれは、受光素子を有し、受光素子の受光結果に応じたパルスを含むパルス信号を生成するように構成される。複数の第1のカウンタは、1または複数の受光部により生成された1または複数のパルス信号に基づいてカウント処理を行うことにより複数のカウント値をそれぞれ生成するように構成される。減算処理部は、複数のカウント値のうちの1以上のカウント値に基づいて、複数のカウント値のそれぞれを所定の値だけ減算する減算処理を行うように構成される。
 本開示の一実施の形態における第2の光検出システムは、発光部と、光検出部とを備えている。発光部は、光を射出するように構成される。光検出部は、発光部から射出された光のうちの、検出対象により反射された光を検出するように構成される。この光検出部は、1または複数の受光部と、複数の第1のカウンタと、停止処理部と、しきい値設定部とを有している。1または複数の受光部のそれぞれは、受光素子を有し、受光素子の受光結果に応じたパルスを含むパルス信号を生成するように構成される。複数の第1のカウンタは、1または複数の受光部により生成された1または複数のパルス信号に基づいてカウント処理を行うことにより複数のカウント値をそれぞれ生成するように構成される。停止制御部は、複数のカウント値のうちの1以上のカウント値が、第1のしきい値に到達した場合に、複数の第1のカウンタにおけるカウント処理を停止させるように構成される。しきい値設定部は、複数のカウント値のうちの1以上のカウント値に基づいて、第1のしきい値を増加させるように変更するように構成される。
 本開示の一実施の形態における第1の光検出装置および第1の光検出システムでは、1または複数の受光部のそれぞれにおいて、受光素子の受光結果に応じたパルスを含むパルス信号が生成される。複数の第1のカウンタでは、1または複数の受光部により生成された1または複数のパルス信号に基づいてカウント処理を行うことにより複数のカウント値がそれぞれ生成される。減算処理部では、複数のカウント値のうちの1以上のカウント値に基づいて、複数のカウント値のそれぞれを所定の値だけ減算する減算処理が行われる。
 本開示の一実施の形態における第2の光検出装置および第2の光検出システムでは、1または複数の受光部のそれぞれにおいて、受光素子の受光結果に応じたパルスを含むパルス信号が生成される。複数の第1のカウンタでは、1または複数の受光部により生成された1または複数のパルス信号に基づいてカウント処理を行うことにより複数のカウント値がそれぞれ生成される。この複数の第1のカウンタにおけるカウント処理は、複数のカウント値のうちの1以上のカウント値が、第1のしきい値に到達した場合に、停止制御部により停止させる。この第1のしきい値は、しきい値設定部により、複数のカウント値のうちの1以上のカウント値に基づいて、第1のしきい値を増加させるように変更される。
本開示の一実施の形態に係る光検出システムの一構成例を表すブロック図である。 図1に示した光検出部の一構成例を表すブロック図である。 図2に示した光検出ユニットの一構成例を表す回路図である。 図3に示した受光部の一構成例を表す回路図である。 図3に示した受光部の他の一構成例を表す回路図である。 図3に示した減算判定部の一構成例を表すブロック図である。 図3に示した飽和判定部の一構成例を表すブロック図である。 図3に示した光検出ユニットの一動作例を表すタイミング波形図である。 図3に示した光検出ユニットにおけるカウント値の変化を表す説明図である。 図2に示した光検出部の一動作例を表すフローチャートである。 図2に示した信号処理部の一動作例を表す説明図である。 図3に示した光検出ユニットの一動作例を表す説明図である。 第1の実施の形態の変形例に係る受光部の一構成例を表す回路図である。 第1の実施の形態の他の変形例に係る受光部の一構成例を表す回路図である。 第1の実施の形態の他の変形例に係る光検出ユニットの一構成例を表す回路図である。 第1の実施の形態の他の変形例に係る光検出ユニットの一構成例を表す回路図である。 図14に示した受光部の一構成例を表す回路図である。 第1の実施の形態の他の変形例に係る減算制御部の一動作例を表す説明図である。 第1の実施の形態の他の変形例に係る光検出ユニットの一構成例を表す回路図である。 図17に示した減算判定部の一構成例を表す回路図である。 図17に示した光検出ユニットの一動作例を表すタイミング波形図である。 第1の実施の形態の他の変形例に係る光検出ユニットの一構成例を表す回路図である。 図20に示した減算判定部の一構成例を表す回路図である。 図20に示した減算判定部の他の一構成例を表す回路図である。 第1の実施の形態の他の変形例に係る光検出ユニットの一構成例を表す回路図である。 図23に示した光検出ユニットの一動作例を表すタイミング波形図である。 図23に示した光検出ユニットの一動作例を表す他のタイミング波形図である。 第1の実施の形態の他の変形例に係る光検出部の一実装例を表す説明図である。 第1の実施の形態の他の変形例に係る受光部の一構成例を表す回路図である。 第1の実施の形態の他の変形例に係る光検出部の他の一実装例を表す説明図である。 第1の実施の形態の他の変形例に係る光検出システムの一構成例を表すブロック図である。 図29に示した光検出部の一構成例を表すブロック図である。 図30に示した光検出ユニットの一構成例を表す回路図である。 第2の実施の形態に係る光検出部の一構成例を表すブロック図である。 図32に示した光検出ユニットの一構成例を表す回路図である。 図33に示した光検出ユニットの一動作例を表す説明図である。 時間(TOF)のずれの一例を表す説明図である。 第2の実施の形態の変形例に係る光検出部の一構成例を表すブロック図である。 図36に示した光検出ユニットの一構成例を表す回路図である。 図36に示した受光量画像生成部の一動作例を表す説明図である。 第2の実施の形態の他の変形例に係る光検出ユニットの一構成例を表す回路図である。 第2の実施の形態の他の変形例に係る光検出部の一構成例を表すブロック図である。 図40に示した光検出ユニットの一構成例を表す回路図である。 第3の実施の形態に係る光検出部の一構成例を表すブロック図である。 図42に示した光検出ユニットの一構成例を表す回路図である。 図43に示した光検出ユニットにおけるカウント値の変化を表す説明図である。 図42に示した光検出部の一動作例を表すフローチャートである。 第4の実施の形態に係る光検出ユニットの一構成例を表す回路図である。 図46に示した光検出ユニットにおけるカウント値の変化を表す説明図である。 第4の実施の形態に係る光検出部の一動作例を表すフローチャートである。 車両制御システムの概略的な構成の一例を示すブロック図である。 車外情報検出部及び撮像部の設置位置の一例を示す説明図である。
 以下、本開示の実施の形態について、図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
1.第1の実施の形態
2.第2の実施の形態
3.第3の実施の形態
4.第4の実施の形態
5.移動体への応用例
<1.第1の実施の形態>
[構成例]
 図1は、一実施の形態に係る光検出システム(光検出システム1)の一構成例を表すものである。光検出システム1は、ToF(Time-of-Flight)センサであり、光を射出するとともに、検出対象物OBJにより反射された反射光を検出するように構成される。光検出システム1は、発光部11と、光学系12と、光検出部20と、制御部14とを備えている。
 発光部11は、制御部14からの指示に基づいて、検出対象物OBJに向かって光パルスL0を射出するように構成される。発光部11は、制御部14からの指示に基づいて、発光および非発光を交互に繰り返す発光動作を行うことにより光パルスL0を射出するようになっている。発光部11は、例えば赤外光を射出する光源を有する。この光源は、例えば、レーザ光源やLED(Light Emitting Diode)などを用いて構成される。
 光学系12は、光検出部20の受光面Sにおいて像を結像させるレンズを含んで構成される。この光学系12には、発光部11から射出され、検出対象物OBJにより反射された光パルス(反射光パルスL1)が入射するようになっている。
 光検出部20は、制御部14からの指示に基づいて、反射光パルスL1を検出するように構成される。そして、光検出部20は、検出結果に基づいて距離画像を生成し、生成した距離画像の画像データをデータDTとして出力するようになっている。
 制御部14は、発光部11および光検出部20に制御信号を供給し、これらの動作を制御することにより、光検出システム1の動作を制御するように構成される。
 図2は、光検出部20の一構成例を表すものである。光検出部20は、光検出アレイ21と、信号生成部22と、読出制御部23と、信号処理部24と、光検出制御部25とを有している。
 光検出アレイ21は、マトリックス状に配置された複数の光検出ユニットUを有している。光検出ユニットUは、反射光パルスL1を検出し、その検出回数をカウントするように構成される。
 図3は、光検出ユニットUの一構成例を表すものである。光検出ユニットUは、受光部31と、複数の論理積(AND)回路33(この例では4つの論理積回路33A~33D)と、複数のスイッチ34(この例では4つのスイッチ34A~34D)と、複数のカウンタ35(この例では4つのカウンタ35A~35D)と、減算判定部36と、減算制御部37と、飽和判定部38とを有している。なお、この例では、論理積回路33、スイッチ34、およびカウンタ35を含む回路を4つ設けたが、これに限定されるものではなく、例えば、論理積回路33、スイッチ34、およびカウンタ35を含む回路を3つ以上設けることができる。
 受光部31は、光を検出することにより、検出した光に応じたパルスを有するパルス信号PLSを生成するように構成される。
 図4Aは、受光部31の一構成例を表すものである。この例では、受光部31は、フォトダイオードPDと、抵抗素子R1と、インバータIV1とを有している。
 フォトダイオードPDは、光を電荷に変換する光電変換素子である。フォトダイオードPDのアノードには電源電圧VSSが供給され、カソードはノードN1に接続される。フォトダイオードPDは、例えばアバランシェフォトダイオード(APD;Avalanche Photodiode)や、シングルフォトンアバランシェダイオード(SPAD;Single Photon Avalanche Diode)などを用いることができる。
 抵抗素子R1の一端には電源電圧VDDが供給され、他端はノードN1に接続される。
 インバータIV1は、ノードN1における電圧が論理しきい値より高い場合に低レベルを出力し、ノードN1における電圧が論理しきい値より低い場合に高レベルを出力することにより、パルス信号PLSを生成するように構成される。
 この構成により、この受光部31では、フォトダイオードPDが光を検出することにより、アバランシェ増幅が生じ、ノードN1における電圧が低下する。そして、ノードN1における電圧がインバータIV1の論理しきい値より低くなると、パルス信号PLSが低レベルから高レベルへ変化する。その後、抵抗素子R1を介してノードN1に電流が流れることにより、ノードN1の電圧が上昇する。そして、ノードN1における電圧がインバータIV1の論理しきい値より高くなると、パルス信号PLSが高レベルから低レベルに変化する。このようにして、受光部31は、検出した光に応じたパルスを有するパルス信号PLSを生成するようになっている。
 図4Bは、受光部31の他の一構成例を表すものである。この例では、受光部31は、フォトダイオードPDと、トランジスタMP1と、インバータIV1と、制御回路CKT1とを有している。
 トランジスタMP1は、P型のMOS(Metal Oxide Semiconductor)トランジスタであり、ゲートは制御回路CKT1の出力端子に接続され、ソースには電源電圧VDDが供給され、ドレインはノードN1に接続される。
 制御回路CKT1は、パルス信号PLSに基づいてトランジスタMP1の動作を制御するように構成される。具体的には、制御回路CKT1は、パルス信号PLSが低レベルから高レベルに変化した後にトランジスタMP1のゲートの電圧を低レベルにし、パルス信号PLSが高レベルから低レベルに変化した後にトランジスタMP1のゲートの電圧を高レベルにするようになっている。
 この構成により、この受光部31では、フォトダイオードPDが光を検出することにより、ノードN1における電圧が低下する。そして、ノードN1における電圧がインバータIV1の論理しきい値より低くなると、パルス信号PLSが低レベルから高レベルに変化する。制御回路CKT1は、このパルス信号PLSの変化の後に、トランジスタMP1のゲートの電圧を低レベルにする。これにより、トランジスタMP1がオン状態になり、トランジスタMP1を介してノードN1に電流が流れることにより、ノードN1の電圧が上昇する。そして、ノードN1における電圧がインバータIV1の論理しきい値より高くなると、パルス信号PLSが高レベルから低レベルに変化する。制御回路CKT1は、このパルス信号PLSの変化の後に、トランジスタMP1のゲートの電圧を高レベルにする。これにより、トランジスタMP1がオフ状態になる。このようにして、受光部31は、検出した光に応じたパルスを有するパルス信号PLSを生成するようになっている。
 論理積回路33A(図3)は、クロック信号CLKAと、制御信号STPの反転信号との論理積を求めるように構成される。スイッチ34Aは、論理積回路33Aの出力信号に基づいて、パルス信号PLSのカウンタ35Aへの供給をオンオフするように構成される。具体的には、スイッチ34Aは、論理積回路33Aの出力信号が高レベルである場合にはパルス信号PLSをカウンタ35Aに供給し、論理積回路33Aの出力信号が低レベルである場合には低レベルの信号をカウンタ35Aに供給するようになっている。スイッチ34Aは、例えば論理積回路や論理和(OR)回路を用いて構成される。
 同様に、論理積回路33Bは、クロック信号CLKBと、制御信号STPの反転信号との論理積を求めるように構成される。スイッチ34Bは、論理積回路33Bの出力信号に基づいて、パルス信号PLSのカウンタ35Bへの供給をオンオフするように構成される。論理積回路33Cは、クロック信号CLKCと、制御信号STPの反転信号との論理積を求めるように構成される。スイッチ34Cは、論理積回路33Cの出力信号に基づいて、パルス信号PLSのカウンタ35Cへの供給をオンオフするように構成される。論理積回路33Dは、クロック信号CLKDと、制御信号STPの反転信号との論理積を求めるように構成される。スイッチ34Dは、論理積回路33Dの出力信号に基づいて、パルス信号PLSのカウンタ35Dへの供給をオンオフするように構成される。
 カウンタ35Aは、スイッチ34Aから供給されたパルス信号における立ち上がりエッジに基づいてカウント処理を行うことによりカウント値CNTAをインクリメントするように構成される。同様に、カウンタ35Bは、スイッチ34Bから供給されたパルス信号における立ち上がりエッジに基づいてカウント処理を行うことによりカウント値CNTBをインクリメントするように構成される。カウンタ35Cは、スイッチ34Cから供給されたパルス信号における立ち上がりエッジに基づいてカウント処理を行うことによりカウント値CNTCをインクリメントするように構成される。カウンタ35Dは、スイッチ34Dから供給されたパルス信号における立ち上がりエッジに基づいてカウント処理を行うことによりカウント値CNTDをインクリメントするように構成される。
 減算判定部36は、カウント値CNTA~CNTDのいずれもがしきい値THAに到達したかどうかを判定することにより、制御信号CTLを生成するように構成される。言い換えれば、減算判定部36は、カウント値CNTA~CNTDの最小値がしきい値THAに到達したかどうかを判定することにより、制御信号CTLを生成するようになっている。
 図5は、減算判定部36の一構成例を表すものである。減算判定部36は、比較回路CP1A,CP1B,CP1C,CP1Dと、論理積回路AND1とを有している。比較回路CP1Aは、カウント値CNTAがしきい値THAより大きいかどうかを判定するように構成される。比較回路CP1Bは、カウント値CNTBがしきい値THAより大きいかどうかを判定するように構成される。比較回路CP1Cは、カウント値CNTCがしきい値THAより大きいかどうかを判定するように構成される。比較回路CP1Dは、カウント値CNTDがしきい値THAより大きいかどうかを判定するように構成される。論理積回路AND1は、比較回路CP1Aの出力信号、比較回路CP1Bの出力信号、比較回路CP1Cの出力信号、および比較回路CP1Dの出力信号の論理積を求めることにより制御信号CTLを生成するように構成される。この構成により、減算判定部36は、カウント値CNTA~CNTDのうちのいずれもがしきい値THAに到達したかどうかを判定することができるようになっている。
 減算制御部37(図3)は、減算判定部36の判定結果に基づいて、カウンタ35A~35Dにおけるカウント値CNTA~CNTDのそれぞれを、所定の値だけ減算するように構成される。
 飽和判定部38は、カウント値CNTA~CNTDのうちの1以上のカウント値がしきい値THBに到達したかどうかを判定することにより、制御信号STPを生成するように構成される。具体的には、飽和判定部38は、カウント値CNTA~CNTDのうちの1以上のカウント値がしきい値THBに到達した場合に、制御信号STPを高レベルにし、カウント値CNTA~CNTDのいずれもがしきい値THBに到達していない場合に、制御信号STPを低レベルにするようになっている。しきい値THBは、しきい値THAよりも大きい値に設定される。
 図6は、飽和判定部38の一構成例を表すものである。飽和判定部38は、比較回路CP2A,CP2B,CP2C,CP2Dと、論理和回路OR1とを有している。比較回路CP2Aは、カウント値CNTAがしきい値THBより大きいかどうかを判定するように構成される。比較回路CP2Bは、カウント値CNTBがしきい値THBより大きいかどうかを判定するように構成される。比較回路CP2Cは、カウント値CNTCがしきい値THBより大きいかどうかを判定するように構成される。比較回路CP2Dは、カウント値CNTDがしきい値THBより大きいかどうかを判定するように構成される。論理和回路OR1は、比較回路CP2Aの出力信号、比較回路CP2Bの出力信号、比較回路CP2Cの出力信号、および比較回路CP2Dの出力信号の論理和を求めることにより制御信号STPを生成するように構成される。この構成により、飽和判定部38は、カウント値CNTA~CNTDのうちの1以上のカウント値がしきい値THBに到達したかどうかを判定することができるようになっている。
 飽和判定部38が、カウント値CNTA~CNTDのうちの1以上のカウント値がしきい値THBに到達したと判定し制御信号STPを高レベルにすると、論理積回路33A~33Dのそれぞれは、出力信号を低レベルにする。これにより、スイッチ34A~34Dは、カウンタ35A~35Dへのパルス信号PLSの供給を停止し、カウンタ35A~35Dはカウント処理を停止するようになっている。
 信号生成部22(図2)は、光検出制御部25からの指示に基づいてクロック信号CLKA~CLKDおよびしきい値THA,THBを生成し、生成したクロック信号CLKA~CLKDおよびしきい値THA,THBを光検出アレイ21における複数の光検出ユニットUに供給するように構成される。
 読出制御部23は、光検出制御部25からの指示に基づいて、光検出アレイ21における複数の光検出ユニットUのそれぞれにおいて生成されたカウント値CNTA~CNTDを信号処理部24に供給する動作を制御するように構成される。読出制御部23は、例えば、1行分の光検出ユニットUを順次選択し、選択された光検出ユニットUがカウント値CNTA~CNTDを信号処理部24に供給するように、複数の光検出ユニットUの動作を制御するようになっている。
 信号処理部24は、光検出制御部25からの指示に基づいて、距離画像を生成するように構成される。具体的には、信号処理部24は、光検出アレイ21における複数の光検出ユニットUのそれぞれから供給されたカウント値CNTA~CNTDに基づいて、発光部11が光パルスL0を射出してから、光検出ユニットUが反射光パルスL1を検出するまでの時間(TOF値)を計測することにより、距離画像を生成する。そして、信号処理部24は、生成した距離画像の画像データを、データDTとして出力するようになっている。
 光検出制御部25は、制御部14(図1)からの指示に基づいて、信号生成部22、読出制御部23、および信号処理部24に制御信号を供給し、これらの動作を制御することにより、光検出部20の動作を制御するように構成される。
 ここで、受光部31は、本開示における「受光部」の一具体例に対応する。フォトダイオードPDは、本開示における「受光素子」の一具体例に対応する。パルス信号PLSは、本開示における「パルス信号」の一具体例に対応する。スイッチ34A~34Dは、本開示における「分配部」の一具体例に対応する。カウンタ35は、本開示における「カウンタ」の一具体例に対応する。減算判定部36および減算制御部37は、本開示における「減算処理部」の一具体例に対応する。飽和判定部38および論理積回路33A~33Dは、本開示における「停止処理部」の一具体例に対応する。信号処理部24は、本開示における「第1の処理部」の一具体例に対応する。しきい値THBは、本開示における「第1のしきい値」の一具体例に対応する。しきい値THAは、本開示における「第2のしきい値」の一具体例に対応する。
[動作および作用]
 続いて、本実施の形態に係る光検出システム1の動作および作用について説明する。
(全体動作概要)
 まず、図1,2を参照して、光検出システム1の全体動作概要を説明する。発光部11は、検出対象物OBJに向かって光パルスL0を射出する。光学系12は、光検出部20の受光面Sにおいて像を結像させる。光検出部20は、反射光パルスL1を検出する。制御部14は、発光部11および光検出部20に制御信号を供給し、これらの動作を制御することにより、光検出システム1の測距動作を制御する。
 光検出部20において、光検出アレイ21の光検出ユニットUは、反射光パルスL1を検出することによりカウント値CNTA~CNTDを生成する。信号生成部22は、クロック信号CLKA~CLKDおよびしきい値THA,THBを生成し、このクロック信号CLKA~CLKDおよびしきい値THA,THBを複数の光検出ユニットUに供給する。読出制御部23は、光検出アレイ21における複数の光検出ユニットUのそれぞれにおいて生成されたカウント値CNTA~CNTDを信号処理部24に供給する動作を制御する。信号処理部24は、光検出アレイ21における複数の光検出ユニットUから供給されたカウント値CNTA~CNTDに基づいて、距離画像を生成し、生成した距離画像の画像データをデータDTとして出力する。光検出制御部25は、制御部14からの指示に基づいて、信号生成部22、読出制御部23、および信号処理部24に制御信号を供給し、これらの動作を制御することにより、光検出部20の動作を制御する。
(詳細動作)
 図7は、光検出部20の一動作例を表すものであり、(A)は発光部11から射出された光の波形を示し、(B)は検出対象物OBJにより反射され、ある光検出ユニットUに入射した光の波形を示し、(C)~(F)はクロック信号CLKA~CLKDの波形をそれぞれ示し、(G)~(J)はカウント値CNTA~CNTDの波形をそれぞれ示し、(K)は制御信号STPの波形を示し、(L)は読出制御部23の動作を示す。
 タイミングt11~t18の期間(露光期間P1)において、光検出システム1は、光パルスL0を繰り返し射出するとともに、検出対象物OBJにより反射された反射光パルスL1を繰り返し検出する。
 具体的には、タイミングt11~t12の期間において、発光部11は光を射出する(図7(A))。信号生成部22は、タイミングt12~t13の期間においてクロック信号CLKAを高レベルにし、タイミングt13~t14の期間においてクロック信号CLKBを高レベルにし、タイミングt14~t15の期間においてクロック信号CLKCを高レベルにし、タイミングt15~t16の期間においてクロック信号CLKDを高レベルにする(図7(C)~(F))。この例では、反射光パルスL1は、クロック信号CLKBが高レベルになる期間、およびクロック信号CLKCが高レベルになる期間に生じる(図7(B))。カウント値CNTA~CNTDのいずれもしきい値THBに到達しておらず、制御信号STPは低レベルである(図7(K))。これにより、スイッチ34Aは、タイミングt12~t13の期間においてパルス信号PLSをカウンタ35Aに供給し、スイッチ34Bは、タイミングt13~t14の期間においてパルス信号PLSをカウンタ35Bに供給し、スイッチ34Cは、タイミングt14~t15の期間においてパルス信号PLSをカウンタ35Cに供給し、スイッチ34Dは、タイミングt15~t16の期間においてパルス信号PLSをカウンタ35Dに供給する。このように、スイッチ34A~34Dは、クロック信号CLKA~CLKDに基づいて、パルス信号PLSを時分割的にカウンタ35A~35Dに分配する。
 カウンタ35Aは、タイミングt12~t13の期間において、スイッチ34Aから供給されたパルス信号PLSにおける立ち上がりエッジに基づいてカウント処理を行うことによりカウント値CNTAをインクリメントする(図7(G))。同様に、カウンタ35Bは、タイミングt13~t14の期間において、スイッチ34Bから供給されたパルス信号PLSにおける立ち上がりエッジに基づいてカウント処理を行うことによりカウント値CNTBをインクリメントする(図7(H))。カウンタ35Cは、タイミングt14~t15の期間において、スイッチ34Cから供給されたパルス信号PLSにおける立ち上がりエッジに基づいてカウント処理を行うことによりカウント値CNTCをインクリメントする(図7(I))。カウンタ35Dは、タイミングt15~t16の期間において、スイッチ34Dから供給されたパルス信号PLSにおける立ち上がりエッジに基づいてカウント処理を行うことによりカウント値CNTDをインクリメントする(図7(J))。
 光検出ユニットUは、このようなタイミングt11~t17の動作を繰り返す。これにより、カウンタ35Aは、クロック信号CLKAが高レベルである複数の期間において、カウント処理を行うことによりカウント値CNTAを生成し、カウンタ35Bは、クロック信号CLKBが高レベルである複数の期間において、カウント処理を行うことによりカウント値CNTBを生成し、カウンタ35Cは、クロック信号CLKCが高レベルである複数の期間において、カウント処理を行うことによりカウント値CNTCを生成し、カウンタ35Dは、クロック信号CLKDが高レベルである複数の期間において、カウント処理を行うことによりカウント値CNTDを生成する。
 そして、タイミングt18~t19の期間(読出期間P2)において、読出制御部23は、読出制御CRを行うことにより、複数の光検出ユニットUのそれぞれにおいて生成されたカウント値CNTA~CNTDを信号処理部24に供給するように、複数の光検出ユニットUの動作を制御する(図7(L))。その後、カウンタ35A~35Dにおけるカウント値CNTA~CNTDはリセットされる。
 図7に示したように、光検出ユニットUが、クロック信号CLKBが高レベルになる期間、およびクロック信号CLKCが高レベルになる期間に、反射光パルスL1を検出する場合には、カウント値CNTB,CNTCは、反射光に応じた成分(反射光成分C1)を含む。
 光検出部20には、図7(B)に示した反射光に加え、環境光も入射する。環境光は、クロック信号CLKAが高レベルになる期間、クロック信号CLKBが高レベルになる期間、クロック信号CLKCが高レベルになる期間、およびクロック信号CLKCが高レベルになる期間の全てにおいて入射され得る。よって、カウント値CNTA~CNTDは、環境光に応じた成分(環境光成分C2)を含む。この環境光成分C2の大きさは、カウント値CNTA~CNTDにおいて同程度である。
 図8は、露光期間P1におけるカウント値CNTA~CNTDの変化の一例を表すものである。網掛け部分は反射光成分C1を示し、白部分は環境光成分C2を示す。このように、カウント値CNTB,CNTCは、反射光成分C1および環境光成分C2を含み、カウント値CNTA,CNTDは、環境光成分C2を含む。
 露光期間P1が開始すると、カウント値CNTA~CNTDは、時間の経過に応じて、徐々に大きくなっていく。図8(A)に示したタイミングでは、カウント値CNTA~CNTDにおける環境光成分C2は、しきい値THAより小さい。
 その後、図8(B)に示したタイミングにおいて、カウント値CNTA~CNTDにおける環境光成分C2がしきい値THAに到達する。減算判定部36は、カウント値CNTA~CNTDのいずれもがしきい値THAに到達したと判定する。言い換えれば、減算判定部36は、カウント値CNTA~CNTDの最小値がしきい値THAに到達したと判定する。これにより、減算制御部37は、カウント値CNTA~CNTDのそれぞれを、所定の値だけ減算する(図8(C))。これにより、カウント値CNTA~CNTDにおける、環境光成分C2の一部が除去され、反射光成分C1は維持される。
 その後も、カウント値CNTA~CNTDは、時間の経過に応じて、徐々に大きくなっていく。
 そして、図8(D)に示したタイミングにおいて、カウント値CNTCがしきい値THBに到達する。飽和判定部38は、カウント値CNTA~CNTDのうちの1以上のカウント値がしきい値THBに到達したと判定し、制御信号STPを低レベルから高レベルに変化させる。論理積回路33A~33Dは、この制御信号STPに基づいて、出力信号を低レベルにする。これにより、スイッチ34A~34Dは、カウンタ35A~35Dへのパルス信号PLSの供給を停止し、カウンタ35A~35Dは、カウント処理を停止する。すなわち、カウント値CNTA~CNTDのうちの1以上のカウント値がしきい値THBに到達した場合には、露光期間P1が終了していなくても、カウンタ35A~35Dは、カウント処理を停止する。
 図9は、光検出部20の一動作例を表すものである。
 まず、光検出部20では、光検出制御部25は、露光期間P1を開始させる(ステップS101)。露光期間P1では、信号生成部22は、光検出制御部25からの指示に基づいて、クロック信号CLKA~CLKDを生成する。
 次に、光検出制御部25は、所定の時間長を有する露光期間P1が終了したかどうかを確認する(ステップS102)。露光期間P1が終了した場合(ステップS102において“Y”)には、処理はステップS107に進む。
 露光期間P1がまだ終了していない場合(ステップS102において“N”)には、飽和判定部38は、4つのカウント値CNT(カウント値CNTA~CNTD)のうちの1以上のカウント値CNTがしきい値THBに到達しているかどうかを判定する(ステップS103)。1以上のカウント値CNTがしきい値THBに到達している場合(ステップS103において“Y”)には、処理はステップS106に進む。
 ステップS103において、どのカウント値CNTもしきい値THBに到達していない場合(ステップS103において“N”)には、減算判定部36は、4つのカウント値CNT(カウント値CNTA~CNTD)のいずれもがしきい値THAに到達しているかどうかを判定する(ステップS104)。全てのカウント値CNTがしきい値THAに到達していない場合(ステップS104において“N”)には、処理はステップS102に戻る。
 ステップS104において、4つのカウント値CNTのいずれもがしきい値THAに到達した場合(ステップS104において“Y”)には、減算制御部37は、カウンタ35A~35Dにおけるカウント値CNTA~CNTDのそれぞれを、所定の値だけ減算する(ステップS105)。すなわち、図8の例では、図8(B),(C)に示したように、4つのカウント値CNTのいずれもがしきい値THAに到達したので、減算制御部37は、カウント値CNTA~CNTDのそれぞれを、所定の値だけ減算する。そして、処理はステップS102に戻る。
 ステップS103において、1以上のカウント値CNTがしきい値THBに到達した場合(ステップS103において“Y”)には、カウンタ35A~35Dは、カウント処理を停止する(ステップS106)。すなわち、図8の例では、図8(D)に示したように、4つのカウント値CNTのうちの1以上のカウント値CNTがしきい値THBに到達したので、飽和判定部38は、制御信号STPを低レベルから高レベルに変化させる。論理積回路33A~33Dは、この制御信号STPに基づいて、出力信号を低レベルにする。これにより、スイッチ34A~34Dは、カウンタ35A~35Dへのパルス信号PLSの供給を停止し、カウンタ35A~35Dは、カウント処理を停止する。
 複数の光検出ユニットUは、このような動作を、それぞれ個別に行う。
 そして、光検出部20は、読出処理を行う(ステップS107)。具体的には、読出制御部23は、複数の光検出ユニットUのそれぞれにおいて生成されたカウント値CNTA~CNTDを信号処理部24に供給するように、複数の光検出ユニットUの動作を制御する。
 以上で、この処理は終了する。
 信号処理部24は、複数の光検出ユニットUのそれぞれから供給されたカウント値CNTA~CNTDに基づいて、距離画像を生成する。
 図10は、信号処理部24の一動作例を表すものである。まず、信号処理部24は、図10に示したように、光検出ユニットUから供給されたカウント値CNTA~CNTDから、カウント値CNTA~CNTDのうちの最小値を減算する。すなわち、図8(D)に示したように、光検出ユニットUにより生成されたカウント値CNTA~CNTDは、反射光成分C1と、環境光成分C2とを含む。信号処理部24は、図10に示したように、カウント値CNTA~CNTDから、カウント値CNTA~CNTDのうちの最小値を減算することにより、環境光成分C2を除去する。
 そして、信号処理部24は、環境光成分C2が除去されたカウント値CNTA~CNTDに基づいて、発光部11が光パルスL0を射出してから、光検出ユニットUが反射光パルスL1を検出するまでの時間(TOF値)を求める。すなわち、例えば、カウント値CNTAは、発光部11が光パルスL0を射出した直後に反射光パルスL1を検出した回数を示し、カウント値CNTDは、発光部11が光パルスL0を射出してから時間が経過した後に反射光パルスL1を検出した回数を示す。よって、信号処理部24は、これらのカウント値CNTA~CNTDの分布に基づいて、例えば、その分布のピークに対応する時間を求めることにより、TOF値を求めることができる。
 信号処理部24は、複数の光検出ユニットUのそれぞれから得られたカウント値CNTA~CNTDに基づいて、このような処理を行うことにより、距離画像を生成する。そして、信号処理部24は、生成した距離画像の画像データを、データDTとして出力する。
 このように、光検出システム1では、減算判定部36および減算制御部37は、複数のカウント値CNTのうちの1以上のカウント値に基づいて、複数のカウント値CNTのそれぞれを所定の値だけ減算する減算処理を行うようにした。特に、この例では、減算判定部36および減算制御部37は、複数のカウント値CNTのいずれもがしきい値THAに到達した場合に減算処理を行うようにした。言い換えれば、減算判定部36および減算制御部37は、複数のカウント値CNTのうちの最小値がしきい値THAに到達した場合に減算処理を行うようにした。これにより、例えば、図8(D)に示したように、最終的な環境光成分C2をしきい値THA以下にすることが出来るので、反射光成分C1の信号量を確保することができる。その結果、光検出システム1では、時間(TOF値)や距離の検出精度を高めることができる。
 すなわち、このような減算処理を行わない場合には、環境光が多い場合において、環境光成分C1が多くなってしまうので、反射光成分C1の信号量が少なくなってしまう。このように信号量が少ない場合には、時間や距離の検出精度が悪化してしまう。また、この場合において、検出精度の低下を防ぐためには、図7に示した動作を複数回行うことが可能である。この場合には、図11(A)に示したように、複数の露光期間P1および複数の読出期間P2を設けることとなるので、検出時間が長くなってしまう。
 一方、光検出システム1では、減算判定部36および減算制御部37が、複数のカウント値CNTのうちの1以上のカウント値に基づいて、複数のカウント値CNTのそれぞれを所定の値だけ減算する減算処理を行うようにした。これにより、反射光成分C1の信号量を確保することができるので、時間(TOF値)や距離の検出精度を高めることができる。また、図11(B)に示したように、読出期間P2を1回にすることができるので、検出期間を短くすることができる。
 また、光検出システム1では、減算判定部36および減算制御部37が、複数のカウント値CNTのそれぞれを所定の値だけ減算する減算処理を行うようにしたので、例えば、カウンタのビット数を抑えることができるので、回路規模を小さくすることができる。すなわち、減算処理を行わない場合において、信号量を確保するためには、カウンタのビット数を増やす方法があり得る。しかしながら、この場合には、回路規模が大きくなってしまう。光検出ユニットUの回路規模が大きい場合には、例えば、光検出アレイにおける光検出ユニットUの数が少なくなり、あるいは、解像度が低下するおそれがある。一方、光検出システム1では、複数のカウント値CNTのそれぞれを所定の値だけ減算する減算処理を行うようにしたので、カウンタのビット数を抑えることができるので、回路規模を小さくすることができる。これにより、例えば、光検出アレイ21における光検出ユニットUの数を多くすることができ、あるいは、解像度を高めることができる。
 また、光検出システム1では、複数の光検出ユニットUのそれぞれにおいて、減算判定部36および減算制御部37が、複数のカウント値CNTのそれぞれを所定の値だけ減算する減算処理を行うようにした。これにより、複数の光検出ユニットUのそれぞれにおける環境光の光量に応じて、適応的に、環境光成分C2を除去することができ、反射光成分C1の信号量を確保することができる。その結果、光検出システム1では、複数の光検出ユニットUのそれぞれにおいて、時間(TOF値)や距離の検出精度を効果的に高めることができる。
[効果]
 以上のように本実施の形態では、複数のカウント値のうちの1以上のカウント値に基づいて、複数のカウント値のそれぞれを所定の値だけ減算する減算処理を行うようにしたので、信号量を確保することができるので、検出精度を高めることができる。
[変形例1-1]
 上記実施の形態では、図4A,4Bに示したように、受光部31が、1つのフォトダイオードPDを有するようにしたが、これに限定されるものではない。これに代えて、例えば、図12A,12Bに示すように、受光部31が、複数のフォトダイオードPD(この例では4つのフォトダイオードPD1~PD4)を有してもよい。フォトダイオードPD1~PD4は互いに並列に接続され、フォトダイオードPD1~PD4のアノードには電源電圧VSSが供給され、カソードはノードN1に接続される。これにより、受光部31では、例えば受光感度を高めることができる。
[変形例1-2]
 上記実施の形態では、図3に示したように、光検出ユニットUが、1つの受光部31を有するようにしたが、これに限定されるものではなく、これに代えて、例えば、図13に示すように、複数の受光部31を有するようにしてもよい。この光検出ユニットUは、複数の受光部31(この例では4つの受光部31A~31D)と、論理和回路32とを有している。受光部31A~31Dは、パルス信号PLSA~PLSDをそれぞれ生成する。複数の受光部31のそれぞれは、例えば、図4Aに示した回路構成や、図4Bに示した回路構成を有している。なお、この例では4つの受光部31を設けたが、これに限定されるものではなく、例えば、3つ以下または5つ以上の受光部31を設けてもよい。論理和回路32は、パルス信号PLSA~PLSDの論理和を求めることにより、パルス信号PLSを生成するように構成される。ここで、論理和回路32は、本開示における「加算部」の一具体例に対応する。これにより、光検出ユニットUでは、例えば受光感度を高めることができる。
 また、図14に示すように、光検出ユニットUが、複数の受光部41(この例では4つの受光部41A~41D)と、否定論理積(NAND)回路42とを有するようにしてもよい。受光部41A~41Dは、パルス信号PLSA~PLSDをそれぞれ生成する。受光部41Aは、図15に示すように、フォトダイオードPDと、抵抗素子R1とを有している。すなわち、受光部41Aは、受光部31(図4A)からインバータIV1を省いたものである。受光部41B~41Dについても同様である。否定論理積回路42は、パルス信号PLSA~PLSDの否定論理積を求めることにより、パルス信号PLSを生成するように構成される。この場合でも、例えば受光感度を高めることができる。
[変形例1-3]
 上記実施の形態では、減算制御部37は、減算判定部36の判定結果に基づいて、カウンタ35A~35Dにおけるカウント値CNTA~CNTDのそれぞれを、所定の値だけ減算する減算処理を行うようにした。減算制御部37は、例えば、カウンタ35A~35Dにおける所定のカウントビットのビット値を変更することにより、減算処理を行ってもよい。具体的には、例えば、図16に示すように、減算制御部37は、カウンタ35A~35Dにおける最上位ビット(MSB;Most Significant Bit)のビット値を、“1”から“0”に変更することにより、減算処理を行うことができる。これにより、減算制御部37の回路構成をシンプルにすることができ、回路規模を小さくすることができる。なお、この例では、最上位ビットのビット値を変更したが、これに限定されるものではなく、他のビットのビット値を変更してもよいし、複数のビットのビット値を変更してもよい。
[変形例1-4]
 上記実施の形態では、減算判定部36は、カウント値CNTA~CNTDのいずれもがしきい値THAに到達したかどうかを判定したが、これに限定されるものではない。以下に、本変形例について、いくつか例に挙げて詳細に説明する。
 図17は、本変形例に係る光検出ユニットUの一構成例を表すものである。この光検出ユニットUは、減算判定部46を有している。減算判定部46は、4つのカウンタ35A~35Dのうちの所定のカウンタ35のカウント値CNT(この例ではカウンタ35Dのカウント値CNTD)がしきい値THAに到達したかどうかを判定することにより、制御信号CTLを生成するように構成される。
 図18は、減算判定部46の一構成例を表すものである。減算判定部46は、比較回路CP1Dを有している。比較回路CP1Dは、カウント値CNTDがしきい値THAより大きいかどうかを判定することにより、制御信号CTLを生成するように構成される。
 図19は、本変形例に係る光検出ユニットUの、露光期間P1における一動作例を表すものであり、(A)は発光部11から射出された光の波形を示し、(B)は検出対象物OBJにより反射され、光検出ユニットUに入射した光の波形を示し、(C)~(F)はクロック信号CLKA~CLKDの波形をそれぞれ示す。
 タイミングt21~t22の期間において、発光部11は光を射出する(図19(A))。信号生成部22は、タイミングt22~t23の期間においてクロック信号CLKAを高レベルにし、タイミングt23~t24の期間においてクロック信号CLKBを高レベルにし、タイミングt24~t25の期間においてクロック信号CLKCを高レベルにする(図19(C)~(E))。この例では、反射光パルスL1のタイミングはある程度予想されており、信号生成部22は、この反射光パルスL1が生じる期間を含むタイミングt22~t25において、クロック信号CLKA~CLKCを順次高レベルにする。また、信号生成部22は、このタイミングt22~t25の期間から離れたタイミングt26~t27の期間においてクロック信号CLKDを高レベルにする(図19(F))。すなわち、この例では、このタイミングt26~t27の期間では、光検出ユニットUは反射光パルスL1を検出しないので、環境光を検出することが期待される。よって、カウント値CNTDは、反射光成分C1を含まず、環境光成分C2を含む。
 光検出ユニットUでは、減算判定部46は、カウンタ35Dのカウント値CNTDがしきい値THAに到達したかどうかを判定し、カウント値CNTDがしきい値THAに到達した場合には、減算制御部37は、カウンタ35A~35Dにおけるカウント値CNTA~CNTDのそれぞれを、所定の値だけ減算する。
 これにより、本変形例に係る光検出ユニットUでは、回路構成をシンプルにすることができ、回路規模を小さくすることができる。本変形例は、特に、論理積回路33、スイッチ34、およびカウンタ35を含む回路の数が多い場合に効果的である。例えば、16個のカウンタ35を有する場合には、その16個のカウンタ35のうちの1つのカウンタ35のカウント値CNTに基づいて減算処理を行うかどうかを判定することができ、15個のカウンタ35のカウント値CNTに基づいて、距離画像を生成することができる。
 図20は、本変形例に係る他の光検出ユニットUの一構成例を表すものである。この光検出ユニットUは、減算判定部56を有している。減算判定部56は、4つのカウンタ35A~35Dのうちの所定の2つのカウンタ35のカウント値CNT(この例ではカウンタ35C,35Dのカウント値CNTC,CNTD)のいずれもがしきい値THAに到達したかどうかを判定することにより、制御信号CTLを生成するように構成される。
 図21は、減算判定部56の一構成例を表すものである。減算判定部56は、比較回路CP1C,CP1Dと、論理積回路AND2とを有している。比較回路CP1Cは、カウント値CNTCがしきい値THAより大きいかどうかを判定するように構成される。比較回路CP1Dは、カウント値CNTDがしきい値THAより大きいかどうかを判定するように構成される。論理積回路AND2は、比較回路CP1C,CP1Dの出力信号の論理積を求めることにより、制御信号CTLを生成するように構成される。この構成により、減算判定部56は、カウント値CNTC,CNTDのうちのいずれもがしきい値THAに到達したかどうかを判定することができる。カウント値CNTC,CNTDは、図19の例と同様に、反射光成分C1を含まず、環境光成分C2を含む。本変形例は、図19の例と同様に、論理積回路33、スイッチ34、およびカウンタ35を含む回路の数が多い場合に効果的である。
 なお、これに限定されるものではなく、減算判定部56は、例えば、カウント値CNTC,CNTDの和がしきい値THAに到達するかどうかを判定することにより、制御信号CTLを生成してもよい。図22に、この場合における減算判定部56の一構成例を示す。この減算判定部56は、加算回路ADD1と、比較回路CP1とを有している。加算回路ADD1は、カウント値CNTCとカウント値CNTDとの和を求めるように構成される。比較回路CP1は、加算回路ADD1により算出された値がしきい値THAより大きいかどうかを判定することにより、制御信号CTLを生成するように構成される。この例では、減算判定部56は、カウント値CNTC,CNTDの和がしきい値THAに到達するかどうかを判定したが、これに代えて、例えば、カウント値CNTC,CNTDの平均値がしきい値THAに到達するかどうかを判定してもよい。
[変形例1-5]
 上記実施の形態では、カウント値CNTA~CNTDのいずれもがしきい値THAに到達した場合に、非同期で、減算処理を行うようにしたが、これに限定されるものではなく、これに代えて、例えば、制御信号に同期して、減算処理を行うようにしてもよい。以下に、本変形例について詳細に説明する。
 図23は、本変形例に係る光検出ユニットUの一構成例を表すものである。この光検出ユニットUは、減算判定部66と、飽和判定部68と、論理積回路69とを有している。
 減算判定部66は、論理積回路AND3を有している。論理積回路AND3は、カウント値CNTAを示す信号の最上位ビットのビット値、カウント値CNTBを示す信号の最上位ビットのビット値、カウント値CNTCを示す信号の最上位ビットのビット値、カウント値CNTDを示す信号の最上位ビットのビット値、および論理積回路69の出力信号の論理積を求めるように構成される。これにより、減算判定部66は、カウント値CNTA~カウント値CNTDのいずれもが、カウンタ35A~35Dのカウント範囲における中間値に到達したかどうかを判定するようになっている。
 飽和判定部68は、ラッチLTA~LTDと、論理和回路OR2とを有している。ラッチLTAは、カウント値CNTAを示す信号の全てのビットが“1”になった場合に出力信号を高レベルにするように構成される。同様に、ラッチLTBは、カウント値CNTBを示す信号の全てのビットが“1”になった場合に出力信号を高レベルにするように構成される。ラッチLTCは、カウント値CNTCを示す信号の全てのビットが“1”になった場合に出力信号を高レベルにするように構成される。ラッチLTDは、カウント値CNTDを示す信号の全てのビットが“1”になった場合に出力信号を高レベルにするように構成される。論理和回路OR2は、ラッチLTAの出力信号、ラッチLTBの出力信号、ラッチLTCの出力信号、およびラッチLTDの出力信号の論理和を求めることにより制御信号STPを生成するように構成される。これにより、飽和判定部68は、カウンタ35A~35Dのうちの1以上のカウンタ35がオーバーフロー状態になったかどうかを判定することにより、制御信号STPを生成するようになっている。
 論理積回路69は、制御信号STPの反転信号および制御信号REJENの論理積を求めるように構成される。この例では、制御信号REJENは、例えば信号生成部22により生成される。
 図24は、本変形例に係る光検出ユニットUの、露光期間P1における一動作例を表すものであり、(A)は発光部11から射出された光の波形を示し、(B)は検出対象物OBJにより反射され、光検出ユニットUに入射した光の波形を示し、(C)~(F)はクロック信号CLKA~CLKDの波形をそれぞれ示し、(G)は制御信号REJENの波形を示す。タイミングt31~t32の期間において、発光部11は光を射出する(図24(A))。信号生成部22は、タイミングt32~t33の期間においてクロック信号CLKAを高レベルにし、タイミングt33~t34の期間においてクロック信号CLKBを高レベルにし、タイミングt34~t35の期間においてクロック信号CLKCを高レベルにし、タイミングt35~t36の期間においてクロック信号CLKDを高レベルにする(図24(C)~(F))。また、信号生成部22は、このタイミングt32~t36の期間とは異なるタイミングt37~t38の期間において制御信号REJENを高レベルにする(図24(G))。
 図25は、本変形例に係る光検出ユニットUの、より具体的な一動作例を表すものであり、(A)は発光部11から射出された光の波形を示し、(B)は検出対象物OBJにより反射され、光検出ユニットUに入射した光の波形を示し、(C)~(F)はクロック信号CLKA~CLKDの波形をそれぞれ示し、(G)は制御信号REJENの波形を示し、(H)~(K)はカウント値CNTA~CNTDをそれぞれ示し、(L)は制御信号CTLの波形を示し、(M)は制御信号STPの波形を示す。この例では、説明の便宜上、カウンタ35A~35Dは、4ビットのカウンタであり、しきい値THAは“8”であり、しきい値THBは“15”である。
 タイミングt41~t45の期間(露光期間P1)において、光検出システム1は、光パルスL0を繰り返し射出するとともに、検出対象物OBJにより反射された反射光パルスL1を繰り返し検出する。カウンタ35Aは、クロック信号CLKAが高レベルである期間において、カウント処理を行うことによりカウント値CNTAをインクリメントする(図25(C),(H))。同様に、カウンタ35Bは、クロック信号CLKBが高レベルである期間において、カウント処理を行うことによりカウント値CNTBをインクリメントし(図25(D),(I))、カウンタ35Cは、クロック信号CLKCが高レベルである期間において、カウント処理を行うことによりカウント値CNTCをインクリメントし(図25(E),(J))、カウンタ35Dは、クロック信号CLKDが高レベルである期間において、カウント処理を行うことによりカウント値CNTDをインクリメントする(図25(F),(K))。
 タイミングt42において、カウント値CNTAが“7”から“8”に変化する(図25(H))。カウント値CNTAは、カウント値CNTA~CNTDのうちの最小値であるので、このタイミングt42において、カウント値CNTA~CNTDの最小値がしきい値THA(この例では“8”)に到達する。そして、このタイミングt42より後に制御信号REJが高レベルになるタイミングt43において、減算判定部66は制御信号CTLを低レベルから高レベルに変化させ(図25(L))、減算制御部37は、カウンタ35A~35Dにおけるカウント値CNTA~CNTDのそれぞれを、所定の値(この例では“8”)だけ減算する(図25(H)~(K))。すなわち、光検出ユニットUは、制御信号REJENに同期して、このタイミングt43において、カウンタ35A~35Dにおけるカウント値CNTA~CNTDのそれぞれを、所定の値だけ減算する。この減算処理により、カウント値CNTA~CNTDが小さくなるので、減算判定部66は、このタイミングt43の直後のタイミングにおいて、制御信号CTLを高レベルから低レベルに変化させる(図25(L))。
 また、タイミングt44において、カウント値CNTBが“14”から“15”に変化する(図25(I))。すなわち、カウント値CNTBがしきい値THB(この例では“15”)に到達する。よって、飽和判定部68は、制御信号STPを低レベルから高レベルに変化させる(図25(M))。これにより、スイッチ34A~34Dは、カウンタ35A~35Dへのパルス信号PLSの供給を停止し、カウンタ35A~35Dはカウント処理を停止する。なお、これ以降は、制御信号STPは高レベルであるため、論理積回路69の出力信号が低レベルになるので、減算判定部66は、制御信号CTLを低レベルに維持する。
 このように、本変形例では、クロック信号CLKA~CLKDが高レベルになる期間とは異なる期間において、制御信号REJENが高レベルになるようにしたので、カウンタ35A~35Dは、制御信号REJENが高レベルである期間には、カウント処理を行わない。よって、減算制御部37は、カウンタ35A~35Dがカウント処理を行わない期間において、カウンタ35A~35Dにおけるカウント値CNTA~CNTDのそれぞれを、所定の値だけ減算することができる。その結果、カウント処理および減算処理が同時に行われることがないので、不具合が生じるおそれを低減することができる。
[変形例1-6]
 上記実施の形態に係る光検出部20は、1枚の半導体基板に形成してもよいし、複数の半導体基板に形成してもよい。以下に、いくつか例を挙げて、本変形例について詳細に説明する。
 図26は、光検出部20の一実装例を表すものである。光検出部20は、この例では、2枚の半導体基板101,102に形成される。半導体基板101は、光検出部20の受光面S側に配置され、半導体基板102は、光検出部20の受光面S側とは反対側に配置される。半導体基板101,102は互いに重ね合わされる。半導体基板101の配線と、半導体基板102の配線とは、配線103により接続される。配線103は、例えばCu-Cuやバンプなどの金属結合などを用いることができる。光検出ユニットUは、例えば、これらの2枚の半導体基板101,102にわたって配置される
 図27は、受光部31の一構成例を表すものである。この受光部31は、図4Aに示した受光部31と同じ回路構成を有する。この受光部31は、この例では、2枚の半導体基板101,102にわたって配置される。具体的には、フォトダイオードPDは半導体基板101に配置され、抵抗素子R1およびインバータIV1は半導体基板102に配置される。フォトダイオードPDのカソードは、配線103を介して、抵抗素子R1の他端およびインバータIV1の入力端子に接続される。ここで、インバータIV1は、本開示における「パルス生成回路」の一具体例に対応する。なお、この例では、図4Aに示した受光部31を有する光検出部20に対して本変形例を適用したが、同様に、図4Bに示した受光部31を有する光検出部20に対して本変形例を適用してもよい。
 論理積回路33A~33D、スイッチ34A~34D、カウンタ35A~35D、減算判定部36、減算制御部37、および飽和判定部38は、例えば、半導体基板102に配置される。
 図28は、光検出部20の他の一実装例を表すものである。光検出部20は、この例では、3枚の半導体基板111~113に形成される。半導体基板111は、光検出部20の受光面S側に配置され、半導体基板113は、光検出部20の受光面S側とは反対側に配置され、半導体基板112は、半導体基板111および半導体基板113の間に配置される。半導体基板111~113は互いに重ね合わされる。半導体基板111の配線と、半導体基板112の配線とは、配線114により接続される。半導体基板112の配線と、半導体基板113の配線とは、配線115により接続される。配線114,115は、例えばCu-Cuやバンプなどの金属結合などを用いることができる。光検出ユニットUは、例えば、これらの3枚の半導体基板111~113にわたって配置される。具体的には、例えば、フォトダイオードPDは半導体基板111に配置され、抵抗素子R1およびインバータIV1は半導体基板112に配置され、減算判定部36、減算制御部37、および飽和判定部38は、半導体基板113に配置される。
[変形例1-7]
 上記実施の形態では、光検出システム1は、測距動作のみを行うようにしたが、これに限定されるものではなく、これに代えて、例えば、測距動作および撮像動作を行うことが出来るようにしてもよい。以下に、本変形例について詳細に説明する。
 図29は、本変形例に係る光検出システム1Aの一構成例を表すものである。光検出システム1Aは、イメージセンサとして動作することができるとともに、TOFセンサとしても動作することができるように構成される。光検出システム1Aは、光検出部80と、制御部74とを備えている。
 光検出部80は、制御部74からの指示に基づいて、光を検出するように構成される。そして、光検出部20は、検出結果に基づく画像データをデータDTとして出力するようになっている。
 制御部74は、発光部11および光検出部80に制御信号を供給し、これらの動作を制御することにより、光検出システム1Aの動作を制御するように構成される。制御部74は、モード設定部75を有している。モード設定部75は、光検出システム1Aの動作モードMを設定するように構成される。光検出システム1Aは、撮像モードMAおよび測距モードMBで動作することができる。撮像モードMAは、被写体からの光L10に基づいて、被写体の画像を撮像するモードである。測距モードMBは、光パルスL0を射出するとともに、検出対象物OBJにより反射された反射光パルスL1を検出することにより、光パルスL0を射出したタイミングおよび反射光パルスL1を検出したタイミングの間の時間差を計測するモードである。モード設定部75は、撮像モードMAおよび測距モードMBのうちの一方を、動作モードMとして設定する。そして、制御部74は、設定された動作モードMに応じて、光検出システム1Aの動作を制御するようになっている。
 図30は、光検出部80の一構成例を表すものである。光検出部80は、光検出アレイ81と、信号生成部82と、信号処理部84と、光検出制御部85とを有している。
 光検出アレイ81は、マトリックス状に配置された複数の光検出ユニットUを有している。光検出ユニットUは、光を検出し、検出した回数をカウントするように構成される。
 図31は、光検出ユニットUの一構成例を表すものである。光検出ユニットUは、複数の受光部31(この例では4つの受光部31A~31D)と、論理和回路32と、複数のセレクタ93(この例では4つのセレクタ93A~93D)とを有している。
 受光部31A~31Dは、パルス信号PLSA~PLSDをそれぞれ生成する。受光部31A~31Dのそれぞれは、例えば、図4Aに示した回路構成や、図4Bに示した回路構成を有している。論理和回路32は、パルス信号PLSA~PLSDの論理和を求めることにより、パルス信号PLSを生成するように構成される。
 セレクタ93Aは、モード制御信号SMODEに基づいて、パルス信号PLSAおよびパルス信号PLSのうちの一方を選択し、選択したパルス信号をスイッチ34Aに供給するように構成される。モード制御信号SMODEは、この例では、動作モードMが撮像モードMAである場合には低レベル“0”であり、動作モードMが測距モードMBである場合には高レベル“1”である。これにより、セレクタ93Aは、動作モードMが撮像モードMAである場合にはパルス信号PLSAを選択し、動作モードMが測距モードMBである場合にはパルス信号PLSを選択する。そして、セレクタ93Aは、選択したパルス信号をスイッチ34Aに供給するようになっている。
 同様に、セレクタ93Bは、モード制御信号SMODEに基づいて、パルス信号PLSBおよびパルス信号PLSのうちの一方を選択し、選択したパルス信号をスイッチ34Bに供給するように構成される。セレクタ93Cは、モード制御信号SMODEに基づいて、パルス信号PLSCおよびパルス信号PLSのうちの一方を選択し、選択したパルス信号をスイッチ34Cに供給するように構成される。セレクタ93Dは、モード制御信号SMODEに基づいて、パルス信号PLSDおよびパルス信号PLSのうちの一方を選択し、選択したパルス信号をスイッチ34Aに供給するように構成される。
 動作モードMが撮像モードMAである場合には、クロック信号CLKA~CLKDは、同じタイミングで立ち上がり、同じタイミングで立ち下がる。これにより、スイッチ34A~34Dは、クロック信号CLKA~CLKDが高レベルである期間において、パルス信号PLSA~PLSDをカウンタ35A~35Dにそれぞれ供給する。また、動作モードMが測距モードMBである場合には、クロック信号CLKA~CLKDは、図7に示したように、4相のクロック信号である。スイッチ34A~34Dは、クロック信号CLKA~CLKDに基づいて、パルス信号PLSを時分割的に4つのカウンタ35A~35Dに分配するようになっている。
 信号生成部82(図30)は、光検出制御部85からの指示に基づいてクロック信号CLKA~CLKDおよびモード制御信号SMODEを生成し、このクロック信号CLKA~CLKDおよびモード制御信号SMODEを光検出アレイ81における複数の光検出ユニットUに供給するように構成される。
 信号処理部84は、光検出制御部85からの指示に基づいて、所定の信号処理を行うように構成される。具体的には、信号処理部84は、動作モードMが撮像モードMAである場合には、光検出アレイ81における複数の光検出ユニットUのそれぞれから供給されたカウント値CNTA~CNTDに基づいて、所定の画像処理を行うことにより撮像画像の画像データを生成する。また、信号処理部84は、動作モードMが測距モードMBである場合には、光検出アレイ81における複数の光検出ユニットUのそれぞれから供給されたカウント値CNTA~CNTDに基づいて、発光部11が光パルスL0を射出してから、光検出ユニットUが反射光パルスL1を検出するまでの時間を計測することにより、距離画像の画像データを生成する。そして、信号処理部84は、生成した画像データを、データDTとして出力するようになっている。
 光検出制御部85は、制御部74(図29)からの指示に基づいて、信号生成部82、読出制御部23、および信号処理部84に制御信号を供給し、これらの動作を制御することにより、光検出部80の動作を制御するように構成される。
[その他の変形例]
 これらの変形例のうちの2以上を組み合わせてもよい。
<2.第2の実施の形態>
 次に、第2の実施の形態に係る光検出システム2について説明する。本実施の形態は、カウンタ35A~35Dのカウント値CNTA~CNTDを減算する減算処理を行った回数をカウントするカウンタを設けるように構成される。なお、上記第1の実施の形態に係る光検出システム1と実質的に同一の構成部分には同一の符号を付し、適宜説明を省略する。
 本実施の形態に係る光検出システム2は、上記第1の実施の形態に係る光検出システム1(図1)と同様に、光検出部120を備えている。
 図32は、光検出部120の一構成例を表すものである。光検出部120は、光検出アレイ121と、読出制御部123と、信号処理部124とを有している。
 図33は、光検出アレイ121における光検出ユニットUの一構成例を表すものである。光検出ユニットUは、カウンタ131を有している。カウンタ131は、減算判定部36が生成した制御信号CTLに基づいて、減算制御部37がカウント値CNTA~CNTDのそれぞれを所定の値だけ減算する減算処理を行った回数をカウントするように構成される。そして、カウンタ131は、その減算処理を行った回数を、カウント値CNTNとして出力するようになっている。
 読出制御部123(図32)は、光検出制御部25からの指示に基づいて、光検出アレイ121における複数の光検出ユニットUのそれぞれにおいて生成されたカウント値CNTA~CNTD,CNTNを信号処理部124に供給する動作を制御するように構成される。
 信号処理部124は、光検出制御部25からの指示に基づいて、距離画像を生成するように構成される。具体的には、信号処理部124は、光検出アレイ21における複数の光検出ユニットUのそれぞれから供給されたカウント値CNTA~CNTDに基づいて、発光部11が光パルスL0を射出してから、光検出ユニットUが反射光パルスL1を検出するまでの時間(TOF値)を計測することにより、距離画像を生成するようになっている。
 信号処理部124は、測距補正部126を有している。測距補正部126は、カウント値CNTNに基づいて、TOF値を補正するように構成される。具体的には、測距補正部126は、まず、カウント値CNTNに基づいて、光検出ユニットUにおける環境光成分C2の全カウント値を算出し、その環境項成分C2の全カウント値を用いて、TOF値を補正するようになっている。
 図34は、カウント値CNTA~CNTDの一例を表すものである。部分W1は、光検出ユニットUから供給されたカウント値CNTA~CNTDを示す。部分W2は、カウント値CNTNが示す回数分の減算処理により除去された成分を示す。部分W1のカウント値は、しきい値THBにより表すことができる。部分W2に示した、除去された成分のカウント値は、しきい値THAとカウント値CNTNの積により表すことができる。環境光成分C2の全カウント値は、部分W1に示した、光検出ユニットUから供給されたカウント値CNTA~CNTDの最小値と、部分W2に示した、除去された成分のカウント値(しきい値THAとカウント値CNTNの積)との和で表すことができる。
 測距補正部126は、この環境光成分C2の全カウント値に基づいて、TOF値を補正する。すなわち、光検出ユニットUでは、受光部31は、光を検出してからしばらくの間、次の光を検出することができない。このようなデッドタイムに起因して、TOF値は、実際の値に比べて小さい値にずれてしまう。
 図35は、環境光がない場合における、デッドタイムに起因するTOF値のずれの一例を表すものであり、(A)はカウント値CNTの分布を示し、(B)は受光部31における受光確率を示す。横軸は、発光部11が光パルスL0を射出したタイミングを基準とした経過時間を示す。図35(A)において、特性W11は、本来得られるべきカウント値CNTの分布を示し、特性W12は、実際に得られたカウント値CNTの分布を示す。
 受光部31は、光を検出してからしばらくの間、次の光を検出することができない。よって、受光部31の受光確率は、図35(B)に示したようになる。すなわち、経過時間が短い場合には、特性W11に示したように、反射光が受光部31に入射する確率が低いので、受光確率は高い。特性W11に示したように、時間が経過すると、反射光が受光部31に入射する確率が高くなっていく。上述したように、受光部31が反射光を受光すると、上述したデッドタイムの期間では光を検出することができなくなる。その結果、時間が経過し、反射光が受光部31に入射する確率が高くなるほど、受光確率が低下していく。このように、受光部11は、図35(B)に示した受光確率で、反射光を受光する。
 本来得られるべきカウント値CNTの分布が特性W11のような分布である場合において、時間が経過することによりこのように受光確率が低下していくと、実際のカウント値CNTの分布は特性W12のようになり、カウント値CNTの分布のピークに対応する時間がずれる。すなわち、特性W12により得られるTOF値(TOF2)は、特性W11により得られるTOF値(TOF1)よりも小さくなってしまう。このようにして、受光部31のデッドタイムに起因して、TOF値はずれ得る。
 以上では、環境光がない場合について説明したが、環境光がある場合には、受光部11は、図35(B)に示した受光確率で、反射光および環境光の両方を受光する。よって、環境光がない場合に比べ、反射光の受光確率が低下する。このように、反射光の受光確率が変化するので、TOF値のずれもまた変化し得る。
 よって、測距補正部126は、環境光成分C2の全カウント値に基づいて、例えば、図35において、TOF値をTOF1からTOF2に補正する。具体的には、測距補正部126は、例えば環境光成分C2の全カウント値と補正量との関係を示すルックアップテーブルを用いて、環境光成分C2の全カウント値に基づいて、TOF値を補正することができる。
 ここで、カウンタ131は、本開示における「第2のカウンタ」の一具体例に対応する。測距補正部124は、本開示における「第2の処理部」の一具体例に対応する。
 このように、光検出システム2では、カウンタ35A~35Dのカウント値CNTA~CNTDに基づいてTOF値を算出し、カウンタ131のカウント値CNTNに基づいてこのTOF値を補正するようにしたので、時間(TOF値)や距離の検出精度を高めることができる。
 以上のように本実施の形態では、カウント値CNTA~CNTDに基づいてTOF値を算出し、カウント値CNTNに基づいてこのTOF値を補正するようにしたので、検出精度を高めることができる。
[変形例2-1]
 上記実施の形態において、光検出システム2は、距離画像を生成したが、これに限定されるものではなく、これに代えて、例えば、距離画像に加え、さらに受光量を示す画像(受光量画像)を生成してもよい。以下に、本変形例について詳細に説明する。
 本変形例に係る光検出システム2Aは、上記実施の形態に係る光検出システム2と同様に、光検出部140を備えている。
 図36は、光検出部140の一構成例を表すものである。光検出部140は、光検出アレイ141と、信号生成部142と、読出制御部143と、信号処理部144とを有している。
 図37は、光検出アレイ141における光検出ユニットUの一構成例を表すものである。光検出ユニットUは、カウンタ151を有している。カウンタ151は、飽和判定部38が生成した制御信号STPに基づいて、クロック信号CLKのパルスをカウントすることにより、露光期間P1が開始してから、カウント値CNTA~CNTDのうちの1以上のカウント値がしきい値THBに到達するまでの時間をカウントするように構成される。具体的には、カウンタ151は、露光期間P1において生成されるクロック信号CLKに基づいてカウント処理を行い、制御信号STPに基づいて、そのカウント処理を停止することにより、露光期間P1が開始してから、カウント値CNTA~CNTDのうちの1以上のカウント値がしきい値THBに到達するまでの時間をカウントすることができる。そして、カウンタ151は、カウント処理の結果を、カウント値CNTMとして出力するようになっている。
 信号生成部142は、光検出制御部25からの指示に基づいてクロック信号CLKA~CLKD,CLKおよびしきい値THA,THBを生成し、生成したクロック信号CLKA~CLKD,CLKおよびしきい値THA,THBを光検出アレイ141における複数の光検出ユニットUに供給するように構成される。
 読出制御部143は、光検出制御部25からの指示に基づいて、光検出アレイ141における複数の光検出ユニットUのそれぞれにおいて生成されたカウント値CNTA~CNTD,CNTN、CNTMを信号処理部144に供給する動作を制御するように構成される。
 信号処理部144は、受光量画像生成部147を有している。受光量画像生成部147は、受光量画像を生成するように構成される。具体的には、受光量画像生成部147は、まず、以下の式を用いて、カウント値Nsatを算出する。
Nsat = THA×CNTN + THB
Nsatは、図34に示したように、光検出ユニットUにおける、カウント値CNTA~CNTDのうちの最大のカウント値CNT(図34の例ではカウント値CNTC)の全カウント値である。このカウント値Nsatは、露光期間P1が開始してから、カウント値CNTA~CNTDのうちの1以上のカウント値がしきい値THBに到達し、カウント処理が停止するまでに得られた全カウント値である。
 そして、受光量画像生成部147は、次の式を用いて、光検出ユニットUにおける明るさ値を示すカウント値Nexpを算出する。
Nexp = Nsat×Texp/Tsat
ここで、Texpは、露光期間P1の時間長であり、Tsatは、露光期間P1が開始してから、カウント値CNTA~CNTDのうちの1以上のカウント値がしきい値THBに到達し、カウント処理が停止するまでの期間(カウント期間)の時間長である。受光量画像生成部147は、この式を用いて、図38に示したように、カウント期間の時間長である時間Tsatにおいて得られたカウント値Nsatを、露光期間P1の時間長である時間Texpにおいて得られるであろうカウント値Nexpに換算する。すなわち、複数の光検出ユニットUのそれぞれでは、個別にカウント処理は停止されるので、カウント処理が停止するタイミングは、光検出ユニットUによって異なり得る。よって、カウント値Nsatが得られた期間の時間長(時間Tsat)は、光検出ユニットUによって異なり得る。そこで、受光量画像生成部147は、時間Tsatにおいて得られたカウント値Nsatを、露光期間P1の時間長である時間Texpにおいて得られるであろうカウント値Nexpに換算する。これにより、 そして、受光量画像生成部147は、複数の光検出ユニットUにおけるこのカウント値Nexpに基づいて、受光量画像を生成することができる。
 ここで、カウンタ151は、本開示における「第3のカウンタ」の一具体例に対応する。受光量画像生成部147は、本開示における「第3の処理部」の一具体例に対応する。
 なお、この例では、カウント値CNTA~CNTDのうちの最大のカウント値CNT(図34の例ではカウント値CNTC)の全カウント値であるカウント値Nsatをカウント値Nexpに換算することにより、受光量画像を生成したが、これに限定されるものではない。例えば、4つのカウント値CNTA~CNTDの全カウント値の合計値をカウント値Nexpに換算することにより、受光量画像を生成してもよい。また、4つのカウント値CNTA~CNTDのうちの最小のカウント値CNT(図34の例では例えばカウント値CNTA)の全カウント値を、カウント値Nexpに換算することにより、受光量画像を生成してもよい。信号処理部144は、全ての光検出ユニットUから供給されたカウント値CNTA~CNTD,CNTN,CNTMについての情報を有しているので、受光量画像生成部147は、これらの情報に基づいて、このような様々な方法で、受光量画像を生成することができる。
 また、この例では、カウンタ151は、露光期間P1が開始してから、カウント値CNTA~CNTDのうちの1以上のカウント値がしきい値THBに到達するまでの時間をカウントしたが、これに限定されるものではない。これに代えて、例えば、カウンタ151は、カウント値CNTA~CNTDのうちの1以上のカウント値がしきい値THBに到達してから、露光期間P1が終了するまでの時間をカウントしてもよい。この場合には、受光量画像生成部147は、カウンタ151のカウント処理の結果(カウント値CNTM)を、露光期間P1が開始してから、カウント値CNTA~CNTDのうちの1以上のカウント値がしきい値THBに到達するまでの時間に換算し、その換算結果に基づいてカウント値Nexpを算出することができる。
 また、例えば、図39に示したように、飽和判定部38が生成した制御信号STPに基づいて、例えば時刻コードCODEをラッチするラッチ161を設けてもよい。時刻コードCODEは、例えば信号生成部142により生成される。これにより、ラッチ161は、カウント値CNTA~CNTDのうちの1以上のカウント値がしきい値THBに到達したタイミングで、時刻コードTCODEをラッチすることによりコードCODEを生成する。この場合には、受光量画像生成部147は、例えば、露光期間P1が開始したタイミングと、このコードCODEが示すタイミングとに基づいて、露光期間P1が開始してから、カウント値CNTA~CNTDのうちの1以上のカウント値がしきい値THBに到達するまでの時間を得ることができ、この時間に基づいて、カウント値Nexpを算出することができる。ここで、ラッチ161は、本開示における「ラッチ回路」の一具体例に対応する。
[変形例2-2]
 上記実施の形態では、本技術をTOFセンサに適用したが、これに限定されるものではなく、これに代えて、例えば、イメージセンサに適用してもよい。
 図40は、本変形例に係る光検出部170の一構成例を表すものである。光検出部170は、光検出アレイ171と、信号生成部172と、読出制御部143と、信号処理部174とを有している。
 図41は、光検出アレイ171における光検出ユニットUの一構成例を表すものである。光検出ユニットUは、受光部31A~31Dと、インバータ133と、カウンタ151とを有している。受光部31A~31Dは、パルス信号PLSA~PLSDをそれぞれ生成する。インバータ133は、制御信号STPを反転し、反転された信号をスイッチ34A~34Dに供給するように構成される。これにより、スイッチ34A~34Dは、制御信号STPが低レベルである場合に、パルス信号PLSA~PLSDをカウンタ35A~35Dにそれぞれ供給し、制御信号STPが高レベルである場合に、パルス信号PLSA~PLSDのカウンタ35A~35Dへの供給を停止するようになっている。カウンタ151は、飽和判定部38が生成した制御信号STPに基づいて、クロック信号CLKのパルスをカウントすることにより、露光期間P1が開始してから、カウント値CNTA~CNTDのうちの1以上のカウント値がしきい値THBに到達するまでの時間をカウントするように構成される。そして、カウンタ151は、クロック信号CLKのパルスのカウント結果を、カウント値CNTMとして出力するようになっている。なお、この例では、受光部31、スイッチ34、およびカウンタ35を含む回路を4つ設けたが、これに限定されるものではなく、例えば、受光部31、スイッチ34、およびカウンタ35を含む回路を2つ以上設けることができる。
 信号生成部172(図40)は、光検出制御部25からの指示に基づいてクロック信号CLKおよびしきい値THA,THBを生成し、生成したクロック信号CLKおよびしきい値THA,THBを光検出アレイ171における複数の光検出ユニットUに供給するように構成される。
 読出制御部143は、光検出制御部25からの指示に基づいて、光検出アレイ171における複数の光検出ユニットUのそれぞれにおいて生成されたカウント値CNTA~CNTD,CNTN、CNTMを信号処理部174に供給する動作を制御するように構成される。
 信号処理部174は、光検出制御部25からの指示に基づいて、撮像画像を生成するように構成される。具体的には、信号処理部174は、光検出ユニットUから供給されたカウント値CNTAおよびカウント値CNTNに基づいて、露光期間P1が開始してから、カウント値CNTA~CNTDのうちの1以上のカウント値がしきい値THBに到達しカウント処理が停止するまでに得られた、カウント値CNTAの全カウント値を算出する。そして、信号処理部174は、受光量画像生成部147と同様に、このカウント値CNTAの全カウント値を、露光期間P1の時間長である時間Texpにおいて得られるであろうカウント値に換算する。カウント値CNTB~CNTDについても同様である。信号処理部174は、このようにして、撮像画像を生成することができる。
[その他の変形例]
 上記実施の形態に係る光検出システム2に、上記第1の実施の形態の各変形例を適用してもよい。
<3.第3の実施の形態>
 次に、第3の実施の形態に係る光検出システム3について説明する。本実施の形態は、しきい値THA,THBを変更可能に構成される。なお、上記第1の実施の形態に係る光検出システム1と実質的に同一の構成部分には同一の符号を付し、適宜説明を省略する。
 本実施の形態に係る光検出システム3は、上記第1の実施の形態に係る光検出システム1(図1)と同様に、光検出部220を備えている。
 図42は、光検出部220の一構成例を表すものである。光検出部220は、光検出アレイ221と、信号生成部222とを有している。
 図43は、光検出アレイ221における光検出ユニットUの一構成例を表すものである。光検出ユニットUは、判定部236と、しきい値設定部239とを有している。
 判定部236は、カウント値CNTA~CNTDのいずれもがしきい値THAに到達したかどうかを判定するように構成される。言い換えれば、判定部236は、カウント値CNTA~CNTDの最小値がしきい値THAに到達したかどうかを判定するようになっている。判定部236の回路構成は、例えば、減算判定部36(図6)の回路構成と同じにすることができる。
 しきい値設定部239は、判定部236の判定結果に基づいて、しきい値THA,THBを設定するように構成される。そして、しきい値設定部231は、設定したしきい値THAを判定部236に供給するとともに、設定したしきい値THBを飽和判定部38に供給するようになっている。
 信号生成部222(図42)は、光検出制御部25からの指示に基づいてクロック信号CLKA~CLKDを生成し、生成したクロック信号CLKA~CLKDを光検出アレイ221における複数の光検出ユニットUに供給するように構成される。
 ここで、判定部236およびしきい値設定部239は、本開示における「しきい値設定部」の一具体例に対応する。飽和判定部38および論理積回路33A~33Dは、本開示における「停止処理部」の一具体例に対応する。
 図44は、露光期間P1におけるカウント値CNTA~CNTDの変化の一例を表すものである。
 露光期間P1が開始すると、カウント値CNTA~CNTDは、時間の経過に応じて、徐々に大きくなっていく。図44(A)に示したタイミングでは、カウント値CNTA~CNTDにおける環境光成分C2は、しきい値THAより小さい。
 その後、図44(B)に示したタイミングにおいて、カウント値CNTA~CNTDにおける環境光成分C2がしきい値THAに到達する。判定部236は、カウント値CNTA~CNTDのいずれもがしきい値THAに到達したと判定する。言い換えれば、判定部236は、カウント値CNTA~CNTDの最小値がしきい値THAに到達したと判定する。これにより、しきい値設定部239は、例えばしきい値THAに所定の値を加算することにより、しきい値THAをより高い値に設定し、例えばしきい値THBに所定の値を加算することにより、しきい値THBをより高い値に設定する(図44(C))。
 その後も、カウント値CNTA~CNTDは、時間の経過に応じて、徐々に大きくなっていく。
 そして、図44(D)に示したタイミングにおいて、カウント値CNTCがしきい値THBに到達する。飽和判定部38は、カウント値CNTA~CNTDのうちの1以上のカウント値がしきい値THBに到達したと判定し、制御信号STPを低レベルから高レベルに変化させる。論理積回路33A~33Dは、この制御信号STPに基づいて、出力信号を低レベルにする。これにより、スイッチ34A~34Dは、カウンタ35A~35Dへのパルス信号PLSの供給を停止し、カウンタ35A~35Dは、カウント処理を停止する。
 図45は、光検出部220の一動作例を表すものである。
 まず、光検出部220では、光検出制御部25は、露光期間P1を開始させる(ステップS201)。露光期間P1では、信号生成部22は、光検出制御部25からの指示に基づいて、クロック信号CLKA~CLKDを生成する。
 次に、光検出制御部25は、所定の時間長を有する露光期間P1が終了したかどうかを確認する(ステップS202)。露光期間P1が終了した場合(ステップS202において“Y”)には、処理はステップS207に進む。
 露光期間P1がまだ終了していない場合(ステップS202において“N”)には、飽和判定部38は、4つのカウント値CNT(カウント値CNTA~CNTD)のうちの1以上のカウント値CNTがしきい値THBに到達しているかどうかを判定する(ステップS203)。1以上のカウント値CNTがしきい値THBに到達している場合(ステップS203において“Y”)には、処理はステップS206に進む。
 ステップS203において、どのカウント値CNTもしきい値THBに到達していない場合(ステップS203において“N”)には、判定部236は、4つのカウント値CNT(カウント値CNTA~CNTD)のいずれもがしきい値THAに到達しているかどうかを判定する(ステップS204)。全てのカウント値CNTがしきい値THAに到達していない場合(ステップS204において“N”)には、処理はステップS202に戻る。
 ステップS204において、4つのカウント値CNTのいずれもがしきい値THAに到達した場合(ステップS204において“Y”)には、しきい値設定部239は、例えばしきい値THAに所定の値を加算することにより、しきい値THAをより高い値に設定し、例えばしきい値THBに所定の値を加算することにより、しきい値THBをより高い値に設定する(ステップS205)。すなわち、図44の例では、図44(B),(C)に示したように、4つのカウント値CNTのいずれもがしきい値THAに到達したので、しきい値設定部239は、しきい値THA,THBをより高い値にそれぞれ設定する。そして、処理はステップS202に戻る。
 ステップS203において、1以上のカウント値CNTがしきい値THBに到達した場合(ステップS203において“Y”)には、カウンタ35A~35Dは、カウント処理を停止する(ステップS206)。すなわち、図44の例では、図44(D)に示したように、4つのカウント値CNTのうちの1以上のカウント値CNTがしきい値THBに到達したので、飽和判定部38は、制御信号STPを低レベルから高レベルに変化させる。論理積回路33A~33Dは、この制御信号STPに基づいて、出力信号を低レベルにする。これにより、スイッチ34A~34Dは、カウンタ35A~35Dへのパルス信号PLSの供給を停止し、カウンタ35A~35Dは、カウント処理を停止する。
 複数の光検出ユニットUは、このような動作を、それぞれ個別に行う。
 そして、光検出部220は、読出処理を行う(ステップS207)。具体的には、読出制御部23は、複数の光検出ユニットUのそれぞれにおいて生成されたカウント値CNTA~CNTDを信号処理部24に供給するように、複数の光検出ユニットUの動作を制御する。
 以上で、この処理は終了する。そして、信号処理部24は、複数の光検出ユニットUのそれぞれから供給されたカウント値CNTA~CNTDに基づいて、距離画像を生成する。
 このように、光検出システム3では、判定部236およびしきい値設定部239は、複数のカウント値CNTのうちの1以上のカウント値に基づいて、しきい値THBを増加させるように変更するようにした。特に、この例では、判定部236およびしきい値設定部239は、複数のカウント値CNTのいずれもがしきい値THAに到達した場合に、しきい値THBを増加させるように変更するようにした。言い換えれば、判定部236およびしきい値設定部239は、複数のカウント値CNTのうちの最小値がしきい値THAに到達した場合に、しきい値THBを増加させるように変更するようにした。これにより、図44(D)に示したように、環境光が多い場合において、反射光成分C1の信号量を確保することができる。その結果、光検出システム1では、時間(TOF値)や距離の検出精度を高めることができる。また、環境光が少ない場合では、例えば、しきい値THBは変更されないので、より短い時間でカウント処理を停止させることができる。これにより、例えば、消費電力を低減することができるとともに、測距時間を短くすることができる。
 また、光検出システム3では、複数の光検出ユニットUのそれぞれにおいて、判定部236およびしきい値設定部239は、しきい値THBを増加させるように変更するようにした。これにより、複数の光検出ユニットUのそれぞれにおける環境光の光量に応じて、適応的に、しきい値THBを設定することができる。その結果、光検出システム3では、複数の光検出ユニットUのそれぞれにおいて、時間(TOF値)や距離の検出精度を効果的に高めることができる。
 以上のように本実施の形態では、複数のカウント値のうちの1以上のカウント値に基づいて、しきい値THBを増加させるように変更するようにしたので、信号量を確保することができるので、検出精度を高めることができる。
[変形例3]
 上記実施の形態では、判定部236は、カウント値CNTA~CNTDのいずれもがしきい値THAに到達したかどうかを判定したが、これに限定されるものではなく、例えば、第1の実施の形態の変形例1-4と同様に、複数のカウンタ35のうちの所定のカウンタ35のカウント値CNTがしきい値THAに到達したかどうかを判定してもよいし、複数のカウンタ35のうちの所定の2つのカウンタ35のカウント値CNTのいずれもがしきい値THAに到達したかどうかを判定してもよい。また、これらの2つのカウンタ35のカウント値の和がしきい値THAに到達するかどうかを判定してもよいし、これらの2つのカウンタ35のカウント値の平均値がしきい値THAに到達するかどうかを判定してもよい。
[その他の変形例]
 上記実施の形態に係る光検出システム3に、上記第1の実施の形態の各変形例を適用してもよい。
<4.第4の実施の形態>
 次に、第4の実施の形態に係る光検出システム4について説明する。本実施の形態は、第1の実施の形態および第3の実施の形態の技術を組み合わせたものである。なお、上記第1の実施の形態に係る光検出システム1および第3の実施の形態に係る光検出システム3と実質的に同一の構成部分には同一の符号を付し、適宜説明を省略する。
 本実施の形態に係る光検出システム4は、上記第3の実施の形態に係る光検出システム3と同様に、光検出部320を備えている。光検出部320は、上記第3の実施の形態に係る光検出部220(図42)と同様に、光検出アレイ321と、信号生成部222とを有している。
 図46は、光検出アレイ321における光検出ユニットUの一構成例を表すものである。光検出ユニットUは、しきい値設定部339と、減算判定部336と、減算制御部37とを有している。
 しきい値設定部339は、判定部236の判定結果、およびしきい値THBに基づいて、しきい値THA,THBを設定するように構成される。具体的には、しきい値設定部339は、判定部236が、カウント値CNTA~CNTDのいずれもがしきい値THAに到達したと判定した場合において、しきい値THBが所定のしきい値THB0に到達していない場合に、しきい値THA,THBを設定し、設定したしきい値THAを判定部236に供給するとともに、設定したしきい値THBを飽和判定部38に供給するようになっている。
 減算判定部336は、判定部236の判定結果、およびしきい値THBに基づいて、減算処理を行うかどうかを判定するように構成される。具体的には、減算判定部336は、判定部236が、カウント値CNTA~CNTDのいずれもがしきい値THAに到達したと判定した場合において、しきい値THBが所定のしきい値THB0に到達している場合に、減算処理を行うと判定するようになっている。
 減算制御部37は、この減算判定部336の判定結果に基づいて、カウンタ35A~35Dにおけるカウント値CNTA~CNTDのそれぞれを、所定の値だけ減算するように構成される。
 信号生成部222は、光検出制御部25からの指示に基づいてクロック信号CLKA~CLKDを生成し、生成したクロック信号CLKA~CLKDを光検出アレイ321における複数の光検出ユニットUに供給するように構成される。
 ここで、判定部236、減算判定部336、および減算制御部37は、本開示における「減算処理部」の一具体例に対応する。判定部236およびしきい値設定部339は、本開示における「しきい値設定部」の一具体例に対応する。飽和判定部38および論理積回路33A~33Dは、本開示における「停止処理部」の一具体例に対応する。
 図47は、露光期間P1におけるカウント値CNTA~CNTDの変化の一例を表すものである。
 露光期間P1が開始すると、カウント値CNTA~CNTDは、時間の経過に応じて、徐々に大きくなっていく。図47(A)に示したタイミングでは、カウント値CNTA~CNTDにおける環境光成分C2は、しきい値THAより小さい。
 その後、図47(B)に示したタイミングにおいて、カウント値CNTA~CNTDにおける環境光成分C2がしきい値THAに到達する。判定部236は、カウント値CNTA~CNTDのいずれもがしきい値THAに到達したと判定する。言い換えれば、判定部236は、カウント値CNTA~CNTDの最小値がしきい値THAに到達したと判定する。このとき、しきい値THBは、まだ所定のしきい値THB0に到達していない。よって、しきい値設定部239は、例えばしきい値THAに所定の値を加算することにより、しきい値THAをより高い値に設定し、例えばしきい値THBに所定の値を加算することにより、しきい値THBをより高い値に設定する(図47(C))。
 その後も、カウント値CNTA~CNTDは、時間の経過に応じて、徐々に大きくなっていく。
 そして、図47(D)に示したタイミングにおいて、カウント値CNTA~CNTDにおける環境光成分C2が、変更されたしきい値THAに到達する。判定部236は、カウント値CNTA~CNTDのいずれもがしきい値THAに到達したと判定する。言い換えれば、判定部236は、カウント値CNTA~CNTDの最小値がしきい値THAに到達したと判定する。このとき、しきい値THBは、所定のしきい値THB0に到達している。よって、減算判定部336は、減算処理を行うと判定し、減算制御部37は、カウント値CNTA~CNTDのそれぞれを、所定の値だけ減算する(図47(E))。これにより、カウント値CNTA~CNTDにおける、環境光成分C2の一部が除去され、反射光成分C1は維持される。
 その後も、カウント値CNTA~CNTDは、時間の経過に応じて、徐々に大きくなっていく。
 そして、図47(F)に示したタイミングにおいて、カウント値CNTCがしきい値THBに到達する。飽和判定部38は、カウント値CNTA~CNTDのうちの1以上のカウント値がしきい値THBに到達したと判定し、制御信号STPを低レベルから高レベルに変化させる。論理積回路33A~33Dは、この制御信号STPに基づいて、出力信号を低レベルにする。これにより、スイッチ34A~34Dは、カウンタ35A~35Dへのパルス信号PLSの供給を停止し、カウンタ35A~35Dは、カウント処理を停止する。
 図48は、光検出部320の一動作例を表すものである。
 まず、光検出部320では、光検出制御部25は、露光期間P1を開始させる(ステップS301)。露光期間P1では、信号生成部22は、光検出制御部25からの指示に基づいて、クロック信号CLKA~CLKDを生成する。
 次に、光検出制御部25は、所定の時間長を有する露光期間P1が終了したかどうかを確認する(ステップS302)。露光期間P1が終了した場合(ステップS302において“Y”)には、処理はステップS309に進む。
 露光期間P1がまだ終了していない場合(ステップS302において“N”)には、飽和判定部38は、4つのカウント値CNT(カウント値CNTA~CNTD)のうちの1以上のカウント値CNTがしきい値THBに到達しているかどうかを判定する(ステップS303)。1以上のカウント値CNTがしきい値THBに到達している場合(ステップS303において“Y”)には、処理はステップS308に進む。
 ステップS303において、どのカウント値CNTもしきい値THBに到達していない場合(ステップS303において“N”)には、判定部236は、4つのカウント値CNT(カウント値CNTA~CNTD)のいずれもがしきい値THAに到達しているかどうかを判定する(ステップS304)。全てのカウント値CNTがしきい値THAに到達していない場合(ステップS304において“N”)には、処理はステップS302に戻る。
 ステップS304において、4つのカウント値CNTのいずれもがしきい値THAに到達した場合(ステップS304において“Y”)には、しきい値設定部339および減算判定部336は、しきい値THBが所定のしきい値THB0に到達しているかどうかを確認する(ステップS305)。
 ステップS305において、しきい値THBが所定のしきい値THB0に到達していない場合(ステップS305において“N”)には、しきい値設定部339は、例えばしきい値THAに所定の値を加算することにより、しきい値THAをより高い値に設定し、例えばしきい値THBに所定の値を加算することにより、しきい値THBをより高い値に設定する(ステップS306)。すなわち、図47の例では、図47(B),(C)に示したように、4つのカウント値CNTのいずれもがしきい値THAに到達し、しきい値THBが所定のしきい値THB0に到達していないので、しきい値設定部239は、しきい値THA,THBをより高い値にそれぞれ設定する。そして、処理はステップS302に戻る。
 ステップS305において、しきい値THBが所定のしきい値THB0に到達した場合(ステップS305において“Y”)には、減算判定部336は、減算処理を行うと判定し、減算制御部37は、カウント値CNTA~CNTDのそれぞれを、所定の値だけ減算する(ステップS307)。すなわち、図47の例では、図47(D),(E)に示したように、4つのカウント値CNTのいずれもがしきい値THAに到達し、しきい値THBが所定のしきい値THB0に到達したので、減算判定部336は、減算処理を行うと判定し、減算制御部37は、カウント値CNTA~CNTDのそれぞれを、所定の値だけ減算する。そして、処理はステップS302に戻る。
 ステップS303において、1以上のカウント値CNTがしきい値THBに到達した場合(ステップS303において“Y”)には、カウンタ35A~35Dは、カウント処理を停止する(ステップS308)。すなわち、図47の例では、図47(F)に示したように、4つのカウント値CNTのうちの1以上のカウント値CNTがしきい値THBに到達した場合には、飽和判定部38は、制御信号STPを低レベルから高レベルに変化させる。論理積回路33A~33Dは、この制御信号STPに基づいて、出力信号を低レベルにする。これにより、スイッチ34A~34Dは、カウンタ35A~35Dへのパルス信号PLSの供給を停止し、カウンタ35A~35Dは、カウント処理を停止する。
 複数の光検出ユニットUは、このような動作を、それぞれ個別に行う。
 そして、光検出部320は、読出処理を行う(ステップS309)。具体的には、読出制御部23は、複数の光検出ユニットUのそれぞれにおいて生成されたカウント値CNTA~CNTDを信号処理部24に供給するように、複数の光検出ユニットUの動作を制御する。
 以上で、この処理は終了する。そして、信号処理部24は、複数の光検出ユニットUのそれぞれから供給されたカウント値CNTA~CNTDに基づいて、距離画像を生成する。
 このように、光検出システム4では、判定部236、減算判定部336、および減算制御部37は、複数のカウント値CNTのうちの1以上のカウント値に基づいて、複数のカウント値CNTのそれぞれを所定の値だけ減算する減算処理を行うようにした。これにより、例えば、第1の実施の形態の場合と同様に、環境光が多い場合において、最終的な環境光成分C2をしきい値THA以下にすることが出来るので、反射光成分C1の信号量を確保することができる。その結果、光検出システム4では、時間(TOF値)や距離の検出精度を高めることができる。
 また、光検出システム4では、判定部236およびしきい値設定部339は、複数のカウント値CNTのうちの1以上のカウント値に基づいて、しきい値THBを増加させるように変更するようにした。これにより、例えば、第3の実施の形態の場合と同様に、環境光が多い場合において、反射光成分C1の信号量を確保することができる。その結果、光検出システム4では、時間(TOF値)や距離の検出精度を高めることができる。また、環境光が少ない場合には、例えば、しきい値THBは変更されないので、より短い時間でカウント処理を停止させることができる。これにより、例えば、消費電力を低減することができるとともに、測距時間を短くすることができる。
 以上のように本実施の形態では、複数のカウント値CNTのうちの1以上のカウント値に基づいて、複数のカウント値CNTのそれぞれを所定の値だけ減算する減算処理を行うとともに、しきい値THBを増加させるように変更するようにしたので、信号量を確保することができるので、検出精度を高めることができる。
[変形例4]
 上記実施の形態では、判定部236は、カウント値CNTA~CNTDのいずれもがしきい値THAに到達したかどうかを判定したが、これに限定されるものではなく、例えば、第1の実施の形態の変形例1-4と同様に、複数のカウンタ35のうちの所定のカウンタ35のカウント値CNTがしきい値THAに到達したかどうかを判定してもよいし、複数のカウンタ35のうちの所定の2つのカウンタ35のカウント値CNTのいずれもがしきい値THAに到達したかどうかを判定してもよい。また、これらの2つのカウンタ35のカウント値の和がしきい値THAに到達するかどうかを判定してもよいし、これらの2つのカウンタ35のカウント値の平均値がしきい値THAに到達するかどうかを判定してもよい。
[その他の変形例]
 上記実施の形態に係る光検出システム4に、上記第1の実施の形態の各変形例を適用してもよい。
<5.移動体への応用例>
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。
 図49は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。
 車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図49に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(interface)12053が図示されている。
 駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。
 ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。
 車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。
 撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。
 車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。
 マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。
 音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図49の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。
 図50は、撮像部12031の設置位置の例を示す図である。
 図50では、車両12100は、撮像部12031として、撮像部12101,12102,12103,12104,12105を有する。
 撮像部12101,12102,12103,12104,12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102,12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。撮像部12101及び12105で取得される前方の画像は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。
 なお、図50には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。
 撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。
 撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。
 以上、本開示に係る技術が適用され得る車両制御システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、撮像部12031に適用され得る。これにより、車両制御システム12000では、時間(TOF値)や距離の検出精度を高めることができる。その結果、車両制御システム12000では、車両の衝突回避あるいは衝突緩和機能、車間距離に基づく追従走行機能、車速維持走行機能、車両の衝突警告機能、車両のレーン逸脱警告機能等を、高い精度で実現できる。
 以上、いくつかの実施の形態および変形例、ならびにそれらの具体的な応用例を挙げて本技術を説明したが、本技術はこれらの実施の形態等には限定されず、種々の変形が可能である。
 例えば、上記の各実施の形態では、図4A,4Bに示したような受光部31を設けたが、受光部31の回路構成は、これに限定されるものではなく、様々な回路構成を適用することができる。
 なお、本明細書に記載された効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。
 なお、本技術は以下のような構成とすることができる。以下の構成の本技術によれば、検出精度を高めることができる。
(1)
 それぞれが、受光素子を有し、前記受光素子の受光結果に応じたパルスを含むパルス信号を生成する1または複数の受光部と、
 前記1または複数の受光部により生成された1または複数の前記パルス信号に基づいてカウント処理を行うことにより複数のカウント値をそれぞれ生成する複数の第1のカウンタと、
 前記複数のカウント値のうちの1以上のカウント値に基づいて、前記複数のカウント値のそれぞれを所定の値だけ減算する減算処理を行う減算処理部と
 を備えた光検出装置。
(2)
 前記複数のカウント値のうちの1以上のカウント値が、第1のしきい値に到達した場合に、前記複数の第1のカウンタにおける前記カウント処理を停止させる停止処理部をさらに備えた
 前記(1)に記載の光検出装置。
(3)
 前記減算処理部は、前記複数のカウント値のいずれもが第2のしきい値に到達した場合に、前記減算処理を行う
 前記(2)に記載の光検出装置。
(4)
 前記減算処理部は、前記複数のカウント値のうちの最小値が第2のしきい値に到達した場合に、前記減算処理を行う
 前記(2)に記載の光検出装置。
(5)
 前記減算処理部は、前記複数の第1のカウンタのうちの1以上の所定の第1のカウンタの前記カウント値に基づいて、前記減算処理を行う
 前記(2)に記載の光検出装置。
(6)
 前記減算処理部は、前記複数の第1のカウンタのそれぞれにおける複数のカウントビットのうちの所定のカウントビットのビット値を変更することにより、前記減算処理を行う
 前記(2)から(5)のいずれかに記載の光検出装置。
(7)
 前記所定のカウントビットは、前記複数のカウントビットのうちの最上位ビットである
 前記(6)に記載の光検出装置。
(8)
 前記減算処理部は、前記複数の第1のカウンタのそれぞれが前記カウント処理を行わない期間において、前記減算処理を行う
 前記(2)から(7)のいずれかに記載の光検出装置。
(9)
 前記第1のしきい値は、前記複数のカウント値がとり得る最大のカウント値である
 前記(2)から(8)のいずれかに記載の光検出装置。
(10)
 前記複数のカウント値のうちの1以上のカウント値に基づいて、前記第1のしきい値を増加させるように変更するしきい値設定部をさらに備え、
 前記しきい値設定部は、前記第1のしきい値が所定のしきい値に到達していない場合に、前記第1のしきい値を増加させるように変更し、
 前記減算処理部は、前記第1のしきい値が前記所定のしきい値に到達している場合に、前記減算処理を行う
 前記(2)から(9)のいずれかに記載の光検出装置。
(11)
 前記しきい値設定部は、前記複数のカウント値のいずれもが第2のしきい値に到達した場合に、前記第1のしきい値を増加させるように変更する
 前記(10)に記載の光検出装置。
(12)
 前記しきい値設定部は、前記複数のカウント値のいずれもが前記第2のしきい値に到達した場合に、さらに前記第2のしきい値を増加させるように変更する
 前記(11)に記載の光検出装置。
(13)
 前記しきい値設定部は、前記複数の第1のカウンタのうちの1以上の所定の第1のカウンタの前記カウント値に基づいて、前記第1のしきい値を増加させるように変更する
 前記(10)に記載の光検出装置。
(14)
 前記停止処理部が前記複数の第1のカウンタにおける前記カウント処理を停止させた後に、前記複数のカウント値から、前記複数のカウント値のうちの最小値を減算する第1の処理部をさらに備えた
 前記(2)から(13)のいずれかに記載の光検出装置。
(15)
 前記減算処理を行った回数をカウントする第2のカウンタをさらに備えた
 前記(2)から(14)のいずれかに記載の光検出装置。
(16)
 前記停止処理部が前記複数の第1のカウンタにおける前記カウント処理を停止させた後に、前記複数のカウント値に基づいて光検出タイミングを算出し、前記第2のカウンタのカウント値に基づいて前記光検出タイミングを補正する第2の処理部をさらに備えた
 前記(15)に記載の光検出装置。
(17)
 前記停止処理部が前記複数の第1のカウンタにおける前記カウント処理を停止させる停止タイミングを検出する検出部をさらに備えた
 前記(15)または(16)に記載の光検出装置。
(18)
 前記検出部は、前記複数の第1のカウンタが前記カウント処理を開始してから、前記停止処理部が前記カウント処理を停止させるまでの時間を計測する第3のカウンタを有する
 前記(17)に記載の光検出装置。
(19)
 前記検出部は、前記停止処理部が前記カウント処理を停止させてから、その後の所定のタイミングまでの時間を計測する第3のカウンタを有する
 前記(17)に記載の光検出装置。
(20)
 時刻コードを生成するコード生成部をさらに備え、
 前記検出部は、前記停止処理部が前記カウント処理を停止させたタイミングで前記時刻コードをラッチするラッチ回路を有する
 前記(17)に記載の光検出装置。
(21)
 前記第2のカウンタのカウント値および前記停止タイミングに基づいて、前記複数の第1のカウンタのカウント値を補正する第3の処理部をさらに備えた
 前記(17)から(20)のいずれかに記載の光検出装置。
(22)
 分配部を備え、
 前記1以上の受光部は1つの受光部を含み、
 前記分配部は、前記受光部により生成された前記パルス信号を、前記複数の第1のカウンタに時分割的に分配し、
 前記複数の第1のカウンタのそれぞれは、分配された信号に基づいて前記カウント処理を行う
 前記(1)から(21)のいずれかに記載の光検出装置。
(23)
 加算部と
 分配部と
 を備え、
 前記1以上の受光部は複数の受光部を含み、
 前記加算部は、前記複数の受光部により生成された複数の前記パルス信号に基づいて加算処理を行うことにより加算パルス信号を生成し、
 前記分配部は、前記加算パルス信号を、前記複数の第1のカウンタに時分割的に分配し、 
 前記複数の第1のカウンタは、分配された信号に基づいて前記カウント処理を行う
 前記(1)から(21)のいずれかに記載の光検出装置。
(24)
 前記1以上の受光部は、前記複数の第1のカウンタに対応して設けられた複数の受光部を含み、
 前記複数の第1のカウンタのそれぞれは、前記複数の受光部のうちの対応する受光部により生成された前記パルス信号に基づいて前記カウント処理を行う
 前記(1)から(21)のいずれかに記載の光検出装置。
(25)
 第1の方向および第2の方向に並設された複数の光検出ユニットを備え、
 前記複数の光検出ユニットのそれぞれは、前記1または複数の受光部、前記複数の第1のカウンタ、および前記減算処理部を含む
 前記(1)から(24)のいずれかに記載の光検出装置。
(26)
 前記1または複数の受光部のそれぞれは、前記受光素子に接続され、前記パルス信号を生成するパルス生成回路を有し、
 前記受光素子は、第1の半導体基板に設けられ、
 前記パルス生成回路は、前記第1の半導体基板に貼り付けられた第2の半導体基板に設けられた
 前記(1)から(25)のいずれかに記載の光検出装置。
(27)
 それぞれが、受光素子を有し、前記受光素子の受光結果に応じたパルスを含むパルス信号を生成する1または複数の受光部と、
 前記1または複数の受光部により生成された1または複数の前記パルス信号に基づいてカウント処理を行うことにより複数のカウント値をそれぞれ生成する複数の第1のカウンタと、
 前記複数のカウント値のうちの1以上のカウント値が、第1のしきい値に到達した場合に、前記複数の第1のカウンタにおける前記カウント処理を停止させる停止処理部と、
 前記複数のカウント値のうちの1以上のカウント値に基づいて、前記第1のしきい値を増加させるように変更するしきい値設定部と
 を備えた光検出装置。
(28)
 前記しきい値設定部は、前記複数のカウント値のいずれもが第2のしきい値に到達した場合に、前記第1のしきい値を増加させるように変更する
 前記(27)に記載の光検出装置。
(29)
 前記しきい値設定部は、前記複数のカウント値のいずれもが前記第2のしきい値に到達した場合に、さらに前記第2のしきい値を増加させるように変更する
 前記(28)に記載の光検出装置。
(30)
 前記しきい値設定部は、前記複数の第1のカウンタのうちの1以上の所定の第1のカウンタの前記カウント値に基づいて、前記第1のしきい値を増加させるように変更する
 前記(27)に記載の光検出装置。
(31)
 前記停止処理部が前記複数の第1のカウンタにおける前記カウント処理を停止させた後に、前記複数のカウント値から、前記複数のカウント値のうちの最小値を減算する第1の処理部をさらに備えた
 前記(27)から(30)のいずれかに記載の光検出装置。
(32)
 分配部を備え、
 前記1以上の受光部は1つの受光部を含み、
 前記分配部は、前記受光部により生成された前記パルス信号を、前記複数の第1のカウンタに時分割的に分配し、
 前記複数の第1のカウンタのそれぞれは、分配された信号に基づいて前記カウント処理を行う
 前記(27)から(31)のいずれかに記載の光検出装置。
(33)
 加算部と
 分配部と
 を備え、
 前記1以上の受光部は複数の受光部を含み、
 前記加算部は、前記複数の受光部により生成された複数の前記パルス信号に基づいて加算処理を行うことにより加算パルス信号を生成し、
 前記分配部は、前記加算パルス信号を、前記複数の第1のカウンタに時分割的に分配し、 
 前記複数の第1のカウンタは、分配された信号に基づいて前記カウント処理を行う
 前記(27)から(31)のいずれかに記載の光検出装置。
(34)
 前記1以上の受光部は、前記複数の第1のカウンタに対応して設けられた複数の受光部を含み、
 前記複数の第1のカウンタのそれぞれは、前記複数の受光部のうちの対応する受光部により生成された前記パルス信号に基づいて前記カウント処理を行う
 前記(27)から(31)のいずれかに記載の光検出装置。
(35)
 第1の方向および第2の方向に並設された複数の光検出ユニットを備え、
 前記複数の光検出ユニットのそれぞれは、前記1または複数の受光部、前記複数の第1のカウンタ、前記停止処理部、および前記しきい値設定部を含む
 前記(27)から(34)のいずれかに記載の光検出装置。
(36)
 前記1または複数の受光部のそれぞれは、前記受光素子に接続され、前記パルス信号を生成するパルス生成回路を有し、
 前記受光素子は、第1の半導体基板に設けられ、
 前記パルス生成回路は、前記第1の半導体基板に貼り付けられた第2の半導体基板に設けられた
 前記(27)から(35)のいずれかに記載の光検出装置。
(37)
 光を射出する発光部と
 前記発光部から射出された光のうちの、検出対象により反射された光を検出する光検出部と
 を備え、
 前記光検出部は、
 それぞれが、受光素子を有し、前記受光素子の受光結果に応じたパルスを含むパルス信号を生成する1または複数の受光部と、
 前記1または複数の受光部により生成された1または複数の前記パルス信号に基づいてカウント処理を行うことにより複数のカウント値をそれぞれ生成する複数の第1のカウンタと、
 前記複数のカウント値のうちの1以上のカウント値に基づいて、前記複数のカウント値のそれぞれを所定の値だけ減算する減算処理を行う減算処理部と
 を有する
 光検出システム。
(38)
 光を射出する発光部と
 前記発光部から射出された光のうちの、検出対象により反射された光を検出する光検出部と
 を備え、
 前記光検出部は、
 それぞれが、受光素子を有し、前記受光素子の受光結果に応じたパルスを含むパルス信号を生成する1または複数の受光部と、
 前記1または複数の受光部により生成された1または複数の前記パルス信号に基づいてカウント処理を行うことにより複数のカウント値をそれぞれ生成する複数の第1のカウンタと、
 前記複数のカウント値のうちの1以上のカウント値が、第1のしきい値に到達した場合に、前記複数の第1のカウンタにおける前記カウント処理を停止させる停止処理部と、
 前記複数のカウント値のうちの1以上のカウント値に基づいて、前記第1のしきい値を増加させるように変更するしきい値設定部と
 を有する
 光検出システム。
 本出願は、日本国特許庁において2020年12月4日に出願された日本特許出願番号2020-202130号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。

Claims (38)

  1.  それぞれが、受光素子を有し、前記受光素子の受光結果に応じたパルスを含むパルス信号を生成する1または複数の受光部と、
     前記1または複数の受光部により生成された1または複数の前記パルス信号に基づいてカウント処理を行うことにより複数のカウント値をそれぞれ生成する複数の第1のカウンタと、
     前記複数のカウント値のうちの1以上のカウント値に基づいて、前記複数のカウント値のそれぞれを所定の値だけ減算する減算処理を行う減算処理部と
     を備えた光検出装置。
  2.  前記複数のカウント値のうちの1以上のカウント値が、第1のしきい値に到達した場合に、前記複数の第1のカウンタにおける前記カウント処理を停止させる停止処理部をさらに備えた
     請求項1に記載の光検出装置。
  3.  前記減算処理部は、前記複数のカウント値のいずれもが第2のしきい値に到達した場合に、前記減算処理を行う
     請求項2に記載の光検出装置。
  4.  前記減算処理部は、前記複数のカウント値のうちの最小値が第2のしきい値に到達した場合に、前記減算処理を行う
     請求項2に記載の光検出装置。
  5.  前記減算処理部は、前記複数の第1のカウンタのうちの1以上の所定の第1のカウンタの前記カウント値に基づいて、前記減算処理を行う
     請求項2に記載の光検出装置。
  6.  前記減算処理部は、前記複数の第1のカウンタのそれぞれにおける複数のカウントビットのうちの所定のカウントビットのビット値を変更することにより、前記減算処理を行う
     請求項2に記載の光検出装置。
  7.  前記所定のカウントビットは、前記複数のカウントビットのうちの最上位ビットである
     請求項6に記載の光検出装置。
  8.  前記減算処理部は、前記複数の第1のカウンタのそれぞれが前記カウント処理を行わない期間において、前記減算処理を行う
     請求項2に記載の光検出装置。
  9.  前記第1のしきい値は、前記複数のカウント値がとり得る最大のカウント値である
     請求項2に記載の光検出装置。
  10.  前記複数のカウント値のうちの1以上のカウント値に基づいて、前記第1のしきい値を増加させるように変更するしきい値設定部をさらに備え、
     前記しきい値設定部は、前記第1のしきい値が所定のしきい値に到達していない場合に、前記第1のしきい値を増加させるように変更し、
     前記減算処理部は、前記第1のしきい値が前記所定のしきい値に到達している場合に、前記減算処理を行う
     請求項2に記載の光検出装置。
  11.  前記しきい値設定部は、前記複数のカウント値のいずれもが第2のしきい値に到達した場合に、前記第1のしきい値を増加させるように変更する
     請求項10に記載の光検出装置。
  12.  前記しきい値設定部は、前記複数のカウント値のいずれもが前記第2のしきい値に到達した場合に、さらに前記第2のしきい値を増加させるように変更する
     請求項11に記載の光検出装置。
  13.  前記しきい値設定部は、前記複数の第1のカウンタのうちの1以上の所定の第1のカウンタの前記カウント値に基づいて、前記第1のしきい値を増加させるように変更する
     請求項10に記載の光検出装置。
  14.  前記停止処理部が前記複数の第1のカウンタにおける前記カウント処理を停止させた後に、前記複数のカウント値から、前記複数のカウント値のうちの最小値を減算する第1の処理部をさらに備えた
     請求項2に記載の光検出装置。
  15.  前記減算処理を行った回数をカウントする第2のカウンタをさらに備えた
     請求項2に記載の光検出装置。
  16.  前記停止処理部が前記複数の第1のカウンタにおける前記カウント処理を停止させた後に、前記複数のカウント値に基づいて光検出タイミングを算出し、前記第2のカウンタのカウント値に基づいて前記光検出タイミングを補正する第2の処理部をさらに備えた
     請求項15に記載の光検出装置。
  17.  前記停止処理部が前記複数の第1のカウンタにおける前記カウント処理を停止させる停止タイミングを検出する検出部をさらに備えた
     請求項15に記載の光検出装置。
  18.  前記検出部は、前記複数の第1のカウンタが前記カウント処理を開始してから前記停止処理部が前記カウント処理を停止させるまでの時間を計測する第3のカウンタを有する
     請求項17に記載の光検出装置。
  19.  前記検出部は、前記停止処理部が前記カウント処理を停止させてから、その後の所定のタイミングまでの時間を計測する第3のカウンタを有する
     請求項17に記載の光検出装置。
  20.  時刻コードを生成するコード生成部をさらに備え、
     前記検出部は、前記停止処理部が前記カウント処理を停止させたタイミングで前記時刻コードをラッチするラッチ回路を有する
     請求項17に記載の光検出装置。
  21.  前記第2のカウンタのカウント値および前記停止タイミングに基づいて、前記複数の第1のカウンタのカウント値を補正する第3の処理部をさらに備えた
     請求項17に記載の光検出装置。
  22.  分配部を備え、
     前記1以上の受光部は1つの受光部を含み、
     前記分配部は、前記受光部により生成された前記パルス信号を、前記複数の第1のカウンタに時分割的に分配し、
     前記複数の第1のカウンタのそれぞれは、分配された信号に基づいて前記カウント処理を行う
     請求項1に記載の光検出装置。
  23.  加算部と
     分配部と
     を備え、
     前記1以上の受光部は複数の受光部を含み、
     前記加算部は、前記複数の受光部により生成された複数の前記パルス信号に基づいて加算処理を行うことにより加算パルス信号を生成し、
     前記分配部は、前記加算パルス信号を、前記複数の第1のカウンタに時分割的に分配し、 
     前記複数の第1のカウンタは、分配された信号に基づいて前記カウント処理を行う
     請求項1に記載の光検出装置。
  24.  前記1以上の受光部は、前記複数の第1のカウンタに対応して設けられた複数の受光部を含み、
     前記複数の第1のカウンタのそれぞれは、前記複数の受光部のうちの対応する受光部により生成された前記パルス信号に基づいて前記カウント処理を行う
     請求項1に記載の光検出装置。
  25.  第1の方向および第2の方向に並設された複数の光検出ユニットを備え、
     前記複数の光検出ユニットのそれぞれは、前記1または複数の受光部、前記複数の第1のカウンタ、および前記減算処理部を含む
     請求項1に記載の光検出装置。
  26.  前記1または複数の受光部のそれぞれは、前記受光素子に接続され、前記パルス信号を生成するパルス生成回路を有し、
     前記受光素子は、第1の半導体基板に設けられ、
     前記パルス生成回路は、前記第1の半導体基板に貼り付けられた第2の半導体基板に設けられた
     請求項1に記載の光検出装置。
  27.  それぞれが、受光素子を有し、前記受光素子の受光結果に応じたパルスを含むパルス信号を生成する1または複数の受光部と、
     前記1または複数の受光部により生成された1または複数の前記パルス信号に基づいてカウント処理を行うことにより複数のカウント値をそれぞれ生成する複数の第1のカウンタと、
     前記複数のカウント値のうちの1以上のカウント値が、第1のしきい値に到達した場合に、前記複数の第1のカウンタにおける前記カウント処理を停止させる停止処理部と、
     前記複数のカウント値のうちの1以上のカウント値に基づいて、前記第1のしきい値を増加させるように変更するしきい値設定部と
     を備えた光検出装置。
  28.  前記しきい値設定部は、前記複数のカウント値のいずれもが第2のしきい値に到達した場合に、前記第1のしきい値を増加させるように変更する
     請求項27に記載の光検出装置。
  29.  前記しきい値設定部は、前記複数のカウント値のいずれもが前記第2のしきい値に到達した場合に、さらに前記第2のしきい値を増加させるように変更する
     請求項28に記載の光検出装置。
  30.  前記しきい値設定部は、前記複数の第1のカウンタのうちの1以上の所定の第1のカウンタの前記カウント値に基づいて、前記第1のしきい値を増加させるように変更する
     請求項27に記載の光検出装置。
  31.  前記停止処理部が前記複数の第1のカウンタにおける前記カウント処理を停止させた後に、前記複数のカウント値から、前記複数のカウント値のうちの最小値を減算する第1の処理部をさらに備えた
     請求項27に記載の光検出装置。
  32.  分配部を備え、
     前記1以上の受光部は1つの受光部を含み、
     前記分配部は、前記受光部により生成された前記パルス信号を、前記複数の第1のカウンタに時分割的に分配し、
     前記複数の第1のカウンタのそれぞれは、分配された信号に基づいて前記カウント処理を行う
     請求項27に記載の光検出装置。
  33.  加算部と
     分配部と
     を備え、
     前記1以上の受光部は複数の受光部を含み、
     前記加算部は、前記複数の受光部により生成された複数の前記パルス信号に基づいて加算処理を行うことにより加算パルス信号を生成し、
     前記分配部は、前記加算パルス信号を、前記複数の第1のカウンタに時分割的に分配し、 
     前記複数の第1のカウンタは、分配された信号に基づいて前記カウント処理を行う
     請求項27に記載の光検出装置。
  34.  前記1以上の受光部は、前記複数の第1のカウンタに対応して設けられた複数の受光部を含み、
     前記複数の第1のカウンタのそれぞれは、前記複数の受光部のうちの対応する受光部により生成された前記パルス信号に基づいて前記カウント処理を行う
     請求項27に記載の光検出装置。
  35.  第1の方向および第2の方向に並設された複数の光検出ユニットを備え、
     前記複数の光検出ユニットのそれぞれは、前記1または複数の受光部、前記複数の第1のカウンタ、前記停止処理部、および前記しきい値設定部を含む
     請求項27に記載の光検出装置。
  36.  前記1または複数の受光部のそれぞれは、前記受光素子に接続され、前記パルス信号を生成するパルス生成回路を有し、
     前記受光素子は、第1の半導体基板に設けられ、
     前記パルス生成回路は、前記第1の半導体基板に貼り付けられた第2の半導体基板に設けられた
     請求項27に記載の光検出装置。
  37.  光を射出する発光部と
     前記発光部から射出された光のうちの、検出対象により反射された光を検出する光検出部と
     を備え、
     前記光検出部は、
     それぞれが、受光素子を有し、前記受光素子の受光結果に応じたパルスを含むパルス信号を生成する1または複数の受光部と、
     前記1または複数の受光部により生成された1または複数の前記パルス信号に基づいてカウント処理を行うことにより複数のカウント値をそれぞれ生成する複数の第1のカウンタと、
     前記複数のカウント値のうちの1以上のカウント値に基づいて、前記複数のカウント値のそれぞれを所定の値だけ減算する減算処理を行う減算処理部と
     を有する
     光検出システム。
  38.  光を射出する発光部と
     前記発光部から射出された光のうちの、検出対象により反射された光を検出する光検出部と
     を備え、
     前記光検出部は、
     それぞれが、受光素子を有し、前記受光素子の受光結果に応じたパルスを含むパルス信号を生成する1または複数の受光部と、
     前記1または複数の受光部により生成された1または複数の前記パルス信号に基づいてカウント処理を行うことにより複数のカウント値をそれぞれ生成する複数の第1のカウンタと、
     前記複数のカウント値のうちの1以上のカウント値が、第1のしきい値に到達した場合に、前記複数の第1のカウンタにおける前記カウント処理を停止させる停止処理部と、
     前記複数のカウント値のうちの1以上のカウント値に基づいて、前記第1のしきい値を増加させるように変更するしきい値設定部と
     を有する
     光検出システム。
PCT/JP2021/038568 2020-12-04 2021-10-19 光検出装置および光検出システム WO2022118552A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020202130A JP2022089606A (ja) 2020-12-04 2020-12-04 光検出装置および光検出システム
JP2020-202130 2020-12-04

Publications (1)

Publication Number Publication Date
WO2022118552A1 true WO2022118552A1 (ja) 2022-06-09

Family

ID=81853879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038568 WO2022118552A1 (ja) 2020-12-04 2021-10-19 光検出装置および光検出システム

Country Status (2)

Country Link
JP (1) JP2022089606A (ja)
WO (1) WO2022118552A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016161438A (ja) * 2015-03-03 2016-09-05 株式会社デンソー 演算装置
WO2018211801A1 (ja) * 2017-05-19 2018-11-22 シャープ株式会社 光センサ及び電子機器
WO2020110475A1 (ja) * 2018-11-30 2020-06-04 ソニーセミコンダクタソリューションズ株式会社 時間計測装置
JP2020139810A (ja) * 2019-02-27 2020-09-03 ソニーセミコンダクタソリューションズ株式会社 測定装置および測距装置
JP2020187042A (ja) * 2019-05-16 2020-11-19 株式会社デンソー 光測距装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016161438A (ja) * 2015-03-03 2016-09-05 株式会社デンソー 演算装置
WO2018211801A1 (ja) * 2017-05-19 2018-11-22 シャープ株式会社 光センサ及び電子機器
WO2020110475A1 (ja) * 2018-11-30 2020-06-04 ソニーセミコンダクタソリューションズ株式会社 時間計測装置
JP2020139810A (ja) * 2019-02-27 2020-09-03 ソニーセミコンダクタソリューションズ株式会社 測定装置および測距装置
JP2020187042A (ja) * 2019-05-16 2020-11-19 株式会社デンソー 光測距装置

Also Published As

Publication number Publication date
JP2022089606A (ja) 2022-06-16

Similar Documents

Publication Publication Date Title
CN212321848U (zh) 光检测设备以及距离测量传感器
WO2019150785A1 (ja) 固体撮像素子、撮像装置、および、固体撮像素子の制御方法
WO2021090691A1 (ja) センシングデバイスおよび測距装置
WO2020184224A1 (ja) 距離測定装置及びスキュー補正方法
JP7478526B2 (ja) 固体撮像素子、および、測距システム
WO2021085123A1 (ja) 受光装置、測距装置および受光回路
US20240111033A1 (en) Photodetection device and photodetection system
WO2022118552A1 (ja) 光検出装置および光検出システム
WO2020008737A1 (ja) 撮像装置および撮像システム
WO2021192460A1 (ja) センシングデバイス、および、電子装置
WO2020179288A1 (ja) 光検出装置
WO2021256276A1 (ja) 測距装置および測距システム
WO2022074939A1 (ja) 受光素子、測距モジュール、測距システム、および、受光素子の制御方法
US20230417921A1 (en) Photodetection device and photodetection system
WO2022244321A1 (ja) 光検出装置、光検出システム、および光検出方法
WO2022239459A1 (ja) 測距装置及び測距システム
WO2023145261A1 (ja) 測距装置および測距装置の制御方法
WO2022153700A1 (ja) 光検出装置および光検出システム
WO2024034254A1 (ja) 光検出装置および光検出システム
WO2024084792A1 (ja) 光検出装置、測距装置、および、光検出装置の制御方法
WO2023153104A1 (ja) 信号生成回路および光検出装置
WO2022254786A1 (ja) 光検出装置、光検出システム、および光検出方法
US20230228875A1 (en) Solid-state imaging element, sensing system, and control method of solid-state imaging element
WO2023085143A1 (ja) 光検出素子
KR20230149294A (ko) 광 검출 장치 및 광 검출 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21900308

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21900308

Country of ref document: EP

Kind code of ref document: A1